WO2005005312A2 - Production d'hydrogene et de puissance par gazeification de biomasse - Google Patents

Production d'hydrogene et de puissance par gazeification de biomasse Download PDF

Info

Publication number
WO2005005312A2
WO2005005312A2 PCT/US2004/015504 US2004015504W WO2005005312A2 WO 2005005312 A2 WO2005005312 A2 WO 2005005312A2 US 2004015504 W US2004015504 W US 2004015504W WO 2005005312 A2 WO2005005312 A2 WO 2005005312A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
energy
oxygen
production system
splitting
Prior art date
Application number
PCT/US2004/015504
Other languages
English (en)
Other versions
WO2005005312A3 (fr
Inventor
Krishna Rao Boyapati
Peeush Kumar Bishnoi
Shailesh Singh Bhaisora
Original Assignee
General Electric Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Company filed Critical General Electric Company
Priority to JP2006517122A priority Critical patent/JP2007525555A/ja
Priority to EP04752507A priority patent/EP1651561A2/fr
Publication of WO2005005312A2 publication Critical patent/WO2005005312A2/fr
Publication of WO2005005312A3 publication Critical patent/WO2005005312A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • Hydrogen production for these hydrogen-based power production systems may desirably be maintained utilizing renewable energy sources.
  • maintaining an uninterrupted supply of renewable energy derived from renewable energy sources is a potential issue because most renewable energies are intermittently available during a period when environmental conditions are favorable or appropriate for producing them.
  • a method for co-producing hydrogen and electrical power comprises utilizing an intermittent renewable energy source to generate energy for producing hydrogen and oxygen and subsequently transferring at least a portion of the energy to a production system to produce the hydrogen and the oxygen.
  • the present technique further comprises channeling at least a portion of the hydrogen to a hydrogen-delivery system configured to deliver the hydrogen from the hydrogen-delivery system to at least one of a power generation system or a hydrogen-storage system and channeling at least a portion of the oxygen to an oxygen delivery system further configured to deliver the oxygen from the oxygen delivery system to a biomass gasification system.
  • the biomass gasification system produces a synthesis gas by partial oxidation of a biomass feedstock.
  • this technique includes channeling at least a portion of the synthesis gas to the power generation system to produce electrical power therefrom.
  • Fig. 2 is another diagrammatical representation of a system showing co-production hydrogen and power in accordance with another expression of the present technique
  • Fig. 3 is another diagrammatical representation of a system showing co-production hydrogen and power in accordance with another expression of the present technique.
  • Fig. 4 is a diagrammatical representation of a biomass gasification process utilized for co-producing hydrogen and power in accordance with an expression of the present technique.
  • “fossil fuel-based power production systems” to “hydrogen-based power production systems.” These "'fossil fuel-based power production systems” pose certain potential hazards to living organisms, such as, for example, environmental pollution, and global warming of earth's atmosphere. Hydrogen-based power production systems can substantially minimize those hazards because of their ability to produce relatively "clean energy.” Moreover, it is significant to note that, energy security of nations might be threatened when their energy infrastructure is predominantly dependent on fossil fuel-based energy, because these fossil fuel supplies are vulnerable to factors such as, limited natural reserves of those fossil fuels, geo-political and economic instabilities for example.
  • Hydrogen-based power production systems can also effectively address these concerns, because adequate production and supply of hydrogen for the "hydrogen-based power production systems" may desirably be maintained utilizing certain renewable energy sources.
  • These renewable energies include, without limitation, wind energy, solar energy and tidal energy.
  • maintaining uninterrupted renewable energy supply from renewable energy sources becomes a potential issue, because these renewable energies are intermittently available during a period when environmental conditions are favorable or appropriate for producing them.
  • alternative supply of hydrogen during nonavailability of these renewable energies may be envisaged by transporting the hydrogen to the hydrogen-based power production systems from a hydrogen-storage system.
  • certain concerns pertaining to these hydrogen-storage systems prohibit maintaining them a desirable source of alternative hydrogen supply to the hydrogen-based power production systems at unavailable period of those renewable energies.
  • These concerns include, for example, inefficient bulk storage capacity of gaseous hydrogen due to its significantly low volumetric energy density compared to other conventional fuels.
  • liquid hydrogen has relatively higher volumetric energy density to some extent, storage and distribution of the liquid hydrogen poses additional potential risks threatening operational safety of the hydrogen-based power production systems.
  • Fig. 1 depicts a system for co-producing hydrogen and power in accordance with one method expression of this technique.
  • Current expression of this technique includes, a first step of utilizing an intermittent renewable energy source 10 by an energy generation system 101 to generate energy 102, including at least one of thermal energy or electrical energy.
  • a subsequent step either a portion or all of the energy 102 produced by the energy generating system 101 is transferred to a production system 103.
  • the production system 103 utilizes the energy 102 typically to dissociate water for producing hydrogen 104 and oxygen 107 therefrom.
  • the hydrogen 104 produced by the production system 103 is further transferred to a hydrogen-delivery system 105.
  • the hydrogen-delivery system 105 delivers the hydrogen 104 to at least one of a power generation system 110 or a hydrogen-storage system 106.
  • At least one portion of the oxygen 107 produced by the production system 103 is transported to an oxygen delivery system 130.
  • the oxygen delivery system 130 transfers at least a portion of the oxygen 107 received from the production system 103 to a biomass gasification system 108.
  • the oxygen 107 received by the biomass gasification system 108 induces thermo-chemical decomposition of a biomass feedstock 140.
  • the biomass feedstock 140 is partially oxidized to produce a synthesis gas 109.
  • the synthesis gas 109 produced by the biomass gasification system 108 is transported to the power generation system 110. In operation, the synthesis gas 109 has combustible properties.
  • this synthesis gas 109 has significant calorific value, for example, in the range from about 10 MJ/Nm 3 to about 20 MJ/Nm 3 .
  • the energy content of such combustible synthesis gas 109 is desirably converted to electrical power 115 in the power generation systems 110.
  • These power generation systems 110 include either a fuel cell-based power generation system or a micro-turbine-based power generation system or an internal combustion engine-based power generation system or a combination of all these systems. It may be appreciated that, in some embodiments, these power generation systems 110 are desirably adapted to utilize a fuel comprising an appropriate proportion of the hydrogen 104 transported from the hydrogen-delivery system 105 and at least a portion of the synthesis gas 109 transported from the biomass gasification system 108 for producing electrical power 115.
  • FIG. 4 An exemplary biomass gasification process 200 employed by the biomass gasification system 108 for producing the synthesis gas 109 is depicted in Fig. 4.
  • a fuel input for example, an organic hydrocarbon-based biomass feedstock 140 undergoes partial thermo-chemical decomposition in presence of oxygen 107 to produce the synthesis gas 109.
  • the synthesis gas 109 typically includes hydrogen (H 2 ), methane (CH 4 ), carbon monoxide (CO), carbon dioxide (CO 2 ) and water vapor.
  • Exemplary biomass feedstock 1-40 include, without limitation, industrial wastes; agricultural wastes, such as straws and husks; municipal wastes; organic wastes, such as animal husbandry by-products; energy crops, such as sugar cane; and suitable combinations of all these. It may be appreciated that, selecting fuels for the biomass gasification system 108 depends on trade off relationships among various factors pertaining to properties of these biomass feedstock 140, such as, energy content, ash content, moisture content, volatile matter content, particle size and bulk density, for example.
  • the biomass gasification process 200 at a first step typically includes, a moisture removal process 208 to substantially remove moisture content of the biomass feedstock 140 for obtaining a relatively dry biomass feedstock 141.
  • this dry biomass feedstock 141 undergoes anaerobic thermal decomposition at exemplary temperature range from about 500 °C to about 800 °C to form a pyrolyzed mixture 210.
  • the pyrolyzed mixture 210 generally includes solid substances, for example, charcoal; liquid substances, for example, pyrolignious oil and gaseous substances, for example, hydrogen and carbon monoxide.
  • thermal energy generated during the partial oxidation process 211 maintains desirable thermal environment of the biomass gasification systems 108 to sustain overall chemical kinetics of the biomass gasification process 200.
  • the oxidized mixture 212 undergoes a series of heterogeneous anaerobic chemical transformations (i.e. without being induced by oxygen) in a reduction process 213 to release the synthesis gas 109.
  • the synthesis gas 109 is the final output derived from the biomass gasification process 200 deployed by the biomass gasification system 108.
  • These heterogeneous chemical transformations of the oxidized mixture 212 include certain exothermic as well as endothermic chemical reactions.
  • Certain alternative embodiments pertaining to configuration of the biomass gasification system 108 include at least one of a fixed bed biomass gasification system or a fluidized bed biomass gasification system.
  • the fixed bed biomass gasification systems are characterized by at least one stationary gasification reaction zone structurally supported by grates.
  • the fluidized bed biomass gasification systems include reaction zones typically comprising a moving or circulating bed constructed from chemically inert bed materials, for example, sand.
  • Selecting a suitable configuration of the biomass gasification systems 108 depends on trade-off relationships among various factors, such as, desired power output capacity of the power generation systems 110, typical characteristic properties of the synthesis gas 109 released from these gasification systems, including calorific value, particulate matter content and tar content thereof, ease of manufacturing of these gasification systems, for example.
  • desired power output capacity of the power generation systems 110 typical characteristic properties of the synthesis gas 109 released from these gasification systems, including calorific value, particulate matter content and tar content thereof, ease of manufacturing of these gasification systems, for example.
  • flow turbulence induced in the bed material constructing the moving or circulating bed of the fluidized bed gasification systems promotes relatively uniform thermo-chemical mixing of reactants during various steps of the biomass gasification process 200 to ' ensure enhanced power output capacity of the power generation system 110, but at the expense of comparatively more adverse environmental impact of the synthesis gas 109 released from these gasification systems due to increased particulate matter content of these synthesis gas 109.
  • the electrical energy output produced from the energy generating system 101 is employed by the typical electrolysis system that dissociates water to release the hydrogen 104 and the oxygen 107.
  • the electrical energy required to perform the electrolysis may be generated from the energy generating system 101 in various ways.
  • this electrical energy is obtained by absorption of solar photons in semiconductor-based systems.
  • a chemical sensitizer for example, ethylenediamine tetraacetic acid (EDTA) absorbs solar photons to release electrochemical energy to drive the hydro-splitting system for producing the hydrogen 104 and the oxygen 107.
  • EDTA ethylenediamine tetraacetic acid
  • those production systems 103 include, for example, a thermal splitting system that utilizes thermal energy output generated by the energy generating system 101 to dissociate water.
  • an electro-thermal splitting system utilizes thermal energy output coupled with electrical energy output generated by the energy generating system 101 to perform the hydro-splitting.
  • a thermo-chemical splitting system utilizes thermal energy output of the energy generating system 101 in presence of certain chemicals, for example, bromine and iodine to split water, producing hydrogen 104 and oxygen 107.
  • a typical system for co-producing hydrogen and electrical power includes an energy generating system 101 for generating energy 102 from an intermittent renewable energy source 10 and a production system 103 in energy communication with the energy generating system 101 for producing hydrogen 104 and oxygen 107.
  • a hydrogen-delivery system 105 is in fluid communication with the production system 103 for receiving at least a portion of the hydrogen 104 from the production system 103.
  • the hydrogen-delivery system 105 is further configured to channel at least a portion of the hydrogen 104 to at least one of a power generation system 110 or a hydrogen storage system 106.
  • an oxygen delivery system 130 is in fluid communication with the production system 103 for receiving at least a portion of the oxygen 107 from the production system 103.
  • the oxygen delivery system 130 is further configured to channel at least a portion of the oxygen 107 to a biomass gasification system 108.
  • the biomass gasification system 108 is configured to channel at least a portion of a synthesis gas 109 to the power generation system 110. It is appropriate to mention that, alternative embodiments of the subsystems building the system for co-producing hydrogen and electrical power are identical to those described in preceding paragraphs.

Abstract

La présente invention concerne un procédé de production d'hydrogène (104) et d'électricité (115) qui consiste à utiliser une source d'énergie renouvelable intermittente (10) pour générer de l'énergie (102) afin de produire de l'hydrogène (104) et de l'oxygène (107) puis, à transférer ensuite au moins une partie de cette énergie (102) vers un système de production (103) de façon à produire l'hydrogène (104) et l'oxygène (107). La technique actuelle consiste aussi à canaliser au moins une partie de l'hydrogène (104) vers un système d'apport d'hydrogène (105) agencé de façon à apporter cet hydrogène (104) du système d'apport d'hydrogène (105) vers au moins un système de génération de puissance (110) ou un système de stockage d'hydrogène (106) et à canaliser au moins une partie de l'oxygène (107) vers un système d'apport d'oxygène (130) agencé de façon à apporter l'oxygène (107) du système d'apport d'oxygène (130) vers un système de gazéification de biomasse (108) qui produit un gaz de synthèse (109) par l'oxydation partielle d'une biomasse (140). Cette technique consiste aussi à canaliser au moins une partie du gaz de synthèse (109) vers le système de génération de puissance (110) de façon à produire de l'électricité (115) à partir de ce système.
PCT/US2004/015504 2003-06-30 2004-05-17 Production d'hydrogene et de puissance par gazeification de biomasse WO2005005312A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006517122A JP2007525555A (ja) 2003-06-30 2004-05-17 バイオマスガス化による水素と電力の共生産
EP04752507A EP1651561A2 (fr) 2003-06-30 2004-05-17 Production d'hydrogene et de puissance par gazeification de biomasse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/609,102 US20040265158A1 (en) 2003-06-30 2003-06-30 Co-producing hydrogen and power by biomass gasification
US10/609,102 2003-06-30

Publications (2)

Publication Number Publication Date
WO2005005312A2 true WO2005005312A2 (fr) 2005-01-20
WO2005005312A3 WO2005005312A3 (fr) 2005-03-24

Family

ID=33540759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/015504 WO2005005312A2 (fr) 2003-06-30 2004-05-17 Production d'hydrogene et de puissance par gazeification de biomasse

Country Status (5)

Country Link
US (1) US20040265158A1 (fr)
EP (1) EP1651561A2 (fr)
JP (1) JP2007525555A (fr)
CN (1) CN1812929A (fr)
WO (1) WO2005005312A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532483A (ja) * 2006-04-05 2009-09-10 ウッドランド バイオフュールズ インコーポレイテッド 合成ガスを介してバイオマスをエタノールに変換するための方法
WO2010060236A1 (fr) * 2008-11-27 2010-06-03 江苏省信息化研究中心 Procédé pour la préparation de méthanol par l'utilisation directe d'énergie éolienne non raccordée au réseau à grande échelle
WO2011061764A1 (fr) * 2009-11-20 2011-05-26 Cri Ehf Stockage d'énergie renouvelable intermittent sous forme de combustible au moyen d'une charge contenant du carbone
GB2431511B (en) * 2005-10-22 2011-08-31 Michael David Hancock Electricity generation by synthesis gas fuel cells

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1018803C2 (nl) * 2001-08-22 2003-02-25 Stichting Energie Werkwijze en stelsel voor het vergassen van een biomassa.
FR2910489B1 (fr) * 2006-12-22 2009-02-06 Inst Francais Du Petrole Procede de production d'un gaz de synthese purifie a partir de biomasse incluant une etape de purification en amont de l'oxydation partielle
DE102007022723A1 (de) * 2007-05-11 2008-11-13 Basf Se Verfahren zur Herstellung von Synthesegas
US7931784B2 (en) * 2008-04-30 2011-04-26 Xyleco, Inc. Processing biomass and petroleum containing materials
CN102159500A (zh) * 2008-08-18 2011-08-17 辛吉斯特公司 由生物质生产氨的方法
FR2947832B1 (fr) * 2009-07-09 2013-01-11 Areva Procede de production d'hydrocarbures synthetiques
PT2715208T (pt) * 2011-05-31 2016-10-25 Wärtsilä Oil & Gas Systems As Método e sistema para tratamento de vapores de carga de tanques de petróleo bruto e produtos petrolíferos para produzir eletricidade
CN105369284A (zh) * 2015-11-18 2016-03-02 武汉大学 一种热喷射电和氢气联产装置
CN106185805B (zh) * 2016-08-27 2018-04-20 温州集智科技有限公司 一种太阳能生物质能氢能联合发电装置
CN107355262A (zh) * 2017-07-31 2017-11-17 赫普热力发展有限公司 一种火电厂调峰发电系统及发电控制方法
WO2019151461A1 (fr) 2018-02-05 2019-08-08 三菱瓦斯化学株式会社 Système de génération d'énergie de gazéification de biomasse et procédé de génération d'énergie
CN110649650A (zh) * 2019-09-06 2020-01-03 华电电力科学研究院有限公司 一种可再生能源制氢与生物质气化耦合的发电系统及工作方法
WO2022153214A1 (fr) 2021-01-15 2022-07-21 Cri, Ehf Réacteur de synthèse du méthanol
KR102589537B1 (ko) * 2021-05-20 2023-10-17 윤원섭 폐기물 소각시설을 활용한 수소 생산 시스템
US11852383B2 (en) 2022-02-28 2023-12-26 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US11905797B2 (en) 2022-05-01 2024-02-20 EnhancedGEO Holdings, LLC Wellbore for extracting heat from magma bodies
US11918967B1 (en) 2022-09-09 2024-03-05 EnhancedGEO Holdings, LLC System and method for magma-driven thermochemical processes
US11913679B1 (en) 2023-03-02 2024-02-27 EnhancedGEO Holdings, LLC Geothermal systems and methods with an underground magma chamber
US11912573B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Molten-salt mediated thermochemical reactions using geothermal energy
US11897828B1 (en) 2023-03-03 2024-02-13 EnhancedGEO, Holdings, LLC Thermochemical reactions using geothermal energy
US11912572B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Thermochemical reactions using geothermal energy
US11905814B1 (en) 2023-09-27 2024-02-20 EnhancedGEO Holdings, LLC Detecting entry into and drilling through a magma/rock transition zone

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2531753A1 (fr) * 1982-08-12 1984-02-17 Chauveau Andre Capteur transformateur d'energie renouvelable
EP1219585A2 (fr) * 2000-12-28 2002-07-03 Mitsubishi Heavy Industries, Ltd. Procédé et appareil pour la production de méthanol mettant en oeuvre la matière biomasse
FR2846958A1 (fr) * 2002-11-13 2004-05-14 N Ghy Valorisation de l'oxygene pour la production d'hydrogene a partir d'hydrocarbures avec sequestration de co2

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476249A (en) * 1982-06-02 1984-10-09 The Johns Hopkins University Low cost method for producing methanol utilizing OTEC plantships
US4982569A (en) * 1983-03-25 1991-01-08 Ormat Turbines, Ltd. Parallel hybrid system for generating power
JP3273189B2 (ja) * 1991-07-04 2002-04-08 清水建設株式会社 エネルギー供給・利用設備
JP2000313892A (ja) * 1999-04-28 2000-11-14 Toshiba Corp 熱分解ガス化システム
JP2000340238A (ja) * 1999-05-31 2000-12-08 Nippon Shokuryo Kk 太陽光発電と燃料電池発電を利用する住宅等のエネルギー供給システム
JP2002003864A (ja) * 2000-06-22 2002-01-09 Ishikawajima Harima Heavy Ind Co Ltd 石炭等を原料とするガス製造方法と装置
JP2002307065A (ja) * 2001-04-16 2002-10-22 Inax Corp 生活排水の再利用装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2531753A1 (fr) * 1982-08-12 1984-02-17 Chauveau Andre Capteur transformateur d'energie renouvelable
EP1219585A2 (fr) * 2000-12-28 2002-07-03 Mitsubishi Heavy Industries, Ltd. Procédé et appareil pour la production de méthanol mettant en oeuvre la matière biomasse
FR2846958A1 (fr) * 2002-11-13 2004-05-14 N Ghy Valorisation de l'oxygene pour la production d'hydrogene a partir d'hydrocarbures avec sequestration de co2

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2431511B (en) * 2005-10-22 2011-08-31 Michael David Hancock Electricity generation by synthesis gas fuel cells
JP2009532483A (ja) * 2006-04-05 2009-09-10 ウッドランド バイオフュールズ インコーポレイテッド 合成ガスを介してバイオマスをエタノールに変換するための方法
WO2010060236A1 (fr) * 2008-11-27 2010-06-03 江苏省信息化研究中心 Procédé pour la préparation de méthanol par l'utilisation directe d'énergie éolienne non raccordée au réseau à grande échelle
WO2011061764A1 (fr) * 2009-11-20 2011-05-26 Cri Ehf Stockage d'énergie renouvelable intermittent sous forme de combustible au moyen d'une charge contenant du carbone
US9249064B2 (en) 2009-11-20 2016-02-02 Cri, Ehf Storage of intermittent renewable energy as fuel using carbon containing feedstock

Also Published As

Publication number Publication date
EP1651561A2 (fr) 2006-05-03
CN1812929A (zh) 2006-08-02
WO2005005312A3 (fr) 2005-03-24
US20040265158A1 (en) 2004-12-30
JP2007525555A (ja) 2007-09-06

Similar Documents

Publication Publication Date Title
US20040265158A1 (en) Co-producing hydrogen and power by biomass gasification
US11254876B2 (en) Renewable electricity conversion of liquid fuels from hydrocarbon feedstocks
Nanda et al. Insights on pathways for hydrogen generation from ethanol
Iulianelli et al. Advances in hydrogen production, storage and distribution
Armor Catalysis and the hydrogen economy
US6571747B1 (en) Method and device for producing energy or methanol
Perna et al. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications
EP2166064A1 (fr) Système pour fournir un produit chimique et procédé pour fournir un produit chimique
US20050223644A1 (en) High temperature reformer
US20110067376A1 (en) Plasma-based waste-to-energy techniques
Aravindan et al. Fuelling the future: A review of non-renewable hydrogen production and storage techniques
Malik et al. Overview of hydrogen production technologies for fuel cell utilization
Sikiru et al. Hydrogen-powered horizons: Transformative technologies in clean energy generation, distribution, and storage for sustainable innovation
EP3029016B1 (fr) Procédé et système pour production d'acétylène (C2H2) ou d'éthylène (C2H4)
JP2007246369A (ja) 水素製造装置、水素製造システム及び水素製造方法
Dilshani et al. Life cycle net energy and global warming impact assessment for hydrogen production via decomposition of ammonia recovered from source-separated human urine
Chanthakett et al. Hydrogen production from municipal solid waste (MSW) for cleaner environment
Alao et al. Biogas-to-hydrogen for fuel cell distributed generation using food wastes of the Cities of Johannesburg and Cape Town, South Africa
Worku et al. Recent Advances and Challenges of Hydrogen Production Technologies via Renewable Energy Sources
CN101665722B (zh) 高温转化器
Blasi et al. Hydrogen from biomass
Qiu et al. Hydrogen Production
RU2410324C2 (ru) Система производства энергии
Ghouse Fuel Cells and Their Applications
de Temmerman et al. TRANSITIONING TOWARDS LOW-CARBON HYDROGEN PRODUCTION (part 1)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004752507

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006517122

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048184353

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004752507

Country of ref document: EP