WO2005009469A1 - 新規血糖調節薬及びそのスクリーニング方法 - Google Patents

新規血糖調節薬及びそのスクリーニング方法 Download PDF

Info

Publication number
WO2005009469A1
WO2005009469A1 PCT/JP2004/011002 JP2004011002W WO2005009469A1 WO 2005009469 A1 WO2005009469 A1 WO 2005009469A1 JP 2004011002 W JP2004011002 W JP 2004011002W WO 2005009469 A1 WO2005009469 A1 WO 2005009469A1
Authority
WO
WIPO (PCT)
Prior art keywords
lpa
gpcr
operating
glucose tolerance
test sample
Prior art date
Application number
PCT/JP2004/011002
Other languages
English (en)
French (fr)
Inventor
Mutsuo Taiji
Masakuni Horiguchi
Original Assignee
Sumitomo Pharmaceuticals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Pharmaceuticals Co., Ltd. filed Critical Sumitomo Pharmaceuticals Co., Ltd.
Publication of WO2005009469A1 publication Critical patent/WO2005009469A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/72Assays involving receptors, cell surface antigens or cell surface determinants for hormones
    • G01N2333/726G protein coupled receptor, e.g. TSHR-thyrotropin-receptor, LH/hCG receptor, FSH

Definitions

  • the present invention relates to a novel blood glucose regulator and a screening method thereof.
  • the present invention relates to a novel pharmaceutical use of an LPA-operating GPCR activity inhibitor. More specifically, the present invention relates to the use of LPA-operating GPCR inhibitors for regulating insulin secretion, for example, the use of LPA-operating GPCR inhibitors for improving impaired glucose tolerance and treating lifestyle-related diseases such as diabetes. About. The present invention also relates to a method for screening a novel LPA-operating GPCR ligand that can be a therapeutic agent for the above-mentioned diseases.
  • Type 1 is a condition based on insulin secretory dysfunction in the knee
  • type 2 is a condition mainly due to insulin resistance in insulin-sensitive tissues and abnormal insulin secretion in the descending pancreas.
  • obesity and accompanying lifestyle-related diseases, particularly type 2 diabetes have been increasing remarkably due to westernization of dietary habits and increase in social stress.
  • the gut is thought to play a central role in blood glucose regulation.
  • Insulin the major glycemic control hormone, is secreted from / 3 cells of the islets of Langerhans in the knee.
  • ⁇ cells rapidly secrete the required amount of insulin in response to a transient rise in blood glucose, such as after a meal.
  • Peripheral tissues such as muscle and fat regulate elevated blood glucose by taking up glucose in response to insulin secreted from the knee.
  • gluconeogenesis is suppressed in response to insulin, and blood glucose is regulated. It is believed that the failure of such a cycle causes diabetes.
  • type 1 diabetes the knee is autoimmunely destroyed and insulin secretion is impaired, making glycemic control impossible.
  • type 2 diabetes the first phase of insulin secretion is considered. It is known that poor secretion leads to hyperglycemia.
  • lysophosphatidic acid is a kind of phospholipid and was known as an intermediate of phospholipid biosynthesis, but was later found to be an extracellular signal transmitter molecule for various biological reactions. Have been. Such biological reactions include cell division promotion, apoptosis suppression, actin cytoskeleton remodeling and induction of cell morphological changes, tumor cell infiltration, etc. [Yoh Takuwa et al., J. Biochem., 767-771 (2002) See]. Recently, LPA was found to be a ligand (agonist) for G protein-coupled receptor (GPCR): EDG2, EDG4, and EDG7. And antagonists [Kevin R.
  • an object of the present invention is to provide a compound having a glucose metabolism regulating action and a method for screening the same, and a method for improving impaired glucose tolerance using the compound and a therapeutic drug for lifestyle-related diseases including diabetes. To provide.
  • the present inventors have conducted intensive studies and identified a factor that is localized in the islets of Langerhans of a normal human. That is, the present inventors compared the gene expressed in the normal human knee Langerhans islet with the gene expressed in other normal tissues of the normal human to express the expression localization in the normal human knee Langerhans islet. Genes were identified. Next, when the protein encoded by the gene was examined, lysophos It was found to be a receptor for phosphatidic acid (Lysophosphatidic acid; hereinafter referred to as LPA), that is, EDG2, EDG4 and EDG7, which are LPA-operating GPCRs.
  • LPA phosphatidic acid
  • the present inventors next examined the role of LPA-activated GPCRs in order to investigate whether signal transmission via LPA-activated GPCRs such as EDG2, EDG4, and EDG7 is involved in insulin secretion in the knee.
  • LPA-activated GPCRs such as EDG2, EDG4, and EDG7
  • the effect of gonist ligand on normal mice was examined. That is, when LPA was administered to normal mice, it was found that LPA was a glucose tolerance exacerbating factor that promoted an increase in blood glucose level due to glucose load.
  • the present invention relates to a blood glucose modulator comprising an LPA-operating GPCR activity inhibitor as an active ingredient, and more particularly, to a drug for improving abnormal glucose tolerance comprising an LPA-operating GPCR antagonist or an LPA-producing enzyme inhibitor as an active ingredient. That is,
  • LPA agonist GPCR activity inhibitor as an active ingredient, impaired glucose tolerance drug
  • the agent for improving abnormal glucose tolerance according to (1), wherein the LPA-agonizing GPCR activity inhibitor is an LPA-producing enzyme inhibitor;
  • the LPA-operating GPCR activity inhibitor is an LPA-operating GPCR antagonist, an impaired glucose tolerance drug;
  • the impaired glucose tolerance is lifestyle-related disease or diabetes mellitus (1) to (3).
  • LPA-operating GPCR is EDG2, EDG4 or EDG7, (1) to (4) according to any of the abnormal glucose tolerance improving agent,
  • Another aspect of the present invention relates to a method for screening an LPA-operating GPCR antagonist.
  • a screen for an LPA-operating GPCR antagonist which comprises contacting a test sample with an LPA-operating GPCR or a fragment thereof to which a ligand can bind, and selecting a compound that binds to the GPCR or the fragment.
  • LPA-operated GPCRs are trimeric GTP-binding protein-coupled receptors (GPCRs), and some knowledge has been obtained on the GTP protein ⁇ -subunit (Ga) to which they are coupled. Therefore, the present invention relates to a reaction system comprising a lipid bilayer containing an LPA-operated GPCR and a conjugated G protein, wherein the Ga
  • the present invention provides a method for screening for an LPA-operating GPCR antagonist, comprising comparing under and in the absence. That is,
  • the above reaction system is transfected with (i) an expression vector containing DNA encoding an LPA-operating GPCR and an expression vector containing DNA encoding a subunit of a G protein capable of coupling to the LPA-operating GPCR.
  • [22] including adding [ 3 H] thymidine to the reaction system in the presence and absence of a test sample, and comparing the amount of [ 3 H] thymidine incorporated into cells under both conditions; 10) or the screening method according to (11), (23) the screening method according to any one of (10) to (22), which is performed in the presence of a ligand;
  • a screening method for an LPA-producing enzyme inhibitor which comprises contacting an LPA-producing enzyme and a substrate in the presence and absence of a test sample and comparing the amount of LPA produced under both conditions.
  • (30) a method for selecting a drug for improving impaired glucose tolerance, including the method according to (28) or (29),
  • Still another aspect of the present invention provides a pharmaceutical product comprising an LPA-operating GPCR activity inhibitor such as an LPA-operating GPCR antagonist or an LPA-producing enzyme inhibitor selected by any of the above screening methods as an active ingredient. That is,
  • a drug for improving impaired glucose tolerance comprising as an active ingredient an LPA agonist GPC R antagonist selected by the method according to any of (6) to (25),
  • the impaired glucose tolerance is a lifestyle-related disease or diabetes mellitus.
  • FIG. 1 shows that a single intravenous administration of 0.5 mg of saline or LPA per individual was followed by glucose loading.
  • the blood glucose level was shown 90 minutes after the glucose load.
  • the LPA-administered group showed a significant (p ⁇ 0.05) Student's t-test 90-min blood glucose level 90 minutes after glucose load.
  • LPA-acting GPCR refers to lysophosphatidic acid (LPA) that is a ligand (egagonist). And is a GPCR that is activated and significantly expressed in the islets of Langerhans of the knee, and specifically includes EDG2, EDG4 and EDG7.
  • the amino acid sequences of EDG2, EDG4, and EDG7 and the nucleotide sequence of the gene are known, respectively.
  • the sequence of human EDG2 is registered in GeneBank as Accession No .: _001401 (SEQ ID NOS: 1 and 2) .
  • the sequence of human EDG4 has been registered in GeneBank as Accession No. AF233092 (SEQ ID NOs: 3 and 4).
  • the sequence of human EDG7 has been registered in GeneBank as Accession No .: 012152 (SEQ ID NOS: 5 and 6).
  • the expression “significantly expressed” means that the expression level in the islets of Langerhans is 1.5 times or more as compared with the expression level in other tissues.
  • ⁇ EDG2 '' refers to EDG2 derived from human and other mammals, natural or artificial mutants thereof, recombinant EDG2 produced from recombinant cells containing DNA encoding them, It is used to encompass all of those functional fragments.
  • EDG4 is produced from human or other mammalian EDG4, natural or artificial mutants thereof, and recombinant cells containing DNAs encoding them. Recombinant EDG2 is used to encompass all of their functional fragments.
  • EDG7 refers to EDG7 derived from humans and other mammals, natural or artificial mutants thereof, and recombinant cells containing DNA encoding them. It is used to include all of the recombinant EDG7 that is used and their functional fragments.
  • LPA-operating GPCR activity inhibitor is not particularly limited as long as it is an agent that suppresses the activity caused by the binding of an LPA-operating GPCR to a ligand (agonist). Antagonists or LPA producing enzyme inhibitors.
  • ligand means not only the physiological ligand (agonist) lysophosphatidic acid (LPA) but also agonist, which binds to the physiological ligand binding site of the receptor, unless otherwise specified.
  • an agonist a substance that binds to the physiological ligand binding site of the receptor but does not exhibit a ligand-like activity
  • an inverse agonist a substance that binds to any site of the receptor
  • R 1 represents a straight-chain alkyl group having 8 to 20 carbon atoms or a straight-chain alkenyl group having 8 to 20 carbon atoms and having 1 to 4 double bonds.
  • LPAs having agonist activity are known as LPAs having agonist activity. Specifically, LPA (18: 2), LPA (18: 3), LPA (20: 4), LPA (12: 0), LPA (14: 0), LPA (16: 0) or LPA ( 18: 0).
  • the first integer in parentheses is the LPA Represents the total number of carbon atoms of the alkyl group or alkenyl group in the fatty acid portion, and the second integer represents the number of double bonds.
  • the configuration of the asymmetric carbon atom in the glycerin skeleton preferably represents an R configuration.
  • D0XP-0H represented by the following is also an example of LPA-operating GPCRs (Biochimi ca et Biophysics Acta, 1582, 309-317 (2002)).
  • LPA-operating GPCR antagonist is used as a generic term for substances (antagonist or inverse agonist) that bind to LPA-operating GPCRs and inhibit the activity of the receptor. Includes all known and novel compounds having agonist activity.
  • EDGPP8 di ⁇ sill glycerol phosphate
  • LPA 3 di ⁇ sill glycerol phosphate
  • EDGSO Ai DJFischer Authors, Mol. Pharmacol., 60, 776-784 (2001)
  • LPA receptor antagonist described in WO 02/29001, p. 35-39, can also be used as an antagonist of the LPA-operating GPCR of the present invention.
  • equation (8) Equation (8):
  • R 1 a represents a substituted or unsubstituted C8-22 alkyl or substituted or unsubstituted C 8- 22 alkenyl
  • R 2 a and R 3 a are independently hydrogen atom or the formula:
  • R 6 a is C3-16 alkyl, C3-16 Arukeninore, - (C1- 4 alkyl) - R 7a, - (C2- 4 alkenyl) - R 7a or - (C2-4 alkynyl) -R 7a R 7a represents the formula: 14a R15S
  • R 14a and R 15a independently represent a hydrogen atom, a C1-12 alkyl, a C2-6 alkenyl, a C2-6 alkynyl or a halogen atom.
  • R 4 a water group (wherein R 2 a and R 3 a is not to both represent hydrogen atoms.) - 0P0 3 H (phosphate groups), or - CH 2 P0 3 H (methylene phosphonate group ) Represents a compound having a chemical structure represented by, and having an LPA-operating GPCR antagonistic activity.
  • C8-22 alkyl and C8-22 alkenyl in the above formula (8) is substituted by C1-10 alkyl, C1-20 alkoxy, C1-20 alkylthio or C1-20 alkylamino, respectively.
  • C3-10 cycloalkyl, C3-15 bicycloalkyl, C5-10 heterocyclic group or phenyl group is substituted by C1-10 alkyl, C1-20 alkoxy, C1-20 alkylthio or C1-20 alkylamino, respectively.
  • lysophosphatidic acid (LPA) receptor antagonist EDG2, 7 antagonist
  • LPA lysophosphatidic acid
  • EDG2 lysophosphatidic acid receptor antagonist
  • WO 01/60819 pamphlet can also be used as an antagonist of the LPA-operating GPCR of the present invention.
  • X represents an oxygen atom or a sulfur atom
  • R lb represents a halogen atom or an alkyl group, an aryl group, a heterocyclic group, an alkyloxy group, an aryloxy group, an alkylthio group or an arylthio group, each of which may have a substituent; ;
  • R 2 b is halogen atom, or may each have a substituent, an alkyl group, ⁇ aryl group, a heterocyclic group, an Arukiruokishi group or Ariruokishi group;
  • R 3 b is a hydrogen atom, a lower alkyl Group or a halogenated alkyl group;
  • R 4 b represents an aryl group, a heterocyclic group, an alkyl group or an alkenyl group, each of which may have a substituent;
  • R 3 b and R 4 b may be formed from 5 to 1 0-membered ring structure together with the carbon atoms to which they are attached.
  • R lb include a halogen atom, a phenyl group which may have a substituent, and an alkyl group having 1 to 4 carbon atoms.
  • R 2b include substituents.
  • R 3 b is a hydrogen atom, a carbon atom having 1 to 4 carbon atoms.
  • R 4 b examples thereof include an alkyl group and a haloalkyl group having 1 to 5 halogen atoms having 1 to 4 carbon atoms, and specific R 4 b may be a 2-furyl group or 3-furyl which may have a substituent.
  • R 2 b represents an alkyl group having 1 to 4 carbon atoms
  • R 3 b represents a hydrogen atom, an alkyl group or a triflate Ruo b methyl group having 1 to 4 carbon atoms
  • R 5 b represents a halogen atom, represents a nitro group, an alkyl group having a carbon number of 1-4, an alkoxy group having 1 to 4 carbon atoms, triflumizole Ruo Russia methyl group, an Torifuruorome butoxy group or a hydroxymethyl group
  • R 6 b is a hydrogen atom or a halo gen atom.
  • R lb represents a halogen atom, an alkyl group having 1 to 4 carbon atoms which may be substituted with an alkoxy group having 1 to 4 carbon atoms
  • R 2 b represents a phenyl group, a alkyl having 1 to 4 carbon atoms.
  • n an integer of 1 to 5.
  • R 3b represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms or a trifluoromethyl group.
  • R 6 b is a hydrogen atom or a halogen atom.
  • At least one of X 1 , X 2 and X 3 represents (H0) 2 P0- Z 1 -or (H0) 2 P0- Z 2 _P (0H) 0-Z, X 1 and X 2 Together form -0-P0 (0H) -0-, or X 1 and X 3 are linked together to form -0-P0 (0H) -NH-; At least one of X 1 , X 2 and X 3 is the same or different and represents RL-Y 1 -A- or X 2 and X
  • One of X 1 , X 2 and X 3 may represent a hydrogen atom
  • A is a bond, an oxygen atom or-(CH 2 ). _ 3 . -Represents;
  • Y 1 is an oxygen atom, a sulfur atom, _C0-, -NR 2- , or- . -Represents;
  • Z 1 is an oxygen atom, a sulfur atom, -NH -, - CH (R 3) -, - (CH ⁇ 5 .- or - 0- (CH 2) had 5 .- a represents
  • Z 2 is an oxygen atom, - (( ⁇ .-, or - (represents HCH ⁇ 5 .-;
  • Q 1 and independently represent H 2 , NRNR 4 , 0, or a combination of a hydrogen atom and —NR 5 R 6 ;
  • R 2 , R ⁇ R ⁇ R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a linear or branched C1-30 alkyl, a linear or branched C2-30 alkenyl, 1 to Includes an aromatic carbocycle or aromatic heterocycle optionally having 3 substituents, an acyl group containing an aromatic carbocycle or an aromatic heterocycle, a linear or branched C1-30 alkyl Arylalkyl, arylalkyl including straight or branched C1-30 alkyl; ]
  • a compound having the chemical structure represented by and having an LPA-operating GPCR antagonistic activity is also included in the category of the LPA-operating GPCR antagonist of the present invention.
  • EDG2 antagonist disclosed in WO 2004/31118 pamphlet is also included in the LPA-operating GPCR antagonist of the present invention.
  • R 5 represents a hydrogen atom, a C1-8 alkyl group, a C2-8 alkenyl group,
  • NP-Ser-PA ⁇ -palmi toluene L-serine phosphoric acid
  • N-palmitoyl-timouth synphosphonic acid or suramin represented by the following formulas is also a category of the LPA-operating GPCR antagonist of the present invention.
  • LPA-producing enzyme inhibitor refers to a biosynthetic enzyme inhibitor of LPA. Specifically, it represents an inhibitor of an enzyme [phospholipase A (A1, A2)] that converts phosphatidic acid into LPA.
  • Examples of the inhibitor include 6-chloro-9-[[4- (Jethylamino) -1-methylbutyl] amino] -2-methoxyacridine dihydrochloride (Mepacrine hydrochloride), 2-hydroxy-3--3- [2 -Hydroxy-3- [4-methyl-6- (2,6,6-trimethyl-1-cyclohexeninole) -3 (E) -hexenyl] -2H-5,6-Dihydroxypyran-6- Inole] furan-5 (2H) -on (Manoalide; Drugs Fut., 1990, 15 (5): 460; Mol.
  • the compounds exemplified as the LPA-operating GPCR activity inhibitor may suitably form pharmaceutically acceptable solvates such as salts and hydrates.
  • the LPA-agonizing GPCR activity inhibitor has an effect of suppressing an increase in blood glucose level promoted by LPA present in blood in an administered animal. Furthermore, LPA activation GPCR activity suppression Since the drug only inhibits the action of LPA, it does not cause hypoglycemia and is effective as a safe drug for improving glucose tolerance and a drug for treating diabetes.
  • the LPA-agonizing GPCR activity inhibitor acts on the knee and restores insulin secretion inhibited by LPA.
  • the LPA-agonizing GPCR activity inhibitor is formulated into a dosage form suitable for oral or parenteral administration together with a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers include, for example, excipients such as sucrose, starch, mannite, sorbite, lactose, glucose, cellulose, talc, calcium phosphate, calcium carbonate, etc., cellulose, methylcellulose, and hydrid.
  • Binders such as roxypropylcellulose, polypropylpyrrolidone, gelatin, arabia gum, polyethylene glycol, sucrose, starch, etc., starch, carboxymethyl starch 4 / cellulose, hydroxypropyl starch, sodium-glycol roux starch, sodium hydrogen carbonate Disintegrators such as calcium phosphate, calcium citrate, etc., lubricants such as magnesium stearate, air-gill, talc, sodium lauryl sulfate, citrate, menthol, glycyllysine, ammonium salt, glycine, o
  • Air fresheners such as microwave oven powder, preservatives such as sodium benzoate, sodium bisulfite, methylvalaben, and propylparaben; stabilizers such as citrate, sodium citrate, and acetic acid; methylcellulose, polyvinylpyrrolidone, and aluminum stearate Examples include, but are not limited to, suspending agents, dispersants
  • Formulations suitable for oral administration include a solution in which an effective amount of an LPA-activating GPCR activity inhibitor is dissolved in a diluent such as water, physiological saline, or orange juice.
  • a diluent such as water, physiological saline, or orange juice.
  • Capsnole, sachet or tablet contained as an active ingredient a suspension in which an effective amount of LPA-activated GPCR activity inhibitor is suspended in an appropriate dispersion medium, and an effective amount of LPA-activated GPCR activity inhibitor is dissolved Emulsions and the like are obtained by dispersing and emulsifying a solution in an appropriate dispersion medium.
  • the term "effective amount” refers to a sufficient amount of an LPA-operating GPCR inhibitor to improve the respective disease when used for the treatment of a patient with impaired glucose tolerance, diabetes, or other lifestyle-related disease. Refers to the amount.
  • Parenteral administration include aqueous and non-aqueous isotonic sterile injections, which include antioxidants, buffers, bacteriostats, isotonic agents and the like. May be included.
  • Aqueous and non-aqueous aseptic suspensions may also be mentioned, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like.
  • the preparation of the LPA-operating GPCR activity inhibitor can be enclosed in a unit dose or multiple doses such as an ampoule or a vial.
  • an LPA-operating GPCR activity inhibitor and a pharmaceutically acceptable carrier can be lyophilized and stored in a state that may be dissolved or suspended in an appropriate sterile vehicle immediately before use.
  • the dosage of the preparation of the present invention containing an LPA-agonizing GPCR activity inhibitor as the active ingredient depends on the type of the active ingredient, the administration route, the severity of the disease, the animal species to be administered, the drug receptivity of the administration subject, body weight, Depending on the age, etc., an LPA-operating GPCR activity inhibitor is administered, for example, from about 0.01 to about 100 mg Z kg, preferably from about 0.1 to about 500 mg kg per adult per day. be able to.
  • the present invention also provides a screening system for an LPA-operating GPCR activity inhibitor such as an LPA-operating GPCR antagonist or an LPA-producing enzyme inhibitor, and a method for screening a drug for improving impaired glucose tolerance using the same.
  • an LPA-operating GPCR activity inhibitor such as an LPA-operating GPCR antagonist or an LPA-producing enzyme inhibitor
  • the first embodiment of the screening method of the present invention comprises a step of bringing a test sample into contact with an LPA-operating GPCR or a fragment thereof to which a ligand can bind, and a step of selecting a compound that binds to the receptor or a fragment thereof.
  • the test sample may be any known or novel compound, for example, a compound library prepared using combinatorial chemistry technology, a random peptide library prepared by solid phase synthesis or phage display method Or natural components derived from microorganisms, animals and plants, marine organisms and the like.
  • the test sample is preferably a compound having a molecular weight of from 200 to 200, more preferably a compound having a molecular weight of from 300 to 800.
  • the binding activity to the test sample can be determined, for example, by immobilizing a cell membrane fraction expressing the LPA-operated GPCR or a fragment thereof on a chip, loading the test sample solution on the chip, and measuring the test sample by surface plasmon resonance. It is derived by measuring the binding and dissociation to the membrane, and calculating the affinity between the test sample and the LPA-operating GPCR from the rate of binding and dissociation or the amount of binding.
  • a ligand in the presence and absence of a test sample, a ligand is contacted with an LPA-operating GPCR or a fragment thereof to which a ligand can bind, and the binding between the receptor or a fragment thereof and the ligand is performed.
  • LPA which is a physiological ligand of an LPA-operating GPCR
  • a test sample having a stronger binding activity to LPA-operating GPCRs than LPA can be selected as a candidate LPA-operating GPCR antagonist.
  • Whether the candidate substance is an LPA-operating GPCR antagonist can be confirmed by a screening method using a G protein described below or the like.
  • the LPA-operated GPCR or a fragment thereof can be provided in a form bound to an expression cell thereof, a cell membrane fraction of the cell, or an affinity column.
  • Cells expressing the LPA-operating GPCR include cells transfected with an expression vector containing a DNA encoding the LPA-operating GPCR or a fragment thereof.
  • affinity columns anti-LPA-activated GPCR antibody columns, columns using ligands, and when LPA-activated GPCRs are provided as recombinant proteins, they have specific affinity for His tags and GST tags. Metal chelate or daltathione columns can be used.
  • a method for detecting the binding activity between an LPA-operating GPCR or a fragment thereof and a ligand for example, a method for detecting the amount of a ligand, or a method in which a ligand is labeled and labeled with an LPA-operating GPCR or a fragment thereof There is a method for measuring the amount of a ligand.
  • Examples of the method of labeling a ligand include a method of labeling with a fluorescent label and a method of labeling with a radioactive isotope such as 3H, 14C, 32P, and 33P.
  • LPA in which the hydrogen atom of the fatty acid moiety is labeled with 3H or LPA in which the phosphorus atom is labeled with 32P can be used.
  • 32P-labelled LPA and 1-oleoyl [oleoyl] -9, 10- 3 H] LPA (1-OleoyUoleoyl-9, 10- 3 H] LPA; commercial product of Life Science Products; Song zhu An, et al J Biol Chem, Vol. 273, Issue 14, 7906-7910 , April 3, 1998) can be used.
  • the present invention also provides a lipid bilayer comprising an LPA-operated GPCR,
  • the present invention provides a screening method for an LPA-operating GPCR antagonist using a G protein (particularly the Ga subunit).
  • the screening method of the present invention is performed using the GTP-GDP exchange reaction in Ga or the cell stimulating activity of the coupled G protein as an indicator.
  • animal cells eg, HEK293 cells, L1.2 cells, etc.
  • a trimeric G protein Ga as a source of Ge
  • G ⁇ ] 3 ⁇ activated by the LPA-activated GPCR dissociates into G a and G / 3 ⁇ , but free G ⁇ "/ interacts with phospholipase C] 3 to reduce intracellular calcium ion concentration. Since it can be increased, it is also possible to screen for LPA-operating GPCR antagonists using intracellular calcium ions as an index regardless of the family of coupled Ga.
  • LPA-operating GPCR refers to LPA-operating GPCRs derived from humans and other mammals, and amino acids in which one or more amino acids have been substituted, deleted, inserted, added or modified in their amino acid sequences. It refers to a protein consisting of an acid sequence, exhibits the same ligand-receptor interaction as a natural LPA-operated GPCR, and has the activity of activating the coupled Ge and promoting the GDP / GTP exchange reaction of the Ga.
  • ⁇ EDG2 '', ⁇ EDG4 '' and ⁇ EDG7 '' derived from humans and other mammals, and one or more amino acids in those amino acid sequences are substituted, deleted, inserted, added or Proteins consisting of a modified amino acid sequence, exhibiting the same ligand-receptor interaction as a natural LPA-operating GPCR, and having the activity of activating the coupled Ga to promote the GDP / GTP exchange reaction of the G protein it can.
  • the above-mentioned ⁇ EDG2 '' is derived from the membrane-containing fraction of cells transfected with an expression vector containing DNA encoding human or other animal-derived EDG2 or a fragment thereof. It can be isolated by affinity chromatography using an anti-EDG2 antibody. Alternatively, a DNA clone isolated from a cDNA library or genomic library derived from the cell using the EDG2 cDNA clone as a probe is cloned into an appropriate expression vector, introduced into a host cell, and expressed. It can also be purified from the membrane-containing fraction of the culture by affinity mouth chromatography using an anti-EDG2 antibody, His-tag, GST-tag, or the like.
  • a fusion protein of EDG2 with a fluorescent substance such as GFP, it is also possible to select only GFP-positive cells, that is, cells in which EDG2 has been transfected, and use them for screening (Xu et al. , Nat. Cell Biol., 2, 261-267 (2000)).
  • a mutation may be partially introduced by artificial treatment such as site-directed mutagenesis based on the cDNA clone of EDG2.
  • the ligand binding domain must be highly conserved, it is desirable not to introduce mutations in such regions. Conservative amino acid substitutions are well known, and those skilled in the art can appropriately introduce mutations into EDG2 as long as the characteristics of EDG2 are not changed.
  • EDG4J is an antibody using an anti-EDG4 antibody from a JI-mega-containing fraction of cells transfected with an expression vector containing DNA encoding EDG4 derived from human or other animals, or a fragment thereof.
  • a DNA clone isolated from a cDNA library derived from the cell or a genomic library using an EDG4 cDNA clone as a probe is cloned into an appropriate expression vector.
  • the protein can be introduced into a host cell, expressed, and purified from the membrane-containing fraction of the cell culture by affinity chromatography using an anti-EDG4 antibody, His-tag, GST-tag, or the like.
  • EDG4 can be transfected by expressing a fusion protein of EDG4 with a fluorescent substance such as It is also possible to select only the selected cells and use them for screening (Xu et al., Nat. Cell Biol., 2, 261-267 (2000)).
  • the mutation may be partially introduced by artificial treatment such as site-directed mutagenesis, etc.
  • mutation in such a region may occur. It is well known that conservative amino acid substitution is well-known, and those skilled in the art can appropriately mutate EDG4 as long as the characteristics of EDG4 are not changed. Can be introduced.
  • the above-mentioned ⁇ EDG7J is obtained by using an anti-EDG7 antibody from a membrane-containing fraction of cells transfected with an expression vector containing DNA coding for EDG7 derived from human and other animals, or a fragment thereof.
  • an appropriate expression of a DNA clone isolated from a cDNA library or genomic library from the cell using the EDG7 cDNA clone as a probe can be performed. It can be cloned into a vector, introduced into host cells, expressed, and purified from the membrane-containing fraction of cell culture by affinity chromatography using anti-EDG7 antibody, His-tag, GST-tag, etc.
  • EDG7 by expressing a fusion protein of EDG7 with a fluorescent substance such as GFP, GFP-positive cells, that is, EDG7 can be transfected. It is also possible to select only cells that have been subjected to screening and use them for screening (Xu et al., Nat. Cell Biol., 2, 261-267 (2000)).
  • a mutation may be partially introduced by artificial treatment such as site-directed mutagenesis, etc. Since the ligand binding domain needs to be highly conserved, It is desirable not to introduce a mutation in such a region.Conservative amino acid substitution is well known, and those skilled in the art can appropriately introduce a mutation into EDG7 as long as the characteristics of EDG7 are not changed.
  • the origin of the lipid bilayer membrane retaining the LPA-operated GPCR is not particularly limited as long as the receptor can take the original three-dimensional structure, but is preferably human, porcine, pig, sal, mouse, rat Fractions containing the cell membrane of mammalian cells such as, for example, intact cells, cell homogenates, and cell membrane fractions fractionated from the homogenates by centrifugation or the like.
  • an artificial lipid bilayer prepared by a conventional method from a solution in which various lipids such as phosphatidylcholine, phosphatidylserine, and cholesterol are mixed in an appropriate ratio, preferably in a ratio close to that in the cell membrane of mammalian cells, and in a ratio. Can also be preferably used in one embodiment of the present invention.
  • the Ga coupled to the LPA-operating GPCR has at least a region involved in the binding of the G ⁇ to the GPCR and a region involved in the binding of any G ⁇ to the guanine nucleotide.
  • G i conjugated to an LPA-operating GPCR belongs to the G i family (G i ⁇ )
  • the G a used has at least the GPCR binding region of G i ⁇ , It has a guanine nucleotide binding region of Gic or a guanine nucleotide binding region derived from Ga belonging to another family.
  • the sequence of about 5 amino acids at the C-terminus is important for binding to the GPCR, while the guanine nucleotide binding region is a region homologous to the nucleotide binding site of the ras protein.
  • amino acid motifs called P-box, G'-box, G-box, and G-box, as well as the beginning of E-heritus and aF-helix in highly helical domains
  • the Ga activation domain of the receptor interacts with the GPCR binding region of Ga to cause a conformational change of Ga, resulting in a guanine nucleotide. GDP dissociates from the binding region and quickly binds GTP.
  • the inverse agonist binds, the activation form of G-GTP is decreased because the conformational change of the receptor inactivates the G activation domain.
  • GTP analogs that are not hydrolyzed by the GTPase activity of Ga such as 35S-labeled GTP ⁇ S
  • membranes in the presence and absence of the test sample can be added to the system.
  • agonists or inverse agonists of LPA-operated GPCRs can be screened. That is, if the radioactivity increases in the presence of the test sample, the test sample is an agonist, and if the radioactivity decreases, it is an inverse agonist.
  • the radioactivity bound to the membrane in the presence and absence of the test sample is measured and compared to obtain an antagonist of the LPA-operated GPCR.
  • an antagonist of the LPA-operated GPCR Can be screened. That is, if the radioactivity is reduced in the presence of the test sample as compared to the absence of the test sample, the test sample is an antagonist.
  • screening can also be performed by monitoring the binding of a GTP analog to Ga using surface plasmon resonance or the like.
  • the activity of an LPA-agonizing GPCR antagonist can also be measured using the effect on the coupled G protein as an index.
  • the screening system of the present invention needs to include, as a component, a lipid bilayer membrane containing an effector in addition to the LPA-operated GPCR.
  • the conjugated Ga needs to further include a region for interacting with the effector. The region may be the original effector-interacting region of the Get or the effector interacting region of G ⁇ belonging to a different family.
  • G a belonging to a different family includes G q ⁇ , G s, G 12 ⁇ , and the like.
  • the simplest example of a G a (eg, G ct) chimera containing an effector interaction region of G ⁇ (eg, G qa) belonging to a different family is that about 5 amino acids at the C-terminal of G q ⁇ (Gqi ⁇ ) substituted with the C-terminal sequence of
  • Ga coupled to the LPA-acting GPCR contains an effector interaction region of Gi ⁇
  • a lipid bilayer membrane containing adenylate cyclase is used as an effector.
  • the conjugated Ga contains the effector interaction region of Gq
  • the conjugated G a contains the effector interaction region of G s
  • a lipid bilayer membrane containing adenylate cyclase is used as an effector.
  • the adenylate cyclase is used.
  • the ligand activity is evaluated using the promoting action of the enzyme activity as an index.
  • the action of Ga effecta can be evaluated by directly measuring the AC activity.
  • Any known technique may be used to measure AC activity.
  • ATP is added to a membrane fraction containing AC, and the amount of cAMP generated is measured using an anti-cAMP antibody to obtain RI ( 125 I), enzyme (alkaline phosphatase, peroxidase, etc.), cAMP labeled with fluorescent substances (FITC, rhodamine, etc.), etc.
  • the method includes, but not limited to, a method in which ATP is added, and [32 P] c AMP produced is separated by an alumina column or the like, and then the radioactivity is measured.
  • Gia AC activity was measured in the presence and absence of the test sample. Comparison and AC activity in the presence of the test sample If the activity increases, the test sample is an inverse agonist of the LPA-activated GPCR; if the activity decreases, the test sample is an agonist.
  • test sample is then an antagonist of the LPA-activated GPCR.
  • a bioactive ligand for example, LPA
  • test sample will be an LPA-operated GPCR embagonist
  • the AC activity is measured and compared in the presence and absence of a test sample in a system co-existing with a bioactive ligand (eg, LPA).
  • a test sample is an antagonist of an LPA-operating GPCR if AC activity is reduced below that in the absence of the test sample.
  • the action of Ga on AC can be determined by measuring the amount of cAMP in the cells or by labeling the cells with [3H] adenine and generating [3H] cAMP It can also be evaluated by measuring the radioactivity of the product.
  • the amount of intracellular cAMP is measured by incubating the cells for an appropriate period of time in the presence and absence of the test sample, and then crushing the cells and performing the above-mentioned competitive immunoassay.
  • any other known method can be used.
  • a method for evaluating the amount of cAMP by measuring the expression level of a reporter gene under the control of a cAMP response element (CRE).
  • CRE cAMP response element
  • the expression vector used here will be described in detail later.
  • animal cells transfected with a vector containing an expression cassette in which DNA encoding a reporter protein is linked downstream of a motor containing CRE are tested. After culturing for an appropriate period of time in the presence and absence of the sample and crushing the cells, the expression of the reporter gene in the extract obtained by crushing the cells is measured and compared using a known method to determine the amount of intracellular cAMP. Is to evaluate.
  • the test sample when Ga is G i ⁇ , if the intracellular c AM level (or the expression level of the reporter gene under CRE control) increases in the presence of the test sample, the test sample will be an inverse ALPA-operated GPCR. A gonist, and if it decreases, an agonist. Also raw By measuring the amount of cAMP in the presence and absence of a test sample in a system coexisting with a physiologically active ligand (eg, LPA), an LPA-agonizing GPCR antagonist can be screened by comparison. That is, if the amount of cAMP increases in the presence of the test sample as compared to the absence of the test sample, the test sample is an antagonist.
  • a physiologically active ligand eg, LPA
  • the test sample when Ga is Gs, if the intracellular cAMP (or the expression level of the reporter gene under the control of CRE) decreases in the presence of the test sample, the test sample will be an LPA-operated GPCR inverse ligand. It is an agonist if it increases.
  • a bioactive ligand for example, LPA
  • the amount of cAMP in the presence and absence of the test sample is measured. be able to. That is, if the CAM Pi is decreased in the presence of the test sample as compared to in the absence of the test sample, the test sample is an antagonist.
  • the action of effecta-1 on the Gqa or chimeric Gqa can be evaluated by directly measuring the PLC 3 activity.
  • the PLC / 3 activity is measured, for example, by adding 3H-labeled phosphatidylinositol 1,4,5-diphosphate to a PLC-containing membrane fraction and measuring the amount of inositol phosphate generated using a known method. Can be evaluated.
  • a bioactive ligand for example, LPA
  • the effect of Gqc or chimeric Gq ⁇ on PLC] 3 is determined by adding [3 ⁇ ] inositol to the cells and generating [3 ⁇ ] inositol renolate. It can also be evaluated by measuring radioactivity or measuring the amount of intracellular Ca 2+. The amount of intracellular Ca2 + was determined in the presence and absence of the test sample. After incubating the cells for an appropriate period of time in the presence, spectrophotometric measurement using a fluorescent probe (fura-2, indo-1, fluor-3, Calcium-Green I, etc.), or the calcium-sensitive photoprotein equorin Etc., but any other known method may be used. An apparatus suitable for spectroscopic measurement using a fluorescent probe is the FLIPR (Molecular Devices) system.
  • TPA response element
  • the expression vector used here will be described in detail later.
  • the test sample is an agonist of the LPA-operated GPCR, and This is the Inverse Agonist.
  • a physiologically active ligand for example, PA
  • the PLC / 3 activity in the presence and absence of the test sample is measured.
  • a test sample is an antagonist if the amount of intracellular Ca 2+ decreases in the presence of the test sample as compared to the absence of the test sample.
  • the GPCR when the LPA-operating GPCR is EDG2 or EDG4, the GPCR can be activated by G ⁇ 12 / 13. And by G a l2 / 13 and P 115RhoGEF binds, Rho is converted from GDP-bound inactive form to GTP-bound activated form. GTP-linked Rho binds to Rho-kinase, an effector, and transmits signals downstream.
  • a recombinant GST addition ROCK Ras-kinases
  • Rho-kinases A protein belonging to one of the Rho families, eg, RhoA, to which it binds can be evaluated by measuring it using a known method (Onno et al., Molecular Biology of the Cell., 10, 1851-1857). (1999)).
  • the amount of RhoA that binds to ROCK in the presence and absence of the test sample is measured and compared. If the amount of RhoA that binds to ROCK increases in the presence of the test sample, the test sample is an agonist of LPA-activated GPC R. If the activity decreases, it is an inverse agonist. In addition, the amount of RhoA that binds to ROCK in the presence and absence of the test sample was measured and compared in a system in which a bioactive ligand (for example, LPA) was co-existed. If the amount of RhoA that binds to ROCK decreases, the test sample is an antagonist of LPA-operating GPCRs.
  • a bioactive ligand for example, LPA
  • a neutral antagonist for an LPA-operating GPCR can be easily selected.
  • an LPA-operating GPCR antagonist using various LPA-operating GPCR-dependent physiological actions as indices.
  • the physiological action includes activation of ERK, a kind of MAP kinase.
  • the test sample is an agonist of the LPA-operated GPCR, and if it decreases, it is an inverse agonist.
  • a bioactive ligand for example, LPA
  • test sample inhibits the LPA-activated GPCR-dependent DNA synthesis promoting activity (cell growth promoting activity) in the presence or absence of the natural ligand LPA or LPA-operated GPCR agonist. And a method for screening LPA-operating GPCR ligands.
  • a method of counting the number of cells such as NIH3T3 or a method of measuring the amount of [3H] thymidine or BrdU taken up by cells such as RH7777 can be used.
  • the test sample is an agonist of the LPA-operating GPCR, and if it decreases, it is an inverse agonist.
  • an antagonist of LPA-operating GPCR can be screened. That is, if the uptake of [3H] thymidine or BrdU is reduced in the presence of the test sample as compared to the absence of the test sample, the test sample is an antagonist.
  • the LPA-operating GPCR is EDG2 or EDG4, a method for evaluating the cell stimulating activity of G protein by measuring the expression level of a reporter gene under the control of a serum response element (SRE) (An et al., J. Biol., Chem., 273, 7906-7910, (1999); An et al., BBRC., 231, 619-622 (1997)).
  • SRE serum response element
  • the expression vector used here will be described in detail later.In general, eukaryotic cells into which a vector containing an expression cassette in which a DNA encoding a reporter protein is linked downstream of a promoter containing an SRE are introduced.
  • the expression of the reporter gene in the extract obtained by crushing the cells is measured and compared using known methods. It is to evaluate the quantity. Therefore, if the amount of the reporter gene under SRE control increases, the test sample is an agonist of the LPA-operated GPCR, and if the amount decreases, it is an inverse agonist.
  • a bioactive ligand for example, LPA
  • the term “compound having an LPA-agonizing GPCR antagonistic activity” refers to any compound that is an inverse agonist or antagonist in the above-described screening method. More specifically, the affinity with the LPA-operating GPCR (LPA-operating GPCR binding activity) is equal to or higher than LPA (18: 0), and in the test method using FLIPR described in Example 4, IC5 Compounds having a 0 value of 100 / iM or less, preferably 10 / M or less, more preferably ⁇ or less can be mentioned.
  • test sample to be subjected to the screening method of the present invention may be any known compound or a novel compound.
  • examples include a compound library prepared using combinatorial chemistry technology, a solid phase synthesis and a phage display method. And a random peptide library or natural components derived from microorganisms, animals, plants, marine organisms, and the like.
  • the test sample is a compound having a molecular weight of 200 to 2000, and more preferably a compound having a molecular weight of 300 to 800.
  • lipid bilayer membrane containing an LPA-operated GPCR provided for the screening method of the present invention, and a screening system containing a G string conjugated to the LPA-operated GPCR as a constituent element is LPA.
  • An expression vector containing a DN ⁇ encoding a working GPCR, and a polypeptide comprising at least a region involved in binding to a GPCR of a conjugated G strand and a region involved in binding to an arbitrary G strand of guanine nucleotides A host eukaryotic cell, a homogenate of the cell, or a membrane fraction derived from the cell, which has been transfected with an expression vector containing the target DNA.
  • DNA encoding an LPA-operating GPCR is an LPA-operating GPCR derived from human or other mammals, or an amino acid sequence of the receptor in which one or more amino acids are substituted, deleted, inserted, added or modified.
  • There is no particular limitation as long as the DNA is used.
  • DNA encoding region of human LPA-operating GPCR cDNA DNA encoding LPA-operating GPCRs derived from mammals other than humans such as mouse, pig, monkey, mouse, rat, etc. are exemplified.
  • a human LPA-operating GPCR cDNA clone can be isolated as a probe from a cDNA library or a genomic library derived from mammalian knee, kidney, or lung cells.
  • the LPA-operated GPCR may be one in which a mutation is partially introduced by artificial treatment such as site-directed mutagenesis based on the cDNA clone of the human LPA-operated GPCR.
  • DNA encoding EDG2 derived from humans and other mammals
  • DNA encoding EDG4 derived from humans and other mammals
  • DNA encoding EDG4 derived from humans and other mammals
  • DNA encoding EDG4 derived from humans and other mammals
  • DNA encoding EDG4 derived from humans and other mammals
  • DNA encoding EDG4 derived from humans and other mammals
  • DNA encoding EDG4 derived from humans and other mammals
  • DNA encoding EDG4 derived from humans and other mammals
  • DNA encoding EDG4 derived from humans and other mammals 7
  • amino acid sequence in which one or more amino acids are substituted, deleted, inserted, added or modified, and have the same ligand-receptor interaction as a natural LPA-operating GPCR
  • DNA encoding a polypeptide having the activity of activating the conjugating G ⁇ to promote the GDP / GTP exchange reaction of the subunit.
  • G ⁇ is not particularly limited as long as it is conjugated to an LPA-operating GPCR. Each gene of G ⁇ is known and can be easily obtained.
  • LPA-operating DNA that encodes a Ga-containing polypeptide conjugated to a GPCR is a DNA that encodes at least a sequence encoding a conjugated Ga-binding region and a Ga-linked guanine nucleotide. It is necessary to have a sequence that encodes the region to be As described above, the GPCR binding region and the guanine nucleotide binding region are well known from the results of the crystal structure analysis, and those skilled in the art can, if desired, delete a part of the Ga coding sequence if desired. Can be easily constructed.
  • the DNA encoding Ga that couples to the LPA-acting GPCR needs to further include a nucleotide sequence encoding a region that interacts with the desired effector. is there.
  • the DNA comprises a nucleotide sequence encoding the effector interacting region of Gia or Gse.
  • the DNA contains a nucleotide sequence encoding the efecuta-interacting region of Gq ⁇ .
  • G ⁇ gene is known, and their effector interaction regions are also well known.
  • DNA encoding the chimeric G ⁇ protein by appropriately combining known genetic engineering techniques.
  • DNA encoding the chimeric protein for example, Gqi ⁇
  • a sequence encoding about 5 amino acids at the C-terminus of Gq ⁇ cDNA can be obtained by PCR using a known method such as PCR. and i) a DNA sequence substituted with a DNA sequence encoding the C-terminal sequence.
  • the DNA encoding the LPA-operating GPCR and the DNA encoding G ⁇ coupled to the LPA-operating GPCR must be operably linked to a promoter capable of exerting promoter activity in the host eukaryotic cell.
  • the promoter used is the host eukaryote There is no particular limitation as long as it can function in cells.For example, SV40-derived initial motor, site megaloinoleth LTR, musculature fl heavy-duty inoleth LTR, MoMuLV-derived LTR, adenovirus Origin promoters, viral promoters such as the baculovirus-derived polyhedrin promoter, and promoters for eukaryotic cell-derived protein genes such as) 3-actin gene motor, PGK gene promoter, and transferrin gene promoter.
  • the expression vector to be used preferably contains, in addition to the above promoter, a transcription termination signal, that is, a terminator region downstream thereof, and is suitable so that coding DNA can be inserted between the promoter region and the terminator region. It is desirable to have a unique restriction enzyme recognition site that preferably cleaves the vector at only one site. Further, the expression vector may further contain a selection marker gene (drug resistance gene such as tetracycline, ampicillin, kanamycin, hygromycin, phosphinothricin, auxotrophic mutant complement gene, etc.). .
  • a selection marker gene drug resistance gene such as tetracycline, ampicillin, kanamycin, hygromycin, phosphinothricin, auxotrophic mutant complement gene, etc.
  • Examples of the vector used in the screening system of the present invention include a plasmid vector, a retrovirus, an adenovirus, an adeno-associated virus, a herpes virus, a vaccinia virus, and a box suitable for use in mammals such as humans. Innores, poliovirus, Sindbis virus, Sendai virus, etc., and baculovirus vectors suitable for use in insect cells are also included.
  • the NA may be carried on two separate expression vectors and cotransfected into the host cell, or it may be inserted dicistronically or monocistronically on one vector and inserted into the host cell. May be introduced.
  • the host cell is not particularly limited as long as it is a mammalian cell such as a human, monkey, mouse, rat, hamster, etc., or an insect cell.
  • a mammalian cell such as a human, monkey, mouse, rat, hamster, etc.
  • insect cell Specifically, C0P, C127, Sp2 / 0, NS-1, NIH3T3, ST2 and other mouse-derived cells, RH7777 and other rat-derived cells, BHK, CH0 and other hamster-derived cells, C0S1, C0S3, C0S7, Examples include monkey-derived cells such as CV1 and Vero, human-derived cells such as HeLa, HEK293, MCF10A, HepG2, and A431, and cells derived from insects such as Sf9, Sf21, and High Five.
  • Gene transfer into host cells may be performed using any known method that can be used for gene transfer into eukaryotic cells, such as calcium phosphate coprecipitation, electoral poration, ribosome method, and microinjection method. And the like.
  • the host cells into which the gene has been introduced include, for example, a minimum essential medium (MEM) containing about 5 to 20% of fetal bovine serum, Dulbecco's modified Eagle medium (DMEM), Ham's F-12 medium, RPM11640 medium, 199
  • the medium can be cultured using a medium, Grace's insect cell culture medium, or the like.
  • the pH of the medium is preferably about 6 to about 8, and the culture temperature is usually about 27 to about 40 ° C.
  • the eukaryotic cells into which the DNA encoding the LPA-operating GPCR and the DNA encoding the G protein conjugated to the LPA-operating GPCR obtained as described above have been introduced can be directly used as intact cells according to the screening method used.
  • the membrane fraction may be in the form of an isolated membrane fraction.
  • the screening system to be used is preferably prepared from cells as described above. Membrane fraction.
  • the amount of intracellular cAMP or the amount of expression of a cAMP-responsive reporter
  • the amount of intracellular Ca2 + or the amount of expression of a Ca2 + -responsive reporter
  • the ligand activity is evaluated using the expression level of cAMP-responsive reporter (when the effector is adenylate cyclase) or Ca2 + -responsive reporter (when the effector is phospholipase C] 3) as an index.
  • the host eukaryotic cell is a vector containing an expression cassette in which DNA encoding a reporter protein is operably linked downstream of a promoter region containing a cAMP response element (CRE) or a TPA response element (TRE). Must be introduced. £. A cis element that activates gene transcription in the presence of MPs.
  • the sequence includes a sequence containing TGACGTCA, but may be a sequence containing a deletion, substitution, insertion or addition in a part of the sequence as long as cAMP responsiveness is maintained.
  • TRE is a cis element that activates gene transcription in the presence of Ca 2+
  • consensus sequences include TGACTCA-containing sequences. It may be a sequence partially containing a deletion, substitution, insertion or addition.
  • the promoter sequence containing CRE or TRE the above-described viral promoter and mammalian constituent protein gene promoter can be used in the same manner, using restriction enzymes and DNA ligase, or using PCR or the like.
  • a CRE or TRE sequence can be inserted downstream of the promoter sequence.
  • any known gene capable of rapidly and easily detecting and quantifying gene expression may be used.
  • luciferase, / 3-galactosidase, ⁇ -v Examples include, but are not limited to, DNAs that encode reporter proteins such as lip lipase, lipase lipase, and lipase / reoxidase. More preferably, a terminator sequence is arranged downstream of the ribota gene.
  • a vector carrying such a CRE (or TRE) -reporter expression cassette a known plasmid vector or virus vector can be used.
  • An expression vector containing a reporter gene under the control of a serum response element (SRE) can be prepared in the same manner as described above.
  • Another preferred embodiment of the lipid bilayer membrane containing an LPA-operating GPCR provided for the screening method of the present invention, and a screening system containing, as a component, Ga conjugated to the LPA-operating GPCR is an LPA-operating GPCR.
  • An expression vector containing a DNA encoding a fusion protein in which a GPCR-binding region of a conjugated G-chain and a polypeptide containing at least a guanine nucleotide-binding region of any G ⁇ were linked to the C-terminal side of the DNA.
  • DNA encoding an LPA-operating GPCR DNA encoding a polypeptide containing a GPCR-binding region of Ga that couples to an LPA-operating GPCR, and a guanine nucleotide-binding region of an optional G-chain are as described above. Can be obtained.
  • DNA encoding the fusion protein of LPA-acting GPCR and G ⁇ can be constructed. Briefly, the DNA encoding the LPA-operating GPCR was removed from the termination codon using PCR or the like so that the DNA encoding the Ga matches the reading frame, i.e., the in-frame DNA ligase was used. Ligation using At this time, a part of the C-terminus of the LPA-operating GPCR may be deleted, or a linker sequence such as a His tag may be inserted between the LPA-operating GPCR and Ga.
  • the obtained DNA encoding the fusion protein is inserted into the expression vector as described above, and introduced into a host eukaryotic cell using the above-described gene transfer technique.
  • the fusion protein is expressed on the resulting eukaryotic cell membrane, the G-activation domain on the third intracellular loop of the receptor and the receptor-binding domain of the coupled Go; It can interact in the absence of a physiological ligand to promote the GDP 'GTP exchange reaction in Ga. Therefore, G a is constantly activated.
  • the linkage of Ga to the receptor prevents the interaction with the effector.
  • an amino acid sequence cleaved by a specific protease for example, a thrombin-sensitive sequence, etc.
  • the protease can act to separate Ga from the receptor.
  • any form of intact cells, cell homogenates, or membrane fractions can be appropriately selected and used depending on the screening method used.
  • lipid bilayer membrane comprising an LPA-operated GPCR provided for the screening method of the present invention, and a screening system containing Ga as a component conjugated to the LPA-operated GPCR is a component.
  • the DNA encoding the LPA-operating GPCR, the expression vector into which the DNA is inserted, and the method for introducing the expression vector into a host cell can be those described above.
  • the screening system of the present invention comprises an LPA-operated GPC Animal cells that endogenously express G proteins coupled to R and LPA-operated GPCRs, homogenates of the cells, or membrane fractions derived from the cells.
  • Preferred examples of such cells include mammalian knee, kidney, and lung-derived cells.
  • a lipid bilayer membrane containing an LPA-operating GPCR, and a screening system containing, as a component, Ga conjugated to the LPA-operating GPCR, a purified LPA-operating GPCR and conjugated G ⁇ , A purified fusion protein of the receptor and conjugate G reconstituted in an artificial lipid bilayer membrane can be used.
  • the LPA-operated GPCR can be purified from a membrane fraction obtained from human or other mammalian kidney, kidney, or lung-derived cells by affinity chromatography using an anti-LPA-operated GPCR antibody.
  • the receptor can be obtained from recombinant cells into which an expression vector containing DNA encoding an LPA-operating GPCR has been introduced, by affinity chromatography using an anti-LPA-operating GPCR antibody, His-tag, GST-tag, etc. It can also be purified by the method described above.
  • a fusion protein of the receptor and conjugated Ga can be obtained from a recombinant cell into which an expression vector containing DNA encoding the fusion protein has been introduced, by using an anti-LPA-activated GPCR antibody, His-tag, GST It can be purified by affinity chromatography using -tag or the like.
  • lipids constituting the artificial lipid bilayer membrane include phosphatidylcholine (PC), phosphatidylserine (PS), cholesterol (Ch), phosphatidylinositol (PI), and phosphatidylethanolamine (PE). A mixture of one or two or more of these at an appropriate ratio is preferably used.
  • an appropriate amount of the purified receptor and Ga or receptor-111Ga fusion protein are added, and the mixture is incubated on ice for 20 to 30 minutes with occasional stirring, and then dialyzed against an appropriate buffer. I do. Centrifuge at about 100,000 X g for 30 to 60 minutes to collect the sediment, Ribosomes can be prepared.
  • an LPA-operating GPCR activity inhibitor is screened using LPA production inhibitory activity as an index, and an LPA-producing enzyme is present in the presence and absence of a test sample. And the substrate, and compare the amount of LPA produced under both conditions.Select the test sample whose production in the presence of the test sample is greater than that in the absence of the test sample as the LPA-producing enzyme inhibitor.
  • LPA-producing enzyme specifically means phospholipase A (A1, A2), and preferably phospholipase A1.
  • phospholipase A (A1, A2) J refers to a group containing phospholipases Al and A2 derived from human and other mammals, natural or artificial mutants thereof, and DNAs encoding them.
  • the recombinant phospholipase A1 or A2 produced from the recombinant cells is used to encompass all of the functional fragments thereof, such as JB C vol. 277 No. 37 pp34 254-34263. (2003) or those described in JB C vol. 273 No. 10 pp. 5468-5477, and phospholipase A2 described in, for example, Cell, vol. 80, p919-927 (1995). Can be used.
  • “Substrate” includes labeled phosphatidic acid (PA).
  • the labeling method include a method of labeling with a fluorescent label and a method of labeling with a radioactive isotope such as 3H, 14C, 32P, and 33P.
  • Specific examples of the substrate used for screening include 32P-labeled sn-1,2-dioleoyl PA and the like.
  • test sample having a lower production enzyme activity can be selected as an LPA production enzyme inhibitor.
  • an LPA-operating GPCR activity inhibitor such as an LPA-operating GPCR antagonist or an LPA-producing enzyme inhibitor selected by the above-described screening method of the present invention exhibits an abnormal glucose tolerance ameliorating effect.
  • glucose tolerance It can be a drug for improving abnormalities. Therefore, the present invention also provides a drug for improving impaired glucose tolerance, or a treatment for lifestyle-related diseases, by mixing an LPA-operating GPCR activity inhibitor selected by the screening method of the present invention with a pharmaceutically acceptable carrier. In particular, it provides diabetes treatment.
  • Pharmaceutically acceptable carriers include, for example, excipients such as sucrose, starch, mannitol, sorbite, lactose, glucose, cellulose, talc, calcium phosphate, calcium carbonate, cellulose, methylsenololose, Binders such as hydroxypropynolecellulose, polypropylpyrrolidone, gelatin, gum arabic, polyethylene glycol, sucrose, starch, starch, carboxymethylcellulose, hydroxypropyl starch, sodium glycol glycol starch, sodium bicarbonate Disintegrators such as calcium phosphate, calcium kuninate, etc., Lubricants such as magnesium stearate, air porosity, talc, sodium laurinole sulfate, citrate, menthol, glycyrrhizin.
  • excipients such as sucrose, starch, mannitol, sorbite, lactose, glucose, cellulose, talc, calcium phosphate, calcium carbonate,
  • Ammonium salt glycine Air fresheners such as orange powder
  • preservatives such as sodium benzoate, sodium bisulfite, methyl paraben, propyl paraben, stabilizers such as citric acid, sodium citrate and acetic acid
  • suspensions such as methyl cellulose, polyvinyl pyrrolidone, and aluminum stearate
  • dispersants such as surfactants
  • diluents such as water, physiological saline, orange juice
  • base waxes such as cocoa butter, polyethylene glycol, and white kerosene. Les ,.
  • Formulations suitable for oral administration include a solution in which an effective amount of an LPA-activating GPCR activity inhibitor is dissolved in a diluent such as water, physiological saline, or orange juice.
  • a diluent such as water, physiological saline, or orange juice.
  • Capsules, sachets or tablets contained as an active ingredient, a suspension of an effective amount of LPA-activated GPCR activity inhibitor in a suitable dispersing medium, and an effective amount of LPA-activated GPCR activity inhibitor dissolved Emulsions and the like are obtained by dispersing and emulsifying a solution in an appropriate dispersion medium.
  • Formulations suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injections which may contain antioxidants, buffers, bacteriostats, tonicity agents, and the like. Also included are aqueous and non-aqueous sterile suspensions, including suspensions, A thickener, a thickener, a stabilizer, a preservative, and the like may be contained. Alternatively, a sustained-release preparation can be prepared using a biocompatible material such as collagen.
  • the preparation of the LPA-acting GPCR activity inhibitor can be enclosed in a container in a unit dose or in multiple doses such as an ampoule or a vial.
  • the LPA-operating GPCR activity inhibitor and a pharmaceutically acceptable carrier may be lyophilized and stored in a state where they may be dissolved or suspended in an appropriate sterile vehicle immediately before use.
  • KHLATEW TVSKLVM SEQ ID NO: 7
  • SEQ ID NO: 7 As Edg 2 antigen peptide, a partial peptide of the amino acid sequence: KHLATEW TVSKLVM (SEQ ID NO: 7) was synthesized by a known method, and the sequence was confirmed by mass spectrum and HPLC.
  • mice were immunized according to the following schedule, and polyclonal antibodies were prepared from the antiserum. That is, two Egret (KBL JW 11 weeks old) were used, and two FCAs (Complete Egret (KBL JW 11 weeks old) were used on the first day of breeding, and two animals were FCA (Complete Freund's Adjuvant) on the first day of breeding 200 / g / animal was dissolved intraperitoneally and dissolved on FCA (Complete Freund's Adjuvant) on days 14, 28, 42, 57, 70 and 84.
  • FCA Complete Freund's Adjuvant
  • the antigen was activated by autoclaving. Subsequent operations were performed using Vectastai ABC-AP kit (Vector). After blocking with the attached reagent, the plate was incubated for 45 minutes with the primary antibody prepared in (1) above. After washing, the plate was incubated with an anti-Egret secondary antibody ( ⁇ -1000) diluted to 5 ⁇ 1 / ⁇ 1 for 30 minutes. After washing, Vector ABC-AP (AK-5000) reagent was added, and color was developed with Vector Red (SK-5100).
  • Vectastai ABC-AP kit Vector
  • mice Male C57BL / 6J mice (3-week old, SPF standard, Claire) were preliminarily reared and fed a normal diet (Research Diet) from the age of 4 weeks. Twenty weeks later, the animals were fasted for 8 hours, and dried LPA (Sigma) was dissolved in physiological saline (Otsuka Pharmaceutical) and administered intravenously at 0.5 mg / animal. Physiological saline (Otsuka Pharmaceutical) was used as a solvent control. Immediately after intravenous administration, 3 g / kg of D-glucose was orally administered. Blood was collected from the tail vein before glucose loading (0 min), 15, 45, 90 and 135 min after glucose loading, and blood glucose was measured by the following method.
  • EDG2 represented by SEQ ID NO: 2
  • EDG4 represented by SEQ ID NO: 4
  • EDG7 represented by SEQ ID NO: 6
  • AmpliTaq PerkinElmer
  • the amplified gene fragment is introduced downstream of a promoter (pcDAN4 / HisMax (invitrogen)) that functions in animal cells.
  • Jurkat (or HTC4) cells are seeded on a 10 cm culture dish and cultured until they reach 60-70% confluence. Thereafter, the medium is converted to a serum-free medium, and the EDG2, EDG4 and EDG7 transgenes constructed as described above are added to the medium after forming a complex with Lipoofectamine-Plus (manufactured by Gibco). After incubating for 5 hours, change to a medium containing 10% FBS, and culture for another 8 hours. Thereafter, the cells were detached from the culture dish with trypsin EDTA, suspended in a medium containing G418 and 10% FBS, and seeded on a 10 cm culture dish. After several days, the colonies formed are isolated and used as stable expression strains for screening EDG2, EDG4 and EDG7 ligands.
  • the stable expression strains for EDG2, EDG4, and EDG7 ligand screening prepared in Example 3 were seeded on a 96-well culture dish, and were cultured in a medium containing 10% FBS (manufactured by Gibco) at 60-70% confluence. Culture until complete.
  • LPA (18: 3) (1-linolenoyl LPA) is synthesized using LPC (18: 3) (1-linolenoyl lysophosphatidylcholine) (manufactured by Sedary) using phospholipase D.
  • the evaluation compound is an LPA-operating GPCR antagonist candidate compound, and the LPA-operating GPCR antagonist can be screened by comparing the measured values. That is, the above compounds were measured at a plurality of concentrations, and the concentration (IC50 value) at which the measured value was ⁇ of the control value was determined. can do.
  • the stable expression strain for EDG2, EDG4 and EDG7 ligand screening prepared in Example 3 is inoculated in a flask, and cultured in a medium until 10% FBS (manufactured by Gibco) reaches 60 to 70% confluence.
  • the cells are collected and suspended in buffer A (50 mM HEPES (pH 7.0), 10 mM 2-ME, ImM PMSF, 0.25 M sucrose). Homogenize with a Potter-type homogenizer (400rpm , 20 strokes), centrifuge at 100,000 g for 60 minutes, and resuspend the obtained precipitate in buffer A again.
  • This suspension is overlaid on 35% (tnass / vol) sucrose in buffer A, and centrifuged at 45,000 g for 45 minutes. Collect the interface fraction, suspend it in buffer A, and centrifuge at 100,000 g for 60 minutes. The obtained precipitate is suspended in buffer A containing 20 / ig / ml aprotinin and used for the following assay.
  • the membrane dried at 37 ° C is punched and measured with a y counter.
  • the binding inhibitory activity value of the natural ligand can be determined.
  • the measured value in the absence of the evaluation compound was set to 100, and the concentration (IC50 value) of the evaluation compound that suppressed this by 50% can be obtained.
  • the IC50 value was compared with LPA (18: 1). By doing so, a compound having a strong inhibitory activity can be selected.
  • a stable expression strain for EDG2, EDG4 and EDG7 screening is inoculated into a flask, and 10% FBS (Gibco) is cultured in a medium until it becomes 60-70% confluent.
  • the cells are collected and suspended in buffer A (50 mM HEPES (pH 7.0), 10 mM 2-ME, ImM PMSF, 0.25 M sucrose). After homogenization (400 rpm, 20 strokes) with a Potter type homogenizer, centrifugation is performed at 10,000 g for 60 minutes, and the obtained precipitate is suspended again in buffer A. This suspension is overlaid on 35% (tnass / vol) sucrose in buffer A, and centrifuged at 45,000 g for 45 minutes.
  • EDG2 prepared in the above procedure was dissolved in EDG4 and EDG7 expressed cell membrane fraction (e.g. 1 to 10 mu 8) of 10mM acetate buffer one (pH 4), the surface of the Matrigel box of the sensor chip CM 5 of Biako ⁇ It is immobilized via a carboxyl group.
  • HBS buffer flow (Amersham Pharmacia Baoteku Co., Ltd.) at a flow rate of 2 0/1 min to sensor-chip, and records the value of the background. From the middle, switch to the test compound dissolved in HBS buffer at a concentration of 10 nM to 10 / iM, and allow to flow for 1 minute, and record the change in the value associated with the drug binding. Switch back to the drug-free HBS buffer and record the change in value associated with the dissociation of the bound drug. Calculate the affinity between the test compound and EDG2, EDG4, and EDG7 from the binding and dissociation rates or the maximum binding amount. By comparing the affinity with LPA, a compound having a high affinity can be selected.
  • the stable expression strains for EDG2, EDG4, and EDG7 ligand screening prepared in Example 3 are seeded on a 96-well culture dish, and replaced with a serum-free medium in a 10% FBS (Gibco) medium the next day. After 24 hours, the medium is replaced and the cells are cultured for 16 hours in the presence or absence of LPA, and [ 3 H] thymidine is added. [3 H] cells were washed with PBS (PHosphate-buffered saline) into After incubation for 8 hours from thymidine added and incorporated into the cell [3 H] thymidine for Betaplate Huy Roh letter counter system (Amersham off Alma shear Bio Tech).
  • EDG2, EDG4, and EDG7 ligand screening stable expression strains prepared in Example 3 are suspended in serum-free DMEM (Dulbecco's modified eagle medium) and seeded on a 96-well plate. Twenty-four hours later, the test compound is added, and the cells are cultured for 16 hours in the presence or absence of LPA (3 ⁇ ), and then BrdU is added. After culturing for 3 hours from the addition of BrdU, BrdU incorporated into the cells is measured by absorbance at 450 nm using a Cellular ELISA assay system (RPN250, Amersham Life Science).
  • the difference between BrdU incorporation in LPA-added gel and BrdU incorporation in LPA-free gel is defined as the amount of BrdU uptake promoted by LPA.
  • BrdU incorporation without the addition of the evaluation compound is defined as 100, and the concentration of the evaluation compound that suppresses this by 50% (IC50 value) can be determined.
  • the evaluation compound is added immediately before the addition of LPA.
  • the obtained compound having a small IC5 (H) can be selected as a candidate compound for a blood glucose modulator.
  • mice Male C57BL / 6J mice (3 weeks old, SPF standard, CLEA Japan) are preliminarily bred and fed a high-fat diet (Research Diet) from 4 weeks old. Twenty weeks later, the animals are fasted for 8 hours, and the evaluation compound is dissolved in physiological saline (Otsuka Pharmaceutical) and administered intravenously at 0.5 mg / animal. Physiological saline (Otsuka Pharmaceutical) is used as a solvent control. Immediately after intravenous administration, orally 3 g / kg of D-Dulcose. Blood is collected from the tail vein before glucose loading (0 min), 15, 45, 90 and 135 min after glucose loading, and the blood glucose level is measured by the following method.
  • 10 1 blood is collected and mixed with 100N of 0.4N perchloric acid aqueous solution. Further, add 50 zl of a 0.37 M aqueous potassium carbonate solution, and measure the blood glucose level of the supernatant after centrifugation using a glucose CI I test (glucose determination kit, mutarotase 'G0D method, Wako Pure Chemical Industries, Ltd.).
  • the LPA-operating GPCR antagonist of the present invention restores insulin secretion suppressed by LPA.
  • LPA since it is expected to only inhibit the action of LPA, it can be a safe drug for improving impaired glucose tolerance and a drug for treating diabetes without causing excessive hypoglycemia.

Abstract

 本発明により、EDG2、EDG4もしくはEDG7等のLPA作動GPCRの拮抗剤を有効成分とする耐糖能異常改善薬、生活習慣病治療薬、及び、LPA作動GPCR、又はリガンドが結合し得るそのフラグメントに被験試料を接触させ、該GPCR又は該フラグメントに結合する化合物を選択することを含む、新規LPA作動GPCRリガンドのスクリーニング方法を提供することが可能になった。当該スクリーニング方法は、耐糖能異常改善薬を選別するのために有用である。

Description

明細書
新規血糖調節薬及びそのスクリ一二ング方法 技術分野
本発明は LPA作動 GPCR活性抑制剤の新規医薬用途に関する。 より詳細には、 本発 明はインスリン分泌調節のための LPA作動 GPCR活性抑制剤の使用、 例えば、 耐糖能 異常改善及び糖尿病などの生活習慣病の治療のための LPA作動 GPCR活性抑制剤の使 用に関する。 本発明はまた、 上記疾患の治療薬となり得る新規な LPA作動 GPCRリガ ンドのスクリーニング方法に関する。
¾ 謹
糖尿病はその病態から 1型と 2型に分類される。 すなわち、 1型は膝臓における インスリン分泌機能不全に基づく病態であり、 2型はィンスリン感受性組織におけ るインスリン抵抗性と降臓におけるィンスリン分泌異常が主たる病態である。 近年 、 食生活の西洋化や社会的ス トレスの増加等により、 肥満とそれに付随する生活習 慣病、 特に 2型糖尿病患者の増加が著しい。
血糖調節において隙臓は中心的役割をはたすと考えられている。 主要な血糖調節 ホルモンであるインスリンは膝臓のランゲルハンス島の /3細胞から分泌される。 β 細胞は食後などに一過的に上昇する血糖に応答して迅速に必要量のインスリンを分 泌する。 筋肉、 脂肪等の末梢組織では膝臓から分泌されたインスリンに応答して糖 を取り込むことにより、 上昇した血糖の調節を行っている。 さらに、 肝臓ではイン スリンに応答して糖新生が抑制され、 血糖の調節が行われている。 このようなサイ クルに破綻が生じることにより糖尿病が発症すると考えられている。 事実、 1型糖 尿病の多くは、 膝臓が自己免疫的に破壊されィンスリン分泌不全になることにより 血糖コントロールが不能になるものであり、 2型糖尿病ではインスリン分泌におけ る第一相の分泌不良が高血糖を招来することが知られている。
上述のような観点から、 膝臓におけるィンスリン分泌の促進は糖尿病病態の改善 効果に大きく貢献すると考えられる。 このような作用機序を持つ薬剤としては、 現 在のところスルホニルゥレア剤などが上巿されている力 血糖値に応じたインスリ ン分泌調節作用がないため、 血糖が低下してもなおィンスリン分泌促進効果が持続 して低血糖に陥り、 昏睡、 さらには死亡を招く危険性がある。 現在、 血糖値に応じ たインスリン分泌促進効果が得られるというような特徴をもつ安全な薬剤は上市さ れておらず、 このような薬剤の開発が望まれている。
ところで、 リゾフォスファチジン酸 (LPA) は、 リン脂質の一種であり、 ホスホ リピッドの生合成中間体として知られていたが、 その後様々な生体反応の細胞外シ グナル伝達分子であることがわかってきた。 該生体反応としては、 細胞分裂促進、 アポトーシス抑制、 ァクチン細胞骨格再構築や細胞の形態変化の誘導、 腫瘍細胞浸 潤等が挙げられる 〔Yoh Takuwaら、 J. Biochem. , 767- 771 (2002)を参照〕 。 最近に なって、 LPAが G蛋白質結合受容体 (G protein coupled receptor ; GPCR) : EDG2 、 EDG4、 及び EDG7のリガンド (ァゴ二ス ト) であることが判明し、 該受容体のァゴ 二スト及びアンタゴニストについても報告されている [Kevin R. Lynchら、 Bioche mica et Biophysics Acta. , 1582, 289-294 (2002) s 及び Vineet M. Sardarら、 Bio chemica et Biophysica Acta. , 1582, 309- 317 (2002)を参照〕 。 また、 L- α _リゾ ホスファチジルコリン ォレオイルがインスリン分泌促進活性を有することが報告 されている (国際公開第 0 2ノ0 4 4 3 6 2号パンフレッ トを参照) 。
しかしながら、 EDG2、 EDG4、 及び EDG7等の受容体、 又は該受容体のリガンド (ァ ゴニス ト) である LPAと、 糖代謝制御との関係はこれまで全く知られていなかった
発明の開示
したがって、 本発明の目的は、 糖代謝調節作用を有する化合物及びそのスクリー ニング方法を提供することであり、 それらを用いた耐糖能異常の改善方法、 糖尿病 を初めとする生活習慣病の治療薬を提供することである。
本発明者らは上記課題に鑑みて鋭意研究を行い、 正常人の膝臓ランゲルハンス氏 島において発現局在する因子を同定した。 すなわち、 本発明者らは正常人の膝臓ラ ンゲルハンス氏島に発現する遺伝子と正常状態のその他の諸組織に発現する遺伝子 を比較することにより、 正常人の膝臓ランゲルハンス氏島において発現局在する遺 伝子を同定した。 次に、 該遺伝子がコードする蛋白質を調べたところ、 リゾフォス ファチジン酸(Lysophosphatidic acid;以下 LPAと称する。 ) のレセプター、 すな わち LPA作動 GPCRである、 EDG2、 EDG4及び EDG7であることがわかった。
本発明者らは、 次に、 EDG2、 EDG4及び EDG7等の LPA作動 GPCRを介したシグナル伝 達が膝臓におけるインスリン分泌に関与しているか否かを検討するために、 LPA作 動 GPCRのァゴニストリガンドが正常マウスに及ぼす作用を調べた。 すなわち、 LPA を正常マウスへ投与したところ、 LPAは糖負荷による血糖値の上昇を亢進する耐糖 能増悪因子であることを見出した。
これらの結果は、 LPA作動 GPCRの生理的リガンド(ァゴ二スト) である LPAの作用 を拮抗する化合物、 すなわち LPA作動 GPCR拮抗剤や、 LPAの産生を抑制する薬剤が耐 糖能異常改善作用及び糖尿病を含む生活習慣病の治療活性を有することを示してい る。
本発明は、 LPA作動 GPCR活性抑制剤を有効成分とする血糖調節薬、 詳細には、 LPA 作動 GPCR拮抗剤または LPA産生酵素阻害剤を有効成分とする耐糖能異常改善薬に関 する。 すなわち、
〔 1〕 LPA作動 GPCR活性抑制剤を有効成分とする耐糖能異常改善薬、
〔2〕 LPA作動 GPCR活性抑制剤が LPA産生酵素阻害剤である、 〔1〕 に記載の耐糖 能異常改善薬、
〔 3〕 LPA作動 GPCR活性抑制剤が LPA作動 GPCR拮抗剤である、 耐糖能異常改善薬、 〔4〕 耐糖能異常が生活習慣病又は糖尿病である 〔1〕 〜 〔3〕 のいずれかに記 載の耐糖能異常改善薬、
〔5〕 LPA作動 GPCRが EDG2、 EDG4又は EDG7である、 〔1〕 〜 〔4〕 のいずれかに 記載の耐糖能異常改善薬、
別の本発明は、 LPA作動 GPCR拮抗剤のスクリーニング方法に関する。 すなわち、 〔 6〕 LPA作動 GPCR、 又はリガンドが結合し得るそのフラグメントに被験試料を 接触させ、 該 GPCR又は該フラグメントに結合する化合物を選択することを含む、 LP A作動 GPCR拮抗剤のスクリ一二ング方法、
〔7〕 被験試料の存在下及び非存在下で、 LPA作動 GPCR、 又はリガンドが結合し 得るそのフラグメントにリガンドを接触させ、 該 GPCR又は該フラグメントとリガン ドとの結合活性を両条件下で比較することを含む、 LPA作動 GPCR拮抗剤のスタリー ニング方法、
〔8〕 リガンドが標識された LPAである 〔7〕 記載のスクリーニング方法、 〔9〕 LPA作動 GPCR、 又はリガンドが結合し得るそのフラグメントが、 それらが 包埋された脂質二重層の形態で提供される、 〔6〕 〜 〔8〕 のいずれか記載のスク リーユング方法。
また、 LPA作動 GPCRは三量体 GTP結合タンパク質共役型レセプター (GPCR ) であり、 共役する GTPタンパク質 αサブユニット (Ga) についても幾らかの 知見が得られている。 従って、 本発明は、 LPA作動 GPCRを含む脂質二重層及び共役 する Gひを含んでなる反応系において、 該 Gaの GDP ■ G TP交換反応又は共役 Gタンパク質の細胞刺激活性を、 被験試料の存在下と非存在下で比較することを含 む、 LPA作動 GPCR拮抗剤のスクリーニング方法を提供する。 すなわち、
〔10〕 LPA作動 GPCRを含む脂質二重層及び LPA作動 GPCRに共役し得る G蛋白質の αサブュニットを含んでなる反応系において、 該サブュニットの GDP · GTP交 換反応又は該 G蛋白質の細胞刺激活性を、 被験試料の存在下と非存在下で比較する ことを含む、 LPA作動 GPCR拮抗剤のスクリ一ユング方法、
〔1 1〕 上記反応系が、 (i) LPA作動 GPCRをコードする DNAを含む発現べクタ 一と、 LPA作動 GPCRに共役し得る G蛋白質のひサブュニットをコードする DNAを 含む発現ベクターとでトランスフエタ トした宿主真核生物細胞、 (ii) LPA作動 GPCR の C末端側に LPA作動 GPCRに共役し得る G蛋白質の αサブユニットが融合したポリ ペプチドをコードする DNAを含む発現ベクターでトランスフエク トした宿主真核 生物細胞、 (iii) LPA作動 GPCRをコードする DNAを含む発現ベクターでトランス フエク 卜した、 LPA作動 GPCRに共役し得る G蛋白質を内因的に発現する宿主動物細 胞、 (iv) LPA作動 GPCR及び LPA作動 GPCRに共役し得る G蛋白質を内因的に発現する 動物細胞、 それらの細胞のホモジネート又はそれらの細胞由来の膜画分である、 〔 10〕 記載のスクリーニング方法、
〔12〕 上記反応系に、 被験試料の存在下及び非存在下で G TPアナログを添加 し、 LPA作動 GPCRに共役し得る G蛋白質の αサブュニットと GTPアナログとの結 合を両条件下で比較することを含む、 〔1 1〕 記載のスクリーニング方法、
〔1 3〕 LPA作動 GPCRに共役し得る G蛋白質のひサブユニットが、 アデ二ル酸シ クラーゼと相互作用する領域を含むものである、 〔1 1〕 記載のスクリーニング方 法、
〔14〕 上記反応系に、 被験試料の存在下及び非存在下で AT Pを添加し、 アデ ニル酸シクラーゼ活性を両条件下で比較することを含む、 〔13〕 記載の方法、 〔1 5〕 上記(i)〜(iv)の細胞における c AMP量を、 被験試料の存在下と非存 在下で比較することを含む、 〔1 3〕 記載の方法、
〔16〕 LPA作動 GPCRに共役し得る G蛋白質の αサブユニットが、 ホスホリパー ゼ C /3と相互作用する領域を含むものである、 〔1 1〕 記載のスクリーニング方法 〔17〕 上記反応系に、 被験試料の存在下及び非存在下でホスファチジルイノシ トール一 4, 5 _二リン酸を添カ卩し、 ホスホリパーゼ C 活性を両条件下で比較す ることを含む、 〔16〕 記載のスクリーニング方法、
〔18〕 上記(i)〜(iv)の細胞における細胞内カルシウムイオンの量を、 被験試 料の存在下と非存在下で比較することを含む、 〔16〕 記載のスクリーニング方法 、
〔1 9〕 c AMP応答エレメントを含むプロモーター領域の制御下にあるリボー タ一遺伝子を含む発現べクターをさらに含む上記(i)〜(iv)の細胞における該リポ 一ター遺伝子の発現量を、 被験試料の存在下と非存在下で比較することを含む、 〔 13〕 記載のスクリーニング方法、
〔20〕 TP A応答エレメントを含むプロモーター領域の制御下にあるリボータ 一遺伝子を含む発現べクターをさらに含む上記(i)〜(iv)の細胞における該リポー ター遺伝子の発現量を、 被験試料の存在下と非存在下で比較することを含む、 〔1 6〕 記載のスクリーニング方法、
〔21〕 上記反応系に、 被験試料の存在下及び非存在下で BrdUを添加し、 細胞内 への BrdU取り込み量を両条件下で比較することを含む、 〔10〕 又は 〔1 1〕 記載 のスクリーニング方法、
〔22] 上記反応系に、 被験試料の存在下及び非存在下で [3H]チミジンを添加し 、 細胞内への [3H]チミジン取り込み量を両条件下で比較することを含む、 〔10〕 又は 〔1 1〕 記載のスクリーニング方法、 〔2 3〕 リガンドの共存下で実施される、 〔1 0〕 〜 〔2 2〕 のいずれかに記載 のスクリーニング方法、
〔2 4〕 リガンドが LPAである、 〔2 3〕 記載のスクリーニング方法、
〔2 5〕 LPA作動 GPCRが EDG2、 EDG4又は EDG7である、 〔6〕 〜 〔2 4〕 のいずれ か記載のスクリ一二ング方法、
〔2 6〕 耐糖能異常改善薬の選別のために行われる、 〔6〕 〜 〔2 5〕 のいずれ かに記載の方法、
〔2 7〕 耐糖能異常が生活習慣病又は糖尿病である、 〔2 6〕 に記載の選別方法 又、 別の本発明は、 LPA産生酵素阻害剤のスクリーニング方法に関する。 すなわ ち、
〔2 8〕 被験試料の存在下及び非存在下で、 LPA産生酵素及び基質を接触させ、 L PAの生成量を両条件下で比較することを含む、 LPA産生酵素阻害剤のスクリーニン グ方法、
〔2 9〕 基質が標識されたホスファチジン酸である、 〔2 8〕 に記載のスクリー ニング方法、
〔3 0〕 〔2 8〕 又は 〔2 9〕 に記載の方法を含む、 耐糖能異常改善薬の選別方 法、
〔3 1〕 耐糖能異常が生活習慣病又は糖尿病である、 〔3 0〕 に記載の選別方法 。
さらに別の本発明は、 上記のいずれかのスクリーニング方法により選択される LP A作動 GPCR拮抗剤もしくは LPA産生酵素阻害剤等の LPA作動 GPCR活性抑制剤を有効成 分とする医薬品を提供する。 すなわち、
〔3 2〕 〔6〕 〜 〔2 5〕 のいずれかに記載の方法により選択される LPA作動 GPC R拮抗剤を有効成分とする耐糖能異常改善薬、
〔3 3〕 耐糖能異常が生活習慣病又は糖尿病である 〔3 2〕 に記載の耐糖能異常 改善薬、
〔3 4〕 〔2 8〕 又は 〔2 9〕 に記載の方法により選択される LPA産生酵素阻害 剤を有効成分とする耐糖能異常改善薬、 〔3 5〕 耐糖能異常が生活習慣病又は糖尿病である 〔3 4〕 記載の耐糖能異常改
図面の簡単な説明
図 1は、 生理食塩水または LPAを個体あたり 0. 5mg静脈内単回投与後、 糖負荷を行 つた。 糖負荷 90分後の血糖値を示した。 生理食塩水投与群と比較して、 LPA投与群 は有意に (pく 0. 05 Sutudent's t-test) 糖負荷 90分後血糖値は高値を示した。 発明を実施するための最良の形態
本発明のさらなる特徴及び本発明の利点について、 以下に、 より詳細に説明する 本明細書において、 「LPA作動 GPCR」 とは、 リゾフォスファチジン酸 (LPA) がリ ガンド (ァゴ二スト) となって活性化され、 かつ膝臓ランゲルハンス氏島において 有意に発現している GPCRを表し、 具体的には EDG2、 EDG4及び EDG7が挙げられる。 ED G2、 EDG4及び EDG7のアミノ酸配列及び遺伝子の塩基配列はそれぞれ公知であり、 例 えばヒ ト EDG2の配列は GeneBankに受託番号:醒_001401として登録されている (配 列番号: 1及び 2 ) 。 またヒ ト EDG4の配列は GeneBankに受託番号: AF233092として 登録されている (配列番号: 3及び 4 ) 。 またヒ ト EDG7の配列は GeneBankに受託番 号:匪— 012152として登録されている (配列番号: 5及び 6 ) 。
ここで前記 「有意に発現している」 とは、 他の組織における発現量と比較して、 膝臓ランゲルハンス氏島における発現量が、 1. 5倍以上であることを表す。
本発明において 「EDG2」 とは、 ヒ ト及び他の哺乳動物由来の EDG2の他、 それらの 自然もしくは人工の突然変異体、 それらをコードする D N Aを含む組換え細胞から 製造される組換え EDG2、 それらの機能的フラグメントの全てを包含する意味で使用 される。
また、 本発明において 「EDG4」 とは、 ヒ ト及び他の哺乳動物由来の EDG4の他、 そ れらの自然もしくは人工の突然変異体、 それらをコードする D N Aを含む組換え細 胞から製造される組換え EDG2、 それらの機能的フラグメントの全てを包含する意味 で使用される。 また、 本発明において 「EDG7」 とは、 ヒ ト及び他の哺乳動物由来の EDG7の他、 そ れらの自然もしくは人工の突然変異体、 それらをコードする DN Aを含む組換え細 胞から製造される組換え EDG7、 それらの機能的フラグメントの全てを包含する意味 で使用される。
「LPA作動 GPCR活性抑制剤」 とは、 LPA作動 GPCRとリガンド(ァゴ二スト) が結合 することによって生ずる活性を抑制する薬剤であれば特に限定はないが、 具体的に は、 LPA作動 GPCR拮抗剤又は LPA産生酵素阻害剤が挙げられる。
本明細書において 「リガンド」 とは、 特にことわらない限り、 生理的リガンド ( ァゴニスト) であるリゾフォスファチジン酸 (LPA) だけでなく、 ァゴニス ト ち、 レセプターの生理的リガンド結合部位に結合して、 リガンド様の活性を示す物 質) やアンタゴニス ト (レセプターの生理的リガンド結合部位に結合するが、 リガ ンド様の活性を示さない物質) 及びインバースァゴニスト (レセプターのいずれか の部位に結合してそのコンフオメーシヨンを変化させ、 レセプターを不活性化する 物質) をも包含するものとする。
例えば、 LPA作動 GPCRのァゴニストについては、 Biochimica et Biophysica Ac ta, 1582, 289-294 (2002)等に記載されている。 具体的には、 生理活性リガンドで ある以下の式 (1) :
Figure imgf000009_0001
で表される LPA (LPA (18:1) ) の他、 式 (2)
Figure imgf000009_0002
(式中、 R1 は、 炭素数 8〜 20の直鎖アルキル基、 又は炭素数 8〜 20で、 1〜 4の二重結合を有する直鎖アルケニル基を表す。 )
で表される一連の化合物がァゴニスト活性を有する LPA類として知られている。 具 体的には、 LPA(18:2)、 LPA (18 : 3) 、 LPA (20 : 4) 、 LPA(12:0)、 LPA(14:0)、 LPA (16:0)又は LPA (18:0) 等が挙げられる。 ここで、 括弧内の最初の整数は LPAにおい て脂肪酸部分におけるアルキル基もしくはアルケニル基の総炭素数を表し、 2番目 の整数は二重結合の数を表す。 尚、 式 (1 ) 及び式 (2 ) において、 グリセリン骨 格における不斉炭素原子の立体配置は、 好ましくは R体を表す。
また、 式 (3 ) :
Figure imgf000010_0001
で表される D0XP - 0Hなども、 LPA作動 GPCRのァゴュストとして挙げられる (Biochimi ca et Biophysics Acta, 1582, 309-317 (2002) ) 。
また、 式 (5 ) :
Figure imgf000010_0002
で表され > 9 (Z) - Octadecenoic acid 2-methoxy-3- (thiophosphonooxy) propyl este r (LXR-1035) 又は 9 (Z) - Octadecenoic acid 2 (S) -methoxy-3- (thiophosphonooxy) p ropyl ester (2 (s) -0MPT) 等の EDG7ァゴニス卜が挙げられる (J Biol Chem 2003, 278 (14): 11962、 J Med Chem 2003, 46 (26): 5575、 国際公開パンフレツ ト : W098/ 41213及び W099/47101を参照) 。
「 LPA作動 GPCR拮抗剤」 とは、 LPA作動 GPCRに結合して該レセプターの活性を抑制 する物質 (アンタゴニス ト又はインバースァゴニス ト) の総称として用いられ、 LP A作動 GPCRに対するアンタゴニスト活性又はインバースァゴニスト活性を有する公 知及び新規のあらゆる化合物を包含する。
LPA作動 GPCRのアンタゴニストとしては、 式 (6 ) : 0
Figure imgf000011_0001
で表されるジァシルグリセロールリン酸 (DGPP8:0) が挙げられ、 該化合物は EDG7 (LPA3とも呼ばれる) の選択的なアンタゴニストであり、 EDGSO Ai とも呼ばれる )のアンタゴニス ト活性も有する (D.J.Fischerら著、 Mol. Pharmacol. , 60, 776-7 84 (2001)) 。
また、 LPA作動 GPCRのアンタゴニストとして、 式 (7) :
Figure imgf000011_0002
で表されるベンジル一 4—ォキシベンジル N-ァシルエタノールアミド リン酸 ( VPC12249)が挙げられ、 該化合物は EDG2及び EDG7の選択的なアンタゴニストである (C. E.Heise著、 MolecularMol. Pharmacol. , 60, 1173-1180 (2001)) 。
また、 国際公開第 02/29001号パンフレツト 35頁〜 39頁に記載の LPAレセプターァ ンタゴニストも又本発明の LPA作動 GPCRのアンタゴニストとして用いることができ る。 具体的には、 式 (8) :
Figure imgf000011_0003
[式中、 R 1 aは置換もしくは無置換の C8- 22アルキル又は置換もしくは無置換の C 8- 22アルケニルを表し、 R2 a及び R3 aは独立して、 水素原子又は式:
Figure imgf000011_0004
〔式中、 R6 a は C3-16アルキル、 C3-16アルケニノレ、 -(C1- 4アルキル)- R7a、 -(C2- 4アルケニル)- R7a又は-(C2-4アルキニル) -R7aを表し、 R7aは式: 14a R15S
(式中 R14a及び Rl 5aは独立して、 水素原子、 C1- 12アルキル、 C2- 6アルケニル、 C2- 6アルキニル又はハロゲン原子を表す。 )
を表す。 〕
を表し (但し R2 a 及び R3 a が共に水素原子を表すことはない。 ) 、 R4 aは水 酸基、 - 0P03H (ホスフェート基) 又は- CH2P03H (メチレンホスホネート基) を表す で表される化学構造を有し、 LPA作動 GPCR拮抗活性を有する化合物が挙げられ、 下
Figure imgf000012_0001
3a 3a
Figure imgf000012_0002
で表される化合物を例示することができる。 ここで、 上記の式 (8) における C8-2 2アルキル及び C8-22アルケニルの置換基としては、 それぞれ C1- 10アルキル、 C1- 20 アルコキシ、 C1- 20アルキルチオもしくは C1-20アルキルァミノで置換されていても よい、 C3-10シクロアルキル、 C3- 15ビシクロアルキル、 C5- 10ヘテロ環基又はフエ 二ノレ基が挙げられる。 また、 3- [4_ (Benzyloxy) phenyl] - 2 (S) - [9 (Z) -octadecenamid o] - 3 - oxopropyl dihydrogen phosphate (VPC - 32104) . 、 3- [4- (Benzyloxy) phenyl] - 2 (R) - [9 (Z) -octadecenamido] -3-oxopropyl dihydrogen phosphate (VPC - 32163) 、 2 (S) - [0ctadec-9 (Z) -enoylamino] - 3 - [4- (pyridin- 3 - ylmethoxy) phenyl] propyl dih ydrogen phosphate (VPC- 31226) 等を例示することもできる。
また、 国際公開第 01/60819号パンフレツトに記載されているリゾフォスファチジ ン酸 (LPA) 受容体拮抗薬 (EDG2、 7拮抗薬) も又本発明の LPA作動 GPCRのアンタゴ 二ストとして用いることができる。 例えば、 式 (9 ) :
Figure imgf000013_0001
[式中、 Xは酸素原子もしくは硫黄原子を表し;
Rl bは、 ハロゲン原子、 又はそれぞれ置換基を有していてもよいアルキル基、 ァリ ール基、 複素環式基、 アルキルォキシ基、 ァリールォキシ基、 アルキルチオ基もし くはァリ一ルチオ基を表し;
R2 bは、 ハロゲン原子、 又はそれぞれ置換基を有していてもよい、 アルキル基、 ァ リール基、 複素環式基、 アルキルォキシ基もしくはァリールォキシ基を表し; R3 bは、 水素原子、 低級アルキル基又はハロゲン化アルキル基を表し;
R4 bは、 それぞれ置換基を有していてもよい、 ァリール基、 複素環式基、 アルキル 基もしくはアルケニル基を表し;
但し、 R3 bと R4 bは、 それらが結合している炭素原子と一緒になって 5〜 1 0員環構 造を形成してもよい。 ]
具体的な Rl bとしてはハロゲン原子、 又はそれぞれ置換基を有していてもよいフ ェニル基、 炭素数 1〜 4のアルキル基が挙げられ、 具体的な R2 bとしては、 それぞ れ置換基を有していてもよいフエニル基、 2-チェニル基、 3-チェニル基、 2-フリル 基、 3-フリル基、 4-ピリジル基炭素数 1〜4のアルキル基又は炭素数 2〜 5のアル ケニル基が挙げられ、 具体的な R3 bとしては水素原子、 炭素数 1〜4のアルキル基 又は炭素数 1〜4の 1〜5のハロゲン原子を有するハロアルキル基が挙げられ、 具 体的な R4 bとしてはそれぞれ置換基を有していてもよい 2-フリル基、 3-フリル基、 2-チェニル基、 3-チェニル基又はフエエル基が挙げられる。
具体的には、 式 (1 0 ) :
Figure imgf000014_0001
(式中、 R2 bは炭素数 1〜4のアルキル基を表し、 R3 bは水素原子、 炭素数 1〜4の アルキル基又はトリフルォロメチル基を表し、 R5 bはハロゲン原子、 ニトロ基、 炭 素数 1〜4のアルキル基、 炭素数 1〜4のアルコキシ基、 トリフルォロメチル基、 トリフルォロメ トキシ基又はヒドロキシメチル基を表し、 R6 bは水素原子又はハロ ゲン原子を表す。 )
で表される化合物や、 式 (1 1 ) :
Figure imgf000014_0002
[式中、 Rl bはハロゲン原子、 炭素数 1〜4のアルコキシ基で置換されていてもよい 炭素数 1〜4のアルキル基を表し、 R2 bはチェニル基、 炭素数 1〜4のアルキル基 もしくはハロゲン原子で置換されたチェニル基、 フリル基、 炭素数 1〜4のアルキ ル基もしくはハロゲン原子で置換されたフリル基、 ピリジル基、 炭素数 1〜4のァ ルキル基もしくはハロゲン原子で置換されたピリジル基、 フエニル基、 以下の置換 基群から選択される基で置換されたフエニル基 [置換基群:炭素数 1〜4のアルキ ル基、 炭素数 1〜4のアルコキシ基、 炭素数 1〜4のハロアルキル基、 炭素数 1〜 4のハロアルコキシ基、 ニトロ基、 シァノ基、 ハロゲン原子、 -CH2-モルホリノ、 - CH20Ph、 - CH20CH2-フリル、 _CH20R8b、 - CH20 (CH2 ) n C00R8 b、 -CH20 (CH2 ) n CONHR8 b 、 一 CH20C0R9b、 -CH20(CH2)nS03H、 - CH20 (CH2 ) n OR8 b、 — CH20 (CH2 ) n NHCOR9 b、 — CH2SPh 、 -CH2SCH2Ph、 - CH2SCH2-フリル、 -CH2SR8b、 - CH2 S (CH2 ) n C00R8 b、 -CH2 S (CH2 ) n CON HR8b、 - CH2SC0R9b、 _CH2S(CH2)nS03H、 - CH2 S (CH2 ) n OR8 b、 - CH2 S (CH2 ) n NHCOR9 b (こ こで bは水素原子、 炭素数 1〜 4のアルキル基又は炭素数 2〜 4のアルケニル基 を表し、 R9bは炭素数 1〜4のアルキル基を表し、 nは 1〜5の整数を表す。 ) ] を表し、 R3bは水素原子、 炭素数 1〜4のアルキル基、 炭素数 2〜4のアルケニル 基又はトリフルォロメチル基を表し、 R6 bは水素原子又はハロゲン原子を表す。 ] で表される化合物が挙げられる。 より具体的には、 式 (1 2) :
Figure imgf000015_0001
で表される KI-16425を例示することができる。
また、 国際公開第 01/71022号パンフレットに開示されている、 式 (1 3) : X3
Q1C CH一 CQ2 (13)
X1 X2
[式中、 X1、 X2及び X3の少なくとも一つが (H0)2P0- Z1-又は (H0)2P0- Z2_P(0H)0-Z にを表すか X1及び X2が一緒になって -0-P0 (0H) -0-を形成していているか又は X1及び X3がー緒になつて- 0-P0 (0H) - NH-を形成しており ; X1、 X2及び X3の少なくとも一つが同一もしくは異なって RL -Y1 - A-を表すか X2及び X
3 が一緒になつて- NH-CO- NR1 -を形成しており ;
X1、 X2及び X3の一つは水素原子を表していてもよく ;
Aは結合、 酸素原子又は- (CH2 )。_ 3。-を表し;
Y1は酸素原子、 硫黄原子、 _C0-、 -NR2 -, 又は-
Figure imgf000016_0001
。-を表し;
Z1は酸素原子、 硫黄原子、 -NH -、 - CH (R3 ) -、 - (CH^ 5。-又は- 0- (CH2 )い 5。-を表し
Z2は酸素原子、 - ((^ 。-、 又は- (HCH^ 5。-を表し;
Q1及び は独立して、 H2、 =NR4、 =0、 または水素原子と- NR5 R6の組合せを表し; X1、 X2、 X3における R1は独立して水素原子、 直鎖もしくは分枝の C1-30アルキル、 直鎖もしくは分枝の C2- 30アルケニル、 1〜3の置換基を有していてもよい芳香族 炭素環もしくは芳香族へテロ環、 C1-30アルキル、 芳香族炭素環もしくは芳香族へ テロ環を含むァシル基、 直鎖もしくは分枝の C1-30アルキルを含むァリールアルキ ル、 直鎖もしくは分枝の C1-30アルキルを含むァリールォキシアルキル、 - CH=NH、 - C0NHR7 . -CSNHR7、 - C00R7、 _C (=NR8 ) NHR7、 式:
Figure imgf000016_0002
H
または、
Figure imgf000016_0003
H
を表し;
R2、 R\ R\ R5、 R6、 R7及び R8は独立して水素原子、 直鎖もしくは分枝の C1-30ァ ルキル、 直鎖もしくは分枝の C2- 30アルケニル、 1〜3の置換基を有していてもよ い芳香族炭素環もしくは芳香族へテロ環、 芳香族炭素環もしくは芳香族へテロ環を 含むァシル基、 直鎖もしくは分枝の C1- 30アルキルを含むァリールアルキル、 直鎖 もしくは分枝の C1- 30アルキルを含むァリールォキシアルキルを表す。 ] で表される化学構造を有し、 かつ LPA作動 GPCR拮抗活性を有する化合物も又本発明 の LPA作動 GPCR拮抗剤の範疇である。
また、 国際公開第 2004/31118号パンフレツトに開示された EDG2アンタゴニストも また、 本発明における LPA作動 GPCR拮抗剤に含まれる。 例えば、 式 (I-A) :
Figure imgf000017_0001
〔式中、 R R2、 R3及び は、 独立して、 C1- 8アルキル基、 C2-8ァルケ-ル基、 C2- 8アルキニル基、 ハロゲン原子、 トリハロメチル基、 エトロ基、 シァノ基、 C1- 8ァ ノレコキシ基、 C1- 8アルキルチオ基、 アミノ基、 C1- 8アルキルアミノ基、 ジ- C1- 8ァ ルキルアミノ基、 アミ ド基、 スルファモイル基、 C1- 8アルキルスルホニル基、 C2-8 ァシル基、 C1- 8アルコキシカルボニル基、 または C1-8アルコキシ基、 C1-8アルキル チォ基、 アミノ基、 C1- 8アルキルアミノ基もしくはジ- C1 - 8アルキルアミノ基で置 換された C1- 8アルキル基を表し、 R5は水素原子、 C1- 8アルキル基、 C2-8アルケニル 基、 または C2- 8アルキニル基を表し、 環 A、 B及び Dは独立して、 C3- 10の単環又は二 環式炭素環又は酸素原子、 窒素原子及び硫黄原子から任意に選択される 1〜5個の ヘテロ原子を含む 3— 1 0員の単環又は二環式複素環を表し、 環 Eは C3- 7の単環式 炭素環又は酸素原子、 窒素原子及び硫黄原子から任意に選択される 1 -5個のへテロ 原子を含む 3- 7員の単環式複素環を表し、 p、 q、 r及び sは独立して 0又は 1一 5の整数を表し (ただし、 p、 q、 r及び/ /又は sが 2以上であるとき、 、 R2、 R 3及び/又は R4はそれぞれ同一もしくは異なっていてもよい) 、 tは 0又は 1を表す 。 〕
で表される化合物が挙げられる。 具体的には、 式 (1 4 ) :
Figure imgf000018_0001
で表される 2— [4- [N- (3, 5-Dimethoxybenzoyl)一 N— (3-phenylpropyl) aminomethyl] phe noxvjbenzoic acid、 式 (1 5ノ :
Figure imgf000018_0002
で表される 2— [4,— [N- (3-Phenylpropyl) -N— (3, 4, 5-trimethoxybenzoyl) aminomethyl
]biphenyi— 2— y丄」 acetic acid、 式 、丄 o) :
Figure imgf000018_0003
で表される 2— L4- [N - (3, 5-Dimethoxy-4-methylbenzoyl)一 N - (3-phenylpropyl) aminom eth i]phenyijacetic acid、 式 (1 7) :
Figure imgf000018_0004
で表される 2 - [4- [5 - Phenyl - 2 - (3, 4, 5-trimethoxybenzoyl) pentylj henoxy] benzoic acidを、 例示することができる。 8 また、 Molecular Pharmacology, 50, 616-623 (1996)に記載されている、 式 ( 8 ) :
Figure imgf000019_0001
で表される Ν-パルミ トイルー L-セリンホスホリックアシッド (NP- Ser-PA) 及び式 ( 1 9 ) :
Figure imgf000019_0002
で表される N-パルミ トイル-チ口シンホスホリックアシッド (NP- Tyr- PA) 、 または スラミン (suramin) も又本発明の LPA作動 GPCR拮抗剤の範疇である。
本明細書において、 「LPA産生酵素阻害剤」 とは、 LPAの生合成酵素阻害薬を表す 。 具体的には、 ホスファチジン酸を LPAに変換する酵素 [ホスホリパーゼ A (A1,A2 ) ] の阻害剤を表す。 該阻害剤としては、 6-クロ口- 9- [ [4- (ジェチルァミノ) - 1- メチルプチル]ァミノ] -2-メ トキシァクリジン 2塩酸塩 (Mepacrine hydrochlori de) 、 2-ヒ ドロキシ -3 - [2-ヒ ドロキシ -3- [4-メチル- 6- (2, 6, 6-トリメチル- 1-シク 口へキセニノレ) - 3 (E) -へキセニル] - 2H-5, 6-ジヒ ドロピラン- 6-ィノレ]フラン- 5 (2H) - オン (Manoalide ; Drugs Fut., 1990, 15 (5) : 460 ;Mol. Pharmacol. , 1989, 36 (5) : 782-788) 、 Ν- [2- (ェチルスルフォンアミ ド)- 5- (トリフルォロメチル) ピリジン- 3-ィノレ]シクロへキサンカルボキサミ ドナトリウム塩 (IS-741) 、 3-[1- [2 (Ζ) _カル ボキシ -1-メチルビュル] - 4-メチル -6- (2, 6, 6-トリメチノレ- 1-シク口へキセニル) - 1 ( E) , 3 (E) , 5 (E) -へキサトリエニル]ベンゾイツク アシッド (BMS-181162 ; Biohem. Biophys. Res. Commun. , 1992, 189 (1) : 272)、 BMS- 188184、 S-3013、 LY- 333013等 を例示することができる。
尚、 上記 LPA作動 GPCR活性抑制剤として例示された化合物は適宜薬学上許容され る塩、 水和物等の溶媒和物等を形成していてもよい。
LPA作動 GPCR活性抑制剤は投与された動物において、 血中に存在する LPAによって 亢進されている血糖値の上昇を抑制する作用を有する。 更に LPA作動 GPCR活性抑制 剤は、 LPAの作用のみを阻害するため、 低血糖を引き起こすことがなく、 安全な耐 糖能異常改善薬、 糖尿病治療薬として有効である。 LPA作動 GPCR活性抑制剤は膝臓 に作用し、 LPAにより阻害されるインシュリンの分泌を回復させることを特徴とす る。
LPA作動 GPCR活性抑制剤は、 医薬上許容される担体とともに経口的もしくは非経 口的投与に適した剤形に製剤化される。 医薬上許容される担体としては、 例えば、 ショ糖、 デンプン、 マンニッ ト、 ソルビッ ト、 乳糖、 グルコース、 セルロース、 タ ルク、 リン酸カルシウム、 炭酸カルシウム等の賦形剤、 セルロース、 メチルセル口 ース、 ヒ ドロキシプロピルセルロース、 ポリプロピルピロリ ドン、 ゼラチン、 ァラ ビアゴム、 ポリエチレングリコール、 ショ糖、 デンプン等の結合剤、 デンプン、 力 ルボキシメチ 4/セルロース、 ヒ ドロキシプロピルスターチ、 ナトリウム一グリコー ルースターチ、 炭酸水素ナトリウム、 リン酸カルシウム、 クェン酸カルシウム等の 崩壊剤、 ステアリン酸マグネシウム、 エア口ジル、 タルク、 ラウリル硫酸ナトリウ ム等の滑剤、 クェン酸、 メントール、 グリシルリシン ' アンモニゥム塩、 グリシン 、 オレンジ粉等の芳香剤、 安息香酸ナトリゥム、 亜硫酸水素ナトリゥム、 メチルバ ラベン、 プロピルパラベン等の保存剤、 クェン酸、 クェン酸ナトリウム、 酢酸等の 安定剤、 メチルセルロース、 ポリビエルピロリ ドン、 ステアリン酸アルミニウム等 の懸濁剤、 界面活性剤等の分散剤、 水、 生理食塩水、 オレンジジュース等の希釈剤 、 カカオ脂、 ポリエチレングリコール、 白灯油等のベースワックスなどが挙げられ るが、 それらに限定されるものではない。
経口投与に好適な製剤は、 水、 生理食塩水、 オレンジジュースのような希釈液に 有効量の LPA作動 GPCR活性抑制剤を溶解させた液剤、 有効量の LPA作動 GPCR活性抑制 剤を固体や顆粒として含んでいるカプセノレ剤、 サッシェ剤または錠剤、 適当な分散 媒中に有効量の LPA作動 GPCR活性抑制剤を懸濁させた懸濁液剤、 有効量の LPA作動 GP CR活性抑制剤を溶解させた溶液を適当な分散媒中に分散させ乳化させた乳剤等であ る。 ここで 「有効量」 とは、 LPA作動 GPCR活性抑制剤を耐糖能異常患者、 糖尿病患 者または他の生活習慣病患者の治療のために使用する場合にそれぞれの疾患を改善 させるのに十分な量をいう。
非経口的な投与 (例えば、 静脈内注射、 動脈内注射、 皮下注射、 筋肉注射、 局所 注入、 腹腔内投与など) に好適な製剤としては、 水性及び非水性の等張な無菌の注 射液剤があり、 これには抗酸化剤、 緩衝液、 制菌剤、 等張化剤等が含まれていても よい。 また、 水性及び非水性の無菌の懸濁液剤が挙げられ、 これには懸濁剤、 可溶 化剤、 増粘剤、 安定化剤、 防腐剤等が含まれていてもよい。
当該 LPA作動 GPCR活性抑制剤の製剤は、 ァンプルやバイアルのように単位投与量 あるいは複数回投与量ずつ容器に封入することができる。 また、 LPA作動 GPCR活性 抑制剤、 及び医薬上許容される担体を凍結乾燥し、 使用直前に適当な無菌のビヒク ルに溶解または懸濁すればよい状態で保存することもできる。
LPA作動 GPCR活性抑制剤を有効成分とする本発明の製剤の投与量は、 有効成分の 種類、 投与経路、 病気の重篤度、 投与対象となる動物種、 投与対象の薬物受容性、 体重、 年齢等によって異なるが、 LPA作動 GPCR活性抑制剤を、 例えば、 成人 1日あ たり約 0 . 0 1〜約 1 0 0 0 m g Z k g、 好ましくは約 0 . 1〜約 5 0 0 m g k g投与することができる。
本発明はまた、 LPA作動 GPCR拮抗剤もしくは LPA産生酵素阻害剤等の LPA作動 GPCR 活性抑制剤のスクリーニング系及びそれを用いた耐糖能異常改善薬のスクリーニン グ方法を提供する。
本発明の、 スクリーニング方法の第一の態様は、 LPA作動 GPCR又はリガンドが結 合し得るそのフラグメントに被験試料を接触させる工程、 及び該レセプタ一又はそ のフラグメントに結合する化合物を選択する工程を含む。 被験試料としては、 いか なる公知化合物及び新規化合物であってもよく、 例えば、 コンビナトリアルケミス トリー技術を用いて作製された化合物ライブラリー、 固相合成やファージディスプ レイ法により作製されたランダムペプチドライブラリー、 あるいは微生物、 動植物 、 海洋生物等由来の天然成分等が挙げられる。 被験試料は好ましくは分子量 2 0 0 〜2 0 0 0の化合物であり、 更に好ましくは分子量 3 0 0〜8 0 0の化合物である 。 被験試料との結合活性は、 例えば、 LPA作動 GPCR又はそのフラグメントを発現す る細胞膜画分をチップ上に固定し、 該チップ上に被験試料溶液をロードして、 表面 プラズモン共鳴法により被験試料の膜への結合及び解離を測定し、 結合及び解離の 速度あるいは結合量から、 被験試料と LPA作動 GPCRとの親和性を算出することによ り導かれる。 本発明のスクリーニング方法の第二の態様は、 被験試料の存在下及び非存在下で 、 LPA作動 GPCR又はリガンドが結合し得るそのフラグメントにリガンドを接触させ 、 該レセプター又はそのフラグメントとリガンドとの結合活性を両条件下で比較す ることを含む。 リガンドとしては、 LPA作動 GPCRの生理的リガンドである LPA等を用 いることができる。 LPAをリガンドとして用いた場合、 例えば LPA作動 GPCRに対する 結合活性が、 LPAよりも強い被験試料を LPA作動 GPCR拮抗剤候補物質として選択する ことができる。 該候補物質が LPA作動 GPCR拮抗剤であることは、 以下に述べる G蛋 白質を用いるスクリーニング方法等により確認することができる。
上記のいずれの態様においても、 LPA作動 GPCR又はそのフラグメントは、 それら の発現細胞、 該細胞の細胞膜画分、 あるいはァフィ二ティーカラムに結合した形態 で提供され得る。 LPA作動 GPCRの発現細胞としては、 LPA作動 GPCR又はそのフラグメ ントをコードする D N Aを含む発現ベクターでトランスフエク トされた細胞等が挙 げられる。 また、 ァフィ二ティーカラムとしては、 抗 LPA作動 GPCR抗体カラム、 リ ガンドを用いたカラム、 また、 LPA作動 GPCRが組換えタンパク質として提供される 場合、 Hisタグや GSTタグと特異的親和性を有する金属キレートもしくはダルタチォ ンカラムを用いることができる。
LPA作動 GPCRまたはそのフラグメントとリガンドとの結合活性の検出する方法と しては、 例えば、 リガンド量を検出する方法、 またはリガンドを標識して、 LPA作 動 GPCRまたはそのフラグメントに結合した標識されたリガンドの量を測定する方法 が挙げられる。
リガンドの標識方法としては、 蛍光標識でラベルする方法や 3H、 14C、 32P及び 33 P等の放射性同位元素で標識する方法等が挙げられる。 具体的には、 脂肪酸部分の 水素原子が 3Hでラベルされた LPAまたはリン原子が 32Pでラベルされた LPA等を用レ、 ることができ、 例えば、 32P- labelled LPA、 及び 1-ォレオイル [ォレオイル- 9, 10- 3 H] LPA (1- OleoyUoleoyl- 9, 10- 3 H] LPA;画 Life Science Products市販品; Song zhu An, et al J Biol Chem, Vol. 273, Issue 14, 7906—7910, April 3, 1998)を 用いることができる。
LPA作動 GPCRは、 ある種の三量体 G蛋白質と共役して細胞内にシグナルを伝達す る。 従って、 本発明はまた、 LPA作動 GPCRを含む脂質二重層と、 LPA作動 GPCRと共役 する G蛋白質 (特に G aサブユニット) とを用いた LPA作動 GPCR拮抗剤のスクリー ユング方法を提供する。 本発明のスクリーニング方法は、 G aにおける GT P - G D P交換反応または共役する G蛋白質の細胞刺激活性を指標として行われる。 G蛋 白質の細胞刺激活性を指標とする場合、 共役させる G aの態様に応じて、 エフュク ターの選択や活性測定方法等の具体的な手順が決定されるが、 通常、 アデ二ル酸シ クラーゼと相互作用する領域を含む Gひ (具体的には G iフアミリーに属する Gひ のエフェクター相互作用領域を含む) を用いる場合には例えば c AMP量を測定す ることにより、 ホスホリパーゼ C 3と相互作用する領域を含む G a (具体的には G qフアミリーに属する Gひのエフェクター相互作用領域を含む) を用いる場合には 例えば細胞内カルシウムイオンの量を測定することにより、 LPA作動 GPCR拮抗剤を スクリーニングすることができる。
また、 G e の供給源として該 G aを含む三量体 G蛋白質 (G a j3 i ) を内因的に 発現する動物細胞 (例えば、 HEK 2 9 3細胞、 L 1. 2細胞等) を用いる場合、 LPA作動 GPCRによって活性化された G α ]3 γは G aと G /3 γに解離するが、 遊離の G β "/はホスホリパーゼ C ]3に相互作用して細胞内カルシウムイオン濃度を上昇さ せ得るので、 共役する G aのファミリーに関係なく細胞内カルシウムイオンを指標 にして LPA作動 GPCR拮抗剤のスクリーニングを行うことも可能である。
ここで、 「LPA作動 GPCR」 とは、 ヒ ト及び他の哺乳動物由来の LPA作動 GPCR、 及び それらのアミノ酸配列において、 1もしくは複数のアミノ酸が置換、 欠失、 挿入、 付加または修飾されたァミノ酸配列からなり、 天然 LPA作動 GPCRと同じリガンドー レセプター相互作用を示し、 且つ共役する G e を活性化して該 G aの GD P · GT P交換反応を促進する活性を有するタンパク質をいう。
具体的には、 ヒ ト及び他の哺乳動物由来の 「EDG2」 、 「EDG4」 及び 「EDG7」 、 並 びに、 それらのアミノ酸配列において 1もしくは複数のアミノ酸が置換、 欠失、 挿 入、 付加または修飾されたアミノ酸配列からなり天然 LPA作動 GPCRと同じリガンド 一レセプター相互作用を示し、 且つ共役する G aを活性化して該 Gひの G D P · G T P交換反応を促進する活性を有するタンパク質を挙げることができる。
前記 「EDG2」 は、 ヒ ト及び他の動物由来の EDG2、 又はそのフラグメントをコード する DN Aを含む発現ベクターでトランスフエクトされた細胞の膜含有画分から、 抗 EDG2抗体を用いたァフィ二ティークロマトグラフィーにより単離することができ る。 あるいは、 当該細胞由来の c D N Aライブラリーもしくはゲノミックライブラ リ一から、 EDG2の c D N Aクローンをプローブとして単離される D N Aクローンを 適当な発現ベクター中にクローユングし、 宿主細胞に導入して発現させ、 細胞培養 物の膜含有画分から抗 EDG2抗体や、 His- tag、 GST- tag等を用いたァフィ二ティーク 口マトグラフィ一により精製することもできる。 また、 GFP等の蛍光物質と EDG2の 融合蛋白質を発現させることにより、 GFP陽性細胞、 すなわち EDG2がトランスフエ ク トされた細胞のみを選択してスクリーニングに用いることも可能である (Xu et al. , Nat. Cell Biol., 2, 261-267 (2000) )。 また、 EDG2の c D N Aクローンを 基に、 部位特異的変異誘発等の人為的処理により一部に変異を導入したものであつ てもよレ、。 しかしながら、 リガンド結合ドメインは高度に保存されている必要があ るので、 このような領域には変異を導入しないことが望ましい。 保存的アミノ酸置 換は周知であり、 当業者は EDG2の特性を変化させない範囲で、 EDG2に適宜変異を導 入することができる。
また、 前記 「EDG4J は、 ヒ ト及び他の動物由来の EDG4、 又はそのフラグメントを コードする D N Aを含む発現ベクターでトランスフエク トされた細胞の JI莫含有画分 から、 抗 EDG4抗体を用いたァフィ二ティークロマトグラフィーにより単離すること ができる。 あるいは、 当該細胞由来の c D N Aライブラリーもしくはゲノミツクラ ィブラリーから、 EDG4の c D N Aクローンをプローブとして単離される D N Aクロ ーンを適当な発現ベクター中にクローニングし、 宿主細胞に導入して発現させ、 細 胞培養物の膜含有画分から抗 EDG4抗体や、 His-tag、 GST- tag等を用いたァフィニテ ィークロマトグラフィーにより精製することもできる。 また、 GFP等の蛍光物質と E DG4の融合蛋白質を発現させることにより、 GFP陽性細胞、 すなわち EDG4がトランス フエク トされた細胞のみを選択してスクリーニングに用いることも可能である (Xu et al. , Nat. Cell Biol. , 2, 261—267 (2000) )。 また、 EDG4の c D NAクロー ンを基に、 部位特異的変異誘発等の人為的処理により一部に変異を導入したもので あってもよい。 しかしながら、 リガンド結合ドメインは高度に保存されている必要 があるので、 このような領域には変異を導入しないことが望ましい。 保存的ァミノ 酸置換は周知であり、 当業者は EDG4の特性を変化させない範囲で、 EDG4に適宜変異 を導入することができる。
また、 前記 「EDG7J は、 ヒ ト及び他の動物由来の EDG7、 又はそのフラグメントを コ一ドする D N Aを含む発現べクターでトランスフエク トされた細胞の膜含有画分 から、 抗 EDG7抗体を用いたァフィ二ティークロマトグラフィーにより単離すること ができる。 あるいは、 当該細胞由来の c D N Aライブラリーもしくはゲノミツクラ ィブラリ一から、 EDG7の c D N Aクローンをプローブとして単離される D N Aク口 ーンを適当な発現ベクター中にクローユングし、 宿主細胞に導入して発現させ、 細 胞培養物の膜含有画分から抗 EDG7抗体や、 His- tag、 GST- tag等を用いたァフィニテ ィークロマトグラフィーにより精製することもできる。 また、 GFP等の蛍光物質と E DG7の融合蛋白質を発現させることにより、 GFP陽性細胞、 すなわち EDG7がトランス フエク トされた細胞のみを選択してスクリーニングに用いることも可能である (Xu et al. , Nat. Cell Biol., 2, 261-267 (2000) )。 また、 EDG7の c D NAクロー ンを基に、 部位特異的変異誘発等の人為的処理により一部に変異を導入したもので あってもよい。 し力 しな力 Sら、 リガンド結合ドメインは高度に保存されている必要 があるので、 このような領域には変異を導入しないことが望ましい。 保存的ァミノ 酸置換は周知であり、 当業者は EDG7の特性を変化させない範囲で、 EDG7に適宜変異 を導入することができる。
LPA作動 GPCRを保持する脂質二重層膜の由来は、 当該レセプタ一が本来の立体構 造をとることができる限り特に制限されないが、 好ましくはヒ ト、 ゥシ、 ブタ、 サ ル、 マウス、 ラット等の哺乳動物細胞の細胞膜を含有する画分、 例えば、 無傷細胞 、 細胞ホモジネート、 あるいは該ホモジネートから遠心分離等により分画される細 胞膜画分が挙げられる。 また、 例えば、 ホスファチジルコリン、 ホスファチジルセ リン、 コレステロール等の各種脂質を適当な比率、 好ましくは哺乳動物細胞の細胞 膜におけるそれに近レ、比率で混合した溶液から常法により調製される人工脂質二重 膜もまた、 本発明の一実施態様において好ましく使用され得る。
LPA作動 GPCRと共役する G aは、 少なくとも該 G αの G P C Rとの結合に関与す る領域及び任意の G αのグァニンヌクレオチドとの結合に関与する領域を有するこ とが必要である。 例えば、 LPA作動 GPCRと共役する G aが G i ファミリーに属する 場合 (G i α ) には、 用いる G aは G i αの G P C R結合領域を少なくとも有し、 G i cのグァニンヌクレオチド結合領域もしくは他のフアミリーに属する Ga由来 のグァニンヌクレオチド結合領域を有するものである。 の X線結晶構造解析の 結果等から、 GPCRとの結合には C末端の約 5アミノ酸程度の配列が重要であり 、 一方、 グァニンヌクレオチド結合領域は、 r a s蛋白質のヌクレオチド結合部位 と相同な領域 (N末端側から、 Pボックス、 G 'ボックス、 Gボックス、 G〃ボック スと呼ばれるアミノ酸モチーフ、 並びに高度にヘリックス化したドメイン内のひ E ヘリッタスの先頭及び a Fヘリックスなど) であることが明らかになつている。
LPA作動 GPCRに対する生理的リガンド、 すなわちァゴニストが該レセプターに結 合すると、 該レセプターの Ga活性化ドメインと Gaの GPC R結合領域とが相互 作用して Gaのコンフオメーシヨン変化を生じ、 グァニンヌクレオチド結合領域か ら GDPが解離して速やかに GTPを結合する。 一方、 インバースァゴニストが結 合すると、 レセプターのコンフオメーション変化により Gひ活性化ドメインが不活 性化されるので、 活性化型の Ga— GTPレベルが減少する。 ここで、 GTPの代 わりに 35S標識した GTP γ Sなどの Gaの GTP a s e活性によって加水分解を 受けない GTPアナログを系に添加しておけば、 被験試料の存在下と非存在下での 膜に結合した放射活性を測定 ·比較することにより、 LPA作動 GPCRのァゴニスト又 はインバースァゴニストをスクリーニングすることができる。 即ち、 被験試料の存 在下で放射活性が増加すれば、 該被験試料はァゴニス トであり、 放射活性が減少す ればインバースァゴニス トである。 35S標識した GTP y S (GTP [y35 S] ) を用いる方法については、 Heise et al. , olecular Pharmacology, 60, 1173-118 0 (2001)、 又は Im et al. , Molecular Pharmacology, 57, 753-759 (2000)に記載 されている。
また、 生理活性リガンド (例えば LPA)を共存させた系で、 被験試料の存在下と非 存在下での膜に結合した放射活性を測定 ·比較することにより、 LPA作動 GPCRのァ ンタゴ二ス トをスクリーニングすることができる。 即ち、 被験試料の存在下で、 被 験試料の非存在下よりも放射活性が減少すれば、 該被験試料はアンタゴニストであ る。
あるいは、 Gaへの GTPアナログの結合を表面プラズモン共鳴法等を用いてモ ニタリングすることによつてもスクリーニングが可能である。 LPA作動 GPCR拮抗剤の活性は、 共役する Gひのェフエクタ一への作用を指標とし て測定することもできる。 この場合、 本発明のスクリーニング系は、 LPA作動 GPCR に加えて、 さらにエフェクターを含む脂質二重層膜を構成要素として含む必要があ る。 また、 共役する G aは該エフェクターと相互作用するための領域をさらに含む 必要がある。 当該領域はその G et本来のエフヱクタ一相互作用領域であってもよい し、 異なるフアミリーに属する G αのエフェクター相互作用領域であってもよい。 例えば G i αに対しては異なるファミリーに属する G aとして G q α、 G s ひ、 G 1 2 α等が挙げられ、 G q αに対しては異なるフアミリーに属する Gひとして G i α、 G s a、 G 1 2 α等が挙げられる。 異なるファミリーに属する G α (例えば G q a) のエフェクター相互作用領域を含む G a (例えば G i ct) キメラの最も簡便 な例としては、 G q αの C末端の約 5アミノ酸程度を、 G i aの C末端配列で置換 したもの (G q i α) が挙げられる。
LPA作動 GPCRと共役する G aが G i αのエフェクター相互作用領域を含む場合、 エフェクターとしてアデ二ル酸シクラーゼを含む脂質二重層膜が用いられる。 一方 、 共役 G aが G q ひのエフェクター相互作用領域を含む場合は、 エフェクターとし てホスホリパーゼ を含む脂質二重層膜を用いる必要がある。 尚、 共役 G aが G s ひのエフェクター相互作用領域を含む場合は、 エフェクターとしてアデ-ル酸シ クラーゼを含む脂質二重層膜が用いられ、 G i ひの場合とは逆に、 アデニル酸シク ラーゼ活性の促進作用を指標としてリガンド活性が評価される。
エフェクターとしてアデ二ル酸シクラーゼ (以下、 ACともいう) を含むスクリ 一ユング系においては、 G aのェフエクタ一^ ·の作用は、 AC活性を直接測定する ことにより評価することができる。 AC活性の測定には公知のいかなる手法を用い てもよく、 例えば、 ACを含む膜画分に AT Pを添カ卩し、 生成する c AM P量を、 抗 c AMP抗体を用いて R I (125 I ) 、 酵素 (アルカリホスファターゼ、 ペルォ キシダーゼ等) 、 蛍光物質 (F I T C、 ローダミン等) 等で標識した c AMPとの 競合ィムノアッセィにより測定する方法や、 ACを含む膜画分に [ひ- 32P] AT Pを添加し、 生成する [32 P] c AMPをアルミナカラム等で分離後、 その放射活 性を測定する方法が挙げられるが、 これに限定されない。 が G i aの場合、 被 験試料の存在下及び非存在下で AC活性を測定。比較し、 被験試料存在下で AC活 性が増加すれば被験試料は LPA作動 GPCRのィンバースァゴニストであり、 活性が減 少すればァゴニス トである。 また、 生理活性リガンド (例えば LPA)を共存させた系 で、 被験試料の存在下及び非存在下で AC活性を測定 ·比較し、 被験試料存在下で 被験試料非存在下よりも AC活性が増加すれば被験試料は LPA作動 GPCRのアンタゴ ニストである。
一方、 0(¾が03 «の場合、 被験試料の存在下及び非存在下で AC活性.を測定 - 比較し、 被験試料存在下で A C活性が減少すれば被験試料は LPA作動 GPCRのィンバ ースァゴニストであり、 活性が増加すればァゴニストである。 また、 生理活性リガ ンド (例えば LPA)を共存させた系で、 被験試料の存在下及び非存在下で AC活性を 測定 ·比較し、 被験試料存在下で被験試料非存在下よりも AC活性が減少すれば被 験試料は LPA作動 GPCRのアンタゴニストである。
スクリーニング系として無傷真核生物細胞を用いる場合は、 Gaの ACへの作用 は、 細胞内の cAM P量を測定するか、 あるいは細胞を [3H] アデニンで標識し 、 生成した [3H] c AMPの放射活性を測定することによつても評価することが できる。 細胞内 c AM P量は、 被験試料の存在下及び非存在下で細胞を適当な時間 インキュベートした後、 細胞を破砕して得られる抽出液について、 上記の競合ィム ノァッセィを実施することにより測定することができるが、 公知の他のいかなる方 法も使用することができる。
別の態様として、 c AMP量を cAM P応答エレメント (CRE) の制御下にあ るリポーター遺伝子の発現量を測定することにより、 評価する方法もある。 ここで 使用される発現ベクターについては後に詳述するが、 概説すると、 CREを含むプ 口モーターの下流にリポーター蛋白質をコードする DNAを連結した発現カセット を含むベクターを導入された動物細胞を、 被験試料の存在下及び非存在下で適当な 時間培養し、 細胞を破砕して得られた抽出液におけるリポーター遺伝子の発現を公 知の手法を用いて測定 ·比較することにより、 細胞内 c AMP量を評価するという ものである。
従って、 Gaが G i αの場合、 被験試料の存在下で細胞内 c AM Ρ量 (もしくは CRE制御下にあるリポーター遺伝子の発現量) が増加すれば、 該被験試料は LPA 作動 GPCRのインバースァゴニストであり、 減少すればァゴニストである。 また、 生 理活性リガンド(例えば LPA) を共存させた系で、 被験試料の存在下と非存在下での c AMP量を測定.比較することにより、 L P A作動 G PC Rのアンタゴニストを スクリーニングすることができる。 即ち、 被験試料の存在下で被験試料の非存在下 よりも c AMP量が増加すれば該被験試料はアンタゴニストである。 一方、 Gaが G sひの場合、 被験試料の存在下で細胞内 cAM P (もしくは CRE制御下にある リポーター遺伝子の発現量) が減少すれば、 該被験試料は LPA作動 GPCRのインバー スァゴ二ス トであり、 増加すればァゴニス トである。 また、 生理活性リガンド(例 えば LPA) を共存させた系で、 被験試料の存在下と非存在下での c AMP量を測定 •比較することにより、 L P A作動 G PC Rのアンタゴニストをスクリーニングす ることができる。 即ち、 被験試料の存在下で被験試料の非存在下よりも CAM Pi が減少すれば該被験試料はァンタゴ二ストである。
一方、 エフェクターとしてホスホリパーゼ C ]3 (以下、 PLC 3ともいう) を含 むスクリーニング系 (即ち、 Gaが Gq αであるか又は Gq αのエフェクター相互 作用領域を含むキメラ蛋白質 (キメラ Gq c ) の場合) においては、 該 Gq a又は キメラ Gq aのェフエクタ一^ ·の作用は、 P L C ]3活性を直接測定することにより 評価することができる。 PLC /3活性は、 例えば、 3H標識したホスファチジルイ ノシトール一 4, 5—二リン酸を PLC 含有膜画分に添カ卩し、 生成するイノシト ールリン酸量を、 公知の手法を用いて測定することにより評価することができる。 被験試料の存在下及び非存在下で P L C ]3活性を測定 ·比較し、 被験試料存在下で P LC ^活性が増加すれば該被験試料は LPA作動 GPCRのァゴニストであり、 活性が 減少すればインバースァゴニス トである。 また、 生理活性リガンド (例えば LPA) を 共存させた系で、 被験試料の存在下と非存在下での P LC 活性を測定 ·比較する ことにより、 LP Α作動 GPCRのアンタゴニス トをスクリーユングすることがで きる。 即ち、 被験試料の存在下で被験試料の非存在下よりも活性が減少すれば該被 験試料はアンタゴニス トである。
スクリーニング系として無傷真核生物細胞を用いる場合は、 G q c又はキメラ G q αの P LC ]3への作用は、 細胞に [3Η] イノシトールを添加し、 生成した [3Η ] イノシトーノレリン酸の放射活性を測定したり、 細胞内の C a 2+量を測定すること によっても評価することができる。 細胞内 C a2+量は、 被験試料の存在下及び非存 在下で細胞を適当な時間インキュベートした後、 蛍光プローブ (fura-2、 indo- 1、 fluor-3, Calcium-Green I等) を用いて分光学的に測定するか、 カルシウム感受性 発光蛋白質であるェクオリン等を用いて測定することができるが、 公知の他のいか なる方法を使用してもよい。 蛍光プローブを用いた分光学的測定に適した装置とし て、 FLIPR (Molecular Devices社) システムが挙げられる。
別の態様として、 C a 2 +によりアップレギュレートされる T P A (12— O—テト ラデカノィルホルボール一 I3—アセテート) 応答エレメント (T R E ) の制御下に あるリポーター遺伝子の発現量を測定することにより、 C a 2+量を評価する方法も ある。 ここで使用される発現ベクターについては後に詳述するが、 概説すると、 T R Eを含むプロモーターの下流にリポーター蛋白質をコードする D NAを連結した 発現カセットを含むベクターを導入された真核生物細胞を、 被験試料の存在下及び 非存在下で適当な時間培養し、 細胞を破碎して得られた抽出液におけるリポーター 遺伝子の発現を公知の手法を用いて測定 ·比較することにより、 細胞内 C a 2+量を 評価するというものである。
従って、 被験試料の存在下で細胞内 C a 2 +量 (もしくは T R E制御下にあるリポ 一ター遺伝子の発現量) が増加すれば、 該被験試料は LPA作動 GPCRのァゴニストで あり、 減少すればィンバースァゴニス トである。 また、 生理活性リガンド(例えばし PA) を共存させた系で、 被験試料の存在下と非存在下での P L C /3活性を測定 '比 較することにより、 L P A作動 G P C Rのアンタゴニストをスクリーニングするこ とができる。 即ち、 被験試料の存在下で被験試料の非存在下よりも細胞内 C a 2 +量 が減少すれば該被験試料はアンタゴニストである。
一方、 LPA作動 GPCRが EDG2又は EDG4である場合、 該 GPCRは G α 12/13により活性化 され得る。 そして G a l2/13と P115RhoGEFが結合することによって、 Rhoが不活性型 の GDP結合型から活性型の GTP結合型に変換される。 GTP結合型 Rhoはエフェクターで ある Rho-キナーゼと結合し、 下流へとシグナルが伝達される。 すなわち、 G o^S G α 12/13であるか又は G α 12/13の P115RhoGEFとの相互作用領域を含むキメラ G α 12 八 3の場合、 例えば、 組み換え GST付加 ROCK (Rho-キナーゼ)に結合する Rhoファミリ 一に属する蛋白質、 例えば RhoAを、 公知の手法を用いて測定することにより評価す ることができる (Onno et al., Molecular Biology of the Cell. , 10, 1851-1857 (1999) ) 。 被験試料の存在下及び非存在下で ROCKに結合する RhoA量を測定'比較 し、 被験試料存在下で ROCKに結合する RhoA量が増加すれば該被験試料は LPA作動 GPC Rのァゴニス トであり、 活性が減少すればインバースァゴニス トである。 また、 生 理活性リガンド (例えば LPA) を共存させた系で、 被験試料の存在下及び非存在下 で ROCKに結合する RhoA量を測定 ·比較し、 被験試料存在下で被験試料非存在下より も ROCKに結合する RhoA量が減少すれば被験試料は LPA作動 GPCRのアンタゴニストで ある。
上記の LPA作動 GPCRと共役 G aとを用いた LPA作動 GPCRリガンドのスクリーニング 方法を、 LPA作動 GPCRに対するリガンド、 例えば、 LPA等の共存下で行えば、 さらに LPA作動 GPCRに対するニュートラルアンタゴニストを容易に選抜することができる また、 別の態様として、 LPA作動 GPCR依存的な種々の生理作用を指標として、 LPA 作動 GPCR拮抗剤をスクリ一二ングすることも可能である。 該生理作用としては、 MA Pキナーゼの一種である ERKの活性化が挙げられる。 具体的には、 LPA作動 GPCRの存 在下に、 被験試料が ERKのリン酸化を促進するか否かを、 リン酸化 ERK量をゥエスタ ンブロッテイング等で検出することによって測定する方法 (I shi i et al. , Mol. Ph armacol. 58, 895-902 (2000) ) が挙げられる。
従って、 被験試料の存在下でリン酸化 ERK量が増加すれば、 該被験試料は LPA作動 GPCRのァゴニストであり、 減少すればインバースァゴニス トである。 また、 生理活 性リガンド(例えば LPA) を共存させた系で、 被験試料の存在下と非存在下でのリン 酸化 ERK量を測定 ·比較することにより、 L P A作動 G P C Rのアンタゴニストを スクリーニングすることができる。 即ち、 被験試料の存在下で被験試料の非存在下 よりもリン酸化 ERK量が減少すれば該被験試料はアンタゴニストである。
また、 天然リガンドである LPAもしくは LPA作動 GPCRァゴニストの存在もしくは非 存在下に、 被験試料が LPA作動 GPCR依存的な DNA合成促進活性 (細胞増殖促進活性) を抑制するか否かを測定することによって、 LPA作動 GPCRリガンドをスクリーニン グする方法が挙げられる。
具体的には、 NIH3T3等の細胞の細胞数を計測する方法、 または RH7777等の細胞に おける [3H]チミジンもしくは BrdUの取り込み量を測定する方法を用いることができ る (Fischer et al., Molecular Pharmacology, 60, 776-784 (2001); Fukusima e t al. , Proc. Nat. Acad. Sci. U. S. A. , 95, 6151〜6156, (1998) ; Laychock S - R ubin RP編、 Lipid Second Messengers, CRC Press, Washington DC)。
従って、 被験試料の存在下で [3H]チミジンもしくは BrdUの取り込み量が増加すれ ば、 該被験試料は LPA作動 GPCRのァゴニス トであり、 減少すればィンバースァゴニ ストである。 また、 生理活性リガンド(例えば LPA) を共存させた系で、 被験試料の 存在下と非存在下での [3H]チミジンもしくは BrdUの取り込み量を測定 ·比較するこ とにより、 L P A作動 G P C Rのアンタゴニストをスクリーニングすることができ る。 即ち、 被験試料の存在下で被験試料の非存在下よりも [3H]チミジンもしくは Br dUの取り込み量が減少すれば該被験試料はアンタゴニストである。
また、 LPA作動 GPCRが EDG2又は EDG4の場合、 血清応答エレメント (Serum- respons e element ; SRE) の制御下にあるリポーター遺伝子の発現量を測定することにより 、 G蛋白質の細胞刺激活性を評価する方法もある (An et al. , J. Biol. , Chem. , 2 73, 7906-7910, (1999) ; An et al. , BBRC., 231, 619-622 (1997) )。 ここで使用さ れる発現ベクターについては後に詳述するが、 概説すると、 SREを含むプロモータ 一の下流にリポーター蛋白質をコードする DNAを連結した発現カセットを含むベク ターを導入された真核生物細胞を、 被験試料の存在下及び非存在下で適当な時間培 養し、 細胞を破砕して得られる抽出液におけるリポーター遺伝子の発現を公知の方 法を用いて測定 ·比較することにより、 細胞内 Ca2+量を評価するというものである 。 従って、 SRE制御下にあるリポーター遺伝子の量が増加すれば、 該被験試料は LPA 作動 GPCRのァゴニストであり、 減少すればインバースァゴニストである。 また、 生 理活性リガンド (例えば LPA) を共存させた系で、 被験試料の存在下と非存在下での 細胞内 Ca2+量を測定 ·比較することにより、 L P A作動 G P C Rのアンタゴニスト をスクリーニングすることができる。 即ち、 被験試料の存在下で被験試料の非存在 下よりも細胞内 Ca2+量が減少すれば該被験試料はアンタゴニストである。
本明細書において、 「LPA作動 GPCR拮抗活性を有する化合物」 とは、 上記スクリ 一ユング方法においてインバースァゴニスト又はアンタゴニストである任意の化合 物を表す。 より具体的には、 LPA作動 GPCRとの親和性 (LPA作動 GPCR結合活性) が LP A (18 : 0)以上であり、 かつ実施例 4に記載の FLIPRを用いる試験方法において、 IC5 0値が 100/iM以下、 好ましくは 10 / M以下、 更に好ましくは ΙμΜ以下である化合物を 挙げることができる。
本発明のスクリーニング法に供される被験試料は、 いかなる公知化合物及び新規 化合物であってもよく、 例えば、 コンビナトリアルケミストリー技術を用いて作製 された化合物ライブラリー、 固相合成やファージディスプレイ法により作製された ランダムペプチドライブラリー、 あるいは微生物、 動植物、 海洋生物等由来の天然 成分等が挙げられる。 好ましくは、 被験試料は分子量 200〜2000の化合物で あり、 更に好ましくは分子量 300〜800の化合物である。
本発明のスクリーニング法のために提供される、 LPA作動 GPCRを含む脂質二重層 膜、 及び LPA作動 GPCRと共役する Gひを構成要事として含有するスクリ一ユング系 の好ましい一実施態様は、 LPA作動 GPCRをコードする DN Αを含む発現ベクターと 、 共役 Gひの GPCRとの結合に関与する領域及び任意の Gひのグァニンヌクレオ チドとの結合に関与する領域を少なくとも含むポリぺプチドをコ一ドする DNAを 含む発現ベクターとでトランスフエクトした宿主真核生物細胞、 該細胞のホモジネ ートまたは該細胞由来の膜画分である。
「LPA作動 GPCRをコードする DNA」 は、 ヒ ト及び他の哺乳動物由来の LPA作動 GP CR、 あるいは該レセプターのアミノ酸配列において、 1もしくは複数のアミノ酸が 置換、 欠失、 挿入、 付加または修飾されたアミノ酸配列からなり、 天然 LPA作動 GPC Rと同じリガンド一レセプター相互作用を示し、 且つ共役する G αを活性化して該 サブュニットの GDP · GTP交換反応を促進する活性を有するポリペプチドをコ ードする DNAであれば特に制限はない。 ヒ ト LPA作動 GPCR c DNAのコーディン グ領域の他、 ゥシ、 ブタ、 サル、 マウス、 ラット等のヒ ト以外の哺乳動物由来の LP A作動 GPCRをコードする DNA等が例示され、 これらは、 哺乳動物の膝臓、 もしく は腎臓、 肺の細胞由来の cDNAライブラリーもしくはゲノミックライブラリーか ら、 ヒ ト LPA作動 GPCRの c DNAクローンをプローブとして単離され得る。 また、 L PA作動 GPCRは、 ヒ ト LPA作動 GPCRの c DNAクローンを基に、 部位特異的変異誘発 等の人為的処理により一部に変異を導入したものであってもよい。
具体的には、 ヒ ト及び他の哺乳動物由来の 「EDG2をコードする DNA」 、 ヒ ト及び 他の哺乳動物由来の 「EDG4をコードする DNA」 、 ヒ ト及び他の哺乳動物由来の 「EDG 7をコードする DNA」 、 又はこれらのアミノ酸配列において、 1もしくは複数のアミ ノ酸が置換、 欠失、 挿入、 付加または修飾されたアミノ酸配列からなり、 天然 LPA 作動 GPCRと同じリガンドーレセプター相互作用を示し、 且つ共役する G αを活性化 して該サブユエットの GDP · G TP交換反応を促進する活性を有するポリべプチ ドをコードする DNAが挙げられる。
G αとしては、 LPA作動 GPCRと共役するものであれば特に制限はない。 G αの各 遺伝子は公知であり、 容易に入手可能である。 LPA作動 GPCRと共役する Gaを含む ポリペプチドをコードする DN Aは、 少なくとも共役 Gaの GPCRとの結合に関 与する領域をコードする配列と、 任意の Gaのグァニンヌクレオチドとの結合に関 与する領域をコードする配列を有することが必要である。 上述の通り、 0ひの 線 結晶構造解析の結果から、 G P C R結合領域及びグァニンヌクレオチド結合領域は よく知られており、 当業者は、 所望により Gaのコーディング配列の一部を欠失し たフラグメントを容易に構築することができる。
Gaのエフェクターへの作用を指標とするスクリーユング系においては、 LPA作 動 GPCRと共役する Gaをコードする DNAは、 所望のエフェクターと相互作用する ための領域をコードするヌクレオチド配列をさらに含む必要がある。 エフェクター としてアデ二ル酸シクラーゼを用いる場合は、 該 DNAは G i αもしくは G s e の エフェクター相互作用領域をコードするヌクレオチド配列を含む。 一方、 エフェク ターとしてホスホリパーゼ C /3を用いる場合には、 該 DNAは Gq αのェフエクタ 一相互作用領域をコードするヌクレオチド配列を含む。 各 G α遺伝子は公知であり 、 それらのエフェクター相互作用領域もよく知られている。 従って、 当業者は、 公 知の遺伝子工学的手法を適宜組み合わせることにより、 容易にキメラ G α蛋白質を コードする DNAを構築することもできる。 当該キメラ蛋白質 (例えば、 Gq i α ) をコードする DNAの最も簡便な例としては、 Gq αの c DNAの C末端の約 5 アミノ酸をコードする配列を、 PCR等の公知の手法を用いて G i ひの C末端配列 をコードする DN A配列に置換したものが挙げられる。
LPA作動 GPCRをコードする D N A、 及び LPA作動 GPCRと共役する G αをコードする DNAは、 宿主真核生物細胞内でプロモーター活性を発揮し得るプロモーターに機 能的に連結されていなければならない。 使用されるプロモーターは、 宿主真核生物 細胞内で機能し得るものであれば特に制限はないが、 例えば、 S V 4 0由来初期プ 口モーター、 サイ トメガロウイノレス L T R、 ラウス肉 fl重ゥイノレス L T R、 M o M u L V由来 L T R、 アデノウイルス由来初期プロモータ一、 バキュロウィルス由来ポ リヘドリンプロモーター等のウィルスプロモーター、 並びに )3—ァクチン遺伝子プ 口モーター、 P G K遺伝子プロモーター、 トランスフェリン遺伝子プロモーター等 の真核生物由来細胞の構成蛋白質遺伝子のプロモーターなどが挙げられる。 使用さ れる発現ベクターは、 上記プロモーターに加えて、 その下流に転写終結シグナル、 すなわちターミネータ一領域を含有することが好ましく、 プロモーター領域とター ミネーター領域の間にコーディング D N Aを挿入し得るように、 適当な制限酵素認 識部位、 好ましくは該ベクターを 1箇所のみで切断するユニークな制限酵素認識部 位を有することが望ましい。 さらに、 該発現べクタ一は、 選択マーカ一遺伝子 (テ トラサイクリン、 アンピシリン、 カナマイシン、 ハイグロマイシン、 ホスフィノス リシン等の薬剤抵抗性遺伝子、 栄養要求性変異相補遺伝子等) をさらに含有してい てもよい。
本発明のスクリーユング系に使用されるベクターとしてはプラスミ ドベクターの 他、 ヒ ト等の哺乳動物での使用に好適なレトロウイルス、 アデノウイルス、 アデノ 随伴ウィルス、 ヘルぺスウィルス、 ワクシニアウィルス、 ボックスゥイノレス、 ポリ ォウィルス、 シンドビスウィルス、 センダイウィルス等、 あるいは昆虫細胞での使 用に好適なバキュロウィルスベクター等も挙げられる。
LPA作動 GPCRをコードする D N Aと、 LPA作動 GPCRと共役する G aをコードする D
N Aは、 2つの別個の発現ベクター上に担持されて宿主細胞に共トランスフエク ト されてもよいし、 あるいは、 1つのベクター上に、 ジシストロニックもしくはモノ シストロニックに挿入されて、 宿主細胞内に導入されてもよい。
宿主細胞は、 ヒ ト、 サル、 マウス、 ラット、 ハムスター等の哺乳動物細胞、 ある いは昆虫細胞であれば特に制限はない。 具体的には、 C0P、 レ C127、 Sp2/0、 NS- 1 、 NIH3T3、 ST2等のマウス由来細胞、 RH7777等のラット由来細胞、 BHK、 CH0等のハ ムスター由来細胞、 C0S1、 C0S3、 C0S7、 CV1、 Vero等のサル由来細胞、 HeLa、 HEK29 3、 MCF10A、 HepG2、 A431等のヒ ト由来細胞、 及び Sf9、 Sf21、 High Five等の昆虫由 来細胞などが例示される。 宿主細胞への遺伝子導入は、 真核生物細胞の遺伝子導入に使用できる公知のいか なる方法を用いて行ってもよく、 例えば、 リン酸カルシウム共沈殿法、 エレク ト口 ポレーシヨン法、 リボソーム法、 マイクロインジェクション法等が挙げられる。 遺伝子を導入された宿主細胞は、 例えば、 約 5〜20%のゥシ胎仔血清を含む最 少必須培地 (MEM) 、 ダルベッコ改変イーグル培地 (DMEM) 、 Ham's F-12培地、 RPM 11640培地、 199培地、 Grace' s昆虫細胞培養用培地等を用いて培養することができ る。 培地の pHは約 6〜約 8であるのが好ましく、 培養温度は、 通常約 27〜約 4 0°Cである。
上記のようにして得られる、 LPA作動 GPCRをコードする DNA及び LPA作動 GPCRと 共役する Gひをコードする DNAを導入された真核生物細胞は、 使用するスクリー ユング法に応じてそのまま無傷細胞として使用してもよいし、 あるいは適当な緩衝 液中で該細胞を破砕して得られる細胞ホモジネートゃ、 該ホモジネートを適当な条 件で遠心分離するなどして (例えば、 約 1, 000 X g程度で遠心して上清を回収 した後、 約 100, 000 X g程度で遠心して沈渣を回収する) 単離される膜画分 の形態であってもよい。
例えば、 GTP γ S結合アツセィや、 エフェクターの活性を直接測定することに より、 被験試料のリガンド特性を評価する場合には、 使用するスクリーニング系は 、 好ましくは、 上記のようにして細胞から調製される膜画分である。 一方、 細胞内 cAMP量 (もしくは c AMP応答性リポーターの発現量) や細胞内 C a 2+量 (も しくは C a 2+応答性リポーターの発現量) を測定することにより、 被験試料のリガ ンド特性を評価する場合には、 使用するスクリーニング系は無傷真核生物細胞であ る。
尚、 リガンド活性の評価を、 c AMP応答性リポーター (エフェクターがアデ二 ル酸シクラーゼの場合) もしくは C a 2+応答性リポーター (エフェクターがホスホ リパーゼ C ]3の場合) の発現量を指標として行う場合には、 宿主真核生物細胞は、 cAMP応答エレメント (CRE) または TPA応答エレメント (TRE) を含む プロモータ一領域の下流にリポーター蛋白質をコードする DNAが機能的に連結し た発現カセットを含むベクターを導入されたものである必要がある。 じ £は。 M Pの存在下に遺伝子の転写を活性化するシスエレメントであり、 コンセンサス配 列として TGACGTCAを含む配列が挙げられるが、 c AM P応答性を保持する限り当該 配列の一部に欠失、 置換、 揷入または付加を含む配列であってもよい。 一方、 T R Eは C a 2+の存在下に遺伝子の転写を活性化するシスエレメントであり、 コンセン サス配列として TGACTCAを含む配列が挙げられるが、 C a 2+応答性を保持する限り 当該配列の一部に欠失、 置換、 挿入または付加を含む配列であってもよい。 C R E 又は T R Eを含むプロモーター配列としては、 上記のようなウィルスプロモーター や哺乳動物の構成蛋白質遺伝子プロモーターが同様に使用可能であり、 制限酵素及 び D N Aリガーゼを用いて、 あるいは P C R等を利用して、 該プロモーター配列の 下流に C R Eまたは T R E配列を挿入することができる。 C R E又は T R Eの制御 下におかれるリポーター遺伝子としては、 迅速且つ簡便に遺伝子発現を検出 ·定量 できる公知のいかなる遺伝子を使用してもよく、 例えば、 ルシフェラーゼ、 /3—ガ ラク トシダーゼ、 β -ヴ) り口ニダーゼ、 ァノレ力リホスファターゼ、 ぺ /レオキシダ ーゼ等のリポーター蛋白質をコードする D N Aが挙げられるが、 これらに限定され ない。 リボータ一遺伝子の下流にはターミネータ一配列が配置されることがより好 ましい。 このような C R E (又は T R E ) —リポーター発現カセットを担持するべ クタ一としては、 公知のプラスミ ドベクター又はウィルスベクターを使用すること ができる。 血清応答エレメント (SRE) の制御下にあるリポーター遺伝子含む発現 ベクターについても、 上記と同様に調製することができる。
本発明のスクリーニング法のために提供される、 LPA作動 GPCRを含む脂質二重層 膜、 及び LPA作動 GPCRと共役する G aを構成要素として含有するスクリーニング系 の別の好ましい実施態様は、 LPA作動 GPCRの C末端側に、 共役 Gひの G P C R結合 領域及び任意の G αのグァニンヌクレオチド結合領域を少なくとも含むポリぺプチ ドが連結した融合蛋白質をコードする D NAを含む発現ベクターでトランスフエク トした宿主真核生物細胞、 該細胞のホモジネートまたは該細胞由来の膜画分である 。
LPA作動 GPCRをコードする D NA、 及び LPA作動 GPCRと共役する G aの G P C R結 合領域及び任意の Gひのグァニンヌクレオチド結合領域を含むポリペプチドをコー ドする D N Aは、 上述のようにして取得することができる。 当業者は、 これらの D N A配列をもとにして、 公知の遺伝子工学的手法を適宜組み合わせることにより、 LPA作動 GPCRと G αとの融合蛋白質をコードする D N Aを構築することができる。 簡潔にいえば、 P C R等を用いて LPA作動 GPCRをコードする D NAの終始コドンを 除去したものに、 G aをコードする D N Aを読み枠が合うように、 即ちインフレ一 ムに、 D N Aリガーゼを用いてライゲーシヨンする。 この際、 LPA作動 GPCRの C末 の一部を欠失させたり、 LPA作動 GPCRと G aとの間に Hisタグ等のリンカ一配列を挿 入してもよレ、。
得られた融合蛋白質をコードする D NAは、 上述のような発現ベクター中に挿入 され、 宿主真核生物細胞に上記の遺伝子導入技術を用いて導入される。 得られた真 核生物細胞の膜上に当該融合蛋白質が発現すると、 レセプターの細胞内第 3ループ 上の G ひ活性化ドメインと共役 G o;のレセプター結合領域とは、 LPA作動 GPCRに対 する生理的リガンドの非存在下に相互作用して、 G aにおける G D P ' G T P交換 反応を促進し得る。 従って、 G aは恒常的に活性化された状態となる。
レセプタ一一 G ひ融合蛋白質発現細胞を、 G aのェフエクタ一^ ·の作用を指標に したスクリーニングに使用する場合において、 G aがレセプターと連結しているこ とがエフェクターとの相互作用の妨げとなる場合には、 レセプターと G aとのジャ ンクシヨン部位に、 特異的なプロテアーゼによって切断されるアミノ酸配列 (例え ば、 トロンビン感受性配列等) を導入し、 融合蛋白質を膜上に発現させた後に当該 プロテアーゼを作用させてレセプターと G aとを切り離すことができる。
レセプタ一一 G ひ融合蛋白質発現細胞についても、 使用するスクリーニング法に 応じて、 無傷細胞、 細胞ホモジネート、 膜画分のいずれかの形態を適宜選択して用 いることができる。
本発明のスクリーユング法のために提供される、 LPA作動 GPCRを含む脂質二重層 膜、 及び LPA作動 GPCRと共役する G aを構成要素として含有するスクリ一二ング系 のさらに別の実施態様は、 共役 G蛋白質を内因的に発現する宿主動物細胞を、 LPA 作動 GPCRをコードする D N Aを含む発現ベクターでトランスフエク トすることによ り調製される細胞、 該細胞のホモジネートまたは該細胞由来の膜画分である。
LPA作動 GPCRをコードする D NA、 該 D N Aを挿入する発現ベクター、 該発現べ クタ一の宿主細胞への導入法は、 上述の通りのものを使用することができる。
本発明のさらに別の態様においては、 本発明のスクリーニング系は、 LPA作動 GPC R及び LPA作動 GPCRと共役する G蛋白質を内因的に発現する動物細胞、 該細胞のホモ ジネートまたは該細胞由来の膜画分である。 このような細胞としては、 哺乳動物の 膝臓もしくは腎臓、 肺由来細胞が好ましく例示される。
本発明のさらに別の態様においては、 LPA作動 GPCRを含む脂質二重層膜、 及び LPA 作動 GPCRと共役する G aを構成要素として含有するスクリーニング系として、 精製 した LPA作動 GPCRと共役 G α、 あるいは精製した該レセプターと共役 G との融合 蛋白質を、 人工脂質二重層膜中に再構成させたものを使用することができる。 LPA 作動 GPCRは、 ヒ ト又は他の哺乳動物の脖臓もしくは腎臓、 肺由来細胞から得られる 膜画分から、 抗 LPA作動 GPCR抗体を用いたァフィ二ティークロマトグラフィー等に より精製することができる。 あるいは、 該レセプターは、 LPA作動 GPCRをコードす る D N Aを含む発現べクターを導入された組換え細胞から、 抗 LPA作動 GPCR抗体や 、 His- tag、 GST- tag等を用いたァフイエティ一クロマトグラフィー等により精製す ることもできる。 同様に、 該レセプターと共役 G aとの融合蛋白質も、 該融合蛋白 質をコードする DN Aを含む発現ベクターを導入された組換え細胞から、 抗 LPA作 動 GPCR抗体や、 His- tag、 GST-tag等を用いたァフィ二ティークロマトグラフィー等 により精製することができる。
人工脂質二重層膜を構成する脂質としては、 ホスファチジルコリン (P C) 、 ホ スファチジルセリン (P S) 、 コレステロール (C h) 、 ホスファチジルイノシト ール (P I ) 、 ホスファチジルエタノールァミン (P E) 等が挙げられ、 これら 1 種または 2種以上を適当な比率で混合したものが好ましく使用される。
例えば、 レセプターと G o:、 又はレセプタ一一 G a融合蛋白質を組み込んだ人工 脂質二重層膜 (プロテオリボソーム) は、 P C : P I : C h= 1 2 : 1 2 : lの混 合脂質クロロホルム溶液を適当量ガラスチューブに分取し、 窒素ガス蒸気でク口口 ホルムを蒸発させて脂質をフィルム状に乾燥させた後、 適当な緩衝液を加えて懸濁 、 次いで超音波処理により均一に分散させ、 コール酸ナトリゥム等の界面活性剤を 含む緩衝液をさらに加えて脂質を完全に懸濁する。 ここに、 精製したレセプターと G a、 又はレセプタ一一 G a融合蛋白質を、 適量添加し、 氷中で時々攪拌しながら 2 0〜 3 0分間程度インキュベートした後、 適当な緩衝液に対して透析する。 約 1 0 0, 000 X gで 3 0〜6 0分間遠心して沈渣を回収することにより、 プロテオ リボソームを調製することができる。
また、 本発明の、 スクリーニング方法の第三の態様は、 LPA産生抑制活性を指標 として、 LPA作動 GPCR活性抑制剤をスクリーニングするものであり、 被験試料の存 在下及び非存在下で、 LPA産生酵素及び基質を接触させ、 LPAの生成量を両条件下で 比較し、 被験試料の存在下における生成量が被験試料の非存在下における生成量よ りも大きい被験試料を LPA産生酵素阻害剤として選択する工程を含む。
「LPA産生酵素」 とは、 具体的にはホスホリパーゼ A (A1, A2) を表し、 好ましく はホスホリパーゼ A1を表す。 本明細書において 「ホスホリパーゼ A (A1, A2) J とは 、 ヒ ト及び他の哺乳動物由来のホスホリパーゼ Al、 A2の他、 それらの自然もしくは 人工の突然変異体、 それらをコードする DNAを含む組換え細胞から製造される組換 えホスホリパーゼ A1もしくは A2、 それらの機能的フラグメン卜の全てを包含する意 味で使用される。 当該ホスホリパーゼ A1として、 例えば J. B. C vol. 277 No. 37 pp34 254-34263 (2003)又は J. B. C vol. 273 No. 10 pp5468- 5477に記載されたものを使用 することができる。 また、 ホスホリパーゼ A2として、 例えば Cell, vol. 80, p919- 9 27 (1995) に記載されたものを使用することができる。
「基質」 としては、 標識されたホスファチジン酸 (PA) が挙げられる。 標識方法 としては、 蛍光標識でラベルする方法や、 3H、 14C、 32P及び 33Pなどの放射性同位 元素で標識する方法等が挙げられる。 具体的にスクリーニングに用いられる基質と しては、 32P-labeled sn- 1, 2- dioleoyl PA等が挙げられる。
被験物質の LPA産生酵素活性の測定方法は公知であり、 例えば実験医学 vol. 9 No
. 3 (3月号) 1991、 又は The Journal of Biological Chemistry, Vol. 278, No. 49, P49438-49447 (2003) 等に記載された方法を用いることができる。 すなわち、 被 験試料の存在下における LPA産生酵素活性と、 被験試料非存在下における LPA産生酵 素活性を比較することにより、 被験試料存在下における LPA産生酵素活性が被験試 料非存在下における LPA産生酵素活性よりも小さい被験試料を LPA産生酵素阻害剤と して選択することができる。
上記の本発明のスクリ一二ング法により選択される LPA作動 GPCR拮抗剤もしくは L PA産生酵素阻害剤等の LPA作動 GPCR活性抑制剤は、 耐糖能異常改善作用を示すこと は明白であり、 従って、 これらを適当な添加剤と組み合わせることにより、 耐糖能 異常改善薬とすることができる。 従って、 本発明はまた、 本発明のスクリーニング 法により選抜された LPA作動 GPCR活性抑制剤と、 医薬上許容される担体とを配合さ せることによる、 耐糖能異常改善薬、 又は生活習慣病治療、 特に糖尿病治療を提供 する。
医薬上許容される担体としては、 例えば、 ショ糖、 デンプン、 マンニット、 ソル ビッ ト、 乳糖、 グルコース、 セルロース、 タルク、 リン酸カルシウム、 炭酸カルシ ゥム等の賦开 $剤、 セルロース、 メチルセノレロース、 ヒ ドロキシプロピノレセルロース 、 ポリプロピルピロリ ドン、 ゼラチン、 アラビアゴム、 ポリエチレングリコール、 ショ糖、 デンプン等の結合剤、 デンプン、 カルボキシメチルセルロース、 ヒ ドロキ シプロピルスターチ、 ナトリゥムーグリコール一スターチ、 炭酸水素ナトリゥム、 リン酸カルシウム、 クニン酸カルシウム等の崩壊剤、 ステアリン酸マグネシウム、 エア口ジル、 タルク、 ラウリノレ硫酸ナトリウム等の滑剤、 クェン酸、 メントール、 グリシルリシン . アンモニゥム塩、 グリシン、 オレンジ粉等の芳香剤、 安息香酸ナ トリウム、 亜硫酸水素ナトリウム、 メチルパラベン、 プロピルパラベン等の保存剤 、 クェン酸、 クェン酸ナトリウム、 酢酸等の安定剤、 メチルセルロース、 ポリビニ ルピロリ ドン、 ステアリン酸アルミニウム等の懸濁剤、 界面活性剤等の分散剤、 水 、 生理食塩水、 オレンジジュース等の希釈剤、 カカオ脂、 ポリエチレングリコール 、 白灯油等のベースワックスなどが挙げられるが、 それらに限定されるものではな レ、。
経口投与に好適な製剤は、 水、 生理食塩水、 オレンジジュースのような希釈液に 有効量の LPA作動 GPCR活性抑制剤を溶解させた液剤、 有効量の LPA作動 GPCR活性抑制 剤を固体や顆粒として含んでいるカプセル剤、 サッシェ剤または錠剤、 適当な分散 媒中に有効量の LPA作動 GPCR活性抑制剤を懸濁させた懸濁液剤、 有効量の LPA作動 GP CR活性抑制剤を溶解させた溶液を適当な分散媒中に分散させ乳化させた乳剤等であ る。
非経口的な投与 (例えば、 静脈内注射、 動脈内注射、 皮下注射、 筋肉注射、 局所 注入、 腹腔内投与など) に好適な製剤としては、 水性及び非水性の等張な無菌の注 射液剤があり、 これには抗酸化剤、 緩衝液、 制菌剤、 等張化剤等が含まれていても よい。 また、 水性及び非水性の無菌の懸濁液剤が挙げられ、 これには懸濁剤、 可溶 化剤、 肥厚剤、 安定化剤、 防腐剤等が含まれていてもよい。 あるいは、 コラーゲン 等の生体親和性の材料を用いて、 徐放性製剤とすることもできる。 当該 LPA作動 GPC R活性抑制剤の製剤は、 アンプルやバイアルのように単位投与量あるいは複数回投 与量ずつ容器に封入することができる。 また、 LPA作動 GPCR活性抑制剤及び医薬上 許容される担体を凍結乾燥し、 使用直前に適当な無菌のビヒクルに溶解または懸濁 すればよい状態で保存することもできる。
以下に実施例を挙げて本発明をより具体的に説明するが、 これらは単なる例示で あって、 本発明の範囲を何ら限定するものではない。 実施例
実施例 1
正常人の薛臓ランゲルハンス氏島における EDG2、 EDG4及び EDG7の発現局在
(1)ゥサギ由来ポリクローナル抗体の作成
Edg 2抗原べプチドとして、 ァミノ酸配列: KHLATEW TVSKLVM (配列番号: 7 ) の 部分ペプチドを公知の方法で合成し、 マススペク トル及び HPLCにより配列を確認し た。
公知の方法に従い、 以下のスケジュールで動物を免疫し、 抗血清からポリクロ一 ナル抗体の作成を行った。 すなわち、 ゥサギ (KBL JW 11週齢) 2匹を用い、 飼 育 1日目に FCA (Completeゥサギ (KBL JW 11週令) 2匹を用い、 飼育 1日目に FCA (Complete Freund' s Adjuvant) に溶解させた抗原ペプチド 200 / g/匹を腹腔内に 注入した。 更に、 飼育 1 4、 2 8、 4 2、 5 7、 7 0、 8 4日目に FCA (Complete Freund' s Adjuvant) に溶解させた抗原ペプチド 100 /z g/匹を腹腔内に注入した。 飼育 1、 4 9、 6 3日に抗体力価確認のための採血を行った。 抗体力価の上昇を確 認後、 飼育 77日目に 2 0〜 3 O ml/匹、 飼育 91日目に 5 0〜 7 O ml/匹の採血を行い 、 抗血清を得て抗原ペプチドを固定したカラムでァフィ二ティー精製を行い、 1次 抗体を得た。 精製された抗体は 0. 01% アジ化ナトリウム を含む PBSに置換し使用ま で冷凍保存した。
(2)ゥサギ抗体を用いた免疫組織染色
生検組織サンプル (24歳女性、 95歳男性等) のパラフィンブロックから 4〜5 m の厚さで組織切片を作成した。 スライドサンプルはキシレンで除パラフィンを行い
、 アルコール処理を経て再度水和させた。 その後 Target Retrieval Solution (DAK
0社) 中でオートクレープ処理による抗原賦活化を行った。 以降の操作は Vectastai n ABC-AP kit (Vector社) を用いた。 添付試薬でブロッキング後、 上記(1)で作成 した 1次抗体で 45分インキュベートした。 洗浄後、 5 μ 1/πι1に希釈した抗ゥサギ 2 次抗体 (ΒΑ- 1000) で 30分インキュベートした。 洗浄後 Vector ABC-AP (AK-5000) r eagentを添加し、 Vector Red (SK- 5100)にて発色させた。
結果を表 1に示した。 表 1のとおり、 EDG2は他組織と比較して膝臓に強く発現し ていることがわかった。 更に、 膝臓組織中での発現分布を詳細に検討したところ、 腺房などではほとんど発現しておらず、 ランゲルハンス島に発現が局在しているこ とが明らかとなった。
また Edg4を認、識する市販のモノクローナル抗体 (Oncogene社) 等を用い、 同様の 手法で発現局在を検討した結果、 Edg4も又、 ランゲルハンス氏島に発現局在してい ることが明らかとなった。
さらに Edg7抗原ペプチドとして VERHMSIMRMRVHSN (配列番号: 8 ) を用い、 同様 の手法で発現局在を検討した結果、 Edg7も又、 ランゲルハンス氏島に発現局在して いることが明らかとなった。
Figure imgf000043_0001
実施例 2
経口糖負荷試験
雄性 C57BL/6Jマウス (3週齢、 SPF規格、 本クレア) を予備飼育の後、 4週齢よ り通常飼料 (Research Diet社) を与えた。 20週間後、 8時間絶食を施し、 LPA乾燥 品 (シグマ社) を生理食塩水(大塚製薬)に溶解し 0. 5mg/匹で静脈内投与を行った。 溶媒対照としては生理食塩水 (大塚製薬)を用いた。 静脈内投与後速やかに 3g/kgの D-グルコースを経口投与した。 糖負荷前 (0分) 、 糖負荷後 15、 45、 90及び 135分後 に尾部静脈より採血し、 以下の方法により血糖 を測定した。 すなわち 10 // 1の血液を採取し、 0. 4N過塩素酸水溶液 100 Ai lと混和する。 更に 0. 3 7M炭酸カリウム水溶液 50 /x lを添カ卩し、 遠心後の上清についてグルコース C I I · テストヮコー(グルコース定量キット、 ムタロターゼ ' GOD法、 和光純薬)を用いて 血糖値を測定した。
その結果、 LPA投与群の糖負荷後 90分後の血糖値は、 生理食塩水投与群と比較し て有意に高値を示した (p>0. 05) (図 1 ) 。 この結果から、 LPAの投与により耐糖 能が悪化することが明らかになつた。 実施例 3
EDG2、 EDG4、 EDG7の安定発現株の樹立
(1)導入遺伝子ベクターの構築
配列番号: 2で表される EDG2のコード領域、 配列番号: 4で表される EDG4のコー ド領域、 及び配列番号: 6で表される EDG7のコード領域を、 AmpliTaq (パーキンェ ルマ一社) にて PCR法で増幅する。 増幅した遺伝子断片を動物細胞で機能するプロ モーター (pcDAN4/HisMax (invitrogen社) ) の下流に導入する。
(2)細胞株の樹立
Nature Cell Biology, vol. 2, p261〜p267, (2000) 又は J. Biol. Chem. , Vol. 276, No. 44, P41325〜p41335に記載された方法で、 EDG2、 EDG4及び EDG7安定発現株 を調製することができる。
すなわち、 Jurkat (または HTC4) 細胞を 10cm培養皿に播種し 60〜70%コンフルェ ントになるまで培養する。 その後無血清培地に転換し、 上記のとおり構築した EDG2 、 EDG4及び EDG7導入遺伝子を、 Lipoofectamine-Plus (Gibco社製) と複合体を形成 させたのちに培地に添加する。 5時間インキュベート後 1 0 %FBSを含む培地に転換 後さらに 8時間培養する。 その後トリプシン EDTAで細胞を培養皿から剥離させ、 G4 18と 10%FBSを含む培地にけん濁し、 10cm培養皿に播種した。 数日後形成されたコロ ニーを単離し、 EDG2、 EDG4及び EDG7リガンドスクリーニング用安定発現株とする。 実施例 4
FLIPRを用いた EDG2、 EDG4及び EDG7リガンドのスクリ一エング (1)細胞の調製
実施例 3で調製した EDG2、 EDG4及び EDG7リガンドスクリ一二ング用安定発現株を 9 6穴培養皿に播種し、 10%FBS (Gibco社製) を含む培地中で 60〜70%コンフルェン トになるまで培養する。
(2)蛍光測定による細胞内カルシウムの定量
上記の処理を施した細胞の培地を除去し、 4 // Mの Fluo3AM (Tef lab. ) 及び 2. 5mM の probenecid (20mM HEPES, 0. 1%BSA, lxHBSS緩衝液, pH7. 4) を添加し 37°Cで 60分 培養する。 上記の処理を施した細胞を氷冷した PBSで洗浄し、 Tyrode's medium (2. 5mMの probenecid 1 %ゼラチンを含む) に懸濁する。 これに評価化合物の DMS0溶液 (終濃度 lnM〜100 / m) を加える。 5分後に LPA (18 : 3) (終濃度: 100nM) を加え、 添加前後の細胞内カルシウムイオン濃度を FRIPR (Molecular Device) にて測定す る (励起波長: 488nm、 蛍光波長: 540nm) 。 ここで、 LPA (18: 3) ( 1 —リノレノ ィル LPA)は LPC ( 18 : 3) ( 1 —リノレノィルリゾホスファチジルコリン) (Sedary社 製) を用いてホスホリパーゼ Dを用いて合成する。
一方、 評価化合物の代わりに DMS0を添加して上記測定を行い、 コントロール値を 得る。 測定値がコント口ール値よりも小さレ、場合に、 該評価化合物は LPA作動 GPCR のアンタゴニスト候補化合物であり、 測定値を比較することによって LPA作動 GPCR アンタゴニス トをスクリーニングすることができる。 すなわち、 複数の濃度の評価 化合物について上記を測定し、 測定値がコントロール値の 1/2となる濃度 (IC50値 ) を求め、 該 IC50値が小さい化合物を耐糖能異常改善薬の候補化合物として選択す ることができる。 実施例 5
Figure imgf000045_0001
(1)細胞膜画分の調製
実施例 3で調製した EDG2、 EDG4及び EDG7リガンドスクリ一ユング用安定発現株を フラスコに播種し、 10%FBS (Gibco社製) を培地中で 60〜70%コンフルェントになる まで培養する。 細胞を回収し buffer A (50mM HEPES (pH7. 0) , lOmM 2- ME, ImM PMSF, 0. 25M sucrose)に懸濁する。 Potter型ホモジェナイザーでホモジナイズ (400rpm 、 20ス トローク) したのち、 100000 gで 60分遠心分離を行い、 得られた沈殿を再度 buffer Aに懸濁する。 この懸濁液を 35% (tnass/vol) sucrose in buffer Aの上に重層 し 45000 gで 45分遠心分離を行う。 界面の画分を回収し buffer Aに懸濁し、 100000 gで 60分遠心分離を行う。 得られた沈殿を 20 /i g/ml aprotininを含む buffer Aに懸 濁し以下のアツセィに用いる。
(2)レセプターバインディングアツセィ
MultiscreenGVPlate (Miripore)に反応バッファー(50mM Hepes pH7. 4、 12. 5mM齚 酸マグネシウム、 3. 125mM塩化マグネシウム、 0. 125mg/ml BSA)に懸濁した天然リ ガンド: 1- 01eoyl [oleoyl- 9, 10- 3 H] LPAと種々の濃度に希釈した評価化合物(DMS0溶 液)とを添カ卩しする。 30°Cでィンキュベートしたのち上記の手順で調整した膜画分 を添加する。 30°Cでインキュベートしたのち等量の 20%TCAを添カ卩し、 上清を吸引 除去しタンパク質を沈殿させる。 10%TCAで数回洗浄した後、 37°Cで乾燥させた膜 をパンチァゥトし yカウンターで測定する。 評価化合物の代わりに DMS0を用いたコ ントロール値と測定値を比較し、 天然リガンドの結合阻害活性値を求めることがで きる。 また、 評価化合物非存在下における測定値を 1 0 0とし、 これを 50%抑制す る評価化合物の濃度 (IC50値) を求めることができ、 IC50値を、 LPA (18 : 1) と比 較することにより、 阻害活性の強い化合物を選択することができる。 実施例 6
ビアコアを用いたスクリーニング
(1)細胞膜画分の調製
EDG2、 EDG4及び EDG7スクリーニング用安定発現株をフラスコに播種し、 10%FBS ( Gibco) を培地中で 60〜70%コンフルェントになるまで培養する。 細胞を回収し buff er A (50mM HEPES (pH7. 0) , lOmM 2- ME, ImM PMSF, 0. 25M sucrose)に懸濁する。 Pot ter型ホモジェナイザーでホモジナイズ (400rpm、 20ス トローク) したのち、 10000 0 gで 60分遠心分離を行い、 得られた沈殿を再度 buffer Aに懸濁する。 この懸濁液 を 35% (tnass/vol) sucrose in buffer Aの上に重層し 45000 gで 45分遠心分離を行う 。 界面の画分を回収し buffer Aに懸濁し、 100000 gで 60分遠心分離を行う。 得られ た沈殿を 20 ;u g/ml aprotininを含む buffer Aに懸濁し以下のアツセィに用いる。 (2)ビアコアでの結合測定
文献 [Anal Biochem. 1998 Dec 15 ; 265 (2) : 340- 50. Markgren P0 et al. ]に記載 されている一般的な方法を用いる。 上記手順で調整した EDG2、 EDG4及び EDG7発現細 胞膜画分 (例えば 1〜10 μ 8 ) を 10mMの酢酸バッファ一 (pH4) に溶解し、 ビアコ ァのセンサーチップ C M 5の表面のマトリ ックスにカルボキシル基を介して固定化 する。
H B Sバッファー (アマシャム フアルマシア バオテク株式会社製) をセンサ 一チップに 20 / 1 分の流速で流し、 バックグラウンドの値を記録する。 途中から H B Sバッファーに 10 n M〜10 /i Mの濃度で溶解した評価化合物に切り替えて 1分 間流し、 薬剤の結合に伴う値の変化を記録する。 再び、 薬剤を含まない H B Sバッ ファーに切り替え、 結合した薬剤の解離に伴う値の変化を記録する。 結合と解離の 速度、 あるいは最大結合量から評価化合物と EDG2、 EDG4及び EDG7との親和性を計算 する。 親和性を LPAと比較することにより、 親和性の大きい化合物を選択すること ができる。 実施例 7
[3 H] チミジン取り込み量に基づくスクリーニング
実施例 3で調製した EDG2、 EDG4及び EDG7リガンドスクリ一ユング用安定発現株を 9 6穴培養皿に播種し、 10%FBS (Gibco社製) 培地中で翌日無血清培地に交換する 。 24時間後に培地を交換して LPA存在もしくは非存在下に 16時間培養した後、 [ 3 H] チミジンを添加する。 [3 H] チミジン添加より 8時間培養したのちに P B S (PHosphate-buffered saline) で細胞を洗浄し、 細胞に取り込まれた [3 H] チ ミジンを Betaplateフイノレターカウンタシステム (アマシャムフアルマシアバイオ テク) によって測定する。 LPA添カ卩ゥエルでの [ 3 H] チミジン取り込みと LPA非添 加ゥエルでの [3 H] チミジン取り込みの差を LPAによる [3 H] チミジン取り込 み促進量とする。 上記において評価化合物を添加しない場合の [3 H] チミジン取 り込み量を 1 0 0とし、 これを 50%抑制する評価化合物の濃度 (IC50値) を求める ことができる。 尚、 評価化合物は LPA添加直前に添加する。 得られる IC50値が小さ い化合物を、 血糖調節薬候補化合物として選択することができる。 実施例 8
BrdU取り込み量に基づくスクリーニング
実施例 3で調製した EDG2、 EDG4及び EDG7リガンドスクリ一ユング用安定発現株を 無血清 DMEM (Dulbecco' s modi fi ed eagl e medium) に懸濁し、 96穴プレートに播種 する。 24時間後に評価化合物を添加して LPA (3 μ Μ) の存在もしくは非存在下に 16 時間培養した後、 BrdUを添加する。 BrdU添加より 3時間培養し、 Ce l l prol i ferat i on ELISA system (RPN250, Amersham Life Sc i ence)を用いて細胞に取り込まれた Brd Uを 450nmにおける吸光度で測定する。 LPA添加ゥヱルでの BrdU取り込みと LPA非添加 ゥェルでの BrdU取り込みの差を LPAによる BrdU取り込み促進量とする。 上記におい て評価化合物を添加しない場合の BrdU取り込みを 1 0 0とし、 これを 50%抑制する 評価化合物の濃度 (IC50値) を求めることができる。 尚、 評価化合物は LPA添カロ直 前に添加する。 得られる IC5(H直が小さい化合物を、 血糖調節薬候補化合物として選 択することができる。 実施例 9
評価化合物の薬効の確認
雄性 C57BL/6Jマウス (3週齢、 SPF規格、 日本クレア) を予備飼育の後、 4週齢よ り高脂肪含有飼料 (Research Di et社) を与える。 20週間後、 8時間絶食を施し、 評 価化合物を生理食塩水(大塚製薬)に溶解し 0. 5mg/匹で静脈内投与を行う。 溶媒対照 としては生理食塩水(大塚製薬)を用いる。 静脈内投与後速やかに 3g/kgの D-ダルコ ースを経口投与する。 糖負荷前 (0分) 、 糖負荷後 15、 45、 90及び 135分後に尾部静 脈より採血し、 以下の方法により血糖値を測定する。
すなわち 10 1の血液を採取し、 0. 4N過塩素酸水溶液 100 i 1と混和する。 更に 0. 3 7M炭酸カリウム水溶液 50 z lを添加し、 遠心後の上清についてグルコース C I I · テス トヮコー(グルコース定量キッ ト、 ムタロターゼ ' G0D法、 和光純薬)を用いて 血糖ィ直を測定する。
その結果、 評価化合物投与群の糖負荷後 90分後の血糖値は、 生理食塩水投与群と 比較して有意に低い値を示すことが確認できる。 産業上の利用可能性
本発明の LPA作動 GPCR拮抗剤は、 LPAにより抑制されているィンスリン分泌を回復 させる。 また LPAの作用のみを阻害することが期待されるので、 過剰な血糖降下を もたらすことのない安全な耐糖能異常改善薬、 糖尿病治療薬となり得る。

Claims

請求の範囲
I . LPA作動 GPCR活性抑制剤を有効成分とする耐糖能異常改善薬。
2 . LPA作動 GPCR活性抑制剤が LPA産生酵素阻害剤である、 請求項 1に記載の耐 糖能異常改善薬。
3 . LPA作動 GPCR活性抑制剤が LPA作動 GPCR拮抗剤である、 請求項 1に記載の耐 糖能異常改善薬。
4 . 耐糖能異常が生活習慣病又は糖尿病である請求項 1〜 3のいずれかに記載 の耐糖能異常改善薬。
5 . LPA作動 GPCRが EDG2、 EDG4又は EDG7である、 請求項 1〜 4のいずれか記載 の耐糖能異常改善薬。
6 . LPA作動 GPCR、 又はリガンドが結合し得るそのフラグメントに被験試料を 接触させ、 該 GPCR又は該フラグメントに結合する化合物を選択することを含む、 LP A作動 GPCR拮抗剤のスクリーニング方法。
7 . 被験試料の存在下及び非存在下で、 LPA作動 GPCR、 又はリガンドが結合し 得るそのフラグメントにリガンドを接触させ、 該 GPCR又は該フラグメントとリガン ドとの結合活性を両条件下で比較することを含む、 LPA作動 GPCR拮抗剤のスクリ一 ニング方法。
8 . リガンドが LPAである請求項 7記載のスクリーニング方法。
9 . LPA作動 GPCRが EDG2、 EDG4又は EDG7である、 請求項 6〜 8のいずれか記載 のスクリーニング方法。
1 0 . 耐糖能異常改善薬の選別のために行われる、 請求項 6〜9のいずれかに 記載の方法。
I I . 耐糖能異常が生活習慣病又は糖尿病である、 請求項 1 0に記載の選別方 法。
1 2 . 請求項 6〜 9のいずれかに記載の方法で選択される LPA作動 GPCR拮抗剤 を有効成分とする耐糖能異常改善薬。
1 3 . 耐糖能異常が生活習†貫病又は糖尿病である、 請求項 1 2に記載の耐糖能 異常改善薬。
1 4 . 被験試料の存在下及び非存在下で、 LPA産生酵素及び基質を接触させ、 L PAの生成量を両条件下で比較することを含む、 LPA産生酵素阻害剤のスクリーニン グ方法。
1 5 . 基質が標識されたホスファチジン酸である、 請求項 1 4に記載のスクリ 一ユング方法。
1 6 . 請求項 1 4又は 1 5に記載の方法を含む耐糖能異常改善薬の選別方法。
1 7 . 耐糖能異常が生活習慣病又は糖尿病である請求項 1 6に記載の選別方法
1 8 . 請求項 1 4又は 1 5に記載の方法により選択される LPA産生抑制剤を有 効成分とする耐糖能異常改善薬。
1 9 . 耐糖能異常が生活習慣病又は糖尿病である請求項 1 8に記載の耐糖能異 常改善薬。
PCT/JP2004/011002 2003-07-28 2004-07-26 新規血糖調節薬及びそのスクリーニング方法 WO2005009469A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003280801 2003-07-28
JP2003-280801 2003-07-28

Publications (1)

Publication Number Publication Date
WO2005009469A1 true WO2005009469A1 (ja) 2005-02-03

Family

ID=34100896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011002 WO2005009469A1 (ja) 2003-07-28 2004-07-26 新規血糖調節薬及びそのスクリーニング方法

Country Status (1)

Country Link
WO (1) WO2005009469A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003877A1 (ja) * 2004-06-30 2006-01-12 Dainippon Sumitomo Pharma Co., Ltd. 受容体リガンド
US10279521B1 (en) 2016-08-12 2019-05-07 Smith & Nephew, Inc. Forming of additively manufactured product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071022A2 (en) * 2000-03-17 2001-09-27 The University Of Tennessee Research Corporation Lpa receptor agonists and antagonists and methods of use
WO2001081573A1 (en) * 2000-04-26 2001-11-01 Aventis Pharma Deutschland Gmbh Edg8 receptor, its preparation and use
US20020061558A1 (en) * 2000-06-12 2002-05-23 Nabil Elshourbagy Mouse G protein coupled receptor EDG7
WO2002044362A1 (fr) * 2000-12-01 2002-06-06 Yamanouchi Pharmaceutical Co., Ltd. Procede de depistage d'un remede
US20020090691A1 (en) * 2000-07-13 2002-07-11 Elshourbagy Nabil A. Mouse seven trans-membrane receptor EDG4
JP2002238578A (ja) * 2001-02-20 2002-08-27 Nippon Shinyaku Co Ltd ラットedg7受容体
WO2003031615A1 (fr) * 2001-10-04 2003-04-17 Apro Life Science Institute, Inc. Inhibiteur de l'acide lysophosphatidique synthase

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071022A2 (en) * 2000-03-17 2001-09-27 The University Of Tennessee Research Corporation Lpa receptor agonists and antagonists and methods of use
WO2001081573A1 (en) * 2000-04-26 2001-11-01 Aventis Pharma Deutschland Gmbh Edg8 receptor, its preparation and use
US20020061558A1 (en) * 2000-06-12 2002-05-23 Nabil Elshourbagy Mouse G protein coupled receptor EDG7
US20020090691A1 (en) * 2000-07-13 2002-07-11 Elshourbagy Nabil A. Mouse seven trans-membrane receptor EDG4
WO2002044362A1 (fr) * 2000-12-01 2002-06-06 Yamanouchi Pharmaceutical Co., Ltd. Procede de depistage d'un remede
JP2002238578A (ja) * 2001-02-20 2002-08-27 Nippon Shinyaku Co Ltd ラットedg7受容体
WO2003031615A1 (fr) * 2001-10-04 2003-04-17 Apro Life Science Institute, Inc. Inhibiteur de l'acide lysophosphatidique synthase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003877A1 (ja) * 2004-06-30 2006-01-12 Dainippon Sumitomo Pharma Co., Ltd. 受容体リガンド
US10279521B1 (en) 2016-08-12 2019-05-07 Smith & Nephew, Inc. Forming of additively manufactured product

Similar Documents

Publication Publication Date Title
JP5901529B2 (ja) ベンゾヘテロサイクル誘導体の癌の予防及び治療又は癌転移抑制のための用途
US9084745B2 (en) Modulation of the Vps10p-domain for the treatment of cardiovascular disease
US20170318057A1 (en) Modulation of the VPS10P-Domain Receptors for the Treatment of Cardiovascular Disease
JP2008509378A (ja) 治療分子およびそれを生成および/または選択する方法
AU769573B2 (en) Human polypeptide receptors for lysophospholipids and sphingolipids and nucleic acids encoding the same
KR101384572B1 (ko) Pdz 상호작용의 소형 분자 억제제
JP2002504808A (ja) β−カテニン/転写因子相互作用に基づく病気を診断/治療するための組成物及び方法
US20030104975A1 (en) Cofactor-based screening method for nuclear receptor modulators and related modulators
MaCaulay et al. Insulin stimulates movement of sorting nexin 9 between cellular compartments: a putative role mediating cell surface receptor expression and insulin action
US20090136482A1 (en) Drug target protein and target gene, and screening method
US20040028684A1 (en) Cancer diagnosis and assays for screening anti-cancer agents
CA2568201C (en) Identification of ergothioneine transporter and therapeutic uses thereof
WO2005009469A1 (ja) 新規血糖調節薬及びそのスクリーニング方法
US20220273751A1 (en) Gpcr heteromer inhibitors and uses thereof
CN117279666A (zh) RXRα结合剂和RXRα/PLK1调节剂
JPWO2006003877A1 (ja) 受容体リガンド
JP2004524834A (ja) 構成的脱感作gタンパク質共役受容体
WO2004084944A1 (ja) 新規血糖調節薬及びそのスクリーニング方法
EP2575860A1 (en) Diagnostic, screening and therapeutic applications of ocab-based tools
US7879566B2 (en) Methods for the identification of modulators of OSGPR114 or OSGPR78 activity, and their use in the treatment of disease
CA2409191A1 (en) Therapeutic compounds
Loewen CLCA: chloride channel or modulator?
JP2005528924A (ja) 精製PKBSer473キナーゼおよびその用途
JP2003180377A (ja) アドレン酸受容体およびその使用
WO2006043701A1 (ja) 糖新生関連遺伝子の転写因子のリン酸化阻害方法およびリン酸化阻害剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP