WO2005007836A1 - Regulatorische-t-zellen enthaltend galectine zur therapie und diagnose von erkrankungen - Google Patents

Regulatorische-t-zellen enthaltend galectine zur therapie und diagnose von erkrankungen Download PDF

Info

Publication number
WO2005007836A1
WO2005007836A1 PCT/EP2004/007890 EP2004007890W WO2005007836A1 WO 2005007836 A1 WO2005007836 A1 WO 2005007836A1 EP 2004007890 W EP2004007890 W EP 2004007890W WO 2005007836 A1 WO2005007836 A1 WO 2005007836A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
regulatory
cell
galectin
disease
Prior art date
Application number
PCT/EP2004/007890
Other languages
English (en)
French (fr)
Inventor
Petra Lutter
Petra Weingarten
Christoph Hüls
Helmut E. Meyer
Edgar Schmitt
Helmut Jonuleit
Original Assignee
Protagen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Protagen Ag filed Critical Protagen Ag
Priority to EP04741062A priority Critical patent/EP1644487A1/de
Priority to CA002532127A priority patent/CA2532127A1/en
Priority to AU2004257830A priority patent/AU2004257830A1/en
Priority to US10/564,588 priority patent/US20080118515A1/en
Publication of WO2005007836A1 publication Critical patent/WO2005007836A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4621Cellular immunotherapy characterized by the effect or the function of the cells immunosuppressive or immunotolerising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/46433Antigens related to auto-immune diseases; Preparations to induce self-tolerance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4726Lectins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/505CD4; CD8
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/59Lectins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4724Lectins

Definitions

  • the present invention relates to regulatory T cells containing galectins, in particular their use as markers and for the therapy and diagnosis of diseases, in particular allergies, autoimmune diseases, in particular rheumatoid arthritis, multiple sclerosis or Crohn's disease, chronic inflammation, asthma, immunodeficiency diseases, AIDS, graft rejection and cancer, and diabetes.
  • the invention further relates to suitable binders and a test system (diagnostic agent).
  • the immune system is able to differentiate between foreign proteins and structures of the own body, but also between harmless and pathogenic antigens and thus to avoid unnecessary and auto-aggressive immune responses. Maintaining the immunological tolerance to the body's own structures, while developing protective immune responses against pathogens, is essentially based on the formation of antigen-specific effector cells for immune defense and the formation of antigen-specific suppressor cells to maintain immunological tolerance.
  • Sakaguchi et al. describe for the first time a subpopulation of CD4 + T helper cells, characterized by a constitutive expression of the ⁇ chain of the IL-2 receptor (CD25), which is essential for the control of autoaggressive immune responses in mice (Sakaguchi, S., Sakaguchi, N , Asano, M., Itoh, M., and Toda, M. (1995) Immunologie seif-tolerance maintained by activated T cells expressing IL-2 reeeptor alpha-chains (CD25). Breakdown of a Single mechanism of seif-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151-1164).
  • CD25 + CD25 + T cells in various species, including humans, have been identified as CD25 + regulatory T cells (in short: Treg, hereinafter referred to as characterized by the coexpression of the surface proteins CD4 + and CD25 +), which act as a resident population Represent 5-10% of human peripheral CD4 + T cells.
  • Treg regulatory T cells
  • Freshly isolated, CD25 + Tregs are anergic, ie they do not proliferate after allogeneic or polyclonal stimulation, but they suppress the proliferation and cytokine formation of conventional CD4 + and CD8 + T cells.
  • CD4 + CD25 + immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287-296; Suri-Payer, E., Amar, AZ, Thornton, AM, and Shevach, EM (1998) CD4 + CD25 + T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. ⁇ J. Jiruriunol. 160, 1212-1218; Piccirillo, CA, and Shevach, EM (2001) Cutting Edge: control of CD8 + T cell activation by CD4 + CD25 + immunoregulatory cells. J. Immunol. 167, 1137-1140].
  • Tregs in vivo results in a number of autoimmune diseases, but also in an improved tumor defense (Sakaguchi (supra)).
  • This finding supports the thesis of an ambivalent function of the Tregs.
  • they prevent the development of auto-aggressive immune reactions, on the other hand, they make them more difficult at the same time an effective tumor defense, since tumor cells generally represent immunological "self" and therefore their elimination by effector T cells from Tregs is prevented.
  • the increase in the suppressive function of Tregs is considered helpful for the therapy, in particular of autoimmune diseases, while one transient inhibition of their suppressive properties can support tumor defense.
  • Treg-specific molecules markers, targets
  • Treg-specific molecules in particular have a decisive influence on the functionality of the cells and form the basis for the targeted use of these properties for therapeutic and diagnostic purposes in the field of allergies, autoimmune diseases, chronic inflammation, immunodeficiency diseases, graft rejection and cancer as well as AIDS, diabetes.
  • the protein composition of the individual T cell subpopulations in particular the Treg (i.e. CD4 + CD25 + and CD4 + CD25 + ß7 + - subpopulations), was examined and specifically Treg - own proteins were identified.
  • Treg i.e. CD4 + CD25 + and CD4 + CD25 + ß7 + - subpopulations
  • ⁇ -galactosidase-binding proteins such as Galectin-1 and Galectin-10 (so-called Charcot-Leyden Crystal (CLC) protein) were identified.
  • Galectins are described, for example, in Ni et al. WO 98/015624 AI and Ackerman et al. US 5,242,807. However, the specific suitability of the galectins for manipulating and modifying Treg is not recognized. The invention therefore relates to galectins containing Treg and their isolation. Galectins in Tregs are therefore suitable markers or targets.
  • Treg is understood to mean those T cell subpopulations which are of human origin or can come from mammals. However, the subpopulations Treg-CD4 + CD25 + and
  • isolated Treg are ex vivo cells
  • Treg describes "in vivo" Treg to be found, e.g. in human blood or thymus or mammals.
  • Galectins in the sense of this invention are proteins with the function of a ⁇ -galactosidase binding protein, that is to say those galectins such as galectin 1-14 as human galectin or as a homologous protein from humans or mammals.
  • galectin 1 or 10 preference is given to galectin 1 or 10 , in particular according to one of the sequences SEQ ID No. 1-5.
  • Galectin 10 can appear as SEQ ID No. 1 or SEQ ID No.
  • the isoforms a.), B.) And c.) May also be in a truncated form and may be acteylated, according to the sequences SEQ ID No. 8-64.
  • the galectins according to the invention can also be modified, for example by means of post-translational modifications, such as glycolization.
  • galectins are given in WO 98/015624 AI and Galectin 10 is disclosed in Ackerman et al. US 5,242,807. These galectins are included according to the invention.
  • the Treg containing galectins according to the invention are recombinantly modified in such a way that they contain an amino acid sequence according to the invention, preferably SEQ ID No. 1 and SEQ ID No. 2 or SEQ ID No. 4, or nucleic acid sequence according to the invention, preferably SEQ ID No. 6 or SEQ ID No. 7, included.
  • the invention therefore also relates to the amino acid sequences SEQ ID No. 1-5 or polypeptides or proteins and their coding nucleic acid sequences.
  • SEQ ID No. 1 or SEQ ID No. 2 (Galectin 10) only show a 60% agreement with the corresponding sequences given in WO 98/015624 AI. This is due to the specific Treg origin according to the invention.
  • the invention therefore also relates to those amino acid sequences (polypeptides, proteins) which have a sequence identity or homology of 70% and more, preferably 80% and more, particularly preferably 90-95% and more with SEQ ID No. 1 or SEQ ID No. 2 have. Also included are those analog amino acid sequences which, due to the exchange of one or more amino acid (s) in these sequences, nevertheless ensure the desired function of a galectin.
  • fusion proteins are also affected, containing an amino acid sequence according to the invention or a galectin mentioned as a partial sequence. Examples of recombinant fusion proteins are given in EP 282 042 B1 (His-Tag).
  • the invention relates to nucleic acids which code for a galectin and preferably code for a galectin obtainable from a Treg or for the amino acid sequences according to the invention.
  • the nucleic acids according to the invention can have a nucleic acid sequence according to SEQ ID No. 6, coding for SEQ ID No. 1 or SEQ ID No. 2 (Galectin 10) or a nucleic acid sequence according to SEQ ID No. 7, coding for SEQ ID No. 4 (Galectin 1).
  • the nucleic acid according to the invention contains one or more non-coding sequences and / or a poly (A) sequence, one or more recognition sequences and, if necessary, one or more potential N-glycosylation sites.
  • the non-coding sequences are regulatory sequences, such as promoter or enhancer sequences, for the controlled expression of the coding gene containing the nucleic acids according to the invention.
  • such nucleic acids can be the subject of customary expression vectors, customary host cells or customary gene therapy vectors (for example J. Sambrook, EF Fritsch, T.
  • nucleic acid (synonym: polynucleotide) has the Meaning in the sense of DNA or RNA or chemical analogues and the like.
  • the galectins according to the invention can secrete and bind to membrane-bound proteins on Treg or effector cells. In addition, they can cross-link such membrane-bound proteins and therefore influence and regulate their functions. This property can be used according to the invention to influence the interaction between Treg and T effector cells, e.g. for the treatment of diseases related to Treg or an effector cell.
  • the galectins according to the invention can be present in the cytosol of the Tregs.
  • the invention therefore relates to such Treg, where at least one galectin is secreted, membrane-like or presented on the surface or in the cytosol.
  • Recombinant methods can be used to accumulate at least one galectin in the Treg or on the surface of the Treg.
  • an amino acid sequence or nucleic acid according to the invention can be introduced into Treg.
  • the "Treg containing galectins" according to the invention are recombinantly modified in such a way that they contain an amino acid sequence according to the invention, preferably SEQ ID No. 1 or SEQ ID No. 2 or SEQ ID No. 4, or a nucleic acid sequence according to the invention, preferably SEQ ID No. 6 or SEQ ID No. 7.
  • the invention further relates to binders on at least one isolated regulatory T cell or native regulatory T cell containing at least one galectin.
  • the binders cannot be finally selected from in the group: inhibitor, agonist, antagonist, probe, antibody or immunomodulator.
  • the binder can also induce a signal, such as a color reaction, radioactive labeling, which is sufficient to identify and ⁇ iodify a Treg containing galectins. Therefore, the binder can be a "probe". In the broadest sense, the binder is therefore also an addressed molecule according to the invention, which binds to a suitable signal-mediating receptor on Treg containing galectin and generates a feedback in Treg due to the containing galectin.
  • galectins in Treg can advantageously be enriched by means of an inhibitor or modulator.
  • a probe e.g. further Treg cells containing galectins can be identified.
  • a probe is, for example, an antibody that specifically recognizes one or more epitopes present on the amino acid sequences according to the invention (e.g. SEQ ID No. 1 or SEQ ID No. 2) or galectins (production e.g. according to Köhler).
  • the binder according to the invention may contain one or more epitopes, one or more epitopes against galectins, and one or more epitopes against surface proteins on Treg or effector cells, in particular with the ability to crosslink surface proteins, such as not conclusively e.g. CD25, CD44, CD45, GITR, CTLA-4, Fox P3.
  • the binders have the function of activating or deactivating the isolated Treg or native Treg containing at least one galectin.
  • the galectins or binders containing Treg are therefore suitable as medicaments, preferably for the treatment and therapy of diseases, namely allergies, autoimmune diseases, in particular rheumatoid arthritis, multiple sclerosis or Crohn's disease, chronic inflammation, asthma, immune deficiency diseases, AIDS, transplant rejection and cancer as well as diabetes.
  • autoimmune diseases selected from the group: alopecia areata, Bechterew's disease, antiphospholipid syndrome, Addison's disease, Behcet's disease, celiac sprue, chronic fatigue syndrome (Chronic Fatigue Immune Dysfunction Syndrome (CFIDS)), polyneuropathy, Churgul-Stromatosis syndrome CREST syndrome (Raynaud's syndrome), cold agglutinin disease, cryoglobulinemia, fibromyalgia, fibromyositis, Graves' disease, Guillain-Barre syndrome, idiopathic pulmonary fibrosis, idiopathic thrombocytopenia, IgA nephropathy, borrowed planus, polychonditis, meniere's disease Syndrome, polymyalgia rheumatica, primary agammaglobulinemia, biliary cirrhosis, psoriasis, Reiter's disease, sarcoidosis
  • Isolated Treg containing galectins can be applied to the body to be treated.
  • suitable binders can be administered to the patient in sufficient doses.
  • the galectins and / or binders containing Treg may be formulated with further auxiliaries.
  • the invention relates to the use of galectins in Treg as a marker or target.
  • the galectins can serve as a target for the manipulation or modulation of the suppressive properties of a Treg. This can be done, for example, using a binder or a substance.
  • the binder or the substance can be an inhibitor which inhibits, inhibits or promotes the expression of the galectin.
  • the Treg-specific galectins can serve as markers to identify Treg with (increased) suppressive properties.
  • the invention relates to a test system containing at least one binder and at least one Treg containing galectins, for identifying suitable binders or Treg, preferably those with increased suppressive properties.
  • the invention therefore also relates to a test system comprising at least one Treg containing galectins and at least one target cell, in particular T cell, B cell, macrophage, predendritic cell, dendritic cell, embryonic cell and / or fibroblast, which are incubated with at least one Treg in vitro detection of suppressive properties, in particular cellular immune response from effector cells of the immune system, in particular B cells, NK cells, preferably T cells, T helper cells.
  • a test system comprising at least one Treg containing galectins and at least one target cell, in particular T cell, B cell, macrophage, predendritic cell, dendritic cell, embryonic cell and / or fibroblast, which are incubated with at least one Treg in vitro detection of suppressive properties, in particular cellular immune response from effector cells of the immune system, in particular B cells, NK cells, preferably T cells, T helper cells.
  • the cellular immune response of the target cells can be tested in the test system according to the invention.
  • An immune response can be detected, for example, by the synthesis of cytokines such as gamma interferon or interleukins.
  • the corresponding cytokine collects intracellular in this test system and can be detected using fluorescence-coupled antibodies (e.g. ELISA).
  • fluorescence-coupled antibodies e.g. ELISA
  • surface molecules lysis of the target cell or cell proliferation.
  • FACS fluorescent activated cell sorter
  • the effector cells are mammalian cells, in particular human or murine cells or immune cell lines and / or cultivated primary immune cells.
  • test system is incubated with at least one further substance that can trigger an immune response, such as proteins, epitopes, protein fragments, antigens.
  • test system is also suitable for the identification of binders according to the invention.
  • the invention further relates to a diagnostic agent (synonym: array or assay) for carrying out the test systems according to the invention and, if appropriate, to a pharmaceutically acceptable carrier.
  • a diagnostic agent synonym: array or assay
  • Examples of pharmaceutically acceptable carriers are glass, polystyrene, polypropylene, dextran, nylon, amylase, natural or modified cellulose, polyacrylamides, Agarose, aluminum hydroxide or magnitide. Furthermore, the carrier can consist of 96 corrugated sheets and higher.
  • the diagnostic agent can be in solution, bound to a solid matrix and / or an adjuvant added.
  • the diagnostic agent can be applied to a patient as desired in vivo (e.g. capsule, tablet).
  • a diagnostic agent according to the invention is therefore suitable for diagnosing diseases, namely allergies, autoimmune diseases, in particular rheumatoid arthritis, multiple sclerosis or Crohn's disease, chronic inflammation, asthma, immune deficiency diseases, AIDS, transplant rejection and cancer, and diabetes.
  • diseases namely allergies, autoimmune diseases, in particular rheumatoid arthritis, multiple sclerosis or Crohn's disease, chronic inflammation, asthma, immune deficiency diseases, AIDS, transplant rejection and cancer, and diabetes.
  • autoimmune diseases namely alopecia areata, Bechterew's disease, Antiphospholipid syndrome, Addison's disease, Behcet's disease, celiac sprue, chronic fatigue syndrome (Chronic Fatigue Immune Dysfunction Syndrome (CFIDS)), polyneuropathy, Churg-Strauss syndrome (GranESTomatose syndrome) (Raynaud's syndrome), cold agglutinin disease, cryoglobulinemia, fibromyalgia, fibromyositis, Graves' disease, Guillain-Barre syndrome, idiopathic pulmonary fibrosis, idiopathic thrombocytopenia, IgA nephropathy, lying planus, Meniere's disease, polyarterchondritis, polyarteritis syndrome Polymyalgia rheumatica, primary agammaglobulinemia, biliary cirrhosis, psoriasis, Reiter's
  • T cells The isolation of the T cells was carried out from PBMC (peripheral blood mononuclear cells), which were carried out by standard density gradient centrifugation from normal buffy coats or leukapherisates from healthy human donors.
  • PBMC peripheral blood mononuclear cells
  • Example la CD4 + CD25 + regulatory T cells (CD25 + Tregs)
  • the starting material is the leukapherisate from voluntary, healthy donors, which is produced by the Transfusionsclo Mainz and contains an average of 7-10 x 10 9 leukocytes.
  • the mononuclear cells are isolated by means of Ficoll gradient centrifugation and then washed intensively with PBS + 1 mM EDTA.
  • the isolated leukocytes are then taken up in PBS + 0.5% HSA (human serum albumin) + 1 mM EDTA and with anti-CD25 microbeads (2 ⁇ l microbeads / 107 leukocytes, microbeads: Miltenyi GmbH, Bergisch-Gladbach, FRG) for 15 min , incubated at 4 ° C. After the incubation, the leukocytes are washed twice with PBS + 1 mM EDTA.
  • HSA human serum albumin
  • CD25 + leukocytes To isolate the CD25 + leukocytes, the cells are then applied to a separation column (LS Columns, Miltenyi) and separated in a permanent magnet (Miltenyi). The average yield of CD25 + leukocytes is 1.2-2% (purity> 97%).
  • the CD25 + leukocytes are subsequently cd with CD8-, CD19-, CD14- Dynabeads (Dynal, Hamburg, FRG, 3 beads / cell) and mouse IgGl-anti-human-CD45RA monoclonal antibodies (Coulter / Immunotech, Hamburg, FRG, 1 ⁇ g mAb / 10 6 leukocytes) 20 min. incubated in X-VIVO-15.
  • the bound CD8 +, CD19 + and CD14 + contaminations can be removed directly with the help of a permanent magnet (Dynal), the CD45RA + cells are removed with anti-mouse IgG Dynalbeads (Dynal) in the permanent magnet. This depletion step is then repeated again (purity of CD4 + CD25 + leukocytes> 95%).
  • Example lb ⁇ 4ßl + and ⁇ 4ß7 + subpopulations of human regulatory T cells
  • Tregs contain two functionally different subpopulations that differ in the expression of integrins. Approximately 20% of the Tregs express the ⁇ 4ß7 integrin, 80% the ⁇ 4ßl integrin. The following changes to the isolation protocol are necessary to isolate these subpopulations:
  • the isolated leukocytes are 15 min. incubated at 4 ° C. with mouse IgG anti-human CD25-FITC mAb (2 ⁇ l mAb / 107 leukocytes, M-A251, BD PharMingen, San Diego, USA) and then washed intensively with PBS + 1 mM EDTA.
  • the FITC-positive cells are isolated with the aid of anti-FITC multisort microbeads (Miltenyi).
  • the procedure is carried out analogously to the direct isolation of CD25 + leukocytes with CD25 microbeads.
  • the microbeads are then removed from the surface of the leukocytes by means of enzymatic digestion, according to the manufacturer (Miltenyi).
  • CD4-negative contaminations are depleted as described previously with CD8, CD19 and CD14 Dynabeads, CD45RA + cells are not depleted (purity CD4 + CD25 + T cells> 95%).
  • the ⁇ 4ß7 + subpopulation is isolated.
  • the CD4 + CD25 + T cells with a rat IgG anti-human- ⁇ 7 integrin PE mAb (BD-PharMingen, 2 ul / 107 cells) for 15 min. Incubated at 4 ° C and then washed intensively with PBS + 1 mM EDTA.
  • the process for isolating the ⁇ 7 + T cells is carried out analogously to the isolation of CD25 + T cells with the aid of anti-PE microbeads (Miltenyi), resulting in a purity of CD4 + CD25 + ⁇ 4ß7 + cells> 90%.
  • the negative fraction expresses the integrin ⁇ 4ßl (purity CD4 + CD25 + ⁇ 4ßl + cells> 80%).
  • CD25 + Tregs are characterized by their inhibitory effect on the activation of CD4 + and CD8 + T cells in vitro.
  • CD25 + Tregs in vitro The functional characterization of CD25 + Tregs in vitro is analyzed in co-culture assays with CD4 + T helper cells.
  • the T cells are stimulated either with allogeneic, mature dendritic T cells or polyclonally with anti-CD3 + anti-CD28 mAb.
  • Example 3 Multisort positive selection of CD4 + CD25 + and CD4 + CD25 + ß7 + T cells
  • CD4 + T cells were isolated using the CD4-MACS multisort kit (Miltenyi, Bergisch-Gladbach, Germany) and from them with anti-CD25-FITC (M-A251, BD PharMingen, San Diego, USA) and anti FITC-Multisort Beads (Miltenyi, Bergisch-Gladbach, Germany) the CD4 + CD25 + T- Cells. Then B cells, macrophages and CD8 + T cells were depleted using CD19, CD14 and CD8 Dynabeads (Dynal, Hamburg, Germany).
  • CD4 + CD25 + ß7 + Treg subpopulation of CD4 + CD25 + Treg
  • ß7-PE and anti-PE beads Miltenyi, Bergisch-Gladbach, Germany
  • CD25 is a typical surface molecule on Treg, but it is not only expressed in this cell type. For this reason, a functional control of the suppressive properties of the isolated cells was carried out before each analysis.
  • Example 5 Polyclonal stimulation with anti-CD3 and anti-CD28 monoclonal antibodies
  • a constant number of conventional CD4 + T cells (lx 105 / cavity) can be activated polyclonally with anti-CD3 (1 ⁇ g / ml, OKT-3) and anti-CD28 monoclonal antibodies (2 ⁇ g / ml, CD28.2) in the presence of a varying number of CD4 + CD25 + T cells (ratio 1: 1 to 1: 4).
  • T cell proliferation was measured after three days of cultivation and a subsequent pulsed treatment with 3HTdR (37 kBq / well) for 5 hours. The cells tested in this way were used for the proteome analyzes.
  • Total cell lysates from cultured cells for 2DE The extraction of the proteins from the cells after cell lysis was carried out according to a slightly modified method according to Klose (Klose, J. and Kobalz, U., Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16, 1034-1059 (1995) and Klose, J. Fractionated extraction of total tissue proteins from mouse and human for 2-D electrophoresis. Methods Mol Biol 112, 67-85 (1999)). The cells were lysed mechanically by means of ultrasound and glass balls in a phosphate buffer which contained protease inhibitors against a large number of different proteases.
  • the 2D gel electrophoresis disrupting nucleic acids were digested at room temperature within 20 min by adding the nuclease benzonase.
  • the proteins were dissolved in a buffer containing urea and thiourea with the addition of DTT.
  • Servalytes 2-4 were added for the isoelectric focusing of the proteins.
  • the isoelectric focusing (IEF) of the proteins was carried out according to the method of Klose (Klose, J., Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues.
  • Klose Korean, J., Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues.
  • a novel approach to testing for induced point mutations in mammals Human genetics, 26, 231- 243 (1975)) with carrier ampholytes in round gels made of polyacrylamide under reducing conditions.
  • the separations were carried out in a pH range from 2 to 11, the length of the IEF gels being 40 cm.
  • the protein separation of the proteins separated by IEF using SDS-PAGE was carried out in 15% polyacrylamide gels.
  • the IEF gel strands were run twice with running buffer (0.3% (w / v) Tris Base, 1.44% (w / v) glycine, 0.1% (w / v) SDS) washed to remove excess DTT.
  • the gel strand was then placed on the SDS gel without air bubbles and fixed with a 1% agarose solution (with bromophenol blue).
  • the proteins entered the gel at 65 mA for 15 min and the separation within about 5 h at 100 mA for 0.75 mm thick analytical gels or at 75 and 200 mA for 1.0 and 1.5 mm thick preparative gels. The separation distance was 30 cm. Visualization of the proteins
  • the polyacrylamide gels were digitized for image evaluation after the gels had dried using a transmitted-light scanner.
  • the quantitative evaluation of the relative protein intensities was carried out using special image analysis software suitable for these analyzes (ProteomWeaver Vers. 2.0, Definiens, Germany).
  • the proteins found with the help of the image evaluation were cut out of the gels manually. With the aid of a washing robot, the gel pieces were alternately washed three times alternately with 10 ⁇ l digest buffer (10 mM NH4HC03) or digest buffer / acetonitrile 1: 1 in order to remove the dye and buffer additives. In the case of silver-colored spots, the silver was oxidized before washing by adding 15 ⁇ l decolorizing solution (100 mM potassium hexacyanoferrate (III) / 30 mM sodium thiosulfate, 1: 1) at room temperature within about 1 min.
  • decolorizing solution 100 mM potassium hexacyanoferrate (III) / 30 mM sodium thiosulfate, 1:
  • the gel pieces were then dehydrated in a vacuum centrifuge and 2 ⁇ l of a trypsin solution (0.05 ⁇ g / ⁇ l trypsin in digestion buffer) were added.
  • the proteolytic cleavage was carried out at 37 ° C. for at least 4 h or overnight.
  • the resulting proteolysis products were extracted from the gel matrix at room temperature within 30 min by adding 5 ⁇ l 0.1% TFA.
  • Example 8 MALDI-TOF mass spectrometry
  • peptide mass fingerprint spectra (PMFs) of the samples dried on the sample plate were measured with the following settings: acquisition method: reflector, voltage polarity: positive, acceleration voltage: 25 kV, reflector voltage: 26.3 kV, lens voltage: 6.2 kV, reflector detector voltage: 1.72 kV and deflection voltage: 0 kV
  • the mass spectra were calibrated automatically by means of a calibration algorithm from the Proteinscape® database (Bruker Daltonik) to autoproteolysis products of trypsin and to known peptides from contaminations such as keratin that occur repeatedly in the spectra.
  • the peptide mass spectra were analyzed with the help of a non-redundant NCBI protein database with the help of the metasearch engine from Proteinscape ® and the search algorithms MASCOT and ProFound (version 2002.03.01). Evaluation:
  • the Charcot-Leyden Crystal Protein was detected and identified in the gels in three isoforms with different molecular weights and isoelectric points.
  • Isoform 1 spot 68
  • isoform 2 spot 33
  • isoform 3 spot 34
  • All isoforms were identified as Charcot-Leyden Crystal Protein (Galectin 10) (SEQ ID No. 1 or SEQ ID No. 2).
  • the three isoforms showed coregulation in the T cell populations examined.
  • Galectin 1 (SEQ ID No. 4) was also found in a higher protein concentration in the stimulated and non-stimulated CD4 + CD25 + T cells compared to the non-stimulated CD4 + T cells.
  • mice inbred strain used: BALB / c.
  • the sequences of the corresponding galectin proteins are SEQ ID No. 3 and SEQ ID No. 5th
  • Example 9 Isolation and Stimulation of Human T Cell Populations
  • CD4 + CD25-T effector cells hereinafter referred to as CD4 + T cells
  • CD4 + CD25 + Treg cells CD25 + Treg cells
  • CD25 + Treg cells CD25 + T cells
  • CD25 + Treg cells CD25 + Treg cells
  • CD25 + cells were isolated using CD25 microbeads (Miltenyi). This resulted in CD25high cells.
  • contaminations from CD4 cells were depleted by CD14, CD8, and CD19 Dynabeads (Dynal). This purification step resulted in a population of CD4 + CD25high T cells in a purity of> 95%.
  • CD25 + CD45RA + T cells were depleted using anti-CD45RA mAb (Pharmingen) in combination with anti-mouse IgG Dynabeads. This resulted in CD4 + CD25 + CD45RO + T cells (purity> 96%).
  • CD4 + CD25 - T cells were isolated using CD4 microbeads and CD25 + was then depleted from T cell contamination with CD25 Dynabeads (purity of CD4 + CD25 T cells> 98%).
  • CD4 + CD25 + T cells were isolated using anti-CD25-FITC mAb in combination with anti-FITC multisort beads (Miltenyi) and then further purified by depletion of CD4 contaminations.
  • Treg cells positive subset of Treg cells was isolated using anti-ß7 integrin-PE mAb in combination with anti-PE microbeads and resulted in two populations: CD4 + CD25 + ß7 + T cells (purity> 95%, positive selected) and CD4 + CD25 + ß7 T cells (purity> 90%, negatively selected 1 ⁇ g / ml anti-CD3 (OKT-3) and 2 ⁇ g / ml anti-CD28 (CD28.2, Pharmingen) were used for the polyclonal activation of the T cells.
  • sub-optimal stimulation of the cells with 0.5 ⁇ g / ml anti-CD3 (OKT-3) and Gam a rays inactivated PBMC was used. The cells were always cultivated in serum-free X-VIVO-15 medium (Cambrex).
  • Example 10 Cloning, recombinant production and purification of a His-Galectin-10 fusion protein
  • the galectin-10 gene was amplified from human leukocyte Quick-Clone cDNA (BD Biosciences).
  • the N-terminal His-tag galectin-10 construct (pET16b) was transfected into the Echerichia coli strain BL21 (DE3) and expression was induced with ImM isopropyl-beta-D-thiogalactopyranoside (IPTG, Sigma).
  • IPTG ImM isopropyl-beta-D-thiogalactopyranoside
  • the cells produced the His-Galectin-10 fusion protein in the presence of IM sorbitol and 2.5mM betaine.
  • the recombinant His-galectin-10 fusion protein was purified using Ni-NTA affinity chromatography (Qiagen). The identity of the purified protein was confirmed using MALDI mass spectrometry.
  • Human galectin-10 mRNA was quantified from the following T cell populations: CD4 + unstimulated and polyclonally stimulated with anti-CD3 / CD28 for 24 h, CD4 + CD25 + ßl + unstimulated and polyclonally stimulated with anti-CD3 / CD28 for 24 h as well as CD4 + CD25 + ß7 + unstimulated and polyclonally stimulated with anti-CD3 / CD28 for 24 h. All cellular RNA was isolated from lxlO 6 cells using TRIZOL (Invitrogen, Düsseldorf, Germany). The corresponding cDNA was synthesized with RevertAid M-MulV reverse transcriptase according to the manufacturer's instructions (MBI Fermentas, St.
  • the RT-PCR was carried out using the following reaction mixture: 25 ⁇ l reaction mixture containing 2.5 mM MgCl 2 , 0.2 mM dNTP, 0.5 ⁇ M forward and reverse primer and 0.25 U from Biotherm DNA Polymerase (GeneCraft, Germany ).
  • the following PCR program was used: 94 ° C for 2 min, and 35 cycles each with 94 ° C for 30 s, at 55 ° C for 30 s and 72 ° C for 1 min.
  • Galectin-10th forward 5 '-TAC CCG TGC CAT ACA CAG AGG CTG-3' Galectin-10.
  • Example 12 Production of a monoclonal anti-galectin-10 antiserum
  • the cells were lysed in SDS buffer and the protein concentration was analyzed with a DC protein assay (Bio Rad, Kunststoff, Germany). Serum albumin was used as the standard. The proteins were separated in 5-10 ⁇ g / bag in 16% Tricin SDS polyacrylamide gels and then transferred to membranes. Unspecific binding sites were saturated by Roti-Block (Roth, Düsseldorf, Germany).
  • the membranes were incubated for 1 hour each with the anti-galectin-10 antibody and then with a horseradish peroxidase-conjugated secondary anti-rabbit antibody. The peroxidase activity was visualized by a color reaction with 3, 3 '-diaminobenzidine (DAB, DakoCytomation, Copenhagen, Denmark).
  • DAB 3, 3 '-diaminobenzidine
  • Cyto-centrifugation preparations from freshly isolated CD4 + or CD25 + T cells were air-dried and stored at -20 ° C. until staining.
  • the sample carriers were briefly thawed and then fixed in 4% paraformaldehyde for 15 min at room temperature.
  • the cells were washed with PBS and incubated with 50 mM NH 4 C1 in PBS for 10 minutes.
  • the cells were then permeabilized on ice with 0.2% Triton X-100 within 5 minutes.
  • the cytospins were incubated with a peroxidase blocking solution (DakoCytomation, Copenhagen, Denmark) for 5 minutes to endogenously To neutralize peroxidase activity.
  • a peroxidase blocking solution DakoCytomation, Copenhagen, Denmark
  • Example 15 Comparative proteome study of human CD25 + Tregs versus conventional CD4 + T cells
  • Naturally occurring CD25 + Tregs are characterized by the unique properties of suppressing the activation of conventional CD4 + T cells. So far, however, little is known about the proteins involved in this cell contact-dependent process. For the identification of such proteins, which are involved in the function of the CD25 + Treg cells, a differential proteome analysis of resting and activated conventional CD4 + T cells was carried out compared to resting and activated CD25 + Treg cells. For this purpose, up to 10 8 CD25 + Treg and CD4 + T cells with very high purity were isolated from buffy coats or leukapheresates. The functionality of the T cell preparations was characterized prior to proteome analysis.
  • the resting cells were analyzed by 2D-PAGE immediately after isolation, while the activated cells were polyclonally activated for 48 hours.
  • the 2D gels used for the proteome study covered a pI range from 4 to 10 and a molecular weight range from 6 to 150 kDa. Approximately 1600 protein spots were detected and matched in all gels when the gels were compared.
  • the gels of a sample were prepared in triplicate, the protein spot patterns not only being very similar within one sample, but also when comparing the different T cell populations and also the individual human donors examined.
  • the largest proportion '(> 90%) of all protein spots that could be displayed showed a high reproducibility both in the relative position in the 2D gel and in the spot intensity.
  • the galetin-10 isoforms 1 to 3 show the greatest differences in comparison with an increase in intensity by a factor of 10 to 40.
  • galectin-10 has so far only been described in granulocytes (Golightly, LM, Thomas, LL, Dvorak, AM and Ackerman, SJ "Charcot-Leyden crystal protein in the degranulation and recovery of activated basophils" J. Leukoc. Biol. 51 , 386-392 (1992); Dvorak, AM, Letourneau, L., Weller, PF and Ackerman, SJ "Ultrastructural localization of Charcot-Leyden crystal protein (lysophospholipase) to intracytoplasmic crystals in tumor cells of primary solid and papillary epithelial neoplasm of the pancreas "Lab. Invest.
  • Freshly isolated CD4 + T cells express very small amounts of galectin-10 mRNA while freshly isolated CD25 + Treg cells express large amounts of galectin-10 mRNA. In both cell populations, the mRNA levels decrease after polyclonal activation. In CD4 + T cells, galectin-10 mRNA is no longer detectable 48 hours after activation.
  • Example 17 Western blot analysis of galectin-10 in cell lysates of resting and activated human CD4 + T cells and CD25 + Treg cells
  • recombinant galectin-10 was produced and a polyclonal antiserum was generated from it.
  • the IgG fraction of the antiserum produced was used for the detection of galectin-10 in lysates of resting and activated conventional human CD4 + T cells and CD25 + Treg cells.
  • the proteins of the lysates were previously separated using one-dimensional or two-dimensional gel electrophoresis.
  • FIG. 7 shows that in lysates of conventional CD4 + T cells, galectin-10 is hardly detectable, while in the lysates from CD25 + Treg Cells a strong staining can be seen.
  • the recombinant galectin-10 served as a positive control.
  • the Western blot shown in FIG. 7 shows a representative result from seven independent experiments of cells from healthy healthy donors.
  • this result shows that the antibody produced against the recombinantly produced galectin-10 also recognizes the natural galectin-10 protein.
  • the proteome analyzes three different isoforms of the galectin-10 protein were detected and identified by mass spectrometry.
  • Western blot analyzes after separation of the proteins from the lysate of human CD25 + Treg cells showed that the antibody stains all three isoforms of the protein.
  • other very weak signals for two (four) further isoforms of the protein were obtained. These signals could be made to coincide with the silver-colored 2D gels (FIG. 3B).
  • Example 18 Staining of conventional CD4 + T cells and CD25 + Treg cells with the rabbit anti-galectin-10 IgG
  • the CD4 + CD25 + T cells which are isolated from the peripheral blood with antibody-coupled magnetic beads, are not a homogeneous cell population, but are composed of activated conventional CD4 + CD25 + T cells and CD25 + regulatory T cells.
  • the staining of the cells can also provide information about the subcellular localization of galecin-10 in regulatory T cells.
  • galectin-10 was evenly distributed in the cell, whereas in the CD25 + regulatory T-cells an accumulation of galectin-10 was evident on the plasma membrane.
  • staining with antibodies or binders against Galectin-10 can be used to distinguish between conventional CD4 + T cells and CD25 + regulatory T cells.
  • siRNA Inhibition of galectin-10 expression by siRNA abolishes the anergic state of these cells and reduces the ability to suppress.
  • a suitable siRNA was used to inhibit galectin-10 expression in order to characterize the function of this protein within the CD25 + regulatory T cells.
  • CD25 + regulatory T cells were transfected with Galectin-10 siRNA using nucleofection and the expression rate of Galectin-10 mRNA was quantified. 48 hours after the transfection, the galectin-10 mRNA content was most reduced. 9 shows the expression of galectin-10 mRNA reduced by galectin-10 siRNA.
  • SC scrambled control: 0.5 ⁇ M and 1.0 ⁇ M).
  • the CD25 + T cells transfected with siRNA were activated polyclonally with anti-CD3 and anti-CD28 monoclonal antibodies for 48 hours after maximum suppression of galectin-10 mRNA. The proliferation of these cells was monitored over a period of another 96 hours by the uptake of radioactively labeled thymidine.
  • CD25 + regulatory T cells In order to investigate the influence of galectin-10 on the suppression properties of the CD25 + regulatory T cells, CD25 + regulatory T cells after transfection with Galectin-10 siRNA co-cultivated with conventional CD4 + T cells. The proliferation of the conventional CD4 + T cells was not changed. This means that the presence of galectin-10 protein in the CD25 + regulatory T cells is essential for the suppressive properties of the cells.
  • T cells For the cryopreservation of T cells, a cell pellet in 50 ⁇ l tissue-Tek (Miles Diagnostic, Elkhart USA) taken up and suspended by gentle stirring. This cell suspension was deep-frozen in liquid nitrogen. A frozen drop was transferred to a cryoplastic mold and filled with tissue-tek and again frozen in liquid nitrogen. The sections were made with a layer thickness of 3 ⁇ m and the sections were then dried overnight at room temperature.
  • Eosinophil lysophospholipase (Charcot-Leyden crystal protein). (Lysolecithin acylhydrolase) (CLC) (Galectin-10).
  • Organism Homo sapiens
  • Eosinophil lysophospholipase (Charcot-Leyden crystal protein homolog) (Lysolecithin acylhydrolase) (CLC) (Galectin-10).
  • Organism Mus musculus
  • NP_002296 beta-galactosidase binding lectin precursor Lectin, galactose-binding, soluble, 1; galectin
  • Organism Homo sapiens
  • Galectin-1 Beta-galactoside-binding lectin L-14-I
  • St-Lac lectin 1 Sta lectin 1
  • ACCESSION P16045, gi 1126172 MACGLVASNLNLKPGECLKVRGEVASDAKSFVLNLGKDSNNLCLHFNPRFNAHGDANTI
  • SEQ ID No. 6 nucleic acid coding for an amino acid sequence according to SEQ ID No. 1 or SEQ ID No. 2 (Galectin 10):
  • CD4 + CD25 + ß7 + CD25 + ß7 +
  • conventional T cells CD4 +
  • the arrows show the differential protein spots.
  • Crystal Protein Isoform 1 (Spot 68) when comparing stimulated versus non-stimulated human regulatory T cells (CD4 + CD25 + and CD4 + CD25 + ß7 +) and conventional T cells (CD4 +).
  • the arrows show the differential protein spots.
  • CD4 + CD25 + ß7 + CD25 + ß7 +
  • conventional T cells CD4 +
  • the arrows show the differential protein spots.
  • spot intensities of Galectin-10 (Spot 68) after separation of the total lysates from resting and 48 h activated conventional T cells and Treg.
  • C Quantification of the relative content of FoxP3 mRNA in CD4 + T cells and CD25 + Tregs.
  • cDNA samples were analyzed by quantitative real-time PCR using specific primers for FoxP3 or EFl- ⁇ . analyzed The relative levels of FoxP3 mRNA in each sample were normalized to the levels of EFl- ⁇ mRNA.
  • FIG. 7 Western blot analysis of galectin-10 production in CD25 + Tregs and conventional CD4 + T cells
  • B 2D PAGE Western blot analysis after 2D PAGE of the galectin 10 isoforms.
  • the immunoblot was carried out analogously to that prepared after one-dimensional separation, but an alkaline phosphatase-conjugated secondary anti-rabbit antibody and BCIP / NBT were used as substrates for the visualization of the isoforms.
  • the signals of the 2D gel Western blot were with a silver-colored 2D gel of the same T cells brought to cover. All three proteins previously identified as Galectin-10 were matched with the signals from the Western blot.
  • FIG. 8 Staining of conventional CD4 + T cells and CD25 + Tregs with polyclonal anti-galectin-10 antibody
  • Cryosectional preparations of activated conventional CD4 + T cells and CD25 + Treg cells were stained in a control batch with anti-CD3 antibodies. This surface protein is expressed on both conventional CD4 + T cells and Treg cells. Both cell populations were stained positively in the kyro sections.
  • the secondary antibody anti-rabbit IgG served as a negative control.
  • Galectin-10 was stained with the anti-Galectin-10 antiserum. It was clearly shown that galectin-10 can only be detected in Treg cells.
  • the conventional T cells showed no positive staining.
  • the preimmune serum served as a negative control.
  • FIG. 9 Galectin-10 gene knock-out breaks through the anergy of human CD25 + Tregs
  • B Proliferation 48 hours after the transfection, the T cells were stimulated with monoclonal anti-CD3 and anti-CD28 antibodies (l ⁇ g / ml + 2 ⁇ g / ml). The proliferation The T cells were measured after a further four days by adding 37 kBq / cavity 3H-Tdr for a further 16 hours.
  • the suppressive properties of the Treg on conventional T cells after transfection of the Treg with galectin-10 siRNA were determined by measuring the proliferation of the conventional T cells. For this purpose, both cell types were cultivated in coculture. The proliferation of the Treg population was previously inhibited by radioactive radiation. Coculture experiments clearly showed a decrease in the suppressive properties of Treg after inhibition of galectin-10 transcription and thus protein production by siRNA.
  • Figure 10 Purity control of the recombinantly produced human galectin-10 and the selectivity of the polyclonal anti-galectin-10 antiserum produced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Toxicology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die vorliegende Erfindung betrifft regulatorische-T-Zellen enthaltend Galectine, insbesondere deren Verwendung als Marker sowie zur Therapie und Diagnose von Erkrankungen, insbesondere von Allergien, Autoimmunerkrankungen, insbesondere Rheumatoide Arthritis, Multiple Sklerose oder Morbus Crohn, Chronischer Inflammation, Asthma, Immundefizienz-Erkrankungen, AIDS, Transplantatabstoßung und Krebserkrankungen sowie Diabetes.

Description

Titel : Regulatorische-T-Zellen enthaltend Galectine zur Therapie und Diagnose von Erkrankungen
Beschreibung
Die vorliegende Erfindung betrifft regulatorische-T-Zellen enthaltend Galectine, insbesondere deren Verwendung als Marker sowie zur Therapie und Diagnose von Erkrankungen, insbesondere von Allergien, Autoimmunerkrankungen, insbesondere Rheumatoide Arthritis, Multiple Sklerose oder Morbus Crohn, Chronischer Inflammation, Asthma, Immundefizienz-Erkrankungen, AIDS, Transplantatabstoßung und Krebserkrankungen sowie Diabetes. Ferner betrifft die Erfindung geeignete Binder sowie ein Testsystem (Diagnostikum) .
Das Immunsystem ist in der Lage zwischen fremden Proteinen und Strukturen des eigenen Körpers, aber auch zwischen harmlosen und pathogenen Antigenen zu unterscheiden und somit unnötige und autoaggressive Immunantworten zu vermeiden. Die Aufrechterhaltung der immunologischen Toleranz gegenüber körpereigenen Strukturen, bei gleichzeitiger Entwicklung von protektiven Immunantworten gegen Pathogene, beruht im wesentlichen auf der Bildung antigenspezifischer Effektorzellen zur Immunabwehr und der Bildung von antigenspezifischen Suppressorzellen zur Erhaltung der immunologischen Toleranz .
Sakaguchi et al . beschreiben erstmals eine Subpopulation von CD4+ T-Helferzellen, charakterisiert durch eine konstitutive Expression der α-Kette des IL-2-Rezeptors (CD25) , die essentiell für die Kontrolle von autoaggressiven Immunantworten in Mäusen ist (Sakaguchi, S., Sakaguchi, N. , Asano, M. , Itoh, M. , and Toda, M. (1995) Immunologie seif-tolerance maintained by activated T cells expressing IL-2 reeeptor alpha-chains (CD25) . Breakdown of a Single mechanism of seif-tolerance causes various autoimmune diseases. J. Immunol . 155, 1151-1164). Inzwischen wurden diese CD4+CD25+ T-Zellen in verschiedenen Spezies, einschließlich des Menschen, als CD25+ regulatorische T-Zellen identifiziert (kurz: Treg, im Folgenden genannt; charakterisiert durch die Koexpression der Oberflächenproteine CD4+ und CD25+) , die als residente Population 5-10% der humanen peripheren CD4+ T-Zellen repräsentieren. Frisch isoliert sind CD25+ Tregs anergisch, d.h. sie proliferieren nicht nach allogener oder polyklonaler Stimulation, supprimieren aber die Proliferation und Zytokinbildung konventioneller CD4+ und CD8+ T-Zellen. Diese Suppression ist zellkontakt- und aktivierungs-abhängig, aber antigen-unspezifisch [Jonuleit, H., Schmitt, E., Stassen, M. , Tuettenberg, A. , Knop, J., and Enk, A. H. (2001) Identification and functional characterization of human CD4 (+) CD25 (+) T cells with regulatory properties isolated from peripheral blood. J". Exp . Med. 193, 1285-1294; Dieckmann, D., Plottner, H. , Berchtold, S., Berger, T., and Schuler, G. (2001) Ex vivo isolation and characterization of CD4 (+) CD25 (+) T cells with regulatory properties from human blood. J. Exp . Med. 193, 1303-1310; Ng, . F., Duggan, P. J. , Ponchel, F., Matarese, G. , Lombardi, G., Edwards, A. D., Isaacs, J. D., and Lechler, R. I. (2001) Human CD4+ CD25+ cells: a naturally occurring population of regulatory T cells. Blood 98, 2736-2744; Seddon, B. and Mason, D. (2000) The third function of the thymus . I munol . Today 21, 95-99; Seddon, B. and Mason, D. (1999) Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. J". Exp . Med. 189, 877-882; Thornton, A. M. and Shevach, E. M. (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287-296; Suri-Payer, E., Amar, A. Z., Thornton, A. M. , and Shevach, E. M. (1998) CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. <J. Jiruriunol . 160, 1212- 1218; Piccirillo, C. A. , and Shevach, E. M. (2001) Cutting Edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J. Immunol . 167, 1137-1140].
Die Depletion der Tregs in vivo resultiert in einer Reihe von Autoimmunkrankheiten, aber auch in einer verbesserten Tumorabwehr (Sakaguchi (supra) ) . Dieser Befund stützt die These einer ambivalenten Funktion der Tregs. Einerseits verhindern sie die Entstehung autoaggressiver Immunreaktion, andererseits erschweren sie aber gleichzeitig eine effektive Tumorabwehr, da Tumorzellen i.a. immunologisches „Selbst" repräsentieren und deshalb ihre Elimination durch Effektor-T-Zellen von Tregs unterbunden wird. Die Steigerung der supprimierenden Funktion von Tregs wird als hilfreich für die Therapie insbesondere von Autoimmun-Erkrankungen angesehen, während eine transiente Hemmung ihrer supprimierenden Eigenschaften die Tumorabwehr unterstützen kann.
Die Tatsache, dass die supprimierenden Eigenschaften zellkontaktabhängig sind, macht deutlich, dass insbesondere Treg-spezifische Moleküle (Marker, Target) einen entscheidenden Einfluss auf die Funktionalität der Zellen haben und die Basis bilden für die gezielte Ausnutzung dieser Eigenschaften zu therapeutischen und diagnostischen Zwecken im Bereich von Allergien, Autoimmunerkrankungen, Chronischer Inflammation, Immundefizienz-Erkrankungen, Transplantatabstoßung und Krebserkrankungen sowie AIDS, Diabetes.
Mit Hilfe der Proteomanalyse wurde gezielt die Proteinzusammensetzung der einzelnen T-Zellsubpopulationen, insbesondere der Treg (also CD4+CD25+ und CD4+CD25+ß7+- Subpopulationen) , untersucht und spezifisch Treg - eigene Proteine identifiziert.
Überraschender Weise konnten mit Hilfe der Proteomanalyse ß-Galactosidase-bindende Proteine (kurz: Galectine, im Folgenden) wie Galectin-1 und Galectin-10 (so genanntes Charcot-Leyden Crystal (CLC) Protein) identifiziert werden.
Galectine sind z.B. in Ni et al . WO 98 / 015624 AI und Ackerman et al. US 5,242,807 beschrieben. Jedoch wird die spezifische Eignung der Galectine zur Manipulation und Modifikation von Treg nicht erkannt. Daher betrifft die Erfindung Treg enthaltende Galectine und deren Isolierung. Daher sind Galectine in Tregs geeignete Marker oder Target.
Im Rahmen dieser Erfindung wird unter „Treg" solche T- Zellsubpopulationen verstanden, die humanen Ursprungs sind oder aus Säugetieren stammen können. Bevorzugt sind jedoch erfindungsgemäß die Subpopulationen Treg-CD4+CD25+ und
Treg-CD4+CD25+ß7+. „Isolierte Treg" sind ex-vivo Zellen
(außerhalb des lebenden Körpers) und ggfs. von anderen T-
Zellen getrennt. Mittels Isolation ist ebenfalls eine
Anreicherung von Treg-Zellen enthaltend Galectin möglich (siehe Beispiele) .
Der Begriff „native Treg" beschreibt „in-vivo" (innerhalb des lebenden Körpers) vorzufindende Treg, z.B. im menschlichen Blut oder Thymus oder von Säugetieren.
„Galectine" im Sinne dieser Erfindung sind solche Proteine mit der Funktion eines ß-Galactosidase-bindenden Proteins, also solche Galectine, wie Galectin 1-14 als humanes Galectin oder als homologes Protein aus Mensch oder Säugetieren. Bevorzugt sind jedoch erfindungsgemäß Galectin 1 oder 10, insbesondere gemäß einer der Sequenzen SEQ ID No. 1 - 5. Des weiteren kann Galectin 10 als SEQ ID No. 1 oder SEQ ID No. 2 in seinen Isoformen auftreten und zwar: a.) apparentes Molekulargewicht von 14 kDa und einen pl von 6,7, b.) apparentes Molekulargewicht von 13,5 kDa und einen pl von 5,9, c.) apparentes Molekulargewicht von 13 kDa und einen pl von 5,9.
Daher können die Isoformen a.), b.) und c.) ebenfalls in einer trunkierter Form vorliegen und ggfs. acteyliert sein, entsprechend den Sequenzen SEQ ID No . 8-64. Ebenfalls können die erfindungsgemäßen Galectine modifiziert sein, z.B. mittels posttranslationalen Modifikationen, wie Glykolisierung.
Beispiele von Galectinen sind gegeben in WO 98 / 015624 AI und Galectin 10 ist offenbart in Ackerman et al. US 5,242,807. Diese Galectine sind erfindungsgemäß mit eingeschlossen.
In einer weiteren Ausführungsform sind die erfindungsgemäßen Treg enthaltend Galectine, dahingehend rekombinant verändert, dass sie eine erfindungsgemäße Aminosäuresequenz, vorzugsweise SEQ ID No. 1 und SEQ ID No. 2 oder SEQ ID No . 4, oder erfindungsgemäße Nukleinsäuresequenz, vorzugsweise SEQ ID No. 6 oder SEQ ID No. 7, enthalten.
Daher betrifft die Erfindung ebenfalls die Aminosäuresequenzen SEQ ID No. 1-5 bzw. Polypeptide oder Proteine und deren codierenden Nukleinsäuresequenzen. Insbesondere SEQ ID No . 1 oder SEQ ID No. 2 (Galectin 10) zeigen lediglich eine Übereinstimmung von 60% mit entsprechenden angegebenen Sequenzen in WO 98 / 015624 AI. Dies ist in der erfindungsgemäßen spezifischen Treg- Herkunft begründet.
Daher betrifft die Erfindung auch solche Aminosäure- Sequenzen (Polypeptide, Proteine), die eine Sequenzidentität oder Homologie von 70% und mehr, vorzugsweise von 80% und mehr, besonders bevorzugt von 90- 95% und mehr mit SEQ ID No. 1 oder SEQ ID No. 2 aufweisen. Ebenfalls mit eingeschlossen sind ebenfalls solche analoge Aminosäure-Sequenzen, die aufgrund des Austausches von einer oder mehreren Aminosäure (n) in diesen Sequenzen, dennoch die gewünschte Funktion eines Galectins gewährleisten . In einer weiteren Ausführungsform sind ebenfalls Fusionsproteine betroffen, enthaltend eine erfindungsgemäße Aminosäuresequenz oder ein genanntes Galectin als eine Teilsequenz. Beispiele für rekombinante Fusionsproteine sind gegeben in EP 282 042 Bl (His-Tag) .
Des weiteren betrifft die Erfindung Nukleinsäuren, die für ein Galectin kodieren und zwar vorzugsweise für ein Galectin erhältlich aus einem Treg oder für die erfindungsgemäßen Aminosäurensequenzen codieren.
Insbesondere können die erfindungsgemäßen Nukleinsäuren eine Nukleinsäuresequenz gemäß SEQ ID No. 6 sein, codierend für SEQ ID No. 1 oder SEQ ID No. 2 (Galectin 10) oder eine Nukleinsäuresequenz gemäß SEQ ID No. 7 sein, codierend für SEQ ID No. 4 (Galectin 1) .
In einer weiteren bevorzugten Ausführungsform enthält die erfindungsgemäße Nukleinsäure eine oder mehrere nicht- kodierende Sequenzen und/oder eine Poly (A) -Sequenz, eine oder mehrere Erkennungssequenzen sowie, falls erforderlich, eine oder mehrere potentielle N-Glykosylierungsstellen. Die nicht-kodierenden Sequenzen sind regulatorische Sequenzen, wie Promotor- oder Enhancer-Sequenzen, zur kontrollierten Expression des kodierenden Gens, enthaltend die erfindungsgemäßen Nukleinsäuren. Des weiteren können solche Nukleinsäuren Gegenstand von üblichen Expressionsvektoren, üblichen Wirtszellen oder üblichen gentherapeutischen Vektoren sein (z.B. J. Sambrook, E.F. Fritsch, T. Maniatis (1989), Molecular cloning: A laboratory manual, 2nd Edition, Cold Spring Habor Laboratory Press, Cold Spring Habor, USA oder Ausubel, "Current Protocols in Molecular Biology", Green Publishing Associates and Wiley Interscience, N.Y. (1989)).
Der Begriff „Nukleinsäure" (synonym: Polynukleotid) hat die Bedeutung im Sinne von DNS oder RNS oder chemischen Analoga und dergleichen.
Die erfindungsgemäßen Galectine können sekretieren und an membranständige Proteine auf Treg oder Effektorzellen binden. Darüber hinaus können sie solche membranständigen Proteine quervernetzen und daher deren Funktionen beeinflussen und regulieren. Diese Eigenschaft kann erfindungsgemäß genutzt werden, um die Interaktion zwischen Treg und T-Effektorzellen zu beeinflussen, z.B. zwecks Behandlung von Krankheiten die mit Treg oder einer Effektorzellen in Verbindung stehen.
Ferner können die erfindungsgemäßen Galectine im Cytosol der Tregs vorliegen. Daher betrifft die Erfindung solche Treg, wobei mindestens ein Galectin sekretiert, membranständig oder auf der Oberfläche oder im Cytosol präsentiert ist.
Mit Hilfe von rekombinanten Methoden kann mindestens ein Galectin im Treg oder auf der Oberfläche der Treg angereichert werden. Hierzu kann eine erfindungsgemäße Aminosäuresequenz oder Nukleinsäure in Treg eingebracht werden.
In einer weiteren Ausführungsform sind die erfindungsgemäßen „Treg enthaltend Galectine", dahingehend rekombinant verändert, dass sie eine erfindungsgemäße Aminosäuresequenz, vorzugsweise SEQ ID No. 1 oder SEQ ID No. 2 oder SEQ ID No . 4, oder erfindungsgemäße Nukleinsäuresequenz, vorzugsweise SEQ ID No. 6 oder SEQ ID No. 7, enthalten.
Die Erfindung betrifft weiterhin Binder an mindestens einer isolierten regulatorischen T-Zelle oder nativen regulatorischen T-Zelle enthaltend mindestens ein Galectin. Die Binder können nicht abschließend ausgewählt werden aus der Gruppe: Inhibitor, Agonist, Antagonist, Sonde, Antikörper oder Immunmodulator.
Der Binder kann auch ein Signal induzieren, wie eine Farbreaktion, radioaktive Markierung, welches genügt ein Treg enthaltend Galectine zu identifizieren und zu τiodifizieren. Daher kann der Binder eine „Sonde" sein. Im weitesten Sinne ist daher der Binder erfindungsgemäß ebenfalls ein adressiertes Molekül, welcher an einen geeigneten signal-vermittelnden Rezeptor an Treg enthaltend Galectin bindet und aufgrund des enthaltenden Galectins in Treg eine Rückkopplung erzeugt.
Beispielsweise können mittels eines Inhibitors oder Modulators Galectine in Treg vorteilhaft angereichert werden. Mit Hilfe einer Sonde können ebenfalls z.B. weitere Treg Zellen enthaltend Galectine identifiziert werden. Eine solche Sonde ist beispielsweise ein Antikörper, der spezifisch ein oder mehrere vorhandene Epitope auf den erfindungsgemäßen Aminosäure-Sequenzen (z.B. SEQ ID No. 1 oder SEQ ID No. 2) oder Galectinen erkennt (Herstellung z.B. einschlägig nach Köhler).
Ferner kann der erfindungsgemäße Binder ein oder mehrere Epitope enthalten, wobei ein oder mehrere Epitope gegen Galectine, und ein oder mehrere Epitope gegen Oberflächenproteine auf Treg oder Effektorzellen, insbesondere mit der Eignung Oberflächenproteine querzuvernetzen, solche wie nicht abschließend z.B. CD25, CD44, CD45, GITR, CTLA-4, Fox P3.
In einer funktionellen Betrachtungsweise haben die Binder die Funktion, den isolierten Treg oder nativen Treg enthaltend mindestens ein Galectin zu aktivieren oder zu deaktivieren. Daher sind die Treg enthaltende Galectine oder Binder als Arzneimittel geeignet, vorzugsweise zur Behandlung und Therapie von Erkrankungen und zwar von Allergien, Autoimmunerkrankungen, insbesondere Rheumatoide Arthritis, Multiple Sklerose oder Morbus Crohn, Chronischer Inflammation, Asthma, Immundefizienz-Erkrankungen, AIDS, Transplantatabstoßung und Krebserkrankungen sowie Diabetes. Insbesondere solche Autoimmunerkrankungen ausgewählt aus der Gruppe: Alopecia Areata, Morbus Bechterew, Antiphospholipid-Syndrom, Morbus Addison, Morbus Behcet, Zöliakie Sprue, chronische Müdigkeitssyndrom (Chronic Fatigue Immune Dysfunction Syndrome (CFIDS) ) , Polyneuropathie, Churg-Strauss Syndrom (Granulomatose) , CREST-Syndrom (Raynaud-Syndrom) , Cold Agglutinin Disease, Kryoglobulinämie, Fibromyalgie, Fibromyositis, Morbus Basedow, Guillain -Barre-Syndrom, idiopathische pulmonäre Fibröse, idiopathische Thrombozytopenie, IgA Nephropathie, Liehen Planus, Morbus Meniere, Polyarteritis Nodosa, Polychondritis, Polyglandular-Syndrom, Polymyalgia Rheumatica, Primary Agammaglobulinemie, Biliäre Cirrhose, Psoriasis, Morbus Reiter, Sarkoidose, Morbus Sjögren, Takayasu-Arteritis, Vasculitis, Vitiligo, Wegeners Granulomatose .
Isolierte Treg enthaltend Galectine, entsprechend erfindungsgemäß modifiziert, können dem zu behandelnden Körper appliziert werden. Zum anderen können geeignete Binder dem Patienten in ausreichender Dosierung verabreicht werden. Die Treg enthaltende Galectine und/oder Binder werden hierzu ggfs. mit weiteren Hilfsstoffen formuliert.
Des weiteren betrifft die Erfindung die Verwendung der Galectine in Treg als Marker oder Target. Insbesondere können die Galectine als Target dienen für die Manipulation bzw. Modulation der supprimierenden Eigenschaften eines Tregs. Dies kann beispielsweise mittels eines Binders oder einer Substanz erfolgen. Ferner kann der Binder oder die Substanz ein Inhibitor sein, der die Expression des Galectins unterbindet, hemmt oder fördert. Ferner können die Treg-spezifischen Galectine als Marker dienen um Treg mit (erhöhten) supprimierenden Eigenschaften zu identifizieren.
Des weiteren betrifft die Erfindung ein Testsystem enthaltend zumindest einen Binder und mindestens einen Treg enthaltend Galectine, zur Identifikation geeigneter Binder oder Treg, vorzugsweise solcher mit erhöhten supprimierenden Eigenschaften.
Daher betrifft die Erfindung ebenfalls ein Testsystem umfassend mindestens ein Treg enthaltend Galectine und mindestens eine Zielzelle, insbesondere T-Zelle, B-Zelle, Makrophage, Prädendritische Zelle, Dendritische Zelle, embryonale Zelle und / oder Fibroblast, die mit mindestens einem Treg inkubiert werden zum in-vitro Nachweis supprimierender Eigenschaften, insbesondere zellulärer Immunantwort von Effektorzellen des Immunsystems, insbesondere B-Zellen, NK-Zellen, vorzugsweise T-Zellen, T- Helferzellen.
Aufgrund der besonderen zellkontaktabhängigen supprimierenden Eigenschaften der Treg enthaltenden Galectine können im erfindungsgemäßen Testsystem die zelluläre Immunantwort der Zielzellen geprüft werden.
Eine Immunantwort kann beispielsweise durch die Synthese von Cytokinen wie z.B. gamma-Interferon, Interleukinen nachgewiesen werden. Das entsprechende Cytokin sammelt sich in diesem Testsystem intrazellulär an und kann über fluoresenzgekoppelte Antikörper (z.B. ELISA) nachgewiesen werden. Ferner mittels Expression von Oberflächenmolekülen, Lyse der Zielzelle oder Zellproliferation. In einem FACS (fluorescent activated cell sorter) kann der Anteil der Immunzellen bestimmt werden, die sich stimulieren bzw. nicht-stimulieren oder aktivieren bzw. deaktivieren lassen. Weitere Nachweisverfahren sind nicht abschießend Cytokinassay, ELISPOT, Proliferationstests oder 51Cr- Freisetzungstests (siehe hierzu Allgemein: Current Protocols of Immunology (1999), Coligan J.E., Kruisbeek A.M., Margulies D.H., Shevach E.M. und Strober W., John Wiley & Sons) . Bevorzugt sind jedoch nicht-radioaktive Nachweisverfahren .
In einer weiteren Ausführungsform sind die Effektorzellen, Säugerzellen, insbesondere humane oder murine Zellen oder Immunzelllinie und / oder kultivierte primäre Immunzelle.
In einer weiteren Ausführungsform wird dem Testsystem mindestens eine weitere Substanz inkubiert, die eine Immunantwort auslösen können, wie beispielsweise Proteine, Epitope, Proteinfragmente, Antigene.
Ferner ist ein solches Testsystem geeignet zur Identifikation von erfindungsgemäßen Bindern.
Des weiteren betrifft die Erfindung ein Diagnostikum (Synonym: Array oder Assay) zur Ausführung der erfindungsgemäßen Testsysteme und gegebenenfalls einen pharmazeutischen akzeptablen Träger.
Beispiele von pharmazeutisch akzeptablen Trägern sind Glas, Polystyren, Polypropylen, Dextran, Nylon, Amylase, natürliche oder modifizierte Zellulose, Polyacrylamide, Agarose, Alumiumhydroxid oder Magnitid. Ferner kann der Träger aus 96 Wellplatten und höher bestehen.
Das Diagnostikum kann in Lösung vorliegen, an eine feste Matrix gebunden sein und / oder mit einem Adjuvans versetzt sein.
Ferner kann das Diagnostikum an einen Patienten beliebig in vivo appliziert werden (z.B. Kapsel, Tablette).
Ein erfindungsgemäßes Diagnostiktum ist daher geeignet zur Diagnose von Krankheiten und zwar von Allergien, Autoimmunerkrankungen, insbesondere Rheumatoide Arthritis, Multiple Sklerose oder Morbus Crohn, Chronischer Inflammation, Asthma, Immundefizienz-Erkrankungen, AIDS, Transplantatabstoßung und Krebserkrankungen sowie Diabetes.
Insbesondere von Autoimmunerkrankungen und zwar Alopecia Areata, Morbus Bechterew, Antiphospholipid-Syndrom, Morbus Addison, Morbus Behcet, Zöliakie Sprue, chronische Müdigkeitssyndrom (Chronic Fatigue Immune Dysfunction Syndrome (CFIDS) ) , Polyneuropathie, Churg-Strauss Syndrom (Granulomatose), CREST-Syndrom (Raynaud-Syndrom) , Cold Agglutinin Disease, Kryoglobulinämie, Fibromyalgie, Fibromyositis, Morbus Basedow, Guillain -Barre-Syndrom, idiopathische pulmonäre Fibröse, idiopathische Thrombozytopenie, IgA Nephropathie, Liehen Planus, Morbus Meniere, Polyarteritis Nodosa, Polychondritis, Polyglandular-Syndrom, Polymyalgia Rheumatica, Primary Agammaglobulinemie, Biliäre Cirrhose, Psoriasis, Morbus Reiter, Sarkoidose, Morbus Sjögren, Takayasu-Arteritis, Vasculitis, Vitiligo, Wegeners Granulomatose.
Die nachfolgenden Beispiele dienen zur näheren Erläuterung der Erfindung, ohne die Erfindung auf diese zu beschränken. Zudem werden Figuren und Sequenzen erläutert.
Beispiele
Beispiel 1: Isolierung und funktioneile Analyse humaner Treg
Die Isolierung der T-Zellen erfolgte aus PBMC (peripheral blood mononuclear cells) , die durch eine Standard- Dichtegradientenzentrifugation aus normalen buffy coats oder Leukapherisaten gesunder humaner Spender.
Beispiel la: CD4+CD25+ regulatorische T-Zellen (CD25+ Tregs)
Als Ausgangsmaterial dient das Leukapherisat freiwilliger, gesunder Spender, welches von der Transfusionszentrale Mainz hergestellt wird und im Durchschnitt 7-10 x 109 Leukozyten enthält.
Im ersten. Arbeitsschritt werden die mononukleären Zellen mittels Ficoll-Gradientenzentrifugation isoliert und anschließend intensiv mit PBS + 1 mM EDTA gewaschen. Anschließend werden die isolierten Leukozyten in PBS + 0,5% HSA (humanes Serumalbumin) + 1 mM EDTA aufgenommen und mit anti-CD25 Microbeads (2 μl Microbeads/107 Leukozyten, Microbeads: Miltenyi GmbH, Bergisch-Gladbach, BRD) für 15 min. bei 4°C inkubiert. Nach der Inkubation werden die Leukozyten 2x mit PBS + 1 mM EDTA gewaschen. Zur Isolierung der CD25+ Leukozyten werden die Zellen anschließend auf eine Separationssäule aufgetragen (LS Columns, Miltenyi) und im Dauermagneten (Miltenyi) separiert. Die durchschnittliche Ausbeute an CD25+ Leukozyten beträgt 1,2-2% (Reinheit > 97%).
Zur Depletion CD4-negativer Kontaminationen werden die CD25+ Leukozyten anschließend mit CD8-, CD19-, CD14- Dynabeads (Dynal, Hamburg, BRD, 3 Beads/Zelle) und Maus- IgGl-anti-human-CD45RA monoklonalen Antikörpern (Coulter/Immunotech, Hamburg, BRD, 1 μg mAk/106 Leukozyten) 20 min. in X-VIVO-15 inkubiert. Die gebundenen CD8+, CD19+ und CD14+ Kontaminationen können direkt mit Hilfe eines Permanentmagneten (Dynal) entfernt werden, die CD45RA+ Zellen werden mit anti-Maus-IgG-Dynalbeads (Dynal) im Permanentmagneten entfernt. Dieser Depletionsschritt wird anschließend nochmals wiederholt (Reinheit der CD4+CD25+ Leukozyten > 95%) .
Beispiel lb: α4ßl+ und α4ß7+ Subpopulationen humaner regulatorischer T-Zellen
Humane CD25+ Tregs enthalten zwei funktioneil unterschiedliche Subpopulationen, die sich in der Expression von Integrinen unterscheiden. Ca. 20% der Tregs exprimieren das α4ß7-Integrin, 80% das α4ßl-Integrin. Zur Isolation dieser Subpopulationen sind folgende Änderungen des Isolierungsprotokolls notwendig:
Im ersten Arbeitsschritt werden die isolierten Leukozyten 15 min. bei 4°C mit Maus-IgG-anti-Human-CD25-FITC mAk (2 μl mAk/107 Leukozyten, M-A251, BD PharMingen, San Diego, USA) inkubiert und anschließend intensiv mit PBS + 1 mM EDTA gewaschen.
Die FITC-positiven Zellen werden mit Hilfe von anti-FITC- Multisort-Microbeads (Miltenyi) isoliert. Das Verfahren wird analog der direkten Isolation von CD25+ Leukozyten mit CD25-Microbeads durchgeführt. Anschließend werden die Microbeads mittels enzymatischem Verdau, nach Angaben des Herstellers (Miltenyi) , von der Oberfläche der Leukozyten entfernt .
Die Depletion der CD4-negativen Kontaminationen erfolgt wie zuvor beschrieben mit CD8-, CD19- und CD14-Dynabeads, CD45RA+ Zellen werden nicht depletiert (Reinheit CD4+CD25+ T-Zellen > 95%) .
Im nächsten Arbeitsschritt wird die α4ß7+ Subpopulation isoliert. Hierfür werden die CD4+CD25+ T-Zellen mit einem Ratte-IgG-anti-human-ß7-Integrin-PE mAk (BD-PharMingen, 2 μl/107 Zellen) für 15 min. bei 4°C inkubiert und anschließend intensiv mit PBS + 1 mM EDTA gewaschen. Die Verfahren zur Isolierung der ß7+ T-Zellen erfolgt analog zur Isolation CD25+ T-Zellen mit Hilfe von anti-PE- Microbeads (Miltenyi) resultierend in einer Reinheit von CD4+CD25+α4ß7+ Zellen > 90%. Die negative Fraktion expri iert das Integrin α4ßl (Reinheit CD4+CD25+α4ßl+ Zellen > 80%) .
Beispiel 2: Charakterisierung humaner CD4+CD25+ regulatorischer T-Zellen
CD25+ Tregs sind durch ihre inhibitorische Wirkung auf die Aktivierung von CD4+ und CD8+ T-Zellen in vitro charakterisiert .
Die funktionelle Charakterisierung CD25+ Tregs in vitro wird in Kokulturassays mit CD4+ T-Helferzellen analysiert. Hierzu werden die T-Zellen entweder mit allogenen, reifen dendritischen T-Zellen oder polyklonal mit anti-CD3 + anti- CD28 mAk stimuliert.
Beispiel 3: Multisort positive Selektion von CD4+CD25+ und CD4+CD25+ß7+ T-Zellen
Die Isolierung von Treg erfolgte in mehreren Schritten. Zunächst wurden CD4+ T-Zellen mit Hilfe des CD4-MACS- Multisort-Kits (Miltenyi, Bergisch-Gladbach, Germany) isoliert und daraus mit anti-CD25-FITC (M-A251, BD PharMingen, San Diego, USA) und anti-FITC-Multisort Beads (Miltenyi, Bergisch-Gladbach, Germany) die CD4+CD25+ T- Zellen. Daran anschließend wurden B-Zellen, Makrophagen und CD8+ T-Zellen mittels CD19, CD14 und CD8 Dynabeads (Dynal, Hamburg, Germany) depletiert. Für die Isolierung von CD4+CD25+ß7+ Treg (Subpopulation der CD4+CD25+ Treg) wurden ß7-PE und anti-PE Beads (Miltenyi, Bergisch-Gladbach, Germany) verwendet. Die Reinheit der isolierten Zellen wurde mit der FACS-Analyse kontrolliert.
Beispiel 4: Funktionelle Analyse humaner frisch isolierter CD4+CD25+ T-Zellen
CD25 ist ein typisches Oberflächenmolekül auf Treg, jedoch wird es nicht nur in diesem Zelltyp exprimiert. Aus diesem Grund wurde vor jeder Analyse eine funktionelle Kontrolle der supprimierenden Eigenschaften der isolierten Zellen durchgeführt .
Beispiel 5: Polyklonale Stimulation mit anti-CD3 und anti- CD28 monoklonalen Antikörpern
Eine konstante Anzahl von konventionellen CD4+ T-Zellen (lx 105/Kavität) kann polyklonal aktiviert werden und zwar mit anti-CD3 (1 μg/ml, OKT-3) und anti-CD28 monoklonalen Antikörpern (2μg/ml, CD28.2) in Gegenwart von einer variierenden Anzahl von CD4+CD25+ T-Zellen (Verhältnis 1:1 bis 1:4). Die T-Zellproliferation wurde gemessen nach drei Tagen Kultivierung und einer anschließenden lδstündigen gepulsten Behandlung mit 3HTdR (37 kBq/well) . Die derart getesteten Zellen wurden für die Proteomanalysen verwendet. Gesamtzelllysate aus kultivierten Zellen für die 2DE Die Extraktion der Proteine aus den Zellen nach einer Zelllyse erfolgte nach einer leicht modifizierten Methode nach Klose (Klose, J. und Kobalz, U., Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16, 1034-1059 (1995) und Klose, J. Fractionated extraction of total tissue proteins from mouse and human for 2-D electrophoresis. Methods Mol Biol 112, 67-85 (1999) ) . Die Zellen wurden in einem Phosphat-Puffer, der Proteaseinhibitoren gegen eine Vielzahl unterschiedlicher Proteasen enthielt mechanisch mittels Ultraschall und Glaskugeln lysiert. Die 2D- Gelelektrophorese störenden Nukleinsäuren wurde bei Raumtemperatur innerhalb von 20 min durch Zugabe der Nuklease Benzonase verdaut. Die Proteine wurden in- einem Harnstoff- und Thioharnstoffhaltigem Puffer mit Zusatz von DTT gelöst. Für die Isoelektrische Fokussierung der Proteine wurden Servalyte 2-4 zugesetzt.
Beispiel 6: Proteintrennung mittels 2DE
Die isoelektrische Fokussierung (IEF) der Proteine erfolgte nach der Methode von Klose (Klose, J., Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik, 26, 231-243 (1975)) mit Trägerampholyten in Rundgelen aus Polyacrylamid unter reduzierenden Bedingungen. Die Trennungen wurden in einem pH-Bereich von 2 bis 11 durchgeführt, wobei die Länge der IEF-Gele 40 cm betrug. Die Proteinseparation der über IEF separierten Proteine mittels SDS-PAGE erfolgte in 15%igen Polyacrylamidgelen. Vor dem Auftrag auf das Gel für die SDS-PAGE wurden die IEF-Gelstränge zweimal mit Laufpuffer (0,3 % (w/v) Tris Base, 1,44 % (w/v) Glycin, 0,1 % (w/v) SDS) gewaschen, um überschüssiges DTT zu entfernen. Anschließend wurde der Gelstrang luftblasenfrei auf das SDS-Gel gelegt und mit einer l%igen Agaroselösung (mit Bromphenolblau) fixiert. Der Eintritt der Proteine in das Gel erfolgte bei 65 mA für 15 min und die Trennung innerhalb von ca. 5 h bei 100 mA für 0,75 mm dicke analytische Gele bzw. bei 75 und 200 mA für 1,0 bzw. 1,5 mm dicke präparative Gele. Die Trennstrecke betrug 30 cm. Visualisierung der Proteine
Um eine möglichst hohe Empfindlichkeit in der Proteindetektion zu erlangen, erfolgte die Färbung analytischer Gele mit Silber nach einer modifizierten Methode von Heukeshoven und Dernick (Heukeshoven, J. und Dernick, R. Improved silver staining procedure for fast staining in PhastSystem Development Unit. I. Staining of sodium dodecyl sulfate gels. Electrophoresis 9, 28-32 (1988) ) modifiziert nach Klose und Kobalz (Klose, J. und Kobalz, U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16, 1034-1059 (1995)). Da diese Methode einen Zusatz von Glutardialdehyd und Formaldehyd nutzt, um die Empfindlichkeit zu erhöhen, ist eine anschließende massenspektrometrische Identifizierung der Proteine kaum möglich. Aus diesem Grund wurde bei Bedarf eine modifizierte Variante der mit Massenspektrometrie kompatiblen Färbung nach Blum et al. (Blum, H., Beier, H. und Gross, H.J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 8, 93-99 (1987)) eingesetzt. Die kolloidale Coomassie-Färbung nach Neuhoff et al. (Neuhoff V., Arold N., Taube D. und Ehrhardt W., Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255-262. (1988)) mit Coomassie Brilliant Blue G-250 wurde für die Proteine in präparativen 2DE-Gelen verwendet, die massenspektrometrisch untersucht wurden. Alternativ, insbesondere für Proteine, die mit der kolloidale Coomassie-Färbung nicht angefärbt werden konnten wurden mit Silber nach einem modifizierten Protokoll ohne den Zusatz von Glutardialdehyd (Blum, H., Beier, H. und Gross, H.J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 8, 93-99 (1987)) angefärbt.
Beispiel 7: Differenzielle Proteomanalyse
Das Digitalisieren der Polyacrylamidgele erfolgte bei silbergefärbten Gelen für die Bildauswertung nach dem Trockenen der Gele mit einem Durchlichtscanner. Die quantitative Auswertung der relativen Proteinintensitäten erfolgte mit einer speziellen, für diese Analysen geeigneten Bildauswertungssoftware (ProteomWeaver Vers. 2.0, Definiens, Deutschland).
Die mit Hilfe der Bildauswertung gefundenen Proteine wurden manuell aus den Gelen herausgeschnitten. Mit Hilfe eines Waschroboters wurden die Gelstücke abwechselnd jeweils dreimal alternierend mit jeweils 10 μl Verdaupuffer (10 mM NH4HC03) bzw. Verdaupuffer/Acetonitril 1:1 gewaschen, um den Farbstoff und Pufferzusätze zu entfernen. Bei silbergefärbten Spots wurde das Silber vor dem Waschen durch Zugabe von 15 μl Entfärbelösung (100 mM Kaliumhexacyanoferrat (III) /30 mM Natriumthiosulfat, 1:1) bei Raumtemperatur innerhalb von ca. 1 min oxidiert. Anschließend wurden die Gelstücke in der Vakuumzentrifuge dehydratisiert und mit jeweils 2 μl einer Trypsinlösung (0,05 μg/μl Trypsin in Verdaupuffer) versetzt. Die proteolytische Spaltung erfolgte bei 37 °C für mindestens 4 h oder über Nacht. Die entstandenen Proteolyseprodukte wurden innerhalb von 30 min durch Zugabe von 5 μl 0,l%iger TFA bei Raumtemperatur aus der Gelmatrix extrahiert.
Beispiel 8: MALDI-TOF-Massenspektrometrie
Die Bestimmung der Peptidmassen von proteolytisch gespaltenen Proteinen erfolgte mit einem MALDI-TOF- Massenspektrometer des Typs Ultraflex (Bruker Daltonik, Bremen, Deutschland) . Bei dieser Methode werden die Analytmoleküle (Peptide) in einer UV-aktiven Matrix kokristalliert . Für die Matrixlösung wurde eine gesättigte α-Cyano-4-hydroxy-Zimtsäure-Lösung in 50 % Acetonitril/0, 1 % TFA 1:1 (Lösung A) mit Lösung A im Verhältnis 1:1 verdünnt. Vor den Messungen wurden die Peptide zur Anreicherung an C18-Material in ZipTipsTM (aktiviert durch 10 μl 0,1 % TFÄ)" 'durch mehrmaliges Aufziehen der Analytlösung adsorbiert, einmal mit 10 μl 0,1 % TFA gewaschen und anschließend mit 1,2 μl Matrixlösung auf den Probenteller eluiert. Die sogenannten Peptidmassenfingerprintspektren (PMFs) der auf dem Probenteller getrockneten Proben wurden bei folgenden Einstellungen vermessen: Akquisitionsmethode: Reflektor, Spannungspolarität: positiv, Beschleunigungsspannung: 25 kV, Reflektorspannung: 26,3 kV, Linsenspannung: 6,2 kV, Reflektordetektorspannung: 1,72 kV und Deflektionsspannung: 0 kV
Die Kalibrierung der Massenspektren erfolgte durch einen Kalibrierungsalgorithmus der Proteinscape®-Datenbank (Bruker Daltonik) automatisch auf Autoproteolyseprodukte des Trypsins und auf bekannte, immer wieder in den Spektren vorkommende Peptide aus Kontaminationen wie z.B. Keratin. Die Peptidmassen-Spektren wurden unter Zuhilfenahme einer nichtredundanten NCBI Proteindatenbank mit Hilfe der Metasuchmaschine aus Proteinscape® und den Suchalgorithmen MASCOT und ProFound (Version 2002.03.01) analysiert. Auswertung:
Bei dem Vergleich der unterschiedlichen T-Zellpopulationen wurde eine Erhöhung der Proteinmenge des Charcot-Leyden Crystal Proteins (Galectin 10) in stimulierten und nicht stimulierten CD4+CD25+ T-Zellen gegenüber den nicht stimulierten CD4+ T-Zellen gefunden. Diese Ergebnisse wurden in vier voneinander unabhängigen humanen Spendern gefunden. Bei zwei Spendern wurde eine Erhöhung der Proteinmenge des Charcot-Leyden Crystal Proteins auch in einer stimulierten CD4+CD25+ß7+ T-Zell-Subpopulation (Treg) gefunden (Figur 1, Figur 2, Figur 3) .
Das Charcot-Leyden Crystal Protein wurde in den Gelen in drei Isoformen mit unterschiedlichem Molekulargewicht und isoelektrischem Punkt detektiert und identifiziert. Isoform 1 (Spot 68) hatte ein apparentes Molekulargewicht von ca. 14 kDa und einen pl von 6,7, Isoform 2 (Spot 33) hatte ein apparentes Molekulargewicht von ca. 13,5 kDa und einen pl von 5,9, Isoform 3 (Spot 34) hatte ein apparentes Molekulargewicht von ca. 13 kDa und einen pl von 5,9. Alle Isoformen wurden als Charcot-Leyden Crystal Protein (Galectin 10) identifiziert (SEQ ID No. 1 oder SEQ ID No. 2) .
Die drei Isoformen zeigten bei den untersuchten T-Zell- Populationen eine Koregulation.
Galectin 1 (SEQ ID No. 4) wurde ebenfalls in einer höheren Proteinkonzentration in den in stimulierten und nicht stimulierten CD4+CD25+ T-Zellen gegenüber den nicht stimulierten CD4+ T-Zellen gefunden.
Diese Ergebnisse wurden in vier unabhängigen humanen Spendern gefunden. Bei zwei Spendern wurde eine Verringerung der Proteinmenge des Galectin 1 in CD4+CD25+ß7+ T-Zell-Subpopulation (Treg) gefunden (Figur 4) .
Vergleichende Untersuchungen an denselben Zellpopulationen wurden auch bei Mäusen durchgeführt (verwendeter Inzuchtstamm: BALB/c) . Die Sequenzen der entsprechenden Galectin-Proteine sind SEQ ID No . 3 und SEQ ID No. 5.
Beispiel 9: Isolierung und Stimulierung humaner T Zellpopulationen Konventionelle CD4+CD25- T-Effektorzellen (im weiteren Text als CD4+ T-Zellen benannt) und CD4+CD25+ T-Zellen (im weiteren Text als CD25+ Treg Zellen) wurden aus buffy coats und Leukapherisaten gesunder humaner Spender isoliert. CD25+ Zellen wurden mittels CD25-Microbeads (Miltenyi) isoliert. Dies resultierte in CD25high Zellen. Anschließend wurden Kontaminationen von CD4- Zellen wurden durch Depletion CD14-, CD8-, und CD19-Dynabeads (Dynal) . Dieser Reinigungsschritt resultierte in einer Population von CD4+CD25high T-Zellen in einer Reinheit von > 95%. (Teilweise wurden CD25+CD45RA+ T-Zellen mit Hilfe von anti- CD45RA mAb (Pharmingen) in Kombination mit anti-mouse IgG Dynabeads depletiert. Hieraus resultierte eine CD4+CD25+CD45RO+ T-Zellen (Reinheit > 96%) . CD4+CD25- T- Zellen wurden mit Hilfe von CD4-Microbeads isoliert und anschließend CD25+ von T-Zellkontaminationen mit CD25- Dynabeads depletiert (Reinheit der CD4+CD25- T-Zellen > 98%) . Für einen Teil der Analysen wurden 4ß7+ und α4ßl+ Treg Subsets isoliert. Die CD4+CD25+ T-Zellen wurden mit Hilfe von anti-CD25-FITC mAb in Kombination mit anti-FITC- Multisort-Beads (Miltenyi) isoliert und anschließend durch die Depletion von CD4- Kontaminationen weiter aufgereinigt . Das ß7-integrin-positive Subset der Treg Zellen wurde unter Verwendung von anti-ß7-integrin-PE mAb in Kombination mit anti-PE Microbeads isoliert und resultierte in zwei Populationen: CD4+CD25+ ß7+ T-Zellen (Reinheit > 95%, positive selektiert) und CD4+CD25+ ß7- T-Zellen (Reinheit > 90%, negativ selektiert) . Für die polyclonale Aktivierung der T-Zellen wurden 1 μg/ml anti-CD3 (OKT-3) und 2 μg/ml anti-CD28 (CD28.2, Pharmingen) verwendet. Für Proliferationsassays der Zellen wurde eine sub-optimale Stimulierung der Zellen mit 0.5μg/ml anti-CD3 (OKT-3) und Gam a-Strahlen inaktivierte PBMC benutzt. Die Kultivierung der Zellen erfolgte immer in serumfreiem X-VIVO-15 Medium (Cambrex) . Beispiel 10: Klonierung, rekombinante Produktion und Reinigung eines His-Galectin-10 Fusionsproteins
Das Galectin-10 Gen wurde aus humane Leukocyten Quick-Clone cDNA (BD Biosciences) amplifiziert . Das N-terminal His-tag Galectin-10 Konstrukt (pET16b) wurde in den Echerichia coli Stamm BL21(DE3) transfiziert und die Expression mit ImM Isopropyl-beta-D-thiogalactopyranoside (IPTG, Sigma) induziert. Die Zellen produzierten das His-Galectin-10 Fusionsprotein in Gegenwart von IM Sorbitol und 2.5mM Betain. Das rekombinante His-Galectin-10 Fusionsprotein wurde mit Hilfe einer Ni-NTA Affinitätschromatographie (Qiagen) gereinigt. Die Identität des gereinigten Proteins wurde mit Hilfe der MALDI-Massenspektrometrie bestätigt.
Beispiel 11: Herstellung der siRNA und Nukleofektion
Zwei jeweils 19 Basenpaare (bp) lange Sequenzen wurden aus der Sequenz von Galectin-10 ausgewählt und synthetisiert, wobei zusätzlich ein 2bp Überhang synthetisiert wurde. Die dsRNA, die das größte Suppressionsvermögen bzgl. Der Galectin-10 mRNA Expression aufwies wurde ausgewählt: Galectin-10-Sense: GGA GGA AUC AGA CAU UGU CdTdT; Galectin-10-Antisense: GAC AAU GUC UGA UUC CUC CdTdT. Die siRNA wurde in RNase-freiem Wasser verdünnt und bei - 80°C gelagert. Die Nukleofektion wurde nach einem für T- Zellen optimierten Protokoll der Firma Amaxa unter Verwendung des primary Human T Cell Nucleofector™ Kit (Amaxa) durchgeführt. Zu diesem Zweck wurden 3xl06 CD25+ T- Zellen in der NucleofectorTM Solution (Amaxa) suspendiert und mit siRNA in Konzentrationen von 0,5μM bis lμM inkubiert. Direkt im Anschluss an die Nukleofektion wurden die Zellen in warmen X-VIVO-15 (Cambrex) resuspendiert. Beispiel 11: Quantifizierung von Galectin mRNA in T-Zellen mittels RT-PCR
Die Quantifizierung von humaner Galectin-10 mRNA erfolgte aus folgenden T-Zell-Populationen: CD4+ unstimuliert und polyklonal stimuliert mit anti-CD3/CD28 für 24 h, CD4+CD25+ßl+ unstimuliert und polyklonal stimuliert mit anti-CD3/CD28 für 24 h sowie CD4+CD25+ß7+ unstimuliert und polyklonal stimuliert mit anti-CD3/CD28 für 24 h. Die gesamte zelluläre RNA wurde aus lxlO6 Zellen unter Verwendung von TRIZOL (Invitrogen, Karlsruhe, Deutschland) isoliert. Die entsprechende cDNA wurde mit RevertAid M-MulV reverser Transkriptase nach Angaben des Herstellers synthetisiert (MBI Fermentas, St. Leon-Rot, Deutschland). Die RT-PCR wurde unter Verwendung der folgenden Reaktionsmischung durchgeführt: 25 μl Reaktionsmischung enthaltend 2,5 mM MgCl2, 0,2 mM dNTP, 0,5 μM forward und reverse Primer and 0,25 U von Biotherm DNA Polymerase (GeneCraft, Deutschland) .
Folgendes PCR-Programm wurde angewendet: 94 °C 2 min, und jeweils 35 Zyklen mit 94°C 30 s, bei 55 °C 30 s und 72 °C 1 min.
Um die Amplifizierung von genomischer DNA zu vermeiden, wurden folgende Primer designed, die über die Intron/Exon- Grenze der gesuchten cDNA hinüberreichen:
Galectin-10. forward: 5 ' -TAC CCG TGC CAT ACA CAG AGG CTG-3' Galectin-10. reverse: 5 '-CTT ATC TGG CAG CAC TGA GAT GCT C-3' hß-Aktin. forward: 5 '-GAG CGG GAA ATC GTG CGT GAC-3' hß-Aktin. reverse: 5' -GAA GGT AGT TTC GTG GAT GGC-3 ' 18S rRNA. forward: 5'-TCG ATG CTC TTA GCT GAG TGT CC-3' 18S rRNA. reverse: 5' -TGA TCG TCT TCG AAC CTC CG-3' EFl-α. forward: 5 ' -GAT TAC AGG GAC ATC TCA GGC TG-3' EFl-α. reverse: 5 '-TAT CTC TTC TGG CTG TAG GGT GG-3' FoxP3. forward: 5 ' -CTA CGC CAC GCT CAT CCG CTG G-3' FoxP3. reverse: 5 ' -GTA GGG TTG GAA CAC CTG CTG GG-3'
Die Real Time Analyse von Galectin-10 mRNA wurde mit Hilfe des iCycler (Bio-Rad, München, Deutschland) unter Verwendung von IQ SYBRO Green Supermix (Bio-Rad) durchgeführt. Nach Normalisierung der Intensitäten auf die Expression von 18S rRNA wurden die relativen Expressionslevel von Galectin-10 mRNA berechnet.
Beispiel 12: Produktion eines monoklonalen anti-Galectin-10 Antiserums
Die Immunisierung von Kaninchen mit dem rekombinanten Galectin-10 erfolgte mit 50 μg Protein in Lösung. Diese Lösung wurde mit einem gleichen Volumen an Complete Freundes Adjuvant (CFA) emulgiert und intravenös an mehreren Stellen entlang des Rückens des Kaninchens injiziert. Weitere Boosterinjektionen von Galectin-10 in CFA wurden dreimal innerhalb von drei Wochen gegeben. Die Antikörperproduktion wurde durch ELISA und Westernblot- Analysen verfolgt. Nach drei finalen Blutungen wurde das IgG aus dem Antiserum nach einer Methode nach Harboe und Ingild (Harboe N und Ingild A. „Immunization, isolation of immunoglobulins, estimation of antibody titre." Scand J Immunol Suppl. 1 : 161 (1973) ) isoliert .
Beispiel 13: Western Blot Analyse
Für die Western Blot Analysen nach 1D-PAGE wurden die Zellen in SDS-Puffer lysiert und die Proteinkonzentration mit einem DC Proteinassay (Bio Rad, München, Deutschland) analysiert. Als Standard wurde Serumalbumin eingesetzt. Die Proteine wurden in 5-10μg/ Tasche in 16% Tricin SDS Polyacrylamidgelen aufgetrennt und anschließend auf Membranen transferiert. Unspezifische Bindungsstellen wurden durch Roti-Block (Roth, Karlsruhe, Deutschland) abgesättigt. Für die Immundetektion wurden die Membranen jeweils 1 Stunde erst mit dem anti- Galectin-10 Antikörper und anschließend mit einem Meerrettichperoxidase- konjugierten sekundären anti-Kaninchen Antikörper inkubiert. Die Peroxidaseaktivität wurde durch eine Farbreaktion mit 3, 3' -Diaminobenzidin (DAB, DakoCytomation, Copenhagen, Denmark) sichtbar gemacht.
Für Western Blot Analysen nach 2D-PAGE wurden 60 μg der löslichen Proteine aus den Gesamtzelllysaten in einem 2D Gel getrennt und die Proteine auf eine Nitrocellulosemembran transferiert. Nach dem Absättigen unspezifischer Bindungsstellen mit Roti-Block über Nacht wurden die Membranen 1 Stunde mit 2 μg anti-Galectin-10 Antikörper und anschließend für 1 Stunde mit einem alkalische Phosphatase-konjugierten anti-Kaninchen Antikörper (Sigma, Taufkirchen, Deutschland) inkubiert. Die Anfärbung erfolgte NBT/BCIP. Die detektierten Signale im 2D Western Blot wurden mit den silbergefärbten Proteinen der 2D-Gele zur Deckung gebracht.
Beispiel 14: Immunocytochemie
Cytozentrifugationspräparationen von Frisch isolierten CD4+ oder CD25+ T-Zellen wurden luftgetrocknet und bei -20°C bis zum Färben gelagert. Zum Färben wurden die Probenträger kurz aufgetaut und anschließend in 4% Paraformaldehyd für 15 min bei Raumtemperatur fixiert. Die Zellen wurden mit PBS gewaschen und mit 50 mM NH4C1 in PBS für 10 Minuten inkubiert. Anschließend wurden die Zellen auf Eis mit 0.2% Triton X-100 innerhalb von 5 Minuten permeabilisiert . Nach dem Waschen mit PBS wurden die Cytospins mit einer Peroxidase blocking Lösung (DakoCytomation, Copenhagen, Denmark) für 5 Minuten inkubiert um endogene Peroxidaseaktivität zu neutralisieren. Anschließend wurden unspezifische Bindungsstellen mit 20μg/ml Ziegenserum (normal goat serum ; Santa Cruz Biotechnology, Santa Cruz, USA) abgesättigt. Die Immundetektion erfolgte durch Zugabe von lOμg/ml anti-Galectin-10 Antikörper oder als Kontrolle mit dem pre-Immunserum über Nacht bei 4°C. Die Cytospins wurden mit einem Meerrettichperoxidase-konjugierten anti- Kaninichen Antikörper aus Ziege (554021, BD Biosciences Pharmingen) inkubiert. Danach wurde den die Zellen intensiv mit PBS gewaschen und die Peroxidaseaktivität durch eine Farbreaktion mit 3, 3' -Diaminobenzidin (DakoCytomation, Kopenhagen, Dänemark) sichtbar gemacht.
Beispiel 15: Vergleichende Proteomstudie humaner CD25+ Tregs versus konventionaller CD4+ T-Zellen
Natürlich vorkommende CD25+ Tregs sind durch die einzigartige Eigenschaften, die Aktivierung konventioneller CD4+ T-Zellen zu supprimieren charakterisiert. Bis jetzt ist allerdings nur wenig über die Proteine bekannt, die in diesen zellkontaktabhängigen Prozess involviert sind. Für die Identifizierung solcher Proteine, die in die Funktion der CD25+ Treg-Zellen involviert sind, wurde eine differenzielle Proteomanalyse von ruhenden und aktivierten konventionellen CD4+ T-Zellen im Vergleich zu ruhenden und aktivierten CD25+ Treg Zellen durchgeführt. Zu diesem Zweck wurden bis zu 108 CD25+ Treg and CD4+ T-Zellen mit sehr hoher Reinheit aus buffy coats oder Leukapheresaten isoliert. Die T-Zellpräparationen wurden vor der Proteomanalyse hinsichtlich ihrer Funktionalität charakterisiert. Die ruhenden Zellen wurden direkt nach der Isolierung mittels 2D-PAGE analysiert, während die aktivierten Zellen für 48 Stunden polyklonal aktiviert wurden. Die für die Proteomstudie eingesetzten 2D-Gele deckten einen pI-Bereich von 4 bis 10 und einen Molekulargewichtsbereich von 6 bis 150 kDa ab. Ca. 1600 Proteinspots wurden beim Vergleich der Gele in allen Gelen detektiert und gematched. Die Gele einer Probe wurden als Dreifachbestimmung angefertigt, wobei sich die Proteinspotmuster nicht nur innerhalb einer Probe sehr ähnelten, sondern auch bei dem Vergleich der unterschiedlichen T-Zellpopulationen und auch der untersuchten individuellen humanen Spendern. Der größte Anteil' (>90%) aller darstellbaren Proteinspots zeigte eine hohe Reproduzierbarkeit sowohl in der relativen Lage im 2D- Gel als auch in der Spotintensität. Die Galetin-10 Isoformen 1 bis 3 weisen mit einer Intensitätserhöhung um Faktor 10 bis 40 die größten Unterschiede im Vergleich auf.
Die Expression von Galectin-10 ist bislang nur in Granulozyten beschrieben (Golightly, L. M., Thomas, L. L., Dvorak, A. M. and Ackerman, S. J. "Charcot-Leyden crystal protein in the degranulation and recovery of activated basophils" J. Leukoc. Biol. 51, 386-392 (1992); Dvorak, A. M., Letourneau, L., Weller, P. F. and Ackerman, S. J. "Ultrastructural localization of Charcot-Leyden crystal protein (lysophospholipase) to intracytoplasmic crystals in tumor cells of primary solid and papillary epithelial neoplasm of the pancreas" Lab. Invest. 62, 608-615 (1990); Dvorak, A. M. and Ackerman, S. J. "Ultrastructural localization of the Charcot-Leyden crystal protein (lysophospholipase) to granules and intragranular crystals in rnature human basophils" Lab. Invest. 60, 557-567 (1989) ) .
Beispiel 16: Nachweis der Expression von Galectin-10 mRNA in humanen CD25+ Treg Subsets
Die Ergebnisse der Proteomanalyse humaner T-Zellen haben gezeigt, dass Galectin-10 Protein am stärksten durch CD25+ Tregs produziert wird. Dieses Resultate wurden mittels konventioneller RT-PCR und real-time PCR auf mRNA-Ebene weiter analysiert. Im Gegensatz zu den Proteindaten der Proteomstudie wurde selbst nach 30 RT-PCR-Zyklen keine Galectin-10 mRNA in konventionellen CD4+ T-Zellen nachgewiesen. (Figur. 6A) . Unter denselben Bedingungen wurde jedoch in frisch isolierten CD25+ Tregs ein sehr starkes Signal für Galectin-10 mRNA detektiert. In weiteren Analysen wurde der Gehalt an Galectin-10 mRNA in konventionallen CD4+ T-Zellen und CD25+ Treg Zellen durch quantitative real-time PCR untersucht. Frisch isolierte CD4+ T-Zellen exprimieren sehr geringe Mengen an Galectin-10 mRNA während frisch isolierte CD25+ Treg Zellen große Mengen an Galectin-10 mRNA exprimieren. In beiden Zellpopulationen nehmen die mRNA Level nach einer polyclonalen Aktivierung ab. Bei CD4+ T-Zellen ist 48 Stunden nach der Aktivierung keine Galectin-10 mRNA mehr nachweisbar.
Beispiel 17: Western Blot Analyse von Galectin-10 in Zelllysaten ruhender und activierter humaner CD4+ T-Zellen sowie CD25+ Treg Zellen
Um die Daten der Proteomanalyse mit Western Blot Analysen zu verifizieren wurde rekombinantes Galectin-10 hergestellt und daraus ein polyklonales Antiserum generiert. Die IgG Fraktion des hergestellten Antiserums wurde für die Detektion von Galectin-10 in Lysaten von ruhenden sowie aktivierten konventionellen humanen CD4+ T-Zellen und CD25+ Treg Zellen eingesetzt. Die Proteine der Lysate wurden zuvor mittels eindimensionaler oder zweidimensionaler Gelelektrophorese aufgetrennt. In Figur 7 ist gezeigt, dass in Lysaten konventioneller CD4+ T-Zellen Galectin-10 kaum detektierbar ist während in den Lysaten aus CD25+ Treg Zellen eine stake Färbung zu erkennen ist. Als Positivkontrolle diente hier das rekombinante Galectin-10. Der in Figur 7 dargestellte Western Blot gibt ein repräsentatives Ergebnis aus sieben unabhängigen Experimenten von Zellen unabhängiger gesunder Spender wieder. Zusätzlich zeigt dieses Ergebnis, dass der hergestellte Antikörper gegen das rekombinat hergestellte Galectin-10 auch das natürliche Galectin-10 Protein erkennt. In den Proteomanalysen wurden drei unterschiedliche Isoformen des Galectin—10 Proteins detektiert und massenspektrometrisch identitifiziert . In Western Blot-Analysen nach Auftrennung der Proteine aus dem Lysat humaner CD25+ Treg Zellen wurde gezeigt, dass der Antikörper alle drei Isoformen des Proteins anfärbt. Zusätzlich wurden noch weitere sehr schwache Signale für zwei (vier) weitere Isoformen des Proteins erhalten. Diese Signale konnten mit den silbergefärbten 2D-Gelen zur Deckung gebracht werden (Fig. 3B) .
Beispiel 18: Färbung konventioneller CD4+ T-Zellen und CD25+ Treg Zellen mit dem rabbit anti-galectin-10 IgG
Die Tatsache, dass das Protein Galectin-10 fast ausschließlich in CD25+ regulatorischen T-Zellen detektiert wird zeigt sein Potential als Marker für diese Zellen, um zwischen konventionellen CD4+ T-Zellen und CD25+ regulatorischen Zellen zu unterscheiden. Um dies zu zeigen, wurden Cytospinpräparationen von beiden T-Zellpopulationen, die aus demselben Spender isoliert wurden angefärbt. Figur 8. zeigt, dass unter den frisch isolierten konventionellen CD4+ T-Zellen nur ein geringer Anteil von weniger als 1% angefärbt wurde. Dieser geringe Anteil ist wahrscheinlich in einer geringen Kontamination durch CD25+ T-Zellen begründet. In der Population der CD25+ regulatorischen T- Zellen zeigten 20-30% eine starke Färbung während sich die anderen Zellen nicht anfärbten. Dies Ergebnis zeigt, dass die CD4+CD25+ T-Zellen, die mit antikörpergekoppelten magnetischen Beads aus dem peripheren Blut isoliert werden, nicht eine homogene Zellpopulation sind, sondern sich aus aktivierten konventionellen CD4+CD25+ T-Zellen und CD25+ regulatorischen T-Zellen zusammensetzen. Durch die Färbung der Zellen lassen sich auch Angaben zur subzellulären Lokalisation von Galecin-10 in regulatorischen T-Zellen machen. In den wenigen positiv angefärbten Zellen der Population der konventionellen CD4+ T-Zel'len lag Galectin- 10 gleichmäßig in der Zelle verteilt vor während in den CD25+ regulatorischen T-Zellen eine Anreicherung von Galectin-10 an der Plasmamembran zu erkennen war. Basierend auf dem unterschiedlichen Färbeverhaltens (Vorkommens von Galectin-10) kann durch eine Anfärbung mit Antikörpern oder Bindern gegen Galectin-10 zwischen konventionellen CD4+ T- Zellen und CD25+ regulatorischen T-Zellen unterschieden werden.
Beispiel 19: Funktionelle Eigenschaften von Galectin-10 in humanen CD25+ regulatorischen T-Zellen
Eine Inhibierung der Galectin-10 Expression durch siRNA hebt den anergen Zustand dieser Zellen auf und verringert das Suppressionsvermögen. Mit einer geeigneten siRNA wurde eine Inhibierung der Galectin-10 Expression bewirkt, um die Funktion dieses Proteins innerhalb der CD25+ regulatorischen T-Zellen näher zu charakterisieren. Zu diesem Zweck wurden CD25+ regulatorische T-Zellen mit mittels Nukleofection mit Galectin-10 siRNA transfiziert und die Expressionsrate von Galectin-10 mRNA quantifiziert. 48 Stunden nach der Transfektion war der Galectin-10 mRNA- Gehalt am stärksten reduziert. Fig. 9 zeigt die durch Galectin-10 siRNA reduzierte Expression der Galectin-10 mRNA. Bei 0,5 μM Galectin-10 siRNA reduziert dich die Galectin-10 mRNA auf 27% des Gehaltes im Vergleich zur Kontrolle und bei 1,0 μM Galectin-10 siRNA reduziert dich die Galectin-10 mRNA auf 11% des Gehaltes im Vergleich zur Kontrolle (SC = scrambled control: 0,5 μM und 1,0 μM) . Die mit siRNA transfizierten CD25+ T-Zellen wurden nach dem Erreichen einer maximalen Suppression von Galectin-10 mRNA polyklonal mit anti-CD3 und anti-CD28 monoklonalen Antikörpern für 48 Stunden aktiviert. Die Proliferation dieser Zellen wurde über einen Zeitraum von weiteren 96 Stunden durch die Aufnahme von radioaktiv markiertem Thymidin verfolgt. Die Proliferation der mit siRNA transfizierten Zellen war deutlich höher als bei den entsprechenden Kontrollzellen (scrambled controls SC: 0.5 μM, 1 μM) . und erreichte eine Proliferation, die der von konventionellen CD4+ T-Zellen entspricht (Figur 9) Die Proliferation von konventionellen CD4+ T-Zellen, die analog mit der Galectin-10 siRNA transfiziert wurden, zeigte keine Veränderung. Mit diesen Ergebnissen wird gezeigt, dass Galectin-10 eine entscheidende Funktion bei der Aufrechterhaltung des anergen Zustandes der CD25+ regulatorischen T-Zellen hat.
Um den Einfluss von Galectin-10 auf die Suppressionseigenschaften der CD25+ regulatorischen T- Zellen zu untersuchen, CD25+ regulatorische T-Zellen nach Transfektion mit Galectin-10 siRNA mit konventionellen CD4+ T-Zellen kokultiviert . Hierbei wurde die Proliferation der konventionellen CD4+ T-Zellen nicht verändert. Dies bedeutet, dass das Vorhandensein von Galectin-10 Protein in den CD25+ regulatorischen T-Zellen für die suppressiven Eigenschaften der Zellen essenziell ist.
Beispiel 20: Kryokonservierung von T-Zellen
Für die Kryokonservierung von T-Zellen wurde ein Zellpellet in 50 μl Tissue-Tek (Miles Diagnostic, Elkhart USA) aufgenommen und durch vorsichtiges Rühren in Suspension gebracht. Diese Zellsuspension wurde tropfenweise in flüssigen Stickstoff tiefgefroren. Ein gefrorener Tropfen wurde in eine Kryoplastikform überführt und mit Tissue-Tek aufgefüllt und erneut in flüssigem Stickstoff gefroren. Die Schnitte wurden mit einer Schichtdicke von 3 μm angefertigt und die Schnitte anschließend über Nacht bei Raumtemperatur getrocknet.
Das Anfärben von Kryoschnitten mit Antikörpern erfolgte analog zu den Cytospinpräparationen. -
Erläuterung der Sequenzen:
SEQ ID No. 1, Human Charcot-Leyden Crystal Protein (Galectin 10) :
1HDK
A Chain A, Charcot-Leyden Crystal Protein - Pcmbs Complex
ACCESSION 1HDK; gi 117942629 Organismus: Homo sapiens
SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFGR RVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKPE AVKMVQVWRDISLTKFNVSYLKR
SEQ ID No. 2:
Q05315
Eosinophil lysophospholipase (Charcot-Leyden crystal protein) . (Lysolecithin acylhydrolase) (CLC) (Galectin-10) .
ACCESSION: Q05315; gi | 547870
Organismus: Homo sapiens
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEEΞDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSIΞVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWRDISLTKFNVSYLKR SEQ ID No. 3, Maus Charcot-Leyden crystal protein homolog: P97400
Eosinophil lysophospholipase (Charcot-Leyden crystal protein homolog) (Lysolecithin acylhydrolase) (CLC) (Galectin-10) . ACCESSION: P97400; gi 12829838
Organismus: Mus musculus
oder
AAB41694
Charcot-Leyden crystal protein ortholog ACCESSION: AAB41694; gi 11813526 Organismus: Mus musculus
EPYLQVDFHTEMKEDSDIAFHSRVYFGHWVVMNSRVNGAWQYEVTCHNMPFQDGKPFNL SISVPPDKY
SEQ ID No. 4, Human Galectin-1:
NP_002296 beta-galactosidase binding lectin precursor; Lectin, galactose-binding, soluble, 1; galectin
Organismus: Homo sapiens
ACCESSION NP_002296 ; gi 14504981
MACGLVASNLNLKPGECLRVRGEVAPDAKSFVLNLGKDSNNLCLHFNPRFNAHGDANTI VCNSKDGGAWGTEQREAVFPFQPGSVAEVCITFDQANLTVKLPDGYEFKFPNRLNLEAI NYMAADGDFKIKCVAFD
SEQ ID No. 5, Maus Galectin-1: P16045
Galectin-1 (Beta-galactoside-binding lectin L-14- I) (Lactose-binding lectin 1) (S-Lac lectin 1) (Galaptin) (14 kDa lectin) ACCESSION: P16045, gi 1126172 MACGLVASNLNLKPGECLKVRGEVASDAKSFVLNLGKDSNNLCLHFNPRFNAHGDANTI VCNTKEDGTWGTEHREPAFPFQPGSITEVCITFDQADLTIKLPDGHEFKFPNRLNMEAI NYMAADGDFKIKCVAFE
SEQ ID No. 6, Nukleinsäure kodierend für eine Aminosäuresequenz gemäß SEQ ID No. 1 oder SEQ ID No. 2 (Galectin 10) :
CAATTCAGAAGAGCCACCCAGAAGGAGACAACAATGTCCCTGCTACCCGTGCCATACAC AGAGGCTGCCTCTTTGTCTACTGGTTCTACTGTGACAATCAAAGGGCGACCACTTGTCT GTTTCTTGAATGAACCATATCTGCAGGTGGATTTCCACACTGAGATGAAGGAGGAATCA GACATTGTCTTCCATTTCCAAGTGTGCTTTGGTCGTCGTGTGGTCATGAACAGCCGTGA GTATGGGGCCTGGAAGCAGCAGGTGGAATCCAAGAACATGCCCTTTCAGGATGGCCAAG AATTTGAACTGAGCATCTCAGTGCTGCCAGATAAGTACCAGGTAATGGTCAATGGCCAA TCCTCTTACACCTTTGACCATAGAATCAAGCCTGAGGCTGTGAAGATGGTGCAAGTGTG GAGAGATATCTCCCTGACCAAATTTAATGTCAGCTATTTAAAGAGATAACCAGACTTCA TGTTGCCAAGGAATCCCTGTCTCTACGTGAACTTGGGATTCCAAAGCCAGCTAACAGCA TGATCTTTTCTCACTTCAATCCTTACTCCTGCTCATTAAAACTTAATCAAACTTCAAAA AAAAAAAA
SEQ ID No. 7, Nukleinsäure kodierend für eine Aminosäuresequenz gemäß SEQ ID No. 4 (Galectin 1):
ATCTCTCTCGGGTGGAGTCCTTCTGACAGCTGGTGCGCCTGCCCGGGAACATCCTCCTG GACTCAATCATGGCTTGTGGTCTGGTCGCCAGCAACCTGAATCTCAAACCTGGAGAGTG CCTTCGAGTGCGAGGCGAGGTGGCTCCTGACGCTAAGAGCTTCGTGCTGAACCTGGGCA AAGACAGCAACAACCTGTGCCTGCACTTCAACCCTCGCTTCAACGCCCACGGCGACGCC AACACCATCGTGTGCAACAGCAAGGACGGCGGGGCCTGGGGGACCGAGCAGCGGGAGGC TGTCTTTCCCTTCCAGCCTGGAAGTGTTGCAGAGGTGTGCATCACCTTCGACCAGGCCA ACCTGACCGTCAAGCTGCCAGATGGATACGAATTCAAGTTCCCCAACCGCCTCAACCTG GAGGCCATCAACTACATGGCAGCTGACGGTGACTTCAAGATCAAATGTGTGGCCTTTGA CTGAAATCAGCCAGCCCATGGCCCCCAATAAAGGCAGCTGCCTCTGCTCCCCTG
SEQ ID No. 8 MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWRDISLTKFNVSYLK
SEQ ID No. 9
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWRDISLTKFNVSYL
SEQ ID No. 10
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWRDISLTKFNVSY
SEQ ID No. 11
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWRDISLTKFNVS
SEQ ID No. 12
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWRDISLTKFNV
SEQ ID No. 13
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWRDISLTKFN
SEQ ID No. 14
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWRDISLTKF SEQ I D No . 15
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWRDISLTK
SEQ ID No. 16
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWRDISLT
SEQ ID No. 17
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWRDISL
SEQ ID No. 18
MΞLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSΞYTFDHRIKP EAVKMVQVWRDIS
SEQ ID No. 19
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWRDI
SEQ ID No. 20
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWRD
SEQ ID No. 21 MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWR
SEQ ID No. 22
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVWR
SEQ ID No. 23
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEEΞDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQVW
SEQ ID No. 24
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQV
SEQ ID No. 25
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMVQ
SEQ ID No. 26
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKMV
SEQ ID No. 27
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRWMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVKM SEQ I D No . 28
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAVK
SEQ ID No. 29
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EAV
SEQ ID No. 30
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP EA
SEQ ID No. 32
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVEΞKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP E
SEQ ID No. 33
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIKP
SEQ ID No. 34
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRIK
SEQ ID No. 35
MSLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVCFG RRVVMNSREYGAWKQQVEΞKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI
SEQ ID No. 36 Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI
SEQ ID No. 37
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWRDISLTKFNVSYLK
SEQ ID No. 38
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWRDISLTKFNVSYL
SEQ ID No. 39
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWRDISLTKFNVSY
SEQ ID No. 40
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVEΞKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWRDISLTKFNVS
SEQ ID No. 41
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWRDISLTKFNV
SEQ ID No. 42
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRWMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWRDI SLTKFN SEQ I D No . 43
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWRDISLTKF
SEQ ID No. 44
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWRDISLTK
SEQ ID No. 45
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWRDISLT
SEQ ID No. 46
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWRDISL
SEQ ID No. 47
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWRDIS
SEQ ID No. 48
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWRDI
SEQ ID No. 49 Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWRD
SEQ ID No. 50
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWR
SEQ ID No. 51
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVWR
SEQ ID No. 52
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQVW
SEQ ID No. 53
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQV
SEQ ID No. 54
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMVQ
SEQ ID No. 55
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRWMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKMV SEQ ID No . 56
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVKM
SEQ ID. No. 57
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAVK
SEQ ID No. 58
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEAV
SEQ ID No. 59
Ac-SLLPVPYTEAAΞLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPEA
SEQ ID No. 60
Ac-ΞLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KPE
SEQ ID No. 61
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI KP
SEQ ID No. 62 Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI K
SEQ ID No. 63
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHRI
SEQ ID No. 64
Ac-SLLPVPYTEAASLSTGSTVTIKGRPLVCFLNEPYLQVDFHTEMKEESDIVFHFQVC FGRRVVMNSREYGAWKQQVESKNMPFQDGQEFELSISVLPDKYQVMVNGQSSYTFDHR
Erläuterung der Figuren:
Figur 1
Änderung der Proteinkonzentration von Charcot-Leyden Crystal Protein Isoform 1 (Spot 68) bei dem Vergleich humaner regulatorischer T-Zellen (CD4+CD25+ und
CD4+CD25+ß7+) mit konventionellen T-Zellen (CD4+) nach polyklonaler Stimulierung mit anti-CD3 und anti-CD28
Antikörpern. Die Pfeile zeigen die differenziellen Proteinspots .
Figur 2
Änderung der Proteinkonzentrationen von Charcot-Leyden Crystal Protein Isoform 2 (Spot 33) und Isoform 3 (Spot 34) bei dem Vergleich humaner regulatorischer T-Zellen (CD4+CD25+ und CD4+CD25+ß7+) mit konventionellen T-Zellen (CD4+) nach polyklonaler Stimulierung mit anti-CD3 und anti-CD28 Antikörpern. Die Pfeile zeigen die differenziellen Proteinspots.
Figur 3
Änderung der Proteinkonzentration von Charcot-Leyden
Crystal Protein Isoform 1 (Spot 68) bei dem Vergleich von stimulierten versus nicht stimulierten humanen regulatorischen T-Zellen (CD4+CD25+ und CD4+CD25+ß7+) und konventionellen T-Zellen (CD4+) . Die Pfeile zeigen die differenziellen Proteinspots.
Figur 4
Änderung der Proteinkonzentration von Galectin 1 im
Vergleich humaner regulatorischer T-Zellen (CD4+CD25+ und
CD4+CD25+ß7+) mit konventionellen T-Zellen (CD4+) nach polyklonaler Stimulierung mit anti-CD3 und anti-CD28
Antikörpern. Die Pfeile zeigen die differenziellen Proteinspots .
Figur 5 :
Quantifizierung von Spotintensitäten von Galectin-10 (Spot 68) nach Trennung der Gesamtlysate von ruhenden und 48 h aktivierten konventionellen T-Zellen und Treg. Die Spotintensitäten wurden mit Hilfe der Proteomweaver Bildauswertungssoftware ermittelt und jeweils auf die Spotintensität in aktivierten Cd4+ konventionellen T-Zellen nor ailisiert (Relative Intensität = 1) . Sowohl in ruhenden als auch in aktivierten CD4+CD25+ Treg wurden ca. 40-fach höhere Intensitäten ermittelt als in konventionellen T- Zellen.
Figur 6:
Galectin-10 mRNA Expression in CD25+ Tregs
A: RT PCR Analyse der Galectin-10 mRNA und ß-Aktin mRNA aus frisch isolierten sowie aktivierten konventionellen CD4+ T- Zellen und CD25+ Tregs.
B: Quantifizierung der relativen Galectin-10 mRNA in CD4+ T-Zellen und CD25+ Tregs. cDNA Proben wurden mittels quantitativer real-time PCR unter Verwendung spezifischer Primer für Galectin-10 oder EFl-α. analysiert Der relative Gehalt der Galectin-10 mRNA in jeder Probe wurde auf den Gehalt von EFl-α mRNA normalisiert.
C: Quantifizierung des relativen Gehalts an FoxP3 mRNA in CD4+ T-Zellen und CD25+ Tregs. cDNA Proben wurden mittels quantitativer real-time PCR unter Verwendung spezifischer Primer für FoxP3 oder EFl-α. analysiert Der relative Gehalt der FoxP3 mRNA in jeder Probe wurde auf den Gehalt von EFl-α mRNA normalisiert.
(activated = 24 Stunden mit anti-CD3 [0.5μg/ml], anti-CD28 mAb [lμg/ l] aktiviert) .
Figur 7: Western Blot Analyse der Galectin-10 Produktion in CD25+ Tregs und konventionellen CD4+ T-Zellen
A ID PAGE: Frisch isolierte (T = 0 Stunden) und aktivierte T-Zellen (lμg/ml monoklonaler anti-CD3 and 2μg/ml monoklonaler anti-CD28 Antikörper für die angegebene Zeitdauer) wurden lysiert und 5μg des Gesamtproteinextraktes mittels 1D-PAGE aufgetrennt. Die auf einer Membran immobilisierten Proteine wurden mit 0,5μg anti-galectin-10 IgG inkubiert. Der Blot wurde mit einem Meerrettichperoxidase konjugierten anti-Kaninchen- Antikörper unter Verwendung des ECL Substrates mittels Chemilumineszenz sichtbar gemacht.
B 2D PAGE: Western Blot Analyse nach 2D PAGE der Galectin- 10 Isoformen. Das Gesamtzelllysat isolierter und für 48 Stunden mit lμg/ml monoklonalen anti-CD3 und 2μg/ml monoklonalen anti-CD28 Antikörpern aktivierten CD25+ Tregs wurde im 2D Gel aufgetrennt. Der Immunoblot wurde analog zu dem nach eindimensionaler Trennung angefertigten durchgeführt, jedoch wurde für die Visualiersung der Isoformen ein Alkalische Phosphatase-konjugierter sekundärer anti-Kaninchen-Antikörper und BCIP/NBT als Substrate verwendet. Die Signale des 2D-Gel Western Blots wurden mit einem silbergefärbten 2D-Gel derselben T-Zellen zur Deckung gebracht. Alle drei zuvor als Galectin-10 identifizierten Proteine wurden mit den Signalen des Western-Blots zur Deckung gebracht.
Figur 8: Färbung konventioneller CD4+ T-Zellen und CD25+ Tregs mit polyklonalem anti-Galectin-10 Antibody
Kryoschnittpräparationen aktivierter konventioneller CD4+ T-Zellen und CD25+ Treg Zellen. Die so präparierten Zellen wurden in einem Kontrollansatz mit anti-CD3 Antikörpern angefärbt. Dieses Oberflächenprotein wird sowohl auf konventionellen CD4+ T-Zellen als auch auf Treg-Zellen exprimiert. In den Kyroschnitten wurden beiden Zellpopulationen positiv angefärbt. Als Negativkontrolle diente hier der Sekundärantikörper anti-Kaninichen IgG. Galectin-10 wurde mit dem anti-Galectin-10 Antiserum angefärbt. Hierbei wurde deutlich gezeigt, dass Galectin-10 nur in Treg Zellen nachweisbar ist. Die konventionellen T- Zellen zeigten keine positive Färbung. Als Negativkontrolle diente hier das Präimmunserum.
Figur 9: Galectin-10 Gen knock-out durchbricht die Anergie humaner CD25+ Tregs
A Galectin-10 Expression: Frisch isolierte CD25+ Tregs wurden mit 0,5 μM oder IμM gegen Galectin-10 gerichtete siRNA oder lμM Kontroll-siRNA (scrambled control: SC) transfiziert. 24 Stunden nach Transfektion wurden die Zellen lysiert und die RNA isoliert und für realtime PCR Analysen verwendet. Die Menge der Galectin-10 mRNA wurde quantifiziert und normalisiert auf die mRNA Menge des Haushaltsgens EFl-α (NF=nucleofected ohne siRNA) . B Proliferation: 48 Stunden nach der Transfektion wurden die T-Zellen mit monoklonalen anti-CD3 und anti-CD28 Antikörpern (lμg/ml + 2μg/ml) stimuliert. Die Proliferation der T-Zellen wurde nach weiteren vier Tagen durch die Zugabe von 37 kBq/Kavität 3H-Tdr für weitere 16 Stunden gemessen.
C Suppression: Die suppressiven Eigenschaften der Treg auf konventionelle T-Zellen nach Transfektion der Treg mit Galectin-10 siRNA wurde durch Messung der Proliferation der konventionallen T-Zellen bestimmt. Hierzu wurden beide Zelltypen in Kokultur kultiviert. Die Proliferation der Treg-Population wurde zuvor durch radiaktive Bestrahlung inhibiert. Kokulturexperimente zeigten deutlich eine Abnahme der suppressiven Eigenschaften der Treg nach einer Inhibierung der Galectin-10 Transkription und somit der Proteinproduktion durch siRNA.
Figur 10: Reinheitskontrolle des rekombinant hergestellten humanen Galectin-10 und der Selektivität des hergestellten polyklonalen anti-Galectin-10 Antiserums.
Nach Entfernung proteolytischer Abspaltung des His-tags von His-Galectin-10 durch Factor Xa wurde die Protease (Factor Xa) mit Hilfe einer Banzamidinsäule entfernt. Der abgespaltene wurde über Ni-NTA Affinitätschromatographie entfernt. Das so gereinigte Protein wurde mittels ID PAGE getrennt und mit Coomassie visualisiert . Die Selektivität des Antiserums wurde nach analoger Trennung des rekombinanten Proteins im Western Blot bestätigt.

Claims

Patentansprüche
1. Isolierte regulatorische CD4+CD25+ T-Zelle enthaltend mindestens ein Galectin.
2. Isolierte T-regulatorische Zelle nach Anspruch 1, bestehend aus der Subpopulation CD4+CD25+ß7+.
3. Isolierte T-regulatorische Zelle nach einem der Ansprüche 1 oder 2, enthaltend mindestens ein Galectin ausgewählt aus der Gruppe Galectin 1-14.
4. Isolierte T-regulatorische Zelle nach einem der Ansprüche 1 bis 3, enthaltend ein humanes Galectin oder ein homologes Protein.
5. Isolierte T-regulatorische Zelle nach einem der Ansprüche 1 bis 4, enthaltend mindestens ein Galectin ausgewählt aus der Gruppe SEQ ID No. 1 bis SEQ ID No. 5.
6. Isolierte T-regulatorische Zelle nach einem der Ansprüche 1 bis 5, enthaltend mindestens ein Galectin ausgewählt aus der Gruppe SEQ ID No. 1 oder SEQ ID No. 2 mit den Isoformen: a.) apparentes Molekulargewicht von 14 kDa und einen pl von 6,7, b.) apparentes Molekulargewicht von 13,5 kDa und einen pl von 5,9, c.) apparentes Molekulargewicht von 13 kDa und einen pl von 5,9.
7. Isolierte T-regulatorische Zelle nach Anspruch 6, wobei die Isoformen ausgewählt sind aus der Gruppe SEQ ID No. 8 bis SEQ ID No. 64.
8. Isolierte regulatorische T-Zelle nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass mindestens ein Galectin sekretiert, membranständig oder auf der Oberfläche der T-regulatorischen Zelle oder im Cytosol präsentiert ist.
9. Isolierte regulatorische T-Zelle nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mindestens ein Galectin in der regulatorischen T- " Zelle oder auf der Oberfläche der regulatorischen T- Zelle angereichert ist.
10. Isolierte regulatorische T-Zelle nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass mindestens eine Nukleinsäure kodierend für mindestens ein Galectin enthaltend ist und ggfs. eine oder mehrere nicht-kodierende Sequenzen und/oder eine Poly (A) -Sequenz und/oder Erkennungssequenzen und/oder regulatorische Sequenzen, wie Promotor- oder Enhancer-Sequenzen umfasst.
11. Isolierte T-regulatorische Zelle nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Nukleinsäuresequenz ausgewählt ist aus SEQ ID No. 6 oder SEQ ID No. 7.
12. Isolierte oder native regulatorische CD4+CD25+ T-Zelle enthaltend mindestens ein Galectin als Target oder Marker.
13. Binder an mindestens einer isolierten regulatorischen T-Zelle nach einem der Ansprüche 1-11 oder nativen regulatorische T-Zelle nach Anspruch 12.
14. Binder nach Anspruch 13, ausgewählt aus der Gruppe Inhibitor, Agonist, Antagonist, Sonde, Antikörper oder Immunmodulator.
15. Binder nach einem der Ansprüche 13 oder 14, wobei der Binder ein oder mehrere Epitope gegen Galectin aufweist .
16. Binder nach Anspruch 15, wobei der Binder zusätzlich ein' oder mehrere Epitope gegen ein Oberflächenprotein aufweist .
17. Binder nach Anspruch 16, wobei das Oberflächenprotein ausgewählt ist aus der Gruppe CD25, CD44, CD45, GITR, CTLA-4, Fox P3.
18. Binder nach einem der Ansprüche 13 bis 17, wobei die isolierte regulatorische T-Zelle oder native regulatorische T-Zelle enthaltend mindestens ein Galectin aktiviert oder deaktiviert wird.
19. Arzneimittel enthaltend mindestens einen Binder nach einem der Ansprüche 13 bis 18 oder isolierte T- regulatorischen Zellen nach einem der Ansprüche 1 bis 11.
20. Arzneimittel nach Anspruch 19 zur Behandlung und Therapie von Erkrankungen und zwar von Allergien, Autoimmunerkrankungen, insbesondere Rheumatoide Arthritis, Multiple Sklerose oder Morbus Crohn, Chronischer Inflammation, Asthma, Immundefizienz- Erkrankungen, AIDS, Transplantatabstoßung und Krebserkrankungen sowie Diabetes.
21. Arzneimittel nach Anspruch 20, wobei die Autoimmunerkrankungen ausgewählt ist aus der Gruppe: Alopecia Areata, Morbus Bechterew, Antiphospholipid- Syndrom, Morbus Addison, Morbus Behcet, Zöliakie Sprue, chronische Müdigkeitssyndrom (Chronic Fatigue Immune Dysfunction Syndrome (CFIDS) ) , Polyneuropathie, Churg-Strauss Syndrom (Granulomatose) , CREST-Syndrom (Raynaud-Syndrom) , Cold Agglutinin Disease, Kryoglobulinämie, Fibromyalgie, Fibromyositis, Morbus Basedow, Guillain -Barre-Syndrom, idiopathische pulmonäre Fibröse,- idiopathische Thrombozytopenie, IgA Nephropathie, Liehen Planus, Morbus Meniere, Polyarteritis Nodosa, Polychondritis, Polyglandular-Syndrom, Polymyalgia Rheumatica, Primary Agammaglobulinemie, Biliäre Cirrhose, Psoriasis, Morbus Reiter, Sarkoidose, Morbus Sjögren, Takayasu-Arteritis, Vasculitis, Vitiligo, Wegeners Granulomatose.
22. Testsystem enthaltend zumindest einen Binder und mindestens eine regulatorische T-Zelle enthaltend Galectine, zur Identifikation geeigneter Binder oder regulatorischen T-Zellen, vorzugsweise solche mit erhöhten supprimierenden Eigenschaften.
23. Testsystem umfassend mindestens eine regulatorische T-Zelle enthaltend Galectine und mindestens eine Zielzelle, insbesondere T-Zelle, B-Zelle, Makrophage, Prädendritische Zelle, Dendritische Zelle, embryonale Zelle und / oder Fibroblast, die mit mindestens einer regulatorische T-Zelle inkubiert werden zum in-vitro Nachweis supprimierender Eigenschaften, insbesondere zellulärer Immunantwort von Effektorzellen des Immunsystems, insbesondere B-Zellen, NK-Zellen, vorzugsweise T-Zellen, T-Helferzellen.
24. Testsystem nach Anspruch 23, wobei die Effektorzellen Säugerzellen sind, insbesondere humane oder murine Zellen oder Immunzelllinie und / oder kultivierte primäre Immunzelle.
25. Testsystem nach Anspruch 23 oder 24, wobei mindestens eine weitere Substanz inkubiert wird, die eine Immunantwort auslösen können, wie Proteine, Epitope, Proteinfragmente, Antigene oder Binder.
26. Diagnostikum enthaltend ein Testsystem nach einem der Ansprüche 22 bis 25 und gegebenenfalls einen pharmazeutischen akzeptablen Träger.
27. Diagnostikum nach Anspruch 26 zur Diagnose von Krankheiten und zwar von Allergien, Autoimmunerkrankungen, insbesondere Rheumatoide Arthritis, Multiple Sklerose oder Morbus Crohn, Chronischer Inflammation, Asthma, Immundefizienz- Erkrankungen, AIDS, Transplantatabstoßung und Krebserkrankungen sowie Diabetes.
28. Diagnostikum nach Anspruch 27 zur Diagnose von Krankheiten und zwar von Autoimmunerkrankungen ausgewählt aus der Gruppe Alopecia Areata, Morbus Bechterew, Antiphospholipid-Syndrom, Morbus Addison, Morbus Behcet, Zöliakie Sprue, chronische Müdigkeitssyndrom (Chronic Fatigue Immune Dysfunction Syndrome (CFIDS) ) , Polyneuropathie, Churg-Strauss Syndrom (Granulomatose) , CREST-Syndrom (Raynaud- Syndrom) , Cold Agglutinin Disease, Kryoglobulinämie, Fibromyalgie, Fibromyositis, Morbus Basedow, Guillain -Barre-Syndrom, idiopathische pulmonäre Fibröse, idiopathische Thrombozytopenie, IgA Nephropathie, Liehen Planus, Morbus Meniere, Polyarteritis Nodosa, Polychondritis, Polyglandular-Syndrom, Polymyalgia Rheumatica, Primary Agammaglobulinemie, Biliäre Cirrhose, Psoriasis, Morbus Reiter, Sarkoidose, Morbus Sjögren, Takayasu-Arteritis, Vasculitis, Vitiligo, Wegeners Granulomatose.
PCT/EP2004/007890 2003-07-15 2004-07-15 Regulatorische-t-zellen enthaltend galectine zur therapie und diagnose von erkrankungen WO2005007836A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04741062A EP1644487A1 (de) 2003-07-15 2004-07-15 Regulatorische-t-zellen enthaltend galectine zur therapie und diagnose von erkrankungen
CA002532127A CA2532127A1 (en) 2003-07-15 2004-07-15 Regulatory t-cells containing galectins for the therapy and diagnosis of diseases
AU2004257830A AU2004257830A1 (en) 2003-07-15 2004-07-15 Regulatory T-cells containing galectins for the therapy and diagnosis of diseases
US10/564,588 US20080118515A1 (en) 2003-07-15 2004-07-15 Regulatory T-Cells Containing Galectins for the Therapy and Diagnosis of Diseases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10333406.8 2003-07-15
DE10333406A DE10333406A1 (de) 2003-07-15 2003-07-15 T-regulatorische-Zellen enthaltend Galectine zur Therapie und Diagnose von Erkrankungen

Publications (1)

Publication Number Publication Date
WO2005007836A1 true WO2005007836A1 (de) 2005-01-27

Family

ID=34042035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/007890 WO2005007836A1 (de) 2003-07-15 2004-07-15 Regulatorische-t-zellen enthaltend galectine zur therapie und diagnose von erkrankungen

Country Status (6)

Country Link
US (1) US20080118515A1 (de)
EP (1) EP1644487A1 (de)
AU (1) AU2004257830A1 (de)
CA (1) CA2532127A1 (de)
DE (1) DE10333406A1 (de)
WO (1) WO2005007836A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006074891A2 (de) * 2005-01-17 2006-07-20 Protagen Ag Regulatorische-t-zellen enthaltend proteine zur therapie und diagnose von erkrankungen
EP1947501A2 (de) 2002-08-09 2008-07-23 E-Vision, LLC Elektroaktives Kontaktlinsensystem
WO2012012725A2 (en) 2010-07-23 2012-01-26 President And Fellows Of Harvard College Methods of detecting diseases or conditions using phagocytic cells
EP2700888A1 (de) 2007-08-27 2014-02-26 Areva Solar, Inc Sonnenenergiekollektorsystem
US10494675B2 (en) 2013-03-09 2019-12-03 Cell Mdx, Llc Methods of detecting cancer
US10626464B2 (en) 2014-09-11 2020-04-21 Cell Mdx, Llc Methods of detecting prostate cancer
US10934588B2 (en) 2008-01-18 2021-03-02 President And Fellows Of Harvard College Methods of detecting signatures of disease or conditions in bodily fluids
US10961578B2 (en) 2010-07-23 2021-03-30 President And Fellows Of Harvard College Methods of detecting prenatal or pregnancy-related diseases or conditions
US11111537B2 (en) 2010-07-23 2021-09-07 President And Fellows Of Harvard College Methods of detecting autoimmune or immune-related diseases or conditions
US11585814B2 (en) 2013-03-09 2023-02-21 Immunis.Ai, Inc. Methods of detecting prostate cancer
EP4303584A2 (de) 2010-07-23 2024-01-10 President and Fellows of Harvard College Verfahren zur erkennung von anzeichen für krankheiten oder leiden in körperflüssigkeiten

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112166126A (zh) 2018-04-13 2021-01-01 阿根思公司 半乳糖凝集素-10抗体
WO2023072870A1 (en) * 2021-10-25 2023-05-04 Ellennbe Gmbh Pharmaceutical composition and kit comprising an immunomodulatory substance for treating diseases

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242807A (en) * 1989-11-01 1993-09-07 Beth Israel Hospital Association Recombinant gene encoding human Charcot-Leyden crystal protein
WO1998015624A1 (en) * 1996-10-09 1998-04-16 Human Genome Sciences, Inc. Galectin 8, 9, 10 and 10sv

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2433954A1 (en) * 2001-01-12 2002-07-18 Mount Sinai Hospital Compositions and methods for regulating receptor clustering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242807A (en) * 1989-11-01 1993-09-07 Beth Israel Hospital Association Recombinant gene encoding human Charcot-Leyden crystal protein
WO1998015624A1 (en) * 1996-10-09 1998-04-16 Human Genome Sciences, Inc. Galectin 8, 9, 10 and 10sv

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
DATABASE EMBL 30 May 2003 (2003-05-30), XP002310845, retrieved from EBI Database accession no. L01664.1 *
DATABASE UniProt 1 June 1994 (1994-06-01), XP002310846, retrieved from EBI Database accession no. Q05315 *
DIECKMANN D ET AL: "Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood.", THE JOURNAL OF EXPERIMENTAL MEDICINE. 4 JUN 2001, vol. 193, no. 11, 4 June 2001 (2001-06-04), pages 1303 - 1310, XP002310840, ISSN: 0022-1007 *
DVORAK A M ET AL: "Ultrastructural localization of Charcot-Leyden crystal protein (lysophospholipase) to intracytoplasmic crystals in tumor cells of primary solid and papillary epithelial neoplasm of the pancreas.", LABORATORY INVESTIGATION; A JOURNAL OF TECHNICAL METHODS AND PATHOLOGY. MAY 1990, vol. 62, no. 5, May 1990 (1990-05-01), pages 608 - 615, XP009041661, ISSN: 0023-6837 *
DVORAK A M ET AL: "Ultrastructural localization of the Charcot-Leyden crystal protein (lysophospholipase) to granules and intragranular crystals in mature human basophils.", LABORATORY INVESTIGATION; A JOURNAL OF TECHNICAL METHODS AND PATHOLOGY. APR 1989, vol. 60, no. 4, April 1989 (1989-04-01), pages 557 - 567, XP009041660, ISSN: 0023-6837 *
GOLIGHTLY L M ET AL: "Charcot-Leyden crystal protein in the degranulation and recovery of activated basophils.", JOURNAL OF LEUKOCYTE BIOLOGY. APR 1992, vol. 51, no. 4, April 1992 (1992-04-01), pages 386 - 392, XP009041662, ISSN: 0741-5400 *
JONULEIT H ET AL: "Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood.", THE JOURNAL OF EXPERIMENTAL MEDICINE. 4 JUN 2001, vol. 193, no. 11, 4 June 2001 (2001-06-04), pages 1285 - 1294, XP002310837, ISSN: 0022-1007 *
NG W F ET AL: "Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells.", BLOOD. 1 NOV 2001, vol. 98, no. 9, 1 November 2001 (2001-11-01), pages 2736 - 2744, XP002310841, ISSN: 0006-4971 *
PICCIRILLO C A ET AL: "Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells.", JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 1 AUG 2001, vol. 167, no. 3, 1 August 2001 (2001-08-01), pages 1137 - 1140, XP002310838, ISSN: 0022-1767 *
SEDDON B ET AL: "The third function of the thymus.", IMMUNOLOGY TODAY. FEB 2000, vol. 21, no. 2, February 2000 (2000-02-01), pages 95 - 99, XP002310839, ISSN: 0167-5699 *
See also references of EP1644487A1 *
SURI-PAYER E ET AL: "CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells.", JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 1 FEB 1998, vol. 160, no. 3, 1 February 1998 (1998-02-01), pages 1212 - 1218, XP002310842, ISSN: 0022-1767 *
THORNTON A M ET AL: "CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production.", THE JOURNAL OF EXPERIMENTAL MEDICINE. 20 JUL 1998, vol. 188, no. 2, 20 July 1998 (1998-07-20), pages 287 - 296, XP002310843, ISSN: 0022-1007 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1947501A2 (de) 2002-08-09 2008-07-23 E-Vision, LLC Elektroaktives Kontaktlinsensystem
WO2006074891A3 (de) * 2005-01-17 2007-01-04 Protagen Ag Regulatorische-t-zellen enthaltend proteine zur therapie und diagnose von erkrankungen
WO2006074891A2 (de) * 2005-01-17 2006-07-20 Protagen Ag Regulatorische-t-zellen enthaltend proteine zur therapie und diagnose von erkrankungen
EP2711651A2 (de) 2007-08-27 2014-03-26 Areva Solar, Inc Verfahren zur Installation eines erhobenen Solarempfängers in einem Sonnenenergiekollektorsystem
EP2700888A1 (de) 2007-08-27 2014-02-26 Areva Solar, Inc Sonnenenergiekollektorsystem
EP2700887A2 (de) 2007-08-27 2014-02-26 Areva Solar, Inc Vertikale Stützstruktur für Sonnenenergiekollektorsystem
US11001894B2 (en) 2008-01-18 2021-05-11 President And Fellows Of Harvard College Methods of detecting signatures of disease or conditions in bodily fluids
US10934588B2 (en) 2008-01-18 2021-03-02 President And Fellows Of Harvard College Methods of detecting signatures of disease or conditions in bodily fluids
US10934589B2 (en) 2008-01-18 2021-03-02 President And Fellows Of Harvard College Methods of detecting signatures of disease or conditions in bodily fluids
US10961578B2 (en) 2010-07-23 2021-03-30 President And Fellows Of Harvard College Methods of detecting prenatal or pregnancy-related diseases or conditions
WO2012012725A2 (en) 2010-07-23 2012-01-26 President And Fellows Of Harvard College Methods of detecting diseases or conditions using phagocytic cells
US11111537B2 (en) 2010-07-23 2021-09-07 President And Fellows Of Harvard College Methods of detecting autoimmune or immune-related diseases or conditions
EP4303584A2 (de) 2010-07-23 2024-01-10 President and Fellows of Harvard College Verfahren zur erkennung von anzeichen für krankheiten oder leiden in körperflüssigkeiten
US10494675B2 (en) 2013-03-09 2019-12-03 Cell Mdx, Llc Methods of detecting cancer
US11585814B2 (en) 2013-03-09 2023-02-21 Immunis.Ai, Inc. Methods of detecting prostate cancer
US10626464B2 (en) 2014-09-11 2020-04-21 Cell Mdx, Llc Methods of detecting prostate cancer

Also Published As

Publication number Publication date
EP1644487A1 (de) 2006-04-12
AU2004257830A1 (en) 2005-01-27
CA2532127A1 (en) 2005-01-27
US20080118515A1 (en) 2008-05-22
DE10333406A1 (de) 2005-02-10

Similar Documents

Publication Publication Date Title
DE60029304T2 (de) Aktivierung von regulatorischen t zellen durch ein alpha-melanocyten stimulierendes hormon
Matsumura et al. Deficiency of the 50K dystrophin-associated glycoprotein in severe childhood autosomal recessive muscular dystrophy
EP2245059B1 (de) Cd4+-t-zellen mit zytolytischen eigenschaften
WO2005007836A1 (de) Regulatorische-t-zellen enthaltend galectine zur therapie und diagnose von erkrankungen
Fischer et al. Selective activation of tumor necrosis factor receptor II induces antiinflammatory responses and alleviates experimental arthritis
DE102004026135A1 (de) An MHC-Moleküle bindende Tumor-assoziierte Peptide
WO1999013897A1 (en) Prevention of pregnancy miscarriages
KR20130103587A (ko) 갈렉틴 9를 분비하는 세포, 그 제조 방법 및 그 용도
Yoo et al. Mesenchymal stromal cells inhibit CD25 expression via the mTOR pathway to potentiate T-cell suppression
EP1880729A1 (de) Verwendung des löslichen CD160 zur Unterdrückung der Immunität
Yan et al. Anti-MS4a4B treatment abrogates MS4a4B-mediated protection in T cells and ameliorates experimental autoimmune encephalomyelitis
CN112707959A (zh) 一种多肽、制备方法及应用
DE60216048T2 (de) Screeningverfahren für Peptide, die die Bindung von PP1c an Bcl-2, BCL-Xl und BCL-W Proteine inhibieren
Chu et al. 5 The Keratinocyte
WO2006074891A2 (de) Regulatorische-t-zellen enthaltend proteine zur therapie und diagnose von erkrankungen
DE60031963T2 (de) Verfahren zum Nachweis von Multipler Sklerose oder einer Prädisposition für die Entwicklung von Multipler Sklerose in einer biologischen Probe
Kummer Asthma: Immunopathology and Immunotherapy/Immunopathologie und Immunotherapie
Weinstein et al. Thrombin-Induced Regulation of CD95 (Fas) Expression in the N9 Microglial Cell Line: Evidence for Involvement of Proteinase-Activated Receptor 1 and Extracellular Signal-Regulated Kinase 1/2
EP2025747A1 (de) Verfahren zur in-vitro-Amplifikation von regulatorischen T-Zellen
WO2021085295A1 (ja) 免疫応答抑制剤
DE102004024674A1 (de) Mittel und Verfahren zur Diagnose, Prophylaxe und Therapie von Bindegewebserkrankungen
DE60038551T2 (de) Peptidepitope die von krankheitsfördernden cd4+ t lymphocyten erkannt werden
Rautajoki Regulatory mechanisms involved in Th2 cell differentiation
Wieber The dopaminergic pathway: A potential approach to target specific leukocyte subpopulations in chronic inflammatory joint diseases
WO1994010297A1 (de) Verfahren zur herstellung hochreiner humaner gad-1- und gad-2-proteine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004741062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2532127

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004257830

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10564588

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004257830

Country of ref document: AU

Date of ref document: 20040715

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004257830

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004741062

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 10564588

Country of ref document: US