WO2005017959A2 - Integrated circuit with test pad structure and method of testing - Google Patents
Integrated circuit with test pad structure and method of testing Download PDFInfo
- Publication number
- WO2005017959A2 WO2005017959A2 PCT/US2004/022509 US2004022509W WO2005017959A2 WO 2005017959 A2 WO2005017959 A2 WO 2005017959A2 US 2004022509 W US2004022509 W US 2004022509W WO 2005017959 A2 WO2005017959 A2 WO 2005017959A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- integrated circuit
- test
- pads
- functional block
- testing
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/1201—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising I/O circuitry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2884—Testing of integrated circuits [IC] using dedicated test connectors, test elements or test circuits on the IC under test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31712—Input or output aspects
- G01R31/31715—Testing of input or output circuits; test of circuitry between the I/C pins and the functional core, e.g. testing of input or output driver, receiver, buffer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3187—Built-in tests
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/48—Arrangements in static stores specially adapted for testing by means external to the store, e.g. using direct memory access [DMA] or using auxiliary access paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05552—Shape in top view
- H01L2224/05554—Shape in top view being square
Definitions
- This invention relates to packaged integrated circuits, and more particularly, to integrated circuits that are for wirebonding and have a functional block for testing.
- wire bonding is a well proven method used to connect a semiconductor die having electrical circuitry to a pin on a component package.
- "Probe test” is one such method used to test a semiconductor where a probe contact is commonly used as a mechanical and electrical interface to bond pads on the die. Testing, including test probe testing, can be significant in the amount of time required to perform the testing. It is desirable to minimize this test time.
- One way that test time can be reduced is to test multiple die on the wafer at the same time. This parallel testing of die is beneficial but is made more difficult by the decreasing bond pad geometries characteristic of modem deep sub- micron semiconductor technology.
- Decreasing bond pad geometries include smaller bond pads on which smaller wire bonds are formed and also reducing the distance that the bond pads are apart.
- the distance between centers of bond pads is called pitch.
- pitch and bond pad size have decreased with technological advances, the challenge for robust parallel probe testing has increased. Smaller bond pads required smaller probe tip needles, which pose both probe card fabrication and maintenance challenges.
- the length of the cantilevered probe needles has increased, which makes precisely locating the bond pads more difficult. It is more challenging to maintain coplanarity among many long and small probe needles and maintain good electrical contact with the bond pads.
- the move toward smaller bond pads and the move toward longer probe needles has combined to multiply the difficulty of properly placing the probe needles on the bond pads.
- one technique that has been developed is to utilize vertical probing technology which is more expensive technology that cantilevered probe technology.
- vertical probing technology which is more expensive technology that cantilevered probe technology.
- FIG. 1 is a functional block diagram of an integrated circuit according to an embodiment of the invention
- FIG. 2 is a simplified top view of the integrated circuit of FIG. 1
- FIG. 3 is a cross section of a portion of the integrated circuit of FIG. 1
- FIG. 4 is a cross section of an alternative portion of the packaged integrated circuit of FIG. 1
- FIG. 5 is a test apparatus useful in testing a plurality of the integrated circuits of FIG. 1 while present on a semiconductor wafer.
- Skilled artisans appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve the understanding of the embodiments of the present invention.
- an integrated circuit may have a plurality of functional blocks that can also be called modules.
- modules include a non-volatile memory (NVM), a static random access memory (SRAM), a read only memory (ROM), and processing units.
- NVM non-volatile memory
- SRAM static random access memory
- ROM read only memory
- processing units processing units.
- a module is tested by a combination of built-in self-test (BIST) circuitry and an external tester by utilizing module test pads in the middle of the die that are much larger than the bond pads on the periphery.
- BIST built-in self-test
- large test pads in the middle of the die are designed to test multiple modules on the integrated circuit or test the entire integrated circuit. Only the pads necessary for testing the module are provided as module test pads.
- the module test pads are over the passivation layer and contact the underlying module circuitry through openings, typically to form vias, in the passivation layer.
- the size of the vias is not affected, and the size of the module test pads can be increased without increasing the overall size of the semiconductor device.
- substantially low-cost probe technology such as cantilever probe technology, can be utilized.
- Cantilevered probe needles can extend relatively large distances and still reliably make contact with the test pads, thus enabling parallel testing of multiple die while present on the semiconductor wafer. This is better understood with reference to the drawings and the following description. Shown in FIG.
- FIG. 1 is a semiconductor device 10 comprising a module 12, a test pad interface 14, a built-in self-test (BIST) circuit 16, and logic 18. This shows that these elements 12-18 of semiconductor device 10 are interconnected.
- Logic 18 preferably includes an arithmetic logic unit (ALU), as well as other control circuitry, that operates module 12.
- BIST 16 is for running performance tests on module 12 and logic 18.
- External test circuitry is also required for running tests on module 12.
- test pad interface 14 assists in coupling the module to the external test circuitry as shown in part in FIG. 2.
- FIG. 2 Shown in FIG. 2 is a top view of semiconductor device 10 showing module bond pads 20 on the periphery, module test pads 22 in a row in the middle of the semiconductor device, and regular bond pads 24 on the periphery.
- Module 12 receives and generates signals, some of which are useful in testing module 12. These signals useful in testing are referred to as module test signals. These module test signals are brought out externally to bond pads 20 and, via test pad interface 14, to module test pads 22. In this case, the module test pads 22 are in a single row for the convenience of cantilevered probe needles commonly used in testing. Module test pads 22 are for the same functional signals as are bond pads 20. Module bond pads 20 are much smaller than module test pads 22.
- the module test pads may be square, as shown in FIG. 2, or some other shape. For example, the module test pads may be 100 by 200 microns and spaced apart with a 250 micron pitch when aligned in the short dimension. The bond pads similarly may be square or some other shape.
- the bond pads may be 52 microns by 82 microns and spaced apart with a 55 micron pitch when aligned in the short dimension.
- the top surface area of the module test pads is more than four times greater than the top surface area of the bond pads.
- This difference in dimensions of the bond pads 20 and 24, as compared to the module test pads 22, is very significant for the purpose of landing a probe needle on such pad.
- Optimizing size, pitch, and placement of the module test pads can ensure the use of the least expensive and most mature cantilever probe technology. Even if the test pad was only twice as large, there would be substantial benefit in ensuring that the cantilevered probe needles would land on the test pads. In the example shown there are only four module test pads, but more would typically be needed.
- the number needed is a function of the module architecture, module type, and the manner in which the BIST 16 functions.
- a flash module of 2 megabytes requires 14 module test pads. This required number will vary with the type of BIST and module architecture as well as the particular type of module testing to be performed.
- the manner of determining the required number is known in module testing.
- the module testing of memories of this type of magnitude generally take much longer than testing for logic such as logic 18. Thus there is generally much more benefit in increasing parallel testing capability for memories.
- the function is thus that most of the signals are brought out only on the bond pads 24 on the periphery and the signals that are needed for performing the module test are brought out externally both on module bond pads 20 on the periphery and also on much larger module test pads 22 inside the periphery.
- FIG. 3 Shown in FIG. 3 is semiconductor 10 in a cross section showing one option for test pad interface 14. Shown in FIG. 3 is module 12 formed in and over a semiconductor substrate 26, a test pad 34 that is one of module test bond pads 22 of FIG. 2, interconnecting layers region 28 above substrate 26 that is a combination of conductive layers and dielectric layers separating the conductive layers, a passivation layer 36 over interconnecting layers region 28, a bond pad 30 that is one of module bond pads 20 shown in FIG. 2, a driver 47 on and over substrate 26, an interconnect 48 connecting driver 47 to bond pad 30, an opening 38 that exposes bond pad 30, and a via 40.
- interconnecting layers region 28 are four metal layers.
- Metal portions 49 and 50 are formed in a first metal layer
- metal portions 51 and 52 are formed in a second metal layer
- metal portions 46 and 54 are formed in a third metal layer
- portion 32 and module bond pad 30 are formed in a final metal layer that is the last metal layer before the passivation layer.
- These four metal layers are for providing interconnect. These are shown for illustration and there may be less or more metal interconnect layers in alternative semiconductor devices. For example, six metal layers may actually be used in a semiconductor device such as semiconductor device 10.
- test pad 34 is preferably aluminum and final metal 32 is preferably copper. In such case, it is preferable that there be a barrier, such as tantalum, lining via 40 to provide an interface between the copper of final layer 32 and the aluminum of module test pad 34.
- barrier metal such as tantalum, lining via 40 to provide an interface between the copper of final layer 32 and the aluminum of module test pad 34.
- test pad 34, metal layers, final 32, and the barrier metal may be formed from other electrically conductive material.
- test pad 34 may be fabricated from gold, and the metal layers and final metal 32 may include aluminum or gold.
- the barrier metal may be any material for forming a diffusion barrier and adhesion layer between dissimilar and adjacent materials.
- diffusion and barrier material are tantalum nitride, titanium, titanium nitride, nickel, tungsten, titanium tungsten alloy, and tantalum silicon nitride.
- test pads can be considered to be directly connected to the functional circuitry because the electrical connection from the test pads to the functional circuitry is not by way of the bond pads.
- the top area of the module test pad is mostly extended over the passivation layer, thus the size of the vias is not affected, and the size of the module test pads can be increased without increasing the overall size of the semiconductor device.
- An alternative for the type of test pad interface 14 used is shown in FIG. 4. The same reference numerals are retained for the same structural elements.
- the functional signal is provided between transistor level 27 and module test pad 34 by a different route. In this case there is different circuitry at transistor level 27 for the connection point and there is a different route through the first, second and third metal layers.
- ESD electrostatic discharge
- the functional operation of the signals at module test pad 34 and module bond pad 30 would be the same but not identically the same signal.
- the additional circuitry may increase the size of the semiconductor device. Since the module test pads are exclusively used for testing and the next-level interconnection is not required, however, the ESD or driver circuitry for the module test pads is significantly less complex and smaller than that of the regular bond pads 24 and module bond pads 20 on the periphery shown in FIG 2. Thus, the impact on die size due to the additional circuitry needed for the functional signal at module test pad 34 is minimal.
- FIG. 5 Shown in FIG. 5 is a tester 110, a probe 112, a probe segment 114, and a wafer 116 on which semiconductor die 10 resides.
- probe segment 114 has the probe needles necessary to provide connections along a row of die of wafer 116.
- Wafer 116 rises to mate with probe 112 and provide a physical connection and thereby an electrical connection such that functional signals may pass between tester 110 and the die of wafer 116.
- Probe 112 is for testing, in parallel, the module of multiple die in a single row which is achieved by relatively long probe needles that can properly contact the die for such test due to the relatively large module test pads present on the die such as semiconductor device 10. Even if the module of all of the die of wafer 116 cannot be tested in parallel, a significant number of them can be. For example, four rows may be tested with four die in each row being reliably contacted on the relatively large module test pads. In such case, 16 die would be tested in parallel.
- the terms "comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Semiconductor Integrated Circuits (AREA)
- Wire Bonding (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Tests Of Electronic Circuits (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006522572A JP4837560B2 (en) | 2003-08-05 | 2004-07-15 | Integrated circuit having inspection pad structure and manufacturing method thereof |
EP04778153A EP1664808A2 (en) | 2003-08-05 | 2004-07-15 | Integrated circuit with test pad structure and method of testing |
KR1020067002403A KR101048576B1 (en) | 2003-08-05 | 2004-07-15 | Integrated circuits, test apparatus and methods, and integrated circuit fabrication methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/634,484 US6937047B2 (en) | 2003-08-05 | 2003-08-05 | Integrated circuit with test pad structure and method of testing |
US10/634,484 | 2003-08-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005017959A2 true WO2005017959A2 (en) | 2005-02-24 |
WO2005017959A3 WO2005017959A3 (en) | 2005-09-09 |
Family
ID=34116043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/022509 WO2005017959A2 (en) | 2003-08-05 | 2004-07-15 | Integrated circuit with test pad structure and method of testing |
Country Status (7)
Country | Link |
---|---|
US (1) | US6937047B2 (en) |
EP (1) | EP1664808A2 (en) |
JP (1) | JP4837560B2 (en) |
KR (1) | KR101048576B1 (en) |
CN (1) | CN100514076C (en) |
TW (1) | TWI354346B (en) |
WO (1) | WO2005017959A2 (en) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7692315B2 (en) * | 2002-08-30 | 2010-04-06 | Fujitsu Microelectronics Limited | Semiconductor device and method for manufacturing the same |
JP4426166B2 (en) * | 2002-11-01 | 2010-03-03 | ユー・エム・シー・ジャパン株式会社 | Semiconductor device design method, semiconductor device design program, and semiconductor device |
US7342248B2 (en) * | 2003-05-15 | 2008-03-11 | Shinko Electric Industries Co., Ltd. | Semiconductor device and interposer |
JP2005209239A (en) * | 2004-01-20 | 2005-08-04 | Nec Electronics Corp | Semiconductor integrated circuit apparatus |
JP4803966B2 (en) * | 2004-03-31 | 2011-10-26 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
DE102006008454B4 (en) * | 2005-02-21 | 2011-12-22 | Samsung Electronics Co., Ltd. | Pad structure, pad layout structure, semiconductor device, and pad layout method |
KR100699838B1 (en) * | 2005-04-13 | 2007-03-27 | 삼성전자주식회사 | A semiconductor device including the ROM interface PAD |
US7489151B2 (en) * | 2005-10-03 | 2009-02-10 | Pdf Solutions, Inc. | Layout for DUT arrays used in semiconductor wafer testing |
US7417449B1 (en) * | 2005-11-15 | 2008-08-26 | Advanced Micro Devices, Inc. | Wafer stage storage structure speed testing |
JP4986114B2 (en) * | 2006-04-17 | 2012-07-25 | ルネサスエレクトロニクス株式会社 | Semiconductor integrated circuit and design method of semiconductor integrated circuit |
US20080252330A1 (en) * | 2007-04-16 | 2008-10-16 | Verigy Corporation | Method and apparatus for singulated die testing |
US7566648B2 (en) * | 2007-04-22 | 2009-07-28 | Freescale Semiconductor Inc. | Method of making solder pad |
US7902852B1 (en) * | 2007-07-10 | 2011-03-08 | Pdf Solutions, Incorporated | High density test structure array to support addressable high accuracy 4-terminal measurements |
KR101318946B1 (en) * | 2007-08-09 | 2013-10-17 | 삼성전자주식회사 | Test device, SRAM test device and semiconductor intergrated circuit device |
US7977962B2 (en) * | 2008-07-15 | 2011-07-12 | Micron Technology, Inc. | Apparatus and methods for through substrate via test |
US8779790B2 (en) * | 2009-06-26 | 2014-07-15 | Freescale Semiconductor, Inc. | Probing structure for evaluation of slow slew-rate square wave signals in low power circuits |
CN102023236A (en) * | 2009-09-11 | 2011-04-20 | 中芯国际集成电路制造(上海)有限公司 | Test structure and test method |
KR20120002761A (en) * | 2010-07-01 | 2012-01-09 | 삼성전자주식회사 | Method for arranging pads in a semiconductor apparatus, semiconductor memory apparatus using it, and processing system having it |
US11482440B2 (en) * | 2010-12-16 | 2022-10-25 | Monolithic 3D Inc. | 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits |
KR101198141B1 (en) * | 2010-12-21 | 2012-11-12 | 에스케이하이닉스 주식회사 | Semiconductor memory apparatus |
CN103797570B (en) * | 2011-06-30 | 2016-12-21 | 爱德万测试公司 | Contact is electrically connected to the method for semiconductor chip, device and the system of the test access port being positioned on the scribe line of wafer |
TWI483361B (en) * | 2012-03-23 | 2015-05-01 | Chipmos Technologies Inc | Chip packaging substrate and chip packaging structure |
KR102120817B1 (en) * | 2013-10-28 | 2020-06-10 | 삼성디스플레이 주식회사 | Driving integrated circuit pad unit and flat display panel having the same |
US10340203B2 (en) * | 2014-02-07 | 2019-07-02 | United Microelectronics Corp. | Semiconductor structure with through silicon via and method for fabricating and testing the same |
CN104851875B (en) * | 2014-02-18 | 2019-07-23 | 联华电子股份有限公司 | Semiconductor structure with through silicon via and preparation method thereof and test method |
US9373539B2 (en) | 2014-04-07 | 2016-06-21 | Freescale Semiconductor, Inc. | Collapsible probe tower device and method of forming thereof |
KR20160056379A (en) | 2014-11-10 | 2016-05-20 | 삼성전자주식회사 | Chip using triple pad configuration and packaging method thereof |
KR20170042897A (en) * | 2015-10-12 | 2017-04-20 | 에스케이하이닉스 주식회사 | Semiconductor device |
CN105467172B (en) * | 2016-01-01 | 2019-05-21 | 广州兴森快捷电路科技有限公司 | A kind of CAF test board having switching circuit |
CA3023204A1 (en) * | 2016-05-13 | 2017-11-16 | Weir Minerals Australia Ltd | A wear indicating component and method of monitoring wear |
DE102016114146A1 (en) * | 2016-08-01 | 2018-02-01 | Endress+Hauser Flowtec Ag | Test system for checking electronic connections |
RU2733800C9 (en) * | 2016-09-28 | 2021-09-22 | СМСи КОРПОРЕЙШН | Position detection switch and method for manufacturing same |
CN107167685B (en) * | 2017-06-27 | 2019-09-06 | 苏州苏纳光电有限公司 | The electrical testing method and system of face-down bonding |
US10495683B2 (en) * | 2018-01-18 | 2019-12-03 | Viavi Solutions Deutschland Gmbh | Power supply stress testing |
US10658364B2 (en) * | 2018-02-28 | 2020-05-19 | Stmicroelectronics S.R.L. | Method for converting a floating gate non-volatile memory cell to a read-only memory cell and circuit structure thereof |
US10969434B2 (en) * | 2019-09-03 | 2021-04-06 | Micron Technology, Inc. | Methods and apparatuses to detect test probe contact at external terminals |
CN111292661B (en) * | 2020-03-30 | 2023-07-21 | 京东方科技集团股份有限公司 | Array substrate, display panel and display device |
TWI806112B (en) * | 2020-07-31 | 2023-06-21 | 矽創電子股份有限公司 | Flow guiding structure of chip |
KR20220076177A (en) * | 2020-11-30 | 2022-06-08 | 삼성전자주식회사 | Film for package substrate and semiconductor package comprising the same |
CN113782463B (en) * | 2021-08-24 | 2024-09-06 | 芯盟科技有限公司 | Bonding strength testing method |
TWI835449B (en) * | 2022-12-06 | 2024-03-11 | 力晶積成電子製造股份有限公司 | Failure analysis and detection method for memory |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6008061A (en) * | 1996-10-11 | 1999-12-28 | Kabushiki Kaisha Toshiba | Method of manufacturing semiconductor device having a test pad |
US6214630B1 (en) * | 1999-12-22 | 2001-04-10 | United Microelectronics Corp. | Wafer level integrated circuit structure and method of manufacturing the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04111328A (en) * | 1990-08-30 | 1992-04-13 | Nec Ic Microcomput Syst Ltd | Integrated circuit device |
US5399505A (en) * | 1993-07-23 | 1995-03-21 | Motorola, Inc. | Method and apparatus for performing wafer level testing of integrated circuit dice |
FR2714528B1 (en) * | 1993-12-27 | 1996-03-15 | Sgs Thomson Microelectronics | Integrated circuit test structure. |
US5554940A (en) * | 1994-07-05 | 1996-09-10 | Motorola, Inc. | Bumped semiconductor device and method for probing the same |
KR100269540B1 (en) * | 1998-08-28 | 2000-10-16 | 윤종용 | Method for manufacturing chip scale packages at wafer level |
US6831294B1 (en) * | 1999-01-22 | 2004-12-14 | Renesas Technology Corp. | Semiconductor integrated circuit device having bump electrodes for signal or power only, and testing pads that are not coupled to bump electrodes |
US6614091B1 (en) | 2002-03-13 | 2003-09-02 | Motorola, Inc. | Semiconductor device having a wire bond pad and method therefor |
US6844631B2 (en) | 2002-03-13 | 2005-01-18 | Freescale Semiconductor, Inc. | Semiconductor device having a bond pad and method therefor |
-
2003
- 2003-08-05 US US10/634,484 patent/US6937047B2/en not_active Expired - Lifetime
-
2004
- 2004-07-15 CN CNB2004800199113A patent/CN100514076C/en not_active Expired - Lifetime
- 2004-07-15 WO PCT/US2004/022509 patent/WO2005017959A2/en active Application Filing
- 2004-07-15 KR KR1020067002403A patent/KR101048576B1/en not_active IP Right Cessation
- 2004-07-15 EP EP04778153A patent/EP1664808A2/en not_active Withdrawn
- 2004-07-15 JP JP2006522572A patent/JP4837560B2/en not_active Expired - Fee Related
- 2004-07-21 TW TW093121773A patent/TWI354346B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6008061A (en) * | 1996-10-11 | 1999-12-28 | Kabushiki Kaisha Toshiba | Method of manufacturing semiconductor device having a test pad |
US6214630B1 (en) * | 1999-12-22 | 2001-04-10 | United Microelectronics Corp. | Wafer level integrated circuit structure and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
KR101048576B1 (en) | 2011-07-12 |
US6937047B2 (en) | 2005-08-30 |
EP1664808A2 (en) | 2006-06-07 |
TWI354346B (en) | 2011-12-11 |
JP2007501522A (en) | 2007-01-25 |
KR20070007014A (en) | 2007-01-12 |
CN100514076C (en) | 2009-07-15 |
WO2005017959A3 (en) | 2005-09-09 |
CN1823277A (en) | 2006-08-23 |
US20050030055A1 (en) | 2005-02-10 |
TW200514187A (en) | 2005-04-16 |
JP4837560B2 (en) | 2011-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6937047B2 (en) | Integrated circuit with test pad structure and method of testing | |
US6940093B2 (en) | Special contact points for accessing internal circuitry of an integrated circuit | |
EP0494782B1 (en) | Wafer burn-in and test system and method of making the same | |
USRE41016E1 (en) | Probe card having groups of probe needles in a probing test apparatus for testing semiconductor integrated circuits | |
US7061263B1 (en) | Layout and use of bond pads and probe pads for testing of integrated circuits devices | |
US6871307B2 (en) | Efficient test structure for non-volatile memory and other semiconductor integrated circuits | |
EP1176637A1 (en) | Semiconductor integrated circuit and manufacture thereof | |
US20170030966A1 (en) | Probe card for testing integrated circuits | |
US20080175080A1 (en) | Semiconductor memory device and test method thereof | |
JP4364416B2 (en) | Integrated circuit device | |
US20170373040A1 (en) | Semiconductor electronic device with improved testing features and corresponding packaging method | |
Yaglioglu et al. | Direct connection and testing of TSV and microbump devices using NanoPierce™ contactor for 3D-IC integration | |
Wang et al. | Pre-bond testing of the silicon interposer in 2.5 D ICs | |
US5936876A (en) | Semiconductor integrated circuit core probing for failure analysis | |
US5565767A (en) | Base substrate of multichip module and method for inspecting the same | |
US6573113B1 (en) | Integrated circuit having dedicated probe pads for use in testing densely patterned bonding pads | |
US7208758B2 (en) | Dynamic integrated circuit clusters, modules including same and methods of fabricating | |
EP0767492A2 (en) | Integrated circuit test system | |
TWI768782B (en) | Circuit structure for testing through silicon vias in three-dimensional integrated circuit | |
JP3345283B2 (en) | Active wafer level contact system | |
CN116092960A (en) | Wafer testing method, storage medium, computer program product and device | |
JPS63202938A (en) | Master slice type semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480019911.3 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004778153 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006522572 Country of ref document: JP Ref document number: 1020067002403 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004778153 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067002403 Country of ref document: KR |