WO2005012729A1 - Diaphragm pump and cooling system with the diaphragm pump - Google Patents

Diaphragm pump and cooling system with the diaphragm pump Download PDF

Info

Publication number
WO2005012729A1
WO2005012729A1 PCT/JP2004/010339 JP2004010339W WO2005012729A1 WO 2005012729 A1 WO2005012729 A1 WO 2005012729A1 JP 2004010339 W JP2004010339 W JP 2004010339W WO 2005012729 A1 WO2005012729 A1 WO 2005012729A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
pressure chamber
side flow
liquid
suction
Prior art date
Application number
PCT/JP2004/010339
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuru Yamamoto
Yasuhiro Sasaki
Atsushi Ochi
Sakae Kitajo
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005512479A priority Critical patent/JPWO2005012729A1/en
Priority to US10/566,580 priority patent/US20070065308A1/en
Publication of WO2005012729A1 publication Critical patent/WO2005012729A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive

Definitions

  • the present invention relates to a diaphragm pump and a cooling system provided with the diaphragm and the pump.
  • the present invention relates to a diaphragm pump used for a cooling system or the like, and more particularly, to a thin diaphragm pump capable of efficiently discharging a liquid. Further, the present invention relates to a cooling system that includes a pump and is used for cooling electronic equipment, for example.
  • a water-cooled cooling system that performs cooling by circulating liquid by a pump has been proposed instead of an air-cooled cooling system (for example, see JP-A-2002-232232).
  • a water-cooled cooling system includes a flow path having a closed circuit structure that is configured to be in thermal contact with a heat-generating component such as an electronic component, and a pump that circulates liquid in the flow path.
  • a heat-generating component such as an electronic component
  • a pump that circulates liquid in the flow path.
  • the liquid heated by the heat of the heat-generating component is circulated through the pump to radiate heat, thereby cooling the heat-generating component.
  • a piezoelectric pump which is a kind of a diaphragm pump, can be generated in a small size and can generate a high discharge pressure.
  • the piezoelectric pump usually has a pressure chamber provided with a suction port and a discharge port, a piezoelectric vibrator provided on a wall surface of the pressure chamber, and a flow path communicating with the suction port and the discharge port, respectively.
  • the piezoelectric vibrator functions as a diaphragm (diaphragm) of the diaphragm pump.
  • a piezoelectric vibrator includes an elastic plate made of metal or the like and a piezoelectric element bonded to the elastic plate.
  • the elastic plate bends and displaces.
  • the pressure acting on the liquid is increased by vibrating the piezoelectric vibrator. Occurs in the pressure chamber.
  • the suction port and the discharge port are provided with a check valve for preventing the liquid from flowing backward and restricting the flow direction of the liquid from the suction port side to the discharge port side.
  • FIG. 10 shows an example of a conventional piezoelectric pump.
  • the piezoelectric pump 100 shown in FIG. 10 includes a piezoelectric vibrator 130 arranged to form the upper surface of the pressure chamber 150.
  • a suction port 121a for sucking a liquid and a discharge port 121b for discharging the liquid are provided on the lower surface of the pressure chamber 150.
  • a suction-side flow path 170a for supplying a liquid to the suction port 121a is formed below the pressure chamber 150, and communicates with the suction port 121a.
  • a discharge-side flow path 170b which is a flow path of the liquid discharged from the discharge port 121b, is formed below the pressure chamber 150, and communicates with the discharge port 121b.
  • the liquid flow path in the piezoelectric pump 100 is formed from the suction side flow path 170a to the discharge side flow path 170b via the suction port 121a, the pressure chamber 150, and the discharge port 121b in this order. .
  • the suction port 121a and the discharge port 121b are provided with a suction valve 120a and a discharge valve 120b, respectively.
  • the suction valve 120a and the discharge valve 120b are made of, for example, an elastic member such as silicone rubber, and control opening and closing of the suction port 121a and the discharge port 121b, respectively.
  • the piezoelectric pump 100 configured as described above operates as follows.
  • the pressure in the pressure chamber 150 becomes negative.
  • the suction valve 120a is opened, and the liquid is supplied from the suction side flow path 170a into the pressure chamber 150.
  • the liquid does not flow back into the pressure chamber 150 from the discharge-side channel 170b due to the operation of the discharge valve 120b.
  • the piezoelectric vibrator 130 is displaced in the opposite direction, and the volume of the pressure chamber 150 is reduced.
  • the discharge valve 120b opens, and the liquid is discharged toward the discharge-side flow path 170b.
  • the piezoelectric pump 100 functions as a pump by repeating the above operation, and can flow the liquid in one direction.
  • a liquid flow path which is connected to the discharge side flow path from the suction side flow path via the pressure chamber is formed to be bent.
  • the suction side flow path 170a and the discharge side flow path 170b are formed below the pressure chamber 150, and the suction port 121a and the discharge port To communicate with 120b Yes. Therefore, when the piezoelectric pump 100 is operated and the liquid flows along the flow path, the flow direction of the liquid is bent when flowing into the pressure chamber 150 from the suction side flow path 170a. Further, the liquid that has passed through the pressure chamber 150 bends again when flowing out of the pressure chamber 150 into the discharge-side channel 170b.
  • a decrease in pump efficiency means a decrease in cooling efficiency in the cooling system.
  • a suction port 121a, a discharge port 121b, and respective flow paths 170a, 170b are located on the lower surface of the pressure chamber 150. Therefore, the total thickness of the pressure chamber 150 and the thicknesses of the flow passages 170a and 170b is substantially the thickness of the pump. Since the pump is mounted on an electronic device such as a portable personal computer, it is desirable that the pump is configured to be thin to make the electronic device thin.
  • an object of the present invention is to provide a diaphragm pump that reduces the pressure loss of a liquid, improves the pump efficiency, and realizes a reduction in thickness. It is another object of the present invention to provide a cooling system having such a diaphragm pump and improved cooling efficiency.
  • a diaphragm pump of the present invention has a side surface of a pressure chamber formed so as to be flat and filled with a liquid such that the axes of the pressure chamber are the same as each other. And the suction-side flow path and the discharge-side flow path communicating with the pressure chamber, and the suction-side flow path and the discharge-side flow path, at least one of which is inclined with respect to the axial direction. And a diaphragm disposed on at least one of an upper surface and a lower surface of the pressure chamber, and vibrating to change the volume of the pressure chamber.
  • the suction-side flow path and the discharge-side flow path are arranged on the side surface of the pressure chamber so as to sandwich the pressure chamber, and communicate with the pressure chamber.
  • the suction side flow path and the discharge side flow path extend in the same direction so that their axes are the same. Therefore, the flow path of the pump composed of the flow paths and the pressure chambers is straight without bending, so that the pressure loss of the liquid is reduced. It is suppressed and the liquid flows efficiently. Further, since the check valve disposed in the flow path is provided to be inclined with respect to the axial direction of the flow path, that is, the flow direction of the liquid, the pressure loss of the liquid can be further suppressed.
  • the pressure chamber is formed flat, and the suction-side flow path and the discharge-side flow path are arranged at both ends of the pressure chamber as described above, so that the entire pump is reduced in thickness.
  • the diaphragm force is applied to at least one of the upper surface and the lower surface of the pressure chamber and acts on one surface of the flat pressure chamber, which is a large area, so that the vibration of the diaphragm is efficiently transmitted to the pressure chamber. Therefore, the drive source can be reduced in size and labor can be saved, and the pump can be reduced in size.
  • Each flow path may be configured such that its axis is located at the center of the cross-sectional shape of the pressure chamber in a plane orthogonal to the axis. As a result, the flow of the liquid in the pressure chamber becomes uniform around the axis. In such a configuration, since the axis of the flow path passes through substantially the center of the pressure chamber, the space in the pressure chamber is substantially symmetrical with respect to the axis. Therefore, the flow path of the liquid is also substantially symmetrical with respect to the axis, and the pressure loss of the liquid in the pressure chamber is reduced.
  • Each channel and pressure chamber may be formed in a substantially rectangular cross section. In this case, they can be formed by, for example, cutting, and the production is easy. In particular, if the lower surfaces of the flow paths and the pressure chambers are formed on the same surface, the production is easy. In addition, since the flow path is flattened, the liquid circulates efficiently.
  • the length of the pressure chamber as viewed from the top side in the direction perpendicular to the axis is continuously reduced toward the suction-side flow path or the discharge-side flow path. It may be formed so that it becomes.
  • the pressure chamber may be formed so that the height thereof is continuously reduced toward the suction-side flow path or the discharge-side flow path. In any case, the pressure loss of the liquid in the pressure chamber is reduced by the configuration in which the cross-sectional area of the pressure chamber decreases continuously toward each flow path.
  • At least one groove formed on the peripheral wall of the pressure chamber and accelerating the flow of the liquid toward the downstream side in the flow direction may be formed.
  • the groove may have an upper surface opening facing the pressure chamber and into which the liquid flows, and a side opening opening in the peripheral wall surface of the pressure chamber and discharging the liquid downstream in the flow direction.
  • the groove may extend in the radial direction with one point located near the entrance of the discharge-side flow path as a center.
  • the diaphragm pump has at least one inlet opening to the upper surface of the suction-side flow path for introducing bubbles mixed in the liquid, and a closed space communicating with the inlet and collecting the introduced bubbles. May further have. Further, the inlet may be provided in the suction side flow path and upstream of the check valve. By providing such a bubble collecting means, the bubbles mixed into the liquid are collected, and the intrusion of the bubbles into the pressure chamber is prevented. In this way, the pressure loss of the liquid is further suppressed by eliminating the bubbles from the flow path or the pressure chamber. By arranging the intake port on the upstream side of the valve in the suction-side flow path, the intrusion of bubbles into the pressure chamber is effectively prevented.
  • the diaphragm pump may be a so-called piezoelectric pump whose driving source is a piezoelectric element. Piezoelectric elements are effective in reducing the size and thickness of a pump.
  • the present invention may be used in a cooling system having a closed-path flow path that circulates the liquid discharged from the discharge-side flow path of the diaphragm and returns it to the suction-side flow path as described above. It is possible.
  • a cooling system efficiently cools an object.
  • a cooling system provided with a pump provided with a bubble collecting means efficiently circulates the liquid for a long period of time because bubbles in the flow path are collected.
  • a "flat" pressure chamber refers to the maximum length in the axial direction of the pressure chamber when the length in the height direction of the pressure chamber is viewed from the upper surface side, and the direction perpendicular to the axis. Means a pressure chamber with a shape shorter than 1/2 of the maximum length of the pressure chamber.
  • the pressure loss of the liquid can be reduced, the pump efficiency can be improved, and the pump can be made thinner. Further, by providing such a diaphragm pump, it is possible to improve the cooling efficiency of the cooling system and to achieve a reduction in thickness.
  • FIG. 1 schematically shows a cooling system including a piezoelectric pump according to a first embodiment of the present invention.
  • FIG. 1 (a) is a plan view showing a liquid passage in the cooling system
  • FIG. 1 (b) is a cross-sectional view taken along line XX of FIG. 1 (a).
  • FIG. 2 shows a piezoelectric pump according to a first embodiment, wherein FIG. 2 (a) is a cross-sectional view, and FIG. 2 (b) is a vertical cross-sectional view as viewed from above.
  • FIG. 3 shows a piezoelectric pump according to a second embodiment, in which FIG. 3 (a) is a cross-sectional view, and FIG. 3 (b) is a vertical cross-sectional view as viewed from above.
  • FIG. 4 is an enlarged perspective view showing one return groove and a flow direction of a liquid.
  • FIG. 5 is a partially enlarged view showing a modification of the shape of the return groove.
  • FIG. 6 is a cross-sectional view showing a modification of the pressure chamber shape.
  • FIG. 7 is a diagram showing an example of a piezoelectric pump according to a third embodiment.
  • FIG. 8 is a view showing another example of the piezoelectric pump according to the third embodiment.
  • FIG. 9 is a view showing still another example of the piezoelectric pump according to the third embodiment.
  • FIG. 10 is a sectional view showing an example of a conventional piezoelectric pump.
  • FIG. 1 is a diagram schematically illustrating a cooling system including a piezoelectric pump according to a first embodiment of the present invention.
  • FIG. 1A is a plan view illustrating a liquid path in the cooling system
  • FIG. (b) is a cross-sectional view taken along line X-X in FIG. 1 (a).
  • the cooling system 10 shown in Fig. 1 is a water-cooled cooling device that is suitably used for cooling electronic components such as portable personal computers.
  • the cooling system 10 roughly includes a channel unit 60 in which a circulation channel 60a is formed, and a piezoelectric pump 1 connected to the channel unit 60 and circulating the liquid in the channel.
  • the passage unit 60 and the piezoelectric pump 1 form a passage having a closed circuit structure. In addition, this channel is filled with the liquid to be circulated.
  • a circulation passage 60a is formed in a predetermined pattern.
  • the cross-sectional shape of the circulation channel 60a is not particularly limited, and may be a rectangular cross-section or a circular cross-section.
  • the circulation channel 60a is Preferably, it has a rectangular cross section. Since the cross-sectional shape of the flat flow path unit 60 is a shape in which plate members are overlapped, the circulation flow path 60a has a rectangular cross section, for example, a groove is formed in one plate member, and the other is formed with a groove. The circulation channel 60a is easily formed by joining with the plate member.
  • the piezoelectric pump 1 is connected to both ends of the circulation channel 60a to form one closed channel in cooperation with the circulation channel 60a.
  • the cooling system 10 circulates the liquid in the circulation flow channel 60a by operating the piezoelectric pump 1, and radiates the liquid heated by the heat-generating components.
  • FIG. 2 shows a piezoelectric pump according to the first embodiment.
  • FIG. 2 (a) is a cross-sectional view
  • FIG. 2 (b) is a vertical cross-sectional view as viewed from above.
  • the piezoelectric pump 1 has a pressure chamber 50 part of which is formed by the piezoelectric vibrator 30, and a suction port 21a and a discharge port 21b communicating with the pressure chamber 50, respectively.
  • a suction valve 20a and a discharge valve 20b are provided near the suction port 21a and the discharge port 21b, respectively.
  • the pressure chamber 50 is formed between the lower plate 11 and the upper plate 12, which are the housing of the piezoelectric pump 1. Its shape is rectangular and the bottom is flat. At one end of the pressure chamber 50, a suction port 21a through which liquid flows is formed, and at the other end, a discharge port 21b through which liquid flows is formed. Both the suction port 21a and the discharge port 21b are located on the longitudinal center line of the rectangular pressure chamber 50 when viewed from above.
  • the suction-side flow path 70a connected to the circulation flow path 60a in Fig. 1 is formed so as to communicate with the suction port 21a, and the discharge-side flow path 70b also connected to the circulation flow path 60a is connected to the discharge port 21b. It is formed to communicate with The suction-side flow path 70a and the discharge-side flow path 70b are arranged in a line on the center line with the pressure chamber 50 therebetween, and extend in the same direction.
  • the suction-side flow path 70a and the discharge-side flow path 70b are both formed in the same shape, and have a rectangular cross section. As described above, if the flow paths 70a and 70b have a rectangular cross section, they can be easily formed by cutting or punching.
  • the height of the pressure chamber 50 is substantially the same as the height of the suction-side flow path 70a. Also, the pressure The flow path in the electric pump 1 is formed flat because the lower surface of the pressure chamber 50 and the lower surfaces of the suction side flow path 70a and the discharge side flow path 70b are located in the same plane. I have.
  • the piezoelectric vibrator 30 prepared as a diaphragm by bonding two piezoelectric elements (not shown) with a vibrating plate (not shown) sandwiched therebetween acts on the upper surface of the flat pressure chamber 50. Are located. Further, an electrode (not shown) for applying a voltage to the piezoelectric element is formed. By applying an AC voltage to the piezoelectric vibrator 30 configured as described above, the piezoelectric vibrator 30 bends and vibrates in the plate thickness direction.
  • the piezoelectric element for example, a dinoleconic acid / lead titanate-based ceramic material may be used.
  • Various means can be used for bonding the diaphragm and the piezoelectric element depending on the material of the diaphragm.
  • the piezoelectric element can be integrally formed on the diaphragm by a printing and firing method, a sputtering method, a sol-gel method, a chemical vapor method, or the like.
  • a force driving source using a piezoelectric element as a driving source for vibrating the diaphragm is not particularly limited as long as the driving source vibrates the diaphragm.
  • a suction valve 20a and a discharge valve 20b made of a thin metal plate such as aluminum are provided, respectively.
  • the valves 20a and 20b are arranged so as to obliquely intersect the flow direction of the liquid.
  • the end on the upstream side in the flow direction is supported in a cantilever shape, and the end on the downstream side is a free end that abuts against the side wall of the flow passages 70a and 70b without load. It has become.
  • the suction valve 20a opens the suction side flow passage 70a when a negative pressure is generated in the pressure chamber 50, and closes the flow passage 70a when a positive pressure is generated in the pressure chamber 50.
  • the discharge valve 20b closes the passage 70b when a negative pressure is generated in the pressure chamber 50, and closes the passage 70b when a positive pressure is generated.
  • the cross-sectional shape of the suction-side flow path 70a and the discharge-side flow path 70b may be a so-called D-cut shape in which a circle or a part of a circle is cut out with a straight line, as in the present embodiment.
  • the valves 20a and 20b can be formed in a simple shape by making the channels 70a and 7Ob have a rectangular cross section.
  • the attachment can be performed by a relatively easy method, as described above, by attaching one end of the valve member to one wall surface in the flow path. The operation of the piezoelectric pump 1 configured as described above will be described below.
  • a voltage of a predetermined polarity is applied to the piezoelectric vibrator 30, and the piezoelectric vibrator 30 is displaced so as to project upward in the figure. Then, the volume of the pressure chamber 50 increases, and the pressure in the pressure chamber 50 becomes a negative pressure. As a result, the suction valve 20a is displaced to open the suction port 21a, and the liquid flows into the pressure chamber 50 via the suction-side flow path 70a and the suction port 21a. At this time, the discharge valve 20b is in a state of closing the discharge port 20b, and the liquid does not flow out of the discharge port 21b.
  • a voltage having a polarity opposite to that described above is applied to the piezoelectric vibrator 30 to displace the piezoelectric vibrator 30 so as to project downward in the figure. Thereby, the volume of the pressure chamber 50 is reduced. Then, the discharge valve 20b is displaced, the discharge port 21b is opened, and the liquid is discharged from the discharge-side flow path 70b. At this time, since the suction valve 20a blocks the suction-side flow path 70a, there is no inflow and discharge of liquid from the suction port 21a.
  • the flow path of the piezoelectric pump 1 is formed flat without bending in the thickness direction of the piezoelectric pump.
  • the suction-side flow path 70a, the pressure chamber 50, and the discharge-side flow path 70b are all formed on the lower plate 11.
  • the suction side flow path 70a and the discharge side flow path 70b are located on a straight line with the pressure chamber 50 therebetween, and extend in the same direction.
  • the flow path of the piezoelectric pump 1 is formed flat and linear. Therefore, as compared with a conventional piezoelectric pump in which the flow path is bent, the pressure loss due to a change in the flow direction of the liquid is suppressed in the piezoelectric pump 1, and the liquid is circulated efficiently.
  • the suction valve 20a and the discharge valve 20b are provided so as to be inclined with respect to the liquid flow direction. Therefore, the suction valve 20a and the discharge valve 20b are displaced by a small force as compared with a valve provided so as to be orthogonal to the flow direction, and the pressure loss of the liquid can be further reduced. From the above, the pump efficiency of the piezoelectric pump 1 is improved as compared with the conventional one, and accordingly, the cooling efficiency of the cooling system 10 (see FIG. 1) is improved.
  • any one of the suction valve 20a and the discharge valve 20b is used. Although each of them is inclined with respect to the flow direction, at least one of them may be inclined.
  • the flow paths 70a and 70b are located at both ends of the pressure chamber 50 as described above, the flow paths are flattened, and the overall thickness of the piezoelectric pump 1 is reduced. I have. Further, since the piezoelectric vibrator 30 is disposed so as to act on one surface of a large area of the pressure chamber 50 formed in a flat rectangular parallelepiped shape, the bending displacement of the piezoelectric vibrator 30 is efficiently performed in the pressure chamber 50. Is transmitted to. Therefore, a sufficient flow rate can be obtained with the relatively small piezoelectric vibrator 30, and as a result, the size of the piezoelectric pump 1 can be reduced.
  • the number and shape of the force piezoelectric vibrators in which only one piezoelectric vibrator 30 is disposed on the upper surface of the pressure chamber 50 are not particularly limited.
  • two pressure vibrators are provided on the upper and lower surfaces of the pressure chamber 50.
  • the cooling system 1 using the piezoelectric pump 1 that achieves a reduction in thickness and an improvement in pump efficiency can circulate liquid efficiently. Further, for example, if a heat-generating component is arranged directly in the flow channel unit 60 or in the vicinity of the flow channel unit 60, the heat generated by the component is efficiently radiated.
  • the pressure chamber is formed in a rectangular parallelepiped shape, but may be formed so that the cross-sectional area of the pressure chamber changes gradually in order to reduce the resistance of the liquid.
  • FIG. 3 shows a piezoelectric pump according to a second embodiment of the present invention.
  • the piezoelectric pump 2 shown in FIG. 3 is formed so that the pressure chamber 50 'has a streamline shape. Further, a structure (return groove 1 la) for accelerating the flow of the liquid is provided on the peripheral wall of the pressure chamber 50 '.
  • the other structures are the same as those of the piezoelectric pump 1 of FIG. 2, and the structural parts having the same functions are denoted by the same reference numerals as in FIG. 2, and the description thereof is omitted.
  • the pressure chamber 50 ′ of the present embodiment is formed with a peripheral wall surface ie that has a substantially streamline shape when viewed from the upper surface side.
  • the peripheral wall lie is provided perpendicular to the bottom 1 lb of the pressure chamber 50 '.
  • the peripheral wall surface is continuous with the suction port 21a and the discharge port 21b, respectively, and is bent outward in an arc shape. Note that this arc-shaped shape is It is preferable to appropriately set the resistance according to the type of the liquid, the characteristics of the piezoelectric vibrator 30, and the like so that the resistance of the piezoelectric vibrator 30 is minimized.
  • a plurality of return grooves 11a are formed on the peripheral wall of the pressure chamber 50 'so as to open to the peripheral wall surface lee.
  • the five return grooves 11a are formed at a predetermined interval from each other and have the same groove width.
  • Each return groove 11a is formed so as to extend in the radiation direction about one point (not shown) located near the discharge port 21b. That is, the return groove 11a is arranged so that its opening faces the above-mentioned one point near the discharge port 21b.
  • the one point is located at the center of the discharge port 21b.
  • FIG. 4 is an enlarged perspective view showing the flow direction of the liquid around one return groove 11a and its periphery.
  • the return groove 11a is opened on the edge upper surface 11c, which is the upper surface of the peripheral wall, and on the peripheral wall surface ie. Further, the depth of the return groove 11a is formed so as to gradually increase toward the tip (the peripheral wall side).
  • a protrusion lid having a predetermined height with respect to the edge upper surface 11c is formed on the outer peripheral side of the edge upper surface 11c.
  • the piezoelectric vibrator 30 (see FIG. 3A) is disposed on the upper surface of the convex portion lid. Therefore, a predetermined gap is formed between the edge upper surface 11c and the piezoelectric vibrator 30, and the gap also forms a part of the pressure chamber 50 '.
  • the piezoelectric vibrator 30 when the piezoelectric vibrator 30 is displaced so as to protrude downward, the liquid flows in from the opening on the upper surface side of the return groove 11a, passes through the return groove 11a, and passes through the peripheral wall surface. From the side opening.
  • the peripheral wall surface ie of the pressure chamber 50 ' is formed in a streamline shape, and cuts toward the suction side flow path 70a and the discharge side flow path 70b.
  • the area is continuously decreasing.
  • the resistance between the liquid and the peripheral wall surface is reduced, and the pressure loss of the liquid in the pressure chamber 50 'becomes smaller.
  • the piezoelectric vibrator 30 is displaced to discharge the liquid from the discharge-side channel 70b (see FIG. 3)
  • the liquid in the return groove 11a is discharged toward the discharge port 21b. Therefore, the flow of the liquid in the pressure chamber 50 'is accelerated, and the pump efficiency of the piezoelectric pump 2 is further improved.
  • each return groove 1 la opens toward the discharge port 21b, the liquid discharged from the return groove 11a is more Effectively accelerate liquid flow.
  • the number and shape of the return grooves 11a, the height of the protrusions lid, and the like are appropriately set according to the type of liquid, the shape of the discharge port 20b, and the like.
  • the return groove 11a is formed with the axis interposed therebetween. It is provided to be symmetrical. As a result, the liquid flows in substantially the same manner across the axis.
  • the shape of the return groove 11a ' is such that the width of the return groove 1la' is tapered toward the pressure chamber 50 'and the liquid in the return groove 11a' is tapered. It may be possible to discharge at a higher speed from the tip of the. Thereby, the flow of the liquid is further accelerated, and the pump efficiency is further improved.
  • the height of the pressure chamber 50 ′ is kept constant, and the length force in the direction orthogonal to the axis of the channels 70 a and 70 b is continuous toward the channels 70 a and 70 b.
  • the peripheral wall is curved so as to be shorter, and the cross-sectional area of the pressure chamber 50 ′ becomes smaller toward the inlet 21a and the outlet 21b.
  • the shape of the pressure chamber is not limited to this as long as the cross-sectional area is continuously reduced.
  • the pressure chamber 50 ′′ may be provided with a taper 12 a at a corner thereof. That is, the cross-sectional area may be configured to decrease as the height of the pressure chamber 50 ′′ continuously decreases toward the suction port 21 a or the discharge port 21 b. Thereby, the resistance of the liquid passing through the pressure chamber 50 "" is reduced, and the pressure loss of the liquid is suppressed.
  • a closed channel such as the cooling system 10 shown in FIG. 1 is filled with a liquid so that no bubbles remain.
  • bubbles may be mixed into the liquid due to, for example, dissolved oxygen in the liquid becoming bubbles.
  • the piezoelectric pump may be provided with a unit for collecting bubbles mixed in the liquid.
  • FIGS. 7 (a) to 9 (a) are cross-sectional views of the piezoelectric pumps 3, 3 ′ and 3 ′′, respectively, and FIGS. 7 (b) and 9 (b) are gas chambers 35 and 3 respectively.
  • 35 is a vertical sectional view showing the inside of FIG.
  • a gas chamber 35 is formed above the piezoelectric vibrator 30.
  • the other structure is the same as that of the piezoelectric pump 1 of FIG. 2, and the structural portions having the same functions are denoted by the same reference numerals as those of FIG. 2, and the description thereof is omitted.
  • the gas chamber 35 is formed by a housing of the piezoelectric pump 3 so as to cover the piezoelectric vibrator 30 and the suction-side flow path 70a and the discharge-side flow path 70b.
  • one intake port 35a for introducing bubbles into the gas chamber 35 is provided slightly upstream of the suction valve 20a.
  • the intake port 35a is formed as a hole communicating the suction side flow path 70a and the gas chamber 35, and is located on the upper surface of the suction side flow path 70a.
  • a flow path of a closed structure is formed by the flow path of the cooling system 10 and the air pressure chamber 35. Then, the flow path is completely filled with the liquid to be circulated. That is, in the initial state of the cooling system 10, the inside of the gas chamber 35 is also filled with the liquid.
  • the cooling system 10 thus configured, when bubbles are generated in the liquid, the bubbles move in the circulation channel 60 (see FIG. 1) by the flow of the liquid. Then, the air bubbles that have moved along the upper wall of the suction-side flow path 70a are taken into the intake port 35a and float upward. At the same time, the liquid in the gas chamber 35 is thereby pushed out of the inlet 35a, and bubbles are collected in the gas chamber 35. In this way, in the piezoelectric pump 3, air bubbles can be eliminated from the flow path of the cooling system 10, and the power S can be circulated without lowering the pump efficiency.
  • the opening of the intake 35a is formed in a circular shape.
  • the shape of the suction port 35a is not limited to a shape that can collect air bubbles.
  • one long hole (not shown) extending in the width direction of the suction-side flow path 70a. (Shown).
  • bubbles moving along the upper wall of the flow channel 70a can be effectively collected.
  • the number of inlets is set to two or more, when the bubbles enter the gas chamber 35 from one of the inlets, the liquid flows out from the other inlet at the same time. Thus, the exchange operation force between the bubble and the liquid may be smoothly performed.
  • the inlet 35 may be arranged at a higher position with respect to the flow path 70a in order to make the collection of air bubbles more effective, or a groove or a notch for guiding the air bubbles to the inlet 35 may be provided. May be formed.
  • the piezoelectric pump according to the third embodiment may be variously modified as shown in Figs.
  • the piezoelectric pump 3 ′ shown in FIG. 8 has the piezoelectric vibrator 30 arranged on the lower surface of the pressure chamber 50.
  • the piezoelectric pump 3 ′ ′′ in FIG. 9 has a gas chamber 35 ′′ arranged in an annular region.
  • the gas chambers 35, 35 ', 35', which are essentially different from the piezoelectric pump 3 in the piezoelectric pumps 3 ', 3' ', have the same function.
  • the piezoelectric pump 3 is provided with the gas chamber 35 so as to be able to collect bubbles generated in the liquid.
  • the pump efficiency is further improved.
  • the cooling efficiency of the cooling system 10 is maintained high for a long time.
  • the cooling system 10 including the piezoelectric pumps 3, 3 ', and 3' '' described in the present embodiment even if the liquid expands due to a change in environmental temperature or the like, the volume change does not occur in the gas chambers 35, 35 ', and 35. Absorbed by ''. Therefore, breakage of the piezoelectric pumps 3, 3 ', 3' '' and the flow path of the cooling system 10 is prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

A diaphragm pump enabling an increase in pump efficiency by reducing the pressure loss of liquid and a reduction in thickness. The flow passage of the piezoelectric pump (1) comprises a pressure chamber (50) formed in a flat shape in cross section and a suction side flow passages (70a) and a discharge side flow passage (70b) disposed at both ends thereof. The suction side flow passage (70a) and the discharge side flow passage (70b) are disposed at both ends of the pressure chamber (50) so that the axes thereof are aligned with each other. Also, a suction valve (20a) and a discharge valve (20b) are disposed in the suction side flow passage (70a) and the discharge side flow passage (70b). Both the suction valve (20a) and the discharge valve (20b) are installed to tilt relative to the flow direction of the liquid.

Description

明 細 <  Details <
ダイヤフラムポンプおよび該ダイヤフ- 、ポンプを備えた冷却システム 技術分野  TECHNICAL FIELD The present invention relates to a diaphragm pump and a cooling system provided with the diaphragm and the pump.
[0001] 本発明は、冷却システム等に用いられるダイヤフラムポンプに関し、特に、液体を効 率よく吐出することができる薄型のダイヤフラムポンプに関する。また、本発明は、ダ 、ポンプを備え、例えば電子機器の冷却に用いられる冷却システムに関する 背景技術  The present invention relates to a diaphragm pump used for a cooling system or the like, and more particularly, to a thin diaphragm pump capable of efficiently discharging a liquid. Further, the present invention relates to a cooling system that includes a pump and is used for cooling electronic equipment, for example.
[0002] 電子機器の高性能化や処理速度の高速化などに伴い、 CPU等の電子部品の消 費電力はますます増大している。その結果、電子部品の発熱量も大きくなり、こうした 電子部品力 発生し電子機器内に滞留する熱を効率よく放熱することは、電子機器 の動作保証の観点から不可欠な技術となっている。  [0002] With higher performance and higher processing speed of electronic devices, power consumption of electronic components such as CPUs is increasing more and more. As a result, the amount of heat generated by the electronic components also increases, and efficiently dissipating the heat generated in the electronic devices due to the power generated by the electronic components is an essential technology from the viewpoint of guaranteeing the operation of the electronic devices.
[0003] 例えばノートパソコンなど、携帯型のパーソナルコンピュータの冷却手段として、空 冷式の冷却システムに代えて、ポンプによって液体を循環させることによって冷却を 行う水冷式の冷却システムが提案されている(例えば、特開 2002— 232174号公報 参照)。このような水冷式の冷却システムは、電子部品などの発熱部品に熱的に接触 するように構成された閉路構造の流路と、その流路内に液体を循環させるポンプを備 えている。そして、この冷却システムは、発熱部品の熱によって加熱された液体をポ ンプで循環することによって放熱させ、結果的に発熱部品を冷却するものである。  [0003] As a cooling means of a portable personal computer such as a notebook personal computer, for example, a water-cooled cooling system that performs cooling by circulating liquid by a pump has been proposed instead of an air-cooled cooling system ( For example, see JP-A-2002-232232). Such a water-cooled cooling system includes a flow path having a closed circuit structure that is configured to be in thermal contact with a heat-generating component such as an electronic component, and a pump that circulates liquid in the flow path. In this cooling system, the liquid heated by the heat of the heat-generating component is circulated through the pump to radiate heat, thereby cooling the heat-generating component.
[0004] このような冷却システムのポンプには、小型で高い吐出圧力を発生することができる 、ダイヤフラムポンプの一種である圧電ポンプが用いられることが多レ、。圧電ポンプは 、通常、吸入口および吐出口を備えた圧力室と、圧力室の壁面に設けられた圧電振 動子と、吸入口および吐出口にそれぞれ連通する流路とを有している。ここで、圧電 振動子は、ダイヤフラムポンプのダイヤフラム(振動板)として機能するものである。圧 電振動子は、金属等からなる弾性板とその弾性板に貼り合わされた圧電素子とを備 え、圧電素子に電圧が印加されると弾性板 (圧電振動子自体)が屈曲変位する。圧 電ポンプでは、この圧電振動子を振動させることによって、液体に作用させる圧力が 圧力室内に発生する。また、吸入口および吐出口には、液体の逆流を防ぎ、液体の 流れ方向を吸入口側から吐出口側に規制するための逆止弁が設けられている。 [0004] As a pump of such a cooling system, a piezoelectric pump, which is a kind of a diaphragm pump, can be generated in a small size and can generate a high discharge pressure. The piezoelectric pump usually has a pressure chamber provided with a suction port and a discharge port, a piezoelectric vibrator provided on a wall surface of the pressure chamber, and a flow path communicating with the suction port and the discharge port, respectively. Here, the piezoelectric vibrator functions as a diaphragm (diaphragm) of the diaphragm pump. A piezoelectric vibrator includes an elastic plate made of metal or the like and a piezoelectric element bonded to the elastic plate. When a voltage is applied to the piezoelectric element, the elastic plate (piezoelectric vibrator itself) bends and displaces. In a piezoelectric pump, the pressure acting on the liquid is increased by vibrating the piezoelectric vibrator. Occurs in the pressure chamber. Further, the suction port and the discharge port are provided with a check valve for preventing the liquid from flowing backward and restricting the flow direction of the liquid from the suction port side to the discharge port side.
[0005] 図 10に、従来の圧電ポンプの一例を示す。図 10に示す圧電ポンプ 100は、圧力 室 150の上面を形成するように配置された圧電振動子 130を備えてレ、る。圧力室 15 0の下面には、液体を吸入するための吸入口 121 aとその液体を吐出するための吐 出口 121bが設けられている。吸入口 121aに液体を供給するための吸入側流路 17 0aは、圧力室 150の下側に形成され、吸入口 121 aに連通している。また、吐出口 1 21bから吐出された液体の流路である吐出側流路 170bは、圧力室 150の下側に形 成され、吐出口 121bに連通している。これによつて、圧電ポンプ 100における液体 の流路は、吸入側流路 170aから、吸入口 121a、圧力室 150、吐出口 121bを順に 経由して吐出側流路 170bに向かって形成されている。  FIG. 10 shows an example of a conventional piezoelectric pump. The piezoelectric pump 100 shown in FIG. 10 includes a piezoelectric vibrator 130 arranged to form the upper surface of the pressure chamber 150. On the lower surface of the pressure chamber 150, a suction port 121a for sucking a liquid and a discharge port 121b for discharging the liquid are provided. A suction-side flow path 170a for supplying a liquid to the suction port 121a is formed below the pressure chamber 150, and communicates with the suction port 121a. Further, a discharge-side flow path 170b, which is a flow path of the liquid discharged from the discharge port 121b, is formed below the pressure chamber 150, and communicates with the discharge port 121b. Thus, the liquid flow path in the piezoelectric pump 100 is formed from the suction side flow path 170a to the discharge side flow path 170b via the suction port 121a, the pressure chamber 150, and the discharge port 121b in this order. .
[0006] 吸入口 121aおよび吐出口 121bには、それぞれ吸入弁 120aおよび吐出弁 120b が設けられている。吸入弁 120aおよび吐出弁 120bは、例えば、シリコーンゴムなど の弾性部材からなり、吸入口 121 aおよび吐出口 121bをそれぞれ開閉制御する。  [0006] The suction port 121a and the discharge port 121b are provided with a suction valve 120a and a discharge valve 120b, respectively. The suction valve 120a and the discharge valve 120b are made of, for example, an elastic member such as silicone rubber, and control opening and closing of the suction port 121a and the discharge port 121b, respectively.
[0007] 以上のように構成された圧電ポンプ 100は以下のように動作する。圧電振動子 130 が上方に向かって変位させられ圧力室 150内の容積が拡大すると、圧力室 150内の 圧力が負圧となる。これによつて、吸入弁 120aが開き、液体が吸入側流路 170aから 圧力室 150内へ供給される。このとき、吐出弁 120bの作用により、液体は、吐出側 流路 170bから圧力室 150内に逆流することはない。次いで、圧電振動子 130が逆 向きに変位させられ、圧力室 150の容積は縮小する。すると、圧力室 150内の圧力 が上昇するため、吐出弁 120bが開き、液体は吐出側流路 170bに向かって吐出され る。このとき、吸入弁 120aが作用しているため、液体は、圧力室 150から吸入側流路 170aに向かって流れ出ることはなレ、。圧電ポンプ 100は、以上の動作を繰り返すこと によって、ポンプとして機能し、液体を一方向に流すことができる。  [0007] The piezoelectric pump 100 configured as described above operates as follows. When the piezoelectric vibrator 130 is displaced upward and the volume in the pressure chamber 150 increases, the pressure in the pressure chamber 150 becomes negative. As a result, the suction valve 120a is opened, and the liquid is supplied from the suction side flow path 170a into the pressure chamber 150. At this time, the liquid does not flow back into the pressure chamber 150 from the discharge-side channel 170b due to the operation of the discharge valve 120b. Next, the piezoelectric vibrator 130 is displaced in the opposite direction, and the volume of the pressure chamber 150 is reduced. Then, since the pressure in the pressure chamber 150 increases, the discharge valve 120b opens, and the liquid is discharged toward the discharge-side flow path 170b. At this time, since the suction valve 120a operates, the liquid does not flow out of the pressure chamber 150 toward the suction-side flow path 170a. The piezoelectric pump 100 functions as a pump by repeating the above operation, and can flow the liquid in one direction.
[0008] し力、しながら、従来のポンプでは、吸入側流路から圧力室を経由して吐出側流路に 通じる、液体の流路が屈曲して形成されている。例えば、図 10の圧電ポンプ 100で は、吸入側流路 170aおよび吐出側流路 170bは圧力室 150の下方に形成されてお り、圧力室 150の下面に設けられた吸入口 121aと吐出口 120bにそれぞれ連通して いる。したがって、圧電ポンプ 100が動作させられ液体が流路に沿って流れた場合、 液体の流れ方向は吸入側流路 170aから圧力室 150に流入するときに屈曲する。ま た、圧力室 150を通過した液体は、圧力室 150から吐出側流路 170bに流出するとき に再び屈曲する。このように、液体の流れが急激に変化すると、液体の圧力が大きく 損失する。その結果、流路を通過する液体の流量が小さくなり、結果的にポンプ効率 が低下してしまう。ポンプ効率の低下は、冷却システムにおける冷却効率の低下を意 味する。 [0008] However, in the conventional pump, a liquid flow path which is connected to the discharge side flow path from the suction side flow path via the pressure chamber is formed to be bent. For example, in the piezoelectric pump 100 of FIG. 10, the suction side flow path 170a and the discharge side flow path 170b are formed below the pressure chamber 150, and the suction port 121a and the discharge port To communicate with 120b Yes. Therefore, when the piezoelectric pump 100 is operated and the liquid flows along the flow path, the flow direction of the liquid is bent when flowing into the pressure chamber 150 from the suction side flow path 170a. Further, the liquid that has passed through the pressure chamber 150 bends again when flowing out of the pressure chamber 150 into the discharge-side channel 170b. Thus, when the flow of the liquid changes abruptly, the pressure of the liquid is greatly lost. As a result, the flow rate of the liquid passing through the flow path decreases, and as a result, the pump efficiency decreases. A decrease in pump efficiency means a decrease in cooling efficiency in the cooling system.
[0009] また、圧電ポンプ 100では、圧力室 150の下面に吸入口 121a、吐出口 121b、およ び各流路 170a、 170bが位置している。そのため、圧力室 150の厚みと流路 170a、 170bの厚みとを併せた厚みが、実質的なポンプの厚みとなっている。ポンプは、例 えば携帯型のパーソナルコンピュータ等の電子機器に搭載されるものであるため、そ の電子機器の薄型化のためにも薄型に構成されていることが望ましい。  [0009] Further, in the piezoelectric pump 100, a suction port 121a, a discharge port 121b, and respective flow paths 170a, 170b are located on the lower surface of the pressure chamber 150. Therefore, the total thickness of the pressure chamber 150 and the thicknesses of the flow passages 170a and 170b is substantially the thickness of the pump. Since the pump is mounted on an electronic device such as a portable personal computer, it is desirable that the pump is configured to be thin to make the electronic device thin.
発明の開示  Disclosure of the invention
[0010] そこで本発明は、液体の圧力損失を低減し、ポンプ効率を向上させるとともに薄型 化を実現したダイヤフラムポンプを提供することを目的とする。また、そのようなダイヤ フラムポンプを備えることによって冷却効率を向上させた冷却システムを提供すること を目的とする。  [0010] Therefore, an object of the present invention is to provide a diaphragm pump that reduces the pressure loss of a liquid, improves the pump efficiency, and realizes a reduction in thickness. It is another object of the present invention to provide a cooling system having such a diaphragm pump and improved cooling efficiency.
[0011] 上記目的を達成するため本発明のダイヤフラムポンプは、扁平に形成され、液体で 充填される圧力室と、前記圧力室を間において互いの軸線が同一となるように前記 圧力室の側面にそれぞれ配置され、前記圧力室に連通する吸入側流路および吐出 側流路と、前記吸入側流路および前記吐出側流路にそれぞれ配置され、その少なく とも一方が前記軸線方向に対して傾斜している逆止弁と、前記圧力室の上面および 下面の少なくとも一方に配置され、振動することによって前記圧力室の容積を可変と するダイヤフラムとを有する。  [0011] In order to achieve the above object, a diaphragm pump of the present invention has a side surface of a pressure chamber formed so as to be flat and filled with a liquid such that the axes of the pressure chamber are the same as each other. And the suction-side flow path and the discharge-side flow path communicating with the pressure chamber, and the suction-side flow path and the discharge-side flow path, at least one of which is inclined with respect to the axial direction. And a diaphragm disposed on at least one of an upper surface and a lower surface of the pressure chamber, and vibrating to change the volume of the pressure chamber.
[0012] 本発明によれば、吸入側流路と吐出側流路とが、圧力室を挟むようにして圧力室の 側面に配置され、圧力室に連通している。そして、吸入側流路と吐出側流路は互い の軸線が同じくなるように同方向に延びている。したがって、各流路と圧力室とで構 成されるポンプの流路が、屈曲することなぐ一直線となるため、液体の圧力損失が 抑えられ、液体は効率よく流れる。また、流路に配置される逆止弁が、流路の軸線方 向すなわち液体の流れ方向に対して傾斜して設けられているため、液体の圧力損失 はより抑えられる。同時に、圧力室は扁平に形成され、かつ、上記のようにその圧力 室の両端に吸入側流路と吐出側流路とが配置されてレ、るため、ポンプ全体が薄型化 される。し力も、ダイヤフラムを圧力室の上面および下面の少なくとも一方に配置して 、扁平な圧力室の大面積である一面に作用させることにより、ダイヤフラムの振動が 効率よく圧力室に伝達される。したがって、駆動源が小型化'省力化され、かつ、ボン プの小型化も実現される。 According to the present invention, the suction-side flow path and the discharge-side flow path are arranged on the side surface of the pressure chamber so as to sandwich the pressure chamber, and communicate with the pressure chamber. The suction side flow path and the discharge side flow path extend in the same direction so that their axes are the same. Therefore, the flow path of the pump composed of the flow paths and the pressure chambers is straight without bending, so that the pressure loss of the liquid is reduced. It is suppressed and the liquid flows efficiently. Further, since the check valve disposed in the flow path is provided to be inclined with respect to the axial direction of the flow path, that is, the flow direction of the liquid, the pressure loss of the liquid can be further suppressed. At the same time, the pressure chamber is formed flat, and the suction-side flow path and the discharge-side flow path are arranged at both ends of the pressure chamber as described above, so that the entire pump is reduced in thickness. The diaphragm force is applied to at least one of the upper surface and the lower surface of the pressure chamber and acts on one surface of the flat pressure chamber, which is a large area, so that the vibration of the diaphragm is efficiently transmitted to the pressure chamber. Therefore, the drive source can be reduced in size and labor can be saved, and the pump can be reduced in size.
[0013] 各流路は、その軸線が、その軸線に直交する面における圧力室の断面形状の中心 に位置するように構成されていてもよい。これにより、圧力室内の液体の流れが軸線 を中心として均等となる。このような構成では、流路の軸線が圧力室のほぼ中心を通 過するため、圧力室内の空間は軸線を挟んでほぼ対称形となる。したがって、液体 の流路も軸線を挟んでほぼ対称形となり、圧力室内での液体の圧力損失が低減する  [0013] Each flow path may be configured such that its axis is located at the center of the cross-sectional shape of the pressure chamber in a plane orthogonal to the axis. As a result, the flow of the liquid in the pressure chamber becomes uniform around the axis. In such a configuration, since the axis of the flow path passes through substantially the center of the pressure chamber, the space in the pressure chamber is substantially symmetrical with respect to the axis. Therefore, the flow path of the liquid is also substantially symmetrical with respect to the axis, and the pressure loss of the liquid in the pressure chamber is reduced.
[0014] 各流路および圧力室は、略矩形断面に形成されていてもよい。この場合、例えば切 削加工等によってそれらを形成することができ、製造が容易である。特に、各流路ぉ よび圧力室の下面が同一面上に形成されるものであれば、製造が容易である。しか も、流路が平坦化するので液体が効率よく循環する。ここで、液体の圧力損失をさら に抑えるため、上面側から見た圧力室の、軸線に直交する方向の長さが、前記吸入 側流路または前記吐出側流路に向かって連続的に短くなるように形成されていても よい。また、前記圧力室の高さが、前記吸入側流路または前記吐出側流路に向かつ て連続的に低くなるように形成されていてもよい。いずれにしても、各流路に向かって 圧力室の断面積が連続的に小さくなるように構成されていることにより、圧力室内に おける液体の圧力損失が低減する。 [0014] Each channel and pressure chamber may be formed in a substantially rectangular cross section. In this case, they can be formed by, for example, cutting, and the production is easy. In particular, if the lower surfaces of the flow paths and the pressure chambers are formed on the same surface, the production is easy. In addition, since the flow path is flattened, the liquid circulates efficiently. Here, in order to further suppress the pressure loss of the liquid, the length of the pressure chamber as viewed from the top side in the direction perpendicular to the axis is continuously reduced toward the suction-side flow path or the discharge-side flow path. It may be formed so that it becomes. Further, the pressure chamber may be formed so that the height thereof is continuously reduced toward the suction-side flow path or the discharge-side flow path. In any case, the pressure loss of the liquid in the pressure chamber is reduced by the configuration in which the cross-sectional area of the pressure chamber decreases continuously toward each flow path.
[0015] 本発明のダイヤフラムポンプにおいて、圧力室の周壁に形成され、液体の流れを 流れ方向下流側に向かって加速させる少なくとも 1つの溝が形成されていてもよい。 その溝は、圧力室に面し液体が流入する上面開口部と、圧力室の周壁面に開口し 液体が流れ方向下流側に向かって吐出される側面開口部とを有するものであつても よい。また、その溝は、吐出側流路の入口付近に位置する一点を中心とする放射線 方向に延びているものであってもよい。このような溝を設けることにより、ダイヤフラム によって圧力室が加圧されたときに、溝の側面開口部から液体が下流側に向かって 吐出され、液体の流れが加速される。 [0015] In the diaphragm pump of the present invention, at least one groove formed on the peripheral wall of the pressure chamber and accelerating the flow of the liquid toward the downstream side in the flow direction may be formed. The groove may have an upper surface opening facing the pressure chamber and into which the liquid flows, and a side opening opening in the peripheral wall surface of the pressure chamber and discharging the liquid downstream in the flow direction. Good. Further, the groove may extend in the radial direction with one point located near the entrance of the discharge-side flow path as a center. By providing such a groove, when the pressure chamber is pressurized by the diaphragm, the liquid is discharged toward the downstream side from the side opening of the groove, and the flow of the liquid is accelerated.
[0016] ダイヤフラムポンプは、吸入側流路の上面に開口し、液体内に混入した気泡を導入 する少なくとも 1つの取入口と、取入口と連通し、導入された気泡が収集される密閉 空間とをさらに有するものであってもよレ、。また、その取入口が吸入側流路内であつ て逆止弁より上流側に設けられていてもよい。このような気泡収集手段が設けられて レ、ることで、液体内に混入した気泡が収集され、圧力室内への気泡の侵入が防止さ れる。こうして、流路内または圧力室内から気泡を排除することにより、液体の圧力損 失がさらに抑えられる。上記取入口を吸入側流路内の弁より上流側に配置することで 、気泡の圧力室内への侵入が効果的に防止される。  [0016] The diaphragm pump has at least one inlet opening to the upper surface of the suction-side flow path for introducing bubbles mixed in the liquid, and a closed space communicating with the inlet and collecting the introduced bubbles. May further have. Further, the inlet may be provided in the suction side flow path and upstream of the check valve. By providing such a bubble collecting means, the bubbles mixed into the liquid are collected, and the intrusion of the bubbles into the pressure chamber is prevented. In this way, the pressure loss of the liquid is further suppressed by eliminating the bubbles from the flow path or the pressure chamber. By arranging the intake port on the upstream side of the valve in the suction-side flow path, the intrusion of bubbles into the pressure chamber is effectively prevented.
[0017] ダイヤフラムポンプはその駆動源が圧電素子である、いわゆる圧電ポンプであって もよレ、。圧電素子は、ポンプの小型化 ·薄型化に有効である。  [0017] The diaphragm pump may be a so-called piezoelectric pump whose driving source is a piezoelectric element. Piezoelectric elements are effective in reducing the size and thickness of a pump.
[0018] また、以上のようなダイヤフラムポンプ力 S、そのポンプの吐出側流路から吐出された 液体を循環させて吸入側流路に戻す閉路構造の流路を備える冷却システムに用い ることが可能である。こうした冷却システムは、効率よく対象物を冷却する。特に、気 泡収集手段を備えたポンプを備えた冷却システムは、流路内の気泡が収集されるた め、長期にわたり液体を効率よく循環させる。  Further, the present invention may be used in a cooling system having a closed-path flow path that circulates the liquid discharged from the discharge-side flow path of the diaphragm and returns it to the suction-side flow path as described above. It is possible. Such a cooling system efficiently cools an object. In particular, a cooling system provided with a pump provided with a bubble collecting means efficiently circulates the liquid for a long period of time because bubbles in the flow path are collected.
[0019] なお、本明細書において「扁平」な圧力室とは、圧力室の高さ方向の長さが上面側 から見た圧力室の、軸線方向の最大長さ、および軸線に直交する方向の最大長さの 1/2より短い形状の圧力室を意味する。  [0019] In this specification, a "flat" pressure chamber refers to the maximum length in the axial direction of the pressure chamber when the length in the height direction of the pressure chamber is viewed from the upper surface side, and the direction perpendicular to the axis. Means a pressure chamber with a shape shorter than 1/2 of the maximum length of the pressure chamber.
[0020] 本発明によれば、ダイヤフラムポンプの構造を工夫することにより、液体の圧力損失 を低減し、ポンプ効率を向上させるとともにポンプの薄型化を実現することができる。 また、そのようなダイヤフラムポンプを備えることによって冷却システムの冷却効率の 向上および薄型化を実現することができる。  According to the present invention, by devising the structure of the diaphragm pump, the pressure loss of the liquid can be reduced, the pump efficiency can be improved, and the pump can be made thinner. Further, by providing such a diaphragm pump, it is possible to improve the cooling efficiency of the cooling system and to achieve a reduction in thickness.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の第 1の実施形態による圧電ポンプを備えた冷却システムを模式的に示 す図であり、図 1 (a)は冷却システムにおける液路を示す平面図であり、図 1 (b)は図 1 (a)の X— X線における断面図である。 FIG. 1 schematically shows a cooling system including a piezoelectric pump according to a first embodiment of the present invention. FIG. 1 (a) is a plan view showing a liquid passage in the cooling system, and FIG. 1 (b) is a cross-sectional view taken along line XX of FIG. 1 (a).
[図 2]第 1の実施形態による圧電ポンプを示し、図 2 (a)は横断面図であり、図 2 (b)は 上面側から見た縦断面図である。  FIG. 2 shows a piezoelectric pump according to a first embodiment, wherein FIG. 2 (a) is a cross-sectional view, and FIG. 2 (b) is a vertical cross-sectional view as viewed from above.
[図 3]第 2の実施形態による圧電ポンプを示し、図 3 (a)は横断面図であり、図 3 (b)は 上面側から見た縦断面図である。  FIG. 3 shows a piezoelectric pump according to a second embodiment, in which FIG. 3 (a) is a cross-sectional view, and FIG. 3 (b) is a vertical cross-sectional view as viewed from above.
[図 4] 1つの返し溝と液体の流れ方向を示した拡大斜視図である。  FIG. 4 is an enlarged perspective view showing one return groove and a flow direction of a liquid.
[図 5]返し溝の形状の変形例を示す部分拡大図である。  FIG. 5 is a partially enlarged view showing a modification of the shape of the return groove.
[図 6]圧力室形状の変形例を示す断面図である。  FIG. 6 is a cross-sectional view showing a modification of the pressure chamber shape.
[図 7]第 3の実施形態による圧電ポンプの一例を示す図である。  FIG. 7 is a diagram showing an example of a piezoelectric pump according to a third embodiment.
[図 8]第 3の実施形態による圧電ポンプの他の例を示す図である。  FIG. 8 is a view showing another example of the piezoelectric pump according to the third embodiment.
[図 9]第 3の実施形態による圧電ポンプのさらに他の例を示す図である。  FIG. 9 is a view showing still another example of the piezoelectric pump according to the third embodiment.
[図 10]従来の圧電ポンプの一例を示す断面図である。  FIG. 10 is a sectional view showing an example of a conventional piezoelectric pump.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の実施の形態について図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023] (第 1の実施形態)  (First Embodiment)
図 1は、本発明の第 1の実施形態による、圧電ポンプを備えた冷却システムを模式 的に示す図であり、図 1 (a)は冷却システムにおける液路を示す平面図であり、図 1 ( b)は図 1 (a)の X— X線における断面図である。  FIG. 1 is a diagram schematically illustrating a cooling system including a piezoelectric pump according to a first embodiment of the present invention. FIG. 1A is a plan view illustrating a liquid path in the cooling system, and FIG. (b) is a cross-sectional view taken along line X-X in FIG. 1 (a).
[0024] 図 1に示す冷却システム 10は、例えば、携帯型のパーソナルコンピュータなどの電 子部品の冷却に好適に用いられる、水冷式の冷却装置である。冷却システム 10は、 大別して、循環流路 60aが形成された流路ユニット 60と、流路ユニット 60に接続され て流路内の液体を循環させる圧電ポンプ 1とを有している。これら流路ユニット 60と圧 電ポンプ 1とによって、閉路構造の流路が形成されている。また、この流路内には循 環すべき液体が充填されてレ、る。  [0024] The cooling system 10 shown in Fig. 1 is a water-cooled cooling device that is suitably used for cooling electronic components such as portable personal computers. The cooling system 10 roughly includes a channel unit 60 in which a circulation channel 60a is formed, and a piezoelectric pump 1 connected to the channel unit 60 and circulating the liquid in the channel. The passage unit 60 and the piezoelectric pump 1 form a passage having a closed circuit structure. In addition, this channel is filled with the liquid to be circulated.
[0025] 流路ユニット 60には、循環流路 60aが所定のパターンで形成されている。また、循 環流路 60aの断面形状は特に限定されるものではなぐ矩形断面でもよいし、円形断 面でもよい。本実施形態のような扁平状の流路ユニット 60の場合、循環流路 60aは 矩形断面とされていることが好ましい。扁平状の流路ユニット 60の断面形状は板部 材を重ね合せたような形状であるため、循環流路 60aを矩形断面とすることにより、例 えば一方の板部材に溝を形成し、他方の板部材と接合することで循環流路 60aが容 易に形成される。圧電ポンプ 1は、循環流路 60aの両端に接続されることによって、循 環流路 60aと共同して 1つの閉路構造の流路を形成している。冷却システム 10は、 圧電ポンプ 1を動作させることによって循環流路 60a内で液体を循環させ、発熱部品 によって加熱された液体の放熱を行うものである。 [0025] In the passage unit 60, a circulation passage 60a is formed in a predetermined pattern. The cross-sectional shape of the circulation channel 60a is not particularly limited, and may be a rectangular cross-section or a circular cross-section. In the case of the flat channel unit 60 as in the present embodiment, the circulation channel 60a is Preferably, it has a rectangular cross section. Since the cross-sectional shape of the flat flow path unit 60 is a shape in which plate members are overlapped, the circulation flow path 60a has a rectangular cross section, for example, a groove is formed in one plate member, and the other is formed with a groove. The circulation channel 60a is easily formed by joining with the plate member. The piezoelectric pump 1 is connected to both ends of the circulation channel 60a to form one closed channel in cooperation with the circulation channel 60a. The cooling system 10 circulates the liquid in the circulation flow channel 60a by operating the piezoelectric pump 1, and radiates the liquid heated by the heat-generating components.
[0026] 以下、圧電ポンプ 1について図 2を参照して詳細に説明する。図 2は、第 1の実施形 態による圧電ポンプを示し、図 2 (a)は横断面図であり、図 2 (b)は上面側から見た縦 断面図である。 Hereinafter, the piezoelectric pump 1 will be described in detail with reference to FIG. FIG. 2 shows a piezoelectric pump according to the first embodiment. FIG. 2 (a) is a cross-sectional view, and FIG. 2 (b) is a vertical cross-sectional view as viewed from above.
[0027] 圧電ポンプ 1は、圧電振動子 30によってその一部が形成されている圧力室 50と、 その圧力室 50にそれぞれ連通する吸入口 21aおよび吐出口 21bを有している。また 、吸入口 21aおよび吐出口 21bの近くには、吸入弁 20aおよび吐出弁 20bがそれぞ れ設けられている。圧電振動子 30が振動すると圧力室 50内に圧力変化が発生し、 液体は、吸入口 21a側から吐出口 21b側に向かって、図中の矢印方向に流れる。  [0027] The piezoelectric pump 1 has a pressure chamber 50 part of which is formed by the piezoelectric vibrator 30, and a suction port 21a and a discharge port 21b communicating with the pressure chamber 50, respectively. In addition, a suction valve 20a and a discharge valve 20b are provided near the suction port 21a and the discharge port 21b, respectively. When the piezoelectric vibrator 30 vibrates, a pressure change occurs in the pressure chamber 50, and the liquid flows from the suction port 21a to the discharge port 21b in the direction of the arrow in the drawing.
[0028] 圧力室 50は、圧電ポンプ 1の筐体である下板 11および上板 12の間に形成されて いる。その形状は、底面が長方形であり、扁平に形成されている。圧力室 50の一端 には液体が流入する吸入口 21aが形成されており、他端には液体が流れ出る吐出 口 21bが形成されている。吸入口 21aおよび吐出口 21bはいずれも、上面から見て 長方形に形成された圧力室 50の長手方向中心線上に位置している。  [0028] The pressure chamber 50 is formed between the lower plate 11 and the upper plate 12, which are the housing of the piezoelectric pump 1. Its shape is rectangular and the bottom is flat. At one end of the pressure chamber 50, a suction port 21a through which liquid flows is formed, and at the other end, a discharge port 21b through which liquid flows is formed. Both the suction port 21a and the discharge port 21b are located on the longitudinal center line of the rectangular pressure chamber 50 when viewed from above.
[0029] 図 1の循環流路 60aと接続される吸入側流路 70aは、吸入口 21aに連通するように 形成され、同じく循環流路 60aと接続される吐出側流路 70bは吐出口 21bに連通す るように形成されてレ、る。吸入側流路 70aと吐出側流路 70bとは、圧力室 50を間にお いて、上記中心線上に一列に配置され、同一方向に延びている。吸入側流路 70aお よび吐出側流路 70bはいずれも同形状に形成されており、その断面は矩形となって いる。このように、流路 70a、 70bを矩形断面とすれば、切削加工や抜き加工によって それらを容易に形成することができる。  [0029] The suction-side flow path 70a connected to the circulation flow path 60a in Fig. 1 is formed so as to communicate with the suction port 21a, and the discharge-side flow path 70b also connected to the circulation flow path 60a is connected to the discharge port 21b. It is formed to communicate with The suction-side flow path 70a and the discharge-side flow path 70b are arranged in a line on the center line with the pressure chamber 50 therebetween, and extend in the same direction. The suction-side flow path 70a and the discharge-side flow path 70b are both formed in the same shape, and have a rectangular cross section. As described above, if the flow paths 70a and 70b have a rectangular cross section, they can be easily formed by cutting or punching.
[0030] 圧力室 50の高さは、吸入側流路 70aの高さとほぼ同じに形成されている。また、圧 電ポンプ 1内の流路は、圧力室 50の下面と、吸入側流路 70aおよび吐出側流路 70b の下面とが同一平面内に位置するように構成されていることにより平坦に形成されて いる。 [0030] The height of the pressure chamber 50 is substantially the same as the height of the suction-side flow path 70a. Also, the pressure The flow path in the electric pump 1 is formed flat because the lower surface of the pressure chamber 50 and the lower surfaces of the suction side flow path 70a and the discharge side flow path 70b are located in the same plane. I have.
[0031] 振動板(不図示)を挟んで 2枚の圧電素子(不図示)が貼り合わされダイヤフラムとし て用意された圧電振動子 30は、扁平に形成された圧力室 50上面に作用するように 配置されている。また、圧電素子に電圧を印加するための電極(不図示)が形成され ている。このように構成された圧電振動子 30に交流電圧を印加することによって、圧 電振動子 30はその板厚方向に屈曲振動する。  [0031] The piezoelectric vibrator 30 prepared as a diaphragm by bonding two piezoelectric elements (not shown) with a vibrating plate (not shown) sandwiched therebetween acts on the upper surface of the flat pressure chamber 50. Are located. Further, an electrode (not shown) for applying a voltage to the piezoelectric element is formed. By applying an AC voltage to the piezoelectric vibrator 30 configured as described above, the piezoelectric vibrator 30 bends and vibrates in the plate thickness direction.
[0032] 圧電素子としては、例えば、ジノレコン酸 ·チタン酸鉛系セラミックス材料を使用しても よい。また、振動板と圧電素子との貼り合わせは、振動板の材料によって種々の手段 を用いることができる。例えば、振動板としてセラミックスやシリコンを用いれば、圧電 素子を印刷焼成法、スパッタ法、ゾルゲル法、化学気相法などによって振動板に一 体形成することが可能である。なお、本実施形態ではダイヤフラムを振動させる駆動 源として圧電素子を用いている力 駆動源は、ダイヤフラムを振動させるものであれ ば特に限定されるものではなレ、。  As the piezoelectric element, for example, a dinoleconic acid / lead titanate-based ceramic material may be used. Various means can be used for bonding the diaphragm and the piezoelectric element depending on the material of the diaphragm. For example, if ceramics or silicon is used for the diaphragm, the piezoelectric element can be integrally formed on the diaphragm by a printing and firing method, a sputtering method, a sol-gel method, a chemical vapor method, or the like. In the present embodiment, a force driving source using a piezoelectric element as a driving source for vibrating the diaphragm is not particularly limited as long as the driving source vibrates the diaphragm.
[0033] 吸入側流路 70aおよび吐出側流路 70b内には、例えばアルミニウムなどの金属薄 板からなる吸入弁 20aと吐出弁 20bがそれぞれ設けられている。弁 20a、 20bは、液 体の流れ方向に対して斜めに交差するようにして配置されている。また、弁 20a、 20 bはいずれも、流れ方向上流側の端部が片持ち梁状に支持され、下流側の端部は、 無負荷状態で流路 70a、 70bの側壁に当接する自由端となっている。したがって、吸 入弁 20aは、圧力室 50内に負圧が生じると吸入側流路 70aを開放し、圧力室 50内 に正圧が生じると流路 70aを閉鎖する。一方、吐出弁 20bは、圧力室 50内に負圧が 生じると流路 70bを閉鎖し、正圧が生じると流路 70bを閉鎖する。  [0033] In the suction side flow path 70a and the discharge side flow path 70b, a suction valve 20a and a discharge valve 20b made of a thin metal plate such as aluminum are provided, respectively. The valves 20a and 20b are arranged so as to obliquely intersect the flow direction of the liquid. In each of the valves 20a and 20b, the end on the upstream side in the flow direction is supported in a cantilever shape, and the end on the downstream side is a free end that abuts against the side wall of the flow passages 70a and 70b without load. It has become. Therefore, the suction valve 20a opens the suction side flow passage 70a when a negative pressure is generated in the pressure chamber 50, and closes the flow passage 70a when a positive pressure is generated in the pressure chamber 50. On the other hand, the discharge valve 20b closes the passage 70b when a negative pressure is generated in the pressure chamber 50, and closes the passage 70b when a positive pressure is generated.
[0034] なお、吸入側流路 70a、吐出側流路 70bの断面形状を、円形や円形の一部を直線 で切り取った、いわゆる Dカット形状としてもよレ、が、本実施形態のように流路 70a、 7 Obを矩形断面とすることによって、弁 20a、 20bを単純な形状で構成することができる 。また、その取付けも、上記のように、弁部材の一端を流路内の一壁面に接着すると レ、つた比較的容易な方法で実施することができる。 [0035] 以上のように構成された圧電ポンプ 1の動作について以下に説明する。 [0034] The cross-sectional shape of the suction-side flow path 70a and the discharge-side flow path 70b may be a so-called D-cut shape in which a circle or a part of a circle is cut out with a straight line, as in the present embodiment. The valves 20a and 20b can be formed in a simple shape by making the channels 70a and 7Ob have a rectangular cross section. In addition, the attachment can be performed by a relatively easy method, as described above, by attaching one end of the valve member to one wall surface in the flow path. The operation of the piezoelectric pump 1 configured as described above will be described below.
[0036] まず、圧電振動子 30に所定の極性の電圧を印加し、図示上向きに凸となるように 変位させる。すると、圧力室 50の容積が拡大し、圧力室 50内の圧力が負圧となる。こ れにより、吸入弁 20aが変位して吸入口 21aが開放され、液体が吸入側流路 70a、吸 入口 21aを経由して圧力室 50に流入する。このとき、吐出弁 20bは吐出口 20bを塞 いだ状態となっており、液体が吐出口 21bから流出することはない。 First, a voltage of a predetermined polarity is applied to the piezoelectric vibrator 30, and the piezoelectric vibrator 30 is displaced so as to project upward in the figure. Then, the volume of the pressure chamber 50 increases, and the pressure in the pressure chamber 50 becomes a negative pressure. As a result, the suction valve 20a is displaced to open the suction port 21a, and the liquid flows into the pressure chamber 50 via the suction-side flow path 70a and the suction port 21a. At this time, the discharge valve 20b is in a state of closing the discharge port 20b, and the liquid does not flow out of the discharge port 21b.
[0037] 次いで、圧電振動子 30に上記とは逆極性の電圧を印加し、図示下向きに凸となる ように変位させる。これにより圧力室 50の容積は縮小する。すると、吐出弁 20bが変 位して吐出口 21bが開放され、液体が吐出側流路 70bから吐出される。このとき、吸 入弁 20aは吸入側流路 70aを塞いでいるため、吸入口 21a側からの液体の流入およ び吐出はない。 Next, a voltage having a polarity opposite to that described above is applied to the piezoelectric vibrator 30 to displace the piezoelectric vibrator 30 so as to project downward in the figure. Thereby, the volume of the pressure chamber 50 is reduced. Then, the discharge valve 20b is displaced, the discharge port 21b is opened, and the liquid is discharged from the discharge-side flow path 70b. At this time, since the suction valve 20a blocks the suction-side flow path 70a, there is no inflow and discharge of liquid from the suction port 21a.
[0038] 以上の動作を繰り返すことによって、吸入口 21aからの液体の吸入と吐出口 21bか らの液体の吐出とが交互に繰り返され、液体を脈動させることができる。したがって液 体は、圧電ポンプ 1の作用により、図 1 (a)に示す循環流路 60a内を矢印方向に循環 する。  [0038] By repeating the above operation, the suction of the liquid from the suction port 21a and the discharge of the liquid from the discharge port 21b are alternately repeated, and the liquid can be pulsated. Therefore, the liquid circulates in the direction of the arrow in the circulation flow channel 60a shown in FIG.
[0039] 本実施形態において、圧電ポンプ 1の流路は、圧電ポンプの厚さ方向に屈曲する ことなく扁平に形成されている。具体的には、吸入側流路 70aと圧力室 50と吐出側 流路 70bとはいずれも下板 11上に形成されている。さらに、吸入側流路 70aと吐出 側流路 70bとは、圧力室 50を間において一直線上に位置し、同一方向に延びてい る。その結果、圧電ポンプ 1の流路は、扁平かつ直線状に形成されている。したがつ て、従来の圧電ポンプのように流路が屈曲しているものと比較して、圧電ポンプ 1では 液体の流れ方向が変化することによる圧力損失が抑えられ、液体を効率よく循環させ ること力 Sできる。また、圧電ポンプ 1では、吸入弁 20aおよび吐出弁 20bが液体の流れ 方向に対して傾斜するように設けられている。そのため、流れ方向に直交するように 設けられた弁と比較して、吸入弁 20aおよび吐出弁 20bは小さな力で変位し、液体の 圧力損失をより小さくすることができる。以上のことから、圧電ポンプ 1ではポンプ効率 が従来のものに比べ向上しており、それに伴って、冷却システム 10 (図 1参照)の冷 却効率も向上する。なお、本実施形態では吸入弁 20aおよび吐出弁 20bとのいずれ もが流れ方向に対して傾斜しているものであつたが、その少なくとも一方のみが傾斜 しているものであってもよい。 In the present embodiment, the flow path of the piezoelectric pump 1 is formed flat without bending in the thickness direction of the piezoelectric pump. Specifically, the suction-side flow path 70a, the pressure chamber 50, and the discharge-side flow path 70b are all formed on the lower plate 11. Further, the suction side flow path 70a and the discharge side flow path 70b are located on a straight line with the pressure chamber 50 therebetween, and extend in the same direction. As a result, the flow path of the piezoelectric pump 1 is formed flat and linear. Therefore, as compared with a conventional piezoelectric pump in which the flow path is bent, the pressure loss due to a change in the flow direction of the liquid is suppressed in the piezoelectric pump 1, and the liquid is circulated efficiently. S power In the piezoelectric pump 1, the suction valve 20a and the discharge valve 20b are provided so as to be inclined with respect to the liquid flow direction. Therefore, the suction valve 20a and the discharge valve 20b are displaced by a small force as compared with a valve provided so as to be orthogonal to the flow direction, and the pressure loss of the liquid can be further reduced. From the above, the pump efficiency of the piezoelectric pump 1 is improved as compared with the conventional one, and accordingly, the cooling efficiency of the cooling system 10 (see FIG. 1) is improved. In this embodiment, any one of the suction valve 20a and the discharge valve 20b is used. Although each of them is inclined with respect to the flow direction, at least one of them may be inclined.
[0040] また、本実施形態では、上記のように流路 70a、 70bが圧力室 50の両端に位置して いるため、流路が扁平化し、圧電ポンプ 1全体としての薄型化が図られている。さらに 、圧電振動子 30は、扁平な直方体状に形成された圧力室 50の大面積となる一面に 作用するように配置されているため、圧電振動子 30の屈曲変位が効率よく圧力室 50 内に伝達される。そのため、比較的小さな圧電振動子 30で十分な流量を得ることが でき、結果的に圧電ポンプ 1の小型化を実現することができる。なお、本実施形態は 、 1つの圧電振動子 30のみが圧力室 50の上面に配置されたものであった力 圧電 振動子の配置数や形状は特に限定されるものではない。例えば、圧力室 50の上下 面に 2つの圧力振動子が設けられてレ、てもよレ、。  In the present embodiment, since the flow paths 70a and 70b are located at both ends of the pressure chamber 50 as described above, the flow paths are flattened, and the overall thickness of the piezoelectric pump 1 is reduced. I have. Further, since the piezoelectric vibrator 30 is disposed so as to act on one surface of a large area of the pressure chamber 50 formed in a flat rectangular parallelepiped shape, the bending displacement of the piezoelectric vibrator 30 is efficiently performed in the pressure chamber 50. Is transmitted to. Therefore, a sufficient flow rate can be obtained with the relatively small piezoelectric vibrator 30, and as a result, the size of the piezoelectric pump 1 can be reduced. Note that, in the present embodiment, the number and shape of the force piezoelectric vibrators in which only one piezoelectric vibrator 30 is disposed on the upper surface of the pressure chamber 50 are not particularly limited. For example, two pressure vibrators are provided on the upper and lower surfaces of the pressure chamber 50.
[0041] 以上のように、薄型化とポンプ効率の向上を実現した圧電ポンプ 1を用いた冷却シ ステム 1は、効率よく液体を循環させることが可能となる。また、例えば、流路ユニット 6 0に直接、または流路ユニット 60の近傍に発熱部品を配置すれば、その部品の発す る熱を効率よく放熱する。  [0041] As described above, the cooling system 1 using the piezoelectric pump 1 that achieves a reduction in thickness and an improvement in pump efficiency can circulate liquid efficiently. Further, for example, if a heat-generating component is arranged directly in the flow channel unit 60 or in the vicinity of the flow channel unit 60, the heat generated by the component is efficiently radiated.
[0042] (第 2の実施形態)  (Second Embodiment)
第 1の実施形態では、圧力室が直方体状に形成されたものであつたが、液体の抵 抗を小さくするため、圧力室の断面積が徐々に変化するように形成されていてもよい  In the first embodiment, the pressure chamber is formed in a rectangular parallelepiped shape, but may be formed so that the cross-sectional area of the pressure chamber changes gradually in order to reduce the resistance of the liquid.
[0043] 図 3は、本発明の第 2の実施形態による圧電ポンプを示している。図 3に示す圧電 ポンプ 2は、圧力室 50 'が流線形状となるように形成されている。また、圧力室 50 'の 周壁には液体の流れを加速させる構造部(返し溝 1 l a)が設けられてレ、る。その他の 構造については、図 2の圧電ポンプ 1と同様であり、同一機能の構造部には図 2と同 一の符号を付し、その説明は省略する。 FIG. 3 shows a piezoelectric pump according to a second embodiment of the present invention. The piezoelectric pump 2 shown in FIG. 3 is formed so that the pressure chamber 50 'has a streamline shape. Further, a structure (return groove 1 la) for accelerating the flow of the liquid is provided on the peripheral wall of the pressure chamber 50 '. The other structures are the same as those of the piezoelectric pump 1 of FIG. 2, and the structural parts having the same functions are denoted by the same reference numerals as in FIG. 2, and the description thereof is omitted.
[0044] 本実施形態の圧力室 50 'は、図 3 (b)に示すように、上面側から見てほぼ流線形状 となるように周壁面 l ieが形成されている。周壁面 l ieは、圧力室 50 'の底部 1 lbに 対し垂直に設けられている。また、周壁面 l ieは、吸入口 21aおよび吐出口 21bにそ れぞれ連続し、外側に向かって弧状に屈曲している。なお、この弧状の形状は、液体 の抵抗が極力小さくなるように、液体の種類ゃ圧電振動子 30の特性などに応じて適 宜設定されることが好ましい。 As shown in FIG. 3B, the pressure chamber 50 ′ of the present embodiment is formed with a peripheral wall surface ie that has a substantially streamline shape when viewed from the upper surface side. The peripheral wall lie is provided perpendicular to the bottom 1 lb of the pressure chamber 50 '. Further, the peripheral wall surface is continuous with the suction port 21a and the discharge port 21b, respectively, and is bent outward in an arc shape. Note that this arc-shaped shape is It is preferable to appropriately set the resistance according to the type of the liquid, the characteristics of the piezoelectric vibrator 30, and the like so that the resistance of the piezoelectric vibrator 30 is minimized.
[0045] 返し溝 11aは、周壁面 l i eに開口するように、圧力室 50 'の周壁に複数個形成され ている。本実施形態では、 5つの返し溝 11aが互いに所定の間隔を置いて、同一の 溝幅で形成されている。また、それぞれの返し溝 11aは、吐出口 21b付近に位置する 一点(不図示)を中心とする放射線方向に延びるように形成されている。すなわち、返 し溝 11aはその開口部が吐出口 21b付近の上記一点に向くように配置されている。 なお、好ましくは、上記一点は、吐出口 21bの中央に位置していることが好ましい。  [0045] A plurality of return grooves 11a are formed on the peripheral wall of the pressure chamber 50 'so as to open to the peripheral wall surface lee. In the present embodiment, the five return grooves 11a are formed at a predetermined interval from each other and have the same groove width. Each return groove 11a is formed so as to extend in the radiation direction about one point (not shown) located near the discharge port 21b. That is, the return groove 11a is arranged so that its opening faces the above-mentioned one point near the discharge port 21b. Preferably, the one point is located at the center of the discharge port 21b.
[0046] 返し溝 11aのより詳細な形状について、図 4を参照して以下に説明する。図 4は、 1 つの返し溝 11 aおよびその周辺での液体の流れ方向を示した拡大斜視図である。図 4に示すように、返し溝 11aは、周壁の上面である縁上面 11cと周壁面 l ieとに開口 している。また、返し溝 11aの深さは、先端 (周壁面 l ie側)に向かって徐々に深くな るように形成されている。  A more detailed shape of the return groove 11a will be described below with reference to FIG. FIG. 4 is an enlarged perspective view showing the flow direction of the liquid around one return groove 11a and its periphery. As shown in FIG. 4, the return groove 11a is opened on the edge upper surface 11c, which is the upper surface of the peripheral wall, and on the peripheral wall surface ie. Further, the depth of the return groove 11a is formed so as to gradually increase toward the tip (the peripheral wall side).
[0047] 縁上面 11cの外周側には、縁上面 11 cに対し所定の高さを有する凸部 l idが形成 されている。本実施形態では、圧電振動子 30 (図 3 (a)参照)は、この凸部 l idの上 面に配置される。したがって、縁上面 11cと圧電振動子 30との間には所定の間隙が 形成され、その間隙も圧力室 50 'の一部を構成することとなる。このような構成におい て、圧電振動子 30を下方に凸となるように変位させると、液体が返し溝 11aの上面側 の開口部から流入し、返し溝 11a内を通過して周壁面 l ie側の開口部から吐出され る。  [0047] A protrusion lid having a predetermined height with respect to the edge upper surface 11c is formed on the outer peripheral side of the edge upper surface 11c. In the present embodiment, the piezoelectric vibrator 30 (see FIG. 3A) is disposed on the upper surface of the convex portion lid. Therefore, a predetermined gap is formed between the edge upper surface 11c and the piezoelectric vibrator 30, and the gap also forms a part of the pressure chamber 50 '. In such a configuration, when the piezoelectric vibrator 30 is displaced so as to protrude downward, the liquid flows in from the opening on the upper surface side of the return groove 11a, passes through the return groove 11a, and passes through the peripheral wall surface. From the side opening.
[0048] 以上のように構成された圧電ポンプ 2では、圧力室 50 'の周壁面 l ieが流線形状に 形成されており、吸入側流路 70aおよび吐出側流路 70bに向かってその断面積が連 続的に小さくなつている。その結果、液体と周壁面 l ieとの間の抵抗が低減し、圧力 室 50 '内での液体の圧力損失がより小さくなる。また、圧電振動子 30を変位させて液 体を吐出側流路 70b (図 3参照)から吐出するときに、返し溝 11a内の液体が吐出口 21b側に向かって吐出される。したがって、圧力室 50 '内における液体の流れが加 速されるため、圧電ポンプ 2のポンプ効率がより向上する。特に、それぞれの返し溝 1 laが吐出口 21bに向かって開口しているため、返し溝 11aから吐出される液体はより 効果的に液体の流れを加速させる。 [0048] In the piezoelectric pump 2 configured as described above, the peripheral wall surface ie of the pressure chamber 50 'is formed in a streamline shape, and cuts toward the suction side flow path 70a and the discharge side flow path 70b. The area is continuously decreasing. As a result, the resistance between the liquid and the peripheral wall surface is reduced, and the pressure loss of the liquid in the pressure chamber 50 'becomes smaller. Further, when the piezoelectric vibrator 30 is displaced to discharge the liquid from the discharge-side channel 70b (see FIG. 3), the liquid in the return groove 11a is discharged toward the discharge port 21b. Therefore, the flow of the liquid in the pressure chamber 50 'is accelerated, and the pump efficiency of the piezoelectric pump 2 is further improved. In particular, since each return groove 1 la opens toward the discharge port 21b, the liquid discharged from the return groove 11a is more Effectively accelerate liquid flow.
[0049] なお、返し溝 1 1aの配置数や形状、および、凸部 l idの高さ等は、液体の種類や吐 出口 20bの形状等に応じて適宜設定されることが好ましい。例えば、圧力室の形状 や吐出口の位置によっては、返し溝 11aが 1つだけ形成されているものであってもよ レ、。しかし、本実施形態のように、流路 70a、 70bの軸線を挟んで対称形に形成され た圧力室 50 'の場合、図 3 (b)に示すように、返し溝 11aが軸線を挟んで対称形とな るように設けられているとよレ、。これにより、液体は軸線を挟んでほぼ同様の流れとな る。  It is preferable that the number and shape of the return grooves 11a, the height of the protrusions lid, and the like are appropriately set according to the type of liquid, the shape of the discharge port 20b, and the like. For example, depending on the shape of the pressure chamber and the position of the discharge port, only one return groove 11a may be formed. However, in the case of the pressure chamber 50 ′ formed symmetrically with respect to the axis of the flow paths 70a and 70b as in the present embodiment, as shown in FIG. 3B, the return groove 11a is formed with the axis interposed therebetween. It is provided to be symmetrical. As a result, the liquid flows in substantially the same manner across the axis.
[0050] 返し溝 11aの形状は、例えば図 5に示すように、返し溝 1 la'の幅を圧力室 50 'に向 力、つて先細りとして、返し溝 11a'内の液体が返し溝 11a'の先端からより高速で吐出 されるようにしてもよレ、。これにより、液体の流れはより加速され、ポンプ効率がより向 上する。  [0050] For example, as shown in Fig. 5, the shape of the return groove 11a 'is such that the width of the return groove 1la' is tapered toward the pressure chamber 50 'and the liquid in the return groove 11a' is tapered. It may be possible to discharge at a higher speed from the tip of the. Thereby, the flow of the liquid is further accelerated, and the pump efficiency is further improved.
[0051] また、図 3の圧電ポンプ 2では、圧力室 50 'の高さは一定のまま、流路 70a、 70bの 軸線に直交する方向の長さ力 流路 70a、 70bに向かって連続的に短くなるように周 壁面 l ieが湾曲し、圧力室 50 'の断面積が吸入口 21a、吐出口 21bに向かって小さ くなる構成であった。しかし、圧力室の形状は断面積が連続的に小さくなるものであ ればこれに限られるものではない。  Further, in the piezoelectric pump 2 of FIG. 3, the height of the pressure chamber 50 ′ is kept constant, and the length force in the direction orthogonal to the axis of the channels 70 a and 70 b is continuous toward the channels 70 a and 70 b. The peripheral wall is curved so as to be shorter, and the cross-sectional area of the pressure chamber 50 ′ becomes smaller toward the inlet 21a and the outlet 21b. However, the shape of the pressure chamber is not limited to this as long as the cross-sectional area is continuously reduced.
[0052] 例えば、図 6に示すように、圧力室 50 ' 'の角部にテーパ 12aが設けられているもの であってもよい。すなわち、圧力室 50 ' 'の高さが吸入口 21aまたは吐出口 21bに向 力 て連続的に低くなることによって、その断面積が小さくなつていくように構成され ていてもよい。これにより、圧力室 50 ' '内を通過する液体の抵抗が小さくなり、液体 の圧力損失が抑えられる。  For example, as shown in FIG. 6, the pressure chamber 50 ″ may be provided with a taper 12 a at a corner thereof. That is, the cross-sectional area may be configured to decrease as the height of the pressure chamber 50 ″ continuously decreases toward the suction port 21 a or the discharge port 21 b. Thereby, the resistance of the liquid passing through the pressure chamber 50 "" is reduced, and the pressure loss of the liquid is suppressed.
[0053] (第 3の実施形態)  (Third Embodiment)
一般に、図 1に示す冷却システム 10のような閉路に構成された流路は、気泡が残 存しないように液体で満たされる。しかし、例えば、液体中の溶存酸素が気泡化する といったことにより液体中に気泡が混入することがある。圧電ポンプにおいて、流路内 の気泡の存在はポンプ効率低下の原因となる。また、閉路構造の流路内の気泡の存 在は、冷却システム 10の冷却効率の低下にもつながる。 [0054] そこで、ポンプ効率をさらに向上させるため、以上 2つの実施形態の構成に加え、 圧電ポンプに、液体中に混入した気泡を収集する手段を備えてもよい。 In general, a closed channel such as the cooling system 10 shown in FIG. 1 is filled with a liquid so that no bubbles remain. However, bubbles may be mixed into the liquid due to, for example, dissolved oxygen in the liquid becoming bubbles. In a piezoelectric pump, the presence of bubbles in the flow path causes a reduction in pump efficiency. In addition, the presence of bubbles in the flow path having the closed circuit structure leads to a decrease in the cooling efficiency of the cooling system 10. Therefore, in order to further improve the pump efficiency, in addition to the configurations of the above two embodiments, the piezoelectric pump may be provided with a unit for collecting bubbles mixed in the liquid.
[0055] 図 7—図 9に示す圧電ポンプ 3、 3 '、 3 ' 'は、いずれも気泡を収集する手段として気 体室 35、 35 '、 35 ' 'をそれぞれ備えている。なお、図 7 (a)—図 9 (a)はそれぞれ、圧 電ポンプ 3、 3 '、 3 "の横断面図であり、図 7 (b) 図 9 (b)はそれぞれ、気体室 35、 3 5 \ 35 "内を示す縦断面図である。  [0055] Each of the piezoelectric pumps 3, 3 ', 3 "' shown in Figs. 7 to 9 has a gas chamber 35, 35 ', 35"' as means for collecting bubbles. FIGS. 7 (a) to 9 (a) are cross-sectional views of the piezoelectric pumps 3, 3 ′ and 3 ″, respectively, and FIGS. 7 (b) and 9 (b) are gas chambers 35 and 3 respectively. 35 is a vertical sectional view showing the inside of FIG.
[0056] 図 7に示す圧電ポンプ 3は、圧電振動子 30の上方に気体室 35が形成されている。  In the piezoelectric pump 3 shown in FIG. 7, a gas chamber 35 is formed above the piezoelectric vibrator 30.
その他の構造については、図 2の圧電ポンプ 1と同様であり、同一機能の構造部には 図 2と同一の符号を付し、その説明は省略する。  The other structure is the same as that of the piezoelectric pump 1 of FIG. 2, and the structural portions having the same functions are denoted by the same reference numerals as those of FIG. 2, and the description thereof is omitted.
[0057] 気体室 35は、圧電振動子 30と、吸入側流路 70aおよび吐出側流路 70bとを覆うよ うに、圧電ポンプ 3の筐体によって形成されている。  The gas chamber 35 is formed by a housing of the piezoelectric pump 3 so as to cover the piezoelectric vibrator 30 and the suction-side flow path 70a and the discharge-side flow path 70b.
[0058] また、吸入弁 20aよりやや上流側には、気泡を気体室 35に導入するための 1つの 取入口 35aが設けられている。取入口 35aは、吸入側流路 70aと気体室 35とを連通 する孔として形成されており、吸入側流路 70aの上面に位置している。  Further, one intake port 35a for introducing bubbles into the gas chamber 35 is provided slightly upstream of the suction valve 20a. The intake port 35a is formed as a hole communicating the suction side flow path 70a and the gas chamber 35, and is located on the upper surface of the suction side flow path 70a.
[0059] このような圧電ポンプ 3を、例えば、図 1の冷却システム 10に適用する場合、冷却シ ステム 10の流路と気圧室 35とで閉路構造の流路が構成される。そして、その流路は 循環させる液体によって完全に満たされる。つまり、冷却システム 10の初期状態では 、気体室 35内も液体によって満たされている。  When such a piezoelectric pump 3 is applied to, for example, the cooling system 10 shown in FIG. 1, a flow path of a closed structure is formed by the flow path of the cooling system 10 and the air pressure chamber 35. Then, the flow path is completely filled with the liquid to be circulated. That is, in the initial state of the cooling system 10, the inside of the gas chamber 35 is also filled with the liquid.
[0060] こうして構成された冷却システム 10において、液体中に気泡が発生した場合、気泡 は液体の流れによって循環流路 60 (図 1参照)内を移動する。そして吸入側流路 70a の上壁を沿うように移動してきた気泡は、取入口 35aに取り込まれ、上方に向かって 浮上する。同時に、気体室 35内の液体がそれによつて取入口 35aから押し出され、 気泡は気体室 35内に収集される。このようにして圧電ポンプ 3では、冷却システム 10 の流路から気泡を排除することができ、ポンプ効率を落とすことなく液体を循環させる こと力 Sできる。  In the cooling system 10 thus configured, when bubbles are generated in the liquid, the bubbles move in the circulation channel 60 (see FIG. 1) by the flow of the liquid. Then, the air bubbles that have moved along the upper wall of the suction-side flow path 70a are taken into the intake port 35a and float upward. At the same time, the liquid in the gas chamber 35 is thereby pushed out of the inlet 35a, and bubbles are collected in the gas chamber 35. In this way, in the piezoelectric pump 3, air bubbles can be eliminated from the flow path of the cooling system 10, and the power S can be circulated without lowering the pump efficiency.
[0061] なお、本実施形態では、図 7 (b)に示すように、取入口 35aの開口形状は円形に形 成されている。し力、し、取入口 35aの形状は、気泡を収集できるものであればこれに 限定されるものではなぐ例えば、吸入側流路 70aの幅方向に延びる 1つの長孔(不 図示)で形成されていてもよい。これによつて流路 70aの上壁に沿うように移動する気 泡を効果的に収集することができる。また、取入口の配置数を 2つ以上とすれば、気 泡がいずれかの取入口から気体室 35内に入ると、同時に、他の取入口から液体が 流出する。このように、気泡と液体との交換動作力スムーズに実施されるようにしても よい。また、当然ながら、気泡の収集をより効果的にするため、取入口 35が流路 70a に対して高い位置に配置されていてもよいし、気泡を取入口 35に案内する溝や切欠 き部が形成されていてもよい。 [0061] In the present embodiment, as shown in Fig. 7 (b), the opening of the intake 35a is formed in a circular shape. The shape of the suction port 35a is not limited to a shape that can collect air bubbles. For example, one long hole (not shown) extending in the width direction of the suction-side flow path 70a. (Shown). Thus, bubbles moving along the upper wall of the flow channel 70a can be effectively collected. If the number of inlets is set to two or more, when the bubbles enter the gas chamber 35 from one of the inlets, the liquid flows out from the other inlet at the same time. Thus, the exchange operation force between the bubble and the liquid may be smoothly performed. In addition, of course, the inlet 35 may be arranged at a higher position with respect to the flow path 70a in order to make the collection of air bubbles more effective, or a groove or a notch for guiding the air bubbles to the inlet 35 may be provided. May be formed.
[0062] 他にも、第 3の実施形態による圧電ポンプは、図 8、図 9に示すように種々変更され てもよレ、。図 8の圧電ポンプ 3 'は、圧電振動子 30を圧力室 50の下面に配置したもの である。図 9の圧電ポンプ 3 ' 'は、気体室 35 ' 'を環状領域に配置したものである。レ、 ずれの圧電ポンプ 3 '、 3 ' 'も上記圧電ポンプ 3と本質的な違いはなぐ気体室 35、 3 5 '、 35 ',は同様の機能を有している。  [0062] In addition, the piezoelectric pump according to the third embodiment may be variously modified as shown in Figs. The piezoelectric pump 3 ′ shown in FIG. 8 has the piezoelectric vibrator 30 arranged on the lower surface of the pressure chamber 50. The piezoelectric pump 3 ′ ″ in FIG. 9 has a gas chamber 35 ″ arranged in an annular region. The gas chambers 35, 35 ', 35', which are essentially different from the piezoelectric pump 3 in the piezoelectric pumps 3 ', 3' ', have the same function.
[0063] 上述したように、第 3の実施形態では、圧電ポンプ 3に気体室 35が設けられ、液体 中に発生した気泡を収集できるような構成となっていることにより、圧電ポンプ 3のポ ンプ効率がより向上する。また、冷却システム 10における冷却効率が長期にわたって 高く維持される。なお、本実施形態で説明した圧電ポンプ 3、 3 '、 3 ' 'を備える冷却シ ステム 10では、環境温度の変化等によって液体が膨張したとしてもその容積変化は 気体室 35、 35 '、 35 ' 'によって吸収される。したがって、圧電ポンプ 3、 3 '、 3 ' 'や冷 却システム 10の流路などの破損が防止される。  [0063] As described above, in the third embodiment, the piezoelectric pump 3 is provided with the gas chamber 35 so as to be able to collect bubbles generated in the liquid. The pump efficiency is further improved. Further, the cooling efficiency of the cooling system 10 is maintained high for a long time. In the cooling system 10 including the piezoelectric pumps 3, 3 ', and 3' '' described in the present embodiment, even if the liquid expands due to a change in environmental temperature or the like, the volume change does not occur in the gas chambers 35, 35 ', and 35. Absorbed by ''. Therefore, breakage of the piezoelectric pumps 3, 3 ', 3' '' and the flow path of the cooling system 10 is prevented.
[0064] 以上、代表的な実施の形態について説明したが、各実施形態において説明した構 成要素は、可能な限り任意の組み合わせで使用してもよい。  Although the exemplary embodiments have been described above, the components described in each embodiment may be used in any combination as much as possible.

Claims

請求の範囲 The scope of the claims
[1] 扁平に形成され、液体で充填される圧力室と、  [1] a pressure chamber formed flat and filled with a liquid,
前記圧力室を間において互いの軸線が同一となるように前記圧力室の側面にそれ ぞれ配置され、前記圧力室に連通する吸入側流路および吐出側流路と、  A suction-side flow path and a discharge-side flow path that are respectively arranged on the side surfaces of the pressure chamber so that the axes of the pressure chambers are the same, and communicate with the pressure chamber;
前記吸入側流路および前記吐出側流路にそれぞれ配置され、その少なくとも一方 が前記軸線方向に対して傾斜している逆止弁と、  A check valve disposed in each of the suction-side flow path and the discharge-side flow path, at least one of which is inclined with respect to the axial direction;
前記圧力室の上面および下面の少なくとも一方に配置され、振動することによって 前記圧力室の容積を可変とするダイヤフラムとを有するダイヤフラムポンプ。  A diaphragm disposed on at least one of an upper surface and a lower surface of the pressure chamber, the diaphragm being oscillated to change the volume of the pressure chamber.
[2] 前記軸線は、前記軸線に直交する面における前記圧力室の断面形状の中心に位 置している、請求項 1に記載のダイヤフラムポンプ。  2. The diaphragm pump according to claim 1, wherein the axis is located at a center of a cross-sectional shape of the pressure chamber on a plane orthogonal to the axis.
[3] 前記軸線に直交する面における、前記圧力室、前記吸入側流路、および前記吐出 側流路の各断面形状はいずれも略矩形に形成されている、請求項 1または 2に記載 のダイヤフラムポンプ。 3. The cross-sectional shape of each of the pressure chamber, the suction-side flow path, and the discharge-side flow path in a plane orthogonal to the axis is all substantially rectangular. Diaphragm pump.
[4] 前記圧力室の下面と、前記吸入側流路および前記吐出側流路の下面とが同一面 上に形成されている、請求項 3に記載のダイヤフラムポンプ。  4. The diaphragm pump according to claim 3, wherein a lower surface of the pressure chamber and lower surfaces of the suction-side flow path and the discharge-side flow path are formed on the same plane.
[5] 上面側から見た前記圧力室の、前記軸線に直交する方向の長さが、前記吸入側流 路または前記吐出側流路に向かって連続的に短くなるように形成されている、請求 項 1ないし 4のいずれ力、 1項に記載のダイヤフラムポンプ。 [5] The length of the pressure chamber in a direction perpendicular to the axis as viewed from the upper surface side is formed so as to be continuously reduced toward the suction-side flow path or the discharge-side flow path. The diaphragm pump according to claim 1, wherein the diaphragm pump is any one of claims 1 to 4.
[6] 前記圧力室の高さが、前記吸入側流路または前記吐出側流路に向かって連続的 に低くなるように形成されてレ、る、請求項 1なレ、し 4のレ、ずれ力、 1項に記載のダイヤフ ラムポンプ。 6. The pressure chamber according to claim 1, wherein a height of the pressure chamber is formed so as to continuously decrease toward the suction-side flow path or the discharge-side flow path. Shear force, diaphragm pump described in item 1.
[7] 前記圧力室の周壁に形成され、前記液体の流れを流れ方向下流側に加速させる 少なくとも 1つの溝をさらに有する、請求項 1ないし 6のいずれか 1項に記載のダイヤ フラムポンプ。  7. The diaphragm pump according to claim 1, further comprising at least one groove formed on a peripheral wall of the pressure chamber to accelerate the flow of the liquid toward a downstream side in the flow direction.
[8] 前記溝は、前記圧力室に面し前記液体が流入する上面開口部と、前記圧力室の 周壁面に開口し前記液体が前記流れ方向下流側に向かって吐出される側面開口部 とを有する、請求項 7に記載のダイヤフラムポンプ。  [8] The groove has an upper surface opening facing the pressure chamber and into which the liquid flows, and a side opening opening in the peripheral wall surface of the pressure chamber and discharging the liquid toward the downstream side in the flow direction. 8. The diaphragm pump according to claim 7, comprising:
[9] 前記溝は、前記吐出側流路の入口付近に位置する一点を中心とする放射線方向 に延びている、請求項 7または 8に記載のダイヤフラムポンプ。 [9] The groove has a radiation direction centered on a point located near the entrance of the discharge-side flow path. 9. The diaphragm pump according to claim 7, wherein the diaphragm pump extends.
[10] 前記吸入側流路の上面に開口し、前記液体内に混入した気泡を導入する少なくと も 1つの取入口と、前記取入口と連通し、導入された前記気泡が収集される密閉空間 とをさらに有する、請求項 1ないし 9のいずれ力、 1項に記載のダイヤフラムポンプ。 [10] At least one inlet for opening the upper surface of the suction-side flow path for introducing bubbles mixed in the liquid, and a seal communicating with the inlet and collecting the introduced bubbles. 10. The diaphragm pump according to claim 1, further comprising a space.
[11] 前記取入口は、前記吸入側流路内であって前記逆止弁より上流側に位置している[11] The inlet is located in the suction side flow path and upstream of the check valve.
、請求項 10に記載のダイヤフラムポンプ。 The diaphragm pump according to claim 10.
[12] 前記ダイヤフラムは、圧電素子によって駆動される圧電振動子である、請求項 1な レ、し 11のレ、ずれ力、 1項に記載のダイヤフラムポンプ。 12. The diaphragm pump according to claim 1, wherein the diaphragm is a piezoelectric vibrator driven by a piezoelectric element.
[13] 請求項 1ないし 12のいずれか 1項に記載のダイヤフラムポンプと、 [13] The diaphragm pump according to any one of claims 1 to 12, and
前記ダイヤフラムポンプの吐出側流路から吐出された液体を循環させて吸入側流路 に戻す閉路構造の流路とを有する冷却システム。  A flow path having a closed circuit structure for circulating the liquid discharged from the discharge side flow path of the diaphragm pump and returning the liquid to the suction side flow path.
PCT/JP2004/010339 2003-08-04 2004-07-21 Diaphragm pump and cooling system with the diaphragm pump WO2005012729A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005512479A JPWO2005012729A1 (en) 2003-08-04 2004-07-21 Diaphragm pump and cooling system provided with the diaphragm pump
US10/566,580 US20070065308A1 (en) 2003-08-04 2004-07-21 Diaphragm pump and cooling system with the diaphragm pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-285915 2003-08-04
JP2003285915 2003-08-04

Publications (1)

Publication Number Publication Date
WO2005012729A1 true WO2005012729A1 (en) 2005-02-10

Family

ID=34113910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010339 WO2005012729A1 (en) 2003-08-04 2004-07-21 Diaphragm pump and cooling system with the diaphragm pump

Country Status (5)

Country Link
US (1) US20070065308A1 (en)
JP (1) JPWO2005012729A1 (en)
CN (1) CN100510400C (en)
TW (1) TWI255886B (en)
WO (1) WO2005012729A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066777A1 (en) * 2005-12-09 2007-06-14 Kyocera Corporation Fluid actuator, heat generating device using the same, and analysis device
CN100338361C (en) * 2005-08-12 2007-09-19 北京工业大学 Valveless piezoelectric pump
WO2020246232A1 (en) * 2019-06-03 2020-12-10 ソニー株式会社 Fluid control device and electronic apparatus
JP2021001574A (en) * 2019-06-21 2021-01-07 東芝テック株式会社 Piezoelectric pump and liquid ejection device
CN112219031A (en) * 2018-05-31 2021-01-12 株式会社村田制作所 Pump and method of operating the same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200839495A (en) * 2007-03-30 2008-10-01 Cooler Master Co Ltd Structure of water cooling head
GB0804739D0 (en) * 2008-03-14 2008-04-16 The Technology Partnership Plc Pump
EP2306018B1 (en) * 2008-06-03 2016-05-11 Murata Manufacturing Co. Ltd. Piezoelectric micro-blower
TWI360517B (en) * 2008-12-19 2012-03-21 Benq Materials Corp Method of making bubble-type micro-pump
CN102597519B (en) * 2009-12-04 2015-07-08 株式会社村田制作所 Piezoelectric micro-blower
US8480622B2 (en) * 2009-12-18 2013-07-09 Sims Infusion pump
TWI412716B (en) * 2010-10-13 2013-10-21 Microjet Technology Co Ltd Heat-absorbable fluid transmission device
DE102011052432A1 (en) * 2011-04-15 2012-10-18 Reinhausen Plasma Gmbh Diaphragm pump and method for conveying fine-grained powders by means of a diaphragm pump
EP2511529A1 (en) * 2011-04-15 2012-10-17 Ikerlan, S. Coop. Impulsion core for a fluid micropump
DE102016201182A1 (en) 2016-01-27 2017-07-27 Siemens Aktiengesellschaft Diaphragm pump with dust suction from below
DE102016216006A1 (en) 2016-08-25 2018-03-01 Siemens Aktiengesellschaft Double membrane for a dust pump
DE102016216016A1 (en) 2016-08-25 2018-03-15 Siemens Aktiengesellschaft Production of a porous aluminum filter for a membrane pump
DE102016216012A1 (en) 2016-08-25 2018-03-01 Siemens Aktiengesellschaft Diaphragm pump with porous, curved aluminum filter
JP2018103380A (en) * 2016-12-22 2018-07-05 東芝テック株式会社 Liquid circulation module, liquid discharge device, and liquid discharge method
CN107381701B (en) * 2017-08-22 2020-09-01 西安建筑科技大学 Ozone air flotation device and method for supplying air by using constant-pressure microbubble generator
CN108678880A (en) * 2018-05-22 2018-10-19 湖北赛恩斯科技股份有限公司 A kind of fuel pump
CN108591031A (en) * 2018-05-31 2018-09-28 东莞市创点智能卫浴实业有限公司 A kind of novel water vapor self-priming fluid mixing integral type foam pump and apply its bathroom device
JP7214500B2 (en) * 2019-02-20 2023-01-30 東芝テック株式会社 Piezoelectric pump and liquid ejection device
CN111255667B (en) * 2020-01-15 2021-11-02 东方红卫星移动通信有限公司 Piezoelectric actuating micro-driver of low-orbit satellite microfluidic system
JP2022039456A (en) * 2020-08-28 2022-03-10 日本電産トーソク株式会社 Electric pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154566U (en) * 1984-09-14 1986-04-12
JP2971412B2 (en) * 1997-03-07 1999-11-08 バンドー化学株式会社 Conveying belt with projection and method of manufacturing the same
JP2000087862A (en) * 1998-09-11 2000-03-28 Citizen Watch Co Ltd Micropump and its manufacture
WO2001066947A1 (en) * 2000-03-06 2001-09-13 Hitachi, Ltd. Liquid feeding device and analyzing device using the device
US6520753B1 (en) * 1999-06-04 2003-02-18 California Institute Of Technology Planar micropump
JP2003120548A (en) * 2001-07-18 2003-04-23 Matsushita Electric Ind Co Ltd Small pump, cooling system and portable equipment
JP6056150B2 (en) * 2011-04-08 2017-01-11 日亜化学工業株式会社 Semiconductor light emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671412B2 (en) * 1988-08-02 1997-10-29 日本電気株式会社 Piezoelectric micro pump
US5611214A (en) * 1994-07-29 1997-03-18 Battelle Memorial Institute Microcomponent sheet architecture
US6042345A (en) * 1997-04-15 2000-03-28 Face International Corporation Piezoelectrically actuated fluid pumps
TW558611B (en) * 2001-07-18 2003-10-21 Matsushita Electric Ind Co Ltd Small pump, cooling system and portable equipment
CN1378041A (en) * 2002-05-20 2002-11-06 张建辉 High frequency valve piezoelectric pump and its pump chamber design method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154566U (en) * 1984-09-14 1986-04-12
JP2971412B2 (en) * 1997-03-07 1999-11-08 バンドー化学株式会社 Conveying belt with projection and method of manufacturing the same
JP2000087862A (en) * 1998-09-11 2000-03-28 Citizen Watch Co Ltd Micropump and its manufacture
US6520753B1 (en) * 1999-06-04 2003-02-18 California Institute Of Technology Planar micropump
WO2001066947A1 (en) * 2000-03-06 2001-09-13 Hitachi, Ltd. Liquid feeding device and analyzing device using the device
JP2003120548A (en) * 2001-07-18 2003-04-23 Matsushita Electric Ind Co Ltd Small pump, cooling system and portable equipment
JP6056150B2 (en) * 2011-04-08 2017-01-11 日亜化学工業株式会社 Semiconductor light emitting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338361C (en) * 2005-08-12 2007-09-19 北京工业大学 Valveless piezoelectric pump
WO2007066777A1 (en) * 2005-12-09 2007-06-14 Kyocera Corporation Fluid actuator, heat generating device using the same, and analysis device
US8159110B2 (en) 2005-12-09 2012-04-17 Kyocera Corporation Fluid actuator, and heat generating device and analysis device using the same
JP5229988B2 (en) * 2005-12-09 2013-07-03 京セラ株式会社 Fluid actuator and heat generating device and analyzer using the same
CN112219031A (en) * 2018-05-31 2021-01-12 株式会社村田制作所 Pump and method of operating the same
WO2020246232A1 (en) * 2019-06-03 2020-12-10 ソニー株式会社 Fluid control device and electronic apparatus
JPWO2020246232A1 (en) * 2019-06-03 2020-12-10
JP2021001574A (en) * 2019-06-21 2021-01-07 東芝テック株式会社 Piezoelectric pump and liquid ejection device
JP7370739B2 (en) 2019-06-21 2023-10-30 東芝テック株式会社 Piezoelectric pump and liquid discharge device

Also Published As

Publication number Publication date
TW200508489A (en) 2005-03-01
CN1833105A (en) 2006-09-13
US20070065308A1 (en) 2007-03-22
JPWO2005012729A1 (en) 2007-11-01
CN100510400C (en) 2009-07-08
TWI255886B (en) 2006-06-01

Similar Documents

Publication Publication Date Title
WO2005012729A1 (en) Diaphragm pump and cooling system with the diaphragm pump
US7553135B2 (en) Diaphragm air pump
TWI747076B (en) Heat dissipating component for mobile device
US7802970B2 (en) Micropump for electronics cooling
EP2306019A1 (en) Piezoelectric microblower
EP2090781B1 (en) Piezoelectric micro-blower
JP4957480B2 (en) Piezoelectric micro pump
JP4730437B2 (en) Piezoelectric pump
JP4529915B2 (en) Piezoelectric pump and cooling device using the same
KR100594802B1 (en) A Diaphragm Air-Pump
JP2005188438A (en) Small pump
TW200850137A (en) Cooling system
JP5429317B2 (en) Piezoelectric micro pump
JPWO2010035862A1 (en) Piezoelectric pump
US20220056900A1 (en) Pump device
TWM538094U (en) Miniature fluid control device
TWM565241U (en) Micro gas driving apparatus
US8668474B2 (en) Electro-active valveless pump
JP4383207B2 (en) Fluid pump
JP4386165B2 (en) Liquid circulation device and electronic apparatus equipped with the liquid circulation device
TWI661127B (en) Micro-fluid control device
CN116745524A (en) Pump device
CN210660518U (en) Micro pump
TWM565240U (en) Micro gas driving apparatus
JP2003035264A (en) Small pump and driving method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022287.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007065308

Country of ref document: US

Ref document number: 10566580

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005512479

Country of ref document: JP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10566580

Country of ref document: US