WO2005004118A1 - 情報記録媒体、記録層判別方法、記録層判別装置、光ディスク装置、情報記録媒体形成装置、情報記録媒体形成方法、情報検出方法、情報検出装置及び情報記録媒体装置 - Google Patents

情報記録媒体、記録層判別方法、記録層判別装置、光ディスク装置、情報記録媒体形成装置、情報記録媒体形成方法、情報検出方法、情報検出装置及び情報記録媒体装置 Download PDF

Info

Publication number
WO2005004118A1
WO2005004118A1 PCT/JP2004/003420 JP2004003420W WO2005004118A1 WO 2005004118 A1 WO2005004118 A1 WO 2005004118A1 JP 2004003420 W JP2004003420 W JP 2004003420W WO 2005004118 A1 WO2005004118 A1 WO 2005004118A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
signal
layer
recording medium
modulation
Prior art date
Application number
PCT/JP2004/003420
Other languages
English (en)
French (fr)
Inventor
Hiroshi Maegawa
Original Assignee
Ricoh Company Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003192940A external-priority patent/JP2005032290A/ja
Priority claimed from JP2003313868A external-priority patent/JP2005085327A/ja
Priority claimed from JP2003313867A external-priority patent/JP4148859B2/ja
Priority claimed from JP2003319990A external-priority patent/JP2005085437A/ja
Application filed by Ricoh Company Ltd. filed Critical Ricoh Company Ltd.
Priority to EP04720760A priority Critical patent/EP1643494A4/en
Priority to CN2004800210146A priority patent/CN1826639B/zh
Priority to US10/563,799 priority patent/US7715285B2/en
Publication of WO2005004118A1 publication Critical patent/WO2005004118A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/24Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by sensing features on the record carrier other than the transducing track ; sensing signals or marks recorded by another method than the main recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1217Formatting, e.g. arrangement of data block or words on the record carriers on discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/14Digital recording or reproducing using self-clocking codes
    • G11B20/1403Digital recording or reproducing using self-clocking codes characterised by the use of two levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00736Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24082Meandering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B2020/1264Formatting, e.g. arrangement of data block or words on the record carriers wherein the formatting concerns a specific kind of data
    • G11B2020/1265Control data, system data or management information, i.e. data used to access or process user data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B2020/1264Formatting, e.g. arrangement of data block or words on the record carriers wherein the formatting concerns a specific kind of data
    • G11B2020/1265Control data, system data or management information, i.e. data used to access or process user data
    • G11B2020/1267Address data
    • G11B2020/1268Address in pregroove [ADIP] information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B2020/1264Formatting, e.g. arrangement of data block or words on the record carriers wherein the formatting concerns a specific kind of data
    • G11B2020/1265Control data, system data or management information, i.e. data used to access or process user data
    • G11B2020/1267Address data
    • G11B2020/1274Address data stored in pre-pits, i.e. in embossed pits, ROM marks or prepits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B2020/1264Formatting, e.g. arrangement of data block or words on the record carriers wherein the formatting concerns a specific kind of data
    • G11B2020/1265Control data, system data or management information, i.e. data used to access or process user data
    • G11B2020/1287Synchronisation pattern, e.g. VCO fields
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B2020/1291Formatting, e.g. arrangement of data block or words on the record carriers wherein the formatting serves a specific purpose
    • G11B2020/1292Enhancement of the total storage capacity
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B2020/1291Formatting, e.g. arrangement of data block or words on the record carriers wherein the formatting serves a specific purpose
    • G11B2020/1294Increase of the access speed
    • G11B2020/1295Increase of the access speed wherein the focus is on the read access speed
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/21Disc-shaped record carriers characterised in that the disc is of read-only, rewritable, or recordable type
    • G11B2220/215Recordable discs
    • G11B2220/216Rewritable discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/21Disc-shaped record carriers characterised in that the disc is of read-only, rewritable, or recordable type
    • G11B2220/215Recordable discs
    • G11B2220/218Write-once discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/23Disc-shaped record carriers characterised in that the disc has a specific layer structure
    • G11B2220/235Multilayer discs, i.e. multiple recording layers accessed from the same side
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2525Magneto-optical [MO] discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2545CDs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2562DVDs [digital versatile discs]; Digital video discs; MMCDs; HDCDs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2562DVDs [digital versatile discs]; Digital video discs; MMCDs; HDCDs
    • G11B2220/2575DVD-RAMs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers

Definitions

  • the present invention relates to an information recording medium, a recording layer discriminating method, a recording layer discriminating apparatus, and an optical disc device, and more particularly to an information recording medium having a plurality of recording layers, and a recording layer to be accessed in such an information recording medium.
  • the present invention relates to a method and a recording layer discriminating apparatus for discriminating a disc, and an optical disc apparatus provided with such a discrimination apparatus.
  • the present invention also relates to an information recording medium forming device, an information recording medium forming method, an information detecting method, an information detecting device, and an information recording medium device.
  • CDs Compact Discs
  • contents media such as music, movies, photos, and computer software
  • Optical discs such as DVDs (Digital Versatile Discs)
  • DVDs Digital Versatile Discs
  • Optical disk devices as media have become widespread.
  • the optical disc device records or erases information by irradiating a laser beam onto a record of an optical disc on which spiral or concentric tracks are formed, and based on reflected light (return light flux) from the recording layer. To reproduce information. Therefore, the optical disk device is provided with an optical pickup device that emits a laser beam and receives a return light beam.
  • an optical pickup device includes an optical system including an objective lens, which guides laser light emitted from a light source to a recording layer, and guides return light flux to a predetermined light receiving position. And a photodetector. From this photodetector, not only the reproduction information of the data recorded on the recording layer but also the position control of the objective lens is required. A signal including information (service information) is output.
  • an information recording medium having a plurality of recording layers and a device for accessing such an information recording medium are being actively developed.
  • JP-A-2001-52342, JP-A-2002-74679, JP-A-2003-91874, JP-A-8-147762, JP-A-11-96568 and JP-A-2002-334448 The gazette proposes such an information recording medium and an apparatus that accesses such an information recording medium.
  • an information recording medium having a plurality of recording layers in order to control the position of the objective lens so that a light spot is accurately formed at a target position, a recording spot in which an optical spot is formed among the plurality of recording layers is used. ⁇ ⁇ needs to be determined accurately. In addition, as access speeds increase, it is necessary to quickly control the position of the objective lens.
  • JP-A-2001-52342, JP-A-2Q02-74679, JP-A-2003-91874, JP-A-8-147762, JP-A-11-96568 and JP-A-2002-334448 In the information recording medium and the device disclosed in the gazette, it may take time to determine the recording in which the light spot is formed, and there is a possibility that the access time becomes long. Disclosure of the invention
  • the general object of the present invention is to carry a new and useful information recording medium, a recording layer discriminating method, a Ui discriminating device, and an optical disc device which solve the above-mentioned problems.
  • a first object of the present invention is to provide an information recording medium capable of quickly and accurately obtaining information for determining a recording layer.
  • a second object of the present invention is to provide a recording layer discrimination method and a recording layer discrimination method capable of quickly and accurately discriminating a recording layer on which an optical spot is formed in an information recording medium having a plurality of recordings. It is in the equipment.
  • a third object of the present invention is to provide an optical disc device capable of quickly accessing an information recording medium having a plurality of recording layers.
  • a more specific object of the present invention is to have a plurality of information-recordable marks, a spiral track or a concentric track is formed on each of the plurality of recording layers, and at least one of the tracks is formed.
  • One part is to provide an information recording medium characterized by meandering in response to a wobble signal containing layer information for determining the recording layer on which the track is formed.
  • the optical signal is detected based on the reflected light from the meandering portion, and the layer information is extracted from the optical signal to obtain the optical information. It is possible to determine the recording layer where the spot is formed. That is, it is possible to quickly and accurately obtain information for determining the recording layer.
  • it is assumed that at least a part of each track of the fna meanders according to a self-controlling signal in which a layer information portion including the ttiiB layer information is modulated by a predetermined modulation. be able to.
  • each track can mean that each track meanders corresponding to a tWB sample signal further including a carrier part for generating a reference clock.
  • the IfifB layer information portion can be arranged at a position sandwiched between two self-carrier portions.
  • predetermined synchronization information is recorded on each track in a predetermined synchronization cycle.
  • each disgusting track is meandering corresponding to the above-mentioned pebble signal in which the return layer information portion is arranged at a period of an integral multiple of the synchronization period. Can be.
  • the dislike layer information and the tfilB synchronization information may be different from each other in the form recorded in the leaky track.
  • the disgusting synchronization information can be assumed to have been recorded on the truck by pit formation.
  • each track meanders in accordance with a self-recordable signal further including
  • at least a part of each track is meandering in response to a t & IS signal that further includes self-sync information modulated with the same modulation as the difficult layer information part. can do.
  • the self-layer information portion and the tfif self-synchronization information portion can have different signal waveforms from each other.
  • the ffns modulation method may be a phase modulation method.
  • the lift self-synchronization period is 93 wobble, and if the beginning of the Itjf self-synchronization information part is the 0th wobble,
  • the layer information part can be arranged between the 12th and 88th levels.
  • each of the disgusting tracks may meander in accordance with a knitting control signal further including address information.
  • Another more specific object of the present invention is a recording layer discriminating method for discriminating a recording layer on which a light spot is formed when accessing the information recording medium, the method comprising: Includes a first step of acquiring Fujimi layer information from a wobble signal detected based on light! / Second; and a second step of determining whether a light spot is formed based on tins layer information
  • Another object of the present invention is a recording layer discriminating method for discriminating a record in which a light spot is formed when accessing an information recording medium, the method being based on reflected light from the information recording medium.
  • the purpose of the present invention is to provide a recording layer discriminating method that includes two steps. According to the recording layer determination method of the present invention, Since the layer information and the address information are obtained only from the signal and the recording layer is determined from the layer information and the address information, it is possible to determine the recording layer more accurately in a shorter time than before. Therefore, in an information recording medium having a plurality of recording layers, it is possible to quickly and accurately determine whether a light spot is formed or not.
  • Still another object of the present invention is a recording layer discriminating apparatus for discriminating a recording layer on which an optical spot is formed when accessing the information recording medium, wherein the reflected light from the self-recording information recording medium is A demodulation means for demodulating the signal obtained by the demodulation based on the demodulated signal; and a layer information detecting means for detecting the layer information from the signal obtained by the demodulation. Is to do.
  • the recording layer discriminating apparatus of the present invention since layer information is acquired only from a sample signal, layer information can be acquired more accurately in a shorter time than before. Therefore, as a result, in an information recording medium having a plurality of recording layers, it is possible to quickly and accurately determine the recording layer on which the light spot is formed.
  • Another object of the present invention is a discriminating device for discriminating a recording layer on which a light spot is formed when accessing the information recording medium, wherein the detection device detects the recording layer based on reflected light from the information recording medium.
  • Demodulating means for demodulating the demodulated wobble signal; layer information detecting means for detecting layer information from the HUE demodulated signal; and address information detecting means for detecting tiilB address information from the demodulated demodulated signal.
  • a description that a fit self-light spot is formed based on the knitting layer information and the address information ⁇ !
  • a discriminating means for discriminating the recording layer is based on the knitting layer information and the address information ⁇ !
  • the layer information and the address information are obtained only from the wobble signal, and the recording layer is discriminated from the layer information and the address information. It can be distinguished well. Therefore, in an information recording medium having a plurality of recording layers, a recording layer on which a light spot is formed can be accurately determined in a short time.
  • the touch demodulation means includes: a clock generation circuit for generating a reference clock from the tooth-lockable signal; and a demodulation circuit for demodulating a key-lockable signal based on the reference clock.
  • a synchronization information detection circuit for detecting simultaneous ⁇ & ⁇ information; and counting the number of reference clocks starting from till self-simultaneous information.
  • a layer information detecting circuit for detecting layer information based on the value of the counter.
  • Still another object of the present invention is an optical disc apparatus that performs at least reproduction of information recording, reproduction, and erasure on an information recording medium, wherein the recording layer is a recording layer of V or a displacement of a plurality of recordings i.
  • An optical pickup device that forms a light spot via an objective lens at the same time and receives reflected light from the track; and a self-light spot based on a pop-up signal detected from an output signal of the t & t self-optical pickup device.
  • a recording layer discriminating device for discriminating a recording layer on which a mark is formed; and a servo control device for controlling the position of the objective lens based on an output signal of the optical pickup device and an output signal of the self-recording layer discriminating device;
  • An optical disk device characterized by comprising a unit for performing at least reproduction among data recording, reproduction and erasure via an ilE optical pickup device. It is to be.
  • the above-mentioned discriminating device can accurately discriminate the recording spot in which the light spot is formed in a short time, so that the position of the objective lens can be controlled by the servo control device. Can be performed quickly and accurately. Therefore, as a result, an access including at least reproduction among information recording, reproduction, and erasure on an information recording medium having a plurality of recording layers can be quickly performed.
  • a general object of the present invention is to provide an information recording medium forming apparatus, an information recording certain body forming method, an information detecting method, an information detecting apparatus, and an information recording medium apparatus suitable for the above information recording medium. There is also.
  • FIG. 1 is a block diagram showing a configuration of an optical disc device according to a first embodiment of the present invention.
  • FIGS. 2A and 2B are diagrams for explaining recording layers of the optical disc in FIG. 1, respectively.
  • FIG. 3 is a diagram for explaining a format of an information frame of a wobble signal in the optical disc of FIG. 2
  • FIG. 4 is a diagram for explaining the number of samples of each part in the information frame and the information frame of FIG. 3,
  • FIGS. 5A and 5B are waveform diagrams for explaining signal waveforms of the layer information section, respectively.
  • FIGS. 6A and 6B are waveform diagrams for explaining signal waveforms of the address information section, respectively.
  • a and FIG. 7B are waveform diagrams for explaining signal waveforms of the synchronization information section, respectively.
  • FIG. 8 is a diagram for explaining data bits of the address information section.
  • FIG. 9 is a diagram for explaining the configuration of the optical pickup device in FIG. 1, and FIG. 10 is a diagram for explaining the light receiving device for the return light beam in FIG.
  • FIG. 1.1 is a block diagram for explaining the configuration of the reproduced signal processing circuit in FIG. 1
  • FIG. 12 is a block diagram for explaining the configuration of the cobbled signal analysis circuit in FIG. 11, and
  • FIG. 13 is a timing chart for explaining the operation of the wobbled signal square circuit
  • FIG. 14 is a flow chart for explaining a recording process in the optical disc apparatus performed in response to a recording request command from the host.
  • FIG. 15 is a flowchart for explaining a reproduction process in the optical disk device performed in response to a reproduction request command from the host.
  • FIG. 16 is a waveform diagram for explaining a modulation method of a sample signal
  • FIG. 17 is a diagram for explaining a modification of the format of FIG. 3,
  • FIG. 18 is a block diagram for explaining a modification of the cobble signal analysis circuit in FIG. 11,
  • FIG. 19A and FIG. 19B are diagrams for explaining an optical disc on which synchronization information is recorded by forming pits, respectively.
  • FIG. 20 is a block diagram for explaining the configuration of a wobble signal analysis circuit corresponding to the optical disc of FIG. 19A or FIG. 19B,
  • FIG. 21 is a diagram for explaining the structure of an optical disk capable of recording information that can be used in the second embodiment of the present invention.
  • FIGS. 22A to 22C are explanatory diagrams of the configuration of a recordable optical disc
  • FIG. 23 is an explanatory diagram of a light receiving element and a signal processing circuit for detecting various signals from information recorded on an optical disc
  • Fig. 24 is an explanatory diagram showing an example of the waveform of a wobble signal of a general wobble modulation method
  • Figs. 25A to 25C show an example of an overall image of a format in which positional information is recorded by the wobble modulation.
  • FIG. 26 is an explanatory diagram of a specific wobble waveform when each of PSK, FSK, and FSK + PSK modulation is used for the wobble waveform.
  • FIG. 27 is an explanatory diagram in which the waveform shown in FIG. 26 is applied to the overall image of the format
  • FIG. 28 is an explanatory diagram of a configuration example of the signal detection device
  • FIG. 29 is an explanatory diagram of another configuration example of the signal detection device.
  • FIG. 30 is a block diagram of a specific circuit configuration example of the clock generation means.
  • FIG. 31 is a diagram for explaining how the filter output of the cobbled signal is disturbed in the modulation unit.
  • FIGS. 32A and 32B are block diagrams of specific circuit configuration examples of the first and second modulation means
  • FIG. 33 is a timing chart of each signal when a wobble signal by FSK modulation is demodulated for the disk of the second embodiment.
  • FIG. 34 is a timing chart of each signal when a wobble signal by FSK + PSK modulation is demodulated for the disk of the second embodiment.
  • FIG. 35 is a block diagram of the electrical connection of the optical disc forming apparatus of the second embodiment
  • FIG. 36 is a flow chart for explaining an information recording medium forming method executed by the optical disc forming apparatus
  • FIG. 37 is a block diagram of the electrical connection of the optical disk device according to the second embodiment
  • FIG. 38 is a flowchart illustrating an information detection method executed by the optical disk device.
  • FIG. 1 shows a schematic configuration of an optical disk device 20 according to an embodiment of the present invention.
  • the optical disk device 20 shown in FIG. 1 includes a spindle motor 22 for rotating and driving an optical disk 15 as an information recording medium in the present embodiment, an optical pickup device 23, and a laser control circuit 24. , Encoder 25, motor driver 27, playback signal processing circuit 28, servo controller 33, buffer RAM 34, buffer manager 37, interface 38, flash memory 39, CPU 40, RAM 41, etc. It has. It should be noted that the connection lines in FIG. 1 show the flow of a typical signal H blue report, and do not represent all the connection relationships of each block.
  • the optical disc 15 has two records (Ml, M2) capable of recording information, and each recording layer has a concentric shape or a spiral shape. (Grooves) G and lands L are formed respectively. At least a part of each track meanders (wobbles) in response to a double signal including synchronization information, address information, and layer information.
  • the synchronization information is information for detecting a recording position of the address information and the layer information.
  • the above-mentioned address information is information on the physical address of the truck.
  • the layer information is information for distinguishing whether the track is a track of the self-recording layer M2 which is a track of the recording layer Ml.
  • the optical disk 15 corresponds to a laser beam having a wavelength of about 660 nm as an example.
  • the sample signal includes a synchronization information section containing synchronization information, an address information section containing address information, a carrier section for forming a reference clock, and a layer.
  • One information frame is formed in the format of a layer information section containing information and a carrier section for forming a reference clock.
  • the size of this information frame is 93 doubles (wobble numbers 0 to 92), where one cycle of the reference clock generated from the carrier is one wobble. That is, the synchronization cycle of the synchronization information section is 93 wobble.
  • the job information numbers 0 to 3 are the synchronization information section
  • the job numbers 4 to 7 are the address information section
  • the job numbers 8 to 25 are the carrier wave section
  • the job information V is the layer information section
  • the job information section 26 is the layer information section.
  • Numbers 27 to 92 are carrier waves. That is, the synchronization information section is 4 wobbles, the address information section is 4 hops, and the layer information section is 1 hop, and a carrier wave section is provided before and after the layer information section.
  • Each of the information sections is subjected to phase modulation (PSK: Phase Shift Keying).
  • PSK Phase Shift Keying
  • the layer information section has the same phase as the carrier wave section as shown in FIG. 5A in FIG. 1M1, and has the opposite phase to the carrier wave section as shown in FIG. 5B in the recording layer M2.
  • the phase is set.
  • 4 bits represent 1-bit data.
  • bit data when the bit data is “0”, as shown in FIG. 6A, the two front wobbles have the same phase as the carrier part, and the rear two wobbles have the opposite phase to the carrier part.
  • bit data when the bit data is “1”, as shown in FIG. 6B, the two front wobbles have the opposite phase to the carrier part, and the rear two wobbles have the same phase as the carrier part.
  • 51 bits are required as the end dress data.
  • the synchronization information part is, for example, as shown in FIG. 1A, a word sync signal, that is, all four wobble signals are out of phase with the carrier wave part.
  • the address information section includes the bit data S, as shown in FIG. 7B, the bit sync signal, that is, the first one wobble is made to be out of phase with the carrier wave part, and the remaining three wobbles are made. Are in phase with the carrier part.
  • one piece of address information is obtained from 52 information frames.
  • the address following the last address of the track of the recording layer Ml is set to be the head address of the track of the recording layer M2.
  • the address of 0000 000 H to 100 000 H is assigned to the track of M 1, and the address of 100 000 H to 200 000 H is recorded. Assigned to track in layer M2.
  • the optical pickup device 23 is a device for irradiating the recording surface of the optical disk 15 with the spiral or concentric tracks formed thereon with laser light and receiving the reflected light from the recording surface. This optical pickup device 23 is shown in FIG. 9 as an example. 0
  • the light source unit 51 includes a semiconductor laser 51a as a light source that emits a laser beam having a wavelength of 660 n.
  • the maximum intensity emission direction of the light beam (hereinafter, simply referred to as “light beam”) of the laser light emitted from the light source unit 51 is defined as the + X direction.
  • the collimating lens 52 is arranged on the + X side of the light source unit 51, and makes the light beam emitted from the light source unit 51 substantially TO light.
  • the reflection mirror 71 is arranged near the collimator lens 52, and reflects a part of the light beam emitted from the light source unit 51 as a monitor light beam in the 1Z direction.
  • the beam splitter 54 is disposed on the + X side of the collimating lens 52, and allows the light flux substantially converted to the TO light by the collimating lens 52 as it is. Further, the beam splitter 54 branches a light beam (return light beam) reflected by the optical disk 15 and incident via the objective lens 60 in the 1Z direction.
  • the objective lens 60 is arranged on the + X side of the beam splitter 54, and focuses a light beam transmitted through the beam splitter 54 on the recording surface of the optical disk 15.
  • the detection lens 58 is arranged on one Z side of the beam splitter 54, and focuses the return light beam branched in the 1Z direction by the beam splitter 54 on the light receiving surface of the light receiver 59.
  • the light receiver 59 is divided into four light receiving elements (59a, 59b, 59c, 59d) as shown in FIG. A light receiving element is used.
  • the Y-axis direction substantially coincides with the tangential direction of the track on the optical disc 15.
  • Each partial light receiving element generates a current signal corresponding to the amount of received light by photoelectric conversion, and outputs it to the reproduction signal processing circuit 28.
  • the detection lens 72 is disposed on the one Z side of the reflection mirror 71 and focuses the monitor light beam reflected in the one Z direction by the reflection mirror 71 on the light receiving surface of the light receiver 73.
  • the photodetector 73 generates a current signal corresponding to the amount of received light by photoelectric conversion, and outputs the generated current signal to the laser control circuit 24 as a power monitor signal.
  • the reproduction signal processing circuit 28 includes an I / V amplifier 28a, 04003420
  • It includes a 12-Poble signal detection circuit 28b, a Poble signal analysis circuit 28c, an RF signal detection circuit 28d, a decoder 28e, and the like.
  • the I / V amplifier 28a converts the current signal from the partial light receiving element 59a into a 3 ⁇ 4
  • the amplifier a3 converts the current signal from the partial light receiving element 59c into a signal (signal Sc), and the current signal from the partial light receiving element 59d is converted into a signal (signal Sd). It has an amplifier a4 for converting to
  • the servo / wobble signal detection circuit 28b has five adders (ad1, ad2, ad3, ad4, and ad5), two subtractors (sbl, sb2), and three low-pass filters (lpl, 1 ⁇ 2, 1 p 3), and a high-pass filter hp.
  • the adder a d1 adds the signal S a and the signal S d
  • the adder a d2 adds the signal S b and the signal S c.
  • An adder ad3 adds the signal Sa and the signal Sc
  • an adder ad4 adds the signal Sb and the signal Sd.
  • the output signal of the adder ad1 is (Sa + Sd), and the output signal of the adder ad2 is (Sb + Sc).
  • the output signal of the adder ad3 is (Sa + Sc), and the output signal of the adder ad4 is (Sb + Sd).
  • the power B calculator ad5 adds the output signal of the adder ad1 and the output signal of the adder ad2. That is, the output signal of the adder ad5 is (Sa + Sb + Sc + Sd). The output signal of the adder ad5 is supplied to the low-pass filter 1p1.
  • the subtractor sb1 subtracts the output signal of the adder ad2 from the output signal of the adder ad1. That is, the output signal of the subtractor s b 1 is ⁇ (S a + S d) — (Sb + S c) ⁇ .
  • the output signal of the subtractor sb1 is supplied to the cobble signal analysis circuit 28c, the low-pass filter 1p2, and the high-pass filter hp.
  • the subtractor sb2 subtracts the output signal of the adder ad4 from the output signal of the calo calculator ad3. That is, the output signal of the subtractor sb2 is ⁇ (Sa + Sc)-(Sb + Sd) ⁇ .
  • the output signal of the subtractor sb2 is supplied to the low-pass filter 1p3.
  • the low-pass filter 1 p 1 is arranged after the calo calculator ad5, and removes high-frequency components included in the output signal of the adder ad5.
  • the output signal of the low-pass filter 1 p 1 is supplied to the thermocontroller 33 as a track cross signal Stc.
  • the low-pass filter 1 p 2 is disposed after the subtractor sb1, and removes high-frequency components included in the output signal of the subtractor sb1.
  • the output signal of the low-pass filter 1 p 2 is supplied to the servo controller 33 as a track error signal Ste.
  • the high-pass filter h is disposed after the subtractor sb1, and removes low-frequency components included in the output signal of the subtractor sb1.
  • the output signal of the high-pass filter hp is supplied as a wobble signal Swb to the wobble signal ⁇ p circuit 28c.
  • the low-pass filter 1 p 3 is arranged after the sieving s b 2, and removes high-frequency components included in the output signal of the subtractor s b 2.
  • the output signal of the low-pass filter 1 p 3 is supplied to the servo controller 33 as a focus error signal Sfe.
  • the RF signal detection circuit 28d is a high-bandwidth circuit, and adds the signal Sa, the signal Sb, the signal Sc, and the signal Sd to detect the RF signal.
  • the RF signal Srf detected here is supplied to the decoder 28 e and the double signal circuit 28 c.
  • the decoder 28 e performs decoding processing, error detection processing, and the like on the RF signal Srf, and stores the reproduced data in the buffer RAM 34 via the buffer manager 37.
  • the decoder 28 e performs a predetermined error correction process when an error is detected in the error detection process.
  • the double signal analysis circuit 28c includes a clock generation circuit c1, a demodulation circuit c2, a synchronization detection circuit c3, a counter c4, an address detection circuit c5, and layer information.
  • a detection circuit c6 and the like are provided.
  • the clock generation circuit c 1 is a binarization circuit c for binarizing the output signal of the band-pass filter c 11 and the band-pass filter c 11 for extracting the carrier wave component included in the wobble signal S wb c. 12 and a PLL (phase lock loop) circuit c13 for stabilizing the period of the output signal of the binarization circuit c12.
  • the output signal of the PLL circuit c13 is supplied to the encoder 25, the demodulation circuit c2, and the like as the reference cook signal Wck (see FIG. 13).
  • the demodulation circuit c 2 includes a high-pass filter c 21, a low-pass filter c 22, a sine wave generation circuit c 23, and a multiplier. 24, an integrating circuit c25, a sump / rehorno redo circuit (SII circuit) c26, and a timing signal generating circuit c27.
  • High-pass filter c 21 removes low-frequency noise contained in sample signal Swb To do.
  • the low-pass filter c 22 removes high-frequency noise included in the output signal of the high-pass filter c 21.
  • the sine wave generation circuit c 23 generates a sine wave S si of the reference clock frequency based on the reference clock signal Wck from the clock generation circuit c 1 as shown in FIG. 13 as an example.
  • the multiplier c 24 multiplies the output signal of the low-pass filter c 22 by the sine wave S sin generated by the sine wave generation circuit c 23. As a result, a 'phase modulated wave component is extracted.
  • the integration circuit c 25 integrates the output signal S mul of the multiplier c 24 every period of the reference cook signal W ck.
  • This integration circuit c 25 is reset by the reset signal Srst from the timing signal generation circuit c 27. 3/11 circuits.
  • 26 performs sample Z-hold on the output signal S intg of the integration circuit c 25 in synchronization with the timing signal S sh from the timing signal generation circuit c 27.
  • the signal Sintg is sampled at the rising timing of the reference clock signal W ck.
  • the output signal of the S / H circuit c26 is supplied to the synchronization detection circuit c3, the address detection circuit c5, and the layer information detection circuit c6 as a demodulated signal Sdm.
  • the synchronization detection circuit c3 determines whether or not the demodulated signal Sdm is a signal corresponding to the synchronization information section. If the demodulated signal Sdm is a signal corresponding to the head of the synchronization information section, the synchronization detection circuit c3 sets 0 to the value of the counter c4. If the demodulated signal Sdm is not a signal corresponding to the head of the synchronization information section, the synchronization detection circuit c3 increments the value of the counter c4 by one. That is, a value indicating the number of the demodulated signal S dm in the cycle of the reference clock starting from the head of the synchronization information part is set in the counter c4.
  • the address detection circuit c5 refers to the value of the counter c4 and, when judging that the demodulated signal Sdm is a signal corresponding to the address information section, extracts a signal from the demodulated signal Sdm.
  • a signal is extracted when the value of the counter c4 is 4 to 7.
  • the address detection circuit c5 acquires address data from the extracted signal.
  • the obtained address data is output to the CPU 40 as an address signal Sad.
  • the layer information detection circuit c6 refers to the value of the counter c4 and, when judging that the demodulated signal Sdm is a signal corresponding to the layer information section, extracts the signal.
  • the value of c 4 is 26, a signal is extracted. Then, it generates a layer signal Slay based on the signal and outputs it to the thermocontroller 33.
  • the value is jfM1
  • the value is ⁇ 2.
  • the servo controller 33 controls the force based on the focus error signal Sfe from the servo / wobble signal detection circuit 28 b and the layer signal S lay from the wobble signal analysis circuit 28 c. Generate a force control signal to correct the displacement. Further, the servo controller 33 generates a tracking control signal for correcting a track deviation based on the track error signal Ste from the servo sample signal detection circuit 28b. Each control signal generated here is output to the motor driver 27 when the servo is on, and is not output when the servo is off. The power-on and power-off are set by the CPU 40.
  • the motor driver 27 outputs a driving signal of the focusing actuator to the optical pickup device 23 based on the focus control signal, and outputs a driving signal of the tracking actuator to the optical pickup device 2 based on the tracking control signal. Output to 3. That is, the servo control signal detection circuit 28 b, the servo controller 33, and the motor driver 27 perform tracking control and focus control. Further, the motor driver 27 outputs drive signals for the spindle motor 22 and the seek motor based on the control signal from the CPU 40, respectively.
  • the buffer RAM 34 has a buffer area for temporarily storing data to be recorded on the optical disk (recording data), data reproduced from the optical disk (reproduced data), and the like. And a variable area to be set.
  • the buffer manager 37 manages input and output of data to and from the buffer RAM 34. Then, when the amount of data accumulated in the buffer area reaches a predetermined amount, the CPU 40 is notified.
  • the encoder 25 retrieves the recording data stored in the buffer RAM 34 via the buffer manager 37 based on the instruction of the CPU 40, modulates the data and adds an error correction code, etc. To generate a write signal for the optical disc 15.
  • the write signal generated here is output to the laser control circuit 24 together with the reference clock signal.
  • the laser control circuit 24 controls the light emission characteristics of the semiconductor laser 51a, A drive signal for the semiconductor laser 51a is generated based on a monitor signal, a write signal from the encoder 25, a reference clock signal, and the like.
  • the interface 38 is a two-way communication interface with the host, and conforms to the AT API (AT Attachment Packet Interface) standard as an example.
  • the flash memory 39 has a program area and a data area, and the program area stores a program described in a code readable by the CPU 40.
  • the data area stores information on the emission characteristics of the semiconductor laser 51a, information on a seek operation (hereinafter also referred to as "seek information"), recording strategy information, and the like.
  • the CPU 40 controls the operation of each of the above-described parts according to the program stored in the program area of the flash memory 39, and stores data necessary for the control in the variable area of the buffer RAM 34 and the RAM 41. I do.
  • FIG. 14 corresponds to a series of processing algorithms executed by the CPU 40.
  • the start address of the program corresponding to the flowchart of FIG. And the recording process starts.
  • a control signal for controlling the rotation of the spindle motor 22 is output to the motor driver 27 based on the above-mentioned 3 ⁇ 4, and the reproduction signal processing is performed to notify that the recording request command has been received from the host. Notify circuit 28. It also instructs the buffer manager 37 to store the data (recording data) received from the host in the buffer RAM 34.
  • step 53 when the rotation of the optical disk 15 reaches a predetermined linear velocity by 1 ⁇ 2m, the servo controller 33 is set to servo-on.
  • tracking control and focus control are performed as described above. Note that the tracking control and the focus control are performed as needed until the recording process ends.
  • step 505 based on the recording speed, OPC (Optimum Power Control) is performed to obtain: ft3 ⁇ 4 recording power. That is, the recording power is gradually changed. 3420
  • test-writing predetermined data in a test-writing area called PCA Power Calibration Area
  • those data are sequentially reproduced, and for example, the asymmetry value detected from the RF signal It almost matches the value: ⁇ is judged to be the highest recording quality, and the recording power at that time is set as the optimum recording power.
  • step 507 the current address is acquired based on the end signal Sad.
  • step 509 the difference (address difference) between the current address and the target address extracted from the recording request command is calculated.
  • step 511 it is determined whether or not a force that requires a seek is based on the address difference.
  • the threshold stored in the flash memory 39 is referred to as one of the seek information. If the address difference exceeds the threshold, the determination here is affirmed, and the process proceeds to step 5 13.
  • step 5 13 a seek motor control signal corresponding to the end dress difference is output to the motor driver 27. As a result, the seek motor is driven, the seek operation is performed, and the process returns to step 507.
  • step 511 If the address difference does not exceed the threshold value in step 511, the judgment here is denied, and the process proceeds to step 515.
  • step 51 it is determined whether or not the current address matches the target address. If the current address does not match the target address, the determination here is denied, and the process proceeds to step 5. 17. In step 517, the current address is obtained based on the address signal Sad, and the process returns to step 515.
  • step 5 15 ⁇ 5 17 is repeatedly performed until the judgment in step 5 15 is affirmed.
  • step 515 If the current address matches the target address, the determination in step 515 is affirmed, and the flow proceeds to step 519.
  • step 5 19 writing to the encoder 25 is permitted.
  • the recording data is transferred to the optical disk 15 via the encoder 25, the laser control circuit 24 and the optical pickup device 23.
  • a predetermined end process is performed, and then the recording process ends.
  • FIG. Fig. 15 Flow chart The program corresponds to a series of processing algorithms executed by the CPU 40.
  • the start address of the program corresponding to the flowchart in FIG. 15 is set in the program counter of the CPU 40. And the playback process starts.
  • a control signal for controlling the rotation of the spindle motor 22 based on the reproduction speed is output to the motor driver 27, and the reproduction signal processing circuit notifies that the reproduction request command has been received from the host. Notify 2-8.
  • Step 703 when it is determined that the rotation speed of the optical disk 15 has reached a predetermined linear velocity, the servo controller 33 is set to servo-on.
  • tracking control and focus control are performed as described above. Note that the tracking control and the force control are performed at any time until the regeneration process is completed.
  • step 705 the current address is obtained based on the address signal Sad.
  • step 707 the difference (address difference) between the current address and the target address extracted from the reproduction request command is calculated.
  • step 709 it is determined in the same manner as in step 511 whether a seek is necessary. If a seek is necessary, the judgment here is affirmed, and the process proceeds to step 711.
  • step 71 a seek motor control signal corresponding to the address difference is output to the motor driver 27. Then, the process returns to step 705. On the other hand, if the seek is not necessary in step 709, the judgment here is denied, and the process proceeds to step 713.
  • step 7 13 it is determined whether or not the current address matches the target address. If the current address does not match the target address, the determination here is denied and the process proceeds to step 715. In step 715, the current address is obtained based on the address signal Sad, and the process returns to step 713.
  • steps 7 13 ⁇ 7 15 is repeated until the determination in step 7 13 is affirmed.
  • step 7 13 If the current address is the same as the target address, the judgment in step 7 13 is affirmed, and the flow proceeds to step 7 17.
  • step 7 17 the reading is instructed to the reproduction signal processing circuit 28.
  • reproduced data is obtained by the reproduced signal processing circuit 28 and stored in the buffer RAM 34.
  • This playback data is backed up in sector units. It is transferred to the host via the file manager 3.7 and the interface 38. When all the data specified by the host has been reproduced, a predetermined end process is performed, and then the reproduction process is performed. To end.
  • the discriminating device power S is configured by the signal analyzing circuit 28c, and the servo controller 33 and the motor driver 2 7 constitutes a servo control device.
  • the processing unit is realized by the CPU 40 and the program executed by the CPU 40.
  • the present invention is not limited to this. That is, the above embodiment is merely an example, and at least a part of the processing unit 3 realized by the processing according to the program by the CPU 40 may be configured by hardware, or all may be realized by hardware. It is good also as comprising.
  • the recording layer discriminating method in the present embodiment is performed by the processing operation in the signal analysis circuit 28c.
  • the optical disc 15 of the present embodiment there are two recording layers on which information can be recorded, and spiral or concentric tracks are formed on each of the recording layers. At least a part of each track is meandering in response to a wobble signal including layer information for determining a recording layer on which the track is formed. Therefore, when the optical disk 15 is accessed, a wobble signal is detected based on the reflected light from the meandering portion, and layer information is extracted from the wobble signal to determine the recording layer where the light spot is formed. It becomes possible. That is, it is possible to quickly and accurately obtain information for determining the recording layer. Since the layer information portion of the wobble signal in which the layer information is stored is modulated by the phase modulation method, the layer information can be easily obtained.
  • the demodulation of the pebble signal is facilitated because the pebble signal includes the carrier S for generating the reference clock.
  • the synchronization information portion can be accurately detected.
  • the wobble signal has a carrier wave part before and after the layer information part, 04 003420
  • the synchronization cycle is 93 wobble. If the beginning of the synchronization information part is 0 wobble, the layer information part is 12 wobble and 8 wobble. Since it is between the 8th wobble, it is possible to prevent a decrease in accuracy when generating the reference clock signal.
  • the coupled signal detected based on the reflected light from the optical disk 15 is demodulated by the clock generation circuit c 1 and the demodulation circuit c 2, and the demodulated coupled signal is demodulated.
  • the layer information is detected from the signal by the synchronization detection circuit c3, the power counter c4, and the layer information detection circuit c6. That is, since the layer information is obtained only from the multiple signals, the layer information can be obtained more accurately in a shorter time than in the past. Therefore, as a result, in the information recording medium having a plurality of records, it is possible to quickly and accurately determine the record in which the light spot is formed.
  • the recording layer where the light spot is formed is determined in a short time by the wobble signal analysis circuit 28c, so that the position control of the objective lens can be performed quickly and accurately. It is possible to do. Therefore, as a result, an access including at least reproduction among information recording, reproduction, and erasure of the information recording medium having a plurality of recording layers can be quickly performed.
  • each information section of the sample signal is phase-modulated.
  • the present invention is not limited to this.
  • FSK Frequency Shift Keying
  • sawtooth modulation sawtooth modulation
  • MSK Minimum Shift Keying
  • ON-OFF modulation or the like
  • the detection method according to the modulation method is used in the cobble signal analysis circuit 28c.
  • the present invention is not limited to this. May be.
  • the layer information portion and the synchronization information portion have different signal waveforms from each other.
  • the layer information portion and the synchronization information portion may have the same signal waveform.
  • the layer information section is provided for each information frame: ⁇ is described.
  • the present invention is not limited to this, and the layer information may be determined based on the number of consecutive n (n ⁇ 2) information frames.
  • the carrier wave section is provided between the address information section and the layer information section. If it is clear that the accuracy of the force reference clip described for ⁇ is not reduced, then the address information section is followed. It is okay to provide a layer information section.
  • this ⁇ includes a layer determination circuit c for determining a recording layer from the output signal of the information detection circuit c6 and the address signal Sad from the address detection circuit c5. 7 is added.
  • the layer determination circuit c7 determines whether the address from the address signal Sad is the address (here, 00000H to 10000H) assigned to the track of the recording layer Ml, or is assigned to the track of the recording layer M2. Then, an address (in this case, 10001 H to 20000 H) is checked to determine which recording layer has the optical spot formed thereon.
  • the layer determination circuit c 7 determines the recording layer on which the light spot is formed, and uses the determination result as the layer signal Slay To the servo controller 33.
  • the layer determination circuit c7 determines the age at which the above determination result and the detection result obtained by the layer information detection circuit c6 do not match, without deciding a restaurant, and determines the next layer information detection circuit c6. It waits until the detection result or the next address signal Sad from the address detection circuit c5 is input.
  • the layer information section is provided at the position of the off-number 26, but the present invention is not limited to this. 2004/003420
  • the synchronization information section has been described with respect to ⁇ which is composed of four wobbles.
  • the address information section is constituted by 4 wobbles: ⁇ has been described, but the present invention is not limited to this.
  • the layer information part is described as being composed of one wobble.
  • the present invention is not limited to this.
  • the layer information part may be composed of two or more wobbles.
  • it may be set according to the number of recording layers. For example, if there are four recording layers, the recording layer can be indicated by 2-bit information (0, 0, 1, 10, 11). ,.
  • the address information section is provided subsequent to the synchronization information section.
  • a carrier wave section exists between the synchronization information section and the address information section.
  • the address information section may be provided behind the layer information section. In short, it suffices if the position (number of wobbles) from the synchronization information section is clear.
  • the present invention is not limited to this.
  • the clock generation circuit c1 may not have the binarization circuit c12.
  • the synchronization information may be recorded in the form of pits.
  • Figure 19A shows a case where a predetermined pit is formed as synchronization information in an area where the meandering state is interrupted. 04 003420
  • FIG. 19B shows that predetermined pits are formed in the land as synchronization information.
  • a pit detection circuit c8 is added to these; ⁇ , as shown in FIG. 20 as an example, to the cobble signal analysis circuit 28c.
  • the pit detection circuit c8 detects the pit of the synchronization information based on the RF signal Srf from the RF signal detection circuit 28d at ⁇ in Fig. 19, and in the case of Fig. 19B, a subtractor sbl
  • the pit of the synchronization information is detected based on the output signal of. The detection result is notified from the pit detection circuit c8 to the synchronization detection circuit c3.
  • the four-divided light receiving element is used as the light receiver 59: ⁇ is described.
  • the present invention is not limited to this.
  • it may be configured by two two-divided light receiving elements.
  • four light receiving elements may be provided in parallel.
  • the truck may meander only on one side. Further, the meandering of the truck may be intermittently interrupted. In short, it is only necessary that the present invention can be applied to an information recording medium having a plurality of recording layers, and that a wobble signal of a predetermined signal level can be obtained based on a returning light beam from each recording layer.
  • the optical disk has two recording layers on which information can be recorded, and the age is described.
  • the present invention is not limited to this, and the optical disk may have three or more recording layers.
  • the remaining recording layers may be recording layers on which information has already been recorded and cannot be additionally recorded (so-called ROM layers).
  • a phase difference method may be used as one of the methods using the return light flux of one light spot force formed on the recording surface similarly to the push-pull method.
  • a track error signal is detected based on the rotation pattern of the intensity pattern in the return light beam. That is, the return light beam is received by the light-receiving elements divided into four, and the amount of phase advance and delay is obtained based on the sum signal of the amount of light received by the light-receiving elements at diagonal positions to each other. To detect.
  • a so-called three-light spot method and a differential push-pull method may be used.
  • the three-light spot method the light beam emitted from the light source is divided into one main beam and two sub-beams, and the recording surface is focused on the main beam, the sub-beam and the force in the tracking direction (the tangential direction of the track).
  • the return light fluxes of the two sub-beams reflected on the recording surface are received by the two light receiving elements, respectively, and a track error signal is detected from the difference between the light receiving amounts of the two light receiving elements.
  • the differential push-pull method the luminous flux emitted from the light source is divided into one main beam and two sub-beams, and the main beam and the sub-beam are halved in the tracking direction on the recording surface. Irradiate so as to shift by the tag pitch.
  • Return light fluxes of the main beam and the two sub-beams reflected on the recording surface are received by the three two-divided light receiving elements, respectively, and the push-pull signal is obtained by each of the two divided light receiving elements. Then, a track error signal is detected from the sign of the push-pull signal of the main beam and the sum signal of the push-pull signals of the two sub-beams.
  • the number and arrangement of the photodetectors 59 that are suitable for the method of detecting a track error signal are set.
  • the servo wobble signal detection circuit 28b has a circuit configuration according to the method of detecting a track error signal. It is acceptable to provide a light receiving element for detecting a track error signal and a light receiving element for detecting a focus error signal separately. In the above embodiment, a circuit for detecting a wobble signal and a circuit for detecting a servo signal may be separately provided. In short, it suffices if it is possible to accurately detect the pebble signal and the servo signal.
  • the detection lens 72, the light receiver 73, and the reflection mirror 71 may be integrated with the light source unit 51. Thereby, the miniaturization of the optical pickup device can be promoted.
  • the optical disk 15 is compatible with the laser light having a wavelength of 660 nm.
  • the present invention is not limited to this.
  • the optical disk 15 can be compatible with the laser light having a wavelength of about 405 nm. You may.
  • the present invention is not limited to this, and any one of the optical disk devices capable of reproducing information at least among recording, reproducing, and erasing information.
  • the optical pickup device has been described as including one semiconductor laser.
  • the present invention is not limited to this. For example, a plurality of semiconductor lasers that emit light beams having different wavelengths may be provided.
  • the optical disk device may be an optical disk device corresponding to a plurality of optical disks conforming to different standards.
  • AT A AT Attachment
  • SCS I Serial Computer System Interface
  • USB Universal Serial Bus
  • USB 2.0 USB 2.0
  • IEEE1394, IEEE802.3 Serial ATA
  • Serial AT API Serial AT API
  • the information recording medium of the present embodiment there is an effect that information for determining the recording layer can be obtained quickly and accurately. Further, according to the recording layer discriminating method and the recording layer discriminating apparatus in the present embodiment, in an information recording medium having a plurality of recording layers, the recording layer on which the light spot is formed can be quickly and accurately determined. This has the effect. Further, according to the optical disk device of the present embodiment, there is an effect that an information recording medium having a plurality of recordings can be quickly accessed.
  • an information recording medium such as an optical disk according to the present invention, an information recording medium forming apparatus and an information recording medium forming method for forming such an information recording medium, an information detecting method, an information detecting apparatus and an information recording medium apparatus
  • PSK phase shift keying
  • Japanese Patent Application Laid-Open No. 2001-052342 discloses that a pebble is formed in each layer of a multilayer recording medium by using a multilayer recording medium technology in which a recording layer has a two-layer or multilayer structure. .
  • Japanese Patent Application Laid-Open No. 2002-074679 discloses that It is disclosed that the frequency and modulation method of a sample are changed for each of a plurality of recording layers.
  • CD-RZRW and DVD ⁇ R / RW are widely used as external storage devices for PCs. It is hoped that information recording media capable of recording information will have even larger capacities in the future, and two-layered and multi-layered media are being studied in the future.
  • a track including a land and a group that enable tracking of a light spot and a sample storing rotation information address information are formed.
  • DVD + R / RW uses a phase modulation (PSK: Phase Shift Keying) method for storing this information (see Japanese Patent Application Laid-Open No. H10-69664). Since the PSK method generally has a high demodulated signal-to-noise ratio (S / N ratio), it is a very advantageous method for disturbances in other frequency bands. For example, when there are many disturbances in a frequency band other than a wobble signal such as reproduction of a recorded area, the PSK method can be said to be a very excellent format.
  • the signal of the adjacent track leaks from the signal of the detected track from the desired track, resulting in amplitude or phase fluctuation. This is because most of the frequency of the leakage signal from the adjacent track is the same as the wobble signal detected from the desired track, and therefore cannot be removed by PSK.
  • FSK Frequency Shift Keying
  • Japanese Patent Application Laid-Open Publication No. 2001-052 324 proposes forming a pebble on each layer of the multi-layer recording medium. ing.
  • Japanese Patent Application Laid-Open No. 2002-077467 proposes that the frequency and modulation method of a sample are changed for each of a plurality of recording layers. In order to find the access target recording layer at high speed, it is conceivable to change the frequency and the modulation method for each recording layer. However, this has the following problems.
  • a clock retrieving process for extracting a carrier component from a sampled signal or a synchronizing pull-in during information demodulation will be retried if the pull-in is not performed properly to cope with disturbances and low-quality products. It is difficult to determine whether the pull-in frequency or modulation ⁇ : cannot be pulled in differently from that of the target recording layer, or the signal quality is poor, and it is difficult to determine if the pull-in cannot be performed. If the modulation method is different for each recording layer, it takes a very long time to discriminate.
  • the discrimination of the recording layer is important li, but at present, no optimal method has been found! / ⁇ .
  • One object of the embodiment of the present invention described below is made in view of the above points, and has a high demodulation performance as a wobbled modulation method, and is capable of using a common FSK or PS demodulation circuit.
  • ⁇ ⁇ ⁇ ⁇ A disc format that can perform layer discrimination using the ⁇ method enables layer discrimination to be performed reliably without a large increase in circuits, and without requiring long retries and waiting time. It is to be.
  • recording media such as write-once optical disks, rewritable optical disks, and magneto-optical disks, and CD-R disks, CD-RW disks, DVD-R disks, DVD + R disks, DVD-RW disks, DVD + RW Applicable to optical disks such as disks.
  • a carrier wave section having a plurality of recording layers and detecting a carrier wave of a fixed frequency in a track of each recording layer, and layer information for detecting a frequency modulation wave indicating the number of the recording layer.
  • a recording medium in which a wobble consisting of a part is formed.
  • a carrier section having a plurality of records and detecting a carrier wave of a constant frequency on each track of the record and a layer for detecting a phase-modulated wave indicating the number of the recording layer.
  • a recording medium in which a plurality of carriers comprising a carrier wave portion to be output and a layer information portion for detecting a phase modulated wave having a different period from the carrier wave indicating the number of the recording layer are formed.
  • optical disks (13) to (48) are shown.
  • the track is wobbling, and the wobbling includes a FSK modulation portion based on a waveform obtained by performing FSK modulation on the first information, a PSK modulation portion based on a waveform obtained by performing PSK modulation on the second information, and a waveform having a constant frequency.
  • An optical disc that is formed separately from a carrier based on
  • the first information is address information
  • the second information is layer information indicating whether or not the recording layer is a fourth layer. optical disk.
  • the track is coupled, and the above-mentioned coupling includes a FS modulation part based on a waveform obtained by FS modulation of address information, a first PSK modulation part based on a waveform obtained by PS modulation of layer information, and a constant frequency
  • An optical disc that is divided into a carrier portion based on a waveform and a second PS ⁇ modulated portion based on a waveform obtained by PS ⁇ modulating periodic synchronization information.
  • the track is coupled, and the above-mentioned coupling is performed in the FS ⁇ modulation part based on the FS ⁇ modulated waveform of the address information, the PS ⁇ modulation part based on the PS ⁇ modulated waveform of the layer information, and the fixed frequency waveform.
  • An optical disc that is formed with a component and a carrier part based on it, and in which periodic synchronization information is formed by pits.
  • the track is wobbling, and the above-mentioned wobbling is a carrier part based on a waveform of a fixed frequency, and a first information having a period different from that of the carrier part, and FSK + P based on a PSK-modulated waveform.
  • An optical disc formed by separating a SK modulation portion and a PS modulation portion based on a PSK-modulated waveform of the second information.
  • the frequency used for the 31 ⁇ +? F1: FSK + PS to the modulation portion is twice the frequency of the carrier by the carrier portion. optical disk.
  • the track is coupled, and the above-described wobbling includes a carrier portion based on a waveform of a fixed frequency, an FSK + PSK modulation portion based on a PSK-modulated waveform with a different period from the carrier portion of the address information, and a layer.
  • An optical disc formed by dividing a first PSK modulation portion based on a waveform obtained by PSK-modulating information into a second PSK modulation portion based on a waveform obtained by PSK-modulating periodic synchronization information.
  • the track is wobbling, and the wobbling includes a carrier part based on a waveform of a fixed frequency, an FSK + PSK modulation part based on a PSK-modulated waveform with a period different from the carrier part of the address information, and a layer.
  • An optical disc that is formed by separating the information into a PSK-modulated part based on a waveform obtained by PSK-modulating information, and that has periodic synchronization information formed by pits.
  • the frequency used for the FSK modulation is An optical disc that is 1 Z 2 times the carrier by the carrier portion.
  • the track is wobbling, and the wobbling is divided into a carrier part based on a waveform of a constant frequency, and an FSK + PSK modulation part based on a PSK-modulated waveform with a different period of the layer information from the carrier part.
  • An optical disc that is formed separately.
  • the recording medium and the optical disk according to the present embodiment have a high demodulation performance as the wobbled modulation ⁇ : and are layered using the FSK method or the PSK method that can use a common demodulation circuit. 04 003420
  • a disc format that can perform discrimination enables reliable discrimination without a large increase in circuits and without requiring a long retry time due to retries.
  • Another object of the present embodiment is to make it possible to accurately form a FSK + PSK-modulated fob on an information recording medium by FSK modulation, PSK modulation, or a combination thereof. That is.
  • the present embodiment is directed to an information recording medium forming apparatus for irradiating a light spot to form a coupled track on an information recording medium, wherein the lift self light spot is irradiated onto a lilt self information recording medium.
  • An irradiation position changing device that changes the irradiation position of the self-light spot on the self-information recording medium to generate wobbling of the self-track, and a signal generator that generates a plurality of signals having different frequencies or inverted phases at the same frequency
  • a selector for selectively switching the plurality of generated signals based on a predetermined signal and outputting the selected signals to a basket irradiation position changing device.
  • An information recording medium forming apparatus characterized in that self-coupling is generated based on a tfjf self-signal that is selectively switched and output.
  • the present embodiment viewed from another aspect is different from the method of forming an information recording medium in which an illuminated light spot is formed on an information recording medium to form an aligned track, and the phase is inverted at a different frequency or the same frequency.
  • the plurality of generated signals are generated, and the generated plurality of signals are selectively switched and output based on a predetermined signal, and based on the output signal, the light spot on the information recording medium.
  • the present embodiment it is possible to generate a wobble signal by combining a plurality of signals having different frequencies or having the same frequency and inverted phases, and it is possible to form a wobble on the information recording medium with this wobble signal. Even for a modulation method or the like in which the difference is set to be twice or more, the frequency tree at the time of modulating the cobbled signal is smoothly performed, and based on a predetermined signal, FSK modulation, PSK modulation, or The combined FS ⁇ + PS ⁇ modulated sample can be accurately formed on the information recording medium.
  • Still another object of the present embodiment is to provide a crosstalk-resistant FSK modulation and a PSK modulation.
  • FSK + PSK modulation it is possible to store layer information on an information recording medium with a multi-layered recording layer and to detect this, so that the data being accessed can be recorded ⁇ ! Is to be able to make quick and accurate decisions.
  • the present embodiment is directed to an information detecting apparatus for reading information recorded in a self-editing sample from an information recording medium in which a track in which information is modulated is formed on a track.
  • Clock generation means for generating a clock signal
  • demodulation means for detecting FS modulation information, PSK modulation information, or FSK + PSK modulation information from a squeezable signal based on a key reference clock signal.
  • a synchronous detection means for outputting a timing signal indicating a position of layer information indicating a different one of the tflf self-recording layers when the t & t self-information recording medium has a multi-layered recording layer and data can be recorded for each recording layer;
  • An information detection apparatus characterized by comprising a layer information detection means for holding the output of the tfHB demodulation means by the timing signal and detecting the layer information.
  • the present embodiment viewed from another aspect is based on an information detection method for reading information recorded in an ItflB cable from an information recording medium in which a track having modulated information is formed on a track.
  • the timing signal indicating the position of the layer information indicating the different recording layer holds the detection information from the HUB wobble signal and This is an information detection method characterized by detecting layer information.
  • the recording layer has a multi-layer structure
  • data can be recorded on each recording layer by irradiating light, and information in which information is modulated on a track is formed.
  • An information recording medium characterized in that, in the recording medium, the layer information indicating the distinction of dislike is recorded as FSK modulation information, PSK modulation information, or FSK + PSK modulation information in the tfif self-recording. It is.
  • the recording layer has a multilayer structure, and data is irradiated by irradiating each recording layer with light.
  • the layer information is stored in an information recording medium capable of recording 35 data, this can be detected and the recording layer being accessed can be determined quickly and accurately, so that the information can be recorded and reproduced appropriately.
  • FIG. 21 is a diagram showing a configuration of an optical disk (medium) 101 which is a recording medium capable of recording information to which the present embodiment can be applied.
  • the disc 101 is a recording medium such as a write-once optical disc, a rewritable optical disc, a magneto-optical disc, and a CD-R disc, a CD-RW disc, a DVD-R disc, a DVD + R disc, a DVD-RW disc, and a DVD + An optical disk such as an RW disk.
  • tracks 104 composed of groups 102 (grooves) 102 and lands 103 are formed concentrically or spirally.
  • the track 104 is created in advance by a disk forming device, and the information (recording / reproducing) device records and reproduces information along the track 104.
  • the track 104 meanders (turns) so that a signal of a constant frequency (period) can be detected even if the disc rotates at a constant linear velocity or a constant angle.
  • synchronization information and address information are recorded by providing a part that slightly changes the frequency and phase while keeping the meandering of the track 104 at a substantially constant frequency. This is called a couple.
  • Other forms of the pebble include a meandering track on one side of track 104 and a meandering intermittent break.
  • FIGS. 22A to 22C are diagrams showing the shape of the disk 101 of this symbol. Some pits exist in group 102 and others exist in land 103. FIGS. 22A to 22C show the disc 101 on which information is recorded in the group 102, but it is also possible to record information on the land 103.
  • the group 102 is considered as a groove, the group pit is a gap between grooves as shown in FIG. 22A.
  • the group pit 105 can be detected by a change in the intensity of the reflected light, for example, a change in the amplitude of the RF signal.
  • the recorded information such as the magneto-optical disk 101 is recorded other than the change in the amplitude of the reflected signal
  • the groove pit 105 can be easily detected from the amplitude.
  • recorded information such as a dye (R: recordable) disk or phase change (RW: rewritable) disk is recorded by changing the amplitude of the reflected signal
  • RW rewritable
  • the same detection method is used for both pit information and recorded information. It is desirable to be able to distinguish between pit information and recording information such as division.
  • the land pit can be said to be a state in which a hole having substantially the same depth as that of the group 102 is formed in the land 103 between the grooves as shown in FIG.
  • the land pit 106 can be detected as the amplitude of the push-pull signal (the difference signal obtained from the light receiving element divided in the tangential direction of the track 104). If the light spot is accurately tracking at the center of the track 104, the recorded information component hardly remains in the push-pull signal, so that the land pit 106 can be easily detected. While tracking to a specific group 102, it is possible to detect pits on the left and right lands 103, but both sets ⁇ : may be used as information, May be built.
  • the FCM may be considered that the wobbling of the track 104 in FIG. 22C has a locally high frequency and large amplitude. Detection is possible in the same way as for a pebble signal. These can be formed by pairing with the wobbles.
  • the absolute position on the disk 101 can be specified by using the information signal embedded in the disk formation stage. For example, if these are used as synchronization signals necessary for demodulation of a wobble signal, positioning can be performed with high accuracy.
  • Disc 101 In a recording medium having a multi-layered recording layer and capable of recording information in each layer, this symbol is applied to each layer. These are at least next to each other
  • the spiral direction of the track 104 may be the same in a plurality of layers, or may be reversed for each layer.
  • the advantages when the first layer and the second layer are inverted are as follows. When tracking the inner circumference of the first layer while the disk 101 is rotating in a certain direction, the disk 101 moves to the outer circumference along the spiral. Ah When the second layer is tracked by jumping between layers at the ⁇ position, the disk 101 moves to the inner circumference side along the spiral this time even though the rotation direction is the same.
  • FIG. 23 shows an example of a signal processing block around the light receiving element that receives the reflected light of the light beam applied to the disk 101 and extracts various signals. That is, the reflected light of the disk 101 is received by the four-divided PD (light receiving element) 111.
  • the four-divided light receiving element 111 is optically divided into four by a dividing line corresponding to a tangential direction of the track 104 on the surface of the disk 101 and a direction perpendicular thereto.
  • the divided parts of the four-divided light receiving element 111 are denoted by A to D clockwise from the left front in FIG. 23 for convenience, and the outputs from the divided parts A to D are also indicated by the corresponding A to D.
  • the SBE-converted signal is subjected to various additions and subtractions in a subsequent operation circuit 113 to extract various signals.
  • the track cross signal is a low-frequency signal that is the result of the calculation of “A + B + C + DJ.
  • the track error signal is also called a push-pull signal, but it can be expressed as“ (A + D) — (B + C) j
  • the focus error signal is a low-frequency signal obtained by ⁇ ( ⁇ + 0-(B + D) ”in the case of the astigmatism method.
  • the wobble signal is a high-frequency signal of “(A + D) — (B + OJ.
  • the calculation is performed by the same circuit as the track error signal. However, the calculation may be performed by another circuit. Various correction circuits may be inserted before the subtraction amplifier that composes the circuit 113. Also, since it is desirable that the reproduced (RF) signal be calculated by another high-band circuit, the I / V circuit The calculation is performed by directly adding the four signals at the subsequent stage of 1 12.
  • the example shown here is the simplest method of calculating various signals, but the quadrant photo detector (PD) 1 1 1
  • the division shape is not limited to this example, and it may be divided more finely according to the number of light beams and the optical path, and conversely, may be as small as two divisions or three divisions. It is only necessary to optimize the signal calculation in accordance with the conditions.
  • various signals are detected from a plurality of main and sub light beams.
  • the track error signal is ⁇ ⁇ such as the three-beam method that receives and calculates three light beams and the DPP (Differential Push-PuU) method, etc.
  • the track cross signal is also calculated with three beams
  • the track error signal may be a DPD (Differential Phase Detection) method, or the focus system may be calculated from another light receiving element such as a knife edge method.
  • FIG. 24 is a waveform diagram showing a waveform of a wobble signal of a general wobble modulation method.
  • the top monotone shown in Fig. 7 (a) is a continuous SIN wave without modulation and is used in the carrier wave area.
  • the second data shown in FIG. 3B is the modulated data, and the subsequent modulated signal corresponds to this data.
  • the third diagram shown in FIG. 3 (c) is a waveform using a monotone 1/2 frequency in a wobble waveform on which FSK (FM) modulation is superimposed.
  • Figure 4 (d) shows the fourth PSK (PM) modulation
  • Figure 5 (e) shows the 5th saw modulation
  • Figure 6 (f) shows the 6th MSK modulation
  • the seventh is ON-OFF modulation.
  • these modulation schemes may be partially combined and used in the present embodiment because of their respective advantages and disadvantages.
  • the modulation is inserted to include information such as address.
  • Figure shows an example of the overall format of recording location information by dip modulation.
  • AD exists.
  • a reference clock is generated from the carrier wave component obtained from the carrier wave area, the position of the synchronization information section that periodically appears based on the reference clock is specified, and the synchronization information section is located a predetermined distance (the number of cobbles) away from the synchronization information section.
  • the address information is read from the demodulation result of the address information section, and the position on the disc 101 is detected.
  • the modulation form of the synchronization information section is generally not present in the area of the address information section or the other (layer information section), or is used in a small amount. Since it occurs periodically, it can be distinguished.
  • layer information indicating the layer number of the currently accessed recording layer is stored.
  • the synchronization information section and the address information section are continuous, and the layer information section is located at a position sandwiched by the carrier wave areas. Even if the synchronization information section and the address information section are placed apart from each other, the address cannot be read out, but during that time, a clock shift due to disturbance or the like (the number of wobble numbers based on the synchronization information section shifts) force S Yes: ⁇ is a false detection. Address information needs to be read frequently and at high speed, such as when moving from one access location to another, so accurate and highly reliable detection is expected.
  • the layer information section may be located close to the synchronization information section and the address information section.However, if the modulation section becomes longer, the carrier component for generating the reference clip cannot be extracted for a long time, and the reference clock There is also a problem that becomes unstable. Since the BPF output for extracting the carrier wave is disturbed in the modulation section of the pebble, it is desirable to minimize the continuation of the modulation section. This disturbance does not become a large disturbance in the modulation for one or two periods of the carrier wave, but if the modulation part becomes longer, the waveform (period) of the BPF output will be disturbed, which will adversely affect the generation of the reference clock. Of course, since the disturbance depends on the characteristics of the BPF, if there is no problem in extracting the reference clock, the layer information section may be stored successively to the synchronization information section and the address information section.
  • the layer information is read only when the recording layer is changed fundamentally, so the frequency is low and the information amount is as small as several bits and can be read in a short time, so it is easy to check it many times. Even if a clock shift occurs, this check can detect a mistake and enable retry playback. For this reason, there is little problem even if the layer information section is located at a position distant from the synchronization information section and the address information section. P2004 / 003420
  • the layer information section is intermittently arranged. Although a large number of bits (amount of information) is required to represent address information, since there is a problem when the modulation sections are continued as described above, one address information section contains a part of the information 1-2.
  • the address information is stored across multiple address information sections without bit allocation. In other words, when the synchronization information section, the address information section, and the carrier wave area are set as one set, several sets of information are collected to complete one address.
  • the layer information requires only one bit to determine the two recording layers, and two bits are sufficient for four layers, so it is not necessary to store the layer information for every set. It is sufficient to store layer information for each of multiple sets.
  • the layer information section can be secured for each set, and layer information and other information can be stored alternately. Of course, if the data is stored many times for each set, there is the advantage that the reliability is improved by repetition and the layer can be quickly identified.
  • the modulation section should store information in the shortest possible period.
  • PSK, FSK, FSK + PSK (combination of 31: and 31 ⁇ ) among the wobble waveforms shown in FIG.
  • FIG. 26 shows a specific sample waveform of; ⁇ .
  • This method stores information by changing the phase between 0 and 180 degrees in the carrier wave period from 310 to # 11.
  • FSK-1 is! !
  • the method of observing information is a force with a wobble waveform having a period twice as long as the carrier period (1/2 frequency).
  • 31: -2 is stored in # 11 Woburu waveform there is a force of 1/2 times the period of the carrier wave period (frequency doubled), the information in Woburu waveform power of the carrier wave period It is a method.
  • FSK-3 becomes FSK-1 4003420
  • This method stores information in only one carrier wave period of 41.
  • F SK-4 has a force that has a wobble waveform with a period (1/3 frequency) three times the carrier period at #n, # n + l, and # n + 2.
  • information is stored in a wobble waveform of the carrier wave period.
  • FSK + PSK-1 is a wobble waveform with a period (1/2 frequency) twice as long as the carrier at #n and # n + l.
  • FSK + PSK-2 is a double waveform with half the period of the carrier (double frequency) at #n, and the phase changes between 0 and 180 degrees.
  • FIG. 27 is a diagram in which the sample waveform of FIG. 26 is applied to the overall image of the format and illustrated.
  • the synchronization information part is # 0-3
  • the address information part is # 4
  • the layer information part is #n
  • n + 1 the rest are the carrier wave parts.
  • the length and arrangement of each area are not limited to this.
  • about the position #n of the layer information section about half of the interval of the synchronous information section is appropriate. However, it can be placed anywhere except in the area where the period of the wobble binary signal is disturbed in the modulation part of the address information section and the reference clip is temporarily unstable for a few wobble periods. ⁇ .
  • the address information section of T ⁇ pel indicates FSK modulation of a carrier double cycle
  • the layer information section indicates PSK modulation of a carrier cycle.
  • the address information section of TVpe2 shows FSK + PSK modulation of a carrier double cycle
  • the layer information section shows PSK modulation of a carrier cycle.
  • the address information part of ype3 shows FSK modulation of a carrier double cycle
  • the layer information part shows 31: +? 31 ⁇ modulation of a carrier double cycle.
  • the address information part of TVpe4 shows FSK + PSK modulation of twice the carrier frequency
  • the layer information part shows FSK + PSK modulation of twice the carrier frequency.
  • Figure (f) will be described later! Indicates pe5. If the modulations of the address information part and the layer information part are different, they will not be mistaken. Even if the V output S is the same, even if the modulation is the same, they will not be confused depending on the position from the synchronization information part.
  • the layer information section allocates two periods of the carrier wave. Although this has an appropriate length according to the modulation, it is desirable to store information with a carrier cycle as small as possible in consideration of adverse effects on clock generation ⁇ resistance to crosstalk.
  • an integer multiple of the carrier is desirable.
  • 1-bit information of “0” and “1” is required. This is stored in one cycle of the carrier wave.
  • two-bit information is required, it is stored in two cycles of the carrier wave.
  • a type of modulation that is completed in one cycle of a carrier wave, such as PSK, FSK-2, FSK-3, or FSK + PSK-2 shown in FIG.
  • PSK PSK
  • FSK-2 FSK-2
  • FSK-3 FSK + PSK-2 shown in FIG.
  • one bit can be represented by two periods of the carrier wave like FSK-1.
  • the clock generation becomes unstable;
  • PSK modulation is shown in the synchronization information part. Since the PSK modulation method can obtain a high signal SZN ratio, it can be easily distinguished from the carrier wave portion and is desirably used for the synchronization information portion. However, if the wobble component of the same frequency in the track leaks (crosstalk), amplitude and phase fluctuations occur, and the demodulated signal SZN ratio decreases. Since the synchronization signal is periodic only, interpolation can be performed even in the rare case of erroneous detection. As an example other than the PSK modulation method, FSK modulation; ⁇ : may be used in the synchronization information section.
  • Iype5 shown in Fig. 27 (f) indicates that one carrier period is obtained by 1SK2 period FSK modulation, which is also detected as a synchronization signal in the same manner as TVpel-4 shown in Figs. (B) to (e). be able to.
  • the demodulated signal SZN ratio is slightly lower than that of PSK ⁇ 5
  • the frequency is different from that of the ⁇ ⁇ track carrier, so that it is not easily affected by crosstalk.If crosstalk is large, the FSK method is more effective than the PSK method.
  • the synchronization information section may be formed by a pit signal or FCM as shown in FIGS.
  • a timing correction is required because the detection system of the group pit 105 and the detection system of the pebble are different.
  • the drop pit 105 is detected from the sum signal processing system (for example, RF processing system), but the wobble is detected from the difficult signal processing system (wobble processing system). For this reason, the delay time difference between the sum signal processing system and the symbol processing system is adjusted, and the address information section and layer information of the It is necessary to indicate the exact location of the part.
  • the timing must be adjusted by adjusting the difference between the demodulation processes. There is.
  • the layer information can be accurately and quickly determined.
  • the layer can be identified by changing the address information for each layer. Since the optical reflection level is low unlike the one-layer DV D-ROM in the first place, the primary discrimination method can be based on the reflectivity or signal level, but there are large fluctuation factors and ultimately the address information Is used to determine the layer. However, if you prepare tiff's own table for each layer, you need to double the memory capacity as compared to single layer: ⁇ . To avoid this, in DVD-ROM, address information at the same radial position is given an interlayer relationship. Specifically, as a censoring relationship, a table of the radial position for the address information of the first layer is used.
  • a method is used in which the second layer is converted to address information of the first layer by complement calculation, and then the radius position is obtained. Complement can be calculated easily by bit inversion. However, in the case of three or more layers, this complement relation is also difficult to adapt, and it is necessary to increase the amount of information in order to change the address information for each layer (to avoid duplication), which is inefficient. is there. For this reason, in a ROM disk having three or more layers, it is desirable to store the layer information in the recording information in common without changing the arrangement of the address information for each layer. Of course, in a read-only DVD-ROM, there are no track pairs, so Dress information and layer information may be stored in the same manner as other recording information.
  • the address information is completed in sector units (relatively small, data breaks), and the address information should be read in a format that can be read in a relatively short time.
  • the recording disc 101 can determine the recording layer in the access by detecting the layer information stored in the page, but as described above, the read-only disc 101 has no However, layer information needs to be detected from recorded information.
  • the format of the information recorded on the recording disc 101 and the format of the information recorded on the read-only disc 101 need not always be the same. However, since the storage method of the layer information of the recorded information is shared between the read-only disc 101 and the recording disc 101, even if the read-only device does not have the Layer discrimination can be performed quickly after the disk 101 is reproduced.
  • FIG. 28 is a block diagram of a device configuration of an information detecting device 161 for detecting address information and layer information from the disk 101 using the format described above.
  • a synchronization signal is also detected from the modulation of a pebble.
  • a carrier component included in the cobbled signal is extracted by the peak generation means 121 to generate a clock, and a reference clock signal having a frequency necessary for demodulation is also generated.
  • a specific example of the clock generating means 122 will be described later.
  • the first and second demodulation means 122, 123 demodulate and extract the modulation components contained in the cobbles.
  • the first demodulation means 122 uses the reference clock f1 signal having the same frequency as the carrier frequency to demodulate the PSK modulator.
  • the second demodulation means 1 2 3 demodulates the FSK modulation section with a double period of the carrier wave or the 31: +? 31 ⁇ modulation section using the reference clock f2 signal of the carrier frequency 12 frequency.
  • the synchronization detecting means 124 selects an input signal that matches the modulation method of the synchronization information section. For example, if the synchronization information section is a PSK modulation method, the output signal of the first demodulation means 122 is selected as an input. The interval between the input signals is calculated based on the clock signal, a periodic synchronization information section is detected, and synchronization is performed.
  • the count continues as usual, such as generating and capturing a pseudo synchronization signal. .
  • the clock signal is counted based on the generation timing of the synchronization information section, and the In step 101, a timing signal is output to the address information detecting means 125 at the timing at which the address information part on the format is arranged, and the layer information detecting means 1 is outputted at the timing at which the layer information is arranged. 26 Output the timing signal.
  • the output of the demodulating means corresponding to each modulation is selected as an input signal by the selector 127.
  • An address information signal and a layer information signal are detected according to the timing signal.
  • FIG. 29 shows an information detecting device 16 1 for detecting layer information and address information when pits and FCMs are used as the synchronization information section.
  • the blocks denoted by the same reference numerals as those in FIG. 28 have the same functions as those in FIG. Since the group pit 105 is used (A in FIG. 22) and detected from the sum signal processing system, the selector 120 selects “A + B + C + D” as the input signal. Since ⁇ using land pits 106 (Fig. 22B) and FCM (Fig. 22C) is detected from the ⁇ f signal processing system, the input signal is selected by the selector 120 as ⁇ (A + D) — (B + C) ”is selected.
  • Each of these input signals may be subjected to signal processing such as a filter in advance.
  • the synchronization detecting means 128 samples the input signal based on the clock signal, finds the synchronization signal, confirms the synchronization, and then performs synchronization pull-in. If the difference is different between the wobbled output system and the synchronization detection system, delay correction may be performed in the synchronization detection means 128. Timing signal generation to the address information detection means 125 and layer information detection means 126, first and second demodulation means 122, 123, address information detection means 125 and layer information detection Means 126 is the same as that of FIG. 28, and the description thereof is omitted.
  • FIG. 30 shows a block diagram of a detailed device configuration of the clock generation means 122.
  • the pebble signal includes a noise component and a modulating unit, only the carrier component is extracted by a filter 131, such as a BPF.
  • the PLL circuit 1332 Based on this carrier wave signal, the PLL circuit 1332 generates a PLLCK signal that has stable frequency characteristics with noise (jitter) in the time axis direction removed, but follows rotation fluctuations and the like.
  • the input signal of the PLL circuit 132 may be binarized. Since the duty of the PLLCK signal is not always 50%, the frequency is set higher than the frequency of the cobbles, and the frequency is divided into 1 / L by the frequency dividing means 133 in the subsequent stage.
  • the PLLCK signal is frequency-divided by the frequency dividing means 134 to a frequency of 1 ZM so as to have the frequency of the f 1 signal in order to generate the reference clock.
  • the frequency dividing means 135 also divides the frequency to 1 / N so as to be the f 2 signal frequency.
  • the method of frequency division is not limited to this, and it suffices if the frequency is divided from the PLLCK signal according to the target frequency of each output.
  • the phase adjusting means 136 includes a signal used for the first or second demodulating means 122 and 123, a reference clock signal or a sine wave (Sinusoidal Wave) signal generated based on the reference clock signal. Adjust the phase of the PLLCK signal to match the phase of The phase of the signal changes when passing through various filters, PLL circuits 132, etc., but the first or second demodulation means 122, 123 converts the signal from the cobble signal and the reference clock signal or reference clock signal.
  • the phase of the reference clock signal is adjusted by adjusting the phase of the PLLCK signal by the phase adjusting means 136.
  • the f 1 signal and the f 2 signal may be provided with the phase adjusting means 136 independently of each other.
  • the phase adjusting means 136 is provided at a position where the PLLCK signal is processed.
  • the function of the phase adjusting means 136 may be mounted on the PLL circuit 132, or the phase adjusting means 136 may include a frequency dividing circuit 132 to 135, a SIN wave generating circuit for generating a sine wave signal.
  • the filter output of the double signal is disturbed in the modulation section.
  • the filter is a BPF
  • the case where the BPF output is disturbed in the modulating section is shown as shown in FIG.
  • the binary signal of the BPF output shown in FIG. (B) is used as the input to the PLL circuit 132
  • the binarized signal shown in (c) of FIG. It is very disturbed in the vicinity of the modulation section (within the area denoted by reference numeral 141 in FIG. 31 (c)).
  • the operation tends to be unstable.
  • phase comparison operation of the PLL circuit 132 is stopped by a mask signal indicating a period during which the modulation section or the filter output is disturbed, as shown in FIG. Can be kept.
  • This mask signal can be easily generated by the synchronization detecting means 128.
  • FIGS. 32A and 32B are block diagrams showing configuration examples of the first and second demodulation means 122 and 123.
  • FIG. 32A shows a configuration of an analog system
  • FIG. This shows the configuration of.
  • ⁇ of the analog shown in FIG. 32A will be described.
  • Noise or the like superimposed on the wobble signal is removed by a filter 141 such as a BPF.
  • a signal generator (S IN) 142 generates a sin wave signal of the same frequency.
  • the multiplier (X) 142 performs an arithmetic process on the two signals, the wobbled signal and the sine wave signal. At this time, a sine wave signal was used. This is to improve the demodulation performance. To allow a slight performance degradation, the reference clock signal may be used as it is, or a square wave with a changed duty may be used. Alternatively, a staircase waveform intermediate between the reference clock signal (digital signal) and the sine wave signal (analog signal) may be used.
  • the output of the multiplier 143 is integrated (integrated) for a specific period (indicated by CLR) by an integrator (integrator, ⁇ ) 144 at the subsequent stage, and is output by a specific circuit (S / H) circuit 145 for a specific period.
  • Hold signal level at timing (indicated by SMP).
  • CLR is generally output around the carrier phase zero at each carrier cycle, and initializes the value of the integrator 144.
  • the SMP is also output at each carrier cycle, but is output immediately before the output of the CLR, and holds the output of the integrator 144 immediately before being initialized by the CLR.
  • the modulation section of the sample signal is composed of a plurality of carrier cycles, the modulation section may be a break instead of the carrier cycle.
  • the CLR and SMP are generated by, for example, the synchronization detection means 128.
  • the noise component superimposed by the filter 151 is removed by the filter 151 and the analog-to-analog / digital (A / D) converter 152 And quantize.
  • This may be, for example, an 8-bit A / D converter.
  • the sampling clock of the A / D converter 152 is a signal obtained by dividing the PLLCK signal to a frequency of 1 / k by the frequency divider 153, but a frequency four times or more of the double signal is appropriate in view of the demodulation performance. is there. After each time The data stored in the ROM 154 of the stage is output.
  • This ROM data may be output in order, such as data representing the SIN wave in a stepwise manner, a carrier wave or a rectangular wave having a modulation period.
  • the multiplier 155 multiplies the data of the wobbled signal received by the AZD converter 152 and the data output from the ROM 154 by a multiplier 155 to obtain an integrator 156 and a sample-and-hold (S / H) circuit 157 in the same manner as analog; ⁇ . Perform integration and sample hold processing with.
  • These circuits provide the second demodulation means 122 with the second demodulation means 122 if the frequency of the reference peak signal and the frequency division ratio 1 Zk of the PLLCK signal are input in accordance with the carrier cycle or modulation cycle of the cobble.
  • the functions of the first demodulation means 122 and the second demodulation means 123 can be realized by one demodulation means.
  • the ROM data of the PSK modulating section may have a carrier wave shape
  • the ROM data of the FSK + PSK modulating section having a double period of the carrier wave may have a waveform twice as long as that of the carrier wave.
  • FIG. 33 is a timing chart for explaining the operation of the first demodulation means 122 and the second demodulation means 123.
  • FIG. 33 shows a signal relating to the first demodulation unit 122 and a signal relating to the second demodulation unit 123, respectively (this will be described using an example of an analog circuit in FIG. 32A).
  • Figure 33 (a) shows a disk with PSK modulation in the synchronization information part (Poble number # 0) and FSK modulation in the address part (Poble numbers # 6 and 7, here, different from Fig. 27 above).
  • 3 shows a waveform for demodulating the wobble signal from 101 in an analog system.
  • FIG. 33 (b) shows the waveform of the cobble signal
  • FIG. 33 (c) shows the waveform of the f1 signal.
  • the result of the multiplication is integrated by the integrator 144 for each modulation cycle, here for each carrier cycle, and as shown in FIG.
  • the integration result is sampled by the one-sided (SZH) circuit 144 and held until the next sample.
  • the + side of the sample-and-hold output indicates the majority of the carrier wave area, and when it is on the one side, it indicates a position where the phase is different by 180 degrees due to PSK modulation. Since demodulation is performed at the carrier cycle, the demodulation result is output with a delay of one carrier cycle. Therefore, the sample hold output is reproduced from the PSK modulator on one side at the expected #off position at # 0.
  • the CLR signal of the integrator 144 and the SMP signal of the sample-and-hold circuit 144 are indicated by “ ⁇ ” in the sample-hold (S / H) output signal, as shown in Figure 33 (f). Operate with timing.
  • the wobble signal (Wobble H # 0) has a phase inversion section of the synchronization information section, which can be identified by this demodulation method. Therefore, a signal indicating the position of address information based on the obtained synchronization signal, A signal indicating the position of the layer information can be output.
  • the fob signal (wobble number # 6, 7) has an FSK modulation section.
  • data “0” is associated with a carrier having a period of a carrier wave
  • data “1” is associated with a carrier having a period twice as long as the carrier. Therefore, in the dotted line of data “0”, the same signal level (+ side) as the carrier is detected in the sample hold output as the demodulation result. Conversely, the thick solid line of “Data ⁇ 1” can be detected because the sample-and-hold output changes to zero level.
  • the format is PSK modulation or FSK modulation
  • demodulation is possible only with the first demodulation means 122 alone.
  • the second demodulation means 123 if the demodulation results of both demodulation means are the same, it is judged that the demodulation result is correct, and if different, the re-reading is performed, etc. Can be
  • the second demodulation means 123 uses the double period of the carrier as the ⁇ 2 signal, as shown in FIG. 33 (i).
  • the SIN wave to be multiplied is twice as long as the carrier wave.
  • the operations of the multiplier 144, the accumulator 144, and the sample / hold (S / H) circuit 144 are almost the same as those of the first demodulation circuit 122.
  • the demodulation result in the carrier domain is zero.
  • Figure 33 (), Figure 33 (k), and Figure 33 3 1) show the output signal of the multiplier 144, the output signal of the integrator 144, and the sample and hold (S / H) circuit 144.
  • 5 shows an output signal of the first embodiment. Looking at the waveforms of the job signals # 5 and # 6 in Fig. 33 (1), the data "0", that is, the sample-hold output at the dotted line has a zero level equal to the result in the carrier wave domain.
  • the sample-and-hold output at the time of the thick solid line of data “1” is on the + side and changes from zero, so that the modulation section can be detected.
  • the demodulation result of the PS ⁇ modulation section of the synchronization information section in the second demodulation means 123 is also the same zero level as that of the carrier wave area, only the FSK section changes, and the data of the FSK section can be searched. Relatively easy.
  • FIG. 34 is a timing chart for explaining the operation of the first demodulation means 122 and the second demodulation means 123.
  • FIG. 34 shows that 31+? 311 modulation is arranged in the address information section. 34, the description of the same parts as in FIG. 33 is omitted.
  • FIG. 34 except for the endless dress information part, it is the same as FIG. 33.
  • the FSK + PSK modulation of the address information section for example, for a data “0”, a carrier with a double period of a carrier wave (thick solid line), and for a data “1”, a double with a carrier period of a double period has a phase of 180 degrees. Corresponds to the changed (inverted) waveform (dotted line).
  • the demodulation result of the first demodulation means 122 for the pebble numbers # 6 and # 7 is zero irrespective of the data "0" or "1".
  • the demodulation result of the second demodulation means 123 clearly changes to the + side for data “0” and to the one side for data “1”.
  • a high-quality demodulation result can be obtained from the second demodulation unit 123. Note that the relationship between the modulation waveform and the data “0” and “1” described in the description so far is not particularly limited to this.
  • the demodulation result in the carrier wave region is zero, but the crosstalk component also has a large carrier frequency So it is also zero.
  • the demodulation result of the FSK modulation part is hardly affected by a specific frequency having crosstalk.
  • the f2 signal frequency component is large in the crosstalk component, it will be affected by the crosstalk. Therefore, the ratio of the FSK modulation portion should be reduced as much as possible. Therefore, it is desirable that the information to the sample is not only FSK modulation but also other modulation;
  • the modulation section shown in the synchronization information section and the address information section can be demodulated by the circuits exemplified in FIGS. 32A and 32B, but similarly, the PSK modulation and the Information stored by FSK modulation or FSK + PSK modulation can also be demodulated.
  • the circuits shown in FIGS. 32A and 32B use the synchronous detection method, they may be realized by a delay detection method that is well known in the communication field and the like.
  • an optical disc forming apparatus which is an example of a configuration of an information recording medium forming apparatus, is suitable for forming a disc 101 which is an information recording medium having a multi-layered recording layer and capable of recording data for each recording layer. 201 will be described.
  • FIG. 35 is a block diagram showing the electrical connection of the optical disk forming apparatus 201 that forms the tracks 104 of the disk 101.
  • the clock generation circuit 202 sends the rotation information of the disk 101 and the radius information according to the ⁇ g position being accessed to the motor control circuit 215 or the system controller managing this system. (Not shown) Receives power and generates the appropriate reference clock signal to generate the pebble frequency. For example, in order to achieve the pebble format shown in TVpe2 in FIG. 27 (c), two kinds of reference clocks are generated: an f1 signal which is a carrier frequency and an f2 signal which is a half frequency of the carrier.
  • the SI wave generation circuits 203 and 204 Based on the reference cook signal, the SI wave generation circuits 203 and 204 generate SIN wave signals (f1 signal SIN wave and f2 signal SIN wave), respectively. Also, do you have 0 degree and 180 degree phase? When 31 31 modulation or 31 ⁇ +? 31: modulation modulation is generated, signals obtained by inverting the polarity of these SIN waveform signals by the inversion circuits 205 and 206 are also generated.
  • Use PSK modulation (especially called QPSK modulation) that uses four other phases, for example, 0, 90, 180, and 270 degrees: ⁇ uses inverting circuits 205 and 206, and inverts the signal Instead, it may be replaced with a circuit that switches to the required phase (phase switching circuit).
  • the S IN wave generation circuit 203 The symbols generated by 204 and the inversion circuits 205 and 206 (or the phase switching circuit) are selected and output by the subsequent selection circuits 207 to 209, and the synchronization information section and the address information section An appropriate signal is selectively output from these signals at a position where a carrier is to be modulated, such as a layer information section and the like.
  • a selection signal for driving the selection circuits 207 to 209 predetermined first information signal, second information signal, and third information signal are used.
  • the f1 signal SIN wave or its inverted signal (or a signal whose phase is switched) is selectively output by the first information signal
  • the f2 signal SIN wave or its inverse (or its inverse signal) is output by the second information signal.
  • the signal whose phase has been switched) is selectively output, and one of the output signals from the selection circuits 207 and 208 is selectively output by the third information signal.
  • this TVP e 2 shown in FIG. 2 7 (c), the synchronization information part and the layer information part PSK modulation of the transfer wave frequency, Adoresu information unit is a FSK + PSK modulation 1/2 the frequency of the carrier.
  • the first information signal is a signal that selects an inverted signal (or a signal whose phase is switched) of the f1 signal SIN wave in the synchronization information section and the layer information section (different according to data).
  • the information signal is an f2 signal according to data in the address information section, a signal for selecting an inverted signal of the SIN wave (or a signal whose phase is switched), and the third information signal is an f2 processing system in the address information section. (F2 signal SIN wave or its inversion signal (or signal whose phase is switched)) is the signal to select.
  • first to third information signals are generated by the cobble modulation circuit 210.
  • the information of the synchronization information section, the address information section, the layer information section, and the like are preliminarily stored in the dimple modulation circuit 210, and the first to third information is determined for each clock in accordance with the information.
  • the wobbling signal finally selected by the third information signal is output to the laser modulator 211 and the motor control circuit 215.
  • the recording device 214 includes a laser modulator 211, an optical system 212, and a motor control circuit 215.
  • the coupling signal selected by the third information is sent to the laser modulator 211 and the motor control circuit 215, and the optical system 221 having a well-known configuration configured by combining predetermined light ⁇ ⁇ A laser beam L is emitted based on the coupling signal to focus a light spot on the disc 101, and a track 104 is formed on the disc 101.
  • the motor control circuit 2 15 includes a spindle motor serving as a drive source of a rotation drive system 2 13 for rotating the disk 101, and a disk 1 using an optical system 2 1 2.
  • the position of the light spot is changed, the recording layer on which the track 104 is to be formed on the optical disk 101 is appropriately changed, and wobbling occurs in the track 104 to be formed. It is possible to do.
  • the rotation center of the disk 101 may be moved by the rotating drive system 2 13 or the optical system 2 12 may be moved. That is, it is sufficient that the focal point of the laser beam L (laser focal point) is shifted from the center of the track 104 in accordance with the wobble swing width.
  • the light spot of an optical disc forming device that forms an optical disc is smaller than the light spot of an information recording and reproducing device that records and reproduces data on and from an optical disc. (Numerical Aperture) lens.
  • the motor control circuit 215 controls the rotation of the disk 101 and moves the optical system. Then, a signal indicating the rotation of the disk 101 (rotation information) and a signal indicating the overlapped position (enclosed position information) are also output and used as reference signals for the clock generation circuit 202.
  • the clock was generated in accordance with the rotation of the rotary drive system 2 13 [f report (spindle motor rotation M information)] and the radial position information.
  • spindle motor rotation M information the rotation of the spindle motor is constant.
  • the output to the laser modulator 211 can be converted to analog by a digital Z analog (D / A) converter or the like. Note that there is no dependence on the laser beam wavelength of the optical disc forming apparatus 201 or the parameters of the optical system.
  • the optical disc forming apparatus 201 irradiates the light spot to form the coupled track 104 on the disc 101.
  • the disc 101 is a multi-layer information recording medium having a multi-layered recording layer and capable of recording data for each recording layer
  • the position of the light spot is moved to each recording layer.
  • the formation of tracks 104 is possible.
  • coupling of the track 101 is generated.
  • the irradiation position changing device is realized by the motor of the optical system 212 or the rotation drive system 213 for generating the coupling and the motor control circuit 215, and a plurality of signals having different frequencies or having the same frequency and inverted phases.
  • Selection devices that switch based on the information signal and selectively output to the motor control circuit 215 are realized by the selection circuits 207 to 209.
  • FIG. 36 is a flowchart for explaining an information recording medium forming method executed by the optical disc forming apparatus.
  • the fl signal SIN wave, the f2 signal SIN wave, and their inverted wave are generated as described above (step S1), and this signal is converted into the first to third information signals.
  • the switching is performed by the selection circuits 207 to 209 to selectively output (step S2), and based on the output signal, the irradiation position of the light spot on the rotating disk 101 is changed to form the coupling of the track 104. (Step S3).
  • f1 signal SIN wave and f2 signal SIN wave are generated, and the third information signal is used as a multilayer information recording medium.
  • the layer information indicating the recording layer of the disc 101 the first layer or the second layer; ⁇ , etc.
  • the disc 101 in which the layer information portion is represented by the FSK modulation table can be created accurately.
  • it generates the f 2 signal S IN wave, its inverted signal, and the f 1 signal S IN wave, selectively outputs the former two as layer information as the second information signal, and outputs the output signal and the f 1 signal.
  • the layer information is represented by 3+? 51: modulation wobbles, and the other carrier portions are constant frequency wobbles. Can be accurately created.
  • f1 signal SIN wave, its inverted signal, and f2 signal SIN wave are generated. Is selectively output using the layer information as the first information signal, and the output signal and the f2 signal SIN wave are used as the third information signal by using the address information.
  • the address information is represented by a PSK modulation table, and a disc 101 having a constant frequency table can be accurately created for the other carrier parts.
  • the f1 signal SIN wave, its inverted signal, the f2 signal SIN wave, and its inverted signal are generated, the former two are selectively output using the layer information as the first information signal, and the latter two are output. Is output using the address information as the second information signal, and if these selected signals are position information indicating the number of the fobble for storing the address information, the layer information is represented by a modulation fobble, and the address information is represented by FSK. + The PSK modulation table is represented, and the other carrier portions can be accurately formed on the disc 101 having a constant frequency sample.
  • the disc 101 which is a multi-layer recording medium formed in this way and having a multi-layered recording layer and capable of recording data by irradiating light to each recording layer, has a record on which information is modulated on tracks 104. Is done. Then, layer information indicating the recording layer is recorded as FSK modulation information, PSK modulation information, or FSK + PSK modulation information in this page. Further, when the layer information is FSK + PSK modulation information, address information can be further recorded in the record as PSK modulation information. Further, while the layer information is the PSK modulation information, the address information can be further recorded as FSK + PSK modulation information in the table.
  • FIG. 37 is a block diagram of the electrical connection of the optical disc device of the second embodiment.
  • the optical disc device 301 includes a pickup 302 equipped with a predetermined optical system, which will be described later, and a plurality of motors such as a seek motor for moving the pickup 302 and a spindle motor 300 for rotating the disc 101 (only the spindle motor 300 is shown). It is composed of a mechanical system including loading (not shown) for setting the disc 101, various electric systems, and the like.
  • the pickup 302 has a laser generator 311 and an output of the laser generator 311.
  • Various known optical components 3 12 for guiding the laser light L to each element, an objective lens 3 13 for condensing the light spot of the laser light L on the disc 101, and a light spot at a desired position
  • An actuator 314 for controlling the position of the objective lens 313 to be followed, and a split photodetector (PD) 111 for receiving the laser beam (reflected light) reflected by the disk 101 as described above.
  • PD photodetector
  • I / V conversion circuit 316 for performing I / V conversion on the output signal of the PD 111.
  • the above-mentioned electric system has the following configuration. That is, at the time of recording on the disc 101, the system controller 321 receives recording information from the device, and encodes, modulates, etc. the information to be recorded on the disc 101 by the encoder 322. Perform the conversion.
  • the laser driving means 3 23 determines the appropriate laser emission timing and intensity for recording on the disc 101 from the information sequence, and causes the laser generator 311 to emit laser light.
  • the laser driving means 3 23 causes the laser generator 3 11 to emit light stably at the intensity for reproduction.
  • the reflected signal from the disk 101 is photoelectrically converted by Dili, and the output is converted to a signal that can be easily operated by the IZV conversion circuit 316.
  • the PD 111 and the IZV conversion circuit 316 may be integrated.
  • signal operations such as a wobble signal, an RF signal, and a servo signal are performed by the well-known configuration of the wobble signal detection means 3 2 4, 1 signal 3 25, and servo signal detection means 3 26, respectively. Detection of signals and the like is described above).
  • various signal operations may be performed in the state of the output (current) of the PD 111 and then converted to the mi £ signal.
  • the detection of the pebble signal is described independently, it may be generated from the internal signal of the servo signal detection means 326.
  • the detected wobble signal is input to the demodulated signal processing means 327.
  • the demodulation signal processing means 3 27 includes the information detection device 16 1 described above with reference to FIGS. 28 and 29, and detects synchronization signal address information, clock signals, layer information, and the like. You. These address information and layer information are used by the system controller 32 1 and the encoder 3 22 for the process of acquiring the current position on the disk 101.
  • the clock signal is also used by the encoder 322 and the DSP 328 and serves as a reference signal.
  • the servo signal is subjected to various calculations by the servo signal detecting means 326, and the DSP 328 calculates the error between the position of the laser light spot and the target position.
  • the amount of movement of the pickup 302 actuator is calculated, and the seek motor actuator for following the light spot to a desired position is operated. Accordingly, even when the recording layer of the disc 101 is a multilayer recording medium having a multilayer structure, the light spot can follow each recording layer.
  • the number of rotations of the disk 101 is detected based on the clock signal detected from the wobble signal, and is compared with the target speed. Control.
  • the RF signal which is a high-frequency signal component
  • the RF detecting means 3 25 is extracted and binarized by the RF detecting means 3 25 using a filter.
  • Various demodulation and decoding are performed by a decoder based on this RF signal, and converted to playback information.
  • the RF detection means 325 or the decoder 330 may include a PLL circuit that extracts a clock component from the RF signal and uses this clock as a reference signal for a reproduction system.
  • the playback information is made external through the system controller 32 1.
  • the optical disk device 301 does not depend on the wavelength of the laser light or the parameters of the optical system.
  • the laser beam is also applied to the disc 101, which is a multi-layer information recording medium having a multi-layered recording layer and capable of recording data for each recording layer. Recording and reproduction of information on the recording layer.
  • the disc 101 is also irradiated with laser light by the above-described optical system provided for the pickup 302, and formed on the tracks 104 of the disc 101 from the reflected light.
  • the wobble signal can be detected by the wobble signal detection means 3 2 4 from the wobble that is present. Since the demodulation signal processing means 3 27 is provided with the information detection device 16 1, it is possible to detect the synchronization signal, the address information signal, and the layer information signal as described above. These 1 symbols are output to the system controller 321, the encoder 322, and the DSP 328. Based on these signals, when recording / reproducing to / from the disc 101, Control is performed.
  • FIG. 38 is a flowchart for explaining an information detection method executed by the optical disc device.
  • the information detecting device 161 reads the information recorded in the disk 101 from the disk 101 in which the information modulated information is formed on the track 104. Specifically, as shown in FIG. 38, the clock generation means 121 generates a reference clock signal from the cobbled signal (step S11), and the first and second demodulation means 122 and 123 generate the reference clock signal. The FSK modulation information, the PSK modulation information, or the FSK + PSK modulation information is detected from the sample signal based on the pop signal (step S12), and the layer information detecting means 126 determines that the recording layer of the disk 101 has a multilayer structure.
  • the detection information from the cobbled signal is held by the layer information detection means 126.
  • the detection information from the cobbled signal is held by the layer information detection means 126.
  • FSK + PSK modulation information is detected; in ⁇ , PSK modulation information is also detected from the wobble signal based on the reference clock signal, and the address information position output by the synchronization detection means 124 is determined.
  • the address information detection means 125 can also hold the output of the PSK modulation information in the address information detection means 125 to detect the address information (step S13).
  • PSK modulation information is detected: ⁇
  • the FSK + PSK modulation information is also detected from the wobble signal based on the reference clock signal
  • the address information position output by the synchronization detection means 124 In response to the timing signal indicating the above, the address information can be detected by holding the output of the FSK + PSK modulation information in the complete address information detecting means 125 (step S13).
  • the layer information is stored in the disk 101 by FSK modulation, PSK modulation, or FSK + PSK modulation that is strong against crosstalk, and this is detected by the information detection device 161 of the optical disk device 301, and is being accessed by the optical disk device 301. Since the recording layer can be determined quickly and accurately, information can be recorded and reproduced appropriately. Also, layer information is modulated by 33 ⁇ 4: +? 3, address information is modulated by PSK, or layer information is modulated by PSK, and address information is modulated by FSK + PSK to form a disc 101. If the information is detected by the information detecting device 301, a modulation method suitable for the characteristics of the layer information and the address information can be applied to the disc 101, and this can be detected efficiently and accurately.
  • the disk of this embodiment does not depend on the wavelength of the laser beam or the parameters of the optical system of the disk forming apparatus or the information recording / reproducing apparatus.
  • tracks are wobbling, and the wobbling is formed by separating the carrier into a carrier part based on a waveform of a fixed frequency and an FSK modulation part based on a waveform obtained by FSK-modulating layer information. Therefore, the layer information signal can be detected without being affected by the crosstalk, and the layer information with high ml property can be detected.
  • the modulation section is separated from the frequency band of the recording information at a low frequency, so that the leakage component of the recording information can be easily removed. Therefore, when a modulator frequency lower than the carrier is used, the carrier period required for unit information can be minimized, and the adverse effect on clock generation can be suppressed.
  • the length of the unit information recorded by the above FSK modulation is set to two carrier waves, the leakage component of the recorded information can be easily removed, and the unit information is necessary when using a lower modulation frequency than the carrier wave.
  • the effect of suppressing the adverse effect on croak generation at a frequency that minimizes the short carrier period can be obtained as much as possible.
  • the frequency used for the FSK modulation is twice the frequency of the carrier, it is the lowest frequency at which the phase of the FSK modulator becomes zero in one cycle of the carrier, even if the frequency of the modulator is higher than that of the carrier. Can be relatively easily separated.
  • the carrier period required for unit information can be shortened, and the adverse effect on clock generation can be suppressed.
  • the separation from the recorded information can be more easily performed.
  • the FSK modulator is disposed between the carrier waves, the disturbance of the modulator occurs when the clock generation is completely stable. I can do it.
  • the track is wobbling, and the wobbling is divided into a carrier part based on a constant frequency waveform and an FSK + PSK modulation part based on a PSK-modulated waveform with a different period from the carrier part of the layer information. If this is the case, it is possible to obtain a layer information signal that is resistant to crosstalk and has high signal quality, and can perform highly reliable layer information detection.
  • the tone portion is at a low frequency and separated from the frequency band of the recorded information, it is easy to remove the leakage component of the recorded information.
  • the carrier period required for the unit information can be minimized, and the adverse effect on the clock generation can be suppressed.
  • the length of the unit information recorded by the FSK + PSK modulation is set to two periods of the carrier wave, it becomes easier to remove the leak component of the recorded information.
  • the frequency used for the FSK + PSK modulation is twice the frequency of the carrier, the frequency of the FSK modulator in one cycle of the carrier is the lowest frequency that is zero in the S-phase, if the frequency of the modulator is higher than that of the carrier. Separation from recorded information can be relatively easily performed. Also, since a frequency higher than the carrier is used, the carrier period required for the unit information can be shortened, and the adverse effect on the clock generation can be suppressed.
  • the length of the unit information recorded by the FSK + PSK modulation is set to one period of the carrier wave, it becomes easier to remove the leakage component of the recorded information. Furthermore, if the FSK + PSK modulation section is placed between carrier waves, disturbance will occur in the modulation section in a state where clock generation is completely stable. Therefore, stable clock generation can be performed.
  • tracks are wobbling, and the wobbling is performed by a carrier part based on a waveform of a constant frequency, and FSK + based on a PSK-modulated waveform at a period different from that of the carrier part of the first information.
  • a dedicated detection system can be constructed for each of the first and second information, and the information can be separated. Can be easily performed. Also, is it strong against crosstalk and high in demodulation quality? 3+? 31 ⁇ modulation and high-level PSK modulation that is weak to crosstalk but have high demodulation quality can be used according to characteristics such as the required reliability of information.
  • the first information is address information
  • the second information is layer information indicating the recording layer number
  • a dedicated detection system can be constructed for both information, and the information can be separated. Can be performed easily.
  • the address information to avoid continuous read failures can be detected stably irrespective of the crosstalk situation of the carrier component. Is secured.
  • layer information that does not require continuous I "generation can be detected by the PSK method, which basically has high demodulation performance, without increasing the number of FSK + PSK modulation units.
  • the modulation section is separated from the frequency band of the recording information at a low frequency, so that it is easy to remove the leakage component of the recording information. is there.
  • the carrier period required for unit information can be minimized, and the adverse effect on clock generation can be suppressed.
  • the length of the unit information recorded by the FSK + PSK modulation is set to two periods of the carrier wave, it becomes easier to remove the leakage component of the recorded information. Furthermore, if the frequency used for the FSK + PSK modulation is twice that of the carrier, the lowest frequency at which the FSK + PSK modulator has a phase of zero in one cycle of the carrier can be used, even if a higher modulation frequency is used than the carrier. Frequency, and can be relatively easily separated from recorded information. In addition, since a higher frequency than the carrier is used, the carrier period required for unit information can be shortened, and the adverse effect on clock generation can be suppressed.
  • the separation from the recorded information can be more easily performed.
  • the layer information that can be re-read has the advantage that the reliability is not so high. And the adverse effect on clock generation is kept low.
  • the PSK modulator is placed between carrier waves, disturbance of the modulator occurs when clock generation is completely stable, so that a large clock failure does not occur and stable clock generation can be achieved. I can do it.
  • the track is wobbling, and the above-mentioned wobbling includes a carrier portion based on a waveform of a fixed frequency, an FSK + PSK modulation portion based on a PSK-modulated waveform having a different period from the carrier portion of the address information, and layer information.
  • the above-described advantages can be obtained. Address information section and layer information section without increasing the FSK + PSK modulation section
  • the synchronization signal for determining the position can be easily detected.
  • the track is wobbling, and the above-mentioned wobbling includes a carrier part based on a waveform of a constant frequency, an FSK + PSK modulation part based on a PSK-modulated waveform with a different period from the carrier part of the address information, and layer information. It has the same merits as described above, since it is formed by separating it from the PSK-modulated part based on the PSK-modulated waveform, and the periodic synchronization information is formed by the pits. In addition, since a dedicated detection system can be used for the synchronization signal, the signal can be easily separated.
  • the relationship between the address information and the location is made common to each layer, even if the number of publishing houses becomes large, the information stored in the wobbles can be efficiently used without increasing the amount of address information. Further, the correlation between the target address and the radial position at the time of seek is the same in any layer, and the calculation can be simplified.
  • the layer information with the read-only disc 5 interchangeability can be obtained.
  • tracks are wobbling, and the wobbling is constant in a FSK modulation portion based on a waveform obtained by FSK-modulating the first information and a PSK modulation portion based on a waveform obtained by PSK-modulating the second information. Since it is formed separately from the carrier portion based on the frequency waveform, a dedicated detection system can be constructed for each of the first and second information, and the information can be easily separated.
  • FSK modulation which is strong in crosstalk but has slightly lower demodulation quality
  • PSK modulation which is weak in crosstalk but has high demodulation quality
  • the first information is used as address information and the second information is used as layer information indicating the number of layers
  • a dedicated detection system can be constructed for both information, and the separation of information is easy. Easy to do. Therefore, address information requiring certainty can be stably detected regardless of the crosstalk state of the carrier component. Then, without increasing the number of FSK modulation sections, layer information having a small amount of information and capable of re-reading can be detected by PSK capable of ensuring high-level demodulation performance.
  • the modulating section is separated from the frequency band of the recording information at a low frequency, so that the leakage component of the recording information can be easily removed.
  • good continuity with the carrier at the boundary of the modulation section Since the components can be suppressed, the required band of the detection circuit can be reduced.
  • the frequency of the modulation section is lower than that of the carrier wave, the carrier wave period required for unit information can be minimized, and the adverse effect on the clock generation can be suppressed. And, in addition to the above, you can enjoy the advantage of FSK modulation, which is strong against crosstalk.
  • the length of the unit information recorded by the FSK modulation is set to two periods of the carrier wave, it is easier to remove the leak component of the recorded information.
  • the frequency used for the FSK modulation is twice the frequency of the carrier, the continuity with the carrier at the boundary of the modulator can be improved and the high-frequency component can be suppressed, so that the required band of the detection circuit can be reduced.
  • the frequency is the lowest which ensures the continuity 14 at the boundary of the carrier wave, and can be relatively easily separated from the record information.
  • the carrier period required for unit information can be shortened, and the adverse effect on clock generation can be suppressed.
  • the separation from the recorded information can be more easily performed.
  • the layer information that can be re-read does not require such a high reliability. And the adverse effect on clock generation is kept low. Furthermore, if the PSK modulation section is placed between carrier waves, disturbance of the modulation section occurs when clock generation is completely stable, so that a large clock failure does not occur and stable clock generation can be achieved. I can do it.
  • the track is wobbling, and the wobbling is based on a FSK modulation portion based on a waveform obtained by FSK-modulating address information, a first PSK modulation portion based on a waveform obtained by PSK-modulating layer information, and a waveform of a constant frequency. Since it is formed by separating the carrier part and the second PSK modulation part based on the waveform obtained by performing the PSK modulation on the periodic synchronization information, the above advantages can be enjoyed and the address can be increased without increasing the number of FSK modulation parts. Synchronous signals that determine the position of the information section and layer information section can be easily detected.
  • the truck is wobbling, and the above-mentioned
  • the FSK modulation part based on the FSK-modulated waveform, the PS ⁇ modulation part based on the PSK-modulated waveform of the layer information, and the carrier part based on the constant-frequency waveform are formed separately. Forming with pits has the same advantages as above.
  • a dedicated detection system can be used for the synchronization signal, so that the signal can be easily separated.
  • the relationship between the address information and the location is common to each layer, even if the number of recording layers is large, the information stored in the wobbles can be efficiently used without increasing the amount of address information. Further, the correlation between the target address and the position at the seek is the same in any layer, and the calculation can be simplified.
  • layer information is included in the recording information of the recording dragon area, layer information compatibility with a read-only disc can be obtained.
  • the recording medium and optical disk according to the present embodiment are write-once optical disks such as a CD-R disk, a DVD-R disk, a DVD + R disk, a CD-RW disk, a CD + RW disk, a DVD-RW disk, and a DVD + RW disk. It can also be applied to recording media such as rewritable optical disks and magneto-optical disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

情報記録媒体は、情報記録が可能な複数の記録層を有し、前記複数の記録層の夫々にスパイラル状又は同心円状のトラックが形成される。各トラックの少なくとも一部は、そのトラックが形成されている記録層を判別するための層情報を含むウォブル信号に対応して夫々蛇行している。

Description

明細書 情報記録媒体、 記^!判別方法、 記録層判別装置、 光ディスク装置、 情報記録媒 体形成装置、 情報記録媒体形成方法、 情報検出方法、 情報検出装置及び情報記録 媒体装置 技術分野
本発明は情報記録媒体、 記録層判別方法、 記録層判別装置及び光ディスク装置 に関し、 特に複数の記録層を有する情報記録媒体、 このような情報記録媒体にお レヽてアクセス対象となっている記録層を判別する記^ i判別方法及び記録層判別 装置、 及びこのような記^ i判別装置を備えた光ディスク装置に関する。
又、本発明は、情報記録媒体形成装置、情報記録媒体形成方法、情報検出方法、 情報検出装置及び情報記録媒体装置にも関する。
背景技術
近年、 デジタル技術の進歩及びデータ圧縮技術の向上に伴い、 音楽、 映画、 写 真及びコンピュータソフト等の情報 (以下 「コンテンツ」 とも言う) を記録する ための媒体として、 CD (Compact Disc)や、 CDの約 7倍相当のデータを CD と同じ直径のディスクに記録可能とした D V D (Digital Versatile Disc) 等の光 ディスクが注目されるようになり、 その低価 匕と共に、 光ディスクを情報記録 の対象媒体とする光ディスク装置が普及するようになった。
光ディスク装置は、 スパイラル状又は同心円状のトラックが形成された光ディ スクの記^!にレーザ光を照射して情報の記録又は消去を行レヽ、 記録層からの反 射光 (戻り光束) に基づいて情報の再生等を行っている。 そこで、 光ディスク装 置は、 レーザ光を出 ると共に、 戻り光束を受光する光ピックアップ装置を備 えている。
一般的に、 光ピックアップ装置は、 対物レンズを含み、 光源から出射されるレ 一ザ光を記録層に導くと共に、 戻り光束を所定の受光位置まで導く光学系と、 前 記受光位置に配置された光検出器等を備えている。 この光検出器からは、 記録層 に記録されているデータの再生情報だけでなく、 対物レンズの位置制御に必要な 情報 (サーポ情報) 等を含む信号が出力される。
ところで、 コンテンツの情報量は、 年々増加する傾向にあり、 光ディスクにお ける記録容量の更なる増加が期待されている。 そして、 光ディスクの記^^量を 増加させる手段の一つとして、 複数の記録層を有する情報記録媒体及びこのよう な情報記録媒体をアクセス対象とする装置の開発が盛んに行われている。例えば、 特開 2001— 52342号公報、 特開 2002— 74679号公報、 特開 20 03-91874号公報、 特開平 8— 147762号公報、 特開平 11— 965 68号公報及び特開 2002— 334448号公報には、 このような情報記録媒 体及びこのような情報記録媒体をアクセス とする装置が提案されている。 複数の記録層を有する情報記録媒体では、 光スポットが目標位置に正確に形成 されるように対物レンズの位置を制御するには、 複数の記録層のうち、 光スポッ トが形成されている記^ ϋを正確に判別する必要がある。 又、 アクセス速度の高 速化に伴い、 対物レンズの位置制御を迅速に行なう必要がある。 しかしながら、 上記特開 2001— 52342号公報、 特開 2Q02— 74679号公報、 特開 2003-91874号公報、 特開平 8 -147762号公報、 特開平 11—9 6568号公報及び特開 2002— 334448号公報に開示されている情報記 録媒体及び装置では、 光スポットが形成されている記 の判別に時間を要する 場合があり、 アクセス時間が長くなる恐れがあつた。 発明の開示
本発明は、 上記の問題を解決した新規、 且つ、 有用な情報記録媒体、 記録層判 別方法、記 Ui判別装置及び光ディスク装置を搬することを概括的目的とする。 本発明の第 1の目的は、 記録層を判別するための情報を迅速に精度良く取得す ることができる情報記録媒体を «することにある。
又、 本発明の第 2の目的は、 複数の記^!を有する情報記録媒体において、 光 スポットが形成されている記録層を迅速に精度良く判別することができる記録層 判別方法及び記録層判別装置を ^することにある。
又、 本発明の第 3の目的は、 複数の記録層を有する情報記録媒体に対するァク セスを迅速に行うことができる光ディスク装置を提供することにある。 本発明のより具体的な目的は、 情報記録が可能な複数の記^ iを有し、 觸己複 数の記録層の夫々にスパイラル状又は同心円状のトラックが形成され、 各トラッ クの少なくとも一部は、 そのトラックが形成されている記録層を判別するための 層情報を含むゥォブル信号に対応して夫々蛇行していることを特徴とする情報記 録媒体を »することにある。 本発明になる情報記録媒体によれば、 情報記録媒 体をアクセスする際に、 蛇行部からの反射光に基づ ヽてゥォブル信号を検出し、 ゥォブル信号から層情報を抽出することにより、 光スポットが形成されている記 録層を判別することが可能となる。 即ち、 記録層を判別するための情報を迅速に 精度良く取得することができる。
この:^において、 fna各トラックの少なくとも一部は、 ttiiB層情報が含まれ ている層情報部分が所定の変調 で変調されている編己ゥォブル信号に対応し て夫々蛇行していることとすることができる。
この:^におレ、て、 tut己各トラックの少なくとも一部は、 基準クロック生成用 の搬送波部分を更に含む tWBゥォプル信号に対応して夫々蛇行していることとす ることができる。
この齢にぉレヽて、 IfifB層情報部分は 2つの爾己搬送波部分に挟まれた位置に 配置されていることとすることができる。
上記情報記録媒体において、 編己各トラックには、 所定の同期情報が所定の同 期周期で夫々記録されていることとすることができる。
この において、 嫌己各トラックの少なくとも一部は、 歸己層情報部分が前 記同期周期の整数倍の周期で配置されている前記ゥォブル信号に対応して夫々蛇 行していることとすることができる。
上記情報記録媒体において、 嫌己層情報と tfilB同期情報とは、 漏己トラックに 記録されている形態が互いに異なることとすることができる。
この齢において、 嫌己同期情報は、 ピット形成によって廳己トラックに記録 されていることとすることができる。
上記情報記録媒体において、 ΙίίΙΞ各トラックの少なくとも一部は、 籠己層情報 部分とは異なる変調方式で変調された |&|己同期情報を更に含む編己ゥォブル信号 に対応して夫々蛇行していることとすることができる。 上記情報記録媒体において、 歸己各トラックの少なくとも一部は、 難層情報 部分と同じ変調^で変調された應己同期情報を更に含む t&ISゥォブル信号に対 応して夫々蛇行していることとすることができる。
この ¾ ^において、 廳己層情報部分及び tfif己同期情報部分は、 互いに異なる信 号波形を有することとすることができる。
上記情報記録媒体において、 ffns変調方式は位相変調方式であることとするこ とができる。
この において、 IfJl己搬送波部分から生成される基準クロックの 1周期を 1 ゥォブルとしたときに、 lift己同期周期は 9 3ゥォブルであり、 Itjf己同期情報部分 の先頭を 0ゥォブル目とすると、 Ιίίΐ己層情報部分は 1 2ゥォブノレ目と 8 8ゥォブ ル目との間に配置されていることとすることができる。
上記情報記録媒体にお 、て、 嫌己各トラックの少なくとも一部は、 ァドレス情 報を更に含む編己ゥォブル信号に対応して夫々蛇行して ヽることとすることがで さる。
本発明のより具体的な他の目的は、 上記情報記録媒体をアクセスする際に、 光 スポットが形成されている記録層を判別する記録層判別方法であって、 嫌己情報 記録媒体からの反射光に基づ!/ヽて検出されたゥォブル信号から藤己層情報を取得 する第 1工程と; tins層情報に基づいて光スポットが形成されている記 を判 別する第 2工程とを含むことを特徴とする記録層判別方法を徵することにある。 本発明になる記顯判別方法によれば、 ゥォブル信号のみから層情報が取得され るため、 従来よりも短時間で精度良く層情報を取得することが可能となる。 従つ て、 結果として、 複数の記録層を有する情報記録媒体において、 光スポットが形 成されている記録層を迅速に精度良く判別することができる。
本発明の他の目的は、 情報記録媒体をアクセスする際に、 光スポットが形成さ れている記^ ϋを判別する記録層判別方法であって、 ΙϋΙΒ情報記録媒体からの反 射光に基づレ、て検出されたゥォブル信号から tfria層情報及び編己ァドレス情報を 取得する第 1工程と;鍵己層情報及ぴァドレス情報に基づいて ΙίίΙΒ光スポットが 形成されている記録層を判別する第 2工程とを含むことを糊敷とする記録層判別 方法を^することにある。 本発明になる記録層判別方法によれば、 ゥオプノレ信 号のみから層情報及ぴァドレス情報が取得され、 層情報とアドレス情報とから記 録層を判別しているため、 従来よりも短時間で精度良く判別することができる。 従って、 複数の記録層を有する情報記録媒体において、 光スポットが形成されて レ、る記^ iを迅速に精度良く判別することができる。
本発明の更に他の目的は、 上記情報記録媒体をアクセスする際に、 光スポット が形成されてレヽる記録層を判別する記録層判別装置であって、 編己情報記録媒体 カ^の反射光に基づいて検出されたゥォブル信号を復調する復調手段と;嫌己復 調されたゥォブル信号から前記層情報を検出する層情報検出手段とを備えたこと を mとする記録層判別装置を^^することにある。本発明になる記録層判別装 置によれば、 ゥォプル信号のみから層情報が取得されるため、 従来よりも短時間 で精度良く層情報を取得することができる。 従って、 結果として、 複数の記録層 を有する情報記録媒体において、 光スポットが形成されている記録層を迅速に精 度良く判別することが可能となる。
本発明の他の目的は、 上記情報記録媒体をアクセスする際に、 光スポットが形 成されている記録層を判別する記 判別装置であって、 ΙΐίϊΕ情報記録媒体から の反射光に基づいて検出されたゥォブル信号を復調する復調手段と; HUE復調さ れたゥォブル信号から ΙΐίΙΕ層情報を検出する層情報検出手段と;編己復調された ゥォブル信号から tiilBァドレス情報を検出するァドレス情報検出手段と;編己層 情報と前記ァドレス情報とに基づいて fit己光スポットが形成されている記^!を 判別する判別手段とを備えたことを特徴とする記録層判別装置を^^することに ある。 本発明になる記^ ϋ判別装置によれば、 ゥォブル信号のみから層情報及び ァドレス情報が取得され、 層情報とアドレス情報とから記録層を判別しているた め、 従来よりも短時間で精度良く判別することができる。 従って、 複数の記録層 を有する情報記録媒体において、 光スポットが形成されている記録層を短時間で 精度良く判別することができる。
上記記録層判別装置において、 觸己復調手段は、 歯己ゥォブル信号から基準ク ロックを生成するクロック生成回路と; ΙΐίΐΒ基準クロックに基づ!/ヽて鍵己ゥォブ ル信号を復調する復調回路とを備え、 編己層情報検出手段は、 Ι&ΙΒ同時情報を検 出する同期情報検出回路と ; till己同時情報を起点とする基準クロック数を計 irT るカウンタと、 廳己カゥンタの値に基づ ヽて ΙΐίΙ己層情報を検出する層情報検出回 路とを備えることとすることができる。
本発明の更に他の目的は、 情報記録媒体に対して、 情報の記録、 再生及び消去 のうち少なくとも再生を行なう光ディスク装置であって、 複数の記 ®iのうちの V、ずれかの記録層に対物レンズを介して光スポットを形成し、 該トラックからの 反射光を受光する光ピックアップ装置と; t&t己光ピックアップ装置の出力信号か ら検出されるゥォプル信号に基づレヽて ΙίίΙ己光スポットが形成された記録層を判別 する上記記録層判別装置と; ΙΐίΐΒ光ピックアップ装置の出力信号及び編己記録層 判別装置の出力信号に基づいて前記対物レンズの位置制御を行なうサーボ制御装 置と; ilE光ピックアップ装置を介して、 データの記録、 再生及び消去のうち少 なくとも再生を行なう処3¾置とを備えたことを特徴とする光ディスク装置を提 供することにある。 本発明になる光ディスク装置によれば、 上記記^!判別装置 により、 光スポットが形成されている記^!を短時間で精度良く判別することが できるため、 サーポ制御装置により対物レンズの位置制御を迅速に、 且つ、 正確 に行なうことが可能となる。 従って、 結果として、 複数の記録層を有する情報記 録媒体に対する情報の記録、 再生、 及び消去のうち少なくとも再生を含むァクセ スを迅速に行うことができる。
更に、 本発明の概括的目的は、 上記の如き情報記録媒体に好適な情報記録媒体 形成装置、 情報記録某体形成方法、 情報検出方法、 情報検出装置及び情報記録媒 体装置を^^することにもある。
本発明の更に他の目的及び特長は、 以下図面と共に述べる説明より明らかとな ろう。 図面の簡単な説明
図 1は、本発明の第 1実施例における光ディスク装置の構成を示すプロック図、 図 2 A及び図 2 Bは、 夫々図 1における光ディスクの記録層を説明するための 図、
図 3は、 図 2の光ディスクにおけるゥォブル信号の情報フレームのフォーマツ トを説明するための図、 図 4は、 図 3の情報フレーム及ぴ情報フレームにおける各部のゥォプル数を説 明するための図、
図 5 A及び図 5 Bは、 夫々層情報部の信号波形を説明するための波形図、 図 6 A及び図 6 Bは、夫々ァドレス情報部の信号波形を説明するための波形図、 図 7 A及び図 7 Bは、 夫々同期情報部の信号波形を説明するための波形図、 図 8は、 ァドレス情報部のデータビットを説明するための図、
図 9は、 図 1における光ピックアップ装置の構成を説明するための図、 図 1 0は、 図 9における戻り光束用の受光器を説明するための図、 .
図 1 .1は、図 1における再生信号処理回路の構成を説明する めのプロック図、 図 1 2は、 図 1 1におけるゥォブル信号解析回路の構成を説明するためのプロ ック図、
図 1 3は、ゥォブル信号角 斤回路の作用を説明するためのタイミングチヤ一ト、 図 1 4は、 ホストからの記録要求コマンドに応じて行なわれる光ディスク装置 における記録処理を説明するためのフローチヤ一ト、
図 1 5は、 ホストからの再生要求コマンドに応じて行なわれる光ディスク装置 における再生処理を説明するためのフローチヤ一ト、
図 1 6は、 ゥォプル信号における変調方式を説明するための波形図、 図 1 7は、 図 3のフォーマツトの変形例を説明するための図、
図 1 8は、 図 1 1におけるゥォブル信号解析回路の変形例を説明するためのブ ロック図、
図 1 9 A及ぴ図 1 9 Bは、 夫々同期情報がピット形成によって記録されている 光ディスクを説明するための図、
図 2 0は、 図 1 9 A又は図 1 9 Bの光ディスクに対応したゥォブル信号解析回 路の構成を説明するためのプロック図、
図 2 1は、 本発明の第 2実施例力«;できる情報記録が可能な光ディスクの構 成の説明図、
図 2 2 A〜図 2 2 Cは、 記録可能な光ディスクの構成の説明図、
図 2 3は、 光ディスクの記録情報から各種信号を検出する受光素子及び信号処 理回路の説明図、 図 2 4は、 一般的なゥォブル変調方式のゥォブル信号の波形例を示す説明図、 図 2 5 A〜 2 5 Cは、 ゥォブルの変調により位置情報を記録する のフォー マツト全体像の例を示す説明図、
図 2 6は、 ゥォブル波形に P S K、 F S K、 F S K + P S Kの各変調を用いた 場合の具体的なゥォブル波形の説明図、
図 2 7は、 図 2 6のゥォブ /レ波形をフォーマツトの全体像に当てはめて図示し た説明図、
図 2 8は、 信号検出装置の一構成例の説明図、
図 2 9は、 信号検出装置の別の構成例の説明図、
図 3 0は、 クロック生成手段の具体的な回路構成例のブロック図、
図 3 1は、 ゥォブル信号のフィルタ出力が変調部で信号が乱れる様子を説明す る図、
図 3 2 A及び図 3 2 Bは、 第 1及び第 2の変調手段の具体的な回路構成例のブ ロック図、
図 3 3は、 第 2実施例のディスクについて F S K変調によるゥォブル信号を復 調した場合の各信号のタイミングチヤ一ト、
図 3 4は、 第 2実施例のディスクについて F S K+ P S K変調によるゥォブル 信号を復調した場合の各信号のタィミングチヤ一ト、
図 3 5は、 第 2実施例の光ディスク形成装置の電気的な接続のプロック図、 図 3 6は、 光ディスク形成装置が実行する情報記録媒体形成方法を説明するフ ローチャート、
図 3 7は、 第 2実施例の光ディスク装置の電気的な接続のプロック図、 図 3 8は、 光ディスク装置が実行する情報検出方法を説明するフローチャート である。 発明を実施するための最良の形態
以下、 本発明の各実施例を、 図面と共に説明する。
[第 1実施例]
先ず、 本発明になる情報記録媒体、 記録層判別方法、 記麵判別装置及び光デ イスク装置の一実施例を図 1〜図 1 5に基づいて説明する。 図 1には、 本発明の 一実施例における光ディスク装置 2 0の概略構成が示されて 、る。
この図 1に示される光ディスク装置 2 0は、 本実施例における情報記録媒体と しての光ディスク 1 5を回転駆動するためのスピンドルモータ 2 2、 光ピックァ ップ装置 2 3、 レーザコントロール回路 2 4、 エンコーダ 2 5、 モータドライバ 2 7、 再生信号処理回路 2 8、 サーボコントローラ 3 3、 バッファ RAM3 4、 ノ ッファマネージャ 3 7、 インターフェース 3 8、 フラッシュメモリ 3 9、 C P U 4 0、 及び RAM4 1等を備えている。 尚、 図 1における接続線は、 代表的な 信^ H青報の流れを示すものであり、 各プロックの接続関係の全てを表すもので はない。
光ディスク 1 5には、 一例として図 2 A及び図 2 Bに示されるように、 情報記 録可能な 2つの記 (M l , M 2) があり、 各記録層には同心円状又はスパイ ラル状のグループ (溝) Gとランド Lとからなるトラックが夫々形成されている。 各トラックの少なくとも一部は同期情報、 ァドレス情報及び層情報を含むゥォブ ル信号に対応して夫々蛇行 (ゥォブル) している。
上記同期情報は上記アドレス情報及び層情報の記録位置を検出するための情報 である。 上記ァドレス情報はトラックの物理ァドレスに関する情報である。 上記 層情報はそのトラックが記録層 M lのトラックである力 己録層 M 2のトラックで あるかを区別するための情報である。 尚、 光ディスク 1 5は、 本実施例では一例 として、 約 6 6 0 nmの波長のレーザ光に対応するものとする。
本実施例では、 ゥォプル信号は、 一例として図 3に示されるように、 同期情報 が含まれている同期情報部、 アドレス情報が含まれているアドレス情報部、 基準 クロック形成用の搬送波部、 層情報が含まれている層情報部、 及び基準クロック 形成用の搬送波部というフォーマツトで 1つの情報フレームが形成されている。 この情報フレームの大きさは、 一例として図 4に示されるように、 搬送波から生 成される基準クロックの 1周期を 1ゥォブルとすると、 9 3ゥォプル (ゥォブル 番号 0〜9 2) である。 即ち、 同期情報部の同期周期は 9 3ゥォブルである。 そ して、ゥォブノレ番号 0〜 3が同期情報部、ゥォブ Λ 号 4〜 7がァドレス情報部、 ゥォブル番号 8〜 2 5が搬送波部、 ゥォプノ V 号 2 6が層情報部、 及ぴゥォブル 番号 2 7〜 9 2が搬送波部である。 即ち、 同期情報部は 4ゥォブル、 アドレス情 報部は 4ゥォプル、 層情報部は 1ゥォプルであり、 層情報部の前後に搬送波部が 設けられている。 上記各情報部は夫々位相変調 (P S K: Phase Shift Keying) されている。尚、同期情報部は、他の情報部と明確に区別する必要があるために、 他の情報部での出現頻度が非常に低レヽ信号波形を有している。
本実施例では一例として、 層情報部は、 記^ 1M 1では図 5 Aに示されるよう に搬送波部と同位相であり、 記録層 M 2では図 5 Bに示されるように搬送波部と 逆位相となるように設定されている。
了ドレス情報部は、 一例として D VDの:^と同様に、 4ゥォブノレが 1ビット データを表している。 例えば、 ビットデータが 「0」 のときは、 図 6 Aに示され るように、 前方の 2ゥォブルを搬送波部と同位相とし、 後方の 2ゥォブルを搬送 波部と逆位相とする。 一方、 ビットデータが 「1」 のときは、 図 6 Bに示される ように、 前方の 2ゥォブルを搬送波部と逆位相とし、 後方の 2ゥォブルを搬送波 部と同位相とする。 尚、 了ドレスデータとしては 5 1ビットが必要である。
同期情報部は、 次の情報フレームにおけるアドレス情報部がアドレスデータの 先頭ビットのときには、例えば図 1 Aに示されるように、ヮード同期(word sync) 信号、 即ち 4ゥォブル全てを搬送波部と逆位相とする。 又、 アドレス情報部にビ ットデータ力 S含まれているときには、 図 7 Bに示されるように、 ビット同期 (bit sync) 信号、 即ち先頭の 1ゥォブルを搬送波部と逆位相とし、 残りの 3ゥォブル を搬送波部と同位相とする。
従って、 本実施例では、 図 8に示されるように、 5 2個の情報フレームによつ て 1つのアドレス情報が得られる。 尚、 本実施例では一例として、 記録層 M lの トラックの最終ァドレスに続くアドレスが記録層 M 2のトラックの先頭ァドレス となるように設定されている。 具体的には、 0 0 0 0 0 H〜1 0 0 0 0 Hのアド レスが記^ M 1のトラックに割り当てられ、 1 0 0 0 1 H〜2 0 0 0 0 Hのァ ドレスが記録層 M 2のトラックに割り当てられている。
光ピックァップ装置 2 3は、 光ディスク 1 5のスパイラル状又は同心円状のト ラックが形成された記録面にレーザ光を照射すると共に、 記録面からの反射光を 受光するための装置である。 この光ピックァップ装置 2 3は、 一例として図 9に 0
11 示されるように、 光源ユニット 5 1、 コリメートレンズ 5 2、 ビームスプリッタ 5 4、 対物レンズ 6 0、 2つの検出レンズ (5 8, 7 2 )、 2つの受光器 (5 9, 7 3 )、反射ミラー 7 1、及び駆動系(フォーカシングァクチユエータ、 トラツキ ングァクチユエータ及びシークモータ (いずれも図示省略)) 等を備えている。 光源ュニット 5 1は、 波長が 6 6 0 n のレーザ光を発光する光源としての半 導体レーザ 5 1 aを含んで構成されている。 尚、 本実施例では、 光源ユニット 5 1から出射されるレーザ光の光束(以下、 「光束」 と略述する) の最大強度出射方 向を +X方向とする。 コリメートレンズ 5 2は、 光源ユニット 5 1の +X側に配 置され、 光源ユニット 5 1から出射された光束を略 TO光とする。 反射ミラー 7 1は、 コリメートレンズ 5 2の近傍に配置され、 光源ュニット 5 1から出射され た光束の一部をモニタ用光束として一 Z方向に反射する。
ビームスプリッタ 5 4は、 コリメートレンズ 5 2の +X側に配置され、 コリメ 一トレンズ 5 2で略 TO光とされた光束をそのまま させる。 又、 ビームスプ リッタ 5 4は、 光ディスク 1 5で反射され、 対物レンズ 6 0を介して入射する光 束 (戻り光束) を一Z方向に分岐する。 対物レンズ 6 0は、 ビームスプリッタ 5 4の +X側に配置され、 ビームスプリッタ 5 4を透過した光束を光ディスク 1 5 の記録面に集光する。 検出レンズ 5 8は、 ビームスプリッタ 5 4の一 Z側に配置 され、 ビームスプリッタ 5 4で一 Z方向に分岐された戻り光束を受光器 5 9の受 光面に集光する。
受光器 5 9としては、 通常の光ディスク装置と同様に、 図 1 0に示されるよう に、 4つの部分受光素子 (5 9 a, 5 9 b , 5 9 c , 5 9 d) からなる 4分割受 光素子が用いられている。 尚、 ここでは、 Y軸方向が光ディスク 1 5におけるト ラックの接線方向と略一致している。 各部分受光素子は夫々光電変換により受光 量に応じた電流信号を生成し再生信号処理回路 2 8に出力する。
検出レンズ 7 2は、 反射ミラー 7 1の一 Z側に配置され、 反射ミラー 7 1で一 Z方向に反射されたモニタ用光束を受光器 7 3の受光面に集光する。 受光器 7 3 は、 光電変換により受光量に応じた電流信号を生成し、 パワーモニタ信号として レーザコントロール回路 2 4に出力する。
再生信号処理回路 2 8は、 図 1 1に示されるように、 I /Vアンプ 2 8 a、 サ 04003420
12 ーポ ·ゥォブル信号検出回路 28 b、 ゥォブル信号解析回路 28 c、 RF信号検 出回路 28 d、 及びデコーダ 28 e等を備えている。
I/Vアンプ 28 aは、 部分受光素子 59 aからの電流信号を ¾|£信号 (信号 S a)に変換するアンプ a 1、部分受光素子 59 bからの電流信号を ®j£信号 (信 号 S b ) に変換するァンプ a 2、 部分受光素子 59 c力 らの電流信号を 信号 (信号 Sc) に変換するアンプ a 3、 部分受光素子 59 dからの電流信号を 信号 (信号 S d) に変換するアンプ a 4を有している。
サーボ ·ゥォブル信号検出回路 28 bは、 5つの加算器 (a d 1, a d 2, a d 3, a d 4, a d 5)、 2つの減算器 (s b l, s b 2)、 3つのローパスブイ ルタ (l p l, 1 ρ 2, 1 p 3)、 及びハイパスフィルタ h pを有している。 加算器 a d 1は信号 S aと信号 S dとを加算し、 加算器 a d 2は信号 S bと信 号 S cとを加算する。 加算器 a d 3は信号 S aと信号 S cとを加算し、 加算器 a d 4は信号 S bと信号 S dとを加算する。 即ち、 加算器 a d 1の出力信号は (S a + S d) であり、 加算器 a d 2の出力信号は (Sb + S c) である。 又、 加算 器 a d 3の出力信号は (S a + S c ) であり、 加算器 a d 4の出力信号は (S b + Sd) である。
力 B算器 a d 5は、 加算器 a d 1の出力信号と加算器 a d 2の出力信号を加算す る。 即ち、 加算器 a d 5の出力信号は (S a + Sb + S c + Sd) である。 この 加算器 a d 5の出力信号はローパスフィルタ 1 p 1に供給される。
減算器 s b 1は、 加算器 a d 1の出力信号から加算器 a d 2の出力信号を減算 する。 即ち、 減算器 s b 1の出力信号は {(S a + S d) — (Sb + S c)} であ る。 この減算器 s b 1の出力信号はゥォブル信号解析回路 28 c、 ローパスフィ ルタ 1 p 2及びハイパスフィルタ hpに供給される。
減算器 s b 2は、 カロ算器 a d 3の出力信号から加算器 a d 4の出力信号を減算 する。 即ち、 減算器 s b 2の出力信号は {(S a + S c) - (Sb + S d)} であ る。 この減算器 s b 2の出力信号はローパスフィルタ 1 p 3に供給される。 ローパスフィルタ 1 p 1は、 カロ算器 a d 5の後段に配置され、加算器 a d 5の 出力信号に含まれる高周波成分を除去する。 ローパスフィルタ 1 p 1の出力信号 は、 トラッククロス信号 Stcとしてサーポコントローラ 33に供給される。 ローパスフィルタ 1 p 2は、 減算器 s b 1の後段に配置され、 減算器 s b 1の 出力信号に含まれる高周波成分を除去する。 ローパスフィルタ 1 p 2の出力信号 は、 トラックエラー信号 Steとしてサーボコントローラ 3 3に供給される。
ハイパスフィルタ h は、 減算器 s b 1の後段に配置され、 減算器 s b 1の出 力信号に含まれる低周波成分を除去する。 ハイパスフィルタ h pの出力信号は、 ゥォブル信号 Swbとしてゥォブル信^ ^祈回路 2 8 cに供給される。
ローパスフィルタ 1 p 3は、 減難 s b 2の後段に配置され、 減算器 s b 2の 出力信号に含まれる高周波成分を除去する。 ローパスフィルタ 1 p 3の出力信号 は、 フォーカスエラー信号 Sfeとしてサーボコントローラ 3 3に供給される。
R F信号検出回路 2 8 dは、 高帯域の回路であり、 信号 S a、 信号 S b、 信号 S c及び信号 S dを夫々加算し R F信号を検出する。 ここで検出された R F信号 Srfはデコーダ 2 8 e及ぴゥォプル信号^?回路 2 8 cに供給される。
デコーダ 2 8 eは、 R F信号 Srfに対して復号処理及び誤り検出処理等を行な い、 再生データとしてバッファマネージャ 3 7を介してバッファ RAM 3 4に格 納する。 尚、 デコーダ 2 8 eは、 誤り検出処理において誤りが検出されると、 所 定の誤り訂正処理を行う。
ゥォプル信^^析回路 2 8 cは、 図 1 2に示されるように、 クロック生成回路 c 1、復調回路 c 2、同期検出回路 c 3、カウンタ c 4、アドレス検出回路 c 5、 及び層情報検出回路 c 6等を備えている。
クロック生成回路 c 1は、 ゥォブル信号 S wb に含まれる搬送波成分を抽出す るためのパンドパスフィルタ c 1 1、 バンドパスフィルタ c 1 1の出力信号を 2 値化するための 2値化回路 c 1 2、 及び 2値化回路 c 1 2の出力信号における周 期を安定化させるための P L L (フェーズロックループ) 回路 c 1 3等から構成 されている。 P L L回路 c 1 3の出力信号は基準ク口ック信号 Wck (図 1 3参照) として、 エンコーダ 2 5及び復調回路 c 2等に供給される。
復調回路 c 2は、 ハイパスフィルタ c 2 1、 ローパスフィ タ c 2 2、 サイン 波生成回路 c 2 3、 乗算器。 2 4、 積分回路 c 2 5、 サンプ /レホーノレド回路 (S ΖΗ回路) c 2 6、 及ぴタイミング信号生成回路 c 2 7等から構成されている。 ハイパスフィルタ c 2 1はゥォプル信号 Swbに含まれる低周波ノイズを除去 する。 ローパスフィルタ c 2 2はハイパスフィルタ c 2 1の出力信号に含まれる 高周波ノィズを除去する。 サイン波生成回路 c 2 3は、 一例として図 1 3に示さ れるように、クロック生成回路 c 1力らの基準クロック信号 Wckに基づレ、て基準 クロック周波数のサイン波 S si を生成する。 乗算器 c 2 4はローパスフィルタ c 2 2の出力信号とサイン波生成回路 c 2 3で生成されたサイン波 S sin とを乗 算する。 これにより、'位相変調波成分が抽出される。
積分回路 c 2 5は、 一例として図 1 3に示されるように、 基準ク口ック信号 W ckの周期毎に乗算器 c 2 4の出力信号 S mulを積分する。この積分回路 c 2 5は タイミング信号生成回路 c 2 7からのリセット信号 Srstによってリセ トされ る。 3 /11回路。 2 6は、 一例として図 1 3に示されるように、 タイミング信号 生成回路 c 2 7からのタイミング信号 S shに同期して積分回路 c 2 5の出力信 号 S intgに対するサンプル Zホールドを行なう。 ここでは、 基準ク口ック信号 W ckの立ち上がりタイミングで信号 Sintgをサンプリングしている。 S /H回路 c 2 6の出力信号は復調信号 S dm として同期検出回路 c 3、 アドレス検出回路 c 5、 及び層情報検出回路 c 6に供給される。
同期検出回路 c 3は、 復調信号 S dmが同期情報部に対応する信号であるカゝ否 かを判断する。 復調信号 S dmが同期情報部の先頭に対応する信号であれば同期 検出回路 c 3はカウンタ c 4の値に 0をセットする。 又、 復調信号 S dmが同期 情報部の先頭に対応する信号でなければ同期検出回路 c 3はカウンタ c 4の値を + 1する。 即ち、 カウンタ c 4には同期情報部の先頭を起点とし復調信号 S dm が基準クロックの周期で何番目かを示す値がセットされる。
ァドレス検出回路 c 5はカウンタ c 4の値を参照し、 復調信号 S dmがァドレ ス情報部に対応する信号であると判断すると、 復調信号 S dm力ら信号を抽出し する。 ここでは、 カウンタ c 4の値が 4〜 7のときに信号が抽出される。 ァドレ ス検出回路 c 5は抽出した信号が所定量 (ここでは、 5 2データビット分) に達 すると該抽出信号からァドレスデータを取得する。 ここで取得されたァドレスデ ータは、 ァドレス信号 S adとして C P U 4 0に出力される。
層情報検出回路 c 6は、 カウンタ c 4の値を参照し、 復調信号 S dmが層情報 部に対応する信号であると判断すると、 その信号を抽出する。 ここでは、 カウン タ c 4の値が 2 6のときに信号が抽出される。 そして、 その信号に基づいて層信 号 Slayを生成しサーポコントローラ 3 3に出力する。 ここでは、 抽出した信号 がハイレベルであれば記^ jfM 1であり、ローレベルであれば記^ ϋΜ 2である。 図 1に戻り、 サーボコントローラ 3 3は、 サーボ ·ゥォブル信号検出回路 2 8 bからのフォーカスエラー信号 Sfe、 及ぴゥォブル信号解析回路 2 8 cからの層 信号 S layに基づレヽてフォー力スずれを補正するためのフォー力ス制御信号を生 成する。 又、 サーボコントローラ 3 3は、 サーボ ·ゥォプル信号検出回路 2 8 b からのトラックエラー信号 Ste に基づいてトラックずれを補正するためのトラ ッキング制御信号を生成する。 ここで生成された各制御信号は、 サーポオンのと きにモータドライバ 2 7に出力され、 サーポオフのときには出力されない。 サー ポオン及ぴサーポオフは C P U 4 0によって設定される。
モータドライバ 2 7は、 上記フォーカス制御信号に基づいてフォーカシングァ クチユエータの駆動信号を光ピックアップ装置 2 3に出力し、 上記トラッキング 制御信号に基づいてトラッキングァクチユエータの駆動信号を光ピックアップ装 置 2 3に出力する。 即ち、 サーボ ·ゥォブル信号検出回路 2 8 b、 サーボコント ローラ 3 3及ぴモータドライバ 2 7によってトラッキング制御及ぴフォーカス制 御が行われる。 又、 モータドライバ 2 7は、 C PU 4 0からの制御信号に基づい てスピンドルモータ 2 2及びシークモータの駆動信号を夫々出力する。
バッファ RAM 3 4は、光ディスクに記録するデータ (記録用データ)、及ぴ光 ディスクから再生したデータ (再生データ) 等が一時的に格納されるバッファ領 域と、 各種プログラム変数等力 S.格納される変数領域とを有している。 バッファマ ネージャ 3 7は、 バッファ RAM 3 4へのデータの入出力を管理する。 そして、 バッファ領域に蓄積されたデ一タ量が所定量になると C P U 4 0に通知する。 エンコーダ 2 5は、 C P U 4 0の指示に基づレヽて、 バッファ R AM 3 4に蓄積 されている記録用データをバッファマネージャ 3 7を介して取り出し、 データ変 調及ぴエラー訂正コードの付加等を行ない、 光ディスク 1 5への書き込み信号を 生成する。 ここで生成された書き込み信号は上記基準クロック信号とともにレー ザコントローゾレ回路 2 4に出力される。
レーザコントロール回路 2 4は、 半導体レーザ 5 1 aの発光特性、 上記パワー モニタ ^号、 エンコーダ 2 5からの書き込み信号及ぴ基準クロック信号等に基づ いて半導体レーザ 5 1 aの駆動信号を生成する。 インターフェース 3 8は、 ホス トとの双方向の通信インターフェースであり、 一例として AT A P I (AT Attachment Packet Interface) の規格に準拠してレ、る。
フラッシュメモリ 3 9はプログラム領域とデータ領域とを備えており、 プログ ラム領域には、 C P U 4 0にて解読可能なコードで記述されたプログラムが格納 されている。又、データ領域には、半導体レーザ 5 1 aの発光特性に関する情報、 シーク動作に関する情報(以下「シーク情報」 ともいう)、及び記録ストラテジ情 報等が格納されている。
C P U 4 0は、 フラッシュメモリ 3 9のプログラム領域に格納されているプロ グラムに従って上記各部の動作を制御すると共に、 制御に必要なデータなどをバ ッファ RAM 3 4の変数領域及び RAM 4 1に保存する。
次に、 ホストからの記録要求コマンドを受信したときの光ディスク装置 2 0に おける処理 (記録処理) について図 1 4を用いて簡単に説明する。 図 1 4のフロ 一チャートは、 C P U 4 0によって実行される一連の処理アルゴリズムに対応し、 ホストから記録要求コマンドを受信すると、 図 1 4のフローチャートに対応する プログラムの先頭ァドレスが C PU 4 0のプログラムカウンタにセットされ、 記 録処理がスタートする。
最初のステップ 5 0 1では、 記^ ¾ に基づいてスピンドルモータ 2 2の回転 を制御するための制御信号をモータドライバ 2 7に出力すると共に、 ホストから 記録要求コマンドを受信した旨を再生信号処理回路 2 8に通知する。 又、 ホスト から受信したデータ (記録用データ) のノ ッファ RAM 3 4への蓄積をバッファ マネージャ 3 7に指示する。
ステップ 5 0 3では、 光ディスク 1 5の回転が所定の線速度に達していること を ½mすると、 サーボコントローラ 3 3に対してサーボオンを設定する。 これに より、 前述の如くトラッキング制御及びフォーカス制御が行われる。 尚、 トラッ キング制御及ぴフォーカス制御は記録処理が終了するまで随時行われる。
ステップ 5 0 5では、 記録速度に基づ 、て O P C (Optimum Power Control) を行い、 : ft¾な記録パワーを取得する。 即ち、 記録パワーを段階的に変化させつ 3420
17 つ、 P C A (Power Calibration Area) と呼ばれる試し書き領域に所定のデータ を試し書きした後、 それらのデータを順次再生し、 例えば R F信号から検出され たァシンメトリの値が予め実験等で求めた目標値と略一致する:^を最も高い記 録品質であると判断し、 そのときの記録パワーを最適な記録パワーとする。
ステップ 5 0 7では、了ドレス信号 S adに基づいて現在のァドレスを取得する。 次のステップ 5 0 9では、 現在のアドレスと記録要求コマンドから抽出した目標 アドレスとの差分 (アドレス差) を算出する。 ステップ 5 1 1では、 アドレス差 に基づいてシークが必要である力否かを判断する。 ここでは、 上記シーク情報の 一つとしてフラッシュメモリ 3 9に格納されている閾値を参照し、 アドレス差が 閾値を越えていれば、 ここでの判断は肯定され、 ステップ 5 1 3に移行する。 ステップ 5 1 3では、 了ドレス差に応じたシークモータの制御信号をモータド ライパ 2 7に出力する。 これにより、 シークモータが駆動し、 シーク動作が行な われ、 ステップ 5 0 7に戻る。
尚、 ステップ 5 1 1において、 アドレス差が閾値を越えていなければ、 ここで の判断は否定され、 ステップ 5 1 5に樹亍する。
ステップ 5 1 5では、 現在のアドレスが目標アドレスと一致している力否かを 判断する。 現在のァドレスが目標ァドレスと一致してレヽなければ、 ここでの判断 は否定され、 ステップ.5 1 7に樹亍する。 ステップ 5 1 7では、 アドレス信号 S adに基づいて現在のアドレスを取得し、 ステップ 5 1 5に戻る。
以下、 ステップ 5 1 5での判断が肯定されるまで、 ステップ 5 1 5→5 1 7の 処理を繰り返し行う。
現在のァドレスが目標ァドレスと一致すれば、 ステップ 5 1 5での判断は肯定 され、 ステップ 5 1 9に移行する。 ステップ 5 1 9では、 ェンコ^ "ダ 2 5に書き 込みを許可する。 これにより、 記録用データは、 エンコーダ 2 5、 レーザコント ロール回路 2 4及ぴ光ピックアップ装置 2 3を介して光ディスク 1 5に書き込ま れる。 記録用データがすべて書き込まれると、 所定の終了処理を行った後、 記録 処理を終了する。
更に、 ホストから再生要求コマンドを受信したときの光ディスク装置 2 0にお ける処理 (再生処理) について図 1 5を用いて説明する。 図 1 5のフローチヤ一 トは、 C P U 4 0によって実行される一連の処理アルゴリズムに対応し、 ホスト 力 ら再生要求コマンドを受信すると、 図 1 5のフローチャートに対応するプログ ラムの先頭ァドレスが C P U 4 0のプログラムカウンタにセットされ、 再生処理 がスタートする。
最初のステップ 7 0 1では、 再生速度に基づいてスピンドルモータ 2 2の回転 を制御するための制御信号をモータドライバ 2 7に出力すると共に、 ホストから 再生要求コマンドを受信した旨を再生信号処理回路 2 8に通知する。
ステップ 7 0 3では、 光ディスク 1 5の回転カ所定の線速度に達していること を Itmすると、 サーボコントローラ 3 3に対してサーボオンを設定する。 これに より、 前述の如くトラッキング制御及びフォーカス制御が行われる。 尚、 トラッ キング制御及ぴフォー力ス制御は再生処理が終了するまで随時行われる。
ステップ 7 0 5では、ァドレス信号 S adに基づいて現在のァドレスを取得する。 ステップ 7 0 7では、 現在のアドレスと再生要求コマンドから抽出した目標アド レスとの差分 (アドレス差) を算出する。 ステップ 7 0 9では、 ステップ 5 1 1 と同様にして、 シークが必要であるか否かを判断する。 シークが必要であれば、 ここでの判断は肯定され、 ステップ 7 1 1に樹亍する。 ステップ 7 1 1では、 ァ ドレス差に応じたシークモータの制御信号をモータドライバ 2 7に出力する。 そ して、 ステップ 7 0 5に戻る。 —方、 ステップ 7 0 9において、 シークが必要で なければ、 ここでの判断は否定され、 ステップ 7 1 3に樹亍する。
ステップ 7 1 3では、 現在のアドレスが目標アドレスと一致している力否かを 判断する。 現在のァドレスが目標ァドレスと一致していなければ、 ここでの判断 は否定され、 ステップ 7 1 5に樹亍する。 ステップ 7 1 5では、 アドレス信号 S adに基づいて現在のァドレスを取得し、 ステップ 7 1 3に戻る。
以下、 ステップ 7 1 3での判断が肯定されるまで、 ステップ 7 1 3→7 1 5の 処理を繰り返し行う。
現在のアドレスが目標アドレスと一 れば、 ステップ 7 1 3での判断は肯定 され、 ステップ 7 1 7に 亍する。 ステップ 7 1 7では、 再生信号処理回路 2 8 に読み取りを指示する。 これにより、 再生信号処理回路 2 8にて再生データが取 得され、 バッファ RAM 3 4に格納される。 この再生データはセクタ単位でバッ ファマネージャ 3. 7及ぴインタ^"フェース 3 8を介してホストに転送される。 そ して、 ホストから指定されたデータの再生がすべて終了すると、 所定の終了処理 を行った後、 再生処理を終了する。
以上の説明から明らかなように、 本実施例における光ディスク装置 2 0では、 ゥォブル信^?析回路 2 8 cによつて記^ ϋ判別装置力 S構成され、 サーポコント ローラ 3 3及ぴモータドライバ 2 7によってサーボ制御装置が構成されている。 又、 C P U 4 0及び該 C P U 4 0によって実行されるプログラムとによって、 処 a¾置が実現されている。 しかしながら、 本発明がこれに限定されるものでは ないことは勿論である。 即ち、 上記実施例.は一例に過ぎず、 上記の C P U 4 0に よるプログラムに従う処理によって実現した処3¾置の少なくとも一部をハード ウェアによって構成することとしても良いし、 或いは全てをハードウエアによつ て構成することとしても良い。
そして、 ゥォブル信号 析回路 2 8 cにおける処理動作によって本実施例にお ける記録層判別方法が実施されている。
以上説明したように、 本実施例における光ディスク 1 5によると、 情報記録が 可能な 2つ記録層を有し、 各記録層の夫々にスパイラル状又は同心円状のトラッ クが形成されている。 そして、 各トラックの少なくとも一部は、 そのトラックが 形成されている記録層を判別するための層情報を含むゥォブル信号に対応して 夫々蛇行している。 そこで、 光ディスク 1 5をアクセスする際に、 蛇行部からの 反射光に基づいてゥォブル信号を検出し、 該ゥォブル信号から層情報を抽出する ことにより、 光スポットが形成されている記録層を判別することが可能となる。 即ち、 記録層を判別するための情報を迅速に精度良く取得することができる。 層情報が格納されているゥォブル信号の層情報部分は、 位相変調方式で変調さ れているために、 層情報を容易に取得することができる。
ゥォブル信号には、 基準クロック生成用の搬送波部分力 S含まれているために、 ゥォブル信号の復調が容易となる。
層情報部分及び同期情報部分は、 互いに異なる信号波形を有しているために、 同期情報部分を精度良く検出することができる。
ゥォブル信号は、 層情報部分の前後に搬送波部分を有しているために、 基準ク 04 003420
20 口ック信号を生成する際の精度低下を防止することができる。
搬送波部分から生成される基準クロックの 1周期を 1ゥォブルとしたときに、 同期周期は 9 3ゥォブルであり、 同期情報部分の先頭を 0ゥォブル目とすると、 層情報部分は 1 2ゥォブル目と 8 8ゥォブル目との間に しているために、 基 準クロック信号を生成する際の精度低下を防止することができる。
本実施例におけるゥォブル信号解析回路 2 8 cによると、 光ディスク 1 5から の反射光に基づいて検出されたゥォブル信号がクロック生成回路 c 1及び復調回 路 c 2により復調され、 その復調されたゥォプル信号から同期検出回路 c 3、 力 ゥンタ c 4、 及び層情報検出回路 c 6により層情報が検出される。 即ち、 ゥォプ ル信号のみから層情報が取得されるため、 従来よりも短時間で精度良く層情報を 取得することができる。 従って、 結果として、 複数の記^ )1を有する情報記録媒 体において、 光スポットが形成されている記 を迅速に精度良く判別すること が可能となる。
本実施例における光ディスク装置 2 0によると、 光スポットが形成されている 記録層がゥォブル信 ^^析回路 2 8 cにて短時間で判別されるため、 対物レンズ の位置制御を迅速に精度良く行なうことが可能となる。 従って、 結果として複数 の記録層を有する情報記録媒体に対する情報の記録、 再生、 及び消去のうち少な くとも再生を含むアクセスを迅速に行うことができる。
尚、 上記実施例では、 ゥォプル信号の各情報部が位相変調される ¾ ^について 説明したが、 本発明がこれに限定されるものではない。 例えば図 1 6に示される ように、 F S K (Frequency Shift Keying)変調、ノコギリ変調、 M S K (Minimum Shift Keying) 変調、 及び ON— O F F変調等であっても良い。 但し、 この場合 には、 ゥォブル信 析回路 2 8 cでは、 変調方式に応じた検出方法が用いられ ることとなる。 又、 この であっても、 基準クロック信号の安定性の点から、 了ドレス情報部と層情報部との間に搬送波部を設けることが好ましい。
上記実施例では、 同期情報部の変調^:と層情報部の変調^:とが同じ こ ついて説明したが、 これに限らず、 同期情報部の変調方式と層情報部の変調方式 とが異なっても良い。
上記実施例では、 層情報部分及び同期情報部分は、 互いに異なる信号波形を有 TJP2004/003420
21 する場合について説明したが、 層情報部分及び同期情報部分を夫々確実に分離す ることができるときは、 層情報部分及び同期情報部分が同じ信号波形を有しても 良い。
又、 上記実施例では、 情報フレーム毎に層情報部を設ける:^について説明し たが、 これに限らず、 連続する n個 (n≥2) の情報フレームのレ、ずれかに層情 報部が設けられても良い。 n==2の が図 17に示されている。 即ち、 同期情 報部の同期周期の整数倍の周期で層情報部分が配置されていても良レヽ。
更に、 上記実施例では、 アドレス情報部と層情報部との間に搬送波部を設ける ^について説明した力 基準ク口ックの精度が低下しないことが明白であれば、 ァドレス情報部に続けて層情報部を設けても良レ、。
尚、 上記実施例では、 層情報検出回路 c 6での検出結果のみから記録層を判別 する場合について説明したが、 これに限らず、 層情報検出回路 c 6での検出結果 とアドレス検出回路 c 5からのアドレス信号 Sad とから記録層を判別しても良 い。 これにより、 信頼性を更に向上させることができる。 この^^には、 一例と して図 18に示されるように、 撢情報検出回路 c 6の出力信号とアドレス検出回 路 c 5からのアドレス信号 Sad とから記録層を決定する層決定回路 c 7が付加 される。 この層決定回路 c 7は、 アドレス信号 Sadからのアドレスが記録層 Ml のトラックに割り当てられているァドレス (ここでは、 00000 H〜 1000 0 H)であるか、或いは記録層 M 2のトラックに割り当てられて 、るアドレス(こ こでは、 10001 H〜 20000 H) であるかを調べ、 どの記録層に光スポッ トが形成されているかを判断する。 そして、 層決定回路 c 7は、 その判断結果と 層情報検出回路 c 6での検出結果とがー SSrTると、 光スポットが形成されている 記録層を決定し、 その決定結果を層信号 Slay としてサーボコントローラ 33に 通知する。 尚、 層決定回路 c 7は、 上記判断結果と層情報検出回路 c 6での検出 結果とがー致しない齢には、記廳を決定せずに、 次の層情報検出回路 c 6で の検出結果或いは次のアドレス検出回路 c 5からのアドレス信号 Sadが入力さ れるのを待つ。
上記実施例では、 層情報部がゥオフ 号 26の位置に設けられてい る について説明したが、 これに限らず、 ゥォプ 号 12からゥォブル番号 2004/003420
22
8 8のいずれかの位置に設けられれば良レヽ。 一般的なパンドパスフィルタの特性 として、 位相変調部から 5ゥォブル分だけ離れると、 バンドバスフィルタの出力 信号は正常となることから、 層情報部の位置をゥォプル番号 1 2からゥォフ 号 8 8の間としている。
上記実施例では、 同期情報部が 4ゥォブルで構成される ¾^について説明した 力 これに限定されるものではない。
又、 上記実施例では、 アドレス情報部が 4ゥォブルで構成される: ^について 説明したが、 これに限定されるものではなレ、。
上記実施例では、 了ドレスデータが 5 1ビットで構成される について説明 したが、 これに限定されるものではない。
更に、 上記実施例では、 層情報部が 1ゥォブルで構成される ¾ ^について説明 したが、 これに限定されるものではなく、 例えば 2ゥォブル以上で構成されても 良い。 又、 記録層の数に応じて設定しても良い。 例えば記録層が 4つ存在する場 合は 2ビット情報(0 0、 0 1、 1 0、 1 1 )で記録層を示すことが可能なため、 この には例えば 2ゥォブルで構成しても良 、。
上記実施例では、 同期情報部に続いてァドレス情報部が設けられる場合につい て説明したが、同期情報部とアドレス情報部との間に搬送波部が存在しても良レ、。 上記実施例では、 情報フレームにおいて、 アドレス情報部が層情報部よりも前 方に設けられる # ^について説明したが、 了ドレス情報部が層情報部よりも後方 に設けられても良い。 要するに、 同期情報部からの位置 (ゥォブル数) が明確で あれば良い。
上記実施例では、 情報フレームの大きさが 9 3ゥォブゾレの;^について説明し たが、 これに限定されるものではない。
上記実施例にぉレ、て、 クロック生成回路 c 1では 2値化回路 c 1 2がなくても 良い。
上記実施例では、 同期情報がゥォブル信号として記録されている について 説明したが、 本発明がこれに限定されるものではなレ、。 例えば図 1 9 A及び図 1
9 Bに示されるように、 同期情報がピットの形で記録されても良い。 図 1 9 Aに は、 蛇行状態が途切れた領域に所定のピットが同期情報として形成されている場 04 003420
23 合について示されている。 又、 図 1 9 Bには、 ランド部に所定のピットが同期情 報として形成されている について示されている。 尚、 これらの; ^には、一 例として図 2 0に示されるように、 ゥォブル信号解析回路 2 8 cにピット検出回 路 c 8が付加されることとなる。 このピット検出回路 c 8は、 図 1 9 Αの^に は R F信号検出回路 2 8 dからの R F信号 Srfに基づいて同期情報のピットを検 出し、 図 1 9 Bの場合には減算器 sblの出力信号に基づいて同期情報のピットを 検出する。 その検出結果はピット検出回路 c 8から同期検出回路 c 3に通知され る。
上記実施例では、 受光器 5 9として 4分割受光素子が用いられる:^について 説明したが、 これに限定されるものではなく、 例えば、 2つの 2分割受光素子か ら構成されていても良い。 又、 4つの受光素子を並設しても良い。
又、 トラックは、 片側のみが蛇行していても良い。 更に、 トラックの蛇行が間 欠的に途切れていても良い。 要するに、 複数の記録層を有する情報記録媒体に適 用可能であり、 各記^ Sからの戻り光束に基づいて所定の信号レベルのゥォブル 信号が得られれば良い。
上記実施例では、 光ディスクが情報記録可能な 2つの記録層を有して 、る齢 について説明したが、 これに限らず、 3つ以上の記録層を有していても良い。 こ の場合に、 少なくとも 2つの情報記録可能な記録層が含まれていれば、 残りの記 録層は、 すでに情報が記録され追記できない記録層 (所謂 ROM層) であっても 良い。
上記実施例では、 トラックエラー信号を所謂プッシュプル法で求める場合につ いて説明したが、 本発明がこれに限定されるものではない。 例えば、 プッシュプ' ル法と同様に記録面に形成された 1つの光スポット力らの戻り光束を利用する方 法の 1つとして位相差法 (D P D法) を用いても良い。 この位相差法では、 戻り 光束における強度パターンの回転変ィ匕に基づいてトラックエラー信号を検出する。 即ち、 戻り光束を 4分割された受光素子で受光し、 互いに対角位置にある受光素 子での受光量の和信号に基づいて位相の進み量及び遅れ量を求め、 'トラックエラ 一信号を検出する。
又、 記録面に形成された 3つの光スポットからの戻り光束を利用する方法とし て、所謂 3光スポット法及ぴ差動プッシュプル法(D P P法)等を用いても良い。 この 3光スポット法では、 光源から出射される光束を 1つの主ビームと 2つの副 ビームとに分割し、記録面にぉレ、て主ビームと副ビームと力 トラッキング方向(ト ラックの接線方向に直交する方向) に関し 1 /4トラックピッチだけずれるよう に照射する。 そして、 記録面で反射した 2つの副ビームの戻り光束を 2つの受光 素子で夫々受光し、 その 2つの受光素子の受光量の差からトラックエラー信号を 検出する。 一方、 差動プッシュプル法では、 光源から出射される光束を 1つの主 ビームと 2つの副ビームとに分割し、 記録面にぉ ヽて主ビームと副ビームとがト ラッキング方向に関し 1 / 2トラッグピッチだけずれるように照射する。 記録面 で反射した主ビーム及ぴ 2つの副ビームの戻り光束を 3つの 2分割受光素子で 夫々受光し、 その 2分割受光素子夫々でプッシュプル信号を求める。 そして、 主 ビームのプッシュプル信号と、 2つの副ビームのプッシュプル信号の和信号との 言号からトラックエラー信号を検出する。
そこで、 受光器 5 9はトラックエラ一信号の検出方法に適した受光素子の数及 び配置が設定される。 又、 サーボ 'ゥォブル信号検出回路 2 8 bは、 トラックェ ラー信号の検出方法に応じた回路構成となる。 尚、 トラックエラー信号検出用の 受光素子とフォーカスエラー信号検出用の受光素子とを個別に設けても良レ、。 上記実施例にぉレヽて、 ゥォブル信号検出用の回路とサーポ信号検出用の回路と を個別に設けても良い。 要するに、 ゥォブル信号及びサーポ信号が精度良く検出 できれば良い。
上記実施例において、 検出レンズ 7 2、 受光器 7 3、 及び反射ミラー 7 1を光 源ュニット 5 1と一体化させても良い。 これにより、 光ピックアツプ装置の小型 化を促進することができる。
上記実施例では、 光ディスク 1 5が 6 6 0 nmの波長のレーザ光に対応する場 合について説明したが、 これに限定されるものではなく、 例えば約 4 0 5 nmの 波長のレーザ光に対応しても良い。
上記実施例では、 情報の記 ぴ再生が可能な光ディスク装置にっレヽて説明し たが、 これに限らず、 情報の記録、 再生及び消去のうち、 少なくとも情報の再生 が可能な光ディスク装置であれば良レ、。 上記実施例では、 光ピックァップ装置が 1つの半導体レーザを備える につ いて説明したが、 これに限らず、 例えば互いに異なる波長の光束を発光する複数 の半導体レーザを備えていても良い。 この:^に、 例えば波長が約 405 nmの 光束を発光する半導体レーザ、 波長が約 660 nmの光束を発光する半導体レー ザ及び波長カ約 780n mの光束を発光する半導体レーザの少なくとも 1つを含 んでいても良い。 即ち、 光ディスク装置が互いに異なる規格に準拠した複 類 の光ディスクに対応する光ディスク装置であっても良 、。
又、 上記実施例では、 インターフェースが AT AP Iの規格に準拠する場合に ついて説明したが、 これに限らず、 例えば AT A (AT Attachment) s SCS I (Small Computer System Interfeice)、 U S B (Universal Serial Bus) 1. 0、 USB 2. 0、 IEEE1394、 IEEE802. 3、 シリアル ATA及ぴシ リアル AT A P Iのうちのレ、ずれかの規格に準拠しても良い。
以上説明したように、 本実施例における情報記録媒体によれば、 記録層を判別 するための情報を迅速に精度良く取得することができるという効果がある。 又、 本実施例における記録層判別方法及ひ 録層判別装置によれば、 複数の記録層を 有する情報記録媒体において、 光スポットが形成されている記録層を迅速に精度 良く判別することができるという効果がある。 又、 本実施例における光ディスク 装置によれば、 複数の記顯を有する情報記録媒体に対するアクセスを迅速に行 うことができるという効果がある。
[第 2実施例]
次に、 本発明になる光ディスク等の情報記録媒体、 そのような情報記録媒体を 形成する情報記録媒体形成装置及び情報記録媒体形成方法、 情報検出方法、 情報 検出装置及び情報記録媒体装置の一実施例を、 図 21〜図 38と共に説明する。 例えば特開平 10— 69646号公報には、 情報の格納に位相変調 (PSK: Phase Shift Keying) ^:を用いた技術が開示されている。
又、 例えば特開 2001— 052342公報には、 記録層が 2層又は多層の構 造をなす多層記録媒体技術にぉレ、て、 多層記録媒体の各層にゥォブルを形成する ことが開示されている。
又、例えば特開 2002— 074679公報には、多層記録媒体技術において、 複数の記録層毎にゥォプルの周波数や変調方式を変えることが開示されている。
CD— RZRWや D VD±R/RWは、 P Cの外部記憶装置として広く用いら れている。 情報記録可能な情報記録媒体は今後さらなる大容量化が望まれ、 2層 化、 将来的には多層化も検討されている。
記録可能な情報記録媒体には、 光スポットのトラッキングを可能とするランド とグループからなるトラックと、 回転 報ゃァドレス情報を格納したゥォプルが 形成されている。 DVD + R/RWでは、 この情報の格納に位相変調 (P S K: Phase Shift Keying)方式を用いている(特開平 1 0— 6 9 6 4 6号公報を参照)。 P S K方式は一般的に復調信号対雑音比 (S/N比) が高いので、 別周波数帯の 外乱に対しては非常に有利な方式である。 例えば、 記録済領域の再生等ゥォブル 信号以外の周波数帯域の外乱が多い場合には、 P S K方式は、 非常に優れたフォ 一マットといえる。 しかしながら、 光ディスクのお、 隣接トラックに光スポッ トの端がかかっているため、 所望のトラックから検出したゥォプル信号に対し隣 接トラックのゥォブル信号が漏れ込み、 振幅又は位相変動となって現れる。 これ は隣接トラックからの漏れ込み信号の周波数の大部分も所望のトラックから検出 したゥォブル信号と同じため、 P S K では除去できない。
この不具合に対して、 F S K (Freuency Shift Keying)変調及ぴ P S K変調を 組^:たゥォブル変調方式も考えられる。 F S Κ変調を用いることで隣接トラッ クからの外乱を除去可能とし、 P S Κ変調も糸且^:ることで復調 S /Ν比を高め、 良好な復調性能を得られる。
一方、 記録層が 2層又は多層の構造をなす多層記録媒体技術としては、 特開 2 0 0 1 - 0 5 2 3 4 2公報に、 多層記録媒体の各層にゥォブルを形成することが 提示されている。
又、 特開 2 0 0 2— 0 7 4 6 7 9公報には、 複数の記録層毎にゥォプルの周波 数や変調方式を変えることが提示されている。 この に、 アクセス目標の記録 層を高速に見出す方法として周波数や変調方式を記録層毎に変えることが考えら れるが、 これには、 以下のような問題点がある。
先ず、 周波数が記^!毎に異なっている の問題点は、 ゥォブル信号周波数 が所望の値と異なる状況として、 メディア回 ¾がずれていることもある。 異な P T/JP2004/003420
27 る半径位置への移動を伴う層間ジャンプの場合は、 内周から外周まで 2倍以上の 周波数変化があるため、 ゥォブル信号周波数が異なって検出された齢に、 雜 位置が間違つているのか、フォーカスした層が間違つて ヽるのかを判別しづら 、。 加えて搬送波成分を品質良く検出するため、 通常は狭い帯域のみ通過させるバン ドパスフィルタ (B P F) を使用するので、 ゥォブル周波数が少し違っても信号 は遮断され検出できない。 異なる周波数で判別するためには、 前述の B P Fは使 用できないため、 検出されたゥォブル信号の品質は良くないことが予想される。 又、 記録層毎に全く変調方式が異なる 、 複数の検出回路を搭¾1 "る必要が ある。 これは、 当然にコストアップや設計、 評価時間の増大等を招く不具合があ る。 加えて、 ゥォブル周波数を記 毎に同じとして変調^を大きく変えた場 合、 情報密度が記録層毎に変化する問題もある。 変調方式によって、 単位情報の 格納に必要なゥォブル数が異なるため、 記録層間のァドレス情報列が共通化でき ない。 もし共通化するのであれば、 冗長度の大きい低密度な変調方式に情報密度 は制限されてしまう。
更に、 一般的にゥォプル信号から搬送波成分を抽出するクロック引込みでも、 情報復調時における同期引き込みでも、 外乱や低品質品への対処として引込みが うまく行なわれない はリ トライを行なう。 ゥォブル周波数や変調^:が目標 とする記録層のものと異なって引込みが出来ないのか、 信号品質が悪く引込みが 出来ないのかの判別が難しく、 リトライが所定回数終了するまで待つしかなく、 ゥォブル周波数や変調方式が記録層毎に異なる には、 判別に非常に長レ、時間 を要すことになる。
このように、 記録層毎に周波数や変調方式を大きく変えることは、 適切ではな いと言える。 尚、 P S K変調、 F S K変調、 及ぴ、 これらを組み合わせた F S K + P S K変調では、 変復調回路での共通部分が多いので、 これらの問題点は当て はまらない。
以上の様に、 複数の記録層を備えた多層情報記録媒体では、 記録層の判別 (層 判別) が重要 li であるが、 現状では最適な方法が見出されていな!/ヽ。
そこで、 ゥォブル変調方式として高レ、復調性能をもち、 且つ、 復調回路の共通 化が可能な F S K変調方式や P S K変調方式を用いた情報記録媒体を用いて、 層 判別等を行なうことのできるディスクフォーマットを ^し、 回路の大幅な増大 なしに、 又、 リトライによる長い待ち時間を要することも無く、 確実に層判別等 を行なうことの出来るようにしたい。
次に説明する本発明の実施例の 1つの目的は、 上記の点に鑑みてなされたもの であり、 ゥォブル変調方式として高い復調性能をもち、 且つ、 復調回路の共通化 が可能な F S K や P S Κ方式を用いて層判別を行うことのできるディスクフ ォーマットで回路の大幅な増大なしに、 又、 リトライによる長レ、待ち時間を要す ることも無く確実に層判別を行うことのできるようにすることにある。 本実施例 は、 追記型光ディスク, 書き換え型光ディスク, 光磁気ディスク等の記録媒体と CD— Rディスク, CD— RWディスク, DVD— Rディスク, DVD + Rディ スク, DVD— RWディスク, DVD + RWディスク等の光ディスクとに適用可 能である。
本実施例では、 上記の目的を達成するため、 次の (1) 〜 (12) の記録媒体 及び (13) 〜 (48) の光ディスクを^^する。
(1) 複数の記録層を有し、 その各記録層のトラックに一定周波数の搬送波を検 出させる搬送波部と当該記録層が何層目であるかを示す周波数変調波を検出させ る層情報部とからなるゥォブルを形成した記録媒体。
(2) 上記 (1) の記録媒体において、 上記周波数変調波の周波数は上記搬送波 の 1 / 2倍の周波数である記録媒体。
(3) 上記 (2) の記録媒体において、 上記周波数変調波の長さは上記搬送波の 2周期分である記録媒体。
(4) 上記 (1) の記録媒体において、 上記周波数変調波の周波数は上記搬送波 の 2倍の周波数である記録媒体。
(5) 上記 (4) の記録媒、体において、 上記周波数変調波の長さは上記搬送波の 1周期分である記録媒体。
(6) 複数の記^!を有し、 その各記^!のトラックに一定周波数の搬送波を検 出させる搬送波部と当該記録層が何層目であるかを示す位相変調波を検出させる 層情報部とからなるゥォブノレを形成した記録媒体。
(7) 複数の記録層を有し、 その各記録層のトラックに一定周波数の搬送波を検 出させる搬送波部と当該記録層が何層目であるかを示す上記搬送波とは異なる周 期の位相変調波を検出させる層情報部とからなるゥォプルを形成した記録媒体。
(8) 上記 (7) の記録媒体において、 上記搬送波とは異なる周期の位相変調波 の周波数は上記搬送波の 1 , 2倍の周波数である記録媒体。
(9) 上記 (8) の記録媒体において、 上記搬送波とは異なる周期の位相変調波 の長さは上記搬送波 2周期分である記録媒体。
(10) 上記 (7) の記録媒体において、 上記搬送波とは異なる周期の位相変調 波の周波数は上記搬送波の 2倍の周波数である記録媒体。
(11) 上記 (10) の記録媒体において、 上記搬送波とは異なる周期の位相変 調波の長さは上記搬送波の 1周期分である記録媒体。
(12) 上記 (1) 〜 (11) のいずれかの記録媒体において、 上記層情報部を 上記搬送波部分に挟まれた位置に配置した記録媒体。
又、 次の (13) 〜 (48) の光ディスクも徵する。
(13) トラックがゥォブリングしており、 上記ゥォブリングは第 1の情報を F S K変調した波形に基づく F S K変調部分と、 第 2の情報を P S K変調した波形 に基づく P S K変調部分と、 一定周波数の波形に基づく搬送波部分とに分かれて 形成されている光ディスク。
(14) 上記 (13) の光ディスクにおいて、 上記 FSK変調に用いる周波数は 上記搬送波部分による搬送波の 1 / 2倍である光ディスク。
(15) 上記 (14) の光ディスクにおいて、 上記 FSK変調によって記録され る単位情報の長さは上記搬送波部分による搬送波の 2周期分である光ディスク。
(16) 上記 (13) の光ディスクにおいて、 上記 FSK変調に用いる周波数は 上記搬送波部分による搬送波の 2倍である光ディスク。
(17) 上記 (16) の光ディスクにおいて、 上記 FSK変調によって記録され る単位情報の長さは上記搬送波部分による搬送波の 1周期分である光ディスク。
(18) 上記 (13) の光ディスクにおいて、 上記 PSK変調によって記録され る単位情報の長さは上記搬送波部分による搬送波の 1周期分である光ディスク。
(19) 上記 (13) の光ディスクにおいて、 上記 PSK変調部分は上記搬送波 部分に挟まれて配置されている光ディスク。 (20) 上記 (13) 〜 (19) のいずれかの光ディスクにおいて、 上記第 1の' 情報はァドレス情報であり、 上記第 2の情報は ί可層目の記録層かを示す層情報で ある光ディスク。
(21) トラックがゥォプリングしており、 上記ゥォプリングはアドレス情 を FS Κ変調した波形に基づく F S Κ変調部分と、 層情報を P S Κ変調した波形に 基づく第 1の PSK変調部分と、 一定周波数の波形に基づく搬送波部分と、 周期 的な同期情報を P S Κ変調した波形に基づく第 2の P S Κ変調部分に分かれて形 成されている光ディスク。
(22) トラックがゥォプリングしており、 上記ゥォプリングはァドレス情報を FS Κ変調した波形に基づく F S Κ変調部分と、 層情報を P S Κ変調した波形に 基づく P S Κ変調部分と、 一定周波数の波形に基づく搬送波部分とに分力れて形 成されており、 加えて周期的な同期情報がピットにより形成されている光ディス ク。,
(23) 上記 (20) 〜 (22) のレ、ずれかの光ディスクにおレヽて、 上記アドレ ス情報と光ディスクの雜位置の関係は、 各層共通となっている光ディスク。
(24) 上記 (20) 〜 (23) のいずれかの光ディスクにおいて、 記録済領域 の記録情報には層情報力 s含まれている光ディスク。
(25) トラックがゥォブリングしており、 上記ゥォプリングは一定周波数の波 形に基づく搬送波部分と、 第 1の情報を上記搬送波部分と異なる周期で、 且つ、 P SK変調した波形に基づく F SK+P SK変調部分と、 第 2の情報を P SK変 調した波形に基づく P S Κ変調部分とに分力ゝれて形成されている光ディスク。
(26) 上記 (25) の光ディスクにおいて、 上記 31^+?31:変調部分への FSK+PS Κ変調に用いる周波数は上記搬送波部分による搬送波の 1 Ζ 2倍で ある光ディスク。
(27) 上記 (26) の光ディスクにおいて、 上記?31^+?31:変調にょって 記録される単位情報の長さは上記搬送波部分による搬送波の 2周期分である光デ イスク。
(28) 上記 (25) の光ディスクにおいて、 上記 31^+?¾1:変調部分への FSK+PS Κ変調に用いる周波数は上記搬送波部分による搬送波の 2倍である 光ディスク。
(29) 上記 (28) の光ディスクにおいて、 上記 FSK+PSK変調によって. 記録される単位情報の長さは上記搬送波部分による搬送波の 1周期分である光デ イスク。
(30) 上記 (25) の光ディスクにおいて、 上記 PSK変調によって記録され る単位情報の長さは上記搬送波部分の搬送波の 1周期分である光ディスク。
(31) 上記 (25) の光ディスクにおいて、 上記 PSK変調部分は上記搬送波 部分に挟まれて配置されている光ディスク。
(32) 上記 (25) 〜 (31) のいずれかの光ディスクにおいて、 上記第 1の 情報はァドレス情報であり、 上記第 2の情報は何層目の記録層かを示す層情報で ある光ディスク。
(33) トラックがゥォプリングしており、 上記ゥォブリングは一定周波数の波 形に基づく搬送波部分と、 アドレス情報を搬送波部分と異なる周期で、 且つ、 P S K変調した波形に基づく F S K + P S K変調部分と、 層情報を P S K変調した 波形に基づく第 1の PSK変調部分と、 周期的な同期情報を PSK変調した波形 に基づく第 2の P S K変調部分に分力れて形成されている光ディスク。
(34) トラックがゥォブリングしており、 上記ゥォブリングは一定周波数の波 形に基づく搬送波部分と、 アドレス情報を搬送波部分と異なる周期で、 且つ、 P S K変調した波形に基づく F S K + P S K変調部分と、 層情報を P S K変調した 波形に基づく P S K変調部分とに分力れて形成されており、 加えて周期的な同期 情報がピットにより形成されている光ディスク。
(35) 上記 (32) ~ (34) のいずれかの光ディスクにおいて、 上記ァドレ ス情報と光ディスクの ^位置の関係は、 各層共通となっている光ディスク。
(36) 上記 (32) 〜 (35) のいずれかの光ディスクにおいて、 記録翻域 の記録情報には層情報力 S含まれている光ディスク。
(37) トラックがゥォブリングしており、 上記ゥォブリングは一定周波数の波 形に基づく搬送波部分と、 層情報を FSK変調した波形に基づく FSK変調部分 とに分かれて形成されている光ディスク。
(38) 上記 (37) の光ディスクにおいて、 上記 FSK変調に用いる周波数は 上記搬送波部分による搬送波の 1 Z 2倍である光ディスク。
(39) 上記 (38) の光ディスクにおいて、 上記 FSK変調によって記録され る単位情報の長さは上記搬送波部分による搬送波の 2周期分である光ディスク。
(40) 上記 (37) の光ディスクにおいて、 上記 FSK変調に用いる周波数は 上記搬送波部分による搬送波の 2倍である光ディスク。
(41) 上記 (40) の光ディスクにおいて、 上記 FSK変調によって記録され る単位情報の長さは上記搬送波部分による搬送波の 1周期分である光ディスク。
(42) 上記 (37) 〜 (41) のいずれかの光ディスクにおいて、 上記 FSK 変調部分は上記搬送波部分に挟まれて配置されている光ディスク。
(43) トラックがゥォブリングしており、 上記ゥォブリングは一定周波数の波 形に基づく搬送波部分と、 層情報を搬送波部分と異なる周期で、 且つ、 PSK変 調した波形に基づく F S K + P S K変調部分とに分かれて形成されている光ディ スク。
(44) 上記 (43) の光ディスクにおいて、 上記 F S K + P S K変調部分への FSK+PS K変調に用いる周波数は上記搬送波部分による搬送波の 1 Z 2倍で ある光ディスク。
(45) 上記 (44) の光ディスクにおいて、 上記 31:+?31:変調にょって 記録される単位情報の長さは上記搬送波部分による搬送波の 2周期分である光デ イスク。
(46) 上記 (43) の光ディスクにおいて、 上記FSK+PSK変調部分への F SK+P SK変調に用いる周波数は上記搬送波部分による搬送波の 2倍である 光ディスク。
(47) 上記 (46) の光ディスクにおいて、 上記 31^+?31^変調にょって 記録される単位情報の長さは上記搬送波部分による搬送波の 1周期分である光デ イスク。
(48) 上記 (43) 〜 (47) のいずれかの光ディスクにおいて、 上記 PSK 変調部分は上記搬送波部分に挟まれて配置されている光ディスク。
本実施例による記録媒体と光ディスクは、 ゥォブル変調^:として高い復調性 能をもち、 且つ、 復調回路の共通化が可能な FSK方式や PSK方式を用いて層 04 003420
33 判別を行うことのできるディスクフォーマットで回路の大幅な増大なしに、 又、 リトライによる長レヽ待ち時間を要することも無く確実に層判別を行うことができ る。
又、 本実施例の他の 1つの目的は、, F S K変調、 P S K変調、 或いは、 これら を組み合わせた F S K+ P S K変調がされたゥォブルを情報記録媒体に正確に形 成することができるようにすることである。
本実施例は、 光スポットを照射して情報記録媒体上にゥォプリングしたトラッ クを形成する情報記録媒体形成装置において、 lift己光スポットを lilt己情報記録媒 体上に照射する記 置と、 Ιίίΐ己光スポットの it己情報記録媒体上での照射位置 を変えて編己トラックのゥォブリングを発生させる照射位置変更装置と、 周波数 が異なる又は同一周波数で位相の反転した複数の信号を発生する信号発生器と、 この発生した複数の信号を所定の信号に基づレ、て切り替えて籠己照射位置変更装 置に選択的に出力する選雕置とを備え、 編己照射位置変更装置は、 選択的に切 り替えて出力される tfjf己信号に基づいて ΙϋΙ己ゥォプリングを発生させることを特 徴とする情報記録媒体形成装置を«する。
別の面から見た本実施例は、 光スポットを照射して情報記録媒体上にゥォプリ ングしたトラックを形成する情報記録媒体形成方法にぉレヽて、 周波数が異なる又 は同一周波数で位相の反転した複数の信号を発生し、 この発生した複数の信号を 所定の信号に基づレヽて切り替えて選択的に出力し、 この出力する信号に基づレ、て 前記光スポットの ΙίίΙΞ情報記録媒体上での照射位置を変えて ΙΒトラックのゥォ ブリングを発生させることを特徴とする情報記録媒体形成方法である。
本実施例によれば、 周波数が異なる又は同一周波数で位相の反転した複数の信 号を組み合わせてゥォブル信号を生成し、 このゥォブル信号で情報記録媒体にゥ ォブリングを形成することができるので、 周波数差が倍以上に設定されている変 調方式等に対しても、 ゥォブル信号を変調する際の周波数樹亍がスムースに行わ れ、 所定の信号に基づいて F S K変調、 P S K変調、 或いは、 これらを組み合わ せた F S Κ + P S Κ変調がされたゥォプルを情報記録媒体に正確に形成すること ができる。
本実施例の更に他の 1つの目的は、 クロストークに強い F S K変調、 P S K変 調、 又は、 FSK+PSK変調で、 記録層が多層構造の情報記録媒体に層情報を 格納し、 これを検出することを可能として、 アクセス中の記^!の判断がすばや く正確にできるようにすることである。
本実施例は、 トラックに情報が変調されたゥォブルが形成されている情報記録 媒体から編己ゥォプルに記録されている情報を読み取る情報検出装置において、 ItilBゥォブルから得られたゥォブル信号から基準ク口ック信号を生成するクロッ ク生成手段と、 鍵己基準ク口ック信号をもとに肅己ゥォブル信号から F S Κ変調 情報、 PSK変調情報、 又は、 FSK+PSK変調情報を検出する復調手段と、 t&t己情報記録媒体が記録層が多層構造で各記録層についてデータの記録が可能で あるときの tflf己記録層の別を示す層情報の位置を示すタイミング信号を出力する 同期検出手段と、 このタイミング信号により tfHB復調手段の出力を保持して、 前 記層情報を検出する層情報検出手段とを備えていることを特徴とする情報検出装 置を する。
別の面から見た本実施例は、 トラックに情報が変調されたゥォプルが形成され ている情報記録媒体から ItflBゥォブルに記録されている情報を読み取る情報検出 方法にぉレ、て、 編己ゥォブルから得られたゥォブル信号から基準クロック信号を 生成し、 ffJlB基準クロック信号をもとに編 Sゥォブル信号から F S K変調情報、 PSK変調情報、 又は、 FSK+PSK変調情報を検出し、 爾己情報記録媒体が 記録層が多層構造で各記,についてデータの記録が可能であるときの前記記録 層の別を示す層情報の位置を示すタイミング信号により、 HUBゥォブル信号から の検出情報を保持して IB層情報を検出することを特徴とする情報検出方法であ る。
更に別の面から見た本実施例は、 記録層が多層構造で各記録層について光の照 射によりデータの記録が可能であり、 トラックに情報が変調されたゥォブルが形 成されている情報記録媒体において、 tfif己ゥォブルには嫌己記^!の別を示す層 情報が F S K変調情報、 P S K変調情報、 又は、 FSK+PS K変調情報として 記録されていることを特徴とする情報記録媒体である。
本実施例によれば、 クロストークに強い FSK変調、 PSK変調、 又は、 FS K+PS K変調で、 記録層が多層構造で各記録層について光の照射によりデータ 0
35 の記録が可能である情報記録媒体に層情報を格納し、 これを検出して、 アクセス 中の記録層の判断がすばやく正確にできるので、 適切に情報の記録、 再生を行う ことができる。
図 2 1は、 本実施例が適応できる情報記録が可能な記録媒体である光ディスク (媒体) 1 0 1の構成を示す図である。 図 2 1中、 左側がディスク 1 0 1の平面 図を示し、 右側がその一部を拡大して示す斜視図である。 ディスク 1 0 1は、 追 記型光ディスク, 書き換え型光ディスク, 光磁気ディスク等の記録媒体と CD— Rディスク, CD— RWディスク, DVD— Rディスク, DVD + Rディスク, DVD— RWディスク, DVD + RWディスク等の光ディスクである。 ディスク 1 0 1には、 同心円状、 もしくはスパイラノレ状に、 グループ 1 0 2 (溝) 1 0 2 とランド 1 0 3からなるトラック 1 0 4が开成されている。 このトラック 1 0 4 はディスク形成装置により、 予め作成されるものであって、 情報 (記録再生) 装 置は、 このトラック 1 0 4に沿って、 情報の記録、 再生を行なう。 又、 ディスク 1 0 1には回転 If報として、 線速度一定もしくは角艇一定で回転した に、 一定周波数 (周期) の信号が検出可能なように、 トラック 1 0 4が蛇行 (ゥォプ リング) している。 CD - RWや D VD + R/RWでは、 このトラック 1 0 4の 蛇行を概略一定周波数としながら、 周波数や位相を若干変える部分を設けること で、 同期情報やアドレス情報を記録している。 これをゥォプルと呼ぶ。 ゥォブル のその他の形態として、 トラック 1 0 4の片側のみ蛇行しているものや、 間欠的 に蛇行が途切れている^^もある。
又、 ディスク 1 0 1の絶対位置を表す他の方法として、 ピットゃ F CM (Fine Clock Mark) を形成することもできる。図 2 2 A〜図 2 2 Cには、 この^のデ イスク 1 0 1の形状を示す図である。 ピットには、 グループ 1 0 2に存在するも のや、 ランド 1 0 3に存在するものがある。 図 2 2 A〜図 2 2 Cは、 グループ 1 0 2に情報を記録するディスク 1 0 1を示しているが、 ランド 1 0 3に記録する ことも可能である。 グループ 1 0 2を溝と考えると、 グループピットとは、 図 2 2 Aに示 111に溝の切れ間となる。 このグループピット 1 0 5は、 反射光の強度 変化、 例えば R F信号の振幅の変化で検出することが出来る。 光磁気ディスク 1 0 1等記録情報が反射信号の振幅変化以外で記録されている は、 R F信号の 振幅からグルーブピット 1 0 5を容易に検出できる。 しかし色素 (R: レコーダ ブル) ディスクや相変化 (RW : リライタブル) ディスク等記録情報が反射信号 の振幅変ィ匕で記録されている は、 ピット情報と記録情報共に同じ検出方法を とるので、領域分割する等ピット情報と記録情報を区別して判別できる様にする ことが望まれる。
ランドピットとは、 図 2 2 Bに示 tに、 溝間のランド 1 0 3にグループ 1 0 2と略同じ深さの穴が空いている状態といえる。 このランドピット 1 0 6は、 プ ッシュプル信号 (トラック 1 0 4の接線方向に分割した受光素子から得られる差 信号) の振幅として検出することが出来る。 光スポットが正確にトラック 1 0 4 の中央にトラッキングしている場合には、 記録情報成分はプッシュプル信号には 殆ど残らないため、 ランドピット 1 0 6は容易に検出できる。 特定のグループ 1 0 2にトラッキング中には左右のランド 1 0 3にあるピットを検出することが出 来るが、 両方の組^:で情報としても良いし、 片側のみのピット列で情報列を構 築しても良い。 又、 F CMは、 図 2 2 Cに示 itにトラック 1 0 4のゥォブリン グが局所的に高周波、 大振幅となったものと考えて良い。 検出はゥォブル信号と 同様な方法で可能である。 これらはゥォブルと組^ ϋ:て形成することができる。 以上のように、 ディスク形成段階で埋め込まれた情報信号を用いることで、 デ イスク 1 0 1上の絶対位置を特定することができる。 例えば、 これらをゥォブル 信号の復調に必要な同期信号として用いれば、 高い精度で位置決めを行なうこと が出来る。
ディスク 1 0 1力 記録層が多層構造で各層に情報の記録が可能である記録媒 体の:^は、 夫々の層にこのゥォブルが する。 これらは少なくとも隣り合う
2つの層で同一周波数となっていることが望ましい。ゥォブル周波数が異なると、 クロックゃ同期の引きこみに時間がかかるため、 層間の移動が頻繁に行なわれる ^^には、 ゥォブル周波数を同一とした方がすばやくアクセスできる。 又、 トラ ック 1 0 4のスパイラル方向は複数の層で同じでも構わないし、 層毎に反転され ていても良い。 例えば、 1層目と 2層目のスパイラノレが反転しているときの利点 は次に示すとおりである。 ディスク 1 0 1を一定方向に回転させている状態で、 1層目の内周にトラッキングすると、 スパイラルに沿って外周側へ移動する。 あ る ^位置で層間ジャンプして 2層目にトラッキングすると、 ディスク 1 0 1の 回転方向は同じでもスパイラルに沿って今度は内周側へ移動する。 即ち、 動画像 等連続的な情報を 2層に渡って再生する:^、 ディスク 1 0 1の回転方向を変え ずに同じ半径位置で層間ジャンプするだけで両層の情報を連続的に再生できるの である。 同じにした の利点としては、 ディスク回転数一定で記録再生す る 、 ディスク外周の方が線 ¾gが速いので、 情報^ 5¾レートが高いことが挙 げられる。 このため、 ディスク外周を優先的に使用できるようにスノイラルを全 周とも外周から内周へトラッキングするべく形成すると、 記録開始から最高 レートとなる。
又、 通常、 ゥォプリングはグループ 1 0 2に形成することが多レ、が、 ランド 1 0 3に形成してもグループ 1 0 2の と大きな違いは無く、 信号生成の極性を 反対にすれば良い。 情報を格納することのできる記録層が多層であった場合、 記 録できない R OM層と記録可能な記録層が存在する構成としていても良い。 以下 に説明する例では、 ディスク 1 0 1の記録原理や記録溝の ffi¾U、 層数には制限さ れ得ることなく、 少なくともゥォブリングで情報を格納するディスク 1 0 1に適 応可能である。
図 2 3にディスク 1 0 1に照射された光ビームの反射光を受光し、 各種信号を 抽出する受光素子周辺の信号処理ブロックの一例を示す。 即ち、 ディスク 1 0 1 力 の反射光を 4分割 P D (受光素子) 1 1 1で受光する。 この 4分割受光素子 1 1 1は光学的にディスク 1 0 1の表面のトラック 1 0 4の接線方向とそれに垂 直方向に対応する分割線で 4つに tt^]られて 、る。 4分割受光素子 1 1 1の分割 部分を便宜的に図 2 3の左前より時計回りに A〜Dとし、 各分割部分 A〜Dから の出力も対応する A〜Dで示す。 受光素子出力は電流信号なので、 I /V回路 1 1 2によって «J£信号に変換する。 SBE変換された信号は後段の演算回路 1 1 3 で、 様々な加算、 減算を行って各種信号が抽出される。 トラッククロス信号は、 「A+ B + C +DJ の演算結果の低周波信号である。 トラックエラー信号はプッ シュプル信号ともいうが、 「(A+D) — (B + C)j で求める低周波信号である。 フォーカスエラー信号は非点収差法の: t 合、 Γ (Α+ 0 - (B +D)」で求める低 周波信号である。 これらをサーポ信号とレ、い、 光ビームをトラッキングさせるた P T/JP2004/003420
38 めに使用される。 ゥォブル信号は「(A+D)— (B + OJの高周波信号である。 ここではトラックエラ一信号と同じ回路で演算しているが、 勿餘別の回路で演算 しても良いし、 演算回路 1 1 3を構成する減算アンプの前に各種捕正回路を挿入 しても良い。 又、 再生 (R F) 信号としては高帯域の別回路で演算することが望 ましいため、 I /V回路 1 1 2の後段で直接 4つの信号を加算して演算している。 ここで示したのは各種信号の最も簡単な演算方法の例であるが、 4分割受光素 子 (P D) 1 1 1の分割形状はこの例に限定されるものではなく、 光ビームの数 や光路に応じて更に細かく分割されていても構わないし、 逆に 2分割、 3分割と 少なくても良い。 夫々の受光形態に応じて信号演算を最適化すれば良い。 更に、 メインとサブからなる複数の光ビームから各種信号を検出する でも構わない。 例えばトラックエラー信号は 3つの光ビームを受光して演算する 3ビーム法や D P P (Differential Push-PuU)法等の^ ^である。 トラッククロス信号も 3ビー ムで演算することもできる。 トラックエラ一信号は D P D (Differential Phase Detection)法でも構わない。又、 フォーカス系はナイフエッジ法等別の受光素子 から演算されても良い。
即ち、 検出法によって演算法を適正化すれば良く、 そのディスク 1 0 1から信 号を抽出する方法、 手段は問題ではない。
図 2 4は、 一般的なゥォブル変調方式のゥォブル信号の波形を示す波形図であ る。 同図 (a ) に示す 1番上のモノトーンは、 変調のない S I N波の連続で、 搬 送波領域等に使用される。 同図 (b ) に示す 2番目は変調データで、 以降の変調 ゥォブル信号はこのデータに対応している。同図(c )に示す 3番目は F S K (F M) 変調が重畳されたゥォブル波形でモノトーンの 1 / 2周波数を用いた で ある。 同図 (d) に示す 4番目は P S K (PM) 変調、 同図 (e ) に示す 5番目 はノコギリ変調、 同図 (f ) に示す 6番目は MS K変調、 同図 (g) に示す 7番 目は ON— O F F変調である。夫々利点、欠点があるため、本実施例においては、 ディスク 1 0 1にこれらの変調方式が一部組合わされて使われていても良い。尚、 変調はァドレス等の情報を含むために挿入される。
ゥォプルの変調により位置情報を記録する のフォーマツト全体像の例を図
2 5 A〜図 2 5 Cに示す。 一般的なフォーマットでは図 2 5 Aに示す様に、 大部 分を占める搬送波領域(搬送波) と、 同期情報部 (同期)、そしてアドレス情報部
(AD) が存在する。 搬送波領域から得られた搬送波成分で基準クロックを生成 し、 この基準クロックをもとに周期的に現れる同期情報部の位置を特定し、 同期 情報部から所定距離 (ゥォブル数) 離れた位置にあるアドレス情報部の復調結果 力らアドレス情報を読み取り、 ディスク 1 0 1上の位置を検出する。 同期情報部 の変調形態は一般的にアドレス情報部やその他 (層情報部) の領域には無い、 も しくは少ないものが使われており、 周期的に発生するので区別ができる。
本実施例のディスク 1 0 1では、 図 2 5 Bや図 2 5 Cのように、 現在アクセス 中の記録層が何層目の記^ ϋであるかを示す層情報を格納する。 図 2 5 Βでは、 同期情報部とアドレス情報部は連続しており、 層情報部は搬送波領域に挟まれた 位置に配置している。 同期情報部とァドレス情報部を離して配置してもァドレス を読み出せないことはないが、 その間に外乱等によりクロックずれ (同期情報部 を基準としたゥォブル数力ゥントがずれること)力 S発生した:^は誤検出となる。 アドレス情報は、 アクセス位置の移動時等、 頻繁に、 且つ、 高速に読み出す必要 があることから、 正確で信頼性の高い検出が期待されるので、 極力、 同期情報部 に接近して配置されるのが望ましい。 同様に、 層情報部も同期情報部、 アドレス 情報部に接近して配置されても良いが、 変調部が長くなると基準ク口ック生成の ための搬送波成分が長期間抽出できず、 基準クロックが不安定になる不具合も出 てくる。 ゥォブルの変調部においては搬送波を抽出するための B P F出力が乱れ るため、 極力変調部分の連続は避けたい。 この乱れは、 搬送波 1〜 2周期分の変 調では大きな乱れとはならないが、 それ以上変調部が長くなると、 B P F出力の 波形 (周期) が乱れてしまい、 基準クロック生成に悪影響となる。 勿論、 乱れは B P Fの特性によるので、 基準クロックの抽出に問題が無ければ、 同期情報部と ァドレス情報部に連続して、 層情報部を格納しても良い。
層情報は、 ¾本的に記録層を変更した時に読み出されるだけなので頻度は少な く、 且つ、 情報量が数 bitと少なく短時間で読出し可能なので、 何度もチェック することが容易である。 例えクロックずれが発生しても、 このチェックにより間 違いが発見でき、 リトライ再生が可能である。 このため、 層情報部は同期情報部 ゃァドレス情報部と離れた位置に配置しても問題は少なく、 基準クロック生成へ P2004/003420
40 の悪影響を回避することが望ましい。
又、 図 25 Cでは、 層情報部を間欠的に配置している。 アドレス情報を表すに は多くのビット (情報量) が必要であるが、 前述のように変調部を連続させると 不具合があるため、 1箇所のァドレス情報部には情報の一部分である 1〜 2ビッ ト禾 S し力配置せず、 複数のァドレス情報部に渡ってァドレス情報を格納する。 言 、かえれば、同期情報部とアドレス情報部と搬送波領域を 1セットとしたとき、 1つのアドレスを完成させるためにはいくつものセットの情報をまとめる。逆に、 層情報は 2層の記録層を判別するには 1ビット、 4層でも 2ビットで足りるため、 セット毎全てに層情報を格納する必要は必ずしもない。 複数のセット毎に層情報 を格納すれば十分である。 層情報部としてはセット毎に確保し、 層情報と別の情 報を交互に格納することもできる。 勿論セット毎に何度も格納すれば、 繰り返し により信頼性が上がると共に、 すばやい層判別が可能になる利点はある。
このように、 アドレスと同様な格納方法、 即ち複数のセットの情報をまとめて 完全な情報となる方法で埋め込まれた層情報の判別には、 非常に長くゥォプルの 変調情報を読み取る必要があるが、 ゥォブルの特定位置に刻まれた層情報部のみ の判別で層検出が可能であれば短時間での判断が可能である。 層情報の変調部に 限るわけではな 、が、 変調部は極力短レ、期間で情報を格納すべきである。
本実施例では、 ディスク 101に対し、 図 24に示すゥォブル波形のうち、 P SK、 FSK、 FSK+PSK ( 31:と 31^の糸且み合ゎせ) を用いる。 図 2 6には、 この;^の具体的なゥォプル波形を示す。 図 26 (a) に井桁付きの番 号 #x (x = n- 3, n— 2, n— 1, n, n+l, n+ 2, n+3, n + 4) で示された番号は、 変調部の先頭ゥォブルを n番目として搬送波周期毎に数えた 番号である。 同図 (b) に示すように、 ?310ま# 11に搬送波周期で位相が0度 と 180度に変化することにより情報を格納する方式である。 同図 (c) に示す ように、 FSK— 1は !!と穽 +丄に、 搬送波周期の 2倍の周期 (1/2周波 数) のゥォブル波形が有る力 \ 搬送波周期のゥォブル波形かで情報を観内する方 式である。 同図 (d) に示すように、 31:—2は# 11に搬送波周期の1/ 2倍 の周期 (2倍周波数) のゥォブル波形が有る力、 搬送波周期のゥォブル波形力で 情報を格納する方式である。 同図 (e) に示すように、 FSK— 3は FSK— 1 4003420
41 の搬送波 1周期のみで情報を格納する方式である。 同図 (f) に示すように、 F SK— 4は #nと #n+l及ぴ #n+2に搬送波周期の 3倍の周期 (1/3周波 数) のゥォブル波形が有る力 \ 搬送波周期のゥォブル波形かで情報を格納する方 式である。 同図 (g) に示すように、 FSK+PSK— 1は、 #nと #n+lに 搬送波の 2倍の周期 (1/2周波数) のゥォブル波形で、 位相が 0度と 180度 に変化することにより情報を格納する:^である。又、同図(h)に示すように、 FSK+PSK—2は、 #nに搬送波の 1/2倍の周期 (2倍周波数) のゥォブ ル波形で、 位相が 0度と 180度に変化することにより情報を格納する方式であ る。 ここでは代表例を示したが、 周期を変更する FSKと、 位相を変更する PS K、 又、 それらを組^:た F S Κ+ P S Κとがあり、 その周期や情報 1ビットを 示すのに必要な搬送波長には制約される必要はな!/ヽ。
図 26のゥォプル波形をフォーマツトの全体像に当てはめて図示したものが図 27である。 図 27 (a) に示すように、 ,同期情報部を #0〜3、 アドレス情報 部を #4, 5、層情報部を #n, n+1、それ以外を搬送波部としている。勿論、 夫々の領域の長さや配置は、 これに限らない。 層情報部の位置 #nに関しては同 期情報部間隔のおおよそ半分くらいが適当である。 しかしながら、 アドレス情報 部の変調部分でゥォブル 2値化信号の周期が乱れ、 基準ク口ックが一時的に数ゥ ォブル程度の期間不安定になる領域を除けば、 何処に配置しても良 ヽ。
図 27 (b) に示すように、 T^pelのアドレス情報部は、 搬送波 2倍周期の F SK変調、 層情報部は搬送波周期の PSK変調を示している。 同図 (c) に示す ように、 TVpe2のァドレス情報部は、 搬送波 2倍周期の F S K + P S K変調、 層 情報部は搬送波周期の PSK変調を示している。同図(d)に示すように、 ype3 のアドレス情報部は、 搬送波 2倍周期の FSK変調、 層情報部は搬送波 2倍周期 の 31:+?31^変調を示してぃる。 同図 (e) に示すように、 TVpe4のァドレ ス情報部は、 搬送波の 2倍周期の F SK+PS K変調、 層情報部は搬送波 2倍周 期の FSK+PSK変調を示している。 同図 (f) は、 後述する! pe5を示す。 了ドレス情報部と層情報部の変調^が異なれば、 それらを間違えることはな Vヽ 力 S、 例え同じ変調^であっても、 同期情報部からの位置によってそれらを混同 することはない。 層情報部は図 27では搬送波 2周期を割り当てている。 これは、 変調^に応 じて適正な長さがあるが、 クロック生成への悪影響ゃクロストークへの耐'性を考 慮すると、 極力少ない搬送波周期で情報を格納することが望ましい。 又、 FSK では搬送波の整数倍が望ましい。 例えば、 2層ディスク 101を表すためには、 「0」 と 「1」 の 1ビット情報が必要である力 これは搬送波 1周期分で格納す る。 4層ディスク 101であれば、 2ビット情報が必要なので、 搬送波 2周期分 で格納する。 具体的には、 図 26に示す PSKや FSK— 2、 FSK— 3、 FS K+PSK-2等で、搬送波 1周期で完結するタィプの変調;^:を用いると良い。 勿論、 F SK— 1のように 1ビットを搬送波 2周期で表しても良レ、が、 記録層が 多くなると、 クロック生成上不安;^間を長くすることになる。
図 27 (b) 〜 (e) に示す Ίνρ6ΐ〜Τ^ρθ4までは、 同期情報部に PSK変調 を示してある。 PSK変調方式は高い信号 SZN比が得られるので、 搬送波部分 との区別が容易で同期情報部に使用することが望ましい。 しかしながら、 ト ラックにある同周波数のゥォブル成分が漏れ込むと (クロストーク) 振幅や位相 変動が発生し、 復調信号 SZN比が低下する。 同期信号に限っては周期的なので 稀に誤検出があっても補間できるので、 PSK変調とする利点はある。 PSK変 調方式以外の例として同期情報部に F SK変調;^:を用いても構わない。
図 27 (f ) に示す iype5は、 1Z2周期の FSK変調で 1搬送波期間とした を示し、 この も、 同図 (b) 〜 (e) に示す TVpel〜4と同様に同期信 号として検出することができる。 復調信号 SZN比は P S K^5¾に比べ若干低下 するが、 ¾トラックの搬送波ゥォブルとは周波数が異なるため、 クロストーク による悪影響を受け難く、 クロストークが大きい場合は PSK方式より FSK方 式の方が^^である。 搬送波 2倍周期の FSKを用いても良レ、。 その他、 図 22 Α〜図 22 Cに示すようなピット信号や F CMにより同期情報部を形成しても良 い。 グループピット 105を同期信号として用いる^^は、 グループピット 10 5の検出系とゥォブル検出系が異なるため、 タイミング補正が必要になる。 ダル ーブピット 105は和信号処理系 (例えば RF処理系) から検出されるが、 ゥォ ブルは難号処理系 (ゥォブル処理系) 力 ら検出される。 このため、 和信号処理 系と 言号処理系の遅延時間差を調整して、 ゥォブルのァドレス情報部や層情報 部の位置を正確に示す必要がある。 グルーブピット 1 0 5に限らず、 同期情報部 を検出する系と、 アドレス情報部や層情報部を検出する系が異なる は、 夫々 の復調処 ®1延の差を調整してタイミングを合わせる必要がある。
以上のような構成で、 複数の記^ ϋを積層した記録ディスクをディスク 1 0 1 に層情報を記録すると、 層情報の判別が正確に、 且つ、 すばやく行なえる。 尚、 多層ディスクと単層ディスクの互換を取るためには、 単層ディスクに対しても同 様に層情報を盛り込んでおくことが必要である。
次に、 アクセス速度や再生専用ディスクとの互換性を考える。 異なる^ g位置 への移動 (シーク) 時には、 現在アドレスと目標アドレスを元に、 移動距離を計 算してピックアップ等可動部を動力す。 一般的にディスク 1 0 1には線密度一定 で情報は記録されているので、 外周程 1周あたりの記録情報が多く、 ^位置と 了ドレス情報は線形の対応とならない。 勿論少し複雑な計算を行なえばァドレス 情報から 位置が求まるが、 アクセス時間を短くするためには、 アドレスと半 径位置の対応を示すテーブル等を記憶して、 参照すること力 s望ましレヽ。
例えば、 既に実用化されている 2層 DVD— ROMでは、 層毎にアドレス情報 を変えることで層判別することができる。 光学的反射レベルがそもそも 1層 DV D— R OMとは異なって低いので、 第 1次判別の方法は反射率や信号レべ で 可能であるものの、 パラツキ要因が大きく、 最終的にはアドレス情報を用いて層 を判別する。 しかし、 夫々の層毎に tiff己のテーブルを用意すると、 メモリ容量を 単層の: ^に比べて 2倍にする必要がある。 これを避けるため、 DVD— ROM では同じ半径位置でのァドレス情報に層間関係を持たせ、 具体的には捕数関係に して、. 1層目のアドレス情報に対して半径位置とのテーブルを用意しておき、 2 層目は 1層目のァドレス情報に補数計算で変換した後、 半径位置を求める方法が とられている。 補数計算はビット反転で可能なので、 容易に計算できる。 しかし ながら、 3層以上の多層の場合には、 この補数関係も適応しにくく、 層毎にアド レス情報を変える(重複しないようにする)ためには情報量を増やす必要があり、 非効率である。 このため、 3層以上の ROMディスクでは、 層毎にアドレス情報 の配列は変えることなく共通で、記録情報内に層情報を格納することが望ましい。 勿論再生専用の DVD— ROMでは、 トラックゃゥォプルは存在しないので、 ァ ドレス情報や層情報は他の記録情報と同じように格納されれば良い。 そのァドレ ス情報はセクタ単位 (比較的小さ 、データの区切り) で完結しており、 アドレス 情報の読込は比較的短時間で可能なフォーマツトとすべきである。
記録ディスク 1 0 1は、 ゥォブルに格納された層情報を検出することでァクセ ス中の記録層を判別することができるが、 前述の様に再生専用ディスク 1 0 1に はゥォブ /レがなく、 層情報は記録情報から検出する必要がある。 記録ディスク 1 0 1に記録する情報と、 再生専用ディスク 1 0 1に記録された情報のフォーマツ トは必ずしも同じにする必要はない。 しかしながら、 記録情報のうち層情報の格 納方法を再生専用ディスク 1 0 1と記録ディスク 1 0 1で共通化しておくことで、 ゥォブルの層検出機能を持たない再生専用の装置においても、 記録済ディスク 1 0 1を再生した に層判別をすばやく行なうことが出来る。
図 2 8は、 前述のようなフォーマツトを用いたディスク 1 0 1からアドレス情 報と層情報を検出する情報検出装置 1 6 1の装置構成のブロック図である。特に、 同期信号もゥォブルの変調から検出する を例に挙げている。 先ず、 ゥォブル 信号に含まれる搬送波成分をク口ック生成手段 1 2 1により抽出してクロックを 生成すると共に、 復調に必要な周波数の基準クロック信号も生成する。 クロック 生成手段 1 2 1の具体例については後述する。 基準クロック信号をもとに、 第 1 及ぴ第 2の復調手段 1 2 2 , 1 2 3において、 ゥォブルに含まれる変調成分を復 調、 抽出する。 例えば、 第 1の復調手段 1 2 2においては、 搬送波周波数と同じ 周波数の基準クロック f 1信号を使 、、 P S K変調部の復調を行なう。 第 2の復 調手段 1 2 3においては、搬送波周波数の 1 2周波数の基準クロック f 2信号 を用いて、 搬送波 2倍周期の F S K変調部、 もしくは 31:+ ? 31^変調部を復 調する。 同期検出手段 1 2 4では、 同期情報部の変調方式にあった入力信号を選 ぶ。 例えば、 同期情報部が P S K変調方式であれば、 第 1の復調手段 1 2 2の出 力信号を入力として選択する。 この入力信号の間隔をクロック信号に基づいて力 ゥントし、 周期的な同期情報部を検出し、 同期引きこみを行なう。 引きこみ後に 稀ではあるが誤検出があると (本来発見されるべき同期位置で信号が発見されな つた^)、擬似同期信号を生成し捕間する等して、カウントは通常通り継続す る。 同期情報部の発生タイミングを基準に、 クロック信号をカウントし、 デイス ク 1 0 1でフォーマツト上のァドレス情報部が配置されているタイミングでァド レス情報検出手段 1 2 5にタイミング信号を出力し、 且つ、 層情報が配置されて いるタイミングで層情報検出手段 1 2 6にタイミング信号を出力する。 了ドレス 情報検出手段 1 2 5と層情報検出手段 1 2 6では、 夫々の変調^に対応する復 調手段の出力を入力信号としてセレクタ.1 2 7により選択する。 前記タイミング 信号に応じて、 ァドレス情報信号及び層情報信号を検出する。
図 2 9は、 同期情報部としてピットや F CMを用いたときの層情報、 ァドレス 情報を検出するための情報検出装置 1 6 1め装置構成を示している。 図 2 9中、 図 2 8と同一符号のプロックは、 図 2 8と同様の機能であるため、 詳細な説明は 省略する。 グループピット 1 0 5を用いる (図 2 2 A)、和信号処理系から検 出されるため、 入力信号はセレクタ 1 2 0により 「A + B + C+D」 が選択され る。 ランドピット 1 0 6 (図 2 2 B) や F CM (図 2 2 C) を用いる^は^ f言 号処理系から検出されるため、入力信号はセレクタ 1 2 0により「(A+D)— (B + C)」が選択される。 これらの入力信号には、夫々フィルタ等事前に信号処理を 施しても良い。 同期検出手段 1 2 8ではクロック信号に基づいて入力信号をサン プリングして、 同期信号を見つけ、 同期性を確認した上で、 同期引きこみを行な う。 もしゥォブル 出系と同期検出系で信^!延が異なる は、 この同期検出 手段 1 2 8内で遅延補正を行なえば良い。 了ドレス情報検出手段 1 2 5や層情報 検出手段 1 2 6へのタイミング信号生成や、 第 1及び第 2の復調手段 1 2 2 , 1 2 3、 ァドレス情報検出手段 1 2 5と層情報検出手段 1 2 6は、 図 2 8の と 同じであるため、 その説明は省略する。
図 3 0は、 クロック生成手段 1 2 1の詳細な装置構成のプロック図を示す。 図 3 0におレ、て、 ゥォブル信号はノィズ成分や変調部を含んでレ、るため、 B P F等 のフィ /レタ 1 3 1で搬送波成分のみ抽出する。 この搬送波成分の信号をもとに P L L回路 1 3 2にて時間軸方向のノイズ (ジッタ) を除去した安定した周波数特 性を持ちながら、 回転変動等には追従した PLLCK信号を生成する。 尚、 P L L 回路 1 3 2の入力信号は 2値化してあっても良い。 PLLCK信号はデューティ (Duty) が 5 0 %とは限らないため、 ゥォブル周波数より高 、周波数を設定して おき、 後段で分周手段 1 3 3により 1 /Lの周波数に分周することでシステム的 に必要な周波数、 且つ、 デューティも 50%のク口ック信号を生成する構成とす ることが望ましい。 又、 PLLCK信号は基準クロックを生成するために f 1信号 周波数となるように分周手段 134で 1ZMの周波数に分周する。.又、 f 2信号 周波数となるように 1/Nの周波数にも分周手段 135で分周する。 尚、 分周の 方法については、 この限りではなく、 PLLCK信号から各出力の目的周波数に応 じて分周されていれば良い。 例えば、 クロック信号と f 1信号が同周波数であれ ば、 1 / Lと 1 ZMは共通化できるし、 f 2信号が f 1信号より高 、周波数であ れば、 f 1信号と f 2信号を入れ替えても構わない。 位相調整手段 136は、 第 1又は第 2の復調手段 122, 123で使用するゥォブル信号と、 基準クロック 信号もしくは基準クロック信号をもとに作られた正弦波 ( S I N波: Sinusoidal Wave)信号等との位相を合わせる目的で、 PLLCK信号の位相を調整する。各種 フィルタや PL L回路 132等を通過すると信号の位相が変化するが、 第 1又は 第 2の復調手段 122, 123では、 ゥォブル信号と、 基準ク口ック信号もしく は基準クロック信号をもとに作られた S IN波信号等が同位相であること力 高 V、復調性能を得る上で必要となる。そこで、位相調整手段 136により、 PLLCK 信号の位相を調整することで、 基準クロック信号の位相を調整する。 勿論、 f 1 信号と f 2信号夫々独立に位相調整手段 136を備えても構わないが、 効率化を 考え、 本例では PLLCK信号処理する位置に用意した。 又、 位相調整手段 136 の機能を PL L回路 132に搭載しても良いし、 位相調整手段 136に分周回路 132〜135 S I N波信号を発生する S I N波発生回路を含んでいても良い。 一方、 ゥォプル信号のフィルタ出力は変調部で信号が乱れる。 その様子を図 3 1に示す。 ここではフィルタを BPFとし、 同図 (c) に示すように、 変調部で BPF出力が乱れている場合を示している。 PLL回路 132への入力として同 図 (b) に示す BPF出力を 2値化した信号を使う場合、 同図 (c) に示すその 2値化信号は、 同図 (a) に示すゥォブル信号の変調部の付近 (図 31 (c) の 符号 141の囲み内) で非常に乱れている。 ?し1^回路132では、 この乱れが 続くと、 動作が不安定になりやすい。 そこで、 同図 (d) に示すような、 変調部 もしくはフィルタ出力が乱れる期間を示すマスク信号で P L L回路 132の位相 比較動作を休止するようにするようにすると、 PLL回路 132の動作を安定に 保つことが出来る。 このマスク信号は同期検出手段 128より容易に発生させる ことができる。
次に、 図 32A、 図 32B、 図 33及 図 34を用いて、 第 1及び第 2の復調 手段 122, 123の動作を説明する。 図 32A及ぴ図 32Bは、 第 1及び第 2 の復調手段 122, 123の構成例を示すブロック図であり、 図 32 Aがアナ口 グ方式の の構成を示し、図 32 Bがデジタル^:の の構成を示している。 先ず、 図 32 Aに示すアナログ; の^について説明する。 ゥォブル信号に 重畳されたノイズ等は、 BPF等のフィルタ 141で除去する。 一方、 基準クロ ック信号を元に、 信号発生器 (S IN) 142で同周波数の S I N波信号を生成 する。 このゥォブル信号、 S IN波信号の 2つの信号を乗算器 (X) 142にて 演算処理する。 このとき S IN波信号を使用したが、 これは復調性能を高めるた めであり、 若干の性能劣化を許容する は、 基準クロック信号をそのまま用い ても良いし、 デューティを変更した矩形波を用いても良いし、 基準クロック信号 (デジタル信号) と S IN波信号 (アナログ信号) の中間的な階段状の波形でも 構わない。 乗算器 143の出力を後段の積算器 (積分器、 ί) 144で特定の期 間 (CLRで示される) 積算 (積分) し、 サンカレホーノレド (S/H) 回路 14 5で特定のタイミング (SMPで示される) で信号レベルをホールドする。 CL Rは一般的に搬送波周期毎に搬送波の位相ゼロ付近で出力され、 積算器 144の 値を初期化する。 SMPも搬送波周期毎に出力されるが、 CLRの出力の直前に 出力され、 CLRにより初期化される直前の積算器 144の出力をホールドする。 尚、 ゥォプル信号の変調部が複数の搬送波周期で構成されている は、 搬送波 周期ではなく、 変調部の切れ目としても良い。 CLRや SMPは、 例えば同期検 出手段 128にて生成される。
図 32 Βに示すデジタル方式の場合も、 アナ口グ方式の場合と同様にゥォブル 信号はフィルタ 151にて重畳されたノィズ成分を除去され、 アナ口グ /デジタ ル (A/D) コンバータ 152にて量子化する。 これは、 例えば 8ビット の A/Dコンバータで良い。 A/Dコンバータ 152のサンプノレクロックは、 PLLCK信号を分周器 153で 1 / kの周波数に分周した信号とするが、 ゥォブ ル信号の 4倍以上の周波数が復調性能から見て適当である。 このク口ック毎に後 段の ROM 154に格納されているデータを出力する。 この ROMデータは S I N波を階段状に表すデータ、 搬送波又は変調周期の矩形波等を順次出力すれば良 い。 そして、 AZDコンバータ 152で取りこんだゥォブル信号のデータと、 R OM154から出力されたデータを乗算器 155にて乗算演算し、 アナログ;^ と同様に積算器 156、 サンプルホールド (S/H) 回路 157で積分処理、 サ ンプルホールド処理を行なう。 これらの回路は、 基準ク口ック信号の周波数や、 PLLCK信号の分周比 1 Zkがゥォブルの搬送波周期もしくは変調周期に合わせ て入力されれば、 第 1の復調手段 122にも第 2の復調手段ュ 23にも対応でき る。 又、 ROMデータを各変調部の基準 S IN波形状に応じて変更することで、 第 1の復調手段 122と第 2の復調手段 123の機能を 1つの復調手段で実現す ることもできる。 例えば、 P S K変調部の ROMデータは搬送波形状とし、 搬送 波 2倍周期の F S K + P S K変調部の R OMデータは搬送波手記の 2倍の波形と しておけば良い。
図 33は、 第 1の復調手段 122と第 2の復調手段 123の動作を説明するタ イミングチヤ一トである。 図 33は、 第 1の復調手段 122にかかわる信号、 第 2の復調手段 123にかかわる信号を、 夫々示している (尚、 図 32Aのアナ口 グ回路の例で説明する)。図 33 (a)は、前述の同期情報部(ゥォブル番号 #0) に PSK変調、 アドレス部 (ゥォブル番号 #6, 7、 ここでは、 前述の図 27と は異なる) に F S K変調を配置したディスク 101からのゥォブル信号をアナ口 グ方式で復調する波形を示す。 又、 図 33 (b) はゥォブル信号の波形、 図 33 (c) は f 1信号の波形を示す。
先ず、 中段の図 33 (d) 〜 (g) に示す第 1の復調手段 122に関連する波 形を説明する。 図 33 (b) に示すゥォブル信号の搬送波成分から生成された基 準クロックである図 33 (c) に示す f 1信号を基に、 信号発生器 142では図 33 (d) に示す S I N波信号を生成する。その後、図 33 (e) に示すように、 乗算器 143にてゥォブル信号と S IN波信号と乗算演算する。 勿論、 ゥォブル 信号は前処理として、 HPF (ハイパスフィルタ) 等のフィルタを通過させてお くと良い。 図 33 (f ) に示すように、 乗算結果は積算器 144にて変調周期、 ここでは搬送波周期毎に積算演算され、 図 33 (g) に示すように、 サンプルホ 一ルド (SZH) 回路 1 4 5にて積算結果をサンプルし、 次のサンプルの時まで ホールドしておく。 この場合は、 サンプルホールド出力が +側は大部分の搬送波 領域、 一側になった時が P S K変調により位相が 1 8 0度異なった位置を示して いる。 復調は搬送波周期で行なってレ、るので、 復調結果は 1搬送波周期だけ遅れ て出力される。 よって、 期待されるゥオフ 号で # 0の場所にサンプルホール ド出力は一側の P S K変調部が再現されている。 積算器 1 4 4の C L R信号と、 サンプルホールド回路 1 4 5の SMP信号は、 図 3 3 ( f ) に示すように、 略サ ンプルホールド(S/H) 出力信号に、 「〇」 で示すタイミングで動作する。 ゥォ ブル信号 (ゥォブ H号 # 0 ) には同期情報部の位相反転部があり、 この復調方 法で識別できるので、 得られた同期信号をもとにァドレス情報の位置を示す信号 や、 層情報の位置を示す信号を出力することができる。 又、 ゥォブル信号 (ゥォ ブル番号 # 6 , 7 ) には F S K変調部がある。 F S K変調は、 例えばデータ 「0」 に対し搬送波周期のゥォブル、 データ 「1」 に対して搬送波の 2倍周期のゥォブ ルに対応させている。 よって、 データ 「0」 の点線では、 復調結果であるサンプ ルホールド出力は搬送波と同じ信号レベル (+側)が検出される。逆にデータ Γ 1」 の太実線では、 サンプルホールド出力はゼロレベルと変化するので検出すること ができる。
P S K変調と F S K変調のフォーマツトであれば、 第 1の復調手段 1 2 2だけ でも復調は可能である。しかし、更に第 2の復調手段 1 2 3を設けることにより、 両復調手段の復調結果が同じであれば、 復調結果を正しいと判断し、 異なってい れば再度読み込む等して、 信頼性が高められる。
次に、 下段の図 3 3 ( i ) ~ ( 1 ) に示す第 2の復調手段 1 2 3に関連する波 形を説明する。 即ち、 第 2の復調手段 1 2 3では、 搬送波の 2倍周期である F S K変調部を復調するために、 ί 2信号として搬送波の 2倍周期を用いるので、 図 3 3 ( i ) に示すように、 乗算演算する S I N波も搬送波の 2倍周期である。 乗 算器 1 4 3、 積算器 1 4 4、 サンプルホールド (S/H) 回路 1 4 5の動作は第 1の復調回路 1 2 2と略同じである。 搬送波領域での復調結果はゼロである。 図 3 3 ( )、 図3 3 (k) 及び図 3 3 ズ 1 ) は、乗算器 1 4 3の出力信号、積算器 1 4 4の出力信号及びサンプルホールド(S /H)回路 1 4 5の出力信号を示す。 図 33 (1) のゥォブ Λ 号 #5, 6の部分の波形をみてみると、 データ 「0」、 即ち、 点線時のサンプルホールド出力は搬送波領域の結果と等しいゼロレベルと なる。 データ 「1」 の太実線時のサンプルホールド出力は +側となり、 ゼロから 変化するので、 変調部を検出することが出来る。 尚、 この第 2の復調手段 123 における同期情報部の P S Κ変調部の復調結果も、 搬送波領域と同じゼロレベル であるので、 FSK部のみが変化する信号となり、 FSK部のデータを探すこと も比較的容易である。
図 34は、 第 1の復調手段 122と第 2の復調手段 123の動作を説明するタ イミングチャートである。 図 34は、 ァドレス情報部に 31 +?311変調を配 置した を示す。 図 34中、 図 33と同一部分の説明は省略する。 図 34中、 了ドレス情報部以外は図 33の と同じである。 ァドレス情報部の F SK+P SK変調は、例えばデータ 「0」 に対し搬送波 2倍周期のゥォブル(太実線)、デ ータ 「1」 に対して搬送波 2倍周期のゥォプルを位相を 180度変えた (反転さ せた) 波形 (点線) に対応させている。 第 1の復調手段 122のゥォブル番号 # 6, 7の復調結果は、 データ 「0」、 「1」 に関わらずゼロとなる。 一方、 第 2の復 調手段 123の復調結果は、 データ 「0」 に対して +側、 データ 「1」 に対して 一側と明確に変化する。 このように、 FSK+PSK変調の復調では、 第 2の復 調手段 123から品質の良い復調結果を得ることが出来る。 尚、 ここまでの説明 に記載してある変調波形とデータ 「0」、 「1」 の関係は、 特にこれに限定される ものではない。
尚、 31:変調及ぴ?311+?3¾:変調がクロストークに強い理由について簡 単に説明しておく。 ディスク 101で、 隣接トラックのゥォブル成分は、 大部分 が搬送波周波数である。 第 1の復調手段 122で検出されるのは f 1信号周波数 成分、 即ち、 搬送波成分の位相であるため、 クロストーク成分も同時に復調結果 に重畳されてしまう。 よって、 PSK変調はクロストークが小さければ、 +/- の分離ができるため復調品質が良い (SZN比が高い) 力 クロストークが大き レ、と復調結果がクロストークの影響を受けて劣化する。 一方、 第 2の復調手段 1 23で検出するのは、 f 2信号周波数成分の位相である。 これは搬送波領域の復 調結果はゼ口となっているが、 クロストーク成分も搬送波周波数が大部分である ので、 同様にゼロとなる。 即ち、 FSK変調部分の復調結果にクロストークのあ る特定周波数の影響は殆どないことになる。 勿論、 クロストーク成分に f 2信号 周波数成分が多ければ、 クロストークの影響を受けることになるので、 極力、 F SK変調部分の割合は少なくすべきである。 よって、 ゥォプルへの情報は FSK 変調ばかりでなく、 他の変調;^を組^:ることが望ましレ、。
以上のように、 同期情報部ゃァドレス情報部に示した変調部を図 32 A、 図 3 2 B等で例示した回路で復調することができるが、 同様に、 層情報部に P S K変 調や F S K変調、 FSK+PS K変調で格納された情報も復調することができる。 尚、 図 32 A及ぴ図 32 Bに示す回路は同期検波方式を用いているが、 通信分 野等で周知である遅延検波方式で実現しても構わな ヽ。
次に、 記録層が多層構造で各記録層についてデータの記録が可能な情報記録媒 体であるディスク 101を形成するのに好適である、 情報記録媒体形成装置の一 構成例である光ディスク形成装置 201について説明する。
図 35は、 ディスク 101のトラック 104を形成する光ディスク形成装置 2 01の電気的な接続を示すプロック図である。 図 35にお!/、て、 先ず、 クロック 発生回路 202はディスク 101の回転情報とアクセス中の^ g位置に応じた半 径情報をモータ制御回路 215もしくは本システムを管理しているシステムコン トローラ (図示せず) 力ら受け取り、 ゥォブル周波数を生成するのに適切な基準 クロック信号を発生する。 例えば、 図 27 (c) の TVpe2に示すゥォブルフォー マットにする は、 搬送波周波数である f 1信号、 搬送波の 1/2周波数であ る f 2信号の 2種類の基準クロックを生成する。
その基準ク口ック信号をもとに、 S I 波発生回路 203, 204では夫々 S IN波状信号 (f 1信号 S IN波、 f 2信号 S IN波) を発生する。 又、 0度と 180度の位相をもっ?31^変調又は 31^+?31:変調ゥォブルを生成する場 合は、 反転回路 205, 206でこれらの S I N波状信号を極性反転した信号も 夫々生成する。 それ以外の位相、 例えば、 0度、 90度、 180度、 270度等 の 4つの位相を使う PSK変調 (特に QPSK変調という) を用いる:^には、 反転回路 205, 206を、 信号を反転ではなく必要な位相に切替える回路 (位 相切替回路) に置き換えれば良い。 このようにして、 S IN波発生回路 203, 2 0 4、反転回路 2 0 5, 2 0 6 (或いは位相切替回路)で生成された 言号は、 後段の選択回路 2 0 7〜2 0 9で選択出力され、 同期情報部ゃァドレス情報部、 層情報部等、 搬送波に変調が施されるべき位置で、 これらの信号の中から適切な 信号が選択出力される。 選択回路 2 0 7〜2 0 9を駆動する選択信号としては、 所定の第 1の情報信号、 第 2の情報信号、 第 3の情報信号が用いられる。 即ち、 第 1の情報信号により、 f 1信号 S I N波又はその反転信号 (或いは位相を切換 えた信号) が選択出力され、 第 2の情報信号により、 f 2信号 S I N波又はその 反 言号 (或いは位相を切換えた信号)が選択出力され、第 3の情報信号により、 選択回路 2 0 7、 2 0 8からの各出力信号のいずれかが選択出力される。
例えば、 図 2 7 ( c ) に示す TVpe2の こは、 同期情報部と層情報部は搬送 波周波数の P S K変調、 ァドレス情報部は搬送波の 1 / 2周波数の F S K + P S K変調である。 この 、 第 1の情報信号は、 同期情報部及び層情報部 (データ に応じて異なる) において f 1信号 S I N波の反転信号 (或いは位相を切替えた 信号) を選択する信号であり、 第 2の情報信号は、 アドレス情報部でデータに応 じて f 2信号 S I N波の反転信号 (或 、は位相を切替えた信号)を選択する信号、 第 3の情報信号はァドレス情報部において f 2処理系 ( f 2信号 S I N波又はそ の反転信号 (或いは位相を切替えた信号)) の方を選択する信号となる。
これらの第 1〜第 3の情報信号は、 ゥォブル変調回路 2 1 0にて生成される。 ゥォプル変調回路 2 1 0では、 後述するように、 予め同期情報部やアドレス情報 部、 層情報部の情報等を ¾iしておき、 クロック毎に、 これら情報に応じて第 1 〜第 3の情報信号を順次出力する。 第 3の情報信号により最終的に選択されたゥ ォブリング信号は、 レーザ変調器 2 1 1やモータ制御回路 2 1 5に出力される。 記録装置 2 1 4は、 レ ザ変調器 2 1 1、 光学系 2 1 2、 モータ制御回路 2 1 5により構成される。 第 3の情報により選択されたゥォプリング信号は、 レーザ 変調器 2 1 1やモータ制御回路 2 1 5に送られ、 所定の光^ βを組み合わせて 構成される周知構成の光学系 2 1 2は、 このゥォプリング信号に基づいてレーザ 光 Lを発光させて光スポットをディスク 1 0 1に集光し、 ディスク 1 0 1にトラ ック 1 0 4を形成する。 モータ制御回路 2 1 5は、 ディスク 1 0 1を回転する回 転駆動系 2 1 3の駆動源となるスピンドルモータや、 光学系 2 1 2でディスク 1 P2004/003420
53
0 1に集光する光スポットを調整する駆動源となるモータの位置を調整する。 光 学系 2 1 2では、 この光スポット位置を変動させて、 光ディスク 1 0 1でトラッ ク 1 0 4を形成すべき記録層を適宜変え、 又、 形成するトラック 1 0 4にゥォブ リングを発生させることが可能である。 ただし、 ゥォブリングの方法は、 回転駆 動系 2 1 3によりディスク 1 0 1の回転中心を動かしても、 光学系 2 1 2を動か しても構わない。 即ち、 レーザ光 Lの集光点 (レーザ集光点) がゥォブル振り幅 に応じてトラック 1 0 4の中心からずれれば良い。
一般的に、 光ディスクを形成する光ディスク形成装置の光スポットは、 光ディ スクに記録、 再生を行う情報記録再生装置の光スポットより小さいため、 情報記 録再生装置より短波長のレーザ光、高 NA (Numerical Aperture) のレンズを使 用する。 モータ制御回路 2 1 5は、 ディスク 1 0 1の回^^を制御したり、 光 学系を移動させたりする。 そしてディスク 1 0 1の回^ 度を示す信号 (回転情 報) や、 雜位置を表す信号 (雜位置情報) も出力し、 クロック発生回路 2 0 2の基準信号とする。
上記説明では、 回転駆動系 2 1 3の回転 [f報 (スピンドルモータの回^ M情 報) と半径位置情報に合わせてクロックを生成する様に説明したが、 これはスピ ンドルモータの回転が一定で 位置に応じてク口ック周波数を変更する方法と、 ク口ック周波数が一定で半径位置に応じてモータ回 度を変更する方法とがあ り、どちらでも構わない。又、これら全てをアナログ回路構成にする必要はなく、 S I N波発生回路 2 0 3、 2 0 4や、 反転回路 2 0 5, 2 0 6、 選択回路 2 0 7 〜2 0 9等をデジタル処理し、 レーザ変調器 2 1 1への出力をデジタル Zアナ口 グ (D/A) コンバータ等でアナログ変換することもできる。 尚、 光ディスク形 成装置 2 0 1のレーザ光波長や光学系のパラメータに依存することは無 、。
このように、 光ディスク形成装置 2 0 1は、 光スポットを照射してディスク 1 0 1上にゥォプリングしたトラック 1 0 4を形成する。 この^に、 ディスク 1 0 1が記録層が多層構造で各記録層についてデータの記録が可能な多層情報記録 媒体である齢に、 光スポットの位置を各記録層に移動して、 各記録層にトラッ ク 1 0 4の形成が可能である。 そして、 光学系 2 1 2のレーザ光 Lの光スポット のディスク 1 0 1上での照射位置を変えてトラック 1 0 1のゥォプリングを発生 TJP2004/003420
54 させる照射位置変更装置は、 前述のようにゥォプリングを発生する光学系 212 又は回転駆動系 213のモータと、モータ制御回路 215により実現し、 周波数 が異なる又は同一周波数で位相の反転した複数の信号を発生する信号発生器を、 S I N波発生回路 203, 204及び反転回路 205, 206 (或いは位相切替 回路) で実現し、 これらが発生する複数の信号を所定の信号、 即ち第 1〜第 3の 情報信号に基づいて切り替えてモータ制御回路 215に選択的に出力する選択装 置を、 選択回路 207〜209で実現している。
次に、 このような構成の光ディスク形成装置 201により実施される情報記録 媒体形成方法について、 図 36と共に説明する。 図 36は、 光ディスク形成装置 が実行する情報記録媒体形成方法を説明するフローチヤ一トである。
即ち、 図 36に示すように、 f l信号 S IN波、 f 2信号 S IN波、 これらの 反転波を前述のように発生し(ステップ S 1)、この信号を第 1〜第 3の情報信号 により選択回路 207〜209で切り替えて選択的に出力し(ステップ S 2)、こ の出力する信号に基づいて光スポットの回転するディスク 101上での照射位置 を変えてトラック 104のゥォプリングを形成する (ステップ S 3)。
よって、 周波数差が 2倍以上に設定されている変調方式等に対しても、 ゥォブ ル信号を変調する際の周波数移行がスムーズに行われ、 第 1〜第 3の情報信号に 基づいて FSK変調、 PSK変調、 或いは、 これらを組み合わせた F S K + P S K変調がされたゥォブルを情報記録媒体に正確に形成することができる。
具体的には、周波数の異なる (この例では 2: 1)、 f 1信号 S IN波、 f 2信 号 S IN波の 2つの信号を発生し、 第 3の情報信号として、 多層情報記録媒体で あるディスク 101の記録層の別 (1層目か 2層目;^等) を示す層情報を用いれ ば、 層情報部を FSK変調ゥォブルで表すディスク 101を正確に作成できる。 又、 f 2信号 S IN波、 その反転信号、 f 1信号 S IN波を生成し、 前 2者を 第 2の情報信号として層情報を用いて選択出力し、 その出力した信号と f 1信号 S I N波とを第 3の情報信号として層情報を格納するゥォブル番号を示す位置情 報を用レヽれば、 層情報を 3 + ?51:変調ゥォブルで表し、 それ以外の搬送波 部分は一定周波数ゥォブルであるディスク 101が正確に作成できる。
更に、 f 1信号 S IN波、 その反転信号、 f 2信号 S IN波を生成し、 前 2者 を第 1の情報信号として層情報を用いて選択出力し、 その出力した信号と f 2信 号 S IN波とを第 3の情報信号としてアドレス情報を用いれば、 層情報を変調ゥ ォブルで表し、 ァドレス情報を P S K変調ゥォブルで表し、 それ以外の搬送波部 分は一定周波数ゥォブルであるディスク 101が正確に作成できる。
そのうえ、 f 1信号 S IN波、 その反転信号、 f 2信号 S IN波、 その反転信 号を生成し、 前 2者を第 1の情報信号として層情報を用いて選択出力し、 後 2者 を第 2の情報信号としてァドレス情報を用いて選択出力し、 これらの選択された 信号をァドレス情報を格納するゥォブル番号を示す位置情報とすれば、 層 報を 変調ゥォブルで表し、 アドレス情報を F S K + P S K変調ゥォブルで表し、 それ 以外の搬送波部分は一定周波数ゥォプルであるディスク 101が正確に作成でき る。
このようにして作成される、 記録層が多層構造で各記録層について光の照射に よりデータの記録が可能な多層記録媒体であるディスク 101は、 トラック 10 4に情報が変調されたゥォブルが形成される。 そして、 このゥォブルには記録層 の別を示す層情報が FSK変調情報、 PSK変調情報、 又は、 FSK+PSK変 調情報として記録される。 , 更に、 層情報が F S K+ P S K変調情報である場合に、 ゥォブノレにはァドレス 情報も PSK変調情報として更に記録されるようにすることができる。 又、 層情 報が P SK変調情報である に、 ゥォブルにはァドレス情報も F SK+P SK 変調情報として更に記録されるようにすることができる。
次に、 このようなディスク 101に対して情報の記録、 再生を行う情報記録媒 体装置となる光ディスク装置 301について、 図 37を参照して説明する。 図 3 7は、 第 2実施例の光ディスク装置の電気的な接続のプロック図である。
この光ディスク装置 301は、 後述する所定の光学系を搭載したピックアップ, 302と、 ピックアップ 302を移動するシークモータやディスク 101を回転 させるスピンドルモータ 300等の複数のモータ (スピンドルモータ 300のみ 図示) と、 ディスク 101をセッティングするローデイング (図示せず) 等から なる機構系と、 各種電気系と、 等から構成されている。
ピックアップ 302には、 レーザ発生器 311と、 レーザ宪生器 311の出力 するレーザ光 Lを各素子に導く周知構成の各種光学部品 3 1 2と、 ディスク 1 0 1上にレーザ光 Lの光スポットを集光させる対物レンズ 3 1 3と、 光スポットを 所望の位置に追従させるベく対物レンズ 3 1 3の位置を制御するァクチユエータ 3 1 4と、 ディスク 1 0 1で反射されたレーザ光 (反射光) を受光する上記の如 き分割受光素子 (P D) 1 1 1と、 P D 1 1 1の出力信号を I /V変換する I / V変換回路 3 1 6とを備えている。
前述の電気系統は以下のような構成である。 即ち、 ディスク 1 0 1への記録時 には、 システムコントローラ 3 2 1が装 部から記録情報を受け取り、 ェンコ ーダ 3 2 2でディスク 1 0 1に記録する情 列に符号化、変調等の変換を行なう。 レーザ駆動手段 3 2 3では、 ϋϊΐΕ情報列からディスク 1 0 1に記録するために適 切なレーザ発光タイミングや強度を決定し、 レーザ発生器 3 1 1でレーザ光を発 光させる。
ディスク 1 0 1への再生時には、 レーザ駆動手段 3 2 3はレーザ発生器 3 1 1 に再生用の強度で安定した発光をさせる。 ディスク 1 0 1からの反射信号は、 Ρ D i l iで光電変換され、 その出力が I ZV変換回路 3 1 6で演算が容易な 信号に変換される。 この P D 1 1 1と I ZV変換回路 3 1 6は一体化していても 良い。 その後、 周知構成のゥォブル信号検出手段 3 2 4、 1 信号3 2 5、 サー ボ信号検出手段 3 2 6で、 夫々ゥォブル信号、 R F信号、 サーポ信号等の信号演 算を行なう (ゥォブル信号、 R F信号等の検出については前述)。 尚、 P D 1 1 1 の出力 (電流) の状態で各種信号演算がなされた後、 mi£信号に変換するように しても良い。 ゥォブル信号の検出は独立して記載してあるが、 サーポ信号検出手 段 3 2 6の内部信号から生成しても良い。 検出されたゥォブル信号は復調信号処 理手段 3 2 7に 力される。 復調信号処理手段 3 2 7は、 図 2 8、 図 2 9を参照 して前述した情報検出装置 1 6 1を備えていて、 同期信号ゃァドレス情報やクロ ック信号、 層情報等が検出される。 これらアドレス情報や層情報は、 システムコ ントローラ 3 2 1やエンコーダ 3 2 2にてディスク 1 0 1上の現在位置の取得処 理に使用される。 又、 クロック信号は、 エンコーダ 3 2 2や D S P 3 2 8でも使 用され基準信号となる。 サーポ信号は、 サーポ信号検出手段 3 2 6にて各種演算 を施され、 D S P 3 2 8でレーザ光の光スポットの位置と目標位置との誤差から ピックアップ 3 0 2ゃァクチユエータ 3 1 4の移動量を演算し、 所望の位置に光 スポットを追従させるベくシークモータゃァクチユエータを動作させる。 これに より、 ディスク 1 0 1力 記録層が多層構造である多層記録媒体である場合も、 各記録層に光スポットを追従させることができる。 又、 ゥォブル信号から検出さ れたクロック信号をもとにディスク 1 0 1の回^ i度を検出し、 目標速度と比較 してモータ駆動手段 3 2 9によりスピンドルモータ 3 0 0の回 度を制御する。 ディスク 1 0 1の再生時には、 R F検出手段 3 2 5によりフィルタを用いて高 域信号成分である R F信号を抽出して 2値化する。 この R F信号をもとにデコー ダにて各種復調、 復号化を行ない、 再生情報に変換する。 R F検出手段 3 2 5も しくはデコーダ 3 3 0では、 RF信号からクロック成分を抽出して、 このクロッ クを再生系の基準信号とする P L L回路を備えていても良い。 再生情報はシステ ムコントローラ 3 2 1を通じて外部に される。 尚、 光ディスク装置 3 0 1の レーザ光波長や光学系のパラメータに依存することは無レ、。
このような光ディスク装置 3 0 1によれば、 記録層が多層構造で各記録層につ いてデータの記録が可能である多層情報記録媒体であるディスク 1 0 1に対して もレーザ光を照射して記録層に対する情報の記録、 再生を行うことができる。 そ して、 ピックアップ 3 0 2に用意された前述の光学系によりディスク 1 0 1に対 してもレーザ光を照射して、 その反射光からディスク 1 0 1のトラック 1 0 4に 形成されているゥォブルからゥォブル信号検出手段 3 2 4によりゥォブル信号を 検出することができる。 そして、 復調信号処理手段 3 2 7には情報検出装置 1 6 1を備えているので、 前述のように、 同期信号、 アドレス情報信号、 層情報信号 を検出することができる。 これらの 1言号は、 システムコントローラ 3 2 1、 ェ ンコーダ 3 2 2、 D S P 3 2 8に出力されるので、 この各信号に基づいて、 ディ スク 1 0 1への記録、 再生を行なう際の制御が行われる。
光ディスク装置 3 0 1の情報検出装置 1 6 1で実行する情報検出方法について 整理して図 3 8と共に説明すると、 次のようになる。 図 3 8は、 光ディスク装置 が実行する情報検出方法を説明するフローチヤ一トである。
即ち、 情報検出装置 1 6 1は、 トラック 1 0 4に情報が変調されたゥォプルが 形成されているディスク 1 0 1から、ゥォブルに記録されている情報を読み取る。 具体的には、 図 38に示すように、 クロック生成手段 121は、 ゥォブル信号か ら基準クロック信号を生成し (ステップ S 11)、第 1及び第 2の復調手段 122, 123により、この基準ク口ック信号をもとにゥォプル信号から F S K変調情報、 PSK変調情報、又は、 FSK+PSK変調情報を検出し(ステップ S 12)、層 情報検出手段 126は、 ディスク 101の記録層が多層構造で各記録層について データの記録が可能であるときの記録層の別を示す層情報の位置を示す同期検出 手段 124のタイミング信号により、 ゥォブル信号からの検出情報を層情報検出 手段 126で保持して層情報を検出する (ステップ S 13)。
この層情報の検出として、 F S K+P S K変調情報を検出する;^に、 基準ク ロック信号をもとにゥォブル信号から PSK変調情報も検出し、 同期検出手段 1 24が出力するァドレス情報位置を示すタイミング信号に応じて、 ァドレス情報 検出手段 125で P SK変調情報の出力をァドレス情報検出手段 125で保持し てアドレス情報を検出することもできる (ステップ S 13)。
又、 層情報の検出として、 PSK変調情報を検出する:^に、 基準クロック信 号をもとにゥォブル信号から FSK+PS K変調情報も検出し、 同期検出手段 1 24が出力するァドレス情報位置を示すタイミング信号に応じて、 了ドレス情報 検出手段 125で F SK + P SK変調情報の出力を保持してァドレス情報を検出 することもできる (ステップ S 13)。
従って、 クロストークに強い FSK変調、 PSK変調、 又は、 FSK+PSK 変調でディスク 101に層情報を格納し、 これを光ディスク装置 301の情報検 出装置 161で検出して、 光ディスク装置 301でアクセス中の記録層の判断が すばやく正確にできるので、 適切に情報の記録、 再生を行うことができる。 又、 層情報を 3¾:+?3 変調、 アドレス情報を PSK変調し、 又は、 層情 報を P S K変調、 ァドレス情報を F S K + P S K変調してディスク 101を形成 し、 これらの情報を光ディスク装置 301の情報検出装置 301で検出するよう にすれば、 層情報、 ァドレス情報の特性に合った変調方式をディスク 101に採 用し、 これを効率良く正確に検出することができる。
尚、 本実施例のディスクは上記ディスク形成装置や情報記録再生装置のレーザ 光波長や光学系のパラメータに依存することは無い。 本実施例のディスクは、 トラックがゥォブリングしており、 そのゥォブリング は一定周波数の波形に基づく搬送波部分と、 層情報を F S K変調した波形に基づ く F S K変調部分とに分力ゝれて形成するので、 クロストークの影響を受けずに層 情報信号を検出することができ、 m l性の高い層情報検出が行える。
又、 上記 F S K変調に用いる周波数を搬送波の 1 Z 2倍にすれば、 変調部が低 周波で記録情報の周波数帯域とは離れることから記録情報の漏れ込み成分を除去 することが容易である。 従って、 搬送波より低い変調部周波数を使用するなかで は単位情報に必要な搬送波期間が最小にできる周波数でありクロック生成への悪 影響も低く抑えられる。
更に、 上記 F S K変調によって記録される単位情報の長さを搬送波 2周期分に すれば、 記録情報の漏れ込み成分を容易に除去し、 搬送波より低い変調部周波数 を使用するなかでは単位情報に必要な搬送波期間が最小にできる周波数でク口ッ ク生成への悪影響も低く抑える効果が最大限得られる。
又、 上記 F S K変調に用いる周波数を搬送波の 2倍にすれば、 搬送波より高い 変調部周波数を使用するなかでは、 搬送波 1周期で F S K変調部が位相ゼロにな る最低の周波数であり、 記録情報との分離も比較的容易にできる。 又、 搬送波よ り高い周波数を用いるので、 単位情報に必要な搬送波期間が短くでき、 クロック 生成への悪影響も低く抑えられる。
更に、 上記 F S K変調によって記録される単位情報の長さを搬送波 1周期分に すれば、 記録情報との分離をより容易にできる。
又、 上記 F S K変調部は搬送波部分に挟まれて配置すれば、 クロック生成が完 全に安定している状態において変調部の外乱を発生させるので、 大きなクロック 不具合とならず、 安定したクロック生成が行える。
更に、 トラックがゥォブリングしており、 そのゥォプリングは一定周波数の波 形に基づく搬送波部分と、 層情報を搬送波部分と異なる周期で、 且つ P S K変調 した波形に基づく F S K+ P S K変調部分とに分かれて形成すれば、 クロストー クに強く、 且つ、 高い信号品質で層情報信号を得ることができ、 信頼性の高い層 情報検出が行える。
又、 上記F S K+ P S K変調に用ぃる周波数を搬送波の1ノ2倍にすれば、 変 0
60 調部が低周波で記録情報の周波数帯域とは離れることから記録情報の漏れ込み成 分を除去することが容易である。 そして、 搬送波より低い変調部周波数を使用す るなかでは単位情報に必要な搬送波期間が最小にできる周波数でありクロック生 成への悪影響も低く抑えられる。
更に、 上記 FSK+PSK変調によって記録される単位情報の長さを搬送波 2 周期分にすれば、 記録情報の漏れ込み成分を除去することがより容易になる。 又、 上記 FSK+PSK変調に用いる周波数を搬送波の 2倍にすれば、 搬送波 より高い変調部周波数を使用するなかでは、 搬送波 1周期で F S K変調部力 S位相 ゼロにな 最低の周波数であり、 記録情報との分離も比較的容易にできる。 又、 搬送波より高い周波数を用いるので、 単位情報に必要な搬送波期間が短くでき、 クロック生成への悪影響も低く抑えられる。
更に、 上記 F SK+PS K変調によつて記録される単位情報の長さを搬送波 1 周期分にすれば、 記録情報の漏れ込み成分を除去することがより容易になる。 更に又、 上記 FSK+PS K変調部を搬送波部分に挟まれて配置すれば、 クロ ック生成が完全に安定している状態において変調部の外乱を発生させるので、 大 きなクロック不具合とならず、 安定したクロック生成が行える。
本実施例のディスクで、 トラックがゥォブリングしており、 そのゥォプリング は一定周波数の波形に基づく搬送波部分と、 第 1の情報を搬送波部分と異なる周 期で、 且つ、 PSK変調した波形に基づく FSK+PSK変調部分と、 第 2の情 報を P S K変調した波形に基づく P S K変調部分とに分力れて形成すれば、 第 1 及び第 2の情報夫々に専用の検出系が構築でき、情報の分離が容易に行える。又、 クロストークに強く復調品質も高ぃ?3 +?31^変調と、 クロストークに弱い が復調品質の高レヽ P S K変調を情報の必要信頼性等の特性に応じて使レヽ分けられ る。
又、 上記第 1の情報がァドレス情報であり、 上記第 2の情報は何層目の記録層 カゝを示す層情報にすれば、 両情報に対し専用の検出系が構築でき、 情報の分離が 容易に行える。
更に、 連続して読出し不良となることを避けたいァドレス情報は搬送波成分の クロストークの状況に拠らず安定して検出できる F S K+ P S K方式で確実性を 確保している。
そして、 連 I"生を要求されない層情報は、 FSK+PS K変調部を増やすこと なく、 基本的に高い復調性能を持つ P SK方式で検出できる。
更に、 上記 F SK+P SK変調に用いる周波数を搬送波の 1Z2倍にすれば、 変調部が低周波で記録情報の周波数帯域とは離れることから記録情報の漏れ込み 成分を除去することが容易である。 又、 搬送波より低い変調部周波数を使用する なかでは単位情報に必要な搬送波期間が最小にできる周波数でありクロック生成 への悪影響も低く抑えられる。
又、 上記 F SK+P SK変調によって記録される単位情報の長さを搬送波 2周 期分にすれば、 記録情報の漏れ込み成分を除去することがより容易になる。 更に、 上記 FSK+PSK変調に用いる周波数を搬送波の 2倍にすれば、 搬送 波より高い変調部周波数を使用するなかでは、 搬送波 1周期で F SK+PS K変 調部が位相ゼロになる最低の周波数であり、 記録情報との分離も比較的容易にで きる。 又、 搬送波より高い周波数を用いるので、 単位情報に必要な搬送波期間が 短くでき、 クロック生成への悪影響も低く抑えられる。
又、 上記 F S K + P S K変調によつて記録される単位情報の長さを搬送波 1周 期分にすれば、 記録情報との分離をより容易にできる。
更に、 上記 P SK変調によって記録される単位情報の長さを搬送波 1周期分に すれば、 再読み込みも可能な層情報は、 それ程高い信頼性が必要とされない利点 を生かして変調部を最小限にし、 クロック生成への悪影響が低く抑えられる。 又、 上記 PSK変調部を搬送波部分に挟まれて配置すれば、 クロック生成が完 全に安定している状態において変調部の外乱を発生させるので、 大きなクロック 不具合とならず、 安定したクロック生成が行える。
更に、 トラックがゥォブリングしており、 上記ゥォプリングは一定周波数の波 形に基づく搬送波部分と、 アドレス情報を搬送波部分と異なる周期で、 且つ、 P S K変調した波形に基づく F S K + P S K変調部分と、 層情報を P S K変調した 波形に基づく第 1の P S K変調部分と、 周期的な同期情報を P S K変調した波形 に基づく第 2の P S K変調部分に分力れて形成すれば、 上述のメリットを享受す ると共に、 FSK+PSK変調部を増やすことなく、 アドレス情報部や層情報部 の位置を確定する同期信号を簡単に検出することができる。
又、 トラックがゥォブリングしており、 上記ゥォプリングは一定周波数の波形 に基づく搬送波部分と、 アドレス情報を搬送波部分と異なる周期で、 且つ、 P S K変調した波形に基づく F S K+ P S K変調部分と、 層情報を P S K変調した波 形に基づく P S K変調部分とに分力れて形成されており、 加えて周期的な同期情 報がピットにより形成されているので、 上述と同じメリットがある。 加えて同期 信号も専用の検出系が使えるので、 信号の分離が容易にできる。
更に、 アドレス情報と 位置の関係を各層共通にすれば、 記廳が多数にな つても、 アドレス情報量を増やすことなく、 効率的にゥォブルに格納された情報 を活用できる。 又、 どの層においてもシーク時目標アドレスと半径位置の相関が 同じであり、 計算が簡 匕できる。
更に又、 記録麵域の記録情報に層情報を含めれば、 再生専用ディスクとの層 情 ¾5:換性が取れる。
本実施例のディスクは、 トラックがゥォブリングしており、 そのゥォブリング は第 1の情報を F S K変調した波形に基づく F S K変調部分と、 第 2の情報を P S K変調した波形に基づく P S K変調部分と、 一定周波数の波形に基づく搬送波 部分とに分かれて形成するので、 第 1及び第 2の情報夫々に専用の検出系が構築 でき、 情報の分離が容易に行える。 又、 クロストークに強いが復調品質が若干低 い F S K変調と、 クロストークに弱いが復調品質の高い P S K変調を情報の必要 信頼性等の特性に応じて使レ、分けられる。
又、 上記第 1の情報をアドレス情報にし、 上記第 2の情報を何層目の記編か を示す層情報にすれば、 両情報に対し専用の検出系が構築でき、 情報の分離が容 易に行える。 従って、 確実性が要求されるアドレス情報は搬送波成分のクロスト ークの状況に拠らず安定して検出できる。 そして、 F S K変調部を増やすことな く、 情報量が少なく再読出しが可能な層情報を高レヽ復調性能が確保できる P S K で検出できる。
更に、 上記 F S K変調に用いる周波数を搬送波の 1 2倍にすれば、 変調部が 低周波で記録情報の周波数帯域とは離れることから記録情報の漏れ込み成分を除 去することが容易である。 又、 変調部の境目での搬送波との連続性が良く高周波 成分を抑える事が出来るので、 検出回路の必要帯域を低くできる。 更に、 搬送波 より低レヽ変調部周波数を使用するな力では単位情報に必要な搬送波期間が最小に できる周波数でありクロック生成への悪影響も低く抑えられる。 そして、 以上の ほかにクロストークに強い F S K変調のメリットを享受できる。
又、 上記 F S K変調によって記録される単位情報の長さを搬送波 2周期分にす れば、 記録情報の漏れ込み成分を除去することがより容易である。
更に、 上記 F S K変調に用いる周波数を搬送波の 2倍にすれば、 変調部の境目 での搬送波との連続性が良く高周波成分を抑える事が出来るので、 検出回路の必 要帯域を低くできる。 又、 搬送波より高い変調部周波数を使用するなカゝでは、 搬 送波境目での連続 14を確保する最低の周波数であり、 記録情報との分離も比較的 容易にできる。 更に、 搬送波より高い周波数を用いるので、 単位情報に必要な搬 送波期間が短くでき、 クロック生成への悪影響も低く抑えられる。 そして、 以上 のほかにクロストークに強い F S K変調のメリットを享受できる。
更に、 上記 F S K変調によって記録される単位情報の長さを搬送波 1周期分に すれば、 記録情報との分離をより容易にできる。
又、 上記 P S K変調によって記録される単位情報の長さを搬送波 1周期分であ るので、 再読み込みも可能な層情報は、 それ程高い信頼性が必要とされなレ、利点 を生かして変調部を最小限にし、 クロック生成への悪影響が低く抑えられる。 更に、 上記 P S K変調部を搬送波部分に挟まれて配置すれば、 クロック生成が 完全に安定している状態において変調部の外乱を発生させるので、 大きなクロッ ク不具合とならず、 安定したクロック生成が行える。
又、 トラックがゥォブリングしており、 上記ゥォブリングはァドレス情報を F S K変調した波形に基づく F S K変調部分と、 層情報を P S K変調した波形に基 づく第 1の P S K変調部分と、 一定周波数の波形に基づく搬送波部分と、 周期的 な同期情報を P S K変調した波形に基づく第 2の P S K変調部分に分力れて形成 されているので、 上述のメリットを享受すると共に、 F S K変調部を増やすこと なく、 アドレス情報部や層情報部の位置を確定する同期信号を簡単に検出するこ とができる。
更に、 トラックがゥォブリングしており、 上記ゥォプリングはアドレス†青報を F S K変調した波形に基づく F S K変調部分と、 層情報を P S K変調した波形に 基づく P S Κ変調部分と、 一定周波数の波形に基づく搬送波部分とに分かれて形 成し、 加えて周期的な同期情報がピットにより形成すれば、 上述と同じメリット がある。 加えて同期信号も専用の検出系が使えるので、 信号の分離が容易にでき る。
又、 アドレス情報と雜位置の関係を各層共通にすれば、 記録層が多数になつ ても、 アドレス情報量をふやすことなく、 効率的にゥォブルに格納された情報を 活用できる。 更に、 どの層においてもシーク時目標アドレスと 位置の相関が 同じであり、 計算が簡 匕できる。
更に、 記録龍域の記録情報に層情報を含めれば、 再生専用ディスクとの層情 報互換性が取れる。
本実施例による記録媒体と光ディスクは、 CD— Rディスク, DVD— Rディ スク, DVD + Rディスク等の追記型光ディスク, CD— RWディスク, CD + RWディスク, DVD—RWディスク, DVD+RWディスク等の書き換え型光 ディスク, 光磁気ディスク等の記録媒体においても適用することができる。
.尚、 本発明は、 上記実施例に限定されるものではなく、 本発明の範囲内で種々 の改良及び変更が可能であることは、 言うまでもない。

Claims

請求の範囲
1. 情報記録が可能な複数の記録層を有し、
ΙίίΙΒ複数の記 uiの夫々にスパイラル状又は同心円状のトラックが形成され、 各トラックの少なくとも一部は、 そのトラックが形成されている記録層を判別す るための層情報を含むゥォブル信号に対応して夫々蛇行していることを特徴とす る、 情報記録媒体。
2. t&t己各トラックの少なくとも一部は、 t&f己層情報が含まれている層情報 部分が所定の変調^:で変調されている爾己ゥォブル信号に対応して夫々蛇行し ていることを特徴とする、 請求の範囲第 1項記載の情報記録媒体。
3. 嫌己各トラックの少なくとも一部は、 基準クロック生成用の搬送波部分 を更に含む編己ゥォブル信号に対応して夫々蛇行していることを特徴とする、 請 求の範囲第 2項記載の情報記録媒体。
4 · 鍵己層情報部分は 2つの謂己搬送波部分に挟まれた位置に配置されてい ることを特徴とする、 請求の範囲第 3項記載の情報記録媒体。
5. ΙΐΠ己各トラックには、 所定の同期情報が所定の同期周期で夫々記録され ていることを特徴とする、 請求の範囲第 3項又は第 4項記載の情報記録媒体。
6. tin己各トラックの少なくとも一部は、 tins層情報部分が嫌己同期周期の 整数倍の周期で配置されている fin己ゥォブル信号に対応して夫々蛇行しているこ とを特徴とする、 請求の範囲第 5項記載の情報記録媒体。
7. ΙίίΙΕ層情報と ΙϋΐΞ同期情報とは、 嫌己トラックに記録されている形態が 互レヽに異なることを特徴とする、 請求の範囲第 5項又は第 6項記載の情報記録媒 体。
8. ΙίίΙ己同期情報は、 ピット形成によって前記トラックに記録されているこ とを特徴とする、 請求の範囲第 7項記載の情報記録媒体。
9. 觸己各トラックの少なくとも一部は、 廳己層情報部分とは異なる変調方 式で変調された IS同期情報を更に含む ΙΐίΙΒゥォブル信号に対応して夫々蛇行し ていることを特徴とする、 請求の範囲第 7項記載の情報記録媒体。
1 0. ΙίίΐΞ各トラックの少なくとも一部は、 觸己層情報部分と同じ変調方式 で変調された Ιίίϊ己同期情報を更に含む ΙϋΙΒゥォプル信号に対応してそれぞれ蛇行 してレ、ることを特徴とする、 請求の範囲第 6項記載の情報記録媒体。
1 1. 嫌己層情報部分及び ΙίίΙΒ同期情報部分は、 互いに異なる信号波形を有 することを特徴とする、 請求の範囲第 1 0項記載の情報記録媒体。
1 2 · 嫌己変調^:は位相変調:^:であることを特徴とする、 請求の範囲第 1 0項又は第 1 1項記載の情報記録媒体。
1 3. ttrt己搬送波部分から生成される基準クロックの 1周期を 1ゥォブルと したときに、 tin己同期周期は 9 3ゥォブルであり、 tifia同期情報部分の先頭を 0 ゥォブノレ目とすると、 flB層情報部分は 1 2ゥォブル目と 8 8ゥォブル目との間 に することを特徴とする、 請求の範囲第 1 2項記載の情報記録媒体。
1 4. 漏己各トラックの少なくとも一部は、 ァドレス情報を更に含む廳己ゥ ォブル信号に対応して夫々蛇行していることを特徴とする、 請求の範囲第 5項〜 第 1 3項のいずれ力一項記載の情報記録媒体。
1 5. 請求の範囲第 1項〜第 1 4項のレ、ずれ力一項記載の情報記録媒体をァ クセスする際に、 光スポットが形成されている記録層を判別する記録層判別方法 であって、
編己情報記録媒体からの反射光に基づレ、て検出されたゥォプル信号から tfff己層 情報を取得する第 1工程と ;
ΙίίΙ己層情報に基づ 、て ΙίίΙΒ光スポットが形成されてレ、る記 Ulを判別する第 2 工程とを含むことを特徴とする、 記顯判別方法。
1 6. 請求の範囲第 1 4項記載の情報記録媒体をアクセスする際に、 光スポ ットが形成されている記^ ϋを判別する記^!判別方法であって、
嫌 S情報記録媒体からの反射光に基づレヽて検出されたゥォブル信号から觸己層 情報及び Sift己ァドレス情報を取得する第 1工程と;
ΙίίΐΒ層情報及ぴァドレス情報に基づいて ΙίίΐΞ光スポットが形成されている記録 層を判別する第 2工程とを含むことを特徴とする、 記録層判別方法。
1 7. 請求の範囲第 5項〜第 1 4項のレ、ずれか一項記載の情報記録媒体をァ クセスする際に、 光スポットが形成されている記録層を判別する記録層判別装置 であって、 鎌己情報記録媒体からの反射光に基づレ、て検出されたゥォブル信号を復調する 復調手段と;
Ι ΙΒ復調されたゥォブル信号から tiilS層情報を検出する層情報検出手段とを備 えたことを特徴とする、 記録層判別装置。
1 8. 請求の範囲第 1 4項記載の情報記録媒体をアクセスする際に、 光スポ ットが形成されてレ、る記録層を判別する記録層判別装置であつて、
嫌己情報記録媒体からの反射光に基づ!/、て検出されたゥォブル信号を復調する 復調手段と;
tiifS復調されたゥォブル信号から ΙίίϊΕ層情報を検出する層情報検出手段と; 嫌己復調されたゥォブル信号から編己ァドレス情報を検出するァドレス情報検 出手段と;
lift己層情報と編己ァドレス情報とに基づいて編己光スポットが形成されている 記録層を判別する判別手段とを備えたことを特徴とする、 記 Ui判別装置。
1 9. ΙίίΙΒ復調手段は、
tinsゥォブル信号から基準クロックを生成するクロック生成回路と; 嫌5基準ク口ックに基づいて |ϋ|Βゥォブル信号を復調する復調回路とを備え、 ΙίίΙ己層情報検出手段は、
Ιϋ!己同時情報を検出する同期情報検出回路と;
前記同時情報を起点とする基準ク口ック数を計数するカウンタと、
前記カウンタの値に基づいて Ι ΐΒ層情報を検出する層情報検出回路とを備えた ことを特徴とする、 請求項第 1 7項又は第 1 8項記載の記録層判別装置。
2 0. 情報記録媒体に対して、 情報の記録、 再生及び消去のうち少なくとも 再生を行なう光ディスク装置であって、
複数の記録層のうちのいずれかの記録層に対物レンズを介して光スポットを形 成し、 該記録層からの反射光を受光する光ピックアップ装置と;
嫌己光ピックァップ装置の出力信号から検出されるゥォブル信号に基づレヽて前 記光スポットが形成された記録層を判別する請求の範囲第 1 7項〜第 1 9項のい ずれか一項記載の記 ®ϋ判別装置と;
ΙίίΙ己光ピックァップ装置の出力信号及ぴ觸己記録層判別装置の出力信号に基づ いて ttiiE対物レンズの位置制御を行なうサーボ制御装置と; 光ピックアップ装置を介して、 情報の記録、 再生及び消去のうち少なくと も再生を行なう処«置とを備えたことを特徴とする、 光ディスク装置。
2 1 . 複数の記^ を有し、 その各記録層のトラックに一定周波数の搬送波 を検出させる搬送波部と当該記録層が何層目であるかを示す周波数変調波を検出 させる層情報部とからなるゥォプルを形成したことを特徴とする、 記録媒体。
2 2. Ιΐίϊ己周波数変調波の周波数は藤己搬送波の 1 , 2倍の周波数であるこ とを特徴とする、 請求の範囲第 2 1項記載の記録媒体。
2 3. tfit己周波数変調波の長さは ΙΐίΙ己搬送波の 2周期分であることを特徴と する、 請求の範囲第 2 2項記載の記録媒体。
2 4. fffS周波数変調波の周波数は tiff己搬送波の 2倍の周波数であることを 特徴とする、 請求の範囲第 2 1項記載の記録媒体。
2 5. Ιίίϊ己周波数変調波の長さは嫌己搬送波の 1周期分であることを特徴と する、 請求の範囲第 2 4項記載の記録媒体。
2 6 . 複数の記録層を有し、 その各記録層のトラックに一定周波数の搬送波 を検出させる搬送波部と当該記録層が何層目であるカゝを示す位相変調波を検出さ せる層情報部とからなるゥォブルを形成したことを特徴とする、 記録媒体。
2 7. 複数の記^!を有し、 その各記 のトラックに一定周波数の搬送波 を検出させる搬送波部と当該記録層が何層目であるかを示す tiff己搬送波とは異な る周期の位相変調波を検出させる層情報部とからなるゥォブルを形成したことを 特 ί敷とする、 記録媒体。
2 8 . ΙίΤΐΕ搬送波とは異なる周期の位相変調波の周波数は籠己搬送波の 1 / 2倍の周波数であることを特徴とする、 請求の範囲第 2 7項記載の記録媒体。
2 9. IE搬送波とは異なる周期の位相変調波の長さは ΙίίΐΕ搬送波 2周期分 であることを特徴とする、 請求の範囲第 2 8項記載の記録媒体。
3 0. filE搬送波とは異なる周期の位相変調波の周波数は t&t己搬送波の 2倍 の周波数であることを特徴とする、 請求の範囲第 2 7項記載の記録媒体。
3 1 . 廳己搬送波とは異なる周期の位相変調波の長さは tiJlB搬送波の 1周期 分であることを特徴とする、 請求の範囲第 3 0項記載の記録媒体。
3 2. ItflB層情報部を fffta搬送波部分に挟まれた位置に配置したことを特徴 とする、 請求の範囲第 2 1項〜第 3 1項のいずれ力一項記載の記録媒体。
3 3. トラックがゥォブリングしており、 前記ゥォプリングは第 1の情報を F S K変調した波形に基づく F S K変調部分と、 第 2の情報を P S K変調した波 形に基づく P S K変調部分と、 一定周波数の波形に基づく搬送波部分とに分かれ て形成されていることを特徴とする、 光ディスク。
3 4. 編己 F S K変調に用いる周波数は tfllS搬送波部分による搬送波の 1 / 2倍であることを特徴とする、 .請求の範囲第 3 3項記載の光ディスク。
3 5. I&I5F S K変調によって記録される単位情報の長さは ΙίίΙΒ搬送波部分 による搬送波の 2周期分であることを特徴とする、 請求の範囲第 3 4記载の光デ イスク。
3 6 · 漏己 F S Κ変調に用いる周波数は廳己搬送波部分による搬送波の 2倍 であることを特徴とする、 請求の範囲第 3 3項記載の光ディスク。
3 7. tirlBF S K変調によつて記録される単位情報の長さは嫌己搬送波部分 による搬送波の 1周期分であることを特徴とする、 請求の範囲第 3 6項記載の光 ディスク。
3 8. tfjfSP S K変調によって記録される単位情報の長さは t!if己搬送波部分 による搬送波の 1周期分であることを特徴とする、 請求の範囲第 3 3項記載の光 ディスク。
3 9 . 編己 P S K変調部分は嫌己搬送波部分に挟まれて配置されてレ、ること を赚とする、 請求の範囲第 3 3項記載の光ディスク。
4 0. 前記第 1の情報はァドレス情報であり、 前記第 2の情報は何層目の記 録層かを示す層情報であることを特徴とする、 請求の範囲第 3 3項〜第 3 9項の レ、ずれカー項記載の光ディスク。
4 1 . トラックがゥォプリングしており、 前記ゥォブリングはアドレス情報 を F S K変調した波形に基づく F S K変調部分と、 層情報を P S K変調した波形 に基づく第 1の P S K変調部分と、 一定周波数の波形に基づく搬送波部分と、 周 期的な同期情報を P S K変調した波形に基づく第 2の P S K変調部分に分力ゝれて 形成されていることを特徴とする、 光ディスク。
42. トラックがゥォブリングしており、 t&f己ゥォプリングはアドレス情報 を FSK変調した波形に基づく FSK変調部分と、 層情報を PSK変調した波形 に基づく P S K変調部分と、 一定周波数の波形に基づく搬送波部分とに分力れて 形成されており、 加えて周期的な同期情報がピットにより形成されていることを 特徴とする、 光ディスク。
43. tiff己ァドレス情報と光ディスクの雜位置の関係は、 各層共通となつ ていることを特徴とする、 請求の範囲第 40項〜第 42項のレ、ずれ力一項記載の 光ディスク。
44. 記録済領域の記録情報には層情報力 S含まれていることを特徴とする、 請求の範囲第 40項〜第 43項のレ、ずれ力一項記載の光ディスク。
45. トラックがゥォブリングしており、 tif!Bゥォプリングは一定周波数の 波形に基づく搬送波部分と、第 1の情報を觸己搬送波部分と異なる周期で、且つ、 P S K変調した波形に基づく F S K + P S K変調部分と、 第 2の情報を P S K変 調した波形に基づく P S K変調部分とに分かれて形成されていることを特徴とす る、 光ディスク。
46. tίίf己FSK+PSK変調部分へのFSK+PSK変調に用ぃる周波数 は l己搬送波部分による搬送波の 1Z2倍であることを特徴とする、 請求の範囲 第 45項記載の光ディスク。
47. 爾己 F SK+P SK変調によって記録される単位情報の長さは ΙίΠΞ搬 送波部分による搬送波の 2周期分であることを特徴とする、 請求め範囲第 46項 記載の光ディスク。
48. 爾己?311+?31:変調部分への?31^+?31:変調に用ぃる周波数 は iia搬送波部分による搬送波の 2倍であることを特徴とする、 請求の範囲第 4
5項記載の光ディスク。
49. lutaF SK+PS K変調によって記録される単位情報の長さは ΙίίΙ己搬 送波部分による搬送波の 1周期分であることを特徴とする、 請求の範囲第 48項 記載の光ディスク。
50. tiflBP S κ変調によって記録される単位情報の長さは tin己搬送波部分 の搬送波の 1周期分であることを特徴とする、 請求の範囲第 45項記載の光ディ スク。
51. 鍵己 P S K変調部分は ΙίίΙ己搬送波部分に挟まれて配置されていること を特徴とする、 請求の範囲第 45項記載の光ディスク。
52. 前記第 1の情報はァドレス情報であり、 前記第 2の情報は何層目の記 録層かを示す層情報であることを特徴とする、 請求の範囲第 45項〜第 51項の レ、ずれ力—項記載の光ディスク。
53. トラックがゥォブリングしており、 Ιίίϊ己ゥォプリングは一定周波数の 波形に基づく搬送波部分と、 アドレス情報を搬送波部分と異なる周期で、 且つ、 PSK変調した波形に基づく FSK+PSK変調部分と、 層情報を PSK変調し た波形に基づく第 1の PSK変調部分と、 周期的な同期情報を PSK変調した波 形に基づく第 2の P S K変調部分に分力ゝれて形成されていることを特徴とする、 光ディスク。
54. トラックがゥォプリングしており、 前記ゥォブリングは一定周波数の 波形に基づく搬送波部分と、 アドレス情報を搬送波部分と異なる周期で、 且つ、 P SK変調した波形に基づく F SK+P SK変調部分と、 層情報を P SK変調し た波形に基づく P S K変調部分とに分力ゝれて形成されており、 加えて周期的な同 期情報がピットにより形成されていることを mとする、 光ディスク。
55. 觸己アドレス情報と光ディスクの報位置の関係は、 各層共通となつ ていることを特徴とする、 請求の範囲第 52項〜第 54項のレ、ずれ力一項記載の 光ディスク。 '
56. 記録^S域の記録情報には層情報力 S含まれていることを特徴とする、 請求の範囲第 52項〜第 55項のいずれ力一項記載の光ディスク。
57. トラックがゥォブリングしており、 前記ゥォプリングは一定周波数の 波形に基づく搬送波部分と、 層情報を F S K変調した波形に基づく F S K変調部 分とに分かれて形成されていることを特徴とする、 光ディスク。
58. ΙίίΙ己 FSK変調に用いる周波数は tiff己搬送波部分による搬送波の 1/ 2倍であることを特徴とする、 請求の範囲第 57項記載の光ディスク。
59. 編己 FSK変調によって記録される単位情報の長さは編己搬送波部分 による搬送波の 2周期分であることを樹敫とする、 請求の範囲第 58項記載の光 ディスク。
60. ItflSFSK変調に用いる周波数は ΙίίΙΒ搬送波部分による搬送波の 2倍 であることを特徴とする、 請求の範囲第 57項記載の光ディスク。
61. 歸己 F SK変調によって記録される単位情報の長さは tiifS搬送波部分 による搬送波の 1周期分であることを特徴とする、 請求の範囲第 60項記載の光 ディスク。
62. IfjfBF S K変調部分は雄己搬送波部分に挟まれて配置されていること を特徴とする、請求の範囲第 57項〜第 61項のいずれ力一項記載の光ディスク。
63. トラックがゥォブリングしており、 前記ゥォプリングは一定周波数の 波形に基づく搬送波部分と、 層情報を搬送波部分と異なる周期で、 且つ、 PSK 変調した波形に基づく F S K + P S K変調部分とに分力れて形成されていること を特徴とする、 光ディスク。
64. |&|5 31^+?31:変調部分への 31:+?31^変調に用ぃる周波数 は觸己搬送波部分による搬送波の 1/2倍であることを特徴とする、 請求の範囲 第 63項記載の光ディスク。
65. 編己 F SK+P SK変調によって記録される単位情報の長さは嫌己搬 送波部分による搬送波の 2周期分であることを特徴とする、 請求の範囲第 64項 記載の光ディスク。
66. |^ 3 +?31^変調部分への 31:+ 31:変調に用ぃる周波数 は霞己搬送波部分による搬送波の 2倍で ることを樹敷とする、 請求の範囲第 6 3項記載の光ディスク。
67. tulBFSK + PS K変調によつて記録される単位情報の長さは編己搬 送波部分による搬送波の 1周期分であることを特徴とする、 請求の範囲第 66項 記載の光ディスク。
68. fiilBPS K変調部分は tfilE搬送波部分に挟まれて配置されていること を特徴とする、 請求の範囲第第 63項〜第 67項のいずれ力一項記載の光デイス ク。
69. 光スポットを照射して情報記録媒体上にゥォプリングしたトラックを 形成する情報記録媒体形成装置において、 Ιίΐΐ己光スポットを編己情報記録媒体上に照射する記^ ¾置と、
tfrta光スポットの ttriH情報記録媒体上での照射位置を変えて前記トラックのゥ ォブリングを発生させる照射位置変更装置と、
周波数が異なる又は同一周波数で位相の反転した複数の信号を発生する信号発 生器と、
この発生した複数の信号を所定の信号に基づレ、て切り替えて照射位置変更装置 に選択的に出力する選 置とを備え、 ·
tin己照射位置変更装置は、 選択的に切り替えて出力される tGt己信号に基づいて tfilEゥォプリングを発生させることを特徴とする、 情報記録媒体形成装置。
7 0. IB信号発生器は、 周波数の異なる 2つの信号を発生し、
l己選 i ¾置は、 この 2つの信号を切り替えて前記ゥォプリング発生装置に出 力することを特徴とする、 請求の範囲第 6 9項記載の情報記録媒体形成装置。
7 1 · ΙίίΙ己照射位置変更装置は、 ΙίίΐΒ情報記録媒体が記 が多層構造で各 記録層についてデータの記録が可能なものである場合に、 編 3光スポットの位置 を lift己各記録層に移動して、 tin己記^ ¾置で盲 ϋΐ己各記録層に i己トラックの形成 が可能であり、
ItJf己選 i ¾置は、 嫌己所定の信号を ΙίΠΞ記録層の別を示す層情報としているこ とを特徴とする、 請求の範囲第 7 0項記載の情報記録媒体形成装置。
7 2. ti!f己信号発生器は、 周波数の異なる 2つの信号と、 この一方の信号の 位相を反転した信号を発生し、
ΙϋΙ己選 i ^置は、 この 3つの信号を切り替えて前記ゥォプリング発生装置に出 力することを特徴とする、 請求の範囲第 6 9項記載の情報記録媒体形成装置。
7 3 · lift己照射位置変更装置は、 ΙίίΐΞ情報記録媒体が記録層が多層構造で各 記録層についてデータの記録が可能なものである場合に、 frf己光スポットの位置 を HB各記^ ϋに移動して、 tin己記雜置で編己各記録層に漏己トラックの形成 が可能であり、
編己選織置は、 藤己所定の信号を編己記録層の別を示す層情報と、 この層情 報を格納する ΙίίΐΒゥォプルのゥォブゾ 号を示す位置情報としていて、 ΐίΙ己層情 報により前記 3つの信号のうち互いに周波数が同じで位相が反転している 2つの 信号のいずれかを選択し、 前記位置情報により、 この選択された 1つの信号とこ の信号とは周波数の異なる tins 3つの信号のうちの残りの信号のいずれかを選択 して、 この選択した信号を tutsゥォプリング発^ ¾置に出力することを特徴とす る、 請求の範囲第 7 0項記載の情報記録媒体形成装置。
7 4. 編己照射位置変更装置は、 觀己光情報記録媒体が記麵が多層構造で 各記録層についてデータの記録が可能なものである場合に、 tins光スポットの位 置を ttiia各記^!に移動して、 IS記 置で編己各記録層に嫌己トラックの形 成が可能であり、
ΙΐίΙΒ選^ ¾置は、 ΙίίΙΒ所定の信号を itit己記録層の別を示す層情報と、 アドレス 情報としていて、 前記層情報により前記 3つの信号のうち互いに周波数が同じで 位相が反転している 2つの信号の 1/ヽずれかを選択し、 嫌己位置情報により、 この 選択された 1つの信号とこの信号とは周波数の異なる ltJfS 3つの信号のうちの残 りの信号のレヽずれかを選択して、 この選択した信号を tfjf己ゥォプリング発生装置 に出力することを特徴とする、請求の範囲第 7 0項記載の情報記録媒体形成装置。
7 5. 編己信号楽生器は、 周波数の異なる 2つの信号と、 この據号の位相 を反転した信号を夫々発生し、
前記選 置は、 この 4つの信号を切り替えて Ι ΐΒゥォプリング発生装置に出 力することを特徴とする、 請求の範囲第6 9項記載の情報記録媒体形成装置。
7 6. lUf己照射位置変更装置は、 ΙίίΙ己情報記録媒体が記 » が多層構造で各 記録層についてデータの記録が可能なものである場合に、 嫌己光スポットの位置 を tiff己各記録層に移動して、 前記記^ S置で言 ϋ!5各記録層に ΙίίΙ己トラックの形成 が可能であり、
Ιϋΐ己選機置は、 編己所定の信号を嫌己記録層の別を示す層情報、 アドレス情 報、及ぴ、このァドレス情報を格納するゥォプル番号を示す位置情報としていて、 ΙϋϊΒ層情報により嫌己 4つの信号のうち互いに周波数が同じで位相が反転してい る一組の信号のレ、ずれかを選択し、 ttff己ァドレス情報により残りの互レ、に周波数 が同じで位相が反転している一組の信号のいずれかを選択し、 嫌己位置情報によ り ΙίΐΙΒ層情報及ぴ tin己ァドレス情報で選択された 2つの信号のうちのいずれかを 選択し、 この選択した信号を ΙϋΙΒゥォプリング発生装置に出力することを特徴と する、 請求の範囲第 7 0項記載の情報記録媒体形成装置。
7 7. lift己信号発生器が発生する 言号を生成するための基準クロックを生 成し、 この基準ク口ックは嫌己情報記録媒体の回^ を示す回転情報又は嫌己 情報記録媒体の 位置を表す半径位置情報に基づいて周波数を変更するクロッ ク生成装置を備えていることを特徴とする、 請求の範囲第 6 9項〜第 7 6項のい ずれ力一項記載の情報記録媒体形成装置。
7 8. 光スポットを照射して情報記録媒体上にゥォブリングしたトラックを 形成する情報記録媒体形成方法において、
周波数が異なる又は同一周波数で位相の反転した複数の信号を発生し、 この発 生した複数の信号を所定の信号に基づいて切り替えて選択的に出力し、 この出力 する信号に基づレ、て前記光スポットの前記情報記録媒体上での照射位置を変えて ΐίΙΒトラックのゥォプリングを発生させることを特徴とする、 情報記録媒体形成 方法。
7 9 . Ιϋ|Ε複数の信号を発生は、 周波数の異なる 2つの信号を発生するもの であり、
この信号の編己選択的に出力は、 この 2つの信号を切り替えて出力する、 こと を特徴とする、 請求の範囲第 7 8項記載の情報記録媒体形成方法。
8 0. 嫌己情報記録媒体が記録層が多層構造で各記願につレ、てデータの記 録が可能なものである に、嫌己光スポットの位置を編己各記録層に移動して、 lfS記 置で言 ίίΐΒ各記録層に tinsトラックを形成し、
信号の觸己選択的に出力は、 編己所定の信号を前記記録層の別を示す層情報と していることを特徴とする、 請求の範囲第 7 9項記載の情報記録媒体形成方法。
8 1 . ttflS複数の信号を発生は、 周波数の異なる 2つの信号と、 この一方の 信号の位相を反転した信号を発生するものであり、
この信号の ΙΐίΙ己選択的に出力は、 この 3つの信号を切り替えて出力する、 こと を特徴とする、 請求の範囲第 7 8項記載の情報記録媒体形成方法。
8 2. 前記情報記録媒体が記録層が多層構造で各記録層についてデータの記 録が可能なものである に、前記光スポットの位置を Ιίίΐ己各記録層に移動して、 ΙΐΙΙΒ記^ ¾置で i!B各記録層に liHBトラックを形成し、 信号の ΙΐίΙΒ選択的に出力は、 It!己所定の信号を tfilB記録層の別を示す層情報と、 この層情報を格納する tin己ゥォプルのゥォブ /ν 号を示す位置情報としていて、
ΙίίΙΕ層情報により前記 3つの信号のうち互いに周波数が同じで位相が反転してい る 2つの信号のいずれかを選択し、 it己位置情報により、 この選択された 1つの 信号とこの信号とは周波数の異なる謂己 3つの信号のうちの残りの信号のいずれ 力を選択して、 この選択した信号を出力することを特徴とする、 請求の範囲第 8 1項記載の情報記録媒体形成方法。
8 3 · 嫌己情報記録媒体が記纏が多層構造で各記録層についてデータの記 録が可能なものであ に、前記光スポットの位置を前記各記録層に移動して、 iia記録装置で編己各記^ iに嫌己トラックを形成し、
信号の編己選択的に出力は、 ΐ ΐΒ所定の i言号を ifiia記録層の別を示す層情報と、 了ドレス情報としていて、 ΙίίΙΒ層情報により I f己 3つの信号のうち互レヽに周波数 が同じで位相が反転している 2つの信号のいずれかを選択し、 膽己位置情報によ り、 この選択された 1つの信号とこの信号とは周波数の異なる Itlf己 3つの信号の うちの残りの信号のいずれかを選択して、 この選択した信号を出力することを特 徴とする、 請求の範囲第 8 1項記載の情報記録媒体形成方法。
8 4. tfllE複数の信号を発生は、 周波数の異なる 2つの信号と、 この 言号 の位相を反転した信号を夫々発生するものであり、
この信号の前記選択的に出力は、 この 4つの信号を切り替えて出力することを 特徴とする、 請求の範囲第 7 8項記載の情報記録媒体形成方法。
8 5. 前記情報記録媒体が記録層が多層構造で各記録層についてデータの記 録が可能なものである に、 ΙΐίΙΒ光スポットの位置を ItflS各記録層に移動して、 ΙίίΙ己記^ ¾置で it己各記録層に ΐίίΙΞトラックを形成し、
信号の漏選択的に出力は、 ttilS所定の信号を鍵己記録層の別を示す層情報、 了ドレス情報、 及ぴ、 このァドレス情報を格納するゥオフ^ 号を示す位置情報 としていて、 tfris層情報により tiilE4つの信号のうち互いに周波数が同じで位相 が反転している一組の信号のいずれかを選択し、 前記ァドレス情報により残りの 互いに周波数が同じで位相が反転している一組の信号のいずれかを選択し、 Ι ΙΒ 位置情報により請己層情報及び l己ァドレス情報で選択された 2つの信号のうち のレヽずれかを選択し、 この選択した信号を出力することを特徴とする請求の範囲 . 第 8 4項記載の情報記録媒体形成方法。
8 6 . 編己複数の信号は、 所定の基準クロックに基づ 、て生成し、 この基準 クロックは I己情報記録媒体の回^ 度を示す回転情報又は ttrt己情報記録媒体の 位置を表す 位置情報に基づレヽて周波数を変更することを特徴とする請求 の範囲第 7 8項〜第 8 5項のいずれ力一項記載の情報記録媒体形成方法。
8 7 . トラックに情報が変調されたゥォブルが形成されている情報記録媒体 力ら謂己ゥォプルに記録されている情報を読み取る情報検出装置において、 編己ゥォプルから得られたゥォブル信号から基準クロック信号を生成するクロ ック生成手段と、
ΙίίϊΒ基準ク口ック信号をもとに ΙΒゥォブル信号から F S Κ変調情報、 P S K 変調情報、 又は、 F S K+ P S Κ変調情報を検出する復調手段と、
tiriB情報記録媒体が記 が多層構造で各記録層につレ、てデータの記録が可能 であるときの ttilB記 の別を示す層情報の位置を示すタイミング信号を出力す る同期検出手段と、
このタイミング信号により前記復調手段の出力を保持して、 編己層情報を検出 する層情報検出手段とを備えていることを特徴とする、 情報検出装置。
8 8 . 嫌己復調手段は、 ItflBF S K+ P S K変調情報を検出する # ^に、 前 記基準ク口ック信号をもとに廳己ゥォブル信号から P S K変調情報も検出し、 ΙϋΐΗ同期検出手段は、 層情報の位置を示すタイミング信号のほかに、 アドレス 情報位置を示すタイミング信号も生成し、
ΙΒァドレス情報位置を示すタイミング信号に応じて廳己 P S K変調情報の出 力を保持してァドレス情報を検出するァドレス情報検出手段を更に備えているこ とを特徴とする、 請求の範囲第 8 7項記載の情報検出装置。
8 9 . ΙίίΐΒ復調手段は、 編己 P S Κ変調情報を検出する に、 謂己基準ク 口ック信号をもとに漏己ゥォブル信号から F S K+ P S Κ変調情報も検出し、
ItilB同期検出手段は、 層情報の位置を示すタイミング信号のほかに、 アドレス 情報位置を示すタイミング信号も生成し、
編己ァドレス情報位置を示すタイミング信号に応じて ttilBF S K+ P S K変調 情報の出力を保持してァドレス情報を検出するァドレス情報検出手段を更に備え ていることを特徴とする、 請求の範囲第 8 7項記載の情報検出装置。
9 0. 記録層が多層構造で各記録層についてデータの記録が可能である情報 記録媒体に光を照射して前記記録層に対する情報の記録又は再生する情報記録媒 体装置において、
ffjf己情報記録媒体に光を照射して、 その反射光から嫌己情報記録媒体のトラッ クに形成されているゥォプルからゥォブル信号を検出する光学系と、
このゥォブル信号から情報を検出する請求の範囲第 8 7項〜第 8 9項のいずれ 力一項記載の情報検出装置とを備え、
嫌己情報検出装置で得られた情報に基づいて廳己記録又は再生を行なうことを 特徴とする、 情報記録媒体装置。
9 1 . トラックに情報が変調されたゥォブルが形成されている情報記録媒体 力ら前記ゥォブルに記録されている情報を読み取る情報検出方法において、 編己ゥォブルから得られたゥォブル信号から基準ク口ック信号を生成し、 嫌己基準ク口ック信号をもとに編己ゥォブル信号から F S K変調情報、 P S K 変調情報、 又は、 F S K+ P S K変調情報を検出し、
lift己情報記録媒体が記録層が多層構造で各記録層についてデータの記録が可能 であるときの ΙίίΙ己記録層の別を示す層情報の位置を示すタイミング信号により、 tfil己ゥォブル信号からの検出情報を保持して tfrt己層情報を検出することを特徴と する、 情報検出方法。
9 2. ΐΒ層情報の検出として、 嫌己 F S K+ P S Κ変調情報を検出する場 合に、 觸己基準ク口ック信号をもとに ΙϋΐΒゥォブル信号から P s Κ変調情報も検 出し、
了ドレス情報位置を示すタイミング信号に応じて ΙίίΙΒΡ S K変調情報の出力を 保持してァドレス情報を検出することを特徴とする、 請求の範囲第 9 1項記載の 情報検出方法。
9 3 . 廳己層情報の検出として、 ΙΐίΙΕΡ S Κ変調情報を検出する ^に、 前 記基準クロック信号をもとに ttiiaゥォブル信号から F s κ+ p s κ変調情報も検 出し、 了ドレス胄報位置を示すタイミング信号に応じて ΙΐΠ己 F SK+PS K変調情報 の出力を保持してアドレス情報を検出することを特徴とする、 請求の範囲第 91 項記載の情報検出方法。
94. 記録層が多層構造で各記録層について光の照射によりデータの記録が 可能であり、 トラックに情報が変調されたゥォブルが形成されている情報記録媒 体において、
前記ゥォブルには前記記録層の別を示す層情報が F S K変調情報、 P S K変調 情報、 又は、 FSK+PSK変調情報として記録されていることを特徴とする情 報記録媒体。
95. 編己層情報が謂己 F SK+PS K変調情報である;^に、 tfifBゥォプ ルにはァドレス情報も P S K変調情報として更に記録されていることを特徴とす る、 請求の範囲第 94項記載の情報記録媒体。
96. 嫌己層情報が觸己 P S K変調情報である:!^に、 嫌己ゥォブルにはァ ドレス情報も F S K+ P S K変調情報として更に記録されていることを特徴とす る、 請求の範囲第 94項記載の情報記録媒体。
PCT/JP2004/003420 2003-07-07 2004-03-15 情報記録媒体、記録層判別方法、記録層判別装置、光ディスク装置、情報記録媒体形成装置、情報記録媒体形成方法、情報検出方法、情報検出装置及び情報記録媒体装置 WO2005004118A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04720760A EP1643494A4 (en) 2003-07-07 2004-03-15 INFORMATION RECORDING MEDIUM, METHOD AND DEVICE FOR DETERMINING RECORDING LAYER, OPTICAL DISC DEVICE, APPARATUS AND METHOD FOR PRODUCING INFORMATION RECORDING MEDIUM, METHOD AND DEVICE FOR DETECTING INFORMATION, AND SUPPORT DEVICE RECORDING
CN2004800210146A CN1826639B (zh) 2003-07-07 2004-03-15 信息记录介质的信息记录方法
US10/563,799 US7715285B2 (en) 2003-07-07 2004-03-15 Information recording medium having a plurality of recording layers

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003192940A JP2005032290A (ja) 2003-07-07 2003-07-07 情報記録媒体及び光ディスク装置
JP2003-192940 2003-07-07
JP2003313868A JP2005085327A (ja) 2003-09-05 2003-09-05 情報記録媒体形成装置及び情報記録媒体形成方法
JP2003-313867 2003-09-05
JP2003-313868 2003-09-05
JP2003313867A JP4148859B2 (ja) 2003-09-05 2003-09-05 情報検出装置、情報記録媒体装置、情報検出方法及び情報記録媒体
JP2003-319990 2003-09-11
JP2003319990A JP2005085437A (ja) 2003-09-11 2003-09-11 記録媒体と光ディスク

Publications (1)

Publication Number Publication Date
WO2005004118A1 true WO2005004118A1 (ja) 2005-01-13

Family

ID=33568725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003420 WO2005004118A1 (ja) 2003-07-07 2004-03-15 情報記録媒体、記録層判別方法、記録層判別装置、光ディスク装置、情報記録媒体形成装置、情報記録媒体形成方法、情報検出方法、情報検出装置及び情報記録媒体装置

Country Status (2)

Country Link
EP (1) EP1643494A4 (ja)
WO (1) WO2005004118A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412959C (zh) * 2005-09-30 2008-08-20 东芝三星储存科技股份有限公司 信息记录装置及方法、信息再现装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001344764A (ja) * 2000-05-31 2001-12-14 Victor Co Of Japan Ltd 情報記録媒体、および情報記録媒体記録再生方法
JP2002074679A (ja) * 2000-08-28 2002-03-15 Toshiba Corp 信号記録媒体及び記録再生方法及び記録再生装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4692601A (en) * 2000-04-17 2001-10-30 Matsushita Electric Industrial Co., Ltd. Recording medium, method and apparatus for reproducing, and method and apparatusfor recording

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001344764A (ja) * 2000-05-31 2001-12-14 Victor Co Of Japan Ltd 情報記録媒体、および情報記録媒体記録再生方法
JP2002074679A (ja) * 2000-08-28 2002-03-15 Toshiba Corp 信号記録媒体及び記録再生方法及び記録再生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1643494A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412959C (zh) * 2005-09-30 2008-08-20 东芝三星储存科技股份有限公司 信息记录装置及方法、信息再现装置及方法

Also Published As

Publication number Publication date
EP1643494A4 (en) 2008-10-08
EP1643494A1 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
US7391709B2 (en) Information recording carrier and method of reproducing the same
JP4000163B2 (ja) ウォブルトラックを持つ光ディスクおよびこの光ディスクを用いる装置と方法
US7715285B2 (en) Information recording medium having a plurality of recording layers
US8036097B2 (en) Information recording carrier and information reproducing apparatus for the same
KR20040048476A (ko) 광정보 재생장치 및 방법
WO2005004118A1 (ja) 情報記録媒体、記録層判別方法、記録層判別装置、光ディスク装置、情報記録媒体形成装置、情報記録媒体形成方法、情報検出方法、情報検出装置及び情報記録媒体装置
JP4148859B2 (ja) 情報検出装置、情報記録媒体装置、情報検出方法及び情報記録媒体
JP2005085437A (ja) 記録媒体と光ディスク
JP4170241B2 (ja) 光ディスク、クロック信号生成方法及び光ディスク装置
US20070288948A1 (en) Information Recording Medium, and Information Reproducing Apparatus and Method
JP2005085327A (ja) 情報記録媒体形成装置及び情報記録媒体形成方法
JPWO2005104106A1 (ja) 情報記録媒体
JP2005044410A (ja) 情報記録媒体、アクセス方法、プログラム及び記録媒体、並びに光ディスク装置
JP2005243098A (ja) 光ディスク、信号生成方法及び光ディスク装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021014.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004720760

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004720760

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007076548

Country of ref document: US

Ref document number: 10563799

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10563799

Country of ref document: US