WO2005005648A1 - Novel process for producing optically active carboxylic acid - Google Patents

Novel process for producing optically active carboxylic acid Download PDF

Info

Publication number
WO2005005648A1
WO2005005648A1 PCT/JP2004/009932 JP2004009932W WO2005005648A1 WO 2005005648 A1 WO2005005648 A1 WO 2005005648A1 JP 2004009932 W JP2004009932 W JP 2004009932W WO 2005005648 A1 WO2005005648 A1 WO 2005005648A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
general formula
represented
acid derivative
cell
Prior art date
Application number
PCT/JP2004/009932
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Kawabata
Makoto Ueda
Original Assignee
Mitsubishi Pharma Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pharma Corporation filed Critical Mitsubishi Pharma Corporation
Priority to JP2005511562A priority Critical patent/JPWO2005005648A1/en
Publication of WO2005005648A1 publication Critical patent/WO2005005648A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids

Definitions

  • the present invention relates to a carbon-carbon double bond of a 4,18-mouth crotonic acid derivative using enoate reductase, a cell containing the same, a preparation of the cell, or a culture solution obtained by culturing the cell.
  • an optically active 4-halobutyric acid derivative which is a compound useful as an intermediate material for pharmaceuticals, agricultural chemicals and the like.
  • the present invention also provides (R) -N- (4,4,4_trifluoro-2_methinolebutyl) _3_ [2-methoxy_4_ (o_tolylsulfonylcarbamoy) utilizing the method for producing the 4_halobutyric acid derivative. Nore) benzyl] _1-methinoleindol-5-carboxamide.
  • Optically active 4-halobutyric acid derivatives are industrially useful compounds as intermediate raw materials for pharmaceuticals, agricultural chemicals and the like.
  • (R) —4,4,4_trifluoromethyl-2-methylbutyric acid (2R—methyl-4,4,4—trifluorobutanoic acid) is useful as a leukotriene antagonist (R) —4,4 It is known to be an intermediate for the synthesis of 4-methyl-2-butyrylamine, 4-trifluorene (EP-A-489548).
  • Enoate reductase is an enzyme that catalyzes the reaction of reducing the carbon-carbon double bond of enoate (Henoate), and its presence has been reported in microorganisms such as Clostridia (Journal). of Biological Chemistry, vol. 276, No. 8,
  • the present invention also relates to (R) -N- (4,4,4-trifluoro-2-methylbutyl) _3_ [2-methoxy-14- (o-tolylsulfonylcarbamoinole) benzyl] -11-methylindole —To provide a new method for producing carboxamide.
  • the present inventors have conducted intensive studies on a method for producing an optically active 4-halobutyric acid derivative in order to solve the above-mentioned problems.
  • the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 was determined.
  • a transformed cell into which a gene encoding the protein has been introduced is prepared, and the cell, a preparation of the cell, or a culture solution obtained by culturing the cell is used as a starting material for the production of 418-croton.
  • the present invention is as follows.
  • (E) a 4-halocrotonic acid derivative represented by the general formula (I), which has a base sequence that hybridizes under stringent conditions with the base sequence of SEQ ID NO: 1 or SEQ ID NO: 3 or a complementary sequence thereof, DNA encoding a protein having an enzymatic activity for converting into an optically active 4-halobutyric acid derivative represented by the formula ( ⁇ ).
  • nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 one or several nucleotides are substituted, deleted or added, and comprise a complementary nucleotide sequence and represented by the general formula (I)
  • R is an S methyl group
  • R represents a halogen atom, a nitro group, a hydroxy group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted X is a halogen atom;
  • a and A are a hydrogen atom or a halo group; an aryl group or an optionally substituted alkoxy group;
  • examples of the alkyl group include a methynole group, an ethyl group, an n-propyl group, an isopropyline group, a cyclopropyl group, an n_butyl group, an isobutyl group, a tertiary butyl group, an n-pentyl group, Examples include straight-chain, branched-chain and cyclic alkyl groups having 118 carbon atoms such as isopentyl group, neopentyl group, tertiary pentyl group, isoamyl group, n-hexyl group and the like.
  • a methyl group or an ethyl group is particularly preferable, and an alkyl group having 14 to 14 carbon atoms is particularly preferable.
  • aryl groups include phenyl, mesityl, and naphthyl. I can get lost.
  • the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a tertiary butoxy group, and the like. Among them, an alkoxy group having 14 to 14 carbon atoms is preferable.
  • the alkyl group, aryl group and alkoxy group may be substituted.
  • the substituent is not particularly limited as long as it does not adversely affect the asymmetric reduction reaction, but specifically, an alkyl group, an aryl group, an alkoxy group, a halogen group, a cyano group, an amino group, Examples include a nitro group and a hydroxy group. Therefore, in the general formulas (I) and ( ⁇ ), specific examples of the substituted alkyl group include a benzyl group, a phenethyl group, a trifluoromethyl group, a cyanomethyl group, an aminomethyl group, a hydroxymethyl group, a nitromethyl group, and a methoxymethyl group.
  • a xymethyl group and the like include a chlorophenyl group, an aminophenyl group, a hydroxyphenyl group, a nitrophenyl group, and a methoxyphenyl group.
  • Specific examples of the substituted alkoxy group include a benzyloxy group, a phenoxy group, and a trifluoromethoxy group.
  • X represents a halogen atom
  • a and A represent a hydrogen atom or a halogen atom.
  • R in the above general formulas (I) and (II) is preferably an alkyl group having 14 to 14 carbon atoms, a benzyl group or a phenyl group, and more preferably an alkyl group having 14 to 14 carbon atoms. And particularly preferably a methyl group.
  • the compound represented by the general formula (I) has a molecular weight of 1,000 or less, preferably 500 or less, more preferably 300 or less.
  • the compound represented by the general formula (III) 4,4,4_Trifluorotiglic acid and the like.
  • the compound represented by the general formula (I) is, for example, an aldehyde represented by the following general formula (VIII) (X, A
  • the compound represented by the general formula ( ⁇ ) has a molecular weight of 1000 or less, preferably 500 or less, more preferably 300 or less.
  • Enoate reductase generally refers to an enzyme that catalyzes the reduction reaction of the carbon'carbon double bond of the enoate (Henoate) (Studies in Natural Products Chemistry, vol. 20, p817, 1998).
  • the optical purity of the generated 4-halobutyric acid derivative is preferably at least 60% ee, more preferably at least 90% ee, and at least 98% ee. It is particularly preferred that the ee is 99.5% ee.
  • Such an activity can be measured by measuring the initial rate of decrease of NADH in a reaction system containing a 4-nitrocrotonic acid derivative as a substrate and further containing NADH as a coenzyme.
  • the enoate reductase that can be used in the production method of the present invention is not particularly limited as long as it has the above activity, and examples thereof include those having the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4. These are enoate reductases derived from Moorella thermoautotrophica and Clostridium acetobutylicum, respectively. Further, in the present invention, homologs of these homologs having the above-mentioned enzyme activity may be used. Homologs include, for example, those having an amino acid sequence in which one or several amino acids have been deleted, substituted, or added to the amino acid sequence described in SEQ ID NO: 2 or SEQ ID NO: 4 within a range that does not impair the activity. be able to.
  • the term “several” specifically means 20 or less, preferably 10 or less, and more preferably 5 or less.
  • the homolog has 35% or more, preferably 50% or more, more preferably 80%, particularly preferably 95% or more homology with the amino acid sequence shown in SEQ ID NO: 2 or SEQ ID NO: 4. It may be protein.
  • the homology search of the above-mentioned protein can be performed using, for example, a program such as FASTA or BLAST for GenBank or DNA Databank of JAPAN (DDBJ).
  • a homology search was performed using the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 with the BLAST program against GenBank, and as a result, the sequence of SEQ ID NO: 2 was 2-enoate reductase derived from Clostridium tyrobutyricum (Accession No. CAA71086) and 59% showed homology, eye ti ⁇ 1 of SEQ ID NO: 4 J is Clostridium Tyrobutyricum from 2- enoate reductase (Accession No.
  • the enoate reductase used in the production method of the present invention may be any microorganism having enoate reductase activity using a probe prepared based on the nucleotide sequence of a gene encoding a part or all of enoate reductase.
  • a method for obtaining enoate reductase from bacterial cells for example, the method described in Eur. J. Biochem. Vol. 97, pl03 (1979) can be referred to.
  • Clostridium bacteria include, for example, Clostridium acetobutylicum ATCC824 strain, which has enoate reductase that can be suitably used in the present invention.
  • Clostridium acetobutylicum ATCC824 strain which has enoate reductase that can be suitably used in the present invention.
  • a bacterium belonging to the genus Moorella for example, Moorella thermoautotrophica
  • the strain DSM1974 has enoate reductase that can be suitably used in the present invention.
  • the former is an ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (ATCC (American Type Culture Collection) online catalog (AT
  • the 4_nodrocrotonic acid derivative may be allowed to react with a purified enzyme of enoate reductase, but a cell containing enoate reductase, a preparation of the cell, or the cell is used.
  • the culture solution obtained by culturing may be reacted with a 4,18-mouth crotonic acid derivative to produce an optically active 4,18-mouth butyric acid derivative.
  • the cell containing enoate reductase is preferably a cell transformed with DNA encoding enoate reductase.
  • the DNA encoding enoate reductase includes a DNA encoding enoate reductase having the amino acid sequence of SEQ ID NO: 2 or 4.
  • a 4-halocrotonic acid derivative having an amino acid sequence IJ having 50% or more homology with the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 and represented by the general formula (I) is represented by the general formula ( ⁇ ) )) May be a DNA encoding a protein having an enzymatic activity for converting into an optically active 4-halobutyric acid derivative.
  • a DNA having the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 can be mentioned.
  • Such DNA can be obtained by PCR using a primer designed based on the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3. Furthermore, in the production method of the present invention, a DNA homolog of a DNA having the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 and encoding a protein having an enoate reductase activity may be used.
  • a homolog is defined as a protein having an enoate reductase activity, in which one or several bases are deleted, substituted, or added to the base sequence described in SEQ ID NO: 1 or SEQ ID NO: 3.
  • severe specifically refers to 60 or less, preferably 30 or less, and more preferably 10 or less. It is.
  • the homolog may be a DNA that hybridizes with a DNA having the nucleotide sequence of SEQ ID NO: 1 or 3 or a complementary strand thereof under stringent conditions and encodes a protein having an enoate reductase activity.
  • DNA that hybridizes under stringent conditions refers to a method using a probe DNA and a colony hybridization method, a plaque hybridization method, or a Southern blot hybridization method under stringent conditions.
  • stringent conditions refers to DNA obtained by performing the hybridization method or the like.
  • a 0.1 X 2 SSC solution After performing hybridization at 65 ° C in the presence of 0.7-1.0 M sodium chloride using a filter on which the DNA or a fragment of the DNA has been immobilized, a 0.1 X 2 SSC solution (The composition of 1 X SSC is 150 mM sodium chloride, 15 mM sodium citrate). Conditions for washing the filter under C conditions can be mentioned.
  • DNA encoding enoate reductase can be isolated, for example, by the following method.
  • enoate reductase is purified from microbial cells or the like by the above-mentioned method or the like, and then the N-terminal amino acid sequence is analyzed.
  • N-terminal amino acid sequence analysis is performed by cleaving the purified protein with enzymes such as lysyl endopeptidase and V8 protease, purifying the peptide fragment by reverse-phase liquid chromatography, etc., and then analyzing the amino acid sequence with a protein sequencer.
  • the DNA encoding the enoate reductase is obtained.
  • the above DNA fragment is probed from a library or cDNA library obtained by introducing a restriction enzyme digest of chromosomal DNA of an enoate reductase-producing microorganism strain into a phage, a plasmid, etc., and transforming E. coli.
  • colony hybridization, plaque hybridization, and the like DNA encoding enoate reductase can be obtained.
  • DNA encoding enoate reductase can be obtained by performing invese PCR (Genetics vol. 120, p621-623 (1988)) as type ⁇ .
  • the DNA encoding enoate reductase can also be obtained by chemically synthesizing DNA having the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3.
  • DNA encoding enoate reductase was prepared from any microorganism having enoate reductase activity using a DNA having all or a part of the base sequence of SEQ ID NO: 1 or 3 as a probe.
  • the DNA is subjected to hybridization under stringent engineering conditions by colony hybridization, plaque hybridization, Southern blot hybridization, or the like, and hybridized. It can also be obtained by obtaining DNA.
  • the term “part” refers to a DNA having a length sufficient to be used as a probe, specifically, 15 bp or more, preferably 50 bp or more, more preferably 100 bp or more.
  • the enoate reductase expression vector is provided by inserting the DNA encoding enoate reductase isolated as described above into a known expression vector so that it can be expressed. By culturing cells transformed with this expression vector, enoate reductase can be obtained from the cells. Transformed cells can also be obtained by incorporating DNA encoding enoate reductase into a chromosomal DNA of a known host cell so that it can be expressed.
  • an expression vector constructed by incorporating DNA encoding enoate reductase into a plasmid vector or a phage vector stably existing in a microorganism is used.
  • the DNA encoding enoate reductase must be introduced directly into the host genome and the genetic information must be transcribed and translated.
  • the DNA encoding the enoate reductase does not contain a promoter that can be expressed in the host microorganism, an appropriate promoter is placed 5 'upstream of the DNA strand encoding the enoate reductase. Must be incorporated. Further, it is preferable to incorporate a terminator downstream of the 3 'side.
  • the promoter and terminator are not particularly limited as long as they are known to function in a microorganism used as a host, provided that they are promoters and terminators. Regarding promoters and terminators, for example, "Basic Lectures on Microbiology 8Genetic Engineering 'Kyoritsu Shuppan'," especially for yeast, Adv. Biochem. Eng. Vol. 43, P75-102 (1990), Yeast vol. 8, It is described in detail in p423_488 (1992).
  • the host microorganism to be transformed for expressing the enoate reductase of the present invention is not particularly limited as long as the host itself does not adversely affect the present reaction.
  • the following microorganisms can be mentioned.
  • Actinomycetes having an established host vector system belonging to the genera Rhodococcus, Streptomyces, and the like.
  • the host is preferably a genus Escherichia, a genus Bacillus, a genus Brevibacterium, or a corynebacterium (
  • Corynebacterium and particularly preferably, Escherichia and Corynebacterium j.
  • plasmid vectors include pBR and pUC-type plasmids, and promoters include lac (i3-galatatosidase) and trp (tryptophan operon). , Tac, trc (fusion of lac and trp), ⁇ phage PL, PR and the like.
  • the terminator include a terminator derived from trpA, phage, and rrnB ribosomal RNA.
  • vectors include pUBlO-based plasmid and pC194-based plasmid. And chromosomes.
  • promoters and terminators of enzyme genes such as alkaline protease, neutral protease and ⁇ -amylase can be used.
  • vectors include Pseudomonas' putida (
  • examples of the vector include a plasmid vector such as pAJ43 (Gene vol. 39, p281 (1985)).
  • pAJ43 Gene vol. 39, p281 (1985)
  • Various promoters and terminators used in Escherichia coli can be used as the promoter and terminator.
  • Corynebacterium particularly Corynebacterium 'daltamicum (Corynebacterium
  • examples of the vector include a plasmid vector such as pCS11 (Japanese Patent Publication No. 57-183799, pCB101 (Mol. Gen. Genet, vol. 196, pl 75 (1984))).
  • Saccharomyces especially Saccharomyces cerevisiae
  • examples of the vector include YRp, YEp, YCp, and Yip plasmids.
  • promoters and terminators of various enzyme genes such as alcohol dehydrogenase, dalyselanoledehydrido 3-phosphate dehydrogenase, acid phosphatase, / 3_galactosidase, phosphodarycelate kinase, and enolase can be used.
  • examples of the vector include a plasmid vector derived from Schizosaccharomyces bomb described in Mol. Cell. Biol. Vol. 6, p80 (1986). .
  • pAUR224 is commercially available from Takara Shuzo and can be easily used.
  • Aspergillus, Aspergillus niger, Aspergillus oryzae, etc. are the most studied among molds, and integration into plasmids and chromosomes is available. Yes, and a promoter derived from extracellular protease ⁇ amylase is available (Trends in
  • host vector systems corresponding to various microorganisms have been established, and these can be used as appropriate.
  • various host systems have been established in plants and animals, especially in animals such as insects using silkworms (Nature vol. 315, p592-594 (1985)), rapeseed, A system for expressing a large amount of a heterologous protein in plants such as corn and potato and a system using a cell-free protein synthesis system such as a cell-free extract of Escherichia coli or wheat germ have been established and can be suitably used.
  • a cell transformed with a DNA encoding enoate reductase may be allowed to act on a 4,18-mouth crotonic acid derivative as a reaction substrate.
  • the transformed cells may be allowed to act as they are in the reaction solution.
  • a preparation of the transformed cells for example, the transformed cells may be treated with an organic solvent such as acetone, dimethyl sulfoxide (DMS ⁇ ), toluene, or a surfactant.
  • a culture solution obtained by culturing the cells that is, a culture solution containing the cells may be directly used.
  • coenzyme NAD + or NADH it is preferable to add coenzyme NAD + or NADH to the reaction solution.
  • concentration of the additive is 0.001 mM, preferably 100 mM.
  • regenerate NAD + generated from NADH into NADH it is preferable to regenerate NAD + generated from NADH into NADH as a preferable regeneration method for improving production efficiency.
  • Microorganisms or their preparations capable of producing NADH from NAD + , or glucose dehydrogenase, formate dehydrogenase, alcohol dehydrogenase, amino acid dehydrogenase A method of adding an enzyme (regenerating enzyme) that can be used to regenerate NADH, such as elemental or organic acid dehydrogenase (malate dehydrogenase, etc.), or
  • microorganisms containing the above-mentioned regenerated enzymes those obtained by treating the microorganism cells with acetone, those subjected to freeze-drying, those physically or enzymatically crushed, and the like.
  • a cell preparation, a product obtained by extracting the enzyme fraction as a crude product or a purified product, or a product obtained by immobilizing these on a carrier represented by polyacrylamide gel, carrageenan gel, etc. may be used.
  • a commercially available regenerating enzyme may be used.
  • the amount of the regenerating enzyme used is, specifically, about 0.01 to 100 times, preferably about 0.5 to 20 times the enzyme activity as compared with the enoate reductase of the present invention.
  • Compounds that serve as substrates for the above-mentioned regenerating enzymes for example, glucose when using glucose dehydrogenase, formic acid when using formate dehydrogenase, ethanol or isopropanol when using alcohol dehydrogenase, etc. Force required to be added
  • the amount of addition is 0.1 to 20 times molar equivalent, preferably 115 to 5 times molar equivalent, to the 4-halocrotonic acid derivative as a reaction raw material.
  • the production method of the present invention contains, for example, a reaction substrate, the transformed cell of the present invention and / or the transformed cell preparation, various coenzymes added as necessary, and a regeneration system thereof.
  • the reaction can be carried out in an aqueous medium or in a mixture of the aqueous medium and an organic solvent.
  • the compound represented by the general formula (I) serving as a reaction substrate in the production method of the present invention generally has a substrate concentration of 0.01% 90% w / v, preferably 0.1% to 30% w / v. It can be used within the range.
  • the reaction substrate may be added all at once at the beginning of the reaction, but from the viewpoint of reducing the effects of enzyme substrate inhibition and improving the accumulated concentration of the product, continuous or It is desirable to add intermittently.
  • the aqueous medium includes water or a buffer
  • the organic solvent includes a reaction substrate such as ethyl acetate, butyl acetate, toluene, chloroform, n-hexane, and dimethyl sulfoxide.
  • a reaction substrate such as ethyl acetate, butyl acetate, toluene, chloroform, n-hexane, and dimethyl sulfoxide.
  • the one with high solubility can be used.
  • the method of the present invention can be carried out, for example, at a reaction temperature of 4 to 60 ° C, preferably 10 to 45 ° C, and at pH 3 to 11, preferably pH 5 to 8. It is also possible to carry out the reaction using a membrane reactor or the like. It is also effective to remove sodium by adding sodium sulfite to the reaction solution or sealing the reaction solution with nitrogen or argon gas to prevent inactivation of enoate reductase by oxygen. It is.
  • the optically active 4-halobutyric acid derivative produced by the method of the present invention is obtained by separating the bacterial cells in the reaction solution by centrifugation or membrane treatment after completion of the reaction, and then removing the organic compound such as ethyl acetate or toluene. Purification can be performed by appropriately combining extraction with a solvent, distillation, column chromatography, crystallization, and the like.
  • Step (a) can be performed in the same manner as described above.
  • a usual method for converting a carboxylic acid to an amine can be used.
  • a method of reacting with ammonia to amidate and then reducing (reaction formula (IX) below), reacting with a pendinoleamine or the like or an ammonia equivalent (eg, HN (SiMe), etc.), and then reducing the reactant And more contact
  • a deprotection method such as hydrogenolysis (reaction formula (X)) can be used.
  • step (c) (R) _4,4,4-monotrifluoro-2-methylbutynoleamine of formula (V) obtained in step (b) is reacted with a compound of formula (VI) to give a compound of formula (VI) (VII) (R) -N- (4,4,4-Trifluoro 2-methylbutyl) _3_ [2-Methoxy-1- (o-tolylsulfonylcarbamoyl) benzyl] -1-1-methylindole-5_carboxamide Get.
  • This step can be carried out in the same manner as in the usual reaction between amine and carboxylic acid. Specifically, for example, the method is performed in the same manner as disclosed in European Patent Application Publication No.
  • the compound of the general formula (VI) used in this step may be a compound obtained by the above-mentioned production method.
  • 4_ (5-methoxycarbonyl) 1-Methylindole-3-ylmethyl) _A compound obtained by reacting 3-methoxybenzoic acid (general formula XI) with 2-methylbenzenesulfonamide (general formula ⁇ ) and hydrolyzing the resulting compound can be used.
  • 3-methoxybenzoic acid generally formula XI
  • 2-methylbenzenesulfonamide generally formula ⁇
  • the above reaction solution was purified using MinElute PCR Purification kit (manufactured by Qiagen). Purification The DNA fragment thus obtained was digested with restriction enzymes EcoRI and Xbal, subjected to agarose gel electrophoresis, excised from the band of interest, purified and recovered using a Qiagen Gel Extraction kit (manufactured by Qiagen). The obtained DNA fragment was ligated to pUCl18 digested with EcoRI and Xbal using Ligation high (manufactured by Toyobo Co., Ltd.), and Escherichia coli JM109 strain was transformed by a heat shock method.
  • the transformed cells were grown on an LB agar medium containing ampicillin (50 ag / mL), and colony direct PCR was performed on the obtained colonies to confirm the size of the imported fragment.
  • the transformed cells containing the DNA fragment of interest are cultured in an LB medium containing 50 ⁇ g / mL ampicillin, and the plasmid is purified using the QIAPrepSpin Mini Prep kit (Qiagen). , PUCMtERl.
  • the base sequence of the DNA inserted into the plasmid was analyzed by the dye terminator method, the inserted DNA fragment was identical to the nucleotide sequence of SEQ ID NO: 1.
  • DNA sequence encoding 2-enoate reductase (Accession No. AAK81302, SEQ ID NO: 4) derived from Clostridium acetobutylicum
  • primers described in SEQ ID NOs: 7 and 8 were synthesized. These primers were used in an amount of 15 pmol each, dNTP each 10 nmol, genomic DNA of Clostridium acetobutylicum ATCC824 25 ng, 10X buffer for KOD-plus— (Toyobo) 5 ⁇ L, KOD-plus-1 unit ( with 50's reaction solution containing Toyobo Co., Ltd.), modified (94 ° C, 15 ⁇ ), Aninore (57.G, 30 ⁇ ), I monkey length (68 0 C, 2 min) 30 A PCR reaction was performed using PTC-200 (manufactured by MJ Research) in a cycle. As a result of analyzing a part of the PCR reaction solution by agarose gel electrophoresis, a band considered to be specific was detected.
  • the above reaction solution was purified using MinElute PCR Purification kit (manufactured by Qiagen).
  • the purified DNA fragment was digested with restriction enzymes EcoRI and Xbal, subjected to agarose gel electrophoresis, excised a band of interest, purified using a Qiagen Gel Extraction kit (manufactured by Qiagen), and collected.
  • the obtained DNA fragment was digested with EcoRI and Xbal.
  • ligation was performed using Ligation high (manufactured by Toyobo Co., Ltd.), and Escherichia coli JM109 strain was transformed.
  • the transformed cells were grown on LB agar medium containing ampicillin (50 ⁇ g / mL), and the resulting colonies were subjected to colony direct PCR to confirm the size of the inserted fragment.
  • the transformed cells containing the DNA fragment of interest are cultured in an LB medium containing 50 xg / mL ampicillin, and the plasmid is purified using the QIAPrepSpin Mini Prep kit (Qiagen). pUCCaERl.
  • the nucleotide sequence of the DNA inserted into the plasmid was analyzed by a dye terminator method, the inserted DNA fragment was identical to the nucleotide sequence of SEQ ID NO: 3.
  • the transformed cells obtained in the above (1) and (2) were subjected to Aneropaque's culture in an LB medium containing ampicillin (50 x gZmL) and ImM isopropyl ⁇ -D-thiogalatatopyranoside (IPTG). (Mitsubishi Gas Chemical Company) under anaerobic conditions at 37 ° C for 30 hours. After 5 ml of the obtained cell broth was collected by centrifugation to obtain cells, the enoate reductase activity of the cells was determined using 4,4,4 trifluorotiglic acid as a substrate by the method described below. Sure
  • the substrate 4,4,4 trifluorotiglic acid was synthesized as follows. That is, 50% water-containing methanol (20 mL) and 8 mol / L NaOH (3 mL) were added to 4,4,4_trifluoroethyltignate ethyl ester (3.64 g, 20 mmol), and the obtained mixture was added to about 4 mL. Stir for 2 hours. The solvent was distilled off from the reaction mixture under reduced pressure, the pH was adjusted to 2 or less by adding concentrated hydrochloric acid, methylene chloride extraction was performed, and the obtained organic layer was concentrated under reduced pressure to obtain a transparent oily product as a transparent oil. Trifluorotiglic acid (2.9 g, yield 94%) was obtained.
  • a 200 ⁇ L reaction solution (0.6 g / L NAD + (manufactured by Oriental Yeast), 50 mM potassium phosphate buffer (pH 7.0), 100 mM glucose, 0.2 g ZL glucose dehydrogenase (Amano) was added to the cells.
  • 25 mM 4,44_triphnorelotiglic acid (manufactured by Pharmaceutical Co., Ltd.)
  • the mixture was reacted at 37 ° C. for 20 hours under anaerobic conditions using Anellopak'Kenki (manufactured by Mitsubishi Gas Chemical Company).
  • the reaction was terminated by adding 10 ⁇ L of 6N HC1, and the mixture was extracted with ethyl acetate, and 2-methyl-4,4,4_trifluorobutyric acid was quantified. Determination is ethyl acetate The solution was measured using gas chromatography (GC).
  • GC gas chromatography
  • Carrier He 1.5 ml / min, split 1/50

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Indole Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

An enoate reductase, cells containing the same, a preparation comprising the cells, or a culture obtained by culturing the cells is caused to act on a 4-halocrotonic acid derivative represented by the following general formula (I): to produce an optically active 4-halobutyric acid derivative represented by the following general formula (II). (In the formulae (I) and (II), R represents halogeno, nitro, hydroxy, optionally substituted alkyl, optionally substituted aryl, or optionally substituted alkoxy; X represents halogeno; and A1 and A2 each represents hydrogen or halogeno.)

Description

明 細 書  Specification
新規な光学活性カルボン酸の製造法  Production method of new optically active carboxylic acid
技術分野  Technical field
[0001] 本発明は、エノエートレダクターゼまたはそれを含む細胞、同細胞の調製物もしくは 同細胞を培養して得られる培養液を用いて、 4一八口クロトン酸誘導体の炭素 ·炭素二 重結合を立体選択的に還元して、医薬、農薬等の中間体原料として有用な化合物 である光学活性 4-ハロ酪酸誘導体を製造する方法に関する。本発明はまた、該 4_ ハロ酪酸誘導体の製造方法を利用した、 (R) -N- (4, 4, 4_トリフルォロ— 2_メチノレ ブチル) _3_[2—メトキシ _4_ (o_トリルスルホニルカルバモイノレ)ベンジル ]_1—メチ ノレインドールー 5—カルボキサミドの製造方法に関する。  [0001] The present invention relates to a carbon-carbon double bond of a 4,18-mouth crotonic acid derivative using enoate reductase, a cell containing the same, a preparation of the cell, or a culture solution obtained by culturing the cell. To an optically active 4-halobutyric acid derivative which is a compound useful as an intermediate material for pharmaceuticals, agricultural chemicals and the like. The present invention also provides (R) -N- (4,4,4_trifluoro-2_methinolebutyl) _3_ [2-methoxy_4_ (o_tolylsulfonylcarbamoy) utilizing the method for producing the 4_halobutyric acid derivative. Nore) benzyl] _1-methinoleindol-5-carboxamide.
背景技術  Background art
[0002] 光学活性 4 -ハロ酪酸誘導体は医薬、農薬等の中間体原料として産業上有用な化 合物である。例えば、(R)— 4, 4, 4_トリフルォ口— 2—メチル酪酸 (2R—メチルー 4, 4, 4 —トリフルォロブタン酸)は、ロイコトリェン拮抗剤として有用な (R)— 4, 4, 4一トリフルォ 口— 2—メチルプチルァミンの合成中間体であることが知られている(欧州特許出願公 開第 489548号明細書)。光学活性 4 -八口酪酸誘導体を得る方法としては、光学活性 ホスフィンィ匕合物とルテニウム化合物からなる錯体触媒を用いて 4一八口クロトン酸誘 導体を還元する方法が知られていた(欧州特許出願公開第 673911号明細書)。しか し、かかる反応は高圧下で行う必要があり、用いる触媒も高価であった。  [0002] Optically active 4-halobutyric acid derivatives are industrially useful compounds as intermediate raw materials for pharmaceuticals, agricultural chemicals and the like. For example, (R) —4,4,4_trifluoromethyl-2-methylbutyric acid (2R—methyl-4,4,4—trifluorobutanoic acid) is useful as a leukotriene antagonist (R) —4,4 It is known to be an intermediate for the synthesis of 4-methyl-2-butyrylamine, 4-trifluorene (EP-A-489548). As a method for obtaining an optically active 4-octabutyric acid derivative, there has been known a method for reducing a 4,8-octacrotonic acid derivative using a complex catalyst comprising an optically active phosphine conjugate and a ruthenium compound (European Patent Application Publication No. 673911). However, such a reaction must be performed under high pressure, and the catalyst used is expensive.
[0003] エノエートレダクターゼは、エノエー Henoate)の炭素'炭素二重結合を還元する反 応を触媒する酵素であるが、例えば、クロストリジァ(Clostridia)などの微生物でその 存在が報告されている(Journal of Biological Chemistry, vol. 276, No. 8,  [0003] Enoate reductase is an enzyme that catalyzes the reaction of reducing the carbon-carbon double bond of enoate (Henoate), and its presence has been reported in microorganisms such as Clostridia (Journal). of Biological Chemistry, vol. 276, No. 8,
P5779-5787, 2001)。エノエートレダクターゼ活性を有する微生物を利用した各種ェ ノエートの不斉還元が報告されているが (Studies in Natural Products Chemistry, vol. 20, 817, 1998)、エノエートのうち、 4位の炭素がハロゲン化された 4ーハロクロトン酸 誘導体に関しては、エノエートレダクターゼを用いた不斉還元の報告例は無かった。 発明の開示 [0004] 本発明は、光学活性 4 -ハロ酪酸誘導体をより高い光学純度で安価かつ簡便に製 造する新規な方法を提供することを課題とする。本発明はまた、 (R)-N- (4, 4, 4- トリフルオロー 2—メチルブチル) _3_[2—メトキシ一 4一(o—トリルスルホニルカルバモイ ノレ)ベンジル]一 1一メチルインドールー 5—カルボキサミドを製造する新規な方法を提供 することを課題とする。 P5779-5787, 2001). Asymmetric reduction of various enoates using microorganisms having enoate reductase activity has been reported (Studies in Natural Products Chemistry, vol. 20, 817, 1998), but carbon at position 4 of enoates is halogenated. As for the 4-halocrotonic acid derivative, there was no report of asymmetric reduction using enoate reductase. Disclosure of the invention It is an object of the present invention to provide a novel method for producing an optically active 4-halobutyric acid derivative with higher optical purity at a low cost and simply. The present invention also relates to (R) -N- (4,4,4-trifluoro-2-methylbutyl) _3_ [2-methoxy-14- (o-tolylsulfonylcarbamoinole) benzyl] -11-methylindole —To provide a new method for producing carboxamide.
[0005] 本発明者らは、上記課題を解決するために、光学活性 4ーハロ酪酸誘導体の製造 方法にっレ、て鋭意検討した結果、配列番号 2または配列番号 4に記載のアミノ酸配 歹 IJを有するタンパク質が、原料となる 4-ハロクロトン酸誘導体の不斉還元反応を触媒 することを見出した。さらに、該タンパク質をコードする遺伝子を導入した形質転換細 胞を作製し、該細胞、該細胞の調製物、または該細胞を培養して得られた培養液を 、原料となる 4一八口クロトン酸誘導体に作用させることにより、高い光学純度かつ高 濃度で目的物である光学活性 4ーハロ酪酸誘導体を得ることができることを見出した。 さらに、この方法によって得られる (R)— 4, 4, 4_トリフルォ口— 2-メチル酪酸を用いる ことにより、 (R)— N— (4, 4, 4—トリフルォロ— 2—メチルブチル )—3— [2—メトキシ一 4— ( o—トリルスルホニルカルバモイノレ)ベンジル] _1一メチルインドールー 5—カルボキサミ ドを効率よく製造できることを見出した。以上によって、本発明を完成させるに至った  The present inventors have conducted intensive studies on a method for producing an optically active 4-halobutyric acid derivative in order to solve the above-mentioned problems. As a result, the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 was determined. Has been found to catalyze the asymmetric reduction reaction of the 4-halocrotonic acid derivative used as a raw material. Further, a transformed cell into which a gene encoding the protein has been introduced is prepared, and the cell, a preparation of the cell, or a culture solution obtained by culturing the cell is used as a starting material for the production of 418-croton. It has been found that by acting on an acid derivative, it is possible to obtain an optically active 4-halobutyric acid derivative as a target substance with high optical purity and high concentration. Furthermore, by using (R) -4,4,4-trifluo-2-methylbutyric acid obtained by this method, (R) —N— (4,4,4-trifluoro-2-methylbutyl) -3 — It was found that [2-methoxy-14- (o-tolylsulfonylcarbamoinole) benzyl] _1-methylindole-5-carboxamide can be efficiently produced. Thus, the present invention has been completed.
[0006] すなわち、本発明は以下のとおりである。 [0006] That is, the present invention is as follows.
(1) 下記一般式 (I)  (1) The following general formula (I)
[化 1]  [Chemical 1]
Figure imgf000004_0001
で表される 4ーハロクロトン酸誘導体に、エノエートレダクターゼまたはそれを含む細 胞、同細胞の調製物もしくは同細胞を培養して得られた培養液を作用させて、下記 一般式 (Π) [化 2]
Figure imgf000004_0001
Is reacted with a 4-halocrotonic acid derivative represented by the following formula, or a cell containing the same, a preparation of the same cell, or a culture solution obtained by culturing the same cell. [Chemical 2]
Figure imgf000005_0001
で表される光学活性 4 -ハロ酪酸誘導体を生成させることを特徴とする、一般式 (II)で 表される光学活性 4 -ハロ酪酸誘導体の製造方法 (式 (1)、 (II)中、 Rはハロゲン原子 、ニトロ基、ヒドロキシル基、置換されていてもよいアルキル基、置換されていてもよい ァリール基または置換されていてもよいアルコキシ基を、 Xはハロゲン原子を、 Aおよ
Figure imgf000005_0001
A method for producing an optically active 4-halobutyric acid derivative represented by the general formula (II), which comprises producing an optically active 4-halobutyric acid derivative represented by (Formulas (1) and (II), R represents a halogen atom, a nitro group, a hydroxyl group, an optionally substituted alkyl group, an optionally substituted aryl group or an optionally substituted alkoxy group, X represents a halogen atom, A and
1 び Aは水素原子またはハロゲン原子を示す)。  1 and A represent a hydrogen atom or a halogen atom).
2  2
(2) エノエートレダクターゼが以下の (A)、(B)または(C)に示すタンパク質である 、 (1)の製造方法:  (2) The method for producing (1), wherein the enoate reductase is a protein represented by the following (A), (B) or (C):
(A)配列番号 2または配列番号 4に記載のアミノ酸配列を有するタンパク質、また は  (A) a protein having the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, or
(B)配列番号 2または配列番号 4に記載のアミノ酸配列と 50%以上の相同性を有 するアミノ酸配列からなり、かつ、一般式 (I)で表される 4一八口クロトン酸誘導体を一 般式 (Π)で表される光学活性 4 -ハロ酪酸誘導体に変換する酵素活性を有するタン パク質。  (B) an amino acid sequence having at least 50% homology with the amino acid sequence shown in SEQ ID NO: 2 or SEQ ID NO: 4 and having a 4-octacrotonic acid derivative represented by the general formula (I); A protein having an enzymatic activity for converting into an optically active 4-halobutyric acid derivative represented by the general formula (Π).
(C)配列番号 2または配列番号 4に記載のアミノ酸配列において、 1または数個の アミノ酸が置換、欠失もしくは付加されたアミノ酸配列からなり、かつ、一般式 (I)で表 される 4 -ハロクロトン酸誘導体を一般式 (II)で表される光学活性 4 -ハロ酪酸誘導体 に変換する酵素活性を有するタンパク質。  (C) In the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, one or several amino acids are substituted, deleted or added, and are represented by the general formula (I). A protein having an enzymatic activity for converting a halocrotonic acid derivative into an optically active 4-halobutyric acid derivative represented by the general formula (II).
(3) エノエートレダクターゼを含む細胞が、エノエートレダクターゼをコードする D NAで形質転換された細胞である、 (1)の製造方法。  (3) The method according to (1), wherein the cell containing enoate reductase is a cell transformed with a DNA encoding enoate reductase.
(4) エノエートレダクターゼをコードする DNAで形質転換された細胞力 S、前記 DN Aを染色体上に組み込むことによって形質転換された細胞である、 (3)の製造方法。  (4) The method according to (3), wherein the cell force S is a cell transformed with a DNA encoding enoate reductase, and the cell is a cell transformed by integrating the DNA on a chromosome.
(5) エノエートレダクターゼをコードする DNAで形質転換された細胞力 前記 DN Aを含むベクターで形質転換された細胞である、 (3)の製造方法。 (5) Cell force transformed with DNA encoding enoate reductase DN The method according to (3), which is a cell transformed with a vector containing A.
(6) エノエートレダクターゼをコードする DNAが以下の(A)、 (B)または(C)に示 すタンパク質をコードする DNAである、 (3)一 (5)のレ、ずれかの製造方法:  (6) The method for producing any one of (3) and (5), wherein the DNA encoding enoate reductase is a DNA encoding a protein represented by the following (A), (B) or (C): :
(A)配列番号 2または配列番号 4に記載のアミノ酸配列を有するタンパク質、また は  (A) a protein having the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, or
(B)配列番号 2または配列番号 4に記載のアミノ酸配列と 50%以上の相同性を有 するアミノ酸配列からなり、かつ、一般式 (I)で表される 4一八口クロトン酸誘導体を一 般式 (Π)で表される光学活性 4 -ハロ酪酸誘導体に変換する酵素活性を有するタン パク質。  (B) an amino acid sequence having at least 50% homology with the amino acid sequence shown in SEQ ID NO: 2 or SEQ ID NO: 4 and having a 4-octacrotonic acid derivative represented by the general formula (I); A protein having an enzymatic activity for converting into an optically active 4-halobutyric acid derivative represented by the general formula (Π).
(C)配列番号 2または配列番号 4に記載のアミノ酸配列において、 1または数個の アミノ酸が置換、欠失もしくは付加されたアミノ酸配列からなり、かつ、一般式 (I)で表 される 4 -ハロクロトン酸誘導体を一般式 (II)で表される光学活性 4 -ハロ酪酸誘導体 に変換する酵素活性を有するタンパク質。  (C) In the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, one or several amino acids are substituted, deleted or added, and are represented by the general formula (I). A protein having an enzymatic activity for converting a halocrotonic acid derivative into an optically active 4-halobutyric acid derivative represented by the general formula (II).
(7) エノエートレダクターゼをコードする DNAが以下の(D)、 (E)または(F)に示 す DNAである、(3)—(5)のいずれかの製造方法:  (7) The method according to any one of (3) to (5), wherein the DNA encoding enoate reductase is a DNA represented by the following (D), (E) or (F):
(D)配列番号 1または配列番号 3に記載の塩基配列を有する DNA、または  (D) DNA having the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3, or
(E)配列番号 1または配列番号 3に記載の塩基配列またはその相補配列とストリ ンジェントな条件でハイブリダィズする塩基配列を有し、一般式 (I)で表される 4-ハロ クロトン酸誘導体を一般式 (Π)で表される光学活性 4 -ハロ酪酸誘導体に変換する酵 素活性を有するタンパク質をコードする DNA。  (E) a 4-halocrotonic acid derivative represented by the general formula (I), which has a base sequence that hybridizes under stringent conditions with the base sequence of SEQ ID NO: 1 or SEQ ID NO: 3 or a complementary sequence thereof, DNA encoding a protein having an enzymatic activity for converting into an optically active 4-halobutyric acid derivative represented by the formula (Π).
(F)配列番号 1または配列番号 3に記載の塩基配列において 1または数個の塩基 が置換、欠失もしくは付加された塩基配列及びその相補鎖からなり、かつ一般式 (I) で表される 4-ハロクロトン酸誘導体を一般式 (II)で表される光学活性 4-ハロ酪酸誘 導体に変換する酵素活性を有するタンパク質をコードする DNA。  (F) In the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3, one or several nucleotides are substituted, deleted or added, and comprise a complementary nucleotide sequence and represented by the general formula (I) DNA encoding a protein having an enzymatic activity that converts a 4-halocrotonic acid derivative into an optically active 4-halobutyric acid derivative represented by the general formula (II).
(8) 一般式(I)および(II)の化合物において、 R力 Sメチル基であり、 X、 Aおよび A  (8) In the compounds of the general formulas (I) and (II), R is an S methyl group, and X, A and A
1 2 がそれぞれフッ素原子であることを特徴とする、 (1)一(7)のいずれかの製造方法。  (1) The method according to any one of (1) to (7), wherein 1 2 is a fluorine atom.
(9) (8)の方法により一般式 (ΠΙ)で表される 4, 4, 4_トリフルォロチグリン酸を一般 式 (IV)で表される (R)-4, 4, 4_トリフルォロ—2-メチル酪酸に変換する工程、前記 (R) -4, 4, 4_トリフルォ口— 2-メチル酪酸を、一般式 (V)で表される (R)— 4, 4, 4_トリフ ルォ口— 2—メチルブチルァミンに変換する工程、及び前記 (R)— 4, 4, 4_トリフルォロ 一 2—メチルブチルァミンに一般式 (VI)で表される化合物を反応させて、一般式 (VII) で表される(R) _N_ (4, 4, 4_トリフルォロ— 2_メチルブチル)_3_[2—メトキシ— 4_ ( o_トリルスルホニルカルバモイノレ)ベンジル] _1_メチルインドーノレ _5_カルボキサミ ドを生成させる工程を含む、(R) _N_ (4, 4, 4_トリフルォロ— 2_メチルブチル )_3_[ 2—メトキシ _4_(o_トリルスルホニルカルバモイル)ベンジル] _1_メチルインドーノレ— 5_カルボキサミドの製造方法。 (9) According to the method of (8), 4,4,4_trifluorofluoric acid represented by the general formula (ΠΙ) is converted to (R) -4,4,4_trifluorofluoride represented by the general formula (IV) Converting to 2-methylbutyric acid, the (R) Converting -4,4,4_trifluoromethyl-2-methylbutyric acid to (R) -4,4,4_trifluoromethyl-2-methylbutylamine represented by the general formula (V), And reacting the compound represented by the general formula (VI) with the above (R) -4,4,4_trifluoro1-2-methylbutylamine to obtain the (R) _N_ ( (R) _N_, including the step of producing 4,4,4_trifluoro- 2_methylbutyl) _3_ [2-methoxy-4_ (o_tolylsulfonylcarbamoinole) benzyl] _1_methylindolinole_5_carboxamide (4,4,4_Trifluoro-2-methylbutyl) _3_ [2-methoxy_4_ (o_tolylsulfonylcarbamoyl) benzyl] _1_methylindoleno-5_carboxamide.
[化 3] [Formula 3]
Figure imgf000007_0001
(VII) 発明を実施するための最良の形態
Figure imgf000007_0001
(VII) Best mode for carrying out the invention
以下に、本発明を詳細に説明する。  The present invention is described in detail below.
< 1 >光学活性 4 -ハロ酪酸誘導体の製造方法 本発明においては、エノエートレダクターゼまたはそれを含む細胞、同細胞の調製 物もしくは同細胞を培養して得られた培養液を、反応基質である下記一般式 (I) [化 4] <1> Method for producing optically active 4-halobutyric acid derivative In the present invention, enoate reductase or a cell containing the same, a preparation of the cell, or a culture solution obtained by culturing the cell is used as a reaction substrate for the following general formula (I):
Figure imgf000008_0001
で表される 4ーハロクロトン酸誘導体に作用させることにより、該化合物の炭素 '炭素: 重結合を不斉還元させ、下記一般式 (II)
Figure imgf000008_0001
By acting on a 4-halocrotonic acid derivative represented by the following formula, the carbon 'carbon: heavy bond of the compound is asymmetrically reduced to give the following general formula (II)
[化 5]  [Formula 5]
Figure imgf000008_0002
で表される光学活性 4 -ハロ酪酸誘導体を製造する。
Figure imgf000008_0002
To produce an optically active 4-halobutyric acid derivative represented by the formula:
[0008] 上記の一般式 (I)、 (II)において、 Rはハロゲン原子、ニトロ基、ヒドロキシノレ基、置 換されてレ、てもよレ、アルキル基、置換されてレ、てもよレ、ァリール基または置換されて いてもよいアルコキシ基を、 Xはハロゲン原子を、 Aおよび Aは水素原子またはハロ  In the above general formulas (I) and (II), R represents a halogen atom, a nitro group, a hydroxy group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted X is a halogen atom; A and A are a hydrogen atom or a halo group; an aryl group or an optionally substituted alkoxy group;
1 2  1 2
ゲン原子を示す。  Indicates a gen atom.
[0009] ここで、アルキル基としては、例えば、メチノレ基、ェチル基、 n—プロピル基、イソプロ ピノレ基、シクロプロピル基、 n_ブチル基、イソブチル基、ターシャリーブチル基、 n— ペンチル基、イソペンチル基、ネオペンチル基、ターシャリーペンチル基、イソアミル 基、 n—へキシル基等の炭素数 1一 8の直鎖、分岐鎖、環状アルキル基が挙げられる 。これらの中で、炭素数 1一 4のアルキル基が好ましぐメチル基又はェチル基が特に 好ましレ、。ァリール基としては、例えば、フエニル基、メシチル基、ナフチル基等が挙 げられる。また、アルコキシ基としては、例えば、メトキシ基、エトキシ基、 n—プロポキ シ基、イソプロポキシ基、 n—ブトキシ基、イソブトキシ基、ターシャリーブトキシ基等が 挙げられる。これらの中で炭素数 1一 4のアルコキシ基が好ましい。 Here, examples of the alkyl group include a methynole group, an ethyl group, an n-propyl group, an isopropyline group, a cyclopropyl group, an n_butyl group, an isobutyl group, a tertiary butyl group, an n-pentyl group, Examples include straight-chain, branched-chain and cyclic alkyl groups having 118 carbon atoms such as isopentyl group, neopentyl group, tertiary pentyl group, isoamyl group, n-hexyl group and the like. Of these, a methyl group or an ethyl group is particularly preferable, and an alkyl group having 14 to 14 carbon atoms is particularly preferable. Examples of aryl groups include phenyl, mesityl, and naphthyl. I can get lost. Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a tertiary butoxy group, and the like. Among them, an alkoxy group having 14 to 14 carbon atoms is preferable.
[0010] 上記アルキル基、ァリール基及びアルコキシ基は置換されていてもよい。置換基と しては、前記不斉還元反応に悪影響を与えない基であれば特に限定されないが、具 体的には、アルキル基、ァリーノレ基、アルコキシ基、ハロゲン基、シァノ基、アミノ基、 ニトロ基及びヒドロキシノレ基等が挙げられる。したがって、一般式 (I)および (Π)におい て、置換されたアルキル基として具体的には、ベンジル基、フヱネチル基、トリフルォ ロメチル基、シァノメチル基、アミノメチル基、ヒドロキシメチル基、ニトロメチル基、メト キシメチル基等が挙げられる。置換されたァリール基として具体的には、クロロフヱ二 ル基、アミノフヱニル基、ヒドロキシフヱニル基、ニトロフエ二ル基、メトキシフヱニル基 等が挙げられる。また、置換されたアルコキシ基として具体的には、ベンジロキシ基、 フエノキシ基、トリフルォロメトキシ基等が挙げられる。  [0010] The alkyl group, aryl group and alkoxy group may be substituted. The substituent is not particularly limited as long as it does not adversely affect the asymmetric reduction reaction, but specifically, an alkyl group, an aryl group, an alkoxy group, a halogen group, a cyano group, an amino group, Examples include a nitro group and a hydroxy group. Therefore, in the general formulas (I) and (Π), specific examples of the substituted alkyl group include a benzyl group, a phenethyl group, a trifluoromethyl group, a cyanomethyl group, an aminomethyl group, a hydroxymethyl group, a nitromethyl group, and a methoxymethyl group. A xymethyl group and the like. Specific examples of the substituted aryl group include a chlorophenyl group, an aminophenyl group, a hydroxyphenyl group, a nitrophenyl group, and a methoxyphenyl group. Specific examples of the substituted alkoxy group include a benzyloxy group, a phenoxy group, and a trifluoromethoxy group.
[0011] Xはハロゲン原子を、 Aおよび Aは水素原子またはハロゲン原子を示す力 これら  [0011] X represents a halogen atom, and A and A represent a hydrogen atom or a halogen atom.
1 2  1 2
のハロゲン原子は、フッ素原子、塩素原子、臭素原子が好ましぐフッ素原子がより好 ましい。 X、 A、 Aの全てがフッ素原子であることが特に好ましい。  Is more preferably a fluorine atom, preferably a fluorine atom, a chlorine atom or a bromine atom. It is particularly preferred that all of X, A and A are fluorine atoms.
1 2  1 2
[0012] 上記一般式 (I)および (II)中の Rとしては、好ましくは炭素数 1一 4のアルキル基、ベ ンジル基又はフエニル基であり、より好ましくは炭素数 1一 4のアルキル基であり、特 に好ましくはメチル基である。  R in the above general formulas (I) and (II) is preferably an alkyl group having 14 to 14 carbon atoms, a benzyl group or a phenyl group, and more preferably an alkyl group having 14 to 14 carbon atoms. And particularly preferably a methyl group.
[0013] 上記一般式 (I)で表される化合物としては、分子量が 1000以下、好ましくは 500以 下、より好ましくは 300以下のものであり、具体的には、例えば一般式 (III)で表される 4, 4, 4_トリフルォロチグリン酸等が挙げられる。上記一般式 (I)で表される化合物は 、例えば、下記一般式 (VIII)で表されるアルデヒド (X、 A  The compound represented by the general formula (I) has a molecular weight of 1,000 or less, preferably 500 or less, more preferably 300 or less. Specifically, for example, the compound represented by the general formula (III) 4,4,4_Trifluorotiglic acid and the like. The compound represented by the general formula (I) is, for example, an aldehyde represented by the following general formula (VIII) (X, A
1、 Aは前記と同様の置換基 2  1, A is the same substituent as above 2
を示す)を第 4版実験化学講座(19卷、 P62、 1992年)記載の方法により所望の安定 化イリドと Wittig反応を行レ、、得られた不飽和エステルを加水分解することにより容易 に合成することができる。 [0014] [化 6] The Wittig reaction with the desired stabilized ylide is carried out according to the method described in the 4th Edition Experimental Chemistry Course (Vol. 19, p. 62, 1992), and the obtained unsaturated ester is easily hydrolyzed. Can be synthesized. [0014] [Formula 6]
Figure imgf000010_0001
Figure imgf000010_0001
[0015] また、上記一般式 (Π)で表される化合物として、分子量が 1000以下、好ましくは 50 0以下、より好ましくは 300以下のものであり、具体的には、一般式 (IV)の(R) _4, 4 , 4一トリフルォ口— 2—メチル酪酸等が挙げられる。 Further, the compound represented by the general formula (Π) has a molecular weight of 1000 or less, preferably 500 or less, more preferably 300 or less. Specifically, the compound represented by the general formula (IV) (R) _4,4,4-trifluro mouth-2-methylbutyric acid and the like.
[化 7]  [Formula 7]
Figure imgf000010_0002
Figure imgf000010_0002
[0016] エノエートレダクターゼは一般に、エノエー Henoate)の炭素'炭素二重結合の還元 反応を触媒する酵素をいう(Studies in Natural Products Chemistry, vol. 20, p817, 1998)が、本発明においては、 4ーハロクロトン酸誘導体の炭素'炭素二重結合を不斉 還元して光学活性な 4ーハロ酪酸誘導体を生成する活性を有することのできるタンパ ク質をいう。ここで、生成する 4ーハロ酪酸誘導体の光学純度は、 60% e. e.以上であ ることが好ましぐ 90% e. e.以上であることがより好ましぐ 98% e. e.以上であること 力 Sさらに好ましぐ 99.5% e. e.であることが特に好ましい。このような活性は、 4_ノヽロ クロトン酸誘導体を基質として含有し、さらに NADHを補酵素として含有する反応系 において、 NADHの減少初速度を測定することにより測定することができる。 [0016] Enoate reductase generally refers to an enzyme that catalyzes the reduction reaction of the carbon'carbon double bond of the enoate (Henoate) (Studies in Natural Products Chemistry, vol. 20, p817, 1998). A protein capable of asymmetrically reducing the carbon'carbon double bond of a 4-halocrotonic acid derivative to produce an optically active 4-halobutyric acid derivative. Here, the optical purity of the generated 4-halobutyric acid derivative is preferably at least 60% ee, more preferably at least 90% ee, and at least 98% ee. It is particularly preferred that the ee is 99.5% ee. Such an activity can be measured by measuring the initial rate of decrease of NADH in a reaction system containing a 4-nitrocrotonic acid derivative as a substrate and further containing NADH as a coenzyme.
[0017] 本発明の製造方法において用いることのできるエノエートレダクターゼは上記活性 を有する限り特に制限されないが、例えば、配列番号 2または配列番号 4に記載のァ ミノ酸配列を有するものが挙げられる。これらはそれぞれ、ムーレラ サーモオートトロ フイカ(Moorella thermoautotrophica)、クロストリジゥム ァセトブチリカム(Clostridium acetobutylicum)由来のエノエートレダクターゼである。 [0018] また、本発明においては、これらのホモログであって、前記の酵素活性を有するも のを用いてもよい。ホモログとは、例えば、前記活性を害さない範囲内において配列 番号 2または配列番号 4に記載のアミノ酸配列に一個若しくは数個のアミノ酸が欠失 、置換、若しくは付加されたアミノ酸配列を有するものを挙げることができる。ここで数 個とは、具体的には 20個以下、好ましくは 10個以下、より好ましくは 5個以下である。 [0017] The enoate reductase that can be used in the production method of the present invention is not particularly limited as long as it has the above activity, and examples thereof include those having the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4. These are enoate reductases derived from Moorella thermoautotrophica and Clostridium acetobutylicum, respectively. Further, in the present invention, homologs of these homologs having the above-mentioned enzyme activity may be used. Homologs include, for example, those having an amino acid sequence in which one or several amino acids have been deleted, substituted, or added to the amino acid sequence described in SEQ ID NO: 2 or SEQ ID NO: 4 within a range that does not impair the activity. be able to. Here, the term “several” specifically means 20 or less, preferably 10 or less, and more preferably 5 or less.
[0019] また、前記ホモログは、配列番号 2または配列番号 4に示されるアミノ酸配列と 35% 以上、好ましくは 50%以上、より好ましくは 80%、特に好ましくは 95%以上のホモ口 ジーを有するタンパク質であってもよレ、。ちなみに上記タンパク質のホモロジ一検索 は、例えば、 GenBankや DNA Databank of JAPAN (DDBJ)を対象に、 FAS TAや BLASTなどのプログラムを用いて行うことができる。配列番号 2または配列番 号 4に記載のアミノ酸配列を用いて、 GenBankを対象に BLAST programによりホ モロジ一検索を行った結果、配列番号 2の配列は Clostridium tyrobutyricum由来 2-enoate reductase (Accession No. CAA71086)と 59%の相同性を示し、配列番号 4 の目 ti歹1 Jは Clostridium tyrobutyricum由来 2— enoate reductase (Accession No. [0019] The homolog has 35% or more, preferably 50% or more, more preferably 80%, particularly preferably 95% or more homology with the amino acid sequence shown in SEQ ID NO: 2 or SEQ ID NO: 4. It may be protein. Incidentally, the homology search of the above-mentioned protein can be performed using, for example, a program such as FASTA or BLAST for GenBank or DNA Databank of JAPAN (DDBJ). A homology search was performed using the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 with the BLAST program against GenBank, and as a result, the sequence of SEQ ID NO: 2 was 2-enoate reductase derived from Clostridium tyrobutyricum (Accession No. CAA71086) and 59% showed homology, eye ti歹1 of SEQ ID NO: 4 J is Clostridium Tyrobutyricum from 2- enoate reductase (Accession No.
CAA71086)と 49%の相同性を示した。また、配列番号 2と配列番号 4の配列は互い に 50%の相同性を示した。本明細書において、 Accession No.は GenBankのものを 示す。  CAA71086) and 49% homology. In addition, the sequences of SEQ ID NO: 2 and SEQ ID NO: 4 showed 50% homology with each other. In this specification, Accession No. indicates that of GenBank.
[0020] 本発明の製造法に用いるエノエートレダクターゼは、エノエートレダクターゼの一部 又は全部をコードする遺伝子の塩基配列を元にして作製したプローブを用いて、エノ エートレダクターゼ活性を有する任意の微生物からエノエートレダクターゼをコードす る DNAを単離した後、該 DNAを大腸菌などの宿主に発現させることによって得るこ とができる。また、エノエートレダクターゼ活性を有する微生物、例えば、クロストリジゥ ム(Clostridium)属細菌やムーレラ(Moorella)属細菌の菌体から精製することによつ て得ることもできる。細菌の菌体からエノエートレダクターゼを取得する方法としては、 例えば、 Eur. J. Biochem. Vol. 97, pl03 (1979)に記載の方法を参考に行うことができ る。  The enoate reductase used in the production method of the present invention may be any microorganism having enoate reductase activity using a probe prepared based on the nucleotide sequence of a gene encoding a part or all of enoate reductase. Can be obtained by isolating a DNA encoding enoate reductase from E. coli and expressing the DNA in a host such as E. coli. It can also be obtained by purifying from a microorganism having enoate reductase activity, for example, a bacterium of the genus Clostridium or Moorella. As a method for obtaining enoate reductase from bacterial cells, for example, the method described in Eur. J. Biochem. Vol. 97, pl03 (1979) can be referred to.
[0021] クロストリジゥム(Clostridium)属細菌としては、例えばクロストリジゥム ァセトブチ リカム ATCC824株力 本発明に好適に利用できるエノエートレダクターゼを有してお り、ムーレラ(Moorella)属細菌としては、例えばムーレラ サーモオートトロフイカ [0021] Examples of Clostridium bacteria include, for example, Clostridium acetobutylicum ATCC824 strain, which has enoate reductase that can be suitably used in the present invention. For example, as a bacterium belonging to the genus Moorella, for example, Moorella thermoautotrophica
DSM1974株が、本発明に好適に利用できるエノエートレダクターゼを有している。前 者は ATCC (American Type Culture Collection)のオンラインカタログ(  The strain DSM1974 has enoate reductase that can be suitably used in the present invention. The former is an ATCC (American Type Culture Collection) online catalog (
http://www.atcc.org/)に記載されており、該 ATCC力 入手できる。また、後者は D S Z (Deutsche ^ammlung von Mikroorganismen und Zellkulturen GmbH (German Collection of Microorganisms and Cell Cultures))のオンラインカタログ (  http://www.atcc.org/) and the ATCC power is available. Also, the latter is an online catalog of DSZ (Deutsche ^ ammlung von Mikroorganismen und Zellkulturen GmbH (German Collection of Microorganisms and Cell Cultures)).
http://www.dsmz.de/)に記載されており、該 DSMZ力も入手可能である。  http://www.dsmz.de/) and the DSMZ force is also available.
[0022] 本発明の製造方法においては、 4_ノヽロクロトン酸誘導体をエノエートレダクターゼ の精製酵素と反応させてもよいが、エノエートレダクターゼを含む細胞、該細胞の調 製物、または該細胞を培養して得られた培養液を、 4一八口クロトン酸誘導体に反応さ せて、光学活性 4一八口酪酸誘導体を製造してもよい。エノエートレダクターゼを含む 細胞としては、エノエートレダクターゼをコードする DNAで形質転換された細胞が好 ましい。 In the production method of the present invention, the 4_nodrocrotonic acid derivative may be allowed to react with a purified enzyme of enoate reductase, but a cell containing enoate reductase, a preparation of the cell, or the cell is used. The culture solution obtained by culturing may be reacted with a 4,18-mouth crotonic acid derivative to produce an optically active 4,18-mouth butyric acid derivative. The cell containing enoate reductase is preferably a cell transformed with DNA encoding enoate reductase.
[0023] この場合、エノエートレダクターゼをコードする DNAとしては、配列番号 2または 4の アミノ酸配列を有するエノエートレダクターゼをコードする DNAが挙げられる。また、 配列番号 2または配列番号 4のアミノ酸配列と 50%以上の相同性を有するアミノ酸配 歹 IJを有し、かつ、一般式 (I)で表される 4-ハロクロトン酸誘導体を一般式 (Π)で表され る光学活性 4 -ハロ酪酸誘導体に変換する酵素活性を有するタンパク質をコードする DNAであってもよい。具体的には、配列番号 1または配列番号 3の塩基配列を有す る DNAを挙げること力 Sできる。このような DNAは配列番号 1または配列番号 3の塩基 配列に基いて設計したプライマーを用いた PCRによって得ることができる。また、本 発明製造法においては、配列番号 1または配列番号 3に記載の塩基配列を有する D NAのホモログであって、エノエートレダクターゼ活性を有するタンパク質をコードする DNAを用いてもよい。  In this case, the DNA encoding enoate reductase includes a DNA encoding enoate reductase having the amino acid sequence of SEQ ID NO: 2 or 4. Further, a 4-halocrotonic acid derivative having an amino acid sequence IJ having 50% or more homology with the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 and represented by the general formula (I) is represented by the general formula (Π) )) May be a DNA encoding a protein having an enzymatic activity for converting into an optically active 4-halobutyric acid derivative. Specifically, a DNA having the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 can be mentioned. Such DNA can be obtained by PCR using a primer designed based on the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3. Furthermore, in the production method of the present invention, a DNA homolog of a DNA having the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 and encoding a protein having an enoate reductase activity may be used.
[0024] ここで、ホモログとは、エノエートレダクターゼ活性を有するタンパク質をコードする 限り、配列番号 1または配列番号 3に記載の塩基配列に 1個もしくは数個の塩基が欠 失、置換、若しくは付加された塩基配列及び素の相補鎖からなる DNAを含む。ここ で数個とは、具体的には 60個以下、好ましくは 30個以下、より好ましくは 10個以下 である。 Here, a homolog is defined as a protein having an enoate reductase activity, in which one or several bases are deleted, substituted, or added to the base sequence described in SEQ ID NO: 1 or SEQ ID NO: 3. Includes DNA consisting of the base sequence and the complementary strand of the elementary sequence. Here, the term "several" specifically refers to 60 or less, preferably 30 or less, and more preferably 10 or less. It is.
[0025] また、ホモログは、配列番号 1または 3の塩基配列を有する DNAまたはその相補鎖 とストリンジヱントな条件下でハイブリダィズし、エノエートレダクターゼ活性を有するタ ンパク質をコードする DNAであってもよレ、。ここで、「ストリンジヱントな条件下でハイ ブリダィズする DNA」とは、プローブ DNAを用いて、ストリンジヱントな条件下で、コロ ニーハイブリダィゼーシヨン法、プラークハイブリダィゼーシヨン法、あるいはサザンブ ロットハイブリダィゼーシヨン法等を行うことにより得られる DNAを意味し、「ストリンジ ェントな条件」としては、例えば、コロニーハイブリダィゼーシヨン法およびプラークハ イブリダィゼーシヨン法においては、コロニーあるいはプラーク由来の DNAまたは該 DNAの断片を固定化したフィルターを用いて、 0. 7- 1. 0Mの塩化ナトリウム存在 下 65°Cでハイブリダィゼーシヨンを行った後、 0. 1一 2 X SSC溶液(1 X SSCの組成 は、 150mM塩化ナトリウム、 15mMクェン酸ナトリウム)を用レ、、 65。C条件下でフィ ルターを洗浄する条件を挙げることができる。  [0025] The homolog may be a DNA that hybridizes with a DNA having the nucleotide sequence of SEQ ID NO: 1 or 3 or a complementary strand thereof under stringent conditions and encodes a protein having an enoate reductase activity. Les ,. Here, “DNA that hybridizes under stringent conditions” refers to a method using a probe DNA and a colony hybridization method, a plaque hybridization method, or a Southern blot hybridization method under stringent conditions. The term "stringent conditions" refers to DNA obtained by performing the hybridization method or the like.For example, in the colony hybridization method and the plaque hybridization method, After performing hybridization at 65 ° C in the presence of 0.7-1.0 M sodium chloride using a filter on which the DNA or a fragment of the DNA has been immobilized, a 0.1 X 2 SSC solution (The composition of 1 X SSC is 150 mM sodium chloride, 15 mM sodium citrate). Conditions for washing the filter under C conditions can be mentioned.
[0026] エノエートレダクターゼをコードする DNAは、例えば、以下のような方法によって単 離すること力 Sできる。まず、エノエートレダクターゼを上記の方法等により微生物菌体 等から精製した後、 N末端アミノ酸配列を解析する。 N末端アミノ酸配列解析は、リジ ルエンドべプチダーゼ、 V8プロテアーゼなどの酵素により精製タンパク質を切断し、 逆相液体クロマトグラフィーなどによりペプチド断片を精製した後、プロティンシーケ ンサ一によりアミノ酸配列を解析して複数のアミノ酸配列を決めることにより行う。決定 したアミノ酸配列を元に設計したプライマーを用レ、、エノエートレダクターゼ生産微生 物株の染色体 DNAもしくは cDNAライブラリーを铸型として PCRを行うことにより、ェ ノエ一トレダクターゼをコードする DNAの一部(DNA断片)を得ること力 Sできる。さら に、エノエートレダクターゼ生産微生物株の染色体 DNAの制限酵素消化物をファー ジ、プラスミドなどに導入し、大腸菌を形質転換して得られたライブラリーや cDNAラ イブラリーから、前記の DNA断片をプローブに用いてコロニーハイブリダィゼーショ ン、プラークハイブリダィゼーシヨンなどを行うことにより、エノエートレダクターゼをコ ードする DNAを得ることができる。  [0026] DNA encoding enoate reductase can be isolated, for example, by the following method. First, enoate reductase is purified from microbial cells or the like by the above-mentioned method or the like, and then the N-terminal amino acid sequence is analyzed. N-terminal amino acid sequence analysis is performed by cleaving the purified protein with enzymes such as lysyl endopeptidase and V8 protease, purifying the peptide fragment by reverse-phase liquid chromatography, etc., and then analyzing the amino acid sequence with a protein sequencer. By determining the amino acid sequence of Using primers designed based on the determined amino acid sequence, and performing PCR using the chromosomal DNA or cDNA library of the enoate reductase-producing microbial strain as type III, the DNA encoding the enoate reductase is obtained. Able to obtain a part (DNA fragment). Furthermore, the above DNA fragment is probed from a library or cDNA library obtained by introducing a restriction enzyme digest of chromosomal DNA of an enoate reductase-producing microorganism strain into a phage, a plasmid, etc., and transforming E. coli. By performing colony hybridization, plaque hybridization, and the like, DNA encoding enoate reductase can be obtained.
[0027] また、前記の PCRにより得られた DNA断片の塩基配列を解析し、得られた配列か ら、配列が決定された領域の外側に伸長させるための PCRプライマーを設計し、エノ エートレダクターゼ生産微生物株の染色体 DNAを適当な制限酵素で消化後、 自己 環化反応により環化させた DNAを铸型として invese PCR (Genetics vol. 120, p621-623 (1988) )を行うことにより、エノエートレダクターゼをコードする DNAを得るこ とも可能である。 [0027] In addition, the base sequence of the DNA fragment obtained by the PCR is analyzed, and Then, PCR primers were designed to extend outside the sequenced region, and the chromosomal DNA of the enoate reductase-producing microbial strain was digested with appropriate restriction enzymes, and the DNA cyclized by the autocyclization reaction was used. DNA encoding enoate reductase can be obtained by performing invese PCR (Genetics vol. 120, p621-623 (1988)) as type 铸.
[0028] なおエノエートレダクターゼをコードする DNAは、配列番号 1または配列番号 3の 塩基配列を有する DNAを化学合成することによって得ることもできる。  [0028] The DNA encoding enoate reductase can also be obtained by chemically synthesizing DNA having the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3.
[0029] 当業者であれば、配列番号 1または配列番号 3に記載の DNAに部位特異的変異 導入法(Nucleic Acid Res. vol. 10, p6487 (1982), Methods in Enzymol. vol. 100, p448 (1983) , Molecular Cloning 2nd Edt., Cold Spring Harbor Laboratory Press ( 1989)、 PCR: A Practical A卯 roach, IRL Press, p200 (1991) )等を用いて適宜置換、 欠失、揷入及び/または付加変異を導入することにより、本発明の製造法に用いるこ とのできるエノエートレダクターゼをコードする DNAを得ることが可能である。  [0029] A person skilled in the art would be able to introduce a site-specific mutation into the DNA of SEQ ID NO: 1 or 3 (Nucleic Acid Res. Vol. 10, p6487 (1982), Methods in Enzymol. Vol. 100, p448). (1983), Molecular Cloning 2nd Edt., Cold Spring Harbor Laboratory Press (1989), PCR: A Practical Aroach, IRL Press, p200 (1991)), etc. By introducing an additional mutation, DNA encoding enoate reductase that can be used in the production method of the present invention can be obtained.
[0030] また、配列番号 2または 4のアミノ酸配列の全部またはその一部や、配列番号 1また は 3の塩基配列の全部または一部を元に、例えば GenBankや DDBJ等のデータべ ースに対してホモロジ一検索を行って、エノエートレダクターゼをコードする DNAホ モログの塩基配列情報を手に入れることも可能である。当業者であれば、この塩基配 列情報を元に寄託菌株 (ATCC、 DSMZ等から入手可能)からの PCR等によりエノェ 一トレダクターゼをコードする DNAを手に入れることが可能である。  [0030] Further, based on all or a part of the amino acid sequence of SEQ ID NO: 2 or 4, or all or a part of the nucleotide sequence of SEQ ID NO: 1 or 3, based on a database such as GenBank or DDBJ. It is also possible to obtain a base sequence information of a DNA homologue encoding enoate reductase by conducting a homology search. A person skilled in the art can obtain a DNA encoding enone reductase by PCR or the like from a deposited strain (available from ATCC, DSMZ, etc.) based on this base sequence information.
[0031] さらに、エノエートレダクターゼをコードする DNAは、配列番号 1または 3の塩基配 列の全部または一部を有する DNAをプローブに用いて、エノエートレダクターゼ活 性を有する任意の微生物から調製した DNAに対し、コロニーハイブリダィゼーシヨン 法、プラークハイブリダィゼーシヨン法、あるいはサザンブロットハイブリダィゼーシヨン 法等によりストリンジ工ントな条件下でハイブリダィゼーシヨンを行レ、、ハイブリダィズす る DNAを得ることによつても取得できる。ここで、「一部」とは、プローブとして用いる のに十分な長さの DNAのことであり、具体的には 15bp以上、好ましくは 50bp以上、 より好ましくは lOObp以上のものである。  [0031] Further, DNA encoding enoate reductase was prepared from any microorganism having enoate reductase activity using a DNA having all or a part of the base sequence of SEQ ID NO: 1 or 3 as a probe. The DNA is subjected to hybridization under stringent engineering conditions by colony hybridization, plaque hybridization, Southern blot hybridization, or the like, and hybridized. It can also be obtained by obtaining DNA. Here, the term “part” refers to a DNA having a length sufficient to be used as a probe, specifically, 15 bp or more, preferably 50 bp or more, more preferably 100 bp or more.
[0032] 各ハイブリダィゼーシヨンは、 Molecular Cloning 2nd Edt., Cold Spring Harbor Laboratory Press (1989)等に記載されている方法に準じて行うことができる。 [0032] Each hybridization was performed by Molecular Cloning 2nd Edt., Cold Spring Harbor. It can be carried out according to the method described in Laboratory Press (1989) and the like.
[0033] 上記のようにして単離された、エノエートレダクターゼをコードする DNAを公知の発 現ベクターに発現可能に挿入することにより、エノエートレダクターゼ発現べクタ一が 提供される。この発現ベクターで形質転換した細胞を培養することにより、エノエート レダクタ一ゼを該細胞から得ることができる。形質転換細胞は、公知の宿主細胞の染 色体 DNAにエノエートレダクターゼをコードする DNAを発現可能に組み込むことに よっても得ること力 Sできる。  The enoate reductase expression vector is provided by inserting the DNA encoding enoate reductase isolated as described above into a known expression vector so that it can be expressed. By culturing cells transformed with this expression vector, enoate reductase can be obtained from the cells. Transformed cells can also be obtained by incorporating DNA encoding enoate reductase into a chromosomal DNA of a known host cell so that it can be expressed.
[0034] 形質転換細胞の作製方法としては、具体的には、微生物中において安定に存在 するプラスミドベクターやファージベクター中に、エノエートレダクターゼをコードする DNAを組み込み、構築された発現ベクターを該微生物中に導入するか、もしくは、 直接宿主ゲノム中にエノエートレダクターゼをコードする DNAを導入し、その遺伝情 報を転写 '翻訳させる必要がある。  [0034] As a method for producing a transformed cell, specifically, an expression vector constructed by incorporating DNA encoding enoate reductase into a plasmid vector or a phage vector stably existing in a microorganism is used. Or the DNA encoding enoate reductase must be introduced directly into the host genome and the genetic information must be transcribed and translated.
[0035] このとき、エノエートレダクターゼをコードする DNAが宿主微生物中で発現可能な プロモーターを含んでいない場合には、適当なプロモーターをエノエートレダクター ゼをコードする DNA鎖の 5 '側上流に組み込む必要がある。さらに、ターミネータ一を 3 '側下流に組み込むことが好ましい。このプロモーター及びターミネータ一としては 、宿主として利用する微生物中におレ、て機能することが知られてレ、るプロモーター及 びターミネータ一であれば特に限定されず、これら各種微生物において利用可能な ベクター、プロモーター及びターミネータ一に関しては、例えば「微生物学基礎講座 8 ·遺伝子工学 '共立出版」、特に酵母に関しては、 Adv. Biochem. Eng. vol. 43, P75-102 (1990)、 Yeast vol. 8, p423_488 (1992)などに詳細に記述されている。  [0035] At this time, if the DNA encoding the enoate reductase does not contain a promoter that can be expressed in the host microorganism, an appropriate promoter is placed 5 'upstream of the DNA strand encoding the enoate reductase. Must be incorporated. Further, it is preferable to incorporate a terminator downstream of the 3 'side. The promoter and terminator are not particularly limited as long as they are known to function in a microorganism used as a host, provided that they are promoters and terminators. Regarding promoters and terminators, for example, "Basic Lectures on Microbiology 8Genetic Engineering 'Kyoritsu Shuppan'," especially for yeast, Adv. Biochem. Eng. Vol. 43, P75-102 (1990), Yeast vol. 8, It is described in detail in p423_488 (1992).
[0036] 本発明のエノエートレダクターゼを発現させるための形質転換の対象となる宿主微 生物としては、宿主自体が本反応に悪影響を与えない限り特に限定されることはなく 、具体的には、例えば、以下に示すような微生物を挙げることができる。  [0036] The host microorganism to be transformed for expressing the enoate reductase of the present invention is not particularly limited as long as the host itself does not adversely affect the present reaction. For example, the following microorganisms can be mentioned.
[0037] ェシエリヒア(Escherichia)属、バチノレス(Bacillus)属、シユードモナス(Pseudomonas )属、セラチア(Serratia)属、ブレビバタテリゥム(Brevibacterium)属、コリネバクテリウ ム (Corynebacterium)属、ストレプトコッカス (Streptococcus)属、ラタトバチノレス ( Lactobacillus)属などに属する宿主ベクター系の確立されてレ、る細菌。 [0038] ロドコッカス(Rhodococcus)属、ストレプトマイセス(Streptomyces)属などに属する宿 主ベクター系の確立されている放線菌。 [0037] The genus Escherichia, the genus Bacillus, the genus Pseudomonas, the genus Serratia, the genus Brevibacterium, the genus Corynebacterium, the genus Streptococcus (Streptococcus) An established host vector system belonging to the genus (Lactobacillus). [0038] Actinomycetes having an established host vector system belonging to the genera Rhodococcus, Streptomyces, and the like.
[0039] サッカロマイセス (Saccharomyces)属、クライべロマイセス (Kluyveromyces)属、シゾ サッカロマイセス(Schizosaccharomyces)属、チゴサッカロマイセス( [0039] The genus Saccharomyces, the genus Kluyveromyces, the genus Schizosaccharomyces, and the genus Saccharomyces (
Zygosaccharomyces) j¾¾ャロウィゾ (Yarrowiaノ晨、トリコスホロン (Tnchosporon) /禹、 ロドスポリジゥム(Rhodosporidium)属、ハンゼヌラ(Hansenula)属、ピキア(Pichia)属、 キャンディダ(Candida)属などに属する宿主ベクター系の確立されている酵母。 Zygosaccharomyces) j¾ ¾ Yarowizo (Yarrowia Bruno Chen, Torikosuhoron (Tnchosporon) / Woo, Rodosuporijiumu (Rhodosporidium) genus Hansenula (Hansenula) spp, Pichia (Pichia) sp., Are established in the host-vector system belonging to such Candida (Candida) spp Yeast.
[0040] ノイロスポラ(Neurospora)属、ァスペルギルス(Aspergillus)属、セファロスポリウム( C印 halosporium)属、トリコデノレマ(Trichoderma)属などに属する宿主ベクター系の確 立されているカビ。  [0040] An established mold of a host vector belonging to the genus Neurospora, the genus Aspergillus, the genus Cephalosporium (halosporium C), the genus Trichoderma, or the like.
[0041] 上記微生物の中で宿主として好ましくは、ェシヱリヒア(Escherichia)属、バチルス ( Bacillus)属、ブレビバタテリゥム(Brevibacterium)属、コリネバクテリウム(  [0041] Among the above microorganisms, the host is preferably a genus Escherichia, a genus Bacillus, a genus Brevibacterium, or a corynebacterium (
Corynebacterium)属であり、特に好ましくは、ェシエリヒア(Escherichia)属、コリネバタ ァリヮム (Corynebacterium) j¾である。  Corynebacterium), and particularly preferably, Escherichia and Corynebacterium j.
[0042] 形質転換細胞作製のための手順、宿主に適合した組換えベクターの構築および宿 主の培養方法は、分子生物学、生物工学、遺伝子工学の分野において慣用されて レ、る技術に準じて行うことができる(例えば、「モレキュラークローニング第 2版」、 Cold pring Harbor Laooratory Press (1989年リ、参照)。  [0042] The procedure for producing transformed cells, the construction of a recombinant vector suitable for a host, and the culture method of the host are in accordance with techniques commonly used in the fields of molecular biology, biotechnology, and genetic engineering. (See, eg, "Molecular Cloning Second Edition," Cold Spring Harbor Laooratory Press (Re, 1989)).
[0043] 以下、具体的に、好ましい宿主微生物、各微生物における好ましい形質転換の手 法、ベクター、プロモーター、ターミネータ一などの例を挙げるが、本発明はこれらの 例に限定されない。  Hereinafter, specific examples of preferred host microorganisms, preferred transformation methods for each microorganism, vectors, promoters, terminators, and the like will be given, but the present invention is not limited to these examples.
[0044] ェシエリヒア属、特にェシエリヒア'コリ(Escherichia coli)においては、プラスミドべク ターとしては、 pBR、 pUC系プラスミドなどが挙げられ、プロモーターとしては、 lac ( i3 —ガラタトシダーゼ)、 trp (トリプトファンオペロン)、 tac、 trc (lac, trpの融合)、 λファ ージ PL、 PRなどに由来するプロモーターなどが挙げられる。また、ターミネータ一と しては、 trpA由来、ファージ由来、 rrnBリボソ一マル RNA由来のターミネータ一など が挙げられる。  [0044] In the genus Escherichia, particularly in Escherichia coli, plasmid vectors include pBR and pUC-type plasmids, and promoters include lac (i3-galatatosidase) and trp (tryptophan operon). , Tac, trc (fusion of lac and trp), λ phage PL, PR and the like. Examples of the terminator include a terminator derived from trpA, phage, and rrnB ribosomal RNA.
[0045] バチルス属においては、ベクターとしては、 pUBl lO系プラスミド、 pC194系プラス ミドなどを挙げることができ、また、染色体にインテグレートすることもできる。プロモー ター及びターミネータ一としては、アルカリプロテアーゼ、中性プロテアーゼ、 α—アミ ラーゼ等の酵素遺伝子のプロモーターやターミネータ一などが利用できる。 [0045] In the genus Bacillus, vectors include pUBlO-based plasmid and pC194-based plasmid. And chromosomes. As the promoter and the terminator, promoters and terminators of enzyme genes such as alkaline protease, neutral protease and α-amylase can be used.
[0046] シユードモナス属においては、ベクターとしては、シユードモナス'プチダ(  In the genus Pseudomonas, vectors include Pseudomonas' putida (
Pseudomonas putida)、ンュ1 ~ドモナス-セノヽンァ (Pseudomonas cepaciaノなと 5確 A されている一般的な宿主ベクター系や、トルエンィ匕合物の分解に関与するプラスミド 、 TOLプラスミドを基本にした広宿主域ベクター(RSF 1010などに由来する自律的 複製に必要な遺伝子を含む) pKT240 (Gene, vol. 26, p273_82 ( 1983) )を挙げるこ とができる。 Pseudomonas putida), Nyu 1 Pseudomonas - Se Nono Na (Pseudomonas cepacia nona and 5 common host vector system to finalize A or plasmids involved in the degradation of Torueni匕合was wide was basically the TOL plasmid A host range vector (including a gene necessary for autonomous replication derived from RSF1010 or the like) pKT240 (Gene, vol. 26, p273_82 (1983)) can be mentioned.
[0047] ブレビバクテリウム属、特にブレビバタテリゥム'ラタトフアーメンタム(Brevibacterium lactofermentum)においては、ベクターとしては、 pAJ43 (Gene vol. 39, p281 ( 1985) ) などのプラスミドベクターを挙げることができる。プロモーター及びターミネータ一とし ては、大腸菌で使用されている各種プロモーター及びターミネータ一が利用可能で める。  [0047] In the genus Brevibacterium, particularly in Brevibacterium lactofermentum, examples of the vector include a plasmid vector such as pAJ43 (Gene vol. 39, p281 (1985)). Various promoters and terminators used in Escherichia coli can be used as the promoter and terminator.
[0048] コリネバクテリウム属、特にコリネバタテリゥム'ダルタミカム(Corynebacterium  [0048] The genus Corynebacterium, particularly Corynebacterium 'daltamicum (Corynebacterium
glutamicum)においては、ベクターとしては、 pCS l 1 (特開日召 57—183799号公幸 、 pCB 101 (Mol. Gen. Genet , vol. 196, p l 75 ( 1984) )などのプラスミドベクターが挙げ られる。  In glutamicum), examples of the vector include a plasmid vector such as pCS11 (Japanese Patent Publication No. 57-183799, pCB101 (Mol. Gen. Genet, vol. 196, pl 75 (1984))).
[0049] サッカロマイセス(Saccharomyces)属、特にサッカロマイセス.セレビジァェ(  [0049] The genus Saccharomyces, especially Saccharomyces cerevisiae (
Saccharomyces cerevisiae)においては、ベクターとしては、 YRp系、 YEp系、 YCp系 、 Yip系プラスミドが挙げられる。また、アルコール脱水素酵素、ダリセルァノレデヒドー 3—リン酸脱水素酵素、酸性フォスファターゼ、 /3 _ガラクトシダーゼ、ホスホダリセレー トキナーゼ、エノラーゼといった各種酵素遺伝子のプロモーター、ターミネータ一が利 用可能である。  In Saccharomyces cerevisiae), examples of the vector include YRp, YEp, YCp, and Yip plasmids. In addition, promoters and terminators of various enzyme genes such as alcohol dehydrogenase, dalyselanoledehydrido 3-phosphate dehydrogenase, acid phosphatase, / 3_galactosidase, phosphodarycelate kinase, and enolase can be used.
[0050] シゾサッカロマイセス(Schizosaccharomyces)属においては、ベクターとしては、 Mol . Cell. Biol. vol. 6, p80 ( 1986)に記載のシゾサッカロマイセス'ボンべ由来のプラスミ ドベクターを挙げることができる。特に、 pAUR224は、宝酒造から市販されており容 易に利用できる。 [0051] ァスペルギルス(Aspergillus)属においては、ァスペルギルス'二ガー(Aspergillus niger)、ァスペルギルス'オリジー(Aspergillus oryzae)などがカビの中で最もよく研究 されており、プラスミドや染色体へのインテグレーションが利用可能であり、菌体外プ 口テアーゼゃアミラーゼ由来のプロモーターが利用可能である(Trends in [0050] In the genus Schizosaccharomyces, examples of the vector include a plasmid vector derived from Schizosaccharomyces bomb described in Mol. Cell. Biol. Vol. 6, p80 (1986). . In particular, pAUR224 is commercially available from Takara Shuzo and can be easily used. [0051] In the genus Aspergillus, Aspergillus niger, Aspergillus oryzae, etc. are the most studied among molds, and integration into plasmids and chromosomes is available. Yes, and a promoter derived from extracellular protease ゃ amylase is available (Trends in
Biotechnology vol. 7, p283_287 (1989) )。  Biotechnology vol. 7, p283_287 (1989)).
[0052] また、上記以外でも、各種微生物に応じた宿主ベクター系が確立されており、それ らを適宜使用することができる。また、微生物以外でも、植物、動物において様々な 宿主 'べクタ一系が確立されており、特に蚕を用いた昆虫などの動物中(Nature vol. 315, p592-594 (1985))や菜種、トウモロコシ、ジャガイモなどの植物中に大量に異種 タンパク質を発現させる系、及び大腸菌無細胞抽出液や小麦胚芽などの無細胞タン パク質合成系を用いた系が確立されており、好適に利用できる。  [0052] In addition to the above, host vector systems corresponding to various microorganisms have been established, and these can be used as appropriate. In addition to microorganisms, various host systems have been established in plants and animals, especially in animals such as insects using silkworms (Nature vol. 315, p592-594 (1985)), rapeseed, A system for expressing a large amount of a heterologous protein in plants such as corn and potato and a system using a cell-free protein synthesis system such as a cell-free extract of Escherichia coli or wheat germ have been established and can be suitably used.
[0053] 本発明の製造方法においては、反応基質である 4一八口クロトン酸誘導体にェノエ 一トレダクターゼをコードする DNAで形質転換された細胞を作用させてもよレ、。形質 転換細胞は、反応液中でそのまま作用させてもよいが、該形質転換細胞の調製物、 例えば、該形質転換細胞をアセトン、ジメチルスルホキシド(DMS〇)、トルエン等の 有機溶媒や界面活性剤により処理したもの、凍結乾燥処理したもの、物理的または 酵素的に破砕したもの等の菌体細胞調製物、該形質転換細胞中の本発明の酵素画 分を粗製物あるいは精製物として取り出したもの、さらには、これらをポリアクリルアミド ゲル、カラギーナンゲル等に代表される担体に固定化したものを作用させてもよい。 本発明の製造方法においてはさらに、前記細胞を培養して得られた培養液、すなわ ち、前記細胞を含む培養液を、直接用いてもよい。  [0053] In the production method of the present invention, a cell transformed with a DNA encoding enoate reductase may be allowed to act on a 4,18-mouth crotonic acid derivative as a reaction substrate. The transformed cells may be allowed to act as they are in the reaction solution. However, a preparation of the transformed cells, for example, the transformed cells may be treated with an organic solvent such as acetone, dimethyl sulfoxide (DMS〇), toluene, or a surfactant. , Freeze-dried, physically or enzymatically disrupted cell cell preparations, and the enzyme fraction of the present invention extracted from the transformed cells as a crude or purified product Further, those immobilized on a carrier represented by polyacrylamide gel, carrageenan gel or the like may be used. In the production method of the present invention, a culture solution obtained by culturing the cells, that is, a culture solution containing the cells may be directly used.
[0054] 本発明の製造方法においては、反応液に補酵素 NAD+もしくは NADHを添加する のが好ましい。添加濃度は、 0. OOlmM 100mM、好ましくは 0. 01 10mMであ る。これらの補酵素を添加する場合には、 NADHから生成する NAD+を NADHへ再 生させることが生産効率向上のため好ましぐ再生方法としては、 [0054] In the production method of the present invention, it is preferable to add coenzyme NAD + or NADH to the reaction solution. The concentration of the additive is 0.001 mM, preferably 100 mM. When these coenzymes are added, it is preferable to regenerate NAD + generated from NADH into NADH as a preferable regeneration method for improving production efficiency.
( 宿主微生物自体の NAD+還元能を利用する方法、 (The method using the NAD + reducing ability of the host microorganism itself,
(ii) NAD+から NADHを生成する能力を有する微生物やその調製物、あるいは、グ ルコース脱水素酵素、ギ酸脱水素酵素、アルコール脱水素酵素、アミノ酸脱水素酵 素、有機酸脱水素酵素(リンゴ酸脱水素酵素など)などの NADHの再生に利用可能 な酵素(再生酵素)を反応系内に添加する方法、または (ii) Microorganisms or their preparations capable of producing NADH from NAD + , or glucose dehydrogenase, formate dehydrogenase, alcohol dehydrogenase, amino acid dehydrogenase A method of adding an enzyme (regenerating enzyme) that can be used to regenerate NADH, such as elemental or organic acid dehydrogenase (malate dehydrogenase, etc.), or
(iii)形質転換細胞を作製するに当たり、 NADHの再生に利用可能な酵素である上 記再生酵素類の遺伝子をエノエートレダクターゼをコードする DNAと同時に宿主に 導入する方法、が挙げられる。  (iii) A method for producing a transformed cell, wherein a gene of the above-mentioned regenerative enzymes, which is an enzyme available for the regeneration of NADH, is introduced into a host simultaneously with DNA encoding enoate reductase.
[0055] このうち、上記(i)の方法においては、反応系にグルコースやエタノール、 2_プロパ ノーノレ、ギ酸などを添カ卩することが好ましい。  [0055] Among them, in the above method (i), it is preferable to add glucose, ethanol, 2-propanol, formic acid or the like to the reaction system.
[0056] また、上記 (ii)の方法においては、上記再生酵素類を含む微生物、該微生物菌体 をアセトン処理したもの、凍結乾燥処理したもの、物理的または酵素的に破砕したも の等の菌体調製物、該酵素画分を粗製物あるいは精製物として取り出したもの、さら には、これらをポリアクリルアミドゲル、カラギーナンゲル等に代表される担体に固定 化したもの等を用いてもよぐまた市販の再生酵素を用いても良い。この場合、上記 再生酵素の使用量としては、具体的には、本発明のエノエートレダクターゼに比較し て、酵素活性で 0· 01— 100倍、好ましくは 0· 5— 20倍程度となるよう添加する。また 、上記再生酵素の基質となる化合物、例えば、グルコース脱水素酵素を利用する場 合のグルコース、ギ酸脱水素酵素を利用する場合のギ酸、アルコール脱水素酵素を 利用する場合のエタノールもしくはイソプロパノールなどの添加も必要となる力 その 添加量としては、反応原料である 4ーハロクロトン酸誘導体に対して、 0. 1一 20倍モ ル当量、好ましくは 1一 5倍モル当量添加する。  [0056] Further, in the method (ii), microorganisms containing the above-mentioned regenerated enzymes, those obtained by treating the microorganism cells with acetone, those subjected to freeze-drying, those physically or enzymatically crushed, and the like. A cell preparation, a product obtained by extracting the enzyme fraction as a crude product or a purified product, or a product obtained by immobilizing these on a carrier represented by polyacrylamide gel, carrageenan gel, etc. may be used. Alternatively, a commercially available regenerating enzyme may be used. In this case, the amount of the regenerating enzyme used is, specifically, about 0.01 to 100 times, preferably about 0.5 to 20 times the enzyme activity as compared with the enoate reductase of the present invention. Added. Compounds that serve as substrates for the above-mentioned regenerating enzymes, for example, glucose when using glucose dehydrogenase, formic acid when using formate dehydrogenase, ethanol or isopropanol when using alcohol dehydrogenase, etc. Force required to be added The amount of addition is 0.1 to 20 times molar equivalent, preferably 115 to 5 times molar equivalent, to the 4-halocrotonic acid derivative as a reaction raw material.
[0057] また、上記(iii)の方法においては、エノエートレダクターゼをコードする DNAと上記 再生酵素類の DNAを染色体に組み込む方法、単一のベクター中に両 DNAを導入 し、宿主を形質転換する方法、及び両 DNAをそれぞれ別個にベクターに導入した 後に宿主を形質転換する方法を用いることができるが、両 DNAをそれぞれ別個にベ クタ一に導入した後に宿主を形質転換する方法の場合、両ベクター同士の不和合性 を考慮してベクターを選択する必要がある。単一のベクター中に複数の遺伝子を導 入する場合には、プロモーター及びターミネータ一など発現制御に関わる領域をそ れぞれの遺伝子に連結する方法やラタトースォペロンのような複数のシストロンを含 むオペロンとして発現させることも可能である。 [0058] 本発明の製造方法は、例えば、反応基質、本発明の形質転換細胞および/または 該形質転換細胞調製物、並びに、必要に応じて添加された各種補酵素及びその再 生システムを含有する、水性媒体中または該水性媒体と有機溶媒との混合物中で行 うことができる。 [0057] In the above method (iii), a method of integrating DNA encoding enoate reductase and DNA of the above-mentioned regenerating enzymes into a chromosome, and transforming a host by introducing both DNAs into a single vector Alternatively, a method in which both DNAs are separately introduced into a vector and then a host is transformed can be used.In the case of a method in which both DNAs are separately introduced into a vector and the host is transformed, It is necessary to select a vector in consideration of the incompatibility between both vectors. When multiple genes are introduced into a single vector, a method involving ligating regions related to expression control, such as a promoter and a terminator, to each gene, or using multiple cistrons such as ratatosoperon. It can also be expressed as an operon that contains it. [0058] The production method of the present invention contains, for example, a reaction substrate, the transformed cell of the present invention and / or the transformed cell preparation, various coenzymes added as necessary, and a regeneration system thereof. The reaction can be carried out in an aqueous medium or in a mixture of the aqueous medium and an organic solvent.
[0059] 本発明製造法において反応基質となる一般式 (I)で表される化合物は、通常、基 質濃度が 0. 01 90%w/v、好ましくは 0. 1— 30%w/vの範囲で用いることがで きる。反応基質は、反応開始時に一括して添加しても良いが、酵素の基質阻害があ つた場合の影響を減らすという点や生成物の蓄積濃度を向上させるという観点からす ると、連続的もしくは間欠的に添加することが望ましい。  The compound represented by the general formula (I) serving as a reaction substrate in the production method of the present invention generally has a substrate concentration of 0.01% 90% w / v, preferably 0.1% to 30% w / v. It can be used within the range. The reaction substrate may be added all at once at the beginning of the reaction, but from the viewpoint of reducing the effects of enzyme substrate inhibition and improving the accumulated concentration of the product, continuous or It is desirable to add intermittently.
[0060] 上記、水性媒体としては、水又は緩衝液が挙げられ、また、有機溶媒としては、酢 酸ェチル、酢酸ブチル、トルエン、クロ口ホルム、 n—へキサン、ジメチルスルホキシド 等、反応基質の溶解度が高レ、ものを使用することができる。  [0060] The aqueous medium includes water or a buffer, and the organic solvent includes a reaction substrate such as ethyl acetate, butyl acetate, toluene, chloroform, n-hexane, and dimethyl sulfoxide. The one with high solubility can be used.
[0061] 本発明の方法は例えば、 4一 60°C、好ましくは 10— 45°Cの反応温度で、 pH3— 1 1、好ましくは pH5— 8で行うことができる。また、膜リアクターなどを利用して行うことも 可能である。また、エノエートレダクターゼの酸素による失活を防ぐため、反応液中に 亜硫酸ナトリウムを添加したり、反応液を窒素やアルゴンガス等でシールすることによ り、酸素の除去を行うことも効果的である。  [0061] The method of the present invention can be carried out, for example, at a reaction temperature of 4 to 60 ° C, preferably 10 to 45 ° C, and at pH 3 to 11, preferably pH 5 to 8. It is also possible to carry out the reaction using a membrane reactor or the like. It is also effective to remove sodium by adding sodium sulfite to the reaction solution or sealing the reaction solution with nitrogen or argon gas to prevent inactivation of enoate reductase by oxygen. It is.
[0062] 本発明の方法により生成する光学活性 4 -ハロ酪酸誘導体は、反応終了後、反応 液中の菌体ゃタンパク質を遠心分離、膜処理などにより分離した後に、酢酸ェチル、 トルエンなどの有機溶媒による抽出、蒸留、カラムクロマトグラフィー、晶析等のなどを 適宜組み合わせることにより精製を行うことができる。  [0062] The optically active 4-halobutyric acid derivative produced by the method of the present invention is obtained by separating the bacterial cells in the reaction solution by centrifugation or membrane treatment after completion of the reaction, and then removing the organic compound such as ethyl acetate or toluene. Purification can be performed by appropriately combining extraction with a solvent, distillation, column chromatography, crystallization, and the like.
[0063] < 2 > (R) -N- (4, 4, 4_トリフルォロ _2—メチルブチル) _3_[2—メトキシ _4_ (o—ト リルスルホ二ルカルバモイノレ)ベンジル] _1_メチルインドーノレ _5_カルボキサミドの 本発明の(R)— N— (4, 4, 4—トリフルォロ—2—メチルブチル)—3— [2—メトキシ—4— ( o_トリルスルホニルカルバモイノレ)ベンジル] _1_メチルインドーノレ _5_カルボキサミ ドの製造方法は、エノエートレダクターゼまたはそれを含む細胞、同細胞の調製物も しくは同細胞を培養して得られた培養液を、一般式 (ΙΠ)で表される 4, 4, 4一トリフル ォロチグリン酸に反応させて、一般式 (IV)で表される (R)— 4, 4, 4一トリフルォ口- 2-メ チル酪酸を生成させる工程(a)、前記 (R)-4, 4, 4-トリフルォ口- 2-メチル酪酸を、一 般式 (V)で表される (R)— 4, 4, 4_トリフルォ口— 2—メチルブチルァミンに変換するェ 程(b)、及び前記 (R)— 4, 4, 4_トリフルオロー 2—メチルブチルァミンに一般式 (VI)で 表される化合物を反応させて一般式 (VII)で表される(R) _N_ (4, 4, 4_トリフルォロ _2—メチルブチノレ) _3_[2—メトキシ— 4_ (o_トリルスルホニルカルバモイノレ)ベンジル ]_1一メチルインドールー 5—カルボキサミドを生成させる工程(c)を含む。 [0063] <2> (R) -N- (4,4,4_trifluoro-2-methylbutyl) _3_ [2-methoxy_4_ (o-tolylsulfonylcarbamoinole) benzyl] _1_methylindoleno_5_carboxamide book (R) -N- (4,4,4-trifluoro-2-methylbutyl) -3- [2-methoxy-4-((o_tolylsulfonylcarbamoinole) benzyl] of the invention _1_methylindoleno_5_carboxami The method for producing the enzyme is as follows: enoate reductase, a cell containing the same, a preparation of the cell, or a culture solution obtained by culturing the cell, are treated with the general formula (4). A trifle Reacting with orotiglic acid to form (R) -4,4,4-monotrifluoro-2-methylbutyric acid represented by the general formula (IV) (a), wherein (R) -4,4 Conversion of 2,4-trifluoro-2-methylbutyric acid into (R) -4,4,4,4-trifluoro-2-methylbutylamine represented by the general formula (V) (b), And reacting the above-mentioned (R) -4,4,4_trifluoro-2-methylbutylamine with the compound represented by the general formula (VI) to produce the (R) _N_ (4 , 4,4_trifluoro-2-methylbutynole) _3_ [2-methoxy-4_ (o_tolylsulfonylcarbamoinole) benzyl] _1 monomethylindole-5-carboxamide.
[0064] [化 8] [0064] [Formula 8]
Figure imgf000021_0001
Figure imgf000021_0001
[0065] 工程 (a)は上述した方法と同様にして行うことができる。工程 (b)はカルボン酸をアミ ンに変換する通常の方法を使用することができる。例えば、アンモニアと反応させて アミド化した後に還元する方法(下記反応式 (IX) )、ペンジノレアミン等またはアンモニ ァ等価体 (例えば、 HN (SiMe )等)と反応させた後に、反応物を還元し、さらに接 [0065] Step (a) can be performed in the same manner as described above. In the step (b), a usual method for converting a carboxylic acid to an amine can be used. For example, a method of reacting with ammonia to amidate and then reducing (reaction formula (IX) below), reacting with a pendinoleamine or the like or an ammonia equivalent (eg, HN (SiMe), etc.), and then reducing the reactant And more contact
3 2 触水素化分解等により脱保護する方法(下記反応式 (X) )などを使用することができ る。 3 2 A deprotection method such as hydrogenolysis (reaction formula (X)) can be used.
[0066] [化 9]  [0066] [Formula 9]
Figure imgf000022_0001
Figure imgf000022_0001
(IX)
Figure imgf000022_0002
(IX)
Figure imgf000022_0002
(X)  (X)
[0067] 工程(c)では、工程(b)で得られる式 (V)の (R)_4, 4, 4一トリフルオロー 2—メチルブ チノレアミンを、式 (VI)の化合物に反応させて、式 (VII)の(R) -N- (4, 4, 4-トリフル オロー 2—メチルブチル) _3_[2—メトキシ一 4一(o—トリルスルホニルカルバモイル)ベン ジル]一 1一メチルインドールー 5_カルボキサミドを得る。この工程は、通常のァミンと力 ルボン酸との反応と同様にして行うことができる。具体的には、例えば、欧州特許出 願公開第 489547号明細書 (特に実施例 5)や欧州特許出願公開第 489548号明細書 (特に実施例 2)に開示されている方法と同様にして行うことができる。また、この工程 で使用する一般式 (VI)の化合物はレ、かなる製法によって得られるものでもよいが、 例えば、上記特許公報に開示されているようにして、 4_ (5—メトキシカルボ二ルー 1一 メチルインドールー 3—ィルメチル) _3—メトキシ安息香酸(一般式 XI)と 2—メチルベン ゼンスルホンアミド(一般式 ΧΠ)と反応させ、生じた化合物を加水分解することによつ て得られる化合物を使用することができる。 [0068] [化 10] In step (c), (R) _4,4,4-monotrifluoro-2-methylbutynoleamine of formula (V) obtained in step (b) is reacted with a compound of formula (VI) to give a compound of formula (VI) (VII) (R) -N- (4,4,4-Trifluoro 2-methylbutyl) _3_ [2-Methoxy-1- (o-tolylsulfonylcarbamoyl) benzyl] -1-1-methylindole-5_carboxamide Get. This step can be carried out in the same manner as in the usual reaction between amine and carboxylic acid. Specifically, for example, the method is performed in the same manner as disclosed in European Patent Application Publication No. 489547 (Especially Example 5) and European Patent Application Publication No. 489548 (Especially Example 2). be able to. The compound of the general formula (VI) used in this step may be a compound obtained by the above-mentioned production method. For example, as disclosed in the above-mentioned patent gazette, 4_ (5-methoxycarbonyl) 1-Methylindole-3-ylmethyl) _A compound obtained by reacting 3-methoxybenzoic acid (general formula XI) with 2-methylbenzenesulfonamide (general formula ΧΠ) and hydrolyzing the resulting compound Can be used. [0068] [Formula 10]
Figure imgf000023_0001
Figure imgf000023_0001
[0069] <実施例 > <Example>
以下、実施例により本発明を更に詳しく説明するが、本発明はこれに限定されるも のではない。  Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
[0070] (1)ムーレラ サーモアセティカ(Moorella thermoacetica)由来のエノエートレダクタ ーゼ遺伝子で形質転換された形質転換細胞の作製  (1) Preparation of Transformed Cells Transformed with Moenoella thermoacetica-derived Enoate Reductase Gene
ムーレラ サーモアセティカ (Moorella thermoacetica)由来の 2_enoate reductase ( Accession No.CAA76082,配列番号 2)をコードする DNA配列(Accession No. Y16136, REGION: 47..2050,配列番号 1)を元に、配列番号 5および 6のプライマーを 合成した。これらのプライマーを各 15pmol、 dNTP各 10nmol、ムーレラ サーモア セティカ(Moorella thermoacetica) DSM1974のゲノム DNA 25ng、 KOD—plus— 用 10 X緩衝液 (東洋紡績社製) 5 μ KOD -plus- 1ユニット (東洋紡績社製)を 含む 50 / Lの反応液を用レ、、変性(94°C、 15秒)、ァニール(57°C、 30秒)、伸長(6 8。C、 2分)を 30サイクノレで、 PTC— 200 (MJ Research社製) を用いて PCR反応 を行った。 PCR反応液の一部をァガロースゲル電気泳動により解析した結果、特異 的と思われるバンドが検出できた。  Based on the DNA sequence (Accession No. Y16136, REGION: 47..2050, SEQ ID NO: 1) encoding 2_enoate reductase (Accession No. CAA76082, SEQ ID NO: 2) derived from Moorella thermoacetica (Moorella thermoacetica) 5 and 6 primers were synthesized. 15 pmol of each of these primers, 10 nmol of dNTP each, 25 ng of genomic DNA of Moorella thermoacetica DSM1974, 10 X buffer for KOD-plus- (Toyobo Co., Ltd.) 5 μ KOD-plus-1 unit (Toyobo Co., Ltd.) , Denaturation (94 ° C, 15 seconds), anneal (57 ° C, 30 seconds), elongation (68.C, 2 minutes) in 30 cycles The PCR reaction was performed using PTC-200 (manufactured by MJ Research). As a result of analyzing a part of the PCR reaction solution by agarose gel electrophoresis, a band considered to be specific was detected.
[0071] 上記反応液を MinElute PCR Purification kit (Qiagen社製)にて精製した。精製 した DNA断片を制限酵素 EcoRIと Xbalで消化し、ァガロースゲル電気泳動を行い 、 目的とするバンドの部分を切り出し、 Qiagen Gel Extraction kit (Qiagen社製)に より精製後回収した。得られた DNA断片を、 EcoRI,及び Xbalで消化した pUCl 18 に、 Ligation high (東洋紡績社製)を用いてライゲーシヨンし、大腸菌 JM109株を 熱ショック法によって形質転換した。 [0071] The above reaction solution was purified using MinElute PCR Purification kit (manufactured by Qiagen). Purification The DNA fragment thus obtained was digested with restriction enzymes EcoRI and Xbal, subjected to agarose gel electrophoresis, excised from the band of interest, purified and recovered using a Qiagen Gel Extraction kit (manufactured by Qiagen). The obtained DNA fragment was ligated to pUCl18 digested with EcoRI and Xbal using Ligation high (manufactured by Toyobo Co., Ltd.), and Escherichia coli JM109 strain was transformed by a heat shock method.
[0072] 形質転換細胞をアンピシリン(50 a g/mL)を含む LB寒天培地上で生育させ、得 られたコロニーについてコロニーダイレクト PCRを行レ、、揷入断片のサイズを確認し た。 目的とする DNA断片が揷入されていると考えられる形質転換細胞を 50 μ g/m Lのアンピシリンを含む LB培地で培養し、 QIAPrepSpin Mini Prep kit (Qiagen社 製)を用いてプラスミドを精製し、 pUCMtERlとした。プラスミドに揷入した DNAの塩 基配列をダイターミネータ一法により解析したところ、揷入された DNA断片は、配列 番号 1の塩基配列と一致した。  [0072] The transformed cells were grown on an LB agar medium containing ampicillin (50 ag / mL), and colony direct PCR was performed on the obtained colonies to confirm the size of the imported fragment. The transformed cells containing the DNA fragment of interest are cultured in an LB medium containing 50 μg / mL ampicillin, and the plasmid is purified using the QIAPrepSpin Mini Prep kit (Qiagen). , PUCMtERl. When the base sequence of the DNA inserted into the plasmid was analyzed by the dye terminator method, the inserted DNA fragment was identical to the nucleotide sequence of SEQ ID NO: 1.
[0073] (2)クロストリジゥム ァセトブチリカム(Clostridium acetobutylicum)由来のエノエート レダクターゼ遺伝子で形質転換された形質転換細胞の作製  (2) Preparation of Transformed Cell Transformed with Clonotridium acetobutylicum-derived Enoate Reductase Gene
クロストリジゥム ァセトブチリカム(Clostridium acetobutylicum)由来の 2-enoate reductase (Accession No.AAK81302、配列番号 4)をコードする DNA配列(  DNA sequence encoding 2-enoate reductase (Accession No. AAK81302, SEQ ID NO: 4) derived from Clostridium acetobutylicum
Accession No. AE007834, REGION: 859·.2853、配列番号 3)を元に、配列番号 7お よび 8に記載のプライマーを合成した。これらのプライマーを各 15pmol、 dNTP各 10 nmol、クロストリジゥム ァセトブチリカム(Clostridium acetobutylicum) ATCC824 のゲノム DNA 25ng 、 KOD—plus—用 10 X緩衝液(東洋紡績社製) 5 μ L、 KOD -plus- 1ユニット(東洋紡績社製)を含む 50 しの反応液を用い、変性(94°C、 15 禾少)、ァニーノレ(57。G、 30禾少)、ィ申長(680C、 2分)を 30サイクノレで、 PTC-200 (MJ Research社製) を用いて PCR反応を行った。 PCR反応液の一部をァガロースゲ ル電気泳動により解析した結果、特異的と思われるバンドが検出できた。 Based on Accession No. AE007834, REGION: 859.2853, SEQ ID NO: 3), primers described in SEQ ID NOs: 7 and 8 were synthesized. These primers were used in an amount of 15 pmol each, dNTP each 10 nmol, genomic DNA of Clostridium acetobutylicum ATCC824 25 ng, 10X buffer for KOD-plus— (Toyobo) 5 μL, KOD-plus-1 unit ( with 50's reaction solution containing Toyobo Co., Ltd.), modified (94 ° C, 15禾少), Aninore (57.G, 30禾少), I monkey length (68 0 C, 2 min) 30 A PCR reaction was performed using PTC-200 (manufactured by MJ Research) in a cycle. As a result of analyzing a part of the PCR reaction solution by agarose gel electrophoresis, a band considered to be specific was detected.
[0074] 上記反応液を MinElute PCR Purification kit (Qiagen社製)にて精製した。精製 した DNA断片を制限酵素 EcoRIと Xbalで消化し、ァガロースゲル電気泳動を行い 、 目的とするバンドの部分を切り出し、 Qiagen Gel Extraction kit (Qiagen社製)に より精製後、回収した。得られた DNA断片を、 EcoRI,及び Xbalで消化した pUCl l 8に、 Ligation high (東洋紡績社製)を用いてライゲーシヨンし、大腸菌 JM109株 を形質転換した。形質転換細胞をアンピシリン(50 μ g/mL)を含む LB寒天培地上 で生育させ、得られたコロニーについてコロニーダイレクト PCRを行レ、、挿入断片の サイズを確認した。 目的とする DNA断片が揷入されていると考えられる形質転換細 胞を 50 x g/mLのアンピシリンを含む LB培地で培養し、 QIAPrepSpin Mini Prep kit (Qiagen社製)を用いてプラスミドを精製し、 pUCCaERlとした。プラスミドに揷入 した DNAの塩基配列をダイターミネータ一法により解析したところ、揷入された DNA 断片は、配列番号 3の塩基配列と一致した。 [0074] The above reaction solution was purified using MinElute PCR Purification kit (manufactured by Qiagen). The purified DNA fragment was digested with restriction enzymes EcoRI and Xbal, subjected to agarose gel electrophoresis, excised a band of interest, purified using a Qiagen Gel Extraction kit (manufactured by Qiagen), and collected. The obtained DNA fragment was digested with EcoRI and Xbal. In FIG. 8, ligation was performed using Ligation high (manufactured by Toyobo Co., Ltd.), and Escherichia coli JM109 strain was transformed. The transformed cells were grown on LB agar medium containing ampicillin (50 μg / mL), and the resulting colonies were subjected to colony direct PCR to confirm the size of the inserted fragment. The transformed cells containing the DNA fragment of interest are cultured in an LB medium containing 50 xg / mL ampicillin, and the plasmid is purified using the QIAPrepSpin Mini Prep kit (Qiagen). pUCCaERl. When the nucleotide sequence of the DNA inserted into the plasmid was analyzed by a dye terminator method, the inserted DNA fragment was identical to the nucleotide sequence of SEQ ID NO: 3.
[0075] (3)エノエートレダクターゼをコードする DNAで形質転換された大腸菌を用いた (R) _2_メチル _4, 4, 4_トリフルォロ酪酸の合成 (3) Synthesis of (R) _2_methyl_4,4,4_trifluorobutyric acid using E. coli transformed with DNA encoding enoate reductase
上記(1)、(2)で得られた形質転換細胞をアンピシリン(50 x gZmL)、 0. ImMィ ソプロピル β—D—チォガラタトピラノシド(IPTG)を含む LB培地でァネロパック'ケ ンキ(三菱ガス化学社製)による嫌気条件下、 37°Cで 30時間生育させた。得られた 菌体ブロス 5mLを遠心分離により集菌して菌体を得た後、下記に示す方法により、 4 , 4, 4 トリフルォロチグリン酸を基質として該菌体のエノエートレダクターゼ活性を確 The transformed cells obtained in the above (1) and (2) were subjected to Aneropaque's culture in an LB medium containing ampicillin (50 x gZmL) and ImM isopropyl β-D-thiogalatatopyranoside (IPTG). (Mitsubishi Gas Chemical Company) under anaerobic conditions at 37 ° C for 30 hours. After 5 ml of the obtained cell broth was collected by centrifugation to obtain cells, the enoate reductase activity of the cells was determined using 4,4,4 trifluorotiglic acid as a substrate by the method described below. Sure
5、し/ 5, then /
[0076] なお、基質である 4, 4, 4 トリフルォロチグリン酸は以下のようにして合成した。す なわち、 4, 4, 4_トリフルォロチグリン酸ェチルエステル(3.64g 20 mmol)に 50%含 水メタノール(20mL)及び 8mol/L NaOH (3mL)を加えた後、得られた混合物を約 2 時間攪拌した。反応混合物は溶媒を減圧留去し、濃塩酸を加え pHを 2以下に調整 した後、塩化メチレン抽出を行い、得られた有機層を減圧濃縮することにより透明油 状物として 4, 4 4_トリフルォロチグリン酸(2.9g、収率 94%)を得た。  [0076] The substrate 4,4,4 trifluorotiglic acid was synthesized as follows. That is, 50% water-containing methanol (20 mL) and 8 mol / L NaOH (3 mL) were added to 4,4,4_trifluoroethyltignate ethyl ester (3.64 g, 20 mmol), and the obtained mixture was added to about 4 mL. Stir for 2 hours. The solvent was distilled off from the reaction mixture under reduced pressure, the pH was adjusted to 2 or less by adding concentrated hydrochloric acid, methylene chloride extraction was performed, and the obtained organic layer was concentrated under reduced pressure to obtain a transparent oily product as a transparent oil. Trifluorotiglic acid (2.9 g, yield 94%) was obtained.
[0077] 前記菌体に 200 μ Lの反応液(0. 6g/L NAD+ (オリエンタル酵母社製)、 50m Mリン酸カリウムバッファー(pH7. 0)、 lOOmM グルコース、 0. 2gZLグルコース デヒドロゲナーゼ(天野製薬社製、 76unit/mg)、 25mM 4, 4 4_トリフノレオロチ グリン酸)を添加した後、ァネロパック'ケンキ(三菱ガス化学社製)による嫌気条件下 37°Cで 20時間反応させた。 10 μ Lの6N HC1を添加して反応を終了し、酢酸ェ チルで抽出し、 2—メチルー 4, 4, 4_トリフルォロ酪酸を定量した。定量は酢酸ェチル 溶液をガスクロマトグラフィー(GC)を用いて測定した。 [0077] A 200 μL reaction solution (0.6 g / L NAD + (manufactured by Oriental Yeast), 50 mM potassium phosphate buffer (pH 7.0), 100 mM glucose, 0.2 g ZL glucose dehydrogenase (Amano) was added to the cells. After addition of 25 mM 4,44_triphnorelotiglic acid (manufactured by Pharmaceutical Co., Ltd.), the mixture was reacted at 37 ° C. for 20 hours under anaerobic conditions using Anellopak'Kenki (manufactured by Mitsubishi Gas Chemical Company). The reaction was terminated by adding 10 μL of 6N HC1, and the mixture was extracted with ethyl acetate, and 2-methyl-4,4,4_trifluorobutyric acid was quantified. Determination is ethyl acetate The solution was measured using gas chromatography (GC).
[0078] GCの条件は以下の通りである。 [0078] GC conditions are as follows.
カラム: i3 -DEX225 (SUPELCO社製、 30m X O. 25mmID、 0. 25 ^ m film Column: i3-DEX225 (SUPELCO, 30m X O. 25mmID, 0.25 ^ m film
) )
キャリア: He 1. 5ml/min, split 1/50  Carrier: He 1.5 ml / min, split 1/50
カラム温度: 110°C  Column temperature: 110 ° C
注入温度: 250°C  Injection temperature: 250 ° C
検出: FID 250°C  Detection: FID 250 ° C
GC:島津 GC - 14A (島津製作所)  GC: Shimadzu GC-14A (Shimadzu Corporation)
[0079] この結果、 pUCMtERlで形質転換した大腸菌を用いた場合の、(R)_2—メチルー 4, 4, 4_トリフノレ才ロ酪酸の収量 fま 625 z gであり、光学純度 fま 67. 2%e. e.であつ た。また、 pUCCaERlで形質転換した大腸菌を用いた場合の(R)-2-メチル -4, 4 , 4一トリフルォロ酪酸の収量は 757 /i gであり、光学純度は 99· 8%e. e.以上であつ た。 [0079] As a result, when E. coli transformed with pUCMtERl was used, the yield of (R) _2-methyl-4,4,4_triphnolebutyric acid was f up to 625 zg, and optical purity f up to 67.2. It was% ee. When using E. coli transformed with pUCCaERl, the yield of (R) -2-methyl-4,4,4-trifluorobutyric acid was 757 / ig, and the optical purity was 99.8% ee or more. .
産業上の利用の可能性  Industrial potential
[0080] 本発明によって、医薬、農薬等の中間体原料として産業上有用な化合物である光 学活性 4一八口酪酸誘導体を高い光学純度で得ることが可能になった。また、ロイコト リエン拮抗剤として有用な(R)_N_ (4, 4, 4_トリフルォロ— 2_メチルブチル )_3_[2 —メトキシ _4_ (o_トリルスルホニルカルバモイル)ベンジル] _1_メチルインドーノレ— 5 —カルボキサミドを効率よく製造することが可能になった。 According to the present invention, it has become possible to obtain an optically active 418-butyric acid derivative having high optical purity, which is an industrially useful compound as an intermediate material for pharmaceuticals, agricultural chemicals and the like. In addition, (R) _N_ (4,4,4_trifluoro-2-ethylmethyl) _3_ [2-methoxy_4_ (o_tolylsulfonylcarbamoyl) benzyl] _1_methylindolinole-5—carboxamide useful as a leukotriene antagonist Can be manufactured efficiently.

Claims

請求の範囲 [1] 下記一般式 (I) Claims [1] The following general formula (I)
[化 1]  [Chemical 1]
Figure imgf000027_0001
で表される 4ーハロクロトン酸誘導体に、エノエートレダクターゼまたはそれを含む細 胞、同細胞の調製物もしくは同細胞を培養して得られる培養液を作用させて、下記 一般式 (Π)
Figure imgf000027_0001
Is reacted with a 4-halocrotonic acid derivative represented by the following formula, a cell containing the same, a preparation of the same cell, or a culture solution obtained by culturing the same cell.
[化 2]  [Formula 2]
Figure imgf000027_0002
で表される光学活性 4 -ハロ酪酸誘導体を生成させることを特徴とする、一般式 (II)で 表される光学活性 4 -八口酪酸誘導体の製造方法 (一般式 (1)、 (II)中、 Rはハロゲン 原子、ニトロ基、ヒドロキシル基、置換されていてもよいアルキル基、置換されていても よいァリール基または置換されていてもよいアルコキシ基を、 Xはハロゲン原子を、 A
Figure imgf000027_0002
A method for producing an optically active 4-octabutyric acid derivative represented by the general formula (II), characterized by producing an optically active 4-halobutyric acid derivative represented by the general formula (1), (II) Wherein R is a halogen atom, a nitro group, a hydroxyl group, an optionally substituted alkyl group, an optionally substituted aryl group or an optionally substituted alkoxy group, X is a halogen atom, A
1 および Aは水素原子またはハロゲン原子を示す)。  1 and A represent a hydrogen atom or a halogen atom).
2  2
[2] エノエートレダクターゼが以下の(A)、 (B)または(C)に示すタンパク質である、請求 項 1に記載の製造方法:  [2] The production method according to claim 1, wherein the enoate reductase is a protein represented by the following (A), (B) or (C):
(A)配列番号 2または配列番号 4に記載のアミノ酸配列を有するタンパク質、また は  (A) a protein having the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, or
(B)配列番号 2または配列番号 4に記載のアミノ酸配列と 50%以上の相同性を有 するアミノ酸配列からなり、かつ、一般式 (I)で表される 4ーハロクロトン酸誘導体を一 般式 (Π)で表される光学活性 4-ハロ酪酸誘導体に変換する酵素活性を有するタン パク質。 (B) having at least 50% homology with the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 A protein comprising an amino acid sequence represented by the general formula (I) and having an enzymatic activity for converting a 4-halocrotonic acid derivative represented by the general formula (I) into an optically active 4-halobutyric acid derivative represented by the general formula (Π).
(C)配列番号 2または配列番号 4に記載のアミノ酸配列において、 1または数個の アミノ酸が置換、欠失もしくは付加されたアミノ酸配列からなり、かつ、一般式 (I)で表 される 4 -ハロクロトン酸誘導体を一般式 (II)で表される光学活性 4 -ハロ酪酸誘導体 に変換する酵素活性を有するタンパク質。  (C) In the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, one or several amino acids are substituted, deleted or added, and are represented by the general formula (I). A protein having an enzymatic activity for converting a halocrotonic acid derivative into an optically active 4-halobutyric acid derivative represented by the general formula (II).
[3] エノエートレダクターゼを含む細胞力 エノエートレダクターゼをコードする DNAで形 質転換された細胞である、請求項 1に記載の製造方法。  [3] The production method according to claim 1, wherein the cell is a cell transformed with DNA encoding enoate reductase.
[4] エノエートレダクターゼをコードする DNAで形質転換された細胞力 S、前記 DNAを染 色体上に組み込むことによって形質転換された細胞である、請求項 3に記載の製造 方法。  [4] The production method according to claim 3, wherein the cell force S is a cell transformed with a DNA encoding enoate reductase, and the cell is a cell transformed by incorporating the DNA on a chromosome.
[5] エノエートレダクターゼをコードする DNAで形質転換された細胞力 前記 DNAを含 むベクターで形質転換された細胞である、請求項 3に記載の製造方法。  [5] The production method according to claim 3, wherein the cell is a cell transformed with a vector containing the DNA, the cell being transformed with a DNA encoding enoate reductase.
[6] エノエートレダクターゼをコードする DNAが以下の(A)、(B)または(C)に示すタン パク質をコードする DNAである、請求項 3— 5のいずれか一項に記載の製造方法: [6] The production according to any one of claims 3 to 5, wherein the DNA encoding enoate reductase is a DNA encoding a protein represented by the following (A), (B) or (C): Method:
(A)配列番号 2または配列番号 4に記載のアミノ酸配列を有するタンパク質、また は (A) a protein having the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, or
(B)配列番号 2または配列番号 4に記載のアミノ酸配列と 50%以上の相同性を有 するアミノ酸配列からなり、かつ、一般式 (I)で表される 4ーハロクロトン酸誘導体を一 般式 (Π)で表される光学活性 4-ハロ酪酸誘導体に変換する酵素活性を有するタン パク質。  (B) a 4-halocrotonic acid derivative comprising an amino acid sequence having 50% or more homology with the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 and represented by the general formula (I); A protein having an enzymatic activity for converting into an optically active 4-halobutyric acid derivative represented by Π).
(C)配列番号 2または配列番号 4に記載のアミノ酸配列において、 1または数個の アミノ酸が置換、欠失もしくは付加されたアミノ酸配列からなり、かつ、一般式 (I)で表 される 4 -ハロクロトン酸誘導体を一般式 (II)で表される光学活性 4 -ハロ酪酸誘導体 に変換する酵素活性を有するタンパク質。  (C) In the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, one or several amino acids are substituted, deleted or added, and are represented by the general formula (I). A protein having an enzymatic activity for converting a halocrotonic acid derivative into an optically active 4-halobutyric acid derivative represented by the general formula (II).
[7] エノエートレダクターゼをコードする DNAが以下の(D)、(E)または(F)に示す DNA である、請求項 3— 5のいずれか一項に記載の製造方法: (D)配列番号 1または配列番号 3に記載の塩基配列を有する DNA、または [7] The production method according to any one of claims 3 to 5, wherein the DNA encoding enoate reductase is a DNA represented by the following (D), (E) or (F): (D) DNA having the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3, or
(E)配列番号 1または配列番号 3に記載の塩基配列またはその相補配列からなる DNAとストリンジェントな条件でハイブリダィズし、かつ一般式(I)で表される 4-ハロク 口トン酸誘導体を一般式 (II)で表される光学活性 4-ハロ酪酸誘導体に変換する酵素 活性を有するタンパク質をコードする DNA。  (E) a 4-halocrotonic tonic acid derivative which hybridizes with a DNA consisting of the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 or its complementary sequence under stringent conditions and is represented by the general formula (I); DNA encoding a protein having an enzymatic activity for converting into an optically active 4-halobutyric acid derivative represented by the formula (II).
(F)配列番号 1または配列番号 3に記載の塩基配列においてほたは数個の塩基 が置換、欠失もしくは付加された塩基配列及びその相補鎖からなり、かつ一般式 (I) で表される 4-ハロクロトン酸誘導体を一般式 (II)で表される光学活性 4-ハロ酪酸誘 導体に変換する酵素活性を有するタンパク質をコードする DNA。  (F) In the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3, most of the nucleotide sequence is composed of a substituted, deleted or added nucleotide sequence and its complementary strand, and represented by the general formula (I) DNA encoding a protein having an enzymatic activity that converts a 4-halocrotonic acid derivative into an optically active 4-halobutyric acid derivative represented by the general formula (II).
[8] 一般式 (I)および (Π)の化合物において、 Rカ チル基であり、 X、 Aおよび Aがそれ  [8] In the compounds of the general formulas (I) and (Π), R is a methyl group, and X, A and A are
1 2 ぞれフッ素原子であることを特徴とする、請求項 1一 7のいずれか一項に記載の製造 方法。  The production method according to any one of claims 11 to 17, wherein each of the two is a fluorine atom.
[9] 請求項 8に記載の方法により、一般式 (III)で表される 4, 4, 4一トリフルォロチグリン酸 を一般式 (IV)で表される (R)— 4, 4, 4一トリフルォ口- 2-メチル酪酸に変換する工程、 前記 (R)— 4, 4, 4-トリフルォ口- 2-メチル酪酸を、一般式 (V)で表される (R)— 4, 4, 4 -トリフルォ口- 2—メチルブチルァミンに変換する工程、及び前記 (R)— 4, 4, 4-トリフ ルオロー 2—メチルプチルァミンに一般式 (VI)で表される化合物を反応させて一般式( VII)で表される(R)_N_ (4, 4, 4_トリフルォロ _2—メチルブチル ) _3_[2—メトキシ一 4- (o_トリルスルホニルカルバモイル)ベンジル] _1_メチルインドールー 5_カルボキ サミドを生成させる工程を含む、(R) _N_ (4, 4, 4-トリフルォ口- 2—メチルブチル)一 3_[2—メトキシ一 4_(o_トリルスルホニルカルバモイル)ベンジル ]_1一メチルインドー ノレ _5_カルボキサミドの製造方法。  [9] The method according to claim 8, wherein 4,4,4-trifluorotiglic acid represented by the general formula (III) is converted to (R) -4,4,4 represented by the general formula (IV). (4) a step of converting into monotrifluoro-2-methylbutyric acid, wherein the (R) —4,4,4-trifluoro-2-methylbutyric acid is converted to (R) —4,4 represented by the general formula (V) Converting to 4,4-trifluoro-2-methylbutylamine, and reacting the compound represented by the general formula (VI) with the (R) -4,4,4-trifluoro-2-methylbutylamine (R) _N_ (4,4,4_trifluoro-2-methylbutyl) _3_ [2-methoxy-1- 4- (o_tolylsulfonylcarbamoyl) benzyl] _1_methylindole represented by the general formula (VII) (R) _N_ (4,4,4-trifluoro-2-methylbutyl) -1_3 [[2-methoxy-14_ (o_tolylsulfonylcarbamoyl) benzyl] _1 monomethyl including the step of producing _carboxamide Method for producing Indore No_5_carboxamide.
[化 3] )n
Figure imgf000030_0001
[Formula 3] ) n
Figure imgf000030_0001
PCT/JP2004/009932 2003-07-11 2004-07-12 Novel process for producing optically active carboxylic acid WO2005005648A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005511562A JPWO2005005648A1 (en) 2003-07-11 2004-07-12 Process for producing novel optically active carboxylic acids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003195865 2003-07-11
JP2003-195865 2003-07-11

Publications (1)

Publication Number Publication Date
WO2005005648A1 true WO2005005648A1 (en) 2005-01-20

Family

ID=34055760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009932 WO2005005648A1 (en) 2003-07-11 2004-07-12 Novel process for producing optically active carboxylic acid

Country Status (2)

Country Link
JP (1) JPWO2005005648A1 (en)
WO (1) WO2005005648A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115819A1 (en) 2006-04-11 2007-10-18 Hauzer Techno Coating Bv A vacuum treatment apparatus, a bias power supply and a method of operating a vacuum treatment apparatus
WO2017004709A1 (en) * 2015-07-03 2017-01-12 The Governing Council Of The University Of Toronto Process and microorganism for synthesis of adipic acid from carboxylic acids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242585A (en) * 1985-04-22 1986-10-28 Mitsui Toatsu Chem Inc Production of gamma-halogenated-beta-hydroxybutyric acid
JP2001519439A (en) * 1997-10-14 2001-10-23 アボット・ラボラトリーズ Coding of combination library by fluorine tag
JP2002293764A (en) * 2001-01-26 2002-10-09 Takeda Chem Ind Ltd Aminoethanol derivative

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9026425D0 (en) * 1990-12-05 1991-01-23 Ici Plc Process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242585A (en) * 1985-04-22 1986-10-28 Mitsui Toatsu Chem Inc Production of gamma-halogenated-beta-hydroxybutyric acid
JP2001519439A (en) * 1997-10-14 2001-10-23 アボット・ラボラトリーズ Coding of combination library by fluorine tag
JP2002293764A (en) * 2001-01-26 2002-10-09 Takeda Chem Ind Ltd Aminoethanol derivative

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NOELLING J, ET AL: "Genome sequence and comparative analysis of the solvent-producing bacterium clostridium acetobutylicum", JOURNAL OF BACTERIOLOGY, vol. 183, no. 16, 2001, pages 4823 - 4838, XP002950775 *
ROHDICH F, ET AL: "Enoate reductases of clostridia. Cloning, sequencing and expression", J. BIOL. CHEM., vol. 276, no. 8, 2001, pages 5779 - 5787, XP002285475 *
UEMURA T, ET AL: "Highly efficient enantioselective synthesis of optically active carboxylic acids by Ru(OCOCH3)2[(S)-H8-BINS]", JOURNAL OF ORGANIC CHEMISTRY, vol. 61, no. 16, 1996, pages 5510 - 5516, XP002183788 *
WIRSCHING P, ET AL: "(Z)-3-(fluoromethyl)phosphoenolpyruvate: synthesis and enzymatic studies", BIOCHEMISTRY, vol. 27, no. 4, 1988, pages 1348 - 1355, XP002981798 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115819A1 (en) 2006-04-11 2007-10-18 Hauzer Techno Coating Bv A vacuum treatment apparatus, a bias power supply and a method of operating a vacuum treatment apparatus
WO2017004709A1 (en) * 2015-07-03 2017-01-12 The Governing Council Of The University Of Toronto Process and microorganism for synthesis of adipic acid from carboxylic acids
US11124778B2 (en) 2015-07-03 2021-09-21 The Governing Council Of The University Of Toronto Process and microorganism for synthesis of adipic acid from carboxylic acids

Also Published As

Publication number Publication date
JPWO2005005648A1 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
EP2889378B1 (en) Method for producing hydroxy-l-lysine employing an l-lysine hydroxylase and method for producing hydroxy-l-pipecolic acid
CZ276199A3 (en) Novel carbonyl reductase, gene encoding thereof and application method of such reductase and gene
AU2003221082B2 (en) Novel carbonyl reductase, gene encoding it and process for producing optically active alcohols using the same
US6855525B1 (en) Method for producing optically active 4-halo-3-hydroxybutyric acid ester
JP5308163B2 (en) Novel alcohol dehydrogenase, its gene, vector, transformant, and method for producing optically active alcohol using them
JP4205496B2 (en) Novel carbonyl reductase, DNA encoding the same, and method for producing optically active alcohol using the same
WO2005005648A1 (en) Novel process for producing optically active carboxylic acid
JP4688313B2 (en) Novel enone reductase, production method thereof, and method for selectively reducing carbon-carbon double bond of α, β-unsaturated ketone using the same
JP4295531B2 (en) Novel carbonyl reductase, DNA encoding the same, and method for producing optically active alcohol using the same
JP2005027552A (en) New method for producing optically active 2-hydroxymethyl-3-arylpropionic acid
JP4729919B2 (en) Microbial culture method and optically active carboxylic acid production method
JP4270918B2 (en) Novel carbonyl reductase, gene encoding the same, and method for producing optically active alcohol using the same
WO2005108592A1 (en) Process for production of optically active propargyl alcohol
WO2006109632A1 (en) NOVEL α-KETO ACID TRANSFERASE, GENE FOR THE SAME, AND USE OF THE SAME
JP2005245439A (en) Method for producing (s)-2-pentanol or (s)-2-hexanol
JP6844073B1 (en) Method for Producing (1R, 3R) -3- (Trifluoromethyl) Cyclohexane-1-ol and its Intermediate
JP2007029089A (en) Method for producing optically active hydroxyamino acid derivative
JP4397088B2 (en) Gene encoding reductase
KR20060113697A (en) Novel acetoacetyl-coa reductase and process for producing optically active alcohol
JP2007189949A (en) New hydantoinase and method for producing optically active amino acid derivative
JP2004041107A (en) Method for producing l-amino acid
JP2003289874A (en) Conjugated polyketone reductase gene and utilization thereof
JP2005318859A (en) Method for producing new optically active 4-halobutyric acid derivative

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511562

Country of ref document: JP

122 Ep: pct application non-entry in european phase