WO2005015009A1 - Propeller type flowing force prime mover and blade thereof - Google Patents

Propeller type flowing force prime mover and blade thereof Download PDF

Info

Publication number
WO2005015009A1
WO2005015009A1 PCT/JP2004/006785 JP2004006785W WO2005015009A1 WO 2005015009 A1 WO2005015009 A1 WO 2005015009A1 JP 2004006785 W JP2004006785 W JP 2004006785W WO 2005015009 A1 WO2005015009 A1 WO 2005015009A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
propeller
fluid
type hydraulic
hydraulic motor
Prior art date
Application number
PCT/JP2004/006785
Other languages
French (fr)
Japanese (ja)
Inventor
Masaji Haneda
Original Assignee
Ntt Data Ex Techno Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Data Ex Techno Corporation filed Critical Ntt Data Ex Techno Corporation
Publication of WO2005015009A1 publication Critical patent/WO2005015009A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a propeller-type hydraulic motor that drives a wind power generator or a hydroelectric generator, and a blade thereof.
  • the rotational driving force of a propeller-type fluid prime mover is proportional to the flow rate per unit time passing through the area of a circle whose radius of rotation is the tip of the blade, but the fluid flowing near the rotating shaft rotates. It hardly contributes to the generation of driving force.
  • a prime mover is known (for example, see Patent Document 1).
  • Patent Document 1
  • the conventional technology described above increases the rotational driving force of a propeller-type fluid prime mover, but the blade employs a conventional type that generates a driving force at an angle of attack, and the generated rotational drive Power and rotational speed were naturally limited.
  • the present invention has been made in view of the above, and realizes a high rotation driving force and a high rotation speed irrespective of a low speed and a high speed of a fluid, and furthermore, a new blade-shaped propeller type capable of ensuring safety against a high speed fluid.
  • the purpose is to obtain a hydraulic motor.
  • a propeller-type fluid prime mover is a propeller-type fluid prime mover in which a rotating shaft faces a fluid flow direction and a blade is attached to the rotating shaft in a substantially radial manner.
  • the outer side of the J-shaped curved portion is a front edge in the blade rotation direction
  • the inner side of the J-shaped long piece is a blade surface
  • the concave portion inside the curved portion is a fluid force receiving portion.
  • the cross section of the blade is formed in a J-shape
  • the outer side of the J-shaped curved portion is defined as the blade rotation direction front edge
  • the inner side of the J-shaped long piece is defined as the blade surface. Since the concave part inside the curved part is used as the fluid force receiving part, the fluid flowing from the front and the rotating force of the blade due to the action of the angle of attack j8 and the fluid flowing from the front and the action of the concave part of the J-shaped curved part Rotational force is synthesized, and high rotational force and high-speed rotation can be obtained even with a very slow fluid.
  • the concave portion inside the curved portion is used as a fluid force receiving portion, and the flow channel receives rotational force by a fluid flowing in a radial direction.
  • the angle of attack of the blade surface is substantially 0 °.
  • a propeller-type fluid prime mover is a propeller-type hydraulic prime mover in which a rotating shaft faces a fluid flow direction, and a blade is attached to the rotating shaft in a substantially radial manner.
  • the outside of the U-shaped curved portion is the leading edge in the blade rotation direction, the outside of the long piece on the upstream side of the fluid is the blade surface, and the concave portion inside the U-shape receives the rotational force by the fluid flowing in the radial direction. It is a channel.
  • the cross section of the blade is formed in a U-shape, the outside of the U-shaped curved portion is defined as the blade rotation direction front edge, and the outside of the upstream long piece is defined as the blade surface.
  • the concave portion inside the U-shape is a channel that receives rotational force from the fluid flowing in the radial direction, so the concave portion is deeper than the J-shaped blade, so that the fluid flow in the radial direction does not escape until the fluid reaches the blade tip It can sink and absorb rotational force from the fluid.
  • the base and the tip of the concave portion of the blade are open.
  • the base of the concave portion of the blade is closed.
  • the blade is elongated and straight, and a tip end of the concave portion is closed.
  • the blade is bent rearward in the rotational direction from the base to the tip.
  • the blade is smoothly curved rearward in the rotational direction from the base to the tip.
  • the width of the blade is gradually reduced from the base to the front end.
  • the blade is formed by flat plate pressing.
  • the blade is attached to the rotating shaft such that the axis of the base of the blade passes through the center of the rotating shaft.
  • the blade is attached to the rotating shaft so that the axis of the base of the blade is offset from the center of the rotating shaft so as to pass forward in the rotating direction.
  • a propeller-type hydraulic prime mover is provided upstream of the propeller-type hydraulic prime mover, and has a flow guiding means for guiding a fluid flowing near a rotating shaft to an outer peripheral side.
  • the fluid guiding means is formed in a substantially conical shape, and has a distal end located upstream on a rotation axis.
  • a propeller type hydraulic motor according to the next invention is located on the downstream side of the blade, reverses the fluid flowing near the rotation axis and passing inside the base of the blade, and extends to the base of the blade on the outer peripheral side. It is provided with a fluid guiding means for guiding.
  • the fluid guiding means is a hollow hemispherical fluid catch.
  • the fluid catch is attached to the rotating shaft via a spoke, and supports a base of the blade.
  • the fluid catch may include opening and closing means for opening and closing according to the flow velocity of the fluid to release the fluid from the fluid catch.
  • the opening / closing means is provided at a bottom opening of the fluid catch, and is normally closed by being urged in a closing direction by a spring mechanism, and has a predetermined fluid pressure based on a flow rate. Therefore, it is a petal-like on-off valve that opens against the spring force.
  • a propeller-type fluid prime mover according to the next invention is disposed on the upstream side of the propeller-type hydraulic prime mover, and fluid guide means for guiding a fluid flowing in a rotational axis direction toward the blade in a direction following the blade rotation direction. It is provided with.
  • a propeller-type hydraulic prime mover is disposed on the upstream side of the propeller-type hydraulic prime mover, follows a fluid flowing in a rotational axis direction toward the blade in a blade rotational direction, and within a blade radius. It is provided with a flow guiding means for guiding to press down.
  • the fluid guide means is arranged symmetrically with respect to the axis of force so as to be along the rotation axis, and the downstream side has a curved portion curved in the blade rotation direction. It is a pair of # 1 conductive plates. '
  • the fluid guide means is radially arranged symmetrically with respect to the force axis so as to be along the rotation axis, and the downstream side is curved in the blade rotation direction, and the downstream side.
  • the outer portion is a pair of fluid guide plates having a curved portion curved inward in the blade rotation direction.
  • a propeller type hydraulic motor according to the next invention is provided with an adjusting means for adjusting a degree of curvature or a curved shape of the curved portion.
  • a propeller type hydraulic motor according to the next invention is provided with a blade tilting means for tilting the blade to the downstream side in accordance with the flow velocity of the fluid.
  • the blade collapsible means is configured such that spokes connecting the blade to the rotating shaft are made of an elastic body.
  • a propeller-type hydraulic prime mover is characterized in that the blade folding means comprises: connecting means for connecting the blade to the rotating shaft so as to swing the blade downstream; and a blade fixed to a base of the blade. And a resilient member that urges the weight in the direction of the rotation axis.
  • a propeller-type hydraulic prime mover according to the next invention is used as a hydraulic prime mover by connecting a generator upstream of the propeller-type hydraulic prime mover.
  • a propeller-type hydraulic prime mover has a generator connected to the downstream side of the propeller-type hydraulic prime mover, and is used as a hydraulic generator.
  • the fluid is the atmosphere, and the fluid is used as a propeller-type wind prime mover.
  • the fluid is water, and the fluid is used as a propeller type hydraulic motor.
  • a propeller-type hydraulic prime mover is a propeller-type hydraulic prime mover in which a rotating shaft faces a fluid flow direction and blades are attached to the rotational shaft in a substantially radial manner. And a fluid guiding means for guiding a fluid flowing in the rotation axis direction toward the blade in a direction following the blade rotation direction.
  • the propeller type fluid prime mover of the present invention is provided with fluid guide means disposed upstream of the propeller type fluid prime mover for guiding fluid flowing in the direction of the rotation axis toward the blade in the direction following the blade rotation direction. Therefore, the propulsion force and the flow due to the action of the angle of attack ⁇ and the fluid coming from the front receive the combined propulsion force of the fluid in the direction following the blade by the conductive plate. High rotation speed can be realized.
  • the rotating shaft faces the fluid flow direction
  • a propeller-type hydraulic motor in which a blade is attached to a rotating shaft in a substantially shape, a fluid that is arranged on an upstream side of the port-type propeller-type hydraulic motor and that flows in the direction of the rotating shaft toward the blade is moved in the blade rotating direction.
  • Power and a fluid guiding means for guiding the blade to be held down.
  • the propeller-type hydraulic prime mover of the present invention is arranged on the upstream side of the propeller-type hydraulic prime mover, and follows the fluid flowing in the direction of the rotating shaft toward the blade in the blade rotating direction and presses the fluid within the blade radius.
  • the provision of the fluid guiding means for guiding can suppress wind escaping in the radial direction and contribute to an increase in the forward force of the blade.
  • the fluid guide means is radially arranged along the rotation axis and axisymmetrically, and the downstream side has a curved portion curved in the blade rotation direction. It is a pair of # ⁇ conductive plates.
  • the fluid guide means is radially arranged to be axially symmetrical along the rotation axis, and the downstream side is curved in the blade rotation direction, and the power and the downstream are arranged.
  • the pair of flow guide plates each having a curved portion whose outer side portion is curved inward in the blade rotation direction.
  • a propeller type hydraulic motor according to the next invention is provided with an adjusting means for adjusting a degree of curvature or a curved shape of the curved portion.
  • a propeller type hydraulic motor according to the next invention is provided with a blade tilting means for tilting the blade to the downstream side in accordance with the flow velocity of the fluid.
  • the blade collapsible means is configured such that spokes connecting the blade to the rotating shaft are made of an elastic body.
  • a propeller type hydraulic motor is characterized in that the blade collapsible means comprises: connecting means for connecting the blade to the rotating shaft so as to swing to the downstream side; and a blade fixed to a base of the blade. And a resilient member for urging the weight in the direction of the rotation axis.
  • the blade of the propeller type hydraulic motor according to the following invention has a cross section of [ The outside of the curved portion of the J-shape is the leading edge in the blade rotation direction, the inside of the long piece of the J-shaped portion is the blade surface, and the recess inside the curved portion is the fluid force receiving portion.
  • the blade of the propeller type hydraulic motor according to the present invention has a cross section formed in a J-shape, the outer side of the J-shaped curved portion as the blade rotation direction front edge, and the inner side of the J-shaped long piece portion as the blade surface. Since the concave part inside the curved part is used as the fluid force receiving part, the fluid flowing from the front and the angle of attack] 3 The rotating force of the blade and the fluid flowing from the front and the action of the concave part of the J-shaped curved part Can receive the combined rotational force.
  • the concave portion inside the curved portion is used as a fluid force receiving portion, and is a flow passage that receives a rotational force by a fluid flowing in a radial direction.
  • the blade of the propeller type hydraulic motor has a U-shaped cross section, the outer side of the U-shaped curved portion is the front edge in the blade rotation direction, and the outer side of the long piece on the upstream side is the blade surface.
  • the concave portion inside the U-shape is a channel that receives rotational force by the fluid flowing in the radial direction.
  • the blade of the propeller type hydraulic motor according to the present invention has a U-shaped cross section, the outer side of the U-shaped curved portion is the leading edge in the blade rotation direction, and the outer side of the long piece portion on the upstream side is the blade surface.
  • the concave portion inside the letter is a flow path that receives rotational force from the fluid flowing in the radial direction, so the concave part is deeper than the J-shaped blade, so the fluid in the radial direction does not escape until the fluid reaches the tip of the blade. It can sink and absorb rotational force from the fluid.
  • FIG. 1 is a side view of a hydraulic power generator driven by a propeller-type hydraulic prime mover according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view of the propeller-type hydraulic prime mover.
  • FIG. 3 is a perspective view of the J-shaped blade
  • FIG. 4 is a cross-sectional view of the J-shaped blade along the line A_A in FIG. 3
  • FIG. 5 is a perspective view of the propeller type hydraulic motor.
  • Fig. 6 is a front view as seen from the upstream side
  • Fig. 6 shows a J-shaped
  • FIG. 7 is a perspective view of an elongated linear J-shaped blade, and FIG.
  • FIG. 8 is a front view of a slender linear J-shaped blade according to a second embodiment of the present invention.
  • FIG. 9 is a side view of the generator, FIG. 9 is a view taken along the line BB in FIG. 8, and FIG. 10 is a view of the U-shaped blade along the line C-C in FIG.
  • FIG. 11 is a perspective view of a fluid guide plate
  • FIG. 12 is an explanatory diagram of a fluid switch opening / closing device
  • FIG. 13 is a sectional view of an embodiment of the present invention.
  • FIG. 14 is a side view of a hydraulic power generator driven by a propeller type hydrodynamic motor of form 3
  • FIG. 14 is a plan view of a curvature adjusting device for a fluid guide plate
  • FIG. FIG. 16 is a plan view of a curvature adjusting device
  • FIG. 16 is a side view of a blade folding device
  • FIG. 17 is a side view of another blade folding device.
  • This embodiment is a propeller-type wind motor, but the propeller-type motor of the present invention can be used for both wind power and hydraulic power. This will be used to describe both propeller-type prime movers for wind and hydro.
  • FIG. 1 is a side view of a hydraulic power generator driven by a propeller-type hydraulic prime mover according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view of the propeller-type hydraulic prime mover.
  • Fig. 3 is a perspective view of the J-shaped blade
  • Fig. 4 is a cross-sectional view of the J-shaped blade along the line A-A in Fig. 3
  • Fig. 5 is a propeller type hydraulic motor.
  • Fig. 6 is a front view as seen from the upstream side of Fig. 6.
  • Fig. 6 shows a smoothly curved rearward direction of rotation: [Front view of a character blade
  • Fig. 7 shows an elongated straight J-shaped blade.
  • FIG. 11 is a perspective view of a fluid guide plate.
  • a propeller-type hydraulic prime mover 1 has a hub 3 attached to a rotating shaft 2, a J-shaped blade 5 for receiving a hydrodynamic force, and a sport connecting the J-shaped blade 5 to the hub 3. It is generally composed of (4).
  • the J-shaped blade 5 of this embodiment is configured such that a front edge portion of a blade plate made of an elongated metal flat plate is curved toward the upstream side, and the cross section is It is formed in a J-shape.
  • the outer side 5a of the J-shaped curved portion is the front edge of the blade rotation direction K (see FIGS. 2, 4, and 5). Is the blade surface that receives the fluid force, and the concave portion 5c inside the curved portion is the fluid force receiving portion.
  • the J-shaped blade 5 is attached to the rotating shaft 2 with an angle of attack ⁇ with respect to the plane perpendicular to the rotating shaft 2, as in the conventional blade.
  • the angle of attack can be set to 0 ° to reduce the rotational fluid resistance.
  • the fluid 6a that strikes the rear of the blade surface 5b flows backward in the unobstructed rotational direction, and a forward force is generated on the J-shaped blade 5 if the angle of attack i3 is present.
  • the fluid 6b hitting the front of the blade surface 5b flows forward in the rotation direction and is blocked by the concave portion 5c to generate a forward force on the J-shaped blade 5 to rotate the hydraulic motor 1.
  • the angle of attack ⁇ is 0 °
  • the forward force is generated in the J-shaped blade 5 by the action of the fluid 6b hitting forward and the concave portion 5c, and the hydraulic motor 1 can be rotated.
  • the shape of the J-shaped blade in the longitudinal direction is such that it smoothly curves backward from the base in the blade longitudinal direction to the tip end in the rotational direction.
  • Blades 5, 15 and 25, as shown in Fig. 2 (b), a blade 5 bent backward in the middle in the rotational direction, or a blade 3 that is elongated and straight and covers the tip of the recess. 5 etc. can be adopted.
  • the blade 5 in Fig. 3 rotates the motor 1 counterclockwise when viewed from upstream, and the other blades 15, 25, and 35 rotate clockwise around Niommera. Things.
  • the width of the blade is preferably gradually reduced from the base toward the tip.
  • the area for receiving the fluid is increased to increase the rotational force.
  • the fluid resistance is reduced by reducing the area, and at the tip where the peripheral speed is high, the speed of discharging fluid is increased.
  • the blade when the blade is mounted on the hub 3, the blade may be mounted so that the axis of the base of the blade passes through the center of the rotation axis, but as shown in FIG. 5, the axis 15a of the base of the blade is positioned at the center of the rotation axis. It is better to mount the blade so that it is tilted backward in the rotational direction by mounting it offset so that it passes more forward in the rotational direction.
  • a mounting method is also referred to as a blade which is mounted substantially radially. .
  • the aforementioned bending, bending and inclination of the blade backward in the rotational direction are caused by the flow of fluid in the radial direction (6c in Figs. 2 and 3) with respect to the propeller type hydraulic motor. Passes radially through the concave portion 5c of the blade, the flow path is bent at the bent, curved, and inclined portions, and a forward force is applied to the blade by the reaction force.
  • the concave portion 35c is formed by closing the distal end 35a of the concave portion in addition to the rotational force based on the operation principle of the J-shaped blade described above.
  • the passing fluid 6c is ejected backward from the tip, generating a rotational force due to the reaction force.
  • a fixed shaft 7 that supports the rotating shaft 2 extends long upstream of the fluid motor 1, and a generator 8 is supported at the front end thereof.
  • a cone 9 (cone) as a flow guiding means for guiding the fluid flowing near the rotating shaft 2 to the outer peripheral side is installed with its tip end toward the upstream side. ing.
  • the outer diameter of the base of the cone is larger than the base ⁇ of the blade 5.
  • FIG. 3 As shown in Fig. (B), blocking the base of the recess 5c of the blade 5 with the shielding plate 5d prevents the fluid that has hit the blade 5 from escaping in the inner circumferential direction and increases the rotational torque. it can.
  • the blade 5 shown in FIG. 3 (a) does not have the shielding plate 5d shown in FIG. 3 (b).
  • a radial wind flow (6c in FIGS. 2 and 3) is generated by the cone 9, and the wind is generated by the concave portion 5 of the blade.
  • the air path passes through c in the radial direction, and the wind path is bent at the bends, bends, and slopes, and the reaction force exerts forward force on the blade.
  • the cone 9 as the fluid guiding means may be round or round, or may be shaped like Mt. Fuji with a sharp point.
  • a pair of upper and lower fluid guide plates 1 as a flow guiding means for guiding a fluid flowing in the direction of the rotation axis 2 toward the blade 5 so as to follow the blade in the blade rotation direction.
  • 0 and 10 are radially attached to the fixed shaft 7 so that the front thereof is along the rotation shaft 2 and the rear portion is curved in the blade 5 rotation direction.
  • the flow fls conductive plates 10 and 10 may be mounted in pairs instead of up and down, left and right or diagonally, or two pairs of up, down, left and right may be mounted.
  • the side surface contours of the fluid guide plates 10, 10 are formed in a shell shape in a vertically aligned manner, and the rear outer portion is curved inward in the blade rotation direction. In this way, the wind trying to escape in the emission direction can be suppressed, and the forward force of the blade 5 can be increased.
  • the inside of the rear part of the fluid guide plates 10 and 10 is shaped to match the external shape of the cone 9.
  • the propeller-type hydraulic motor 1 and the generator 8 are connected by a rotating shaft 9 and a fixed shaft 7 that extend upstream of the prime mover 1, and the strut 1 1 is located approximately at the center of gravity upstream of the fluid guide plates 10, 10. Supports the fixed shaft 7 so as to be freely rotatable horizontally, and constitutes a hydraulic power generator 100. With such a configuration, the fluent plates 10 and 10 function as vertical tails, and the rotating shaft 2 is always in the position. In the fluid flow direction. However, if a vertical tail is separately attached, the generator 8 may be connected to the rotating shaft 2 and the fixed shaft 7 extending downstream of the prime mover 1.
  • the J-shaped blade 5 has a propulsive force due to the action of the fluid 6a coming from the front and the angle of attack ⁇ , a propulsive force caused by the action of the fluid 6b coming from the front and the recess 5c, and a radial fluid 6c due to the cone 9. Propulsion and flow due to the action of the recesses 5c and # # The combined propulsion by the fluid in the direction following the blade by the plates 10 and 10 achieves high rotational driving force and high rotational speed even at low flow rates can do.
  • FIG. 8 is a side view of a hydraulic power generator driven by a propeller-type hydraulic prime mover according to Embodiment 2 of the present invention.
  • FIG. 9 is a view taken along the line BB in FIG.
  • FIG. 10 is a cross-sectional view of the U-shaped blade along the line C--C in FIG. 9,
  • FIG. 11 is a perspective view of the fluid guide plate, and FIG. It is explanatory drawing of the opening / closing device of a fluid catch.
  • a propeller type hydraulic motor 21 has a spoke 24 attached to the rotating shaft 2, a hollow hemispherical fluid catch 29 supported by the spoke 24, and an outer peripheral portion of the fluid clutch 29. It is attached, has a base opening, and is generally constituted by a U-shaped blade 45 which receives a fluid force from the front and a radial fluid force from the fluid clutch 29.
  • a U-shaped blade 45 of this embodiment is formed by bending a blade plate made of an elongated metal flat plate at a central portion to form a U-shaped cross section.
  • the outer side 45 a of the U-shaped curved part is the leading edge in the blade rotation direction
  • the outer side 45 b of the long piece of the U-shape is the blade surface that receives the fluid force
  • the flow path receives rotational force due to the wind flowing in the radial direction.
  • the U-shaped blade 45 is attached to the rotating shaft 2 via a fluid catch 29 at an angle of attack ⁇ with respect to a plane perpendicular to the rotating shaft 2, similarly to a conventional blade.
  • the shape of the U-shaped blade in the longitudinal direction a shape similar to the J-shaped blade described in the first embodiment can be adopted.
  • a blade 45 that is smoothly curved backward.
  • the blade 45 of this embodiment is mounted in a direction to rotate the hydraulic motor 21 clockwise as viewed from the upstream side. If the U-shaped curved part 45a is installed in the opposite direction, it becomes a hydraulic motor that rotates counterclockwise.
  • the width of the blade is preferably gradually reduced from the base toward the tip.
  • the area for receiving the fluid is increased to increase the rotational force.
  • the fluid resistance is reduced by reducing the area, and at the tip where the peripheral speed is high, the speed at which fluid is discharged is increased.
  • the blade when the blade is attached to the fluid catch 29, as in the case of the blade 45, the blade may be attached so that the axis of the base of the blade passes through the center of the rotating shaft 2, but as shown in FIG. 5 of the first embodiment.
  • mount the blade so as to be inclined rearward in the rotational direction by offsetting so that the axis 15a at the base of the blade passes forward in the rotational direction from the center of the rotational axis.
  • the aforementioned bending, bending and inclination of the blade backward in the rotational direction are caused by the flow of fluid in the radial direction (6c in Figs. 2 and 3) with respect to the propeller type hydraulic motor.
  • the fluid passes radially through the concave portion 45c of the blade, and the fluid is bent backward at the bend, curve, and inclined portion, and a forward force is applied to the blade by the reaction force.
  • the U-shaped blade has a deeper recess 45 c than the J-shaped blade, so the fluid reaches the tip of the blade. It can absorb the forward force without escaping.
  • a fixed shaft 7 that supports the rotary shaft 2 extends long to the windward side of the wind power motor 21, and a power source 8 is supported at a front end thereof.
  • the hollow hemispherical fluid clutch 29 with its opening directed to the upstream side is located downstream of the blade 45, flows near the rotating shaft 2, and passes through the inside of the base of the blade 45 opening 6
  • the fluid clutch 29 as the flow guiding means may be of a slightly elongated spindle type.
  • the hemispherical or spindle-shaped fluid catch 29 has the effect of not disturbing (or making it turbulent) the flow on the downstream side of the hydraulic motor 2 1, and increasing the flow velocity passing through the hydraulic motor 21 to increase the rotational force. Has the effect of increasing.
  • a pair of upper and lower flows as fluid guiding means for guiding the fluid flowing toward the blade 45 in the direction of the rotation axis 2 so as to follow the blade 45 in the blade rotation direction.
  • # ⁇ Conductor 10, 10 Force As shown in the perspective view of Fig. 11, it is mounted radially on the fixed shaft 7 in front of, along the rotating shaft 2 and up and down radially. It is curved in the direction of rotation.
  • the flow plates 10 and 10 may be mounted in pairs, not horizontally, vertically, horizontally or diagonally, or may be mounted vertically, horizontally and vertically. When it is a pair of upper and lower parts, it can function as a vertical tail that directs the hydraulic power motor 21 in the fluid flow direction.
  • the outer contour of the side surfaces of the flow guide plates 10 and 10 is formed in a cannonball shape in which the upper and lower sides are aligned, and the rear outer portion is curved inward in the blade rotation direction. In this way, The wind trying to escape in the shooting direction is suppressed, and the forward force of the blade 45 can be increased.
  • the propeller type hydraulic motor 21 and the generator 8 are connected by a rotating shaft 2 and a fixed shaft 7 extending upstream of the motor 21, and a support is provided at a position substantially at the center of gravity upstream of the fluid guide plates 10, 10.
  • the fixed shaft 7 is supported by 11 ⁇ 1 so as to be freely rotatable horizontally, and constitutes a hydrodynamic generator 200. With this configuration, the fluid guide plates 10 and 10 function as vertical tails, and the rotating shaft 2 can always be directed in the wind direction.
  • the U-shaped blade 45 has a propulsive force caused by the action of the fluid 6 coming from the front and the angle of attack, a propulsive force caused by the action of the fluid 6 c and the recess 45 c by the fluid catch 29 9, and a fluid guide plate 10. , 10, and can achieve high rotational driving force and high rotational speed even at a low flow velocity.
  • the U-shaped blade 45 can also be used as a blade for the propeller-type hydrodynamic motor 1 of the first embodiment.
  • the outer diameter of the base of the cone 9 is made smaller than the outer diameter of the base of the blade 45 so that the fluid enters the recess 45 c from the base opening of the blade 45.
  • the base may be closed by a shielding plate.
  • the outer diameter of the base of the cone 9 may be larger than the outer diameter of the blade 45 attached to the base.
  • the J-shaped blades 5, 15, 25, 35, etc. of the first embodiment can be used as a blade for the propeller-type hydraulic motor 21 of the second embodiment.
  • the fluid catch 29 is provided with an opening / closing device to suppress the rotational driving force of the hydraulic motor 21 at a high flow velocity and to prevent the fluid motor 21 from being damaged by fluid pressure. It has 2 9a.
  • the opening and closing device 29a is provided at the bottom of the hemispherical fluid catch 29, and is urged in the closing direction by a spring mechanism, and is closed as shown in Fig. 12 (a).
  • the petal-like on-off valve opens according to the fluid pressure due to the flow velocity, as shown in Fig. 12 (b), and releases the fluid to suppress the generation of radial flow 6c, and the rotation of the hydraulic motor 21 Suppress driving force.
  • FIG. 13 is a side view of a hydraulic power generator driven by a propeller type hydraulic power engine according to Embodiment 3 of the present invention
  • FIG. 14 is a plan view of a curvature adjusting device for a fluid guide plate.
  • FIG. 15 is a plan view of another bending degree adjusting device
  • FIG. 16 is a side view of a blade folding device
  • FIG. 17 is a side view of another blade folding device. It is a side view.
  • a propeller type hydraulic motor 31 is generally constituted by a conventional blade 55 and flow guide plates 10, 10 arranged on the upstream side of the blade 55. As shown in FIG.
  • a fixed shaft 7 that supports the rotary shaft 2 extends long upstream of the hydraulic motor 31, and a generator 8 is supported at the front end thereof.
  • a pair of upper and lower fluid guide plates 10 and 10 are mounted on the fixed shaft 7 so as to extend along the rotary shaft 2 in front of the fluid guide plates 10, and the rear portion is a curved portion curved in the blade 55 rotation direction.
  • the propeller type hydraulic motor 31 and the generator 8 are connected by a rotating shaft 2 and a fixed shaft 7 extending upstream of the motor 31 and supported at a position substantially at the center of gravity upstream of the fluid guide plates 10 and 10.
  • the fixed shaft 7 is supported by the columns 11 so as to be freely rotatable horizontally, and constitutes a hydrodynamic generator 300. With this configuration, the flow plates 10 and 10 function as vertical tails, and the rotating shaft 2 can always be directed in the fluid flow direction.
  • the side surface contours of the fluid guide plates 10 and 10 are formed in a shell shape in a vertically-aligned manner, and the downstream outer portion is curved inward in the blade rotation direction. In this way, the fluid that is escaping in the radial direction can be suppressed, and the forward force of the blade 55 can be increased.
  • the wire traction machines 10a and 10a are attached to the fixed shaft 7 support portion of the column 11 and the ends thereof are formed by the fluid guide plates 10 and 10.
  • the wires 10b and 10b tied to the curved downstream outer side with the pullers 10a and 10a By pulling the wires 10b and 10b tied to the curved downstream outer side with the pullers 10a and 10a, the blade rotation direction and the blade rotation of the fluid guide plates 10 and 10 at the rear are pulled.
  • the degree of curvature or the shape of the curve inward in the rolling direction can be adjusted to obtain the best efficiency according to the flow velocity.
  • the wire puller 10 a and the wire 10 b constitute a curvature adjusting device for the fluid guide plate 10.
  • FIG. 15 shows another example of the curvature adjusting device, in which the front portions of the fluid guide plates 10 and 10 are supported on a fixed shaft 7 and the fluid guide plates 10 and 10 are moved right and left. Oscillating means 10 c to be provided. The same action as adjusting the curvature of the rear portion of the fluid guide plates 10 and 10 can be obtained by the shaking means 10c. It is good to provide such a curvature adjusting device in the fluid guide plates 10 and 10 of the first and second embodiments.
  • the conventional blade 55 receives the propulsion force by the action of the fluid 6 coming from the front and the angle of attack, and the combined propulsion force by the wind in the direction following the blade 55 by the flow # ⁇ plates 10 and 10. High rotational driving force and high rotational speed can be achieved even at low flow rates.
  • the above-described J-shaped or U-shaped blade may be used instead of the conventional blade 55.
  • the blade 55 is provided to reduce the rotational driving force of the hydraulic motor 31 at a high flow velocity and to prevent the blade itself from being damaged by fluid pressure at a high flow velocity. It is advisable to provide a blade folding device 55a.
  • the blade collapsible device 55a is made of a flexible body that connects the blade 55 to the rotating shaft 2, and moves the blade 55 downstream according to the fluid pressure generated in the blade 55 due to the flow velocity. (See Fig. 16 (b)), the rotational driving force of the hydraulic motor 31 is suppressed.
  • Fig. 17 shows another blade tilting device 55b, in which the blade 55 is swingably connected to the rotating shaft 2 in the downstream direction, and the base of the blade 55 is connected to this base.
  • a rod 55 d attached to the tip of a rod 55 c fixed vertically to the blade 55 and extending vertically to the upstream side is provided.
  • the blade rod 55c is connected to the elastic member 55e.
  • Weight 5 5 d is turned by weight 5 5 d
  • a resistance plate 55 f that receives fluid resistance when rotating around the rotation axis 2 is attached.
  • the propeller type hydraulic prime mover and its blade according to the present invention are useful for wind power generators and hydraulic power generators, and are particularly suitable for those in which the flow velocity changes from low speed to high speed.

Abstract

A propeller type flowing force prime mover (1) with novel blade shape allowing high rotational drive force and high rotational speed irrespective of whether the speed of fluid is high or low and capable of securing safety against high speed fluid, wherein a rotating shaft (2) faces a fluid flow direction and blades (5) are generally radially fitted to the rotating shaft (2). The sections of the blades (5) are formed in a J-shape, the outsides (5a) of the J-shaped curved parts of the blades are used as the leading edges of the blades in the blade rotating direction and the insides (5b) of the J-shaped long piece parts of the blades are used as blade surfaces, and recessed parts (5c) on the insides of the curved parts are used as flow force receiving parts.

Description

プロペラ型流力原動機及びそのプレード Propeller type hydraulic motor and its blade
技術分野 Technical field
この発明は、 風力発電機や水力発電機を駆動するプロペラ型の流力原動機およ びそのブレードに関する。  The present invention relates to a propeller-type hydraulic motor that drives a wind power generator or a hydroelectric generator, and a blade thereof.
 Light
1  1
背景技術 糸 一般に、 プロペラ型流力原動機の回転駆動食力は、 ブレード先端を回転半径とす る円の面積を単位時間当たりに通過する流量に比例するが、 回転軸近傍を流れる 流体は、 回転駆動力の発生にほとんど寄与しない。 Background Art Yarn Generally, the rotational driving force of a propeller-type fluid prime mover is proportional to the flow rate per unit time passing through the area of a circle whose radius of rotation is the tip of the blade, but the fluid flowing near the rotating shaft rotates. It hardly contributes to the generation of driving force.
回転軸近傍を流れる流体を外周側に誘導する流 ί«導手段をプロペラ型流体原 動機の上流側に配置し、 流体を外周側に誘導することにより回転駆動力を増大さ せるプロペラ型流力原動機が知られている (例えば、 特許文献 1参照) 。  A flow that guides the fluid flowing near the rotating shaft to the outer peripheral side. A propeller-type fluid force that increases the rotational driving force by arranging the conducting means upstream of the propeller-type fluid motor and guiding the fluid to the outer peripheral side. A prime mover is known (for example, see Patent Document 1).
特許文献 1 Patent Document 1
特開 2 0 0 3— 8 3 2 3 3号公報 (第 4頁、 図 2 )  Japanese Patent Application Laid-Open No. 2003-8332 33 (Page 4, Figure 2)
上述の従来の技術は、 プロペラ型流力原動機の回転駆動力を増大させるもので あるが、 そのプレードは、 迎角により駆動力を発生させる従来型のものを採用し ていて、 発生する回転駆動力と回転速度には自ずと限界があつた。 The conventional technology described above increases the rotational driving force of a propeller-type fluid prime mover, but the blade employs a conventional type that generates a driving force at an angle of attack, and the generated rotational drive Power and rotational speed were naturally limited.
この発明は、 上記に鑑みてなされたもので、 流体の低速、 高速にかかわらず高 回転駆動力と高回転速度を実現し、 さらに高速流体に対して安全性を確保できる 新しいブレード形状のプロペラ型流力原動機を得ることを目的とする。  The present invention has been made in view of the above, and realizes a high rotation driving force and a high rotation speed irrespective of a low speed and a high speed of a fluid, and furthermore, a new blade-shaped propeller type capable of ensuring safety against a high speed fluid. The purpose is to obtain a hydraulic motor.
発明の開示 この発明に係るプロペラ型流力原動機は、 回転軸が流体流れ方向を向き、 該回 転軸にプレードがほぼ放射状に取り付けられるプロペラ型流力原動機において、 前記ブレードの横断面を J字状に形成し、 J字の湾曲部外側をブレード回転方向 前縁部とし、 J字の長片部内側をプレード面とし、 前記湾曲部内側の凹部を流力 受け部としたものである。 Disclosure of the invention A propeller-type fluid prime mover according to the present invention is a propeller-type fluid prime mover in which a rotating shaft faces a fluid flow direction and a blade is attached to the rotating shaft in a substantially radial manner. The outer side of the J-shaped curved portion is a front edge in the blade rotation direction, the inner side of the J-shaped long piece is a blade surface, and the concave portion inside the curved portion is a fluid force receiving portion.
この発明のプロペラ型流力原動機は、 ブレードの横断面を J字状に形成し、 J 字の湾曲部外側をブレード回転方向前縁部とし、 J字の長片部内側をブレード面 とし、 前記湾曲部内側の凹部を流力受け部としたので、 正面から流れてくる流体 と迎角 j8の作用によるプレードの回転力及び正面から流れてくる流体と J字の湾 曲部の凹部の作用による回転力が合成され、 微速流体であっても高回転力、 高速 回転を得ることができる。  In the propeller type hydraulic motor according to the present invention, the cross section of the blade is formed in a J-shape, the outer side of the J-shaped curved portion is defined as the blade rotation direction front edge, and the inner side of the J-shaped long piece is defined as the blade surface. Since the concave part inside the curved part is used as the fluid force receiving part, the fluid flowing from the front and the rotating force of the blade due to the action of the angle of attack j8 and the fluid flowing from the front and the action of the concave part of the J-shaped curved part Rotational force is synthesized, and high rotational force and high-speed rotation can be obtained even with a very slow fluid.
次の発明に係るプロペラ型流力原動機は、 前記湾曲部内側の凹部を流力受け部 とするとともに、 放射方向に流れる流体により回転力を受ける流路としたもので' ある。  In the propeller type hydraulic motor according to the next invention, the concave portion inside the curved portion is used as a fluid force receiving portion, and the flow channel receives rotational force by a fluid flowing in a radial direction.
次の発明に係るプロペラ型流力原動機は、 前記ブレード面の迎角は、 ほぼ 0 ° であるものである。  In a propeller type hydraulic motor according to the next invention, the angle of attack of the blade surface is substantially 0 °.
次の発明に係るプロペラ型流力原動機は、 回転軸が流体流れ方向を向き、 該回 転軸にプレードがほぼ放射状に取り付けられるプロペラ型流力原動機において、 前記ブレードの横断面を U字状に形成し、 U字の湾曲部外側をブレード回転方向 前縁部とし、 前記流体の上流側の長片部外側をブレード面とし、 U字内側の凹部 を、 放射方向に流れる流体により回転力を受ける流路としたものである。  A propeller-type fluid prime mover according to the next invention is a propeller-type hydraulic prime mover in which a rotating shaft faces a fluid flow direction, and a blade is attached to the rotating shaft in a substantially radial manner. The outside of the U-shaped curved portion is the leading edge in the blade rotation direction, the outside of the long piece on the upstream side of the fluid is the blade surface, and the concave portion inside the U-shape receives the rotational force by the fluid flowing in the radial direction. It is a channel.
この発明のプロペラ型流力原動機は、 ブレードの横断面を U字状に形成し、 U 字の湾曲部外側をブレード回転方向前縁部とし、 上流側の長片部外側をプレード 面とし、 U字内側の凹部を、 放射方向に流れる流体により回転力を受ける流路と したので、 J字状ブレードに比べ凹部が深く、 放射方向の流体の流れを、 流体が ブレード先端に至るまで逃がさずに流し、 流体から回転力を吸収することができ る。 次の発明に係るプロペラ型流力原動機は、 前記ブレードの前記凹部の基部及ぴ 先端部が、 開口しているものである。 In the propeller type hydraulic motor according to the present invention, the cross section of the blade is formed in a U-shape, the outside of the U-shaped curved portion is defined as the blade rotation direction front edge, and the outside of the upstream long piece is defined as the blade surface. The concave portion inside the U-shape is a channel that receives rotational force from the fluid flowing in the radial direction, so the concave portion is deeper than the J-shaped blade, so that the fluid flow in the radial direction does not escape until the fluid reaches the blade tip It can sink and absorb rotational force from the fluid. In the propeller type hydraulic motor according to the next invention, the base and the tip of the concave portion of the blade are open.
次の発明に係るプロペラ型流力原動機は、 前記プレードの前記凹部の基部が、 塞がれているものである。  In the propeller type hydraulic motor according to the next invention, the base of the concave portion of the blade is closed.
次の発明に係るプロペラ型流力原動機は、 前記ブレードが、 細長直線状であつ て前記凹部の先端部が塞がれているものである。  In a propeller type hydraulic motor according to the next invention, the blade is elongated and straight, and a tip end of the concave portion is closed.
次の発明に係るプロペラ型流力原動機は、 前記ブレードが、 基部から先端部に 向かって回転方向後方に曲折しているものである。  In the propeller type hydraulic motor according to the next invention, the blade is bent rearward in the rotational direction from the base to the tip.
次の発明に係るプロペラ型流力原動機は、 前記プレードが、 基部から先端部に 向かって回転方向後方に滑らかに湾曲しているものである。  In the propeller-type hydraulic motor according to the next invention, the blade is smoothly curved rearward in the rotational direction from the base to the tip.
次の発明に係るプロペラ型流力原動機は、 前記プレードの横幅が、 基部から先 端部に向かって徐々に小さくなつているものである。  In the propeller type hydraulic motor according to the next invention, the width of the blade is gradually reduced from the base to the front end.
次の発明に係るプロペラ型流力原動機は、 前記プレードが、 平板プレス加工に より形成されているものである。  In a propeller-type hydraulic motor according to the next invention, the blade is formed by flat plate pressing.
次の発明に係るプロペラ型流力原動機は、 前記プレードの基部の軸線が回転軸 中心を通るように、 前記プレードを前記回転軸に取り付けたものである。  In the propeller type hydraulic motor according to the next invention, the blade is attached to the rotating shaft such that the axis of the base of the blade passes through the center of the rotating shaft.
次の発明に係るプロペラ型流力原動機は、 前記ブレードの基部の軸線が回転軸 中心より回転方向前方を通るようにオフセットして、 前記ブレードを前記回転軸 に取り付けたものである。  In the propeller type hydraulic motor according to the next invention, the blade is attached to the rotating shaft so that the axis of the base of the blade is offset from the center of the rotating shaft so as to pass forward in the rotating direction.
次の発明に係るプロペラ型流力原動機は、 前記プロペラ型流力原動機の上流側 に配置され、 回転軸近傍を流れる流体を外周側に誘導する流 ^導手段を備えた ものである。  A propeller-type hydraulic prime mover according to the next invention is provided upstream of the propeller-type hydraulic prime mover, and has a flow guiding means for guiding a fluid flowing near a rotating shaft to an outer peripheral side.
次の発明に係るプロペラ型流力原動機は、 前記流体誘導手段が、 ほぼ円錐形に 形成され、 先端部を回転軸上の上流側に位置させているものである。  In a propeller type hydraulic motor according to the next invention, the fluid guiding means is formed in a substantially conical shape, and has a distal end located upstream on a rotation axis.
次の発明に係るプロペラ型流力原動機は、 前記プレードの下流側に位置し、 回 転軸近傍を流れて前記ブレードの基部の内側を通過した流体を反転させ、 外周側 の前記プレードの基部まで誘導する流体誘導手段を備えたものである。 次の発明に係るプロペラ型流力原動機は、 前記流体誘導手段が、 中空半球状の 流体キャッチであるものである。 A propeller type hydraulic motor according to the next invention is located on the downstream side of the blade, reverses the fluid flowing near the rotation axis and passing inside the base of the blade, and extends to the base of the blade on the outer peripheral side. It is provided with a fluid guiding means for guiding. In the propeller-type hydraulic prime mover according to the next invention, the fluid guiding means is a hollow hemispherical fluid catch.
次の発明に係るプロペラ型流力原動機は、 前記流体キャッチが、 スポークを介 して前記回転軸に取り付けられ、 前記プレードの基部を支持しているものである。 次の発明に係るプロペラ型流力原動機は、 前記流体キャッチが、 前記流体の流 速に応じて開閉して流体キャッチから流体を逃がす開閉手段を備えているもので める。  In the propeller type hydraulic motor according to the next invention, the fluid catch is attached to the rotating shaft via a spoke, and supports a base of the blade. In the propeller type hydraulic motor according to the next invention, the fluid catch may include opening and closing means for opening and closing according to the flow velocity of the fluid to release the fluid from the fluid catch.
次の発明に係るプロペラ型流力原動機は、 前記開閉手段が、 前記流体キャッチ の底部開口に設けられ、 通常は、 ばね機構により閉方向に付勢されて閉じていて、 流速による所定の流体圧により、 ばね力に抗して開く複数の花弁状の開閉弁であ るものである。  In the propeller type hydraulic motor according to the next invention, the opening / closing means is provided at a bottom opening of the fluid catch, and is normally closed by being urged in a closing direction by a spring mechanism, and has a predetermined fluid pressure based on a flow rate. Therefore, it is a petal-like on-off valve that opens against the spring force.
次の発明に係るプロペラ型流力原動機は、 前記プロペラ型流力原動機の上流側 に配置され、 前記ブレードに向かって回転軸方向に流れる流体を、 ブレード回転 方向に追う方向に誘導する流体誘導手段を備えたものである。  A propeller-type fluid prime mover according to the next invention is disposed on the upstream side of the propeller-type hydraulic prime mover, and fluid guide means for guiding a fluid flowing in a rotational axis direction toward the blade in a direction following the blade rotation direction. It is provided with.
次の発明に係るプロペラ型流力原動機は、 前記プロペラ型流力原動機の上流側 に配置され、 前記ブレードに向かって回転軸方向に流れる流体を、 ブレード回転 方向に追い、 かつ、 ブレード半径内に押さえ込むように誘導する流 ί«導手段を 備えたものである。  A propeller-type hydraulic prime mover according to the next invention is disposed on the upstream side of the propeller-type hydraulic prime mover, follows a fluid flowing in a rotational axis direction toward the blade in a blade rotational direction, and within a blade radius. It is provided with a flow guiding means for guiding to press down.
次の発明に係るプロペラ型流力原動機は、 前記流体誘導手段が、 前記回転軸に 沿うように、 力 軸対称に 状に配置され、 下流側が、 ブレード回転方向に湾 曲された湾曲部を有する対の流 # 1導板であるものである。 '  In the propeller type hydraulic motor according to the next invention, the fluid guide means is arranged symmetrically with respect to the axis of force so as to be along the rotation axis, and the downstream side has a curved portion curved in the blade rotation direction. It is a pair of # 1 conductive plates. '
次の発明に係るプロペラ型流力原動機は、 前記流体誘導手段が、 前記回転軸に 沿うように、 力 軸対称に放射状に配置され、 下流側が、 ブレード回転方向に湾 曲され、 かつ、 下流側外側部がプレード回転方向内側に湾曲された湾曲部を有す る対の流体誘導板であるものである。  In the propeller type hydraulic motor according to the next invention, the fluid guide means is radially arranged symmetrically with respect to the force axis so as to be along the rotation axis, and the downstream side is curved in the blade rotation direction, and the downstream side. The outer portion is a pair of fluid guide plates having a curved portion curved inward in the blade rotation direction.
次の発明に係るプロペラ型流力原動機は、 前記湾曲部の湾曲度または湾曲形状 を調整する調整手段を備えたものである。 次の発明に係るプロペラ型流力原動機は、 前記流体の流速に応じて前記ブレー ドを下流側に倒すプレード可倒手段を備えたものである。 A propeller type hydraulic motor according to the next invention is provided with an adjusting means for adjusting a degree of curvature or a curved shape of the curved portion. A propeller type hydraulic motor according to the next invention is provided with a blade tilting means for tilting the blade to the downstream side in accordance with the flow velocity of the fluid.
次の発明に係るプロペラ型流力原動機は、 前記ブレード可倒手段が、 前記ブレ 一ドを前記回転軸に接続するスポークを弾性体で構成したものである。  In the propeller type hydraulic motor according to the next invention, the blade collapsible means is configured such that spokes connecting the blade to the rotating shaft are made of an elastic body.
次の発明に係るプロペラ型流力原動機は、 前記プレード可倒手段が、 前記ブレ 一ドを下流側へ揺動可能に前記回転軸に接続する接続手段と、 前記ブレードの基 部に固定されブレードにほぼ垂直に上流側に延びる口ッドの先端に取り付けられ た錘と、 この錘を前記回転軸方向に付勢する弾性部材とから構成したものである。 次の発明に係るプロペラ型流力原動機は、 前記プロペラ型流力原動機の上流側 に発 を接続し、 流力発 ® とし,て使用されるものである。  A propeller-type hydraulic prime mover according to the next invention is characterized in that the blade folding means comprises: connecting means for connecting the blade to the rotating shaft so as to swing the blade downstream; and a blade fixed to a base of the blade. And a resilient member that urges the weight in the direction of the rotation axis. A propeller-type hydraulic prime mover according to the next invention is used as a hydraulic prime mover by connecting a generator upstream of the propeller-type hydraulic prime mover.
次の発明に係るプロペラ型流力原動機は、 前記プロペラ型流力原動機の下流側 に発電機を接続し、 流力発電機として使用されるものである。  A propeller-type hydraulic prime mover according to the next invention has a generator connected to the downstream side of the propeller-type hydraulic prime mover, and is used as a hydraulic generator.
次の発明に係るプロペラ型流力原動機は、 前記流体が大気であり、 プロペラ型 風力原動機として使用されるものである。  In the propeller-type hydraulic prime mover according to the next invention, the fluid is the atmosphere, and the fluid is used as a propeller-type wind prime mover.
次の発明に係るプロペラ型流力原動機は、 前記流体が水であり、 プロペラ型水 力原動機として使用されるものである。  In the propeller type hydraulic motor according to the next invention, the fluid is water, and the fluid is used as a propeller type hydraulic motor.
次の発明に係るプロペラ型流力原動機は、 回転軸が流体流れ方向を向き、 該回 転軸にブレードがほぼ放射状に取り付けられるプロペラ型流力原動機において、 前記プロペラ型流力原動機の上流側に配置され、 前記ブレードに向かって回転軸 方向に流れる流体を、 プレード回転方向に追う方向に誘導する流体誘導手段を備 えたものである。  A propeller-type hydraulic prime mover according to the next invention is a propeller-type hydraulic prime mover in which a rotating shaft faces a fluid flow direction and blades are attached to the rotational shaft in a substantially radial manner. And a fluid guiding means for guiding a fluid flowing in the rotation axis direction toward the blade in a direction following the blade rotation direction.
この発明のプロペラ型流力原動機は、 プロペラ型流力原動機の上流側に配置さ れ、 プレードに向かって回転軸方向に流れる流体を、 ブレード回転方向に追う方 向に誘導する流体誘導手段を備えたので、 正面から来る流体と迎角 βの作用によ る推進力及び流 ί«導板によるブレードを追う方向の流体による合成推進力を受 け、 低流速であっても高回転駆動力と高回転速度を実現することができる。  The propeller type fluid prime mover of the present invention is provided with fluid guide means disposed upstream of the propeller type fluid prime mover for guiding fluid flowing in the direction of the rotation axis toward the blade in the direction following the blade rotation direction. Therefore, the propulsion force and the flow due to the action of the angle of attack β and the fluid coming from the front receive the combined propulsion force of the fluid in the direction following the blade by the conductive plate. High rotation speed can be realized.
次の発明に係るプロペラ型流力原動機は、 回転軸が流体流れ方向を向き、 該回 転軸にブレードがほぼ 状に取り付けられるプロペラ型流力原動機において、 前記プ口ペラ型流力原動機の上流側に配置され、 前記ブレードに向かつて回転軸 方向に流れる流体を、 ブレード回転方向に追い、 力つ、 ブレード^ 内に押さえ 込むように誘導する流体誘導手段を備えたものである。 In the propeller type hydraulic motor according to the next invention, the rotating shaft faces the fluid flow direction, In a propeller-type hydraulic motor in which a blade is attached to a rotating shaft in a substantially shape, a fluid that is arranged on an upstream side of the port-type propeller-type hydraulic motor and that flows in the direction of the rotating shaft toward the blade is moved in the blade rotating direction. , Power, and a fluid guiding means for guiding the blade to be held down.
この発明のプロペラ型流力原動機は、 プロペラ型流力原動機の上流側に配置さ れ、 プレードに向かって回転軸方向に流れる流体を、 ブレード回転方向に追い、 かつ、 ブレード半径内に押さえ込むように誘導する流体誘導手段を備えたので、 放射方向に逃げようとする風を押さえ込み、 ブレードの前進力の増大に寄与させ ることができる。  The propeller-type hydraulic prime mover of the present invention is arranged on the upstream side of the propeller-type hydraulic prime mover, and follows the fluid flowing in the direction of the rotating shaft toward the blade in the blade rotating direction and presses the fluid within the blade radius. The provision of the fluid guiding means for guiding can suppress wind escaping in the radial direction and contribute to an increase in the forward force of the blade.
次の発明に係るプロペラ型流力原動機は、 前記流体誘導手段が、 前記回転軸に 沿うように、 かつ軸対称に放射状に配置され、 下流側が、 ブレード回転方向に湾 曲された湾曲部を有する対の流 #ϋ導板であるものである。  In the propeller type hydraulic motor according to the next invention, the fluid guide means is radially arranged along the rotation axis and axisymmetrically, and the downstream side has a curved portion curved in the blade rotation direction. It is a pair of # 流 conductive plates.
次の発明に係るプロペラ型流力原動機は、 前記流体誘導手段が、 前記回転軸に 沿うように、 力つ軸対称に放射状に配置され、 下流側が、 ブレード回転方向に湾 曲され、 力 、 下流側外側部がブレード回転方向内側に湾曲された湾曲部を有す る対の流 ί楊導板であるものである。  In the propeller type hydraulic motor according to the next invention, the fluid guide means is radially arranged to be axially symmetrical along the rotation axis, and the downstream side is curved in the blade rotation direction, and the power and the downstream are arranged. The pair of flow guide plates each having a curved portion whose outer side portion is curved inward in the blade rotation direction.
次の発明に係るプロペラ型流力原動機は、 前記湾曲部の湾曲度または湾曲形状 を調整する調整手段を備えたものである。  A propeller type hydraulic motor according to the next invention is provided with an adjusting means for adjusting a degree of curvature or a curved shape of the curved portion.
次の発明に係るプロペラ型流力原動機は、 前記流体の流速に応じて前記ブレー ドを下流側に倒すプレード可倒手段を備えたものである。  A propeller type hydraulic motor according to the next invention is provided with a blade tilting means for tilting the blade to the downstream side in accordance with the flow velocity of the fluid.
次の発明に係るプロペラ型流力原動機は、 前記ブレード可倒手段が、 前記ブレ 一ドを前記回転軸に接続するスポークを弾性体で構成したものである。  In the propeller type hydraulic motor according to the next invention, the blade collapsible means is configured such that spokes connecting the blade to the rotating shaft are made of an elastic body.
次の発明に係るプロペラ型流力原動機は、 前記ブレード可倒手段が、 前記ブレ 一ドを下流側へ揺動可能に前記回転軸に接続する接続手段と、 前記ブレードの基 部に固定されプレードに垂直に上流側に延びる口ッドの先端に取り付けられた錘 と、 この錘を前記回転軸方向に付勢する弾性部材とから構成したものである。 次の発明に係るプロペラ型流力原動機のブレードは、 横断面を: [字状に形成し、 J字の湾曲部外側をプレード回転方向前縁部とし、 J字の長片部内側をプレード 面とし、 前記湾曲部内側の凹部を流力受け部としたものである。 A propeller type hydraulic motor according to the next invention is characterized in that the blade collapsible means comprises: connecting means for connecting the blade to the rotating shaft so as to swing to the downstream side; and a blade fixed to a base of the blade. And a resilient member for urging the weight in the direction of the rotation axis. The blade of the propeller type hydraulic motor according to the following invention has a cross section of [ The outside of the curved portion of the J-shape is the leading edge in the blade rotation direction, the inside of the long piece of the J-shaped portion is the blade surface, and the recess inside the curved portion is the fluid force receiving portion.
この発明のプロペラ型流力原動機のブレードは、 横断面を J字状に形成し、 J 字の湾曲部外側をブレード回転方向前縁部とし、 J字の長片部内側をブレード面 とし、 前記湾曲部内側の凹部を流力受け部としたので、 正面から流れてくる流体 と迎角 ]3の作用によるブレードの回転力及び正面から流れてくる流体と J字の湾 曲部の凹部の作用による合成回転力を受けることができる。  The blade of the propeller type hydraulic motor according to the present invention has a cross section formed in a J-shape, the outer side of the J-shaped curved portion as the blade rotation direction front edge, and the inner side of the J-shaped long piece portion as the blade surface. Since the concave part inside the curved part is used as the fluid force receiving part, the fluid flowing from the front and the angle of attack] 3 The rotating force of the blade and the fluid flowing from the front and the action of the concave part of the J-shaped curved part Can receive the combined rotational force.
次の発明に係るプロペラ型流力原動機のブレードは、 前記湾曲部内側の凹部を 流力受け部とするとともに、 放射方向に流れる流体により回転力を受ける流路と したものである。  In the blade of the propeller type hydraulic motor according to the next invention, the concave portion inside the curved portion is used as a fluid force receiving portion, and is a flow passage that receives a rotational force by a fluid flowing in a radial direction.
次の発明に係るプロペラ型流力原動機のブレードは、 横断面を U字状に形成し、 U字の湾曲部外側をブレード回転方向前縁部とし、 上流側の長片部外側をプレー ド面とし、 U字内側の凹部を、 放射方向に流れる流体により回転力を受ける流路 としたものである。  The blade of the propeller type hydraulic motor according to the following invention has a U-shaped cross section, the outer side of the U-shaped curved portion is the front edge in the blade rotation direction, and the outer side of the long piece on the upstream side is the blade surface. The concave portion inside the U-shape is a channel that receives rotational force by the fluid flowing in the radial direction.
この発明のプロペラ型流力原動機のプレードは、 横断面を U字状に形成し、 U 字の湾曲部外側をブレード回転方向前縁部とし、 上流側の長片部外側をブレード 面とし、 u字内側の凹部を、 放射方向に流れる流体により回転力を受ける流路と したので、 J字状プレードに比べ凹部が深く、 放射方向の流体の流れを、 流体が プレード先端に至るまで逃がさずに流し、 流体から回転力を吸収することができ る。 図面の簡単な説明  The blade of the propeller type hydraulic motor according to the present invention has a U-shaped cross section, the outer side of the U-shaped curved portion is the leading edge in the blade rotation direction, and the outer side of the long piece portion on the upstream side is the blade surface. The concave portion inside the letter is a flow path that receives rotational force from the fluid flowing in the radial direction, so the concave part is deeper than the J-shaped blade, so the fluid in the radial direction does not escape until the fluid reaches the tip of the blade. It can sink and absorb rotational force from the fluid. Brief Description of Drawings
第 1図は、 この発明の実施の形態 1のプロペラ型流力原動機で駆動される流力 発電機の側面図であり、 第 2図は、 プロペラ型流力原動機の分解斜視図であり、 第 3図は、 J字状ブレードの斜視図であり、 第 4図は、 第 3図の A_ A線に沿う J字状ブレードの横断面図であり、 第 5図は、 プロペラ型流力原動機を上流側か ら見た正面図であり、 第 6図は、 回転方向後方に滑らかに湾曲している J字状プ レードの正面図であり、 第 7図は、 細長直線状の J字状ブレードの斜視図であり、 第 8図は、 この発明の実施の形態 2のプロペラ型流力原動機で駆動される流力発 電機の側面図であり、 第 9図は、 第 8図の B— B線に沿う矢視図であり、 第 1 0 図は、 第 9図の C一 C線に沿う U字状ブレードの横断面図であり、 第 1 1図は、 流体誘導板の斜視図であり、 第 1 2図は、 流体キヤツチの開閉装置の説明図であ り、 第 1 3図は、 この発明の実施の形態 3のプロペラ型流力原動機で駆動される 流力発電機の側面図であり、 第 1 4図は、'流体誘導板の湾曲度調整装置の平面図 であり、 第 1 5図は、 他の湾曲度調整装置の平面図であり、 第 1 6図は、 ブレー ド可倒装置の側面図であり、 第 1 7図は、 他のブレード可倒装置の側面図である。 発明を実施するための最良の形態 FIG. 1 is a side view of a hydraulic power generator driven by a propeller-type hydraulic prime mover according to Embodiment 1 of the present invention. FIG. 2 is an exploded perspective view of the propeller-type hydraulic prime mover. FIG. 3 is a perspective view of the J-shaped blade, FIG. 4 is a cross-sectional view of the J-shaped blade along the line A_A in FIG. 3, and FIG. 5 is a perspective view of the propeller type hydraulic motor. Fig. 6 is a front view as seen from the upstream side, and Fig. 6 shows a J-shaped FIG. 7 is a perspective view of an elongated linear J-shaped blade, and FIG. 8 is a front view of a slender linear J-shaped blade according to a second embodiment of the present invention. FIG. 9 is a side view of the generator, FIG. 9 is a view taken along the line BB in FIG. 8, and FIG. 10 is a view of the U-shaped blade along the line C-C in FIG. FIG. 11 is a perspective view of a fluid guide plate, FIG. 12 is an explanatory diagram of a fluid switch opening / closing device, and FIG. 13 is a sectional view of an embodiment of the present invention. FIG. 14 is a side view of a hydraulic power generator driven by a propeller type hydrodynamic motor of form 3, FIG. 14 is a plan view of a curvature adjusting device for a fluid guide plate, and FIG. FIG. 16 is a plan view of a curvature adjusting device, FIG. 16 is a side view of a blade folding device, and FIG. 17 is a side view of another blade folding device. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 添付図面を参照してこの発明に係るプロペラ型流力原動機の好適な実 施の形態を詳細に説明する。 この実施の形態は、 プロペラ型風力原動機であるが、 本発明のプロペラ型原動機は、 風力にも水力にも使用することができるので、 風 力及び水力を総称する流力 (流体) という用語を用いることにより、 風力用、 水 力用の両方のプロペラ型原動機の説明とすることとする。  Hereinafter, preferred embodiments of a propeller-type hydraulic prime mover according to the present invention will be described in detail with reference to the accompanying drawings. This embodiment is a propeller-type wind motor, but the propeller-type motor of the present invention can be used for both wind power and hydraulic power. This will be used to describe both propeller-type prime movers for wind and hydro.
実施の形態 1 . Embodiment 1
第 1図〜第 7図及び第 1 1図を用いて、 この発明の実施の形態 1を説明する。 第 1図は、 この発明の実施の形態 1のプロペラ型流力原動機で駆動される流力発 電機の側面図であり、 第 2図は、 プロペラ型流力原動機の分解斜視図であり、 第 3図は、 J字状ブレードの斜視図であり、 第 4図は、 第 3図の A— A線に沿う J 字状ブレードの横断面図であり、 第 5図は、 プロペラ型流力原動機の上流側から 見た正面図であり、 第 6図は、 回転方向後方に滑らかに湾曲している: [字状ブレ 一ドの正面図、 第 7図は、 細長直線状の J字状ブレードの斜視図であり、 第 1 1 図は、 流体誘導板の斜視図である。  Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 7 and FIG. FIG. 1 is a side view of a hydraulic power generator driven by a propeller-type hydraulic prime mover according to Embodiment 1 of the present invention. FIG. 2 is an exploded perspective view of the propeller-type hydraulic prime mover. Fig. 3 is a perspective view of the J-shaped blade, Fig. 4 is a cross-sectional view of the J-shaped blade along the line A-A in Fig. 3, and Fig. 5 is a propeller type hydraulic motor. Fig. 6 is a front view as seen from the upstream side of Fig. 6. Fig. 6 shows a smoothly curved rearward direction of rotation: [Front view of a character blade, Fig. 7 shows an elongated straight J-shaped blade. FIG. 11 is a perspective view of a fluid guide plate.
図において、 プロペラ型流力原動機 1は、 回転軸 2に取り付けられるハブ 3と、 流力を受ける J字状ブレード、 5と、 J字状ブレード 5とハブ 3を接続するスポー ク 4から概ね構成されている。 In the figure, a propeller-type hydraulic prime mover 1 has a hub 3 attached to a rotating shaft 2, a J-shaped blade 5 for receiving a hydrodynamic force, and a sport connecting the J-shaped blade 5 to the hub 3. It is generally composed of (4).
この実施の形態の J字状ブレード 5は、 第 3図及び第 4図に示すように、 細長 い金属製の平板からなるブレード板の前縁部を上流側に向けて湾曲させ、 横断面 を J字状に形成したもので、 J字の湾曲部外側 5 aがブレード回転方向 K (第 2 図、 第 4図、 第 5図参照) 前縁部となり、 J字の長片部内側 5 bが流力を受ける ブレード面となり、 湾曲部内側の凹部 5 cが流力受け部となっている。 J字状ブ レード 5は、 従来のプレードと同じように、 回転軸 2に垂直な面に対し迎角 βを 持たせて回転軸 2に取り付けるが、 高流速時に高速回転させるようなときは、 回 転流体抵抗を小さくするために迎角 を 0 °とすることもできる。  As shown in FIG. 3 and FIG. 4, the J-shaped blade 5 of this embodiment is configured such that a front edge portion of a blade plate made of an elongated metal flat plate is curved toward the upstream side, and the cross section is It is formed in a J-shape. The outer side 5a of the J-shaped curved portion is the front edge of the blade rotation direction K (see FIGS. 2, 4, and 5). Is the blade surface that receives the fluid force, and the concave portion 5c inside the curved portion is the fluid force receiving portion. The J-shaped blade 5 is attached to the rotating shaft 2 with an angle of attack β with respect to the plane perpendicular to the rotating shaft 2, as in the conventional blade. The angle of attack can be set to 0 ° to reduce the rotational fluid resistance.
次に、 J字状プレードの作動原理を説明する。 ブレード面 5 bに当たる流体の うちブレード面 5 bの後方に当たる流体 6 aは、 さえぎるものの無い回転方向後 方に流れ、 迎角 i3があれば J字状ブレード 5に前進力が発生する。 ブレード面 5 bの前方に当たる流体 6 bは、 回転方向前方に流れ凹部 5 cに塞き止められて J 字状ブレード 5に前進力を発生させ流力原動機 1を回転させる。 また、 迎角 βが 0 °であっても、 前方に当たる流体 6 bと凹部 5 cの作用により J字状ブレード 5に前進力が発生し、 流力原動機 1を回転させることができる。  Next, the operating principle of the J-shaped blade will be described. Of the fluid that strikes the blade surface 5b, the fluid 6a that strikes the rear of the blade surface 5b flows backward in the unobstructed rotational direction, and a forward force is generated on the J-shaped blade 5 if the angle of attack i3 is present. The fluid 6b hitting the front of the blade surface 5b flows forward in the rotation direction and is blocked by the concave portion 5c to generate a forward force on the J-shaped blade 5 to rotate the hydraulic motor 1. Further, even when the angle of attack β is 0 °, the forward force is generated in the J-shaped blade 5 by the action of the fluid 6b hitting forward and the concave portion 5c, and the hydraulic motor 1 can be rotated.
J字状ブレードの長手方向の形状については、 第 3図、 第 5図及ぴ第 6図に示 すような、 プレード長手方向の基部から先端部に向かって回転方向後方に滑らか に湾曲しているプレード 5、 1 5及び 2 5や、 第 2図 (b ) に示すような、 中間 部で回転方向後方に折り曲げたブレード 5や、 細長直線状であって凹部の先端部 を塞いだブレード 3 5等を採用することができる。 ブレードの回転流体抵抗を考 慮すると滑らかに後方に湾曲させたプレード 5、 1 5、 2 5等を採用することが 望ましい。 なお、 第 3図のブレード 5は、 流力原動機 1を上流から見て反時計回 りに回転させるものであり、 他のブレード 1 5、 2 5、 3 5は、 日寺計回りに回転 させるものである。  As shown in Fig. 3, Fig. 5 and Fig. 6, the shape of the J-shaped blade in the longitudinal direction is such that it smoothly curves backward from the base in the blade longitudinal direction to the tip end in the rotational direction. Blades 5, 15 and 25, as shown in Fig. 2 (b), a blade 5 bent backward in the middle in the rotational direction, or a blade 3 that is elongated and straight and covers the tip of the recess. 5 etc. can be adopted. Considering the rotational fluid resistance of the blade, it is desirable to adopt blades 5, 15, 25, etc. that are smoothly curved backward. The blade 5 in Fig. 3 rotates the motor 1 counterclockwise when viewed from upstream, and the other blades 15, 25, and 35 rotate clockwise around Nichidera. Things.
また、 上記のブレードの横幅は、 基部から先端に向かって徐々に小さくするの が良い。 基部では、 流体を受ける面積を大きくして回転力の増大を図る。 また、 先端部では、 面積を小さくして流体抵抗を減少させ、 さらに、 周速度が速い先端 部では、 流体を吐き出すスピードを速くする。 The width of the blade is preferably gradually reduced from the base toward the tip. At the base, the area for receiving the fluid is increased to increase the rotational force. Also, At the tip, the fluid resistance is reduced by reducing the area, and at the tip where the peripheral speed is high, the speed of discharging fluid is increased.
また、 従来のブレードは、 その横断面形状がいわゆる流線型の翼形で複雑な形 状であり生産性に問題があるが、 上記のブレードは、 金属平板からプレス加工に より容易に成形することができる。  Also, conventional blades have so-called streamlined airfoil cross-sections, which are complex and have a problem in productivity.However, the above-mentioned blades can be easily formed from a flat metal plate by pressing. it can.
さらに、 プレードをハブ 3に取り付けるときに、 ブレードの基部の軸線が回転 軸中心を通るように取り付けても良いが、 第 5図に示すように、 ブレードの基部 の軸線 1 5 aが回転軸中心より回転方向前方を通るようにオフセットさせて取り 付けることにより、 ブレードを回転方向後方に傾斜させて取り付けるのが良い。 このような取付け方でも本明細書では、 ほぼ放射状に取り付けたブレードと呼ぶ こととする。.  Further, when the blade is mounted on the hub 3, the blade may be mounted so that the axis of the base of the blade passes through the center of the rotation axis, but as shown in FIG. 5, the axis 15a of the base of the blade is positioned at the center of the rotation axis. It is better to mount the blade so that it is tilted backward in the rotational direction by mounting it offset so that it passes more forward in the rotational direction. In this specification, such a mounting method is also referred to as a blade which is mounted substantially radially. .
前述のブレードの回転方向後方への曲折、 湾曲及び傾斜は、 プロペラ式流力原 動機に対して放射方向の流体の流れ (第 2図、 第 3図の 6 c ) があると、 その流 体がブレードの凹部 5 cを放射方向に通り、 曲折、 湾曲及び傾斜部で流路が曲げ られ、 反力によりブレードに前進力を与えることになる。  The aforementioned bending, bending and inclination of the blade backward in the rotational direction are caused by the flow of fluid in the radial direction (6c in Figs. 2 and 3) with respect to the propeller type hydraulic motor. Passes radially through the concave portion 5c of the blade, the flow path is bent at the bent, curved, and inclined portions, and a forward force is applied to the blade by the reaction force.
第 7図に示す細長直線状のプレード 3 5においては、 前述の J字状プレードの 作動原理による回転力に加え、 凹部の先端部 3 5 aを塞いでおくことにより、 凹 部 3 5 cを通る流体 6 cが先端部から後方に噴き出され、 その反力による回転力 が発生する。  In the elongated linear blade 35 shown in Fig. 7, the concave portion 35c is formed by closing the distal end 35a of the concave portion in addition to the rotational force based on the operation principle of the J-shaped blade described above. The passing fluid 6c is ejected backward from the tip, generating a rotational force due to the reaction force.
第 1図に戻り、 回転軸 2を揷通支持する固定軸 7が流体原動機 1の上流側に長 く伸び、 その前端には発電機 8が支持される。 流力原動機 1の直前の固定軸 7上 には、 回転軸 2近傍を流れる流体を外周側に誘導する流 ί樓導手段としての円錐 9 (コーン) が先端部を上流側に向けて設置されている。 円錐の基部の外径は、 ブレード 5の基部 圣より大きくされている。  Referring back to FIG. 1, a fixed shaft 7 that supports the rotating shaft 2 extends long upstream of the fluid motor 1, and a generator 8 is supported at the front end thereof. On the fixed shaft 7 immediately before the hydraulic motor 1, a cone 9 (cone) as a flow guiding means for guiding the fluid flowing near the rotating shaft 2 to the outer peripheral side is installed with its tip end toward the upstream side. ing. The outer diameter of the base of the cone is larger than the base の of the blade 5.
回転軸 2近傍を流れる流体をそのまま真っ直ぐブレードに当てても、 回転軸 2 からの距離が小さいため、 風力原動機 1には、 ほとんど回転トルクが発生しない 1 円錐 9によって外周側に誘導してからプレード 5に当てると、 回転軸 2から ■ の距離が大きいため大きな回転トルクを発生させることができる。 このとき、 第Even if the fluid flowing in the vicinity of the rotating shaft 2 is applied straight to the blade as it is, the distance from the rotating shaft 2 is small, so that the wind power generator 1 generates almost no rotating torque. When it hits 5, from rotation axis 2 (2) A large rotating torque can be generated because the distance is large. At this time,
3図 ( b ) に示すように、 ブレード 5の凹部 5 cの基部を、 遮蔽板 5 dにより塞 いでおくとブレード 5に当たった流体が内周方向に逃げるのを防ぎ回転トルクを 増すことができる。 なお、 第 3図 (a ) に示すブレード 5においては、 第 3図 ( b ) に示す遮蔽板 5 dがない構成としている。 3 As shown in Fig. (B), blocking the base of the recess 5c of the blade 5 with the shielding plate 5d prevents the fluid that has hit the blade 5 from escaping in the inner circumferential direction and increases the rotational torque. it can. The blade 5 shown in FIG. 3 (a) does not have the shielding plate 5d shown in FIG. 3 (b).
特に J字状ブレード 5、 1 5、 2 5、 3 5等では、 円錐 9により放射方向の風 の流れ (第 2図、 第 3図の 6 c ) が発生し、 その風がブレードの凹部 5 cを放射 方向に通り、 曲折、 湾曲及び傾斜部で風路が曲げられ、 その反力によってもブレ 一ドに前進力を与えることになる。  In particular, in the case of the J-shaped blades 5, 15, 25, 35, etc., a radial wind flow (6c in FIGS. 2 and 3) is generated by the cone 9, and the wind is generated by the concave portion 5 of the blade. The air path passes through c in the radial direction, and the wind path is bent at the bends, bends, and slopes, and the reaction force exerts forward force on the blade.
この流体誘導手段としての円錐 9は、 先頭が丸い砲弾形のものであっても、 先 頭が尖つた富士山形のものであっても良レ、。  The cone 9 as the fluid guiding means may be round or round, or may be shaped like Mt. Fuji with a sharp point.
さらに、 円錐 9の上流側には、 プレード 5に向かって回転軸 2方向に流れる流 体を、 プレード回転方向にブレードを追うように誘導する流 ί«導手段としての 上下一対の流体誘導板 1 0、 1 0が、 第 1 1図に示すように、 その前方は回転軸 2に沿うように、 固定軸 7に放射 ·状に取り付けられ、 その後部はブレード 5回転 方向に湾曲されている。 流 fls 導板 1 0、 1 0は、 上下ではなく左右または斜め に一対取り付けても良いし、 上下左右 2対取り付けても良い。 上下一対とすると、 流力原動機 1を流体流れ方向に向ける垂直尾翼の働きをさせることができる。 流体誘導板 1 0、 1 0の側面外形輪郭は、 上下合わせた形で砲弾形に形成し、 後部外側部をブレード回転方向内側に湾曲させると良い。 このようにすると、 放 射方向に逃げようとする風を押さえ込み、 プレード 5の前進力の増大に寄与させ ることができる。 流体誘導板 1 0、 1 0の後部内側部は、 円錐 9の外形に合わせ た形状にする。  Further, on the upstream side of the cone 9, a pair of upper and lower fluid guide plates 1 as a flow guiding means for guiding a fluid flowing in the direction of the rotation axis 2 toward the blade 5 so as to follow the blade in the blade rotation direction. As shown in FIG. 11, 0 and 10 are radially attached to the fixed shaft 7 so that the front thereof is along the rotation shaft 2 and the rear portion is curved in the blade 5 rotation direction. The flow fls conductive plates 10 and 10 may be mounted in pairs instead of up and down, left and right or diagonally, or two pairs of up, down, left and right may be mounted. When the upper and lower parts are paired, the function of a vertical tail unit that directs the hydraulic motor 1 in the fluid flow direction can be performed. It is preferable that the side surface contours of the fluid guide plates 10, 10 are formed in a shell shape in a vertically aligned manner, and the rear outer portion is curved inward in the blade rotation direction. In this way, the wind trying to escape in the emission direction can be suppressed, and the forward force of the blade 5 can be increased. The inside of the rear part of the fluid guide plates 10 and 10 is shaped to match the external shape of the cone 9.
' プロペラ型流力原動機 1と発 8とを、 原動機 1の上流側に延びる回転軸 9 及び固定軸 7で接続し、 流体誘導板 1 0 , 1 0の上流側のほぼ重心位置で支柱 1 1により水平回転自在に固定軸 7を支持し、 流力発電機 1 0 0を構成する。 この ように構成すると、 流膽導板 1 0 , 1 0が垂直尾翼として働き、 回転軸 2を常 に流体流れ方向に向けることができる。 しかしながら、 別に垂直尾翼を取り付け れば、 原動機 1の下流側に延びる回転軸 2及ぴ固定軸 7に発電機 8を接続する形 式としても良い。 '' The propeller-type hydraulic motor 1 and the generator 8 are connected by a rotating shaft 9 and a fixed shaft 7 that extend upstream of the prime mover 1, and the strut 1 1 is located approximately at the center of gravity upstream of the fluid guide plates 10, 10. Supports the fixed shaft 7 so as to be freely rotatable horizontally, and constitutes a hydraulic power generator 100. With such a configuration, the fluent plates 10 and 10 function as vertical tails, and the rotating shaft 2 is always in the position. In the fluid flow direction. However, if a vertical tail is separately attached, the generator 8 may be connected to the rotating shaft 2 and the fixed shaft 7 extending downstream of the prime mover 1.
J字状ブレード 5は、 正面から来る流体 6 aと迎角 βの作用による推進力、 正 面から来る流体 6 bと凹部 5 cの作用による推進力、 円錐 9による放射方向の流 体 6 cと凹部 5 cの作用による推進力及び流 # ^導板 1 0、 1 0によるプレード を追う方向の流体による合成推進力を受け、 低流速であつても高回転駆動力と高 回転速度を実現することができる。  The J-shaped blade 5 has a propulsive force due to the action of the fluid 6a coming from the front and the angle of attack β, a propulsive force caused by the action of the fluid 6b coming from the front and the recess 5c, and a radial fluid 6c due to the cone 9. Propulsion and flow due to the action of the recesses 5c and # # The combined propulsion by the fluid in the direction following the blade by the plates 10 and 10 achieves high rotational driving force and high rotational speed even at low flow rates can do.
実施の形態 2 . Embodiment 2
第 8図〜第 1 2図を用いて、 この発明の実施の形態 2を説明する。 第 8図は、 この発明の実施の形態 2のプロペラ型流力原動機で駆動される流力発電機の側面 図であり、 第 9図は、 第 8図の B— B線に沿う矢視図であり、 第 1 0図は第 9図 の C— C線に沿う U字状プレードの横断面図であり、 第 1 1図は、 流体誘導板の 斜視図であり、 第 1 2図は、 流体キャッチの開閉装置の説明図である。  Embodiment 2 of the present invention will be described with reference to FIGS. 8 to 12. FIG. FIG. 8 is a side view of a hydraulic power generator driven by a propeller-type hydraulic prime mover according to Embodiment 2 of the present invention. FIG. 9 is a view taken along the line BB in FIG. FIG. 10 is a cross-sectional view of the U-shaped blade along the line C--C in FIG. 9, FIG. 11 is a perspective view of the fluid guide plate, and FIG. It is explanatory drawing of the opening / closing device of a fluid catch.
図において、 プロペラ型流力原動機 2 1は、 回転軸 2に取り付けられるスポー ク 2 4と、 スポーク 2 4に支持される中空半球状の流体キャッチ 2 9と、 流体キ ャツチ 2 9の外周部に取り付けられ、 基部が開口し、 正面からの流力と流体キヤ ツチ 2 9からの放射方向の流力を受ける U字状ブレード 4 5とから概ね構成され ている。  In the figure, a propeller type hydraulic motor 21 has a spoke 24 attached to the rotating shaft 2, a hollow hemispherical fluid catch 29 supported by the spoke 24, and an outer peripheral portion of the fluid clutch 29. It is attached, has a base opening, and is generally constituted by a U-shaped blade 45 which receives a fluid force from the front and a radial fluid force from the fluid clutch 29.
この実施の形態の U字状ブレード 4 5は、 第 9図及び第 1 0図に示すように、 細長い金属製の平板からなるブレード板を中央部で湾曲させ、 横断面を U字状に 形成したもので、 U字の湾曲部外側 4 5 aがブレード回転方向前縁部となり、 U 字の長片部外側 4 5 bが流力を受けるブレード面となり、 U字内側の凹部 4 5 c が放射方向に流れる風により回転力を受ける流路となっている。 U字状プレード 4 5は、 従来のブレードと同じように、 回転軸 2に垂直な面に対し迎角 βを持た せて流体キャッチ 2 9を介して回転軸 2に取り付けてある。 流体キャッチ 2 9を 介さずに、 スポーク等により直接回転軸 2に取り付けても良!/、。 次に、 流体キヤツチ 2 9と U字状プレードを組合わせたプロペラ型流力原動機 2 1の作動原理を説明する。 ブレード面 4 5 bに当たる風の大部分は、 迎角 βに よりプレード 4 5の後方に流れ、 迎角 により U字状ブレード 4 5に前進力が発 生し流力原動機 2 1を回転させる。 As shown in FIGS. 9 and 10, a U-shaped blade 45 of this embodiment is formed by bending a blade plate made of an elongated metal flat plate at a central portion to form a U-shaped cross section. The outer side 45 a of the U-shaped curved part is the leading edge in the blade rotation direction, the outer side 45 b of the long piece of the U-shape is the blade surface that receives the fluid force, and the concave part 45 c inside the U-shaped The flow path receives rotational force due to the wind flowing in the radial direction. The U-shaped blade 45 is attached to the rotating shaft 2 via a fluid catch 29 at an angle of attack β with respect to a plane perpendicular to the rotating shaft 2, similarly to a conventional blade. It may be attached directly to the rotating shaft 2 by spokes without using the fluid catch 29! /. Next, the operating principle of the propeller-type hydraulic motor 21 in which the fluid clutch 29 and the U-shaped blade are combined will be described. Most of the wind that hits the blade surface 45 b flows behind the blade 45 at the angle of attack β, and a forward force is generated on the U-shaped blade 45 by the angle of attack to rotate the hydraulic motor 21.
U字状ブレードの長手方向の形状については、 実施の形態 1で説明した J字状 プレードと同じような形状を採用することができる。 ブレードの回転流体抵抗を 考慮すると滑らかに後方に湾曲させたブレード 4 5を採用することが望ましい。 なお、 この実施の形態のブレード 4 5は、 流力原動機 2 1を上流側から見て時計 回りに回転させる方向に取り付けている。 U字状湾曲部 4 5 aを逆向きに取り付 ければ、 半時計回りに回転する流力原動機となる。  Regarding the shape of the U-shaped blade in the longitudinal direction, a shape similar to the J-shaped blade described in the first embodiment can be adopted. In consideration of the rotational fluid resistance of the blade, it is desirable to use a blade 45 that is smoothly curved backward. The blade 45 of this embodiment is mounted in a direction to rotate the hydraulic motor 21 clockwise as viewed from the upstream side. If the U-shaped curved part 45a is installed in the opposite direction, it becomes a hydraulic motor that rotates counterclockwise.
また、 上記のプレードの横幅は、 基部から先端に向かって徐々に小さくするの が良い。 基部では、 流体を受ける面積を大きくして回転力の増大を図る。 また、 先端部では、 面積を小さくして流体抵抗を減少させ、 さらに、 周速度が速い先端 部では、 流体を吐き出すスピードを速くする。  The width of the blade is preferably gradually reduced from the base toward the tip. At the base, the area for receiving the fluid is increased to increase the rotational force. At the tip, the fluid resistance is reduced by reducing the area, and at the tip where the peripheral speed is high, the speed at which fluid is discharged is increased.
また、 従来のプレードは、 その横断面形状がいわゆる流線型の翼形で複雑な形 状であり生産 1"生に問題があるが、 上記のブレードは、 金属平板からプレス加工に より容易に成形することができる。  Also, conventional blades have a complicated cross-sectional shape with a so-called streamlined airfoil, which has a problem in production. However, the above blade is easily formed by pressing from a flat metal plate. be able to.
さらに、 ブレードを流体キャッチ 2 9に取り付けるときに、 プレード 4 5のよ うに、 ブレードの基部の軸線が回転軸 2中心を通るように取り付けても良いが、 実施の形態 1の図 5に示すように、 ブレードの基部の軸線 1 5 aが回転軸中心よ り回転方向前方を通るようにオフセットさせて取り付けることにより、 ブレード を回転方向後方に傾斜させて取り付けるのが良い。  Further, when the blade is attached to the fluid catch 29, as in the case of the blade 45, the blade may be attached so that the axis of the base of the blade passes through the center of the rotating shaft 2, but as shown in FIG. 5 of the first embodiment. In addition, it is preferable to mount the blade so as to be inclined rearward in the rotational direction by offsetting so that the axis 15a at the base of the blade passes forward in the rotational direction from the center of the rotational axis.
前述のブレードの回転方向後方への曲折、 湾曲及び傾斜は、 プロペラ式流力原 動機に対して放射方向の流体の流れ (第 2図、 第 3図の 6 c ) があると、 その流 体がプレードの凹部 4 5 cを放射方向に通り、 曲折、 湾曲及ぴ傾斜部で流体が後 方に曲げられ、 反力によりプレードに前進力を与えることになる。 U字状ブレー ドは、 J字状ブレードに比べ凹部 4 5 cが深いので、 流体がブレード先端に至る まで逃げずに前進力を吸収することができる。 The aforementioned bending, bending and inclination of the blade backward in the rotational direction are caused by the flow of fluid in the radial direction (6c in Figs. 2 and 3) with respect to the propeller type hydraulic motor. The fluid passes radially through the concave portion 45c of the blade, and the fluid is bent backward at the bend, curve, and inclined portion, and a forward force is applied to the blade by the reaction force. The U-shaped blade has a deeper recess 45 c than the J-shaped blade, so the fluid reaches the tip of the blade. It can absorb the forward force without escaping.
第 8図に戻り、 回転軸 2を揷通支持する固定軸 7が風力原動機 2 1の風上側に 長く伸ぴ、 その前端には発 « 8が支持される。  Returning to FIG. 8, a fixed shaft 7 that supports the rotary shaft 2 extends long to the windward side of the wind power motor 21, and a power source 8 is supported at a front end thereof.
開口部を上流側に向けた中空半球状の流体キヤツチ 2 9は、 プレード 4 5の下 流側に位置し、 回転軸 2近傍を流れてプレード 4 5の開口した基部の内側を通過 した流体 6 dを前方外周側に反転させ、 流体キヤツチ 2 9の外周側のブレード 4 5基部開口まで誘導する流体誘導手段である。  The hollow hemispherical fluid clutch 29 with its opening directed to the upstream side is located downstream of the blade 45, flows near the rotating shaft 2, and passes through the inside of the base of the blade 45 opening 6 This is a fluid guiding means for inverting d to the front outer peripheral side and guiding it to the opening of the blade 45 base on the outer peripheral side of the fluid clutch 29.
回転軸 2近傍を流れる流体をそのまま真っ直ぐブレードに当てても、 回転軸 2 からの距離が小さいため、 プロペラ型流力原動機 2 1には、 ほとんど回転トルク が発生しないが、 流体キヤツチ 2 9によって外周側に誘導して U字状ブレード 4 5の基部開口部から U字内側の囬部 4 5 cに流し込むと、 その流体が凹部 4 5 c を放射方向に通り、 曲折、 湾曲及び傾斜部で流体が曲げられ、 反力によりブレー ドに肓 ij進力を与える。  Even if the fluid flowing in the vicinity of the rotating shaft 2 is directly applied to the blade as it is, the distance from the rotating shaft 2 is small, so that almost no rotational torque is generated in the propeller type hydrodynamic motor 21, but the outer periphery is formed by the fluid clutch 29. When the fluid is guided to the side and flows from the base opening of the U-shaped blade 45 to the inside 45 c inside the U-shape, the fluid radially passes through the concave portion 45 c and flows at the bend, curve, and slope. Is bent, giving the blade a rush of energy by the reaction force.
この流 # ^導手段としての流体キヤツチ 2 9は、 少し細長い紡錘形のものであ つても良い。 半球形もしくは紡錘形の流体キャツチ 2 9は、 流力原動機 2 1の下 流側の流れを乱さない (乱流にしない) 作用があり、 流力原動機 2 1を通過する 流速を速めて回転力を高める作用がある。  The fluid clutch 29 as the flow guiding means may be of a slightly elongated spindle type. The hemispherical or spindle-shaped fluid catch 29 has the effect of not disturbing (or making it turbulent) the flow on the downstream side of the hydraulic motor 2 1, and increasing the flow velocity passing through the hydraulic motor 21 to increase the rotational force. Has the effect of increasing.
さらに、 流体キヤツチ 2 9の上流側には、 ブレード 4 5に向かって回転軸 2方 向に流れる流体を、 プレード回転方向にブレード 4 5を追うように誘導する流体 誘導手段としての上下一対の流 # ^導板 1 0、 1 0力 第 1 1図の斜視図に示す ように、 の前方で回転軸 2に沿うように、 固定軸 7に上下に放射状に取り付け られ、 その後部はブレード 4 5回転方向に湾曲されている。 流 # ^導板 1 0、 1 0は、 上下ではなく左右または斜めに一対取り付けても良いし、 上下左右 2対取 り付けても良い。 上下一対とすると、 流力原動機 2 1を流体流れ方向に向ける垂 直尾翼の働きをさせることができる。  Further, on the upstream side of the fluid clutch 29, a pair of upper and lower flows as fluid guiding means for guiding the fluid flowing toward the blade 45 in the direction of the rotation axis 2 so as to follow the blade 45 in the blade rotation direction. # ^ Conductor 10, 10 Force As shown in the perspective view of Fig. 11, it is mounted radially on the fixed shaft 7 in front of, along the rotating shaft 2 and up and down radially. It is curved in the direction of rotation. The flow plates 10 and 10 may be mounted in pairs, not horizontally, vertically, horizontally or diagonally, or may be mounted vertically, horizontally and vertically. When it is a pair of upper and lower parts, it can function as a vertical tail that directs the hydraulic power motor 21 in the fluid flow direction.
流權導板 1 0、 1 0の側面外形輪郭は、 上下合わせた形状を砲弾形に形成し、 後部外側部をブレード回転方向内側に湾曲させると良い。 このようにすると、 放 射方向に逃げようとする風を押さえ込み、 ブレード 4 5の前進力の増大に寄与さ せることができる。 It is preferable that the outer contour of the side surfaces of the flow guide plates 10 and 10 is formed in a cannonball shape in which the upper and lower sides are aligned, and the rear outer portion is curved inward in the blade rotation direction. In this way, The wind trying to escape in the shooting direction is suppressed, and the forward force of the blade 45 can be increased.
プロペラ型流力原動機 2 1と発電機 8とを原動機 2 1の上流側に延びた回転軸 2及び固定軸 7で接続し、 流体誘導板 1 0 , 1 0の上流側のほぼ重心位置で支柱 1 1·により水平回転自在に固定軸 7を支持し、 流力発電機 2 0 0を構成する。 こ のように構成すると、 流体誘導板 1 0 , 1 0が垂直尾翼として働き、 回転軸 2を 常に風の方向に向けることができる。  The propeller type hydraulic motor 21 and the generator 8 are connected by a rotating shaft 2 and a fixed shaft 7 extending upstream of the motor 21, and a support is provided at a position substantially at the center of gravity upstream of the fluid guide plates 10, 10. The fixed shaft 7 is supported by 11 · 1 so as to be freely rotatable horizontally, and constitutes a hydrodynamic generator 200. With this configuration, the fluid guide plates 10 and 10 function as vertical tails, and the rotating shaft 2 can always be directed in the wind direction.
U字状ブレード 4 5は、 正面から来る流体 6と迎角 の作用による推進力、 流 体キャッチ 2 9による放射方向の流体 6 cと凹部 4 5 cの作用による推進力及び 流体誘導板 1 0、 1 0によるブレードを追う方向の流体による合成推進力を受け、 低流速であっても高回転駆動力と高回転速度を実現することができる。  The U-shaped blade 45 has a propulsive force caused by the action of the fluid 6 coming from the front and the angle of attack, a propulsive force caused by the action of the fluid 6 c and the recess 45 c by the fluid catch 29 9, and a fluid guide plate 10. , 10, and can achieve high rotational driving force and high rotational speed even at a low flow velocity.
U字状ブレード 4 5は、 実施の形態 1のプロペラ型流力原動機 1用のブレード としても使用することができる。 このとき、 円錐 9の基部の外径は、 ブレード 4 5の基部開口より流体が凹部 4 5 cに入るように、 ブレード 4 5基部取付外径よ り小さくする。 U字状ブレード 4 5においても、 第 3図 (b ) に示したように、 基部を遮蔽版によって、 塞ぐようにしてもよい。 この場合、 円錐 9の基部の外径 は、 ブレード 4 5の基部取付け外径より大きくするとよい。 また、 実施の形態 1 の J字状ブレード 5、 1 5、 2 5、 3 5等を実施の形態 2のプロペラ型流力原動 機 2 1用のプレードとして使用することもできる。  The U-shaped blade 45 can also be used as a blade for the propeller-type hydrodynamic motor 1 of the first embodiment. At this time, the outer diameter of the base of the cone 9 is made smaller than the outer diameter of the base of the blade 45 so that the fluid enters the recess 45 c from the base opening of the blade 45. Also in the U-shaped blade 45, as shown in FIG. 3 (b), the base may be closed by a shielding plate. In this case, the outer diameter of the base of the cone 9 may be larger than the outer diameter of the blade 45 attached to the base. Also, the J-shaped blades 5, 15, 25, 35, etc. of the first embodiment can be used as a blade for the propeller-type hydraulic motor 21 of the second embodiment.
第 1 2図に示すように、 流体キャッチ 2 9は、 高流速時に流力原動機 2 1の回 転駆動力を抑制するため、 また、 流体圧による自身の破損等を防止するために、 開閉装置 2 9 aを備えている。 開閉装置 2 9 aは、 半球状流体キャッチ 2 9の底 部に設けられたもので、 ばね機構により閉方向に付勢され、 第 1 2図 (a ) に示 すように閉じている数枚の花弁状の開閉弁が流速による流体圧に応じて第 1 2図 ( b ) に示すように開き、 流体を逃がして放射方向の流れ 6 cの発生を抑制し、 流力原動機 2 1の回転駆動力を抑制する。  As shown in FIG. 12, the fluid catch 29 is provided with an opening / closing device to suppress the rotational driving force of the hydraulic motor 21 at a high flow velocity and to prevent the fluid motor 21 from being damaged by fluid pressure. It has 2 9a. The opening and closing device 29a is provided at the bottom of the hemispherical fluid catch 29, and is urged in the closing direction by a spring mechanism, and is closed as shown in Fig. 12 (a). The petal-like on-off valve opens according to the fluid pressure due to the flow velocity, as shown in Fig. 12 (b), and releases the fluid to suppress the generation of radial flow 6c, and the rotation of the hydraulic motor 21 Suppress driving force.
実施の形態 3 . 第 1 1図、 第 1 3図〜第 1 7図を用いて、 この発明の実施の形態 3を説明する。 第 1 3図は、 この発明の実施の形態 3のプロペラ型流力原動機で駆動される流力 発電機の側面図であり、 第 14図は、 流体誘導板の湾曲度調整装置の平面図であ り、 第 1 5図は、 他の湾曲度調整装置の平面図であり、 第 1 6図は、 プレード可 倒装置の側面図であり、 第 1 7図は、 他のブレード可倒装置の側面図である。 図において、 プロペラ型流力原動機 3 1は、 従来型のブレード 55と、 ブレー ド 55の上流側に配置された流 ί權導板 10、 10とから概ね構成されている。 第 1 3図に示すように、 回転軸 2を揷通支持する固定軸 7が流力原動機 3 1の 上流側に長く伸び、 その前端には発電機 8が支持される。 プロペラ型流力原動機 3 1の上流側の固定軸 7上には、 ブレード 55に向かって回転軸 2方向に流れる 流体を、 ブレード回転方向にブレード 5 5を追うように誘導する流体誘導手段と しての上下一対の流体誘導板 10、 10力 その前方で回転軸 2に沿うように、 固定軸 7に 状に取り付けられ、 その後部はプレード 55回転方向に湾曲され た湾曲部となっている。 Embodiment 3. Third Embodiment A third embodiment of the present invention will be described with reference to FIGS. 11 and 13 to 17. FIG. 13 is a side view of a hydraulic power generator driven by a propeller type hydraulic power engine according to Embodiment 3 of the present invention, and FIG. 14 is a plan view of a curvature adjusting device for a fluid guide plate. FIG. 15 is a plan view of another bending degree adjusting device, FIG. 16 is a side view of a blade folding device, and FIG. 17 is a side view of another blade folding device. It is a side view. In the figure, a propeller type hydraulic motor 31 is generally constituted by a conventional blade 55 and flow guide plates 10, 10 arranged on the upstream side of the blade 55. As shown in FIG. 13, a fixed shaft 7 that supports the rotary shaft 2 extends long upstream of the hydraulic motor 31, and a generator 8 is supported at the front end thereof. On the fixed shaft 7 on the upstream side of the propeller type hydraulic motor 3 1, there is a fluid guiding means for guiding the fluid flowing in the direction of the rotating shaft 2 toward the blade 55 so as to follow the blade 55 in the blade rotating direction. A pair of upper and lower fluid guide plates 10 and 10 are mounted on the fixed shaft 7 so as to extend along the rotary shaft 2 in front of the fluid guide plates 10, and the rear portion is a curved portion curved in the blade 55 rotation direction.
プロペラ型流力原動機 3 1と発電機 8とを、 原動機 3 1の上流側に延びる回転 軸 2及び固定軸 7で接続し、 流体誘導板 1 0, 1 0の上流側のほぼ重心位置で支 柱 1 1により水平回転自在に固定軸 7を支持し、 流力発電機 300を構成する。 このように構成すると、 流 # ^導板 1 0, 10が垂直尾翼として働き、 回転軸 2 を常に流体流れ方向に向けることができる。  The propeller type hydraulic motor 31 and the generator 8 are connected by a rotating shaft 2 and a fixed shaft 7 extending upstream of the motor 31 and supported at a position substantially at the center of gravity upstream of the fluid guide plates 10 and 10. The fixed shaft 7 is supported by the columns 11 so as to be freely rotatable horizontally, and constitutes a hydrodynamic generator 300. With this configuration, the flow plates 10 and 10 function as vertical tails, and the rotating shaft 2 can always be directed in the fluid flow direction.
流体誘導板 1 0、 1 0の側面外形輪郭は、 上下合わせた形で砲弾形に形成し、 下流側外側部がブレード回転方向内側に湾曲させると良い。 このようにすると、 放射方向に逃げようとする流体を押さえ込み、 ブレード 55の前進力の増大に寄 与させることができる。  It is preferable that the side surface contours of the fluid guide plates 10 and 10 are formed in a shell shape in a vertically-aligned manner, and the downstream outer portion is curved inward in the blade rotation direction. In this way, the fluid that is escaping in the radial direction can be suppressed, and the forward force of the blade 55 can be increased.
さらに、 第 1 3図及び第 14図に示すように、 支柱 1 1の固定軸 7支持部にヮ ィャ牽引機 10 a、 1 0 aを取り付け、 端部を流体誘導板 1 0、 10の湾曲した 下流側外側部に結び付けたワイヤ 1 0 b、 10 bを牽引機 1 0 a、 1 0 aで牽引 することにより、 流体誘導板 1 0, 1 0後部のブレード回転方向及ぴブレード回 転方向内側への湾曲度または湾曲形状を、 流速に応じて最良の効率が得られるよ うに、 調整することができる。 ワイヤ牽引機 1 0 a及ぴワイヤ 1 0 bは、 流体誘 導板 1 0の湾曲度調整装置を構成している。 なお、 例えば、 固定軸 7の軸方向に 移動可能な一対のプーリーを設け、 該一対のプーリーを介してワイヤ 1 0 b、 1 0 bをワイヤ牽引機 1 0 a、 1 0 aに接続し、 これらプーリーの軸方向の位置を 変えることによって流 導板 1 0、 1 0の湾曲形状を変えることができる。 第 1 5図は、 湾曲度調整装置の他の例を示し、 固定軸 7上で流体誘導板 1 0、 1 0の前部を支持し、 流体誘導板 1 0、 1 0を左右に摇動させる揺動手段 1 0 c を設ける。 この瑶動手段 1 0 cによっても流体誘導板 1 0、 1 0の後部の湾曲度 を調整するのと同じ作用が得られる。 このような湾曲度調整装置を実施の形態 1 及ぴ 2の流体誘導板 1 0、 1 0に備えると良レ、。 Further, as shown in FIG. 13 and FIG. 14, the wire traction machines 10a and 10a are attached to the fixed shaft 7 support portion of the column 11 and the ends thereof are formed by the fluid guide plates 10 and 10. By pulling the wires 10b and 10b tied to the curved downstream outer side with the pullers 10a and 10a, the blade rotation direction and the blade rotation of the fluid guide plates 10 and 10 at the rear are pulled. The degree of curvature or the shape of the curve inward in the rolling direction can be adjusted to obtain the best efficiency according to the flow velocity. The wire puller 10 a and the wire 10 b constitute a curvature adjusting device for the fluid guide plate 10. For example, a pair of pulleys movable in the axial direction of the fixed shaft 7 is provided, and the wires 10b, 10b are connected to the wire pullers 10a, 10a via the pair of pulleys, By changing the positions of these pulleys in the axial direction, the curved shapes of the flow plates 10 and 10 can be changed. FIG. 15 shows another example of the curvature adjusting device, in which the front portions of the fluid guide plates 10 and 10 are supported on a fixed shaft 7 and the fluid guide plates 10 and 10 are moved right and left. Oscillating means 10 c to be provided. The same action as adjusting the curvature of the rear portion of the fluid guide plates 10 and 10 can be obtained by the shaking means 10c. It is good to provide such a curvature adjusting device in the fluid guide plates 10 and 10 of the first and second embodiments.
従来型のブレード 5 5は、 正面から来る流体 6と迎角の作用による推進力、 及 び流 #ϋ導板 1 0、 1 0によるブレード 5 5を追う方向の風による合成推進力を 受け、 低流速であっても高回転駆動力と高回 ί|¾¾虎を実現することができる。 な お、 この実施の形態 3においても、 従来型のブレード 5 5に代えて、 前述の J字 状または U字状のブレードを用いてもよい。  The conventional blade 55 receives the propulsion force by the action of the fluid 6 coming from the front and the angle of attack, and the combined propulsion force by the wind in the direction following the blade 55 by the flow # ϋ plates 10 and 10. High rotational driving force and high rotational speed can be achieved even at low flow rates. In the third embodiment, the above-described J-shaped or U-shaped blade may be used instead of the conventional blade 55.
第 1 6図に示すように、 ブレード 5 5には、 高流速時に流力原動機 3 1の回転 駆動力を抑制するため、 また、 高流速時の流体圧による自身の破損等を防止する ために、 プレード可倒装置 5 5 aを備えると良い。 ブレード可倒装置 5 5 aは、 プレード 5 5を回転軸 2に接続するスポークを弹性体で構成したもので、 流速に よりブレード 5 5に発生する流体圧に応じてブレード 5 5を下流側へ倒し (第 1 6図 (b ) 参照) 、 流力原動機 3 1の回転駆動力を抑制する。  As shown in FIG. 16, the blade 55 is provided to reduce the rotational driving force of the hydraulic motor 31 at a high flow velocity and to prevent the blade itself from being damaged by fluid pressure at a high flow velocity. It is advisable to provide a blade folding device 55a. The blade collapsible device 55a is made of a flexible body that connects the blade 55 to the rotating shaft 2, and moves the blade 55 downstream according to the fluid pressure generated in the blade 55 due to the flow velocity. (See Fig. 16 (b)), the rotational driving force of the hydraulic motor 31 is suppressed.
第 1 7図は、 他のブレード可倒装置 5 5 bを示し、 プレード 5 5は、 回転軸 2 に下流側へ揺-動可能に接続されており、 ブレード 5 5の基部には、 この基部に固 定されてブレード 5 5に垂直に上流側に伸びるロッド 5 5 cの先端に取り付けら れた錘 5 5 dが備えられ、 ロッド 5 5 cの鎚5 5 dに近い個所は、 他のブレード のロッド 5 5 cと弾性部材 5 5 eで繋がれている。 錘 5 5 dには、 錘 5 5 dが回 転軸 2まわりに回転するときに流体抵抗を受ける抵抗板 5 5 f が取り付けられて いる。 Fig. 17 shows another blade tilting device 55b, in which the blade 55 is swingably connected to the rotating shaft 2 in the downstream direction, and the base of the blade 55 is connected to this base. A rod 55 d attached to the tip of a rod 55 c fixed vertically to the blade 55 and extending vertically to the upstream side is provided. The blade rod 55c is connected to the elastic member 55e. Weight 5 5 d is turned by weight 5 5 d A resistance plate 55 f that receives fluid resistance when rotating around the rotation axis 2 is attached.
高流速により、 プレード 5 5が高速回転すると、 遠心力により、 弾性部材 5 5 eの弾性力に抗して錘 5 5 dが回転軸 2から遠ざかる方へ動き、 ブレード 5 5が 下流側へ倒れ、 回転力を減じる。 このとき抵抗板 5 5 f も回転軸 2から遠ざかり、 流体抵抗を増し、 回転力の減少に寄与する。 このようなブレード可倒装置 5 5 a、 5 5 bを実施の形態 1及び 2のブレードに備えると良い。 産業上の利用可能性  When the blade 55 rotates at high speed due to the high flow velocity, the centrifugal force causes the weight 55 d to move away from the rotating shaft 2 against the elastic force of the elastic member 55 e, and the blade 55 falls to the downstream side , Reduce the torque. At this time, the resistance plate 55 f also moves away from the rotating shaft 2, increasing the fluid resistance and contributing to a decrease in the rotating force. It is preferable to provide such blade folding devices 55a and 55b in the blades of the first and second embodiments. Industrial applicability
以上のように、 本発明にかかるプロペラ型流力原動機及びそのブレードは、 風 力発電機及び水力発電機に有用であり、 特に、 流速が低速から高速まで変化する ものに適している。  As described above, the propeller type hydraulic prime mover and its blade according to the present invention are useful for wind power generators and hydraulic power generators, and are particularly suitable for those in which the flow velocity changes from low speed to high speed.

Claims

1 . 回転軸が流体流れ方向を向き、 該回転軸にプレードがほぼ放射状に取り付 けられるプロペラ型流力原動機において、 1. In a propeller-type hydraulic motor in which a rotating shaft faces a fluid flow direction and a blade is attached to the rotating shaft in a substantially radial manner,
前記ブレードの横断面を J字状に形成し、 J字の湾曲部外側をブレード回転方 向前縁部とし、 J字の長片部内側をブレード面とし、 前記湾曲部内側の囬部を流 力受け部としたことを特徴とす m一青るプロペラ型流力原動機。  The cross section of the blade is formed in a J-shape, the outer side of the J-shaped curved portion is the front edge in the blade rotation direction, the inner side of the long portion of the J-shaped portion is the blade surface, and the 囬 portion inside the curved portion is flowing. A m-blue propeller-type hydraulic prime mover characterized by a force receiving section.
 Request
1  1
2 . 前記湾曲部内側の凹部を流力受け 9の部とするとともに、 放射方向に流れる流 体により回転力を受ける流路としたことを特徴とする請求の範囲第 1項に記載の プロペラ型流力原動機。 囲  2. The propeller type according to claim 1, wherein the concave portion inside the curved portion is used as a fluid force receiving portion 9 and a flow passage receiving a rotational force by a fluid flowing in a radial direction. Hydraulic prime mover. Enclosure
3 . 前記ブレード面の迎角は、 ほぼ 0 °であることを特徴とする請求の範囲第 1項に記載のプロペラ型流力原動機。 3. The propeller type hydraulic prime mover according to claim 1, wherein the angle of attack of the blade surface is substantially 0 °.
4 . 回転軸が流体流れ方向を向き、 該回転軸にブレードがほぼ放射状に取り付 けられるプロペラ型流力原動機において、 ' 4. In a propeller-type hydraulic motor in which the rotating shaft is oriented in the fluid flow direction and the blades are almost radially mounted on the rotating shaft,
前曾己ブレードの横断面を U字状に形成し、 U字の湾曲部外側をブレード回転方 向前縁部とし、 前記流体の上流側の長片部外側をブレード面とし、 U字内側の凹 部を、 放射方向に流れる流体により回転力を受ける流路としたことを特徴とする プロペラ型流力原動機。  The cross section of the Mae Sokki blade is formed in a U-shape, the outside of the U-shaped curved part is the front edge in the blade rotation direction, the outside of the long piece upstream of the fluid is the blade surface, and the inside of the U-shape is A propeller-type hydraulic motor characterized in that the concave portion is a flow path that receives rotational force by a fluid flowing in a radial direction.
5 . 前記ブレードの前記凹部の基部及び先端部が、 開口していることを特徴と する請求の範囲第 1項又は第 4項に記載のプロペラ型流力原動機。 5. The propeller type hydraulic motor according to claim 1, wherein a base portion and a tip portion of the concave portion of the blade are open.
6 . 前記プレードの前記凹部の基部が、 塞がれていることを特徴とする請求の 範囲第 1項又は第 4項に記載のプロペラ型流力原動機。 6. The propeller type hydraulic prime mover according to claim 1, wherein a base of the concave portion of the blade is closed.
7 . 前記ブレードは、 細長直線状であって前記凹部の先端部が塞がれているこ とを特徴とする請求の範囲第 1項又は第 4項に記載のプロペラ型流力原動機。 7. The propeller type hydraulic prime mover according to claim 1, wherein the blade has an elongated linear shape and a tip end of the concave portion is closed.
8 . 前記ブレードは、 基部から先端部に向かって回転方向後方に曲折している ことを特徴とする請求の範囲第 1項又は第 4項に記載のプロペラ型流力原動機。 8. The propeller type hydraulic motor according to claim 1, wherein the blade is bent rearward in the rotational direction from a base to a tip.
9 . 前記ブレードは、 基部から先端部に向かって回転方向後方に滑らかに湾曲 していることを特徴とする請求の範囲第 1項又は第 4項に記載のプロペラ型流力 原動機。 9. The propeller-type prime mover according to claim 1, wherein the blade is smoothly curved rearward in the rotational direction from the base to the tip.
1 0 . 前記ブレードの横幅は、 基部から先端部に向かって徐々に小さくなって いる請求の範囲第 1項又は第 4項に記載のプロペラ型流力原動機。 10. The propeller type hydraulic motor according to claim 1, wherein a lateral width of the blade gradually decreases from a base to a tip.
1 1 . 前記ブレードは、 平板プレス加工により形成されていることを特徴とす る請求の範囲第 1項又は第 4項に記載のプロペラ型流力原動機。 11. The propeller type hydraulic prime mover according to claim 1, wherein the blade is formed by flat plate pressing.
1 2. 前記ブレードの基部の軸線が回転軸中心を通るように、 前記ブレードを 前記回転軸に取り付けたことを特徴とする請求の範囲第 1項又は第 4項に記載の プロペラ型流力原動機。 12. The propeller type hydraulic motor according to claim 1 or 4, wherein the blade is attached to the rotating shaft such that an axis of a base of the blade passes through a center of the rotating shaft. .
1 3 . 前記プレードの基部の軸線が回転軸中心より回転方向前方を通るように オフセットして、 前記ブレードを前記回転軸に取り付けたことを特徴とする請求 の範囲第 1項又は第 4項に記載のプロペラ型流力原動機。 13. The blade according to claim 1 or 4, wherein the blade is attached to the rotating shaft so that an axis of a base of the blade passes forward in a rotational direction from a center of the rotating shaft. The propeller type hydraulic prime mover as described.
1 4 . 前記プロペラ型流力原動機の上流側に配置され、 回転軸近傍を流れる流 体を外周側に誘導する流体誘導手段を備えたことを特徴とする請求の範囲第 1項 又は第 4項に記載のプロペラ型流力原動機 14. A fluid guide means disposed upstream of the propeller-type fluid prime mover and for guiding a fluid flowing in the vicinity of a rotating shaft to an outer peripheral side. Or a propeller-type hydraulic motor as described in paragraph 4
1 5 . 前記流体誘導手段は、 ほぼ円錐形に形成され、 先端部を回転軸上の上流 側に位置させていることを特徴とする請求の範囲第 1 4項に記載のプロペラ型流 力原動機。 15. The propeller type hydraulic motor according to claim 14, wherein the fluid guiding means is formed in a substantially conical shape, and a tip portion is located on an upstream side on a rotating shaft. .
1 6 . 前記ブレードの下流側に位置し、 回転軸近傍を流れて前記ブレードの基 部の内側を通過した流体を反転させ、 外周側の前記ブレードの基部まで誘導する 流 導手段を備えたことを特徴とする請求の範囲第 1項又は第 4項に記載のプ 口ペラ型流力原動機。 , 16. A flow guiding means which is located downstream of the blade, reverses fluid flowing near the rotation axis and passing inside the base of the blade, and guiding the fluid to the base of the blade on the outer peripheral side. 5. The spout type hydrodynamic motor according to claim 1 or 4, characterized in that: ,
1 7 . 前記流 ί«導手段は、 中空半球状の流体キヤツチであることを特徴とす る請求の範囲第 1 6項に記載のプロペラ型流力原動機。 17. The propeller-type hydraulic motor according to claim 16, wherein the flow guiding means is a hollow hemispherical fluid clutch.
1 8 . 前記流体キャッチは、 スポークを介して前記回転軸に取り付けられ、 前 記ブレードの基部を支持していることを特徴とする請求の範囲第 1 7項に記載の プロペラ型流力原動機。 ' 18. The propeller type hydraulic motor according to claim 17, wherein the fluid catch is attached to the rotating shaft via a spoke and supports a base of the blade. '
1 9 , 前記流体キャッチは、 前記流体の流速に応じて開閉して流体キャッチか ら流体を逃がす開閉手段を備えていることを特徴とする請求の範囲第 1 7項に記 載のプロペラ型流力原動機。 19. The propeller type flow as set forth in claim 17, wherein said fluid catch is provided with opening / closing means for opening / closing according to the flow velocity of said fluid and allowing fluid to escape from said fluid catch. Power motor.
2 0 . 前記開閉手段は、 前記流体キヤツチの底部開口に設けられ、 通常は、 ば ね機構により閉方向に付勢されて閉じていて、 流速による所定の流体圧により、 ばね力に抗して開く複数の花弁状の開閉弁であることを特徴とする請求の範囲第 1 9項に記載のプロペラ型流力原動機。 20. The opening / closing means is provided at a bottom opening of the fluid clutch, and is normally closed by being biased in a closing direction by a spring mechanism, and against a spring force by a predetermined fluid pressure due to a flow velocity. The propeller-type hydraulic motor according to claim 19, wherein the propeller-type hydromotor is a plurality of petal-like on-off valves that open.
2 1 . 前記プ口ペラ型流力原動機の上流側に配置され、 前記ブレードに向かつ て回転軸方向に流れる流体を、 ブレード回転方向に追う方向に誘導する流体誘導 手段を備えたことを特徴とする請求の範囲第 1項又は第 4項に記載のプロペラ型 流力原動機。 21. A fluid guiding means which is arranged on the upstream side of the port-port type hydrodynamic motor and guides a fluid flowing toward the blade in a rotation axis direction in a direction following the blade rotation direction. The propeller type hydraulic motor according to claim 1 or 4, wherein:
2 2 . 前記プロペラ型流力原動機の上流側に配置され、 前記ブレードに向かつ て回転軸方向に流れる流体を、 ブレード回転方向に追い、 かつ、 プレード半径内 に押さえ込むように誘導する流 ί橘導手段を備えたことを特徴とする請求の範囲 第 1項又は第 4項に記載のプロペラ型流力原動機。 2 2. A flow arranged upstream of the propeller-type hydraulic prime mover, which follows the fluid flowing in the direction of the rotation axis toward the blade in the direction of rotation of the blade, and guides the fluid to be held within the blade radius. 5. The propeller-type hydraulic prime mover according to claim 1, further comprising a guiding means.
2 3 . 前記流 «導手段は、 前記回転軸に沿うように、 力ゝっ軸対称に ¾lt状に 配置され、 下流側が、 ブレード回転方向に湾曲された湾曲部を有する対の流体誘 導板であることを特徴とする請求の範囲第 2 1項に記載のプロペラ型流力原動機。 2 4 . 前記流 f«導手段は、 前記回転軸に沿うように、 力つ軸対称に放射状に 配置され、 下流側が、 プレード回転方向に湾曲され、 かつ、 下流側外側部がブレ 一ド回転方向内側に湾曲された湾曲部を有する対の流体誘導板であることを特徴 とする請求の範囲第 2 2項に記載のプロペラ型流力原動機。 2 5 . 前記湾曲部の湾曲度または湾曲形状を調整する調整手段を備えたことを 特徴とする請求の範囲第 2 3項又は第 2 4項に記載のプロペラ型流力原動機。 23. The flow guiding means are arranged in an ¾lt shape symmetrically with the axis of rotation so as to be along the rotation axis, and the downstream side has a pair of fluid guiding plates having a curved portion curved in the blade rotation direction. 21. The propeller type hydraulic power plant according to claim 21, wherein: 24. The flow guide means is radially arranged symmetrically with force along the rotation axis, the downstream side is curved in the blade rotation direction, and the downstream outer part is blade-rotated. 22. The propeller-type hydraulic prime mover according to claim 22, wherein the pair of fluid guide plates have a curved portion curved inward in the direction. 25. The propeller type hydraulic motor according to claim 23 or 24, further comprising adjusting means for adjusting a degree of curvature or a curved shape of the curved portion.
2 6 . 前記流体の流速に応じて前記ブレードを下流側に倒すブレード可倒手段 を備えたことを特徴とする請求の範囲第 1項又は第 4項に記載のプロペラ型流力 原動機。 26. The propeller type hydraulic motor according to claim 1 or 4, further comprising blade tilting means for tilting the blade to the downstream side in accordance with the flow velocity of the fluid.
2 7 . 前記ブレード可倒手段は、 前記プレードを前記回転軸に接続するスポー クを弾性体で構成したものであることを特徴とする請求の範囲第 2 6項に記載の プロペラ型流力原動機。 27. The blade tilting means includes a spoke for connecting the blade to the rotating shaft. 27. The propeller-type hydraulic motor according to claim 26, wherein the rotor is made of an elastic material.
2 8 . 前記ブレード可倒手段は、 前記ブレードを下流側へ揺動可能に前記回転 軸に接続する接続手段と、 前記ブレードの基部に固定されブレードにほぼ垂直に 上流側に延びる口ッドの先端に取り付けられた錘と、 この錘を前記回転軸方向に 付勢する弾性部材とから構成したものであることを特徴とする請求の範囲第 2 6 項に記載のプロペラ型流力原動機。 2 9 . 前記プロペラ型流力原動機の上流側に発 «Hを接続し、 流力発電機とし て使用されることを特徴とする請求の範囲第 1項又は第 4項に記載のプロペラ型 流力原動機。 28. The blade tilting means includes a connecting means for connecting the blade to the rotating shaft so as to swing to the downstream side, and a mouth fixed to a base of the blade and extending substantially perpendicular to the blade and extending upstream. 27. The propeller type hydraulic motor according to claim 26, further comprising: a weight attached to a tip end; and an elastic member for urging the weight in the rotation axis direction. 29. The propeller type flow according to claim 1 or 4, wherein a generator H is connected to an upstream side of the propeller type hydraulic motor to be used as a hydroelectric generator. Power motor.
3 0 . 前記プロペラ型流力原動機の下流側に発電機を接続し、 流力発電機とし て使用されることを特徴とする請求の範囲第 1項又は第 4項に記載のプロペラ型 流力原動機。 30. The propeller-type hydraulic device according to claim 1 or 4, wherein a generator is connected to a downstream side of the propeller-type hydraulic motor to be used as a hydroelectric generator. Prime mover.
3 1 . 前記流体は大気であり、 プロペラ型風力原動機として使用されることを 特徴とする請求の範囲第 1項又は第 4項に記載のプロペラ型流力原動機。 31. The propeller-type hydraulic motor according to claim 1, wherein the fluid is air, and the fluid is used as a propeller-type wind motor.
3 2 . 前記流体は水であり、 プロペラ型水力原動機として使用されることを特 徴とする請求の範囲第 1項又は第 4項に記載のプロペラ型流力原動機。 32. The propeller-type hydraulic prime mover according to claim 1, wherein the fluid is water, and is used as a propeller-type hydraulic prime mover.
3 3 回転軸が流体流れ方向を向き、 該回転軸にプレードがほぼ放射状に取り付 けられるプロペラ型流力原動機において、 3 3 In a propeller-type hydraulic prime mover in which the rotating shaft faces the fluid flow direction and the blades are mounted almost radially on the rotating shaft,
前記プロペラ型流力原動機の上流側に配置され、 前記ブレードに向かって回転 軸方向に流れる流体を、 ブレード回転方向に追う方向に誘導する流体誘導手段を 備えたことを特徴とするプロペラ型流力原動機, A fluid guiding means disposed upstream of the propeller type hydraulic power generator and guiding a fluid flowing in an axial direction toward the blade in a direction following the blade rotating direction; A propeller-type hydraulic prime mover,
3 4. 回転軸が流体流れ方向を向き、 該回転軸にブレードがほぼ放射状に取り 付けられるプロペラ型流力原動機において、 3 4. In a propeller-type hydraulic motor in which the rotating shaft faces the fluid flow direction and the blades are mounted almost radially on the rotating shaft,
前記プロペラ型流力原動機の上流側に配置され、 前記ブレードに向かって回転 軸方向に流れる流体を、 ブレード回転方向に追い、 かつ、 ブレード半径內に押さ え込むように誘導する流体誘導手段を備えたことを特徴とするプロペラ型流力原 動機。 . 3 5 . 前記流体誘導手段は、 前記回転軸に沿うように、 かつ軸対称に放射状に 配置され、 下流側が、 ブレード回転方向に湾曲された湾曲部を有する対の流体誘 導板であることを特徴とする請求の範囲第 3 3項に記載のプロペラ型流力原動機。  A fluid guide means is provided upstream of the propeller type hydraulic motor, and guides fluid flowing in the direction of the rotating shaft toward the blade in the direction of blade rotation and to be pressed into the blade radius 內. A propeller-type hydraulic motor. 35. The fluid guide means is a pair of fluid guide plates that are radially arranged along the rotation axis and axially symmetric, and the downstream side has a curved portion curved in the blade rotation direction. The propeller type hydraulic motor according to claim 33, characterized by the following.
3 6 . 前記流 ί«導手段は、 前記回転軸に沿うように、 力ゝっ軸対称に ¾ 状に 配置され、 下流側が、 ブレード回転方向に湾曲され、 かつ、 下流側外側部がブレ 一ド回転方向内側に湾曲された湾曲部を有する対の流{榻導板であることを特徴 とする請求の範囲第 3 4項に記載のプロペラ型流力原動機。 36. The flow-guiding means is arranged in a symmetrical shape with a force axis so as to be along the rotation axis, the downstream side is curved in the blade rotation direction, and the downstream-side outer part is a blade. 35. The propeller-type hydraulic motor according to claim 34, wherein the propeller-type hydraulic motor is a pair of flow plates having a curved portion curved inward in the rotation direction.
3 7. 前記湾曲部の湾曲度または湾曲形状を調整する調整手段を備えたことを 特徴とする請求の範囲第 3 5項又は第 3 6項に記載のプロペラ型流力原動機。 37. The propeller-type hydraulic motor according to claim 35, further comprising an adjusting unit configured to adjust a degree of curvature or a curved shape of the bending portion.
3 8 . 前記流体の流速に応じて前記プレードを下流側に倒すブレード可倒手段 を備えたことを特徴とする請求の範囲第 3 3項又は第 3 4項に記載のプロペラ型 流力原動機。 · 38. The propeller type hydraulic motor according to claim 33 or 34, further comprising: blade tilting means for tilting the blade to the downstream side in accordance with the flow velocity of the fluid. ·
3 9 . 前記プレード可倒手段は、 前記プレードを前記回転軸に接続するスポー クを弾性体で構成したものであることを特徴とする請求の範囲第 3 8項に記載の プロペラ型流力原動機, 39. The device according to claim 38, wherein said blade folding means comprises a spoke for connecting said blade to said rotary shaft made of an elastic material. Propeller type hydraulic prime mover,
4 0 . 前記プレード可倒手段は、 前記プレードを下流側へ揺動可能に前記回転 軸に接続する接続手段と、 前記ブレードの基部に固定されブレードに垂直に上流 側に延びる口ッドの先端に取り付けられた錘と、 この錘を前記回転軸方向に付勢 する弾性部材とから構成したものであることを特徴とする請求の範囲第 3 8項に 記載のプ口ペラ型流力原動機。 40. The blade folding means comprises: a connection means for connecting the blade to the rotating shaft so as to be swingable downstream; and a tip of a mouth fixed to a base of the blade and extending vertically upstream to the blade. 39. The open-port type hydrodynamic motor according to claim 38, comprising: a weight attached to the shaft; and an elastic member for urging the weight in the rotation axis direction.
4 1 . 横断面を: [字状に形成し、 J字の湾曲部外側をプレード回転方向前縁部 とし、 J字の長片部内側をブレード面とし、 前記湾曲部内側の凹部を流力受け部 としたことを特徴とするプロペラ型流力原動機のブレード。 4 1. Cross section: [formed in the shape of a letter, the outside of the J-shaped bend is the leading edge in the blade rotation direction, the inside of the long piece of the J is the blade surface, and the recess inside the bend is the fluid force. A blade of a propeller-type hydraulic motor characterized by having a receiving portion.
4 2 . 前記湾曲部内側の凹部を流力受け部とするとともに、 放射方向に流れる 流体により回転力を受ける流路としたことを特徴とする請求の範囲第 4 1項に記 載のプロペラ型流力原動機のプレード。 42. The propeller type according to claim 41, wherein the concave portion inside the curved portion is used as a fluid force receiving portion, and the flow channel receives a rotational force by a fluid flowing in a radial direction. Fluid motor blade.
4 3 . 横断面を U字状に形成し、 U字の湾曲部外側をブレード回転方向前縁部 とし、 上流側の長片部外側をブレード面とし、 U字内側の凹部を、 放射方向に流 れる流体により回酝力を受ける流路としたことを特徴とするプロペラ型流力原動 機のブレード。  4 3. The cross section is formed in a U-shape, the outside of the U-shaped curved portion is the leading edge in the blade rotation direction, the outside of the long piece on the upstream side is the blade surface, and the concave portion inside the U-shape is radially A blade of a propeller-type hydraulic motor, wherein the blade receives a rotating force by a flowing fluid.
PCT/JP2004/006785 2003-08-11 2004-05-13 Propeller type flowing force prime mover and blade thereof WO2005015009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-207196 2003-08-11
JP2003207196A JP2005061233A (en) 2003-08-11 2003-08-11 Propeller type flow force motor and blade thereof

Publications (1)

Publication Number Publication Date
WO2005015009A1 true WO2005015009A1 (en) 2005-02-17

Family

ID=34131411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006785 WO2005015009A1 (en) 2003-08-11 2004-05-13 Propeller type flowing force prime mover and blade thereof

Country Status (2)

Country Link
JP (1) JP2005061233A (en)
WO (1) WO2005015009A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930300A1 (en) * 2008-04-22 2009-10-23 Nheolis Sarl BLADE FOR APPARATUS FOR GENERATING ENERGY FROM A FLUID FLOW THAT CAN BE AIR OR WATER
WO2016068730A1 (en) * 2014-10-20 2016-05-06 Savedra Pacheco Pedro Psp blades with dihedral angles, comprising a longitudinal depression
WO2019018931A1 (en) * 2017-07-25 2019-01-31 Reno Barban Wind turbines and blades

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296141B2 (en) * 2011-05-02 2013-09-25 株式会社ビルメン鹿児島 Windmill wings for wind turbine generator
JP5946048B2 (en) * 2014-05-23 2016-07-05 智栄 吉岡 Feather without fluid resistance

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996120A (en) * 1957-12-06 1961-08-15 John L Mcgregor Fluid flow transducer
US4075500A (en) * 1975-08-13 1978-02-21 Grumman Aerospace Corporation Variable stator, diffuser augmented wind turbine electrical generation system
JPS544942U (en) * 1977-06-14 1979-01-13
JPS60116879A (en) * 1983-11-25 1985-06-24 Yamaha Motor Co Ltd Windmill for wind-powered electric power generating device or the like
JP3029106U (en) * 1996-03-18 1996-09-27 正孝 伊沢 Wind power rotating device in wind power generator
US5599172A (en) * 1995-07-31 1997-02-04 Mccabe; Francis J. Wind energy conversion system
JP2000310179A (en) * 1999-04-27 2000-11-07 Fuji Heavy Ind Ltd Rotor for horizontal axis windmill
JP2001132614A (en) * 1999-11-11 2001-05-18 Naoyoshi Hosoda Wind power generation device
JP2004032761A (en) * 2003-06-19 2004-01-29 Mitsubishi Electric Corp Television

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996120A (en) * 1957-12-06 1961-08-15 John L Mcgregor Fluid flow transducer
US4075500A (en) * 1975-08-13 1978-02-21 Grumman Aerospace Corporation Variable stator, diffuser augmented wind turbine electrical generation system
JPS544942U (en) * 1977-06-14 1979-01-13
JPS60116879A (en) * 1983-11-25 1985-06-24 Yamaha Motor Co Ltd Windmill for wind-powered electric power generating device or the like
US5599172A (en) * 1995-07-31 1997-02-04 Mccabe; Francis J. Wind energy conversion system
JP3029106U (en) * 1996-03-18 1996-09-27 正孝 伊沢 Wind power rotating device in wind power generator
JP2000310179A (en) * 1999-04-27 2000-11-07 Fuji Heavy Ind Ltd Rotor for horizontal axis windmill
JP2001132614A (en) * 1999-11-11 2001-05-18 Naoyoshi Hosoda Wind power generation device
JP2004032761A (en) * 2003-06-19 2004-01-29 Mitsubishi Electric Corp Television

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930300A1 (en) * 2008-04-22 2009-10-23 Nheolis Sarl BLADE FOR APPARATUS FOR GENERATING ENERGY FROM A FLUID FLOW THAT CAN BE AIR OR WATER
WO2009133318A2 (en) * 2008-04-22 2009-11-05 Nheolis (Sarl) Blade for a device for generating energy from a fluid flow
WO2009133318A3 (en) * 2008-04-22 2010-01-07 Nheolis (Sarl) Blade for a device for generating energy from a fluid flow
US8562299B2 (en) 2008-04-22 2013-10-22 Nheolis (Sarl) Blade for a device for generating energy from a fluid flow
WO2016068730A1 (en) * 2014-10-20 2016-05-06 Savedra Pacheco Pedro Psp blades with dihedral angles, comprising a longitudinal depression
CN107002635A (en) * 2014-10-20 2017-08-01 佩德罗·萨位拉帕切科 Including the longitudinally concave blade with PSP dihedral angles
US10202962B2 (en) 2014-10-20 2019-02-12 Pedro SAVEDRA PACHECO PSP blades with dihedral angles, comprising a longitudinal depression
CN107002635B (en) * 2014-10-20 2019-08-16 佩德罗·萨位拉帕切科 Including the longitudinally concave blade with PSP dihedral angle
WO2019018931A1 (en) * 2017-07-25 2019-01-31 Reno Barban Wind turbines and blades

Also Published As

Publication number Publication date
JP2005061233A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US11448232B2 (en) Propeller blade
RU2385255C2 (en) Noiseless screw propeller
US8128338B2 (en) Propeller and horizontal-axis wind turbine
US6249059B1 (en) Wind power device
JP5615280B2 (en) Fluid turbine system
CA2040020A1 (en) Wind energy collection system
JP4740580B2 (en) Horizontal axis wind turbine blades and horizontal axis wind turbine
WO2005015009A1 (en) Propeller type flowing force prime mover and blade thereof
JP2011007147A (en) Exhaust gas flow power plant
US4060336A (en) Fluid engine
US10738760B2 (en) Vertical axis wind turbine
KR20100121274A (en) A propeller for generator
JP4146242B2 (en) Pelton turbine blade
JPS6018840B2 (en) pitot pump
JP2006226148A (en) Horizontal-shaft windmill and propeller
KR101975739B1 (en) Apparatus for generating by wind power
WO2016152639A1 (en) Propeller rotor
JP4231802B2 (en) More blade
KR20210016039A (en) Transverse rotor
US6206636B1 (en) Ribbed impeller
ES2239684T3 (en) PROPULSION FOR FAST BOAT.
JP3068946U (en) Wind power generator
JP2005016479A (en) Blade of rotating wheel, and rotating wheel
CA3004950A1 (en) Vane device for generation of electricity
JP3065332U (en) Wind power generator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase