WO2005011900A1 - Molding composition for powder sintering, method of sintering powder for sintering, and sinter member made from the powder - Google Patents

Molding composition for powder sintering, method of sintering powder for sintering, and sinter member made from the powder Download PDF

Info

Publication number
WO2005011900A1
WO2005011900A1 PCT/JP2003/009905 JP0309905W WO2005011900A1 WO 2005011900 A1 WO2005011900 A1 WO 2005011900A1 JP 0309905 W JP0309905 W JP 0309905W WO 2005011900 A1 WO2005011900 A1 WO 2005011900A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
powder
solvent
resin
green body
Prior art date
Application number
PCT/JP2003/009905
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Yotsutsuji
Original Assignee
Coki Engineering Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coki Engineering Inc. filed Critical Coki Engineering Inc.
Priority to AU2003254804A priority Critical patent/AU2003254804A1/en
Priority to PCT/JP2003/009905 priority patent/WO2005011900A1/en
Publication of WO2005011900A1 publication Critical patent/WO2005011900A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof

Definitions

  • the present invention relates to an innovative powder sintering method, a molding composition for powder sintering to be subjected to the method, and a powder sintered member thereof.
  • powder sintering method is injection molding using a mixture of powder for sintering and a polyacetal resin as pine resin as a raw material, and degreasing the green body formed by injection molding with nitric acid to obtain a powder sintered member
  • Chemical methods such as patent No. 2602 769 of forming a high pressure pressing method in which the powder material is put into a mold and subjected to high pressure pressing, a binder material such as paraffin for the powder for sintering described above
  • the mixture with the above is placed in a rubber bag, and this is pressed in a water tank to form a single compressed rod body (Laper press method), and then the shape required for the shrinkage rate during sintering is expected.
  • the compacted rod is roughly processed into a substantially similar shape, and the roughly processed product is heated to gradually remove the binder from the roughly processed product (semi-sintering). Need to be fused in a porous state) There have been proposed methods of processing the portion further and finally sintering it to form a powder-sintered member and many other methods.
  • the density is improved at the part in contact with the pressing surface, but the density decreases rapidly away from the pressing surface and the whole can be pressed uniformly.
  • the non-uniformity of the compressed powder material causes distortion during sintering.
  • this method can not produce complex shapes.
  • the present invention aims to solve the fundamental problems of such a powder sintering method by developing an innovative method for thawing ice. Disclosure of the invention
  • the molding composition for powder sintering according to the present invention is characterized in that “a powder for sintering is supported on a pinda resin in which a solvent-insoluble resin is mixed with a solvent-soluble resin”, and further the solvent-insoluble resin is insoluble.
  • the content of the resin is characterized by the fact that "solvent-insoluble resin is a resin that becomes fiber-like or feather-like".
  • the sintering powder is dispersed in the solvent-insoluble fibrous or feathered resin. It is characterized by
  • the resin components to be formed are mutually soluble at high temperatures and are solvent-soluble at room temperature, and are characterized as being solvent-insoluble at room temperature.
  • solvent-insoluble resin The volume ratio of the solvent-soluble resin and the solvent-soluble resin is 1: 0.5 to 4.0, and the mixing ratio of the pine resin and the powder for sintering is “the volume of the binder resin and the powder for sintering The ratio is 40: 60 to 65: 35 ”.
  • the molding composition for powder sintering of the present invention is composed of a pinda resin in which a solvent-insoluble resin is blended in a solvent-soluble resin, and a powder for sintering carried on the pinda resin. Therefore, when only the solvent-soluble resin component is degreased from an injection molded (or extrusion molded, vacuum molded or blow molded etc.) green body from this composition as a raw material, the other solvent insoluble in the degreased porous green body A resin component remains, which adheres the sintering powders to one another to be porous while exhibiting sufficient shape retention, and after degreasing, the mold of the porous green body during the sintering process. It can prevent the collapse and it becomes very easy to handle.
  • the one solvent-soluble resin component is uniformly mixed with the other solvent-insoluble resin component, only the soluble resin component is eluted when the solvent that dissolves the soluble resin component is eluted.
  • the solvent-soluble resin component can be eluted almost all over the whole green body not only to the surface but also to the center part, so that the entire porous body is uniformly porous. It is possible to make it a state.
  • the other solvent-insoluble resin component remains uniformly throughout the porous green body, and therefore does not cause distortion during sintering.
  • the solvent-soluble resin can be uniformly dispersed in the fiber-like or feather-like resin network.
  • the uniformity of the whole green body is not impaired.
  • the powder for sintering is dispersed in a resin in which the solvent-insoluble fibrous or pellet becomes feathery, and the composition is further dispersed throughout the composition.
  • coarse and dense of the sintering powder is generated throughout Also, it will be sintered with extremely high precision, and will not cause distortion during sintering.
  • the resin components constituting the above-mentioned pinda resin are mutually soluble in solvents at high temperatures and exhibit solvent insolubility at room temperature. Therefore, if they are kneaded at high temperature, they are uniformly mixed. As a result, the solvent-insoluble resin component is uniformly deposited, and the entire green body is mixed at a very high level of homogeneity.
  • the mixing ratio of the solvent-insoluble resin and the solvent-soluble resin is 1: 0.5 to 4.0 in volume ratio, when the solvent-soluble resin is 0.5 or less with respect to the solvent-insoluble resin 1, the solvent is insoluble.
  • the mixing ratio of the binder resin and the powder for sintering is such that the volume ratio of the binder resin to the powder for sintering is 40:60 to 65:35, but 40:60 If there is more sintering powder than there is a problem that the binder resin becomes too small and the fluidity at the time of injection is poor and it is not possible to form a thin one, and if there is less sintering powder than 35. The problem is that the powder for sintering is too small and cracks occur during sintering. When the resin is 25% or less by volume ratio, the resin does not flow at the time of degreasing, and the resin does not form a shape.
  • the raw material composition will be described focusing on the use as a material for injection molding as described later, but of course the use as a material for injection molding, that is, if it can be used as a pellet, rod or plate
  • the green material can be cut into a predetermined shape by machining using a green or block shape, or the raw material composition is heated and softened, and pressed into a mold to form a green body of a predetermined shape. It is also possible to form At this time, it is necessary to form the target shape in a size that allows for the amount of contraction.
  • the shrinkage during sintering with respect to the target shape using the molding composition for powder sintering A green body is formed in anticipation of the amount, and then a soluble resin component is eluted from the green body with the solvent for elution of the soluble resin to form a porous green body, and after that, the porous green body is formed. The body is heated to burn out or burnt out the insoluble resin component remaining in the porous green body, and then the sintering powder is sintered.
  • the second of the sintering method of the powder for sintering using the molding composition for powder sintering “forming a rod-like, plate-like or block-like green body using the molding composition for powder sintering” “forming a rod-like, plate-like or block-like green body using the molding composition for powder sintering”
  • This rod-like or plate-like or reticule forms a secondary green body having a size that allows for the amount of shrinkage relative to the target shape from the block-like green body, and subsequently, a soluble resin component is produced from the secondary green body.
  • the porous green body is formed by elution with a soluble resin elution solvent to form a porous dain body, and then the porous green body is heated to burn off the insoluble resin component remaining in the porous green body or burned off. After sintering, the powder for sintering is sintered.
  • the third of the sintering method of the powder for sintering using the molding composition for powder sintering is described as follows.
  • a green body of the expected size is formed, and then the soluble resin component is eluted from the durene with the solvent for elution of the soluble resin to form a porous green body, and then, the porous green body is formed. It is characterized in that the body is heated to burn off or burnt out the insoluble resin component remaining in the porous green body, and then the sintering powder is sintered.
  • the powder-sintered member sintered by the above-described inventive method not only exhibits extremely excellent properties (shape complexity and fineness of structure) not found in the conventional sintered body, but also is cost-effective It became a thing.
  • the molding composition for powder sintering of the present invention is composed of a powder for sintering and a powdery resin mainly composed of two kinds of resins composed of a uniform mixture of a solvent-soluble resin and a solvent-insoluble resin. It is
  • the sintering powder is composed of a metal material as a main material to be sintered, an oxide, a nitride, quartz, a glass, and a pinder that combines these.
  • metal materials stainless steel powder, Ni, W, Mo, Fe
  • carbides WC, TiC, chromium carbide
  • nitrides boron nitride, nitrided
  • Silicon silicon
  • alumina nitride oxides
  • oxides quartz, alumina, glass, zirconia
  • P o, N i may be mentioned as pinders for bonding these sintering main materials.
  • oxide quartz, alumina, glass, zircon
  • it may be sintered without binder.
  • Examples of these sintered products include cemented carbide members, cermet members, ceramic members, quartz glass members, tungsten members, stainless steel members, nickel members, molybdenum members, glass members, and composites thereof.
  • the average grain size of the main sintering material may be optimum.
  • the one having an average grain size of about 0.2 to 0.5 ⁇ m is an edge (blade) It is preferable to ensure the durability of parts.
  • a common grade has an average particle size of about 2 ⁇ m.
  • Pineda resin carrying these powders for sintering is mainly composed of solvent-soluble silica resin soluble in the solvent 1 and solvent insoluble silica resin insoluble in the solvent, and necessary additives such as plasticizer and mold release material. It is configured. It is more preferable that the solvent-soluble resin and the solvent-insoluble resin be completely mixed and coexist at the operating temperature, and in the present embodiment, both melt in the solvent 1 at the melting temperature (high temperature) and be uniform at the operating temperature. Resins that are mixed and separated are used.
  • solvent-soluble resins examples include polystyrene, acrylic resin, bured chloride, cyclic polyolefin resin, polycarbonate and transition plastic.
  • solvent insoluble resins examples include polypropylene, polyethylene, polyacetal, etc., which dissolve at high temperature (but solvent insoluble resin precipitates at room temperature).
  • solvents examples include xylene, toluene, benzene, etc.
  • aromatic solvents and chlorinated solvents such as dichloromethane and dichloroethane.
  • Other plasticizers include dioctyl phthalate and dibutyl phthalate, and examples of the release agent include zinc stearate and stearic acid amide.
  • the mixing ratio of the solvent-insoluble resin to the solvent-soluble resin is 1: 0.5 to 4.0 in volume ratio.
  • the volume ratio of pine resin to powder for sintering is 40:60 to 65:35.
  • powders for sintering such as the above-mentioned main sintering material and metal binder (may be a single sintering main material alone) are dispersed uniformly in a pinda resin (including a plasticizer and a releasing material) as described above. It is important to add a small amount of sintering powder to a large amount of high temperature pinda resin liquid kept at the melting temperature while stirring and uniformly disperse.
  • the viscosity of the raw material composition gradually increases with the volatilization of the solvent, and finally becomes paste or scaly.
  • mixing is performed rather than stirring.
  • the paste-like or cocoon-like viscous mixture is pelletized by means of a pellet forming machine.
  • pelletizing it may be rod-like, plate-like or block-like depending on its use.
  • the pellet-like powder-sintering molding composition is prepared by ordinary injection molding (feed of raw material to an injection molding machine ⁇ heating, kneading, melting ⁇ weighing ⁇ injection of mold ⁇ pressure holding ⁇ cooling ⁇ mold opening ⁇ green body removal) It is then molded into a predetermined shape and taken out of the mold as a dullen body.
  • the green body is formed into a shape larger than the final shape (generally a similar shape to a general shape) in anticipation of the amount of shrinkage occurring in the sintering step described later.
  • the feather-like solvent-insoluble resin component passes between the solvent-soluble resin components and gradually enters the solvent. It melts out, and the green body becomes completely porous to the core.
  • the thin part completes degreasing of the one solute resin in a short time.
  • the thick part takes a long time to degrease, but by taking enough time, it takes almost to the central part
  • Completely degreasing of the solvent soluble resin component is carried out.
  • the degreasing speed is increased by raising the solvent temperature.
  • the solvent-insoluble resin component which does not dissolve in the solvent remains entangled with each other in the form of feathers, so the shape retention of the green body is not lost at all even in the porous state.
  • the powder for sintering maintains a very uniform dispersion state in this fibrous solvent insoluble resin component.
  • the porous green body is placed in a firing furnace, and the temperature is raised from room temperature to 700 ° C. to heat the porous degreased product.
  • the remaining solvent insoluble resin (releasing material and plastic) The thermal decomposition ⁇ disappearance of the agent), the temperature is raised further, the material is heated at the sintering temperature of the powder material, and the powder for sintering is densely integrated with each other to complete the sintering.
  • the sintering temperature is, for example, about 750 for glass.
  • C, C u is about 800 ° C.
  • Ni iron is 130 ° C. to 140 ° C.
  • quartz is about 150 ° C.
  • alumina silicon nitride is 160 ° C.
  • S i C it is 2 0 0 0 to 2 1 0 0 0 C.
  • sintering in an argon atmosphere or nitrogen atmosphere can prevent oxidation of the powder for sintering, and sintering under high pressure can achieve densification of the structure. Then, it can be used as a powder-sintered member of black skin (two-a-net product) in a state of being sintered, or this powder-sintered member (n-a-net product) is further processed (for example, Polishing with a diamond tool) to make a final product.
  • this powder-sintered member for example, Polishing with a diamond tool
  • the solvent-insoluble resin component is thermally decomposed at the time of degreasing of the solvent-insoluble resin component to form a lump of graphite in the center, particularly in the case of a thick-walled sintered body, and such defects are as if they were graphite as a defect. And it is generated in the center of the fired body, but by firing in a hydrogen atmosphere, C generated by decomposition instantaneously combines with hydrogen to become CH 4 and leaves the fired body Because it does not form a graphite mass.
  • the injection molding was mainly described.
  • the method of modeling using this raw material is not limited to injection molding, and a rod-like or plate-like shape obtained by extrusion using a molding composition for powder sintering.
  • a green body is formed in the shape of a block, and from this rod-like, plate-like or block-like green body, a green body having a size that allows for the amount of contraction relative to the target shape is formed.
  • the molding composition for powder sintering according to the present invention is a mixture of a powder for sintering, and a pinda resin mainly composed of a solvent-soluble resin and a solvent-insoluble resin.
  • the soluble resin component is degreased, the other solvent-insoluble resin component remains, which adheres the sintering powders to each other to exhibit sufficient shape retention and not only makes handling extremely easy.
  • the porous green body can be prevented from losing its shape during the sintering process.
  • the solvent-insoluble resin component is in the form of fibers, it has excellent shape retention and dispersibility of the powder for sintering even when it becomes porous due to degreasing, and causes distortion during sintering. There is no The green body molded from this raw material is still easy to handle because it has good shape retention property before and after degreasing as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

A composition characterized by comprising: a binder resin comprising a solvent-soluble resin and a solvent-insoluble resin incorporated therein; and a powder for sintering which has been fixed to the binder resin. When this composition is used to form a green molding and the solvent-soluble resin ingredient only is removed from the green molding, then the solvent-insoluble resin ingredient remains to maintain the shape of the green molding. Although this green molding is porous, it is prevented from deforming over the period of from the sufficient degreasing to a sintering step. The degreased green molding is hence significantly easy to handle, and the sinter which is being produced does not deform during sintering.

Description

粉末焼結用成形組成物及び焼結用粉末の焼結方法並びにその粉末焼結部材 技術分野  Molding composition for powder sintering, method of sintering powder for sintering, and powder sintered member thereof
本発明は画期的な粉末焼結方法と当該方法に供される粉末焼結用成形組成物 並びにその粉末焼結部材に関する。  The present invention relates to an innovative powder sintering method, a molding composition for powder sintering to be subjected to the method, and a powder sintered member thereof.
 Bright
背景技術  Background art
従来から粉末焼結方法は、 焼結用粉末と書ポリアセタール樹脂をパインダ榭脂 とする混練物を原料として射出成形し、 射出成形にて形成されたグリーン体を 硝酸で脱脂して粉末焼結部材を形成するという特許第 2 6 0 2 7 6 9号のよう な化学的方法や、 粉末材料を金型に入れて高圧プレスする高圧プレス方法、 前 記焼結用粉末にパラフィンのようなバインダ材料との混練物をゴム袋に入れ、 これを水槽中で強圧プレスして 1本の圧縮棒状体を形成し (ラパープレス法)、 続いて、 焼結時の収縮率を見込んで必要とする形状の略相似形にこの圧縮棒状 体を粗加工し、 この粗加工品を加熱して徐々に粗加工品を脱バインダ (セミシ ンタリング)し、 続いてこのセミシンタリング品 (焼結用粉末同士が部分的に融 着しているポーラスな状態)の必要箇所を更に加工し、 最後にこれを焼結して 粉末焼結部材とする方法やその他多数の方法が提案されている。  Conventionally, powder sintering method is injection molding using a mixture of powder for sintering and a polyacetal resin as pine resin as a raw material, and degreasing the green body formed by injection molding with nitric acid to obtain a powder sintered member Chemical methods such as patent No. 2602 769 of forming a high pressure pressing method in which the powder material is put into a mold and subjected to high pressure pressing, a binder material such as paraffin for the powder for sintering described above The mixture with the above is placed in a rubber bag, and this is pressed in a water tank to form a single compressed rod body (Laper press method), and then the shape required for the shrinkage rate during sintering is expected. The compacted rod is roughly processed into a substantially similar shape, and the roughly processed product is heated to gradually remove the binder from the roughly processed product (semi-sintering). Need to be fused in a porous state) There have been proposed methods of processing the portion further and finally sintering it to form a powder-sintered member and many other methods.
しかしながら、 従来のいずれの方法においても、 以下のような様々な問題が あった。 即ち、 ポリアセタール榭脂をバインダ樹脂とする化学法では、 暴硝酸 のような危険な薬剤をその製造工程において使用しなければならないという問 題、 ·バインダ樹脂を使用した場合、 脱脂工程におけるグリーン体からのパイ ンダ樹脂の不均一な脱脂による焼結時のひずみ発生という問題 (換言すれば、 表面に近い部分や薄肉部分は脱脂が容易に行われるのに対して、 中心部分や厚 肉部分は脱脂されにくく、 脱脂を終了してもその部分にパインダ樹脂が残留し ており、 これが焼結時に歪み発生の原因となる。 會脱脂した多孔質グリー ン体の場合、 保形性の劣悪さ (換言すれば、 脱脂によってパインダ樹脂のほと んどが除去されるので、 グリーン体のほとんどは焼結用粉末で構成された多孔 質体であり、 外部からの力で非常に崩れやすい状態となっている。 プレス成形 品でも同様)という問題、 參脱脂に極めて長時間が掛かり、 生産性が悪いとい う問題などがある。 However, there are various problems as described below in any of the conventional methods. That is, in the chemical method using polyacetal resin as the binder resin, there is a problem that dangerous chemicals such as nitric acid must be used in the manufacturing process, · When using the binder resin, the green body in the degreasing process The problem of strain generation during sintering due to uneven degreasing of the pin resin (in other words, while degreasing is easily performed on the part near the surface or thin part, degreasing is performed on the central part or thick part) It is hard to be removed, and even after degreasing, Pinda resin remains in that part, which causes distortion during sintering. In the case of a degreased porous green body, its shape retention is poor (in other words, it has poor shape retention) If it is done, degreasing will Most of the green body is a porous body composed of powder for sintering because most of it is removed, and it is in a very fragile state by external force. The same is true for press-formed products as well, and it takes a very long time to degrease, which leads to problems such as poor productivity.
また、 粉末材料を金型に入れて高圧プレスする方法では、 秦プレス面に接す る部分は密度が向上するが、 プレス面から離れると急速に密度が低下し全体を 均一にプレスすることができないというような問題 (換言すれば、 圧縮粉末材 料の不均一性は焼結時の歪みの原因となる。 )ゃ拿この方法では複雑な形状の ものが出来ないという問題などがある。  Moreover, in the method of putting powder material in a mold and pressing it at high pressure, the density is improved at the part in contact with the pressing surface, but the density decreases rapidly away from the pressing surface and the whole can be pressed uniformly. There is a problem that it can not be done (in other words, the non-uniformity of the compressed powder material causes distortion during sintering). There is a problem that this method can not produce complex shapes.
ラパープレス ·セミシンタリング法の場合、 參壊れやすいラバープレス棒状 体を必要形状にある程度近い形まで粗加工する場合、 更にこの粗加工品のセミ シンタリングしたものを焼結収縮代を見込んだ形状にまで機械加工を行う場合、 長時間の加工時間が必要で且つ複雑な工程が必要で生産性が非常に悪いという 問題や、 秦前記加工中において切削屑がロスになるため材料口スが多量に発生 するという問題がある。 それ故、 現在では例えば超硬材料のような特殊な分野 において主として実施されているのが現状であり、 一般普遍的に使用されてい る製造方法とはなっていない。  When roughing a fragile rubber press rod to a shape close to a required shape in the case of rapper press and semi-sintering, semi-sintering of this roughly processed product is shaped to allow for sintering shrinkage. In the case of machining up to a long time, it takes a long processing time, requires complicated processes, and has very poor productivity, and a large amount of material material, since cutting chips will be lost during the above processing. There is a problem that occurs. Therefore, at present, it is currently practiced mainly in special fields such as, for example, cemented carbide materials, and is not a commonly used production method.
本発明はこのような粉末焼結方法の根本的な問題点を全て氷解させる画期的 な手法の開発をその解決課題とするものである。 発明の開示  The present invention aims to solve the fundamental problems of such a powder sintering method by developing an innovative method for thawing ice. Disclosure of the invention
本発明に係る粉末焼結用成形組成物は、 「溶剤不溶性樹脂が溶剤可溶性樹脂 に配合されているパインダ樹脂に焼結用粉末が担持されている」 ことを特徴と するもので、 更に溶剤不溶性樹脂の内容を詳しく言えば 「溶剤不溶性樹脂が繊 維状或いは羽毛状となる樹脂である」 事を特徴とする。  The molding composition for powder sintering according to the present invention is characterized in that “a powder for sintering is supported on a pinda resin in which a solvent-insoluble resin is mixed with a solvent-soluble resin”, and further the solvent-insoluble resin is insoluble. Specifically speaking, the content of the resin is characterized by the fact that "solvent-insoluble resin is a resin that becomes fiber-like or feather-like".
また、 焼結用粉末と溶剤不溶性繊維状或レ、は羽毛状となる樹脂との関係につい ていえば、 「焼結用粉末が溶剤不溶性繊維状或いは羽毛状となる樹脂内に分散 している」 ことを特徴とするものである。 Also, regarding the relationship between the sintering powder and the solvent-insoluble fibrous or reticulated resin, "the sintering powder is dispersed in the solvent-insoluble fibrous or feathered resin". It is characterized by
パインダ樹脂を構成する樹脂成分に付いて規定すれば、 「パインダ樹脂を構 成する樹脂成分は高温では互いに溶剤可溶性を有し、 室温では溶剤不溶性を示 す組み合わせである」 ことを特徴とし、 溶剤不溶性樹脂と溶剤可溶性樹月旨の混 合比について言えば 「溶剤不溶性樹脂と溶剤可溶性樹脂の体積比が 1 : 0 . 5 〜 4 . 0である」 ことを特徴とし、 パインダ榭脂と焼結用粉末の混合比につい て言えば 「バインダ樹脂と焼結用粉末の体積比が 4 0 : 6 0〜6 5 : 3 5であ る」 ことを特徴とする。 If it is specified with respect to the resin component that composes the pinda resin, The resin components to be formed are mutually soluble at high temperatures and are solvent-soluble at room temperature, and are characterized as being solvent-insoluble at room temperature. In terms of mixing ratio of solvent-insoluble resin and solvent-soluble resin, "solvent-insoluble resin" The volume ratio of the solvent-soluble resin and the solvent-soluble resin is 1: 0.5 to 4.0, and the mixing ratio of the pine resin and the powder for sintering is “the volume of the binder resin and the powder for sintering The ratio is 40: 60 to 65: 35 ”.
以上のように本発明の粉末焼結用成形組成物が、 溶剤不溶性樹脂が溶剤可溶 性樹脂に配合されているパインダ樹脂とこのパインダ樹脂に担持された焼結用 粉末とで構成されているので、 この組成物を原料として射出成形 (或いは押出 成形、 真空成形又はブロー成形等)したグリーン体から溶剤可溶性樹脂成分の みを脱脂したとき、 脱脂された多孔質グリーン体には他方の溶剤不溶性樹脂成 分が残留しており、 これが焼結用粉末を互いに接着させてポーラスでありなが ら十分な保形性を発揮し、 脱脂後、 焼結工程に至る間の多孔質グリーン体の型 崩れを防止することができ、 取り扱いが非常に容易になる。  As described above, the molding composition for powder sintering of the present invention is composed of a pinda resin in which a solvent-insoluble resin is blended in a solvent-soluble resin, and a powder for sintering carried on the pinda resin. Therefore, when only the solvent-soluble resin component is degreased from an injection molded (or extrusion molded, vacuum molded or blow molded etc.) green body from this composition as a raw material, the other solvent insoluble in the degreased porous green body A resin component remains, which adheres the sintering powders to one another to be porous while exhibiting sufficient shape retention, and after degreasing, the mold of the porous green body during the sintering process. It can prevent the collapse and it becomes very easy to handle.
しかも、 脱脂においては、 前記一方の溶剤可溶性樹脂成分は、 他の溶剤不溶 性樹脂成分と均一に混じり合っているので、 当該可溶性樹脂成分を溶出する溶 剤により溶出すると可溶性樹脂成分のみが溶出されてポーラスになり、 表面か ら中心部に向かって次第に溶出されて行き、 その表面のみならずその中心部分 までグリーン体全体においてほぼ当該溶剤可溶性樹脂成分を溶出させることが でき、 全体に均一なポーラス状態とする事が出来る。 他方の溶剤不溶性樹脂成 分は、 多孔質グリーン体の全体にわたって均一に残留することになるので、 焼 結時に歪みを発生させるようなことがない。  Moreover, in degreasing, since the one solvent-soluble resin component is uniformly mixed with the other solvent-insoluble resin component, only the soluble resin component is eluted when the solvent that dissolves the soluble resin component is eluted. The solvent-soluble resin component can be eluted almost all over the whole green body not only to the surface but also to the center part, so that the entire porous body is uniformly porous. It is possible to make it a state. The other solvent-insoluble resin component remains uniformly throughout the porous green body, and therefore does not cause distortion during sintering.
また、 溶剤不溶性樹月旨を繊維状或いは羽毛状となる樹脂とする事で溶剤可溶 性樹脂が繊維状或いは羽毛状となる樹脂の網目の中に均一に分散させる事が出 来、 樹脂成分間で粗密を発生させるようなことがなく、 一方の溶剤可溶性樹脂 成分を脱脂した場合にもグリーン体全体の均一性が損なわれない。 加えてこの ような均質性に優れたパインダ樹脂において、 焼結用粉末を溶剤不溶性繊維状 或レヽは羽毛状となる樹脂内に分散させることで、 組成物全体にわたつて更には この組成物を使用したグリーン体では焼結用粉末の粗密が全体において発生せ ず、 極めて高い精度で焼結されることになり、 焼結時に歪みを発生させるよう なことがない。 In addition, by making the solvent-insoluble resin into a fibrous or feather-like resin, the solvent-soluble resin can be uniformly dispersed in the fiber-like or feather-like resin network. There is no possibility of occurrence of coarseness and density, and even if one of the solvent-soluble resin components is degreased, the uniformity of the whole green body is not impaired. In addition, in such a pinda resin excellent in homogeneity, the powder for sintering is dispersed in a resin in which the solvent-insoluble fibrous or pellet becomes feathery, and the composition is further dispersed throughout the composition. In the green body used, coarse and dense of the sintering powder is generated throughout Also, it will be sintered with extremely high precision, and will not cause distortion during sintering.
前記パインダ樹脂を構成する樹脂成分は高温では互いに溶剤可溶性を有し、 室温では溶剤不溶性を示すものであるから、 高温で混練すれば均一に混ざり合 い、 これを冷却すると溶剤可溶性樹脂成分中に溶剤不溶性榭脂成分が均一に析 出して組成物或!、はそのグリーン体全体が極めて高レ、均質度で混ざり合う事に なる。 両者の混合比は、 溶剤不溶性樹脂と溶剤可溶性樹脂の体積比で 1 : 0 . 5〜 4 . 0であるが、 溶剤不溶性樹脂 1に対して溶剤可溶性樹脂が 0 . 5以下の 場合、溶剤不溶性樹脂が過剰になり、脱脂に時間がかかるという問題点があり、 4 . 0以上であれば、 溶剤不溶性樹脂が過小となり保持力が低下して成形品が 脱脂中に割れるという問題点がある。 また、 バインダ樹月旨と焼結用粉末との混 合比は、 バインダ榭脂と焼結用粉末の体積比が 4 0 : 6 0〜6 5 : 3 5である が、 4 0 : 6 0よりも焼結用粉末の方が多い場合、バインダ樹脂が過小になり、 射出時の流動性が悪く薄ものの成形が出来ないという問題点があり、 3 5より 焼結用粉末の方が少ない場合には、 焼結用粉末が過小になり焼結中にクラック が発生するという問題点がある。 なお、 樹脂が体積比で全体の 2 5 %以下の場 合、 脱脂時に樹脂が流動せず型くずれを生じさせない。  The resin components constituting the above-mentioned pinda resin are mutually soluble in solvents at high temperatures and exhibit solvent insolubility at room temperature. Therefore, if they are kneaded at high temperature, they are uniformly mixed. As a result, the solvent-insoluble resin component is uniformly deposited, and the entire green body is mixed at a very high level of homogeneity. Although the mixing ratio of the solvent-insoluble resin and the solvent-soluble resin is 1: 0.5 to 4.0 in volume ratio, when the solvent-soluble resin is 0.5 or less with respect to the solvent-insoluble resin 1, the solvent is insoluble. There is a problem that the resin becomes excessive and degreasing takes time, and if it is 4.0 or more, there is a problem that the solvent-insoluble resin becomes too small and the retention decreases and the molded product breaks during degreasing. In addition, the mixing ratio of the binder resin and the powder for sintering is such that the volume ratio of the binder resin to the powder for sintering is 40:60 to 65:35, but 40:60 If there is more sintering powder than there is a problem that the binder resin becomes too small and the fluidity at the time of injection is poor and it is not possible to form a thin one, and if there is less sintering powder than 35. The problem is that the powder for sintering is too small and cracks occur during sintering. When the resin is 25% or less by volume ratio, the resin does not flow at the time of degreasing, and the resin does not form a shape.
なお、 本原料組成物は後述するように射出成形用材料としての用途を中心に 説明するが、 勿論、 射出成形用材料としての用途、 即ち、 ペレット状として使 用することもできれば、 棒状或いは板状若しくはブロック状とし、 このような グリーン体を用いて機械加工によって所定の形状に切り出すことも可能である し、 本原料組成物を加熱軟化させ、 金型に圧入して所定の形状のグリーン体を 形成することも可能である。 その際、 対象形状に対して収縮量を見込んだ大き さに形成する必要がある。 このようなグリーン体にあっては、 一方の溶剤可溶 性樹脂成分を溶剤で溶出したとしても、 他の溶剤不溶性樹脂成分がグリーン体 に残留しているのでこれが接着剤の働きをなし、 グリーン体から前記一方の溶 質樹脂が溶出されて多孔質になったとしても多孔質グリーン体の保形性が損な われないことになる。 また、 前記粉末焼結用成形組成物を用いた焼結用粉末の焼結方法の第 1に ついて言えば 「前記粉末焼結用成形組成物を用いて対象形状に対して焼結時の 収縮量を見込んだグリ一ン体を形成し、 続いて前記グリーン体から可溶性樹脂 成分を当該可溶性榭脂溶出用溶剤にて溶出して多孔質グリーン体を形成し、 然 る後、 前記多孔質グリーン体を加熱して多孔質グリーン体に残留している不溶 性樹脂成分を焼失させると共に或いは焼失させた後、 焼結用粉末を焼結する」 ことを特徴とする。 The raw material composition will be described focusing on the use as a material for injection molding as described later, but of course the use as a material for injection molding, that is, if it can be used as a pellet, rod or plate The green material can be cut into a predetermined shape by machining using a green or block shape, or the raw material composition is heated and softened, and pressed into a mold to form a green body of a predetermined shape. It is also possible to form At this time, it is necessary to form the target shape in a size that allows for the amount of contraction. In such a green body, even if one solvent-soluble resin component is eluted with a solvent, the other solvent-insoluble resin component remains in the green body and this acts as an adhesive, so that green Even if the above-mentioned one of the soluble resins is eluted from the body and becomes porous, the shape retention property of the porous green body is not impaired. In addition, regarding the first method of sintering a powder for sintering using the molding composition for powder sintering, "the shrinkage during sintering with respect to the target shape using the molding composition for powder sintering" A green body is formed in anticipation of the amount, and then a soluble resin component is eluted from the green body with the solvent for elution of the soluble resin to form a porous green body, and after that, the porous green body is formed. The body is heated to burn out or burnt out the insoluble resin component remaining in the porous green body, and then the sintering powder is sintered.
前記粉末焼結用成形組成物を用いた焼結用粉末の焼結方法の第 2は 「前記粉 末焼結用成形組成物を用いて棒状または板状或いはプロック状グリーン体を形 成し、 この棒状または板状或レ、はプロック状グリーン体から対象形状に対して 収縮量を見込んだ大きさの 2次グリ一ン体を形成し、 続いて前記 2次グリーン 体から可溶性樹脂成分を当該可溶性樹脂溶出用溶剤にて溶出して多孔質ダリー ン体を形成し、 然る後、 前記多孔質グリーン体を加熱して多孔質グリーン体に 残留している不溶性樹脂成分を焼失させると共に或いは焼失させた後、 焼結用 粉末を焼結する」 ことを特徴とする。  The second of the sintering method of the powder for sintering using the molding composition for powder sintering “forming a rod-like, plate-like or block-like green body using the molding composition for powder sintering, This rod-like or plate-like or reticule forms a secondary green body having a size that allows for the amount of shrinkage relative to the target shape from the block-like green body, and subsequently, a soluble resin component is produced from the secondary green body. The porous green body is formed by elution with a soluble resin elution solvent to form a porous dain body, and then the porous green body is heated to burn off the insoluble resin component remaining in the porous green body or burned off. After sintering, the powder for sintering is sintered.
前記粉末焼結用成形組成物を用いた焼結用粉末の焼結方法の第 3は 「前記 粉末焼結用成形組成物を用いて金型に圧入して、 対象形状に対して収縮量を見 込んだ大きさのグリーン体を形成し、 続いて前記ダリーン体から可溶性樹脂成 分を当該可溶性樹脂溶出用溶剤にて溶出して多孔質グリーン体を形成し、 然る 後、 前記多孔質グリーン体を加熱して多孔質グリーン体に残留している不溶性 榭脂成分を焼失させると共に或いは焼失させた後、 焼結用粉末を焼結する」 こ とを特徴とする。  The third of the sintering method of the powder for sintering using the molding composition for powder sintering is described as follows. A green body of the expected size is formed, and then the soluble resin component is eluted from the durene with the solvent for elution of the soluble resin to form a porous green body, and then, the porous green body is formed. It is characterized in that the body is heated to burn off or burnt out the insoluble resin component remaining in the porous green body, and then the sintering powder is sintered.
前記方法において採用される成形方法の 1つは、 「真空成形」 であり、 他は 「ブロー成形」 である。  One of the molding methods employed in the above method is "vacuum molding" and the other is "blow molding".
また、 焼結時 (特に、 パインダ樹脂の加熱分解時)に水素を使用することも可 能であり、 このようにすることで、 特に WCの焼結時において問題となってお り、 パインダとして樹脂の使用が従来困難視されていたものを 「水素使用」 で 解決する事が出来た。 即ち、 榭脂をバインダとして使用した場合、 榭脂成分の 熱分解時に発生する Cを C H4として除去する事が出来、 精密な炭素コント口 ールを行う事が出来、 樹脂のバインダとしての途を新たに開拓した。 In addition, it is possible to use hydrogen at the time of sintering (especially at the time of thermal decomposition of pinda resin), which causes a problem especially at the time of sintering WC, and as a pinder We were able to solve the problem of using the resin in the past by “using hydrogen”. That is, when a resin is used as a binder, C generated during thermal decomposition of the resin component can be removed as CH 4 and a precise carbon control port can be obtained. It was possible to carry out the development of a new resin binder.
これにより、 従来、 粉末焼結の普及を妨げていた全ての問題を解消すること ができた。 即ち、 硝酸のような危険な薬剤をその製造工程において使用する必 要がなく、 安全な一般的に使用されている少なくとも 2種類の樹脂を常温下に て使用するだけで足り、 しかも脱脂後の多孔質グリーン体はきわめて均一でし かも保形性に優れているので取り扱いが容易であり、 加えて焼成後のひずみが 発生しないというメリットがあり、 あらゆる用途について応用できるようにな つた。 特に、 高精度で大量生産が可能となった事は特筆される。  This has solved all the problems that have heretofore hampered the spread of powder sintering. That is, it is not necessary to use dangerous chemicals such as nitric acid in the production process, and it is sufficient to use at least two kinds of safe and generally used resins at normal temperature, and after degreasing. The porous green body is extremely uniform and has excellent shape retention, so it is easy to handle, and in addition, it has the advantage that no distortion occurs after firing, making it applicable to all applications. In particular, it has been noted that mass production with high accuracy has become possible.
なお、 焼結に際しては、 不活性雰囲気 (Ar又は窒素中)にて行えば酸化を防 ぐ事が出来、酸化を嫌うようなものであれば高品質な焼結体が得られる。また、 ガス高圧下で焼結を行えば、 極めて緻密な焼結体を得る事が出来る。  In addition, when sintering is performed in an inert atmosphere (in Ar or nitrogen), oxidation can be prevented, and a high quality sintered body can be obtained if it does not like oxidation. Also, if sintering is performed under high pressure of gas, a very dense sintered body can be obtained.
前記発明方法で焼結された粉末焼結部材は、 今までの焼結体にない極めて優 れた性状 (形状の複雑さや組織の緻密さ)を示すだけでなく、 コストの面でも画 期的なものとなった。 発明を実施するための最良の形態  The powder-sintered member sintered by the above-described inventive method not only exhibits extremely excellent properties (shape complexity and fineness of structure) not found in the conventional sintered body, but also is cost-effective It became a thing. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を図示実施例に従って詳述する。 本発明の粉末焼結用成形組成 物は、 焼結用粉末と、 溶剤可溶性樹脂と溶剤不溶性樹脂との均一混合物で構成 される 2種類の樹脂を主とするパインダ榭月旨とで構成されているものである。 焼結用粉末としては、 焼結される主材となる金属材料、 酸化物或いは窒化物又 は石英、 ガラスと、 これらを結合するパインダとで構成される。  Hereinafter, the present invention will be described in detail according to the illustrated embodiments. The molding composition for powder sintering of the present invention is composed of a powder for sintering and a powdery resin mainly composed of two kinds of resins composed of a uniform mixture of a solvent-soluble resin and a solvent-insoluble resin. It is The sintering powder is composed of a metal material as a main material to be sintered, an oxide, a nitride, quartz, a glass, and a pinder that combines these.
前記焼結が可能な焼結主材としては、 金属材料 (ステンレス粉末、 N i、 W、 M o , F e )、 炭化物 (WC、 T i C、 炭化クロム)、 窒化物 (窒化ボロン、 窒化 珪素、 窒化アルミナ)、 酸化物 (石英、 アルミナ、 ガラス、 ジルコ二ァ)、 などが その例として挙げられ、 これら焼結主材を結合するパインダとして C o、 N i が挙げられる。 酸化物 (石英、 アルミナ、 ガラス、 ジルコニァ)の場合はバイン ダなしで焼結してもよい。 これらの焼結物として超硬部材、 サーメット部材、 セラミックス部材、 石英ガラス部材、 タングステン部材、 ステンレス部材、 二 ッケル部材、モリブデン部材、ガラス部材或いはその複合材などが挙げられる。 また、 その用途によって焼結主材の平均粒度は最適のものがあるが、 例えば、 超硬部材の場合は 0 . 2〜 0 . 5 μ m程度の平均粒径を持つものがエツジ (刃)部 分の耐久性を確保する上で好ましい。 一般のグレードは 2 μ m程度の平均粒径 である。 As the sintering main material that can be sintered, metal materials (stainless steel powder, Ni, W, Mo, Fe), carbides (WC, TiC, chromium carbide), nitrides (boron nitride, nitrided) Silicon, alumina nitride), oxides (quartz, alumina, glass, zirconia), etc. may be mentioned as examples, and P o, N i may be mentioned as pinders for bonding these sintering main materials. In the case of oxide (quartz, alumina, glass, zircon), it may be sintered without binder. Examples of these sintered products include cemented carbide members, cermet members, ceramic members, quartz glass members, tungsten members, stainless steel members, nickel members, molybdenum members, glass members, and composites thereof. Also, depending on the application, the average grain size of the main sintering material may be optimum. For example, in the case of a cemented carbide member, the one having an average grain size of about 0.2 to 0.5 μm is an edge (blade) It is preferable to ensure the durability of parts. A common grade has an average particle size of about 2 μm.
これら焼結用粉末を担持するパインダ樹脂は、 1の溶剤に溶ける溶剤可溶性 榭月旨と該溶剤に溶けない溶剤不溶性榭月旨を主材とし、 可塑剤及び離型材など必 要添加物とで構成されている。 前記溶剤可溶性樹脂と溶剤不溶性樹脂とは使用 温度では完全に混ざり合つて並存していることがより好ましく、 本実施例では 溶融温度 (高温)では両者共 1の溶剤に溶け、 使用温度では均一に混ざり合って 状態で分離しているような樹脂が使用される。  Pineda resin carrying these powders for sintering is mainly composed of solvent-soluble silica resin soluble in the solvent 1 and solvent insoluble silica resin insoluble in the solvent, and necessary additives such as plasticizer and mold release material. It is configured. It is more preferable that the solvent-soluble resin and the solvent-insoluble resin be completely mixed and coexist at the operating temperature, and in the present embodiment, both melt in the solvent 1 at the melting temperature (high temperature) and be uniform at the operating temperature. Resins that are mixed and separated are used.
更には、 単に溶剤可溶性樹脂と溶剤不溶性樹脂とが混ざり合つているだけの 場合より脱脂後の保形性や焼結用粉末の均一分散性を高めるために溶剤不溶性 榭月旨に繊維状或いは羽毛状となる榭脂を使用する事が望ましい。 即ち、 溶剤不 溶性樹脂が繊維状或いは羽毛状となる樹脂の場合、 高温 (=両者の溶融温度)で は溶剤可溶性樹脂中に完全に均一に溶け合つている。 これを冷却すると次第に 溶剤不溶性樹脂が繊維状にて析出し、 その繊維間に溶剤可溶性樹脂と焼結用粉 末が絡まった状態で存在するようになり、 極めて微細且つ均一に溶剤可溶性樹 脂と焼結用粉末が繊維状溶剤不溶性樹脂間に分散した状態となる。  Furthermore, in order to enhance the shape retention after degreasing and the uniform dispersion of the powder for sintering compared to the case where the solvent-soluble resin and the solvent-insoluble resin are simply mixed and mixed, the solvent insoluble resin is fibrous or feathery. It is desirable to use a resin that That is, in the case of a resin in which the solvent-insoluble resin is in the form of fibers or feathers, it dissolves completely uniformly in the solvent-soluble resin at high temperature (= melting temperature of both). When this is cooled, the solvent-insoluble resin gradually precipitates in the form of fibers, and the solvent-soluble resin and the powder for sintering become present in an entangled state between the fibers, and the solvent-soluble resin is extremely finely and uniformly. The sintering powder is in a state of being dispersed between the fibrous solvent insoluble resins.
このような溶剤可溶性樹脂の例として、 ポリスチレン、 アクリル樹脂、 塩化 ビュル、 環状ポリオレフイン榭脂、 ポリカーボネート、 遷移素プラスチックが ある。 また、 溶剤不溶性樹脂の例として、 ポリプロピレン、 ポリエチレン、 ポ リアセタールなどがあり、 これらを高温で溶かす (但し、 室温では溶剤不溶性 樹脂は析出する) 溶剤としては例えば、 キシレン、 トルエン、 ベンゼン等の芳 香族溶剤や、 ジクロルメタンゃジクロルエタンなどの塩素化溶剤などがある。 その他、 可塑剤としてはジォクチルフタレートゃジブチルフタレートなどが、 離型材としてはステアリン酸亜鉛ゃステアリン酸ァマイドが挙げられる。 これ ら溶剤不溶性樹脂と溶剤可溶性樹脂の混合比は、 体積比で 1 : 0 . 5〜4 . 0で ある。 また、 パインダ榭脂と焼結用粉末の体積比が 4 0 : 6 0〜 6 5 : 3 5で ある。 前記焼結主材ゃ金属バインダ (焼結主材単体の場合もある。 )などの焼結用粉 末は前述のようにパインダ樹脂 (可塑剤及び離型材を含む)に均一に分子分散さ れていることが重要で、 溶融温度に保たれた大量の高温のパインダ樹脂液に少 量の焼結用粉末を攪拌しながら投入し均一に分散させる。 所定量の焼結用粉末 の投入が終了すれば液温を保ちながら攪拌 ·混練を続け、 溶剤を揮発させる。 溶剤の揮発と共に溶剤不溶性榭脂成分が次第に繊維状或いは羽毛状 (=ミクロ ファイバー状)に析出して溶剤可溶性樹脂成分と焼結用粉末を繊維間に取り込 み超微細分散させる。 これにより焼結用粉末各粒子は、 繊維間に取り込まれ且 つ溶剤可溶性樹脂がその表面を包む状態となってパインダ榭脂内に均一に分 散,担持され、 互いに凝集しない。 Examples of such solvent-soluble resins are polystyrene, acrylic resin, bured chloride, cyclic polyolefin resin, polycarbonate and transition plastic. Also, examples of solvent insoluble resins include polypropylene, polyethylene, polyacetal, etc., which dissolve at high temperature (but solvent insoluble resin precipitates at room temperature). Examples of solvents include xylene, toluene, benzene, etc. There are aromatic solvents and chlorinated solvents such as dichloromethane and dichloroethane. Other plasticizers include dioctyl phthalate and dibutyl phthalate, and examples of the release agent include zinc stearate and stearic acid amide. The mixing ratio of the solvent-insoluble resin to the solvent-soluble resin is 1: 0.5 to 4.0 in volume ratio. In addition, the volume ratio of pine resin to powder for sintering is 40:60 to 65:35. As described above, powders for sintering such as the above-mentioned main sintering material and metal binder (may be a single sintering main material alone) are dispersed uniformly in a pinda resin (including a plasticizer and a releasing material) as described above. It is important to add a small amount of sintering powder to a large amount of high temperature pinda resin liquid kept at the melting temperature while stirring and uniformly disperse. When the addition of a predetermined amount of sintering powder is completed, stirring and kneading are continued while maintaining the liquid temperature to evaporate the solvent. As the solvent evaporates, the solvent-insoluble resin component gradually precipitates in the form of fibers or feathers (= micro fiber), and the solvent-soluble resin component and the sintering powder are taken in between the fibers and dispersed in ultrafine particles. As a result, the particles of the sintering powder are taken in between the fibers, and the solvent-soluble resin is dispersed and supported uniformly in the resin in the form of wrapping the surface of the resin-soluble resin, and does not aggregate.
前記攪拌を続けると溶剤の揮発と共に原料組成物の粘性は次第に上昇し最終 的にはペースト状或いは餅状となる。 この状態では攪拌というよりは混練され ることになる。 続いてこのペースト状或いは餅状粘性混合物をペレツト成形機 にかけてペレット状にする。 勿論、 ペレット状にする代わりにその用途によつ ては棒状、 板状或いはプロック状にしてもよい。  When the stirring is continued, the viscosity of the raw material composition gradually increases with the volatilization of the solvent, and finally becomes paste or scaly. In this state, mixing is performed rather than stirring. Subsequently, the paste-like or cocoon-like viscous mixture is pelletized by means of a pellet forming machine. Of course, instead of pelletizing, it may be rod-like, plate-like or block-like depending on its use.
前記ペレツト状粉末焼結用成形組成物は、 通常の射出成形 (射出成形機への 原料供給→加熱混練溶融→計量→金型の射出→保圧 ·冷却→型開 ·グリーン体 取り出し)によつて所定の形状に成形され、 ダリーン体として金型から取り出 される。 このグリーン体は、 溶剤可溶性樹脂成分と溶剤不溶性樹脂成分を主と するバインダ樹脂内に焼結用粉末 (=焼結対象粉末 +パインダ)が分子分散され た状態で、 見かけ上は通常の熱可塑性樹脂成形部材と同様のものであり、 保形 性に優れており取り极いが簡単である。 前記グリーン体は、 後述する焼結工程 において発生する収縮量を見込んで最終形状より大きい形 (これには限られな レ、が一般的-には略相似形)に形成されることになる。  The pellet-like powder-sintering molding composition is prepared by ordinary injection molding (feed of raw material to an injection molding machine → heating, kneading, melting → weighing → injection of mold → pressure holding · cooling → mold opening · green body removal) It is then molded into a predetermined shape and taken out of the mold as a dullen body. In this green body, the sintering powder (= powder to be sintered + pinda) is molecularly dispersed in a binder resin mainly composed of a solvent-soluble resin component and a solvent-insoluble resin component. It is similar to a resin molded member, has excellent shape retention and is easy to handle. The green body is formed into a shape larger than the final shape (generally a similar shape to a general shape) in anticipation of the amount of shrinkage occurring in the sintering step described later.
このグリーン体を、 一方の溶剤可溶性樹脂成分を溶解する溶剤中に浸漬する と、 前記繊維状或)/、は羽毛状の溶剤不溶性樹脂成分間を通つて当該溶剤可溶性 樹脂成分が次第に溶媒中に溶け出し、 グリーン体は芯まで完全に多孔質状態に なって行く。 薄肉の部分は短時間で当該一方の溶質樹脂の脱脂が完了する。 厚 肉部分は脱脂に時間がかかるが、 十分に時間をかけることで中心部分までほぼ 完璧に溶剤可溶性樹脂成分の脱脂が行われる。 溶媒温度を上げる事で脱脂速度 が速まる。 なお、 溶剤脱脂であるから、 従来の脱脂方法に比べて格段に脱脂速 度が速くなるだけでなく単にグリーン体を溶剤に浸漬するだけでよいので設備 費用も殆ど不要であり、 得られた脱脂品は溶剤不溶性樹脂成分の存在により保 形性に優れて!/、るので取り扱いも容易である。 When the green body is immersed in a solvent which dissolves one solvent-soluble resin component, the fibrous or) /, the feather-like solvent-insoluble resin component passes between the solvent-soluble resin components and gradually enters the solvent. It melts out, and the green body becomes completely porous to the core. The thin part completes degreasing of the one solute resin in a short time. The thick part takes a long time to degrease, but by taking enough time, it takes almost to the central part Completely degreasing of the solvent soluble resin component is carried out. The degreasing speed is increased by raising the solvent temperature. In addition, since it is a solvent degreasing, not only the degreasing speed is much faster than the conventional degreasing method, but also it is sufficient to simply immerse the green body in the solvent, so the equipment cost is almost unnecessary, and the degreasing obtained Products are excellent in shape retention due to the presence of solvent insoluble resin components! Handling is easy as well.
そして前述のように溶媒に溶けずに残留している溶剤不溶性樹脂成分はその 繊維が羽毛状に絡まり合っているため、 多孔質となった状態でもグリーン体の 保形性は全く損なわれない。 そして焼結用粉末はこの繊維状溶剤不溶性樹脂成 分中に極めて均一な分散状態を保っている。  And, as described above, the solvent-insoluble resin component which does not dissolve in the solvent remains entangled with each other in the form of feathers, so the shape retention of the green body is not lost at all even in the porous state. The powder for sintering maintains a very uniform dispersion state in this fibrous solvent insoluble resin component.
続いて、 この多孔質グリーン体を焼成炉に入れ、 室温から 7 0 0 °Cの温度に 昇温して多孔質脱脂品を加熱し、 まず残留していた溶剤不溶性樹脂 (離型材及 び可塑剤を含む)を熱分解 ·消失させ、 これを更に温度を上げ、 粉末材料の焼 結温度で加熱して焼結用粉末に同士を稠密一体化させ焼結を完了する。 焼結温 度は、 例えば、 ガラスは約 7 5 0。C、 C uは約 8 0 0 °C、 N i、 鉄は 1 3 0 0 〜 1 4 0 0 °C、 石英は約 1 5 0 0 °C、 アルミナゃ窒化珪素は 1 6 0 0 °C、 S i Cの場合 2 0 0 0〜2 1 0 0 °Cである。  Subsequently, the porous green body is placed in a firing furnace, and the temperature is raised from room temperature to 700 ° C. to heat the porous degreased product. First, the remaining solvent insoluble resin (releasing material and plastic) The thermal decomposition · disappearance of the agent), the temperature is raised further, the material is heated at the sintering temperature of the powder material, and the powder for sintering is densely integrated with each other to complete the sintering. The sintering temperature is, for example, about 750 for glass. C, C u is about 800 ° C., Ni, iron is 130 ° C. to 140 ° C., quartz is about 150 ° C., alumina silicon nitride is 160 ° C. In the case of S i C, it is 2 0 0 0 to 2 1 0 0 0 C.
好ましくは、 アルゴン雰囲気或いは窒素雰囲気中で焼結すれば焼結用粉末の 酸化を防止出来るし、 高圧下で焼結すれば組織の緻密化が図れる。 そしてよう に焼結された状態で黒皮の粉末焼結部材 (二ァネット製品)として使用すること もできるし、 この粉末焼結部材(ニァネット製品)を更に加工 (例えば超硬部材の ような場合、 ダイヤモンド工具で研磨加工を行う。 )して最終製品にする。 こ れにより、 従来、 粉末焼結の普及を妨げていた全ての問題を一挙に解消するこ とができ、 焼結可能な材料に関して、 高精度で大量生産が可能となり、 あらゆ る用途について応用できるようになった。  Preferably, sintering in an argon atmosphere or nitrogen atmosphere can prevent oxidation of the powder for sintering, and sintering under high pressure can achieve densification of the structure. Then, it can be used as a powder-sintered member of black skin (two-a-net product) in a state of being sintered, or this powder-sintered member (n-a-net product) is further processed (for example, Polishing with a diamond tool) to make a final product. As a result, it is possible to solve all the problems that conventionally impeded the spread of powder sintering at once, mass production with high accuracy is possible for sinterable materials, and it is applied to all applications. It became possible.
なお、 WCの焼成の場合、水素雰囲気中で行うことが好ましい。何故ならば、 溶剤不溶性樹脂成分の脱脂時に溶剤不溶性樹脂成分が熱分解して特に厚肉焼成 体の場合、 その中心部に黒鉛の塊を形成し、 これがあたかも铸物の黒鉛のよう な欠陥となって焼成体の中心部に発生するが、 水素雰囲気中で焼成する事で、 分解により生成した Cは瞬時に水素と結合して C H4になって焼成体から離脱 し、 黒鉛塊を形成しないからである。 In the case of firing WC, it is preferable to carry out in a hydrogen atmosphere. This is because the solvent-insoluble resin component is thermally decomposed at the time of degreasing of the solvent-insoluble resin component to form a lump of graphite in the center, particularly in the case of a thick-walled sintered body, and such defects are as if they were graphite as a defect. And it is generated in the center of the fired body, but by firing in a hydrogen atmosphere, C generated by decomposition instantaneously combines with hydrogen to become CH 4 and leaves the fired body Because it does not form a graphite mass.
前述の場合は射出成形を中心に説明したが、 この原料を使用して造形する方 法としては射出成形に限られず、 粉末焼結用成形組成物を用いて押出成形法に て棒状または板状或レ、はプロック状グリーン体を形成し、 この棒状または板状 或いはプロック状グリーン体から対象形状に対して収縮量を見込んだ大きさの グリーン体を形成し、 これを前述同様、 脱脂した後、 焼結したり、 或いは粉末 焼結用成形組成物を金型に圧入して、 対象形状に対して収縮量を見込んだ大き さのグリーン体を成形し、 これを脱脂した後、 焼結したりする通常の金型プレ ス成形により造形する方法や、 前記板状グリーン体を使用して真空成形を行つ たり、 筒状グリ一ン体を使用してブロー成形を行うなど各種の方法がある。 産業上の利用可能性  In the above case, the injection molding was mainly described. However, the method of modeling using this raw material is not limited to injection molding, and a rod-like or plate-like shape obtained by extrusion using a molding composition for powder sintering. Alternatively, a green body is formed in the shape of a block, and from this rod-like, plate-like or block-like green body, a green body having a size that allows for the amount of contraction relative to the target shape is formed. , Sinter, or pressing the molding composition for powder sintering into a mold to form a green body of a size that allows for the amount of shrinkage relative to the target shape, degrease it, and then sinter it There are various methods such as forming by conventional mold press molding, vacuum forming using the plate-like green body, and blow molding using a cylindrical green body. is there. Industrial applicability
以上、 本発明の粉末焼結用成形組成物は、 焼結用粉末と、 溶剤可溶性樹脂と 溶剤不溶性樹脂とで主として構成されたパインダ樹脂とが混練されたものであ るので、 グリーン体から溶剤可溶性樹脂成分を脱脂したとき、 他方の溶剤不溶 性樹脂成分が残留しており、 これが焼結用粉末を互いに接着させて十分な保形 性を発揮し、 取り扱いが非常に容易になるだけでなく脱脂後、 焼結工程に至る 間の多孔質グリーン体の型崩れを防止することができる。 加えて溶剤不溶性樹 脂成分が繊維状である事から、 脱脂によりポーラスになった場合でも優れた保 形性と焼結用粉末の分散性を有し、 焼結時に歪みを発生させるようなことがな い。 まだこの原料で成形されたグリーン体は、 前述のように脱脂の前後を通じ て保形性がよいので、 取り扱いが容易である。  As described above, the molding composition for powder sintering according to the present invention is a mixture of a powder for sintering, and a pinda resin mainly composed of a solvent-soluble resin and a solvent-insoluble resin. When the soluble resin component is degreased, the other solvent-insoluble resin component remains, which adheres the sintering powders to each other to exhibit sufficient shape retention and not only makes handling extremely easy. After degreasing, the porous green body can be prevented from losing its shape during the sintering process. In addition, since the solvent-insoluble resin component is in the form of fibers, it has excellent shape retention and dispersibility of the powder for sintering even when it becomes porous due to degreasing, and causes distortion during sintering. There is no The green body molded from this raw material is still easy to handle because it has good shape retention property before and after degreasing as described above.
更に、 前記粉末焼結用成形組成物を使用して射出成形或いはその他の方法を 利用することにより、 複雑な形状の粉末焼結部材が短時間に大量生産すること ができ、 量産手段として粉末焼結方法を定着させることができる。  Furthermore, by using injection molding or other methods using the above-described powder sintering molding composition, it is possible to mass-produce powder sintered members of complicated shapes in a short time, and as a mass production means, powder sintering can be performed. It is possible to fix the setting method.

Claims

請 求 の 範 囲 The scope of the claims
1 . 溶剤不溶性樹脂が溶剤可溶性樹脂に配合されているパインダ榭脂に焼結 用粉末が担持されていることを特徴とする粉末焼結用成形組成物。 1. A molding composition for powder sintering, characterized in that a powder for sintering is carried on a pine resin in which a solvent insoluble resin is mixed with the solvent soluble resin.
2 . 溶剤不溶性榭脂が繊維状或いは羽毛状となる樹脂である事を特徴とする 請求項 1に記載の粉末焼結用成形組成物。 . 2. The molding composition for powder sintering according to claim 1, wherein the solvent-insoluble resin is a resin which becomes fibrous or feathery. .
3 . 焼結用粉末が溶剤不溶性繊維状或いは羽毛状となる樹脂内に分散してい ることを特徴とする請求項 1又は 2に記載の粉末焼結用成形組成物。 3. The molding composition for powder sintering according to claim 1 or 2, wherein the powder for sintering is dispersed in a resin which becomes solvent insoluble fibrous or feathery.
4 . バインダ樹脂を構成する溶質樹脂は高温では互いに溶剤可溶性を有し、 室温では溶剤不溶性を示す み合わせであることを特徴とする請求項 1又は 2 に記載の粉末焼結用成形組成物。 4. The molding composition for powder sintering according to claim 1, wherein the solute resin constituting the binder resin is solvent soluble at high temperature and shows solvent insolubility at room temperature.
5 . 焼結用粉末が溶剤不溶性繊維状或いは羽毛状となる樹脂内に分散してお り、 ノ インダ樹脂を構成する溶質樹脂は高温では互いに溶剤可溶性を有し、 室 温では溶剤不溶性を示す組み合わせであることを特徴とする請求項 1又は 2に 記載の粉末焼結用成形組成物。 5. The sinter powder is dispersed in the resin that becomes solvent insoluble fibrous or feathery, and the solute resins that make up the noinda resin are mutually soluble in solvent at high temperature and are insoluble in solvent at room temperature. It is a combination, The molding composition for powder sintering of Claim 1 or 2 characterized by the above-mentioned.
6 . 溶剤不溶性樹脂と溶剤可溶性樹脂の体積比が 1 : 0 . 5〜 4 . 0であるこ とを特徴とする請求項 1又は 2に記載の粉末焼結用成形組成物。 6. The molding composition for powder sintering according to claim 1 or 2, wherein the volume ratio of the solvent-insoluble resin to the solvent-soluble resin is 1: 0.5 to 4.0.
7 . パインダ樹脂を構成する溶質樹脂は高温では互いに溶剤可溶性を有し、 室温では溶剤不溶性を示す組み合わせであり、 溶剤不溶性樹脂と溶剤可溶性榭 脂の体積比が 1 : 0 . 5〜4 . 0でぁることを特徴とする請求項1又は2に記載 の粉末焼結用成形組成物。 7. The solute resin constituting the pinda resin is a combination which is solvent soluble at high temperature and shows solvent insolubility at room temperature, and the volume ratio of the solvent insoluble resin to the solvent soluble resin is 1: 0.5 to 4.0. The molding composition for powder sintering according to claim 1 or 2, characterized in that.
8 . 焼結用粉末が溶剤不溶性繊維状或いは羽毛状となる樹脂内に分散してお り、 パインダ樹脂を構成する溶質樹脂は高温では互いに溶剤可溶性を有し、 室 温では溶剤不溶性を示す組み合わせであり、 溶剤不溶性榭脂と溶剤可溶性榭脂 の体積比が 1 : 0 . 5〜 4 . 0であることを特徴とする請求項 1又は 2に記載の 粉末焼結用成形組成物。 8. Sintering powder is dispersed in resin that becomes solvent insoluble fiber or feather. The solute resin constituting the pinda resin is a combination which exhibits solvent solubility at high temperatures and exhibits solvent insolubility at room temperature, and the volume ratio of solvent insoluble resin to solvent soluble resin is 1: 0.5 to 4 The molding composition for powder sintering according to claim 1 or 2, characterized in that 0.
9 · 請求項 1〜 8の何れかに記載の粉末焼結用成形組成物を用い、 対象形状 に対して収縮量を見込んだ大きさに形成されていることを特徴とするグリーン 体。 A green body characterized by using a molding composition for powder sintering according to any one of claims 1 to 8 and having a size that allows for the amount of contraction relative to the target shape.
1 0 . 請求項 1〜9のいずれかに記載の粉末焼結用成形組成物を用いて、 対 象形状に対して焼結時の収縮量を見込んだグリーン体を形成し、 続いて前記グ リーン体から可溶性樹脂成分を当該可溶性樹脂溶出用溶剤にて溶出して多孔質 グリーン体を形成し、 然る後、 前記多孔質グリーン体を加熱して多孔質グリー ン体に残留している不溶性樹脂成分を焼失させると共に或いは焼失さ.せた後、 焼結用粉末を焼結することを特徴とする焼結用粉末の焼結方法。 Using the molding composition for powder sintering according to any one of claims 1 to 9, a green body is formed in consideration of the amount of shrinkage at the time of sintering with respect to the target shape, and subsequently said green A soluble resin component is eluted from the lean body with the solvent for elution of the soluble resin to form a porous green body, and then the porous green body is heated to be insoluble in the porous green body. A method of sintering a sintering powder, comprising sintering the sintering powder after burning out or burning out the resin component.
1 1 . 請求項 1〜 9のいずれかに記載の粉末焼結用成形組成物を用いて棒状 または板状或いはプロック状グリーン体を形成し、 この棒状または板状或いは プロック状グリーン体から対象形状に対して収縮量を見込んだ大きさの 2次グ リーン体を形成し、 続いて前記 2次グリーン体から可溶性樹脂成分を当該可溶 性樹脂溶出用溶剤にて溶出して多孔質グリーン体を形成し、 然る後、 前記多孔 質グリーン体を加熱して多孔質グリーン体に残留している不溶†生樹脂成分を焼 失させると共に或いは焼失させた後、 焼結用粉末を焼結することを特徴とする 焼結用粉末の焼結方法。 A rod-like, plate-like or block-like green body is formed by using the powder sintering molding composition according to any one of claims 1 to 9, and a target shape is formed from this rod-like, plate-like or block-like green body. Then, a secondary green body having a size that allows for the amount of contraction is formed, and then the soluble resin component is eluted from the secondary green body with the solvent for elution of the soluble resin to form a porous green body. Forming, then heating the porous green body to burn out or burn out insoluble insoluble resin components remaining in the porous green body, and then sintering the sintering powder. A method of sintering a powder for sintering.
1 2 . 請求項 1〜 9のいずれかに記載の粉末焼結用成形組成物を金型に圧入 して、 対象形状に対して収縮量を見込んだ大きさのグリーン体を形成し、 続い て前記グリーン体から可溶性樹脂成分を当該可溶性樹脂溶出用溶剤にて溶出し て多孔質グリーン体を形成し、 然る後、 前記多孔質グリーン体を加熱して多孔 質グリーン体に残留している不溶性榭脂成分を焼失させると共に或いは焼失さ せた後、 焼結用粉末を焼結することを特徴とする焼結用粉末の焼結方法。 1 2. The molding composition for powder sintering according to any one of claims 1 to 9 is pressed into a mold to form a green body having a size that allows for the amount of contraction relative to the target shape, and then A soluble resin component is eluted from the green body with the solvent for elution of the soluble resin to form a porous green body, and then the porous green body is heated to form pores. A method of sintering a sintering powder comprising sintering the sintering powder after burning off or burning out the insoluble resin component remaining in the quality green body.
1 3 . 請求項 1〜 9のいずれかに記載の粉末焼結用成形組成物を板状にし、 真空成形にて対象形状に対して収縮量を見込んだ大きさのグリーン体を形成し、 続いて前記グリーン体から可溶性樹脂成分を当該可溶性樹脂溶出用溶剤にて溶 出して多孔質グリーン体を形成し、 然る後、 前記多孔質グリーン体を加熱して 多孔質グリーン体に残留している不溶性樹脂成分を焼失させると共に或いは焼 ^ 失させた後、 焼結用粉末を焼結することを特徴とする焼結用粉末の焼結方法。 11. Make a plate shape the molding composition for powder sintering according to any one of claims 1 to 9, form a green body of a size that allows for the amount of shrinkage relative to the target shape by vacuum forming, and then A soluble resin component is eluted from the green body with the solvent for elution of the soluble resin to form a porous green body, and thereafter, the porous green body is heated and remains in the porous green body. A method of sintering a sintering powder, comprising sintering the sintering powder after burning off or burning away the insoluble resin component.
1 4 . 請求項 1〜 9のいずれかに記載の粉末焼結用成形組成物を筒状にし、 ブロー成形にて対象形状に対して収縮量を見込んだ大きさのグリーン体を形成 し、 続いて前記グリーン体から可溶性樹脂成分を当該可溶性樹脂溶出用溶剤に て溶出して多孔質グリーン体を形成し、 然る後、 前記多孔質グリーン体を加熱 して多孔質グリーン体に残留している不溶性樹脂成分を焼失させると共に或い は焼失させた後、 焼結用粉末を焼結することを特徴とする焼結用粉末の焼結方 法。 A cylindrical shape of the molding composition for powder sintering according to any one of claims 1 to 9 is blow molded to form a green body having a size that allows for an amount of contraction relative to the target shape, and then A soluble resin component is eluted from the green body with the solvent for elution of the soluble resin to form a porous green body, and then the porous green body is heated and remains in the porous green body. A method of sintering a sintering powder, which comprises sintering the sintering powder after burning away and / or burning off the insoluble resin component.
1 5 . 請求項 1 0〜 1 4のいずれかに記載の方法において、 不溶性樹脂成分 を熱分解焼失工程或いは焼結工程で水素雰囲気を使用することを特徴とする焼 結用粉末の焼結方法。 The method according to any one of claims 1 to 14, wherein the insoluble resin component is subjected to a hydrogen atmosphere in the thermal decomposition or sintering step or the sintering step. .
1 6 . 請求項 1 0〜 1 4のいずれかに記載の方法で焼結された粉末焼結部材。 A powder-sintered member sintered by the method according to any one of claims 1 to 14.
PCT/JP2003/009905 2003-08-04 2003-08-04 Molding composition for powder sintering, method of sintering powder for sintering, and sinter member made from the powder WO2005011900A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003254804A AU2003254804A1 (en) 2003-08-04 2003-08-04 Molding composition for powder sintering, method of sintering powder for sintering, and sinter member made from the powder
PCT/JP2003/009905 WO2005011900A1 (en) 2003-08-04 2003-08-04 Molding composition for powder sintering, method of sintering powder for sintering, and sinter member made from the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/009905 WO2005011900A1 (en) 2003-08-04 2003-08-04 Molding composition for powder sintering, method of sintering powder for sintering, and sinter member made from the powder

Publications (1)

Publication Number Publication Date
WO2005011900A1 true WO2005011900A1 (en) 2005-02-10

Family

ID=34113493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009905 WO2005011900A1 (en) 2003-08-04 2003-08-04 Molding composition for powder sintering, method of sintering powder for sintering, and sinter member made from the powder

Country Status (2)

Country Link
AU (1) AU2003254804A1 (en)
WO (1) WO2005011900A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2045739A (en) * 1979-02-28 1980-11-05 Asahi Glass Co Ltd Process for producing moulded ceramic or metal
JPH0533006A (en) * 1991-07-31 1993-02-09 Komatsu Ltd Production of injected and sintered body of powder
JPH05148504A (en) * 1991-11-26 1993-06-15 Sumitomo Metal Mining Co Ltd Production of injection molding product by using liquid soluble in organic solvent
EP0551682A1 (en) * 1992-01-07 1993-07-21 W.R. Grace & Co.-Conn. Method for making sintered bodies
JPH0625709A (en) * 1992-07-13 1994-02-01 Sumitomo Cement Co Ltd Production of sintered hard alloy parts
JP2003027106A (en) * 2001-07-17 2003-01-29 Seiko Epson Corp Method for manufacturing sintered body, and sintered body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2045739A (en) * 1979-02-28 1980-11-05 Asahi Glass Co Ltd Process for producing moulded ceramic or metal
JPH0533006A (en) * 1991-07-31 1993-02-09 Komatsu Ltd Production of injected and sintered body of powder
JPH05148504A (en) * 1991-11-26 1993-06-15 Sumitomo Metal Mining Co Ltd Production of injection molding product by using liquid soluble in organic solvent
EP0551682A1 (en) * 1992-01-07 1993-07-21 W.R. Grace & Co.-Conn. Method for making sintered bodies
JPH0625709A (en) * 1992-07-13 1994-02-01 Sumitomo Cement Co Ltd Production of sintered hard alloy parts
JP2003027106A (en) * 2001-07-17 2003-01-29 Seiko Epson Corp Method for manufacturing sintered body, and sintered body

Also Published As

Publication number Publication date
AU2003254804A1 (en) 2005-02-15

Similar Documents

Publication Publication Date Title
US6403158B1 (en) Porous body infiltrating method
TW509726B (en) Hard sintered molding having a nickel- and cobalt-free nitrogen-containing steel as a binder of the hard phase
US5015289A (en) Method of preparing a metal body by means of injection molding
US2799912A (en) Processes for forming high temperature ceramic articles
EP0928656A2 (en) Powder and binder system for use in metal and ceramic powder injection molding
US8097548B2 (en) High-density pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
JP2006503188A (en) Near net shape metal and / or ceramic member manufacturing method
JP3310013B2 (en) Insert for chip forming machining and manufacturing method thereof
US11718736B2 (en) Binder for injection moulding compositions
US4300951A (en) Liquid phase sintered dense composite bodies and method for producing the same
KR100516081B1 (en) Injection molding compositions for the production of metal moldings containing metal oxides
US7648675B2 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
JP4822534B2 (en) Manufacturing method of ceramics
WO2005011900A1 (en) Molding composition for powder sintering, method of sintering powder for sintering, and sinter member made from the powder
JP3872714B2 (en) Method for producing molding composition for powder sintering, composition produced by the method, sintering method thereof, and powder sintered member thereof
KR100419778B1 (en) Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering
KR100629323B1 (en) Multi-layer material and Munufacturing method therefor
JPH0770610A (en) Method for sintering injection-molded product
JP2995661B2 (en) Manufacturing method of porous cemented carbide
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JPH0483752A (en) Mixture of sinterable substance
JP2949130B2 (en) Method for producing porous metal filter
JP2005103647A (en) Grinding wheel, its manufacturing method, and its kneaded material
JPH02194104A (en) Binder for forming and sintering metal powder and manufacture of sintered body using this binder
JPH02145704A (en) Composition for compacting and manufacture of sintered body using it

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTHING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC DATED 01/09/06

122 Ep: pct application non-entry in european phase