WO2005002432A2 - Systeme et procede pour la visualisation de polypes - Google Patents

Systeme et procede pour la visualisation de polypes Download PDF

Info

Publication number
WO2005002432A2
WO2005002432A2 PCT/US2004/020385 US2004020385W WO2005002432A2 WO 2005002432 A2 WO2005002432 A2 WO 2005002432A2 US 2004020385 W US2004020385 W US 2004020385W WO 2005002432 A2 WO2005002432 A2 WO 2005002432A2
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
rays
viewing
point
location
Prior art date
Application number
PCT/US2004/020385
Other languages
English (en)
Other versions
WO2005002432A3 (fr
Inventor
Atilla Peter Kiraly
Carol L. Novak
Bernhard Geiger
Original Assignee
Siemens Corporate Research, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/873,337 external-priority patent/US7349563B2/en
Application filed by Siemens Corporate Research, Inc. filed Critical Siemens Corporate Research, Inc.
Priority to DE112004001138T priority Critical patent/DE112004001138T5/de
Publication of WO2005002432A2 publication Critical patent/WO2005002432A2/fr
Publication of WO2005002432A3 publication Critical patent/WO2005002432A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • the present invention relates to three-dimensional (3D) visualization of medical images, and more particularly, to a system and method for determining a location and a direction for viewing a protrusion, such as a colonic polyp, in a medical image.
  • CT computed tomography
  • MRI magnetic resonance imaging
  • PET positron emission tomography
  • Each imaging modality may provide unique advantages over other modalities for screening and evaluating certain types of diseases, medical conditions or anatomical abnormalities, including, for example, colonic polyps, aneurysms, lung nodules, calcification on heart or artery tissue, cancer micro-calcifications or masses in breast tissue, and various other lesions or abnormalities.
  • CT imaging systems can be used to obtain a set of cross-sectional images or two-dimensional (2D) "slices" of a region or interest (ROI) of a patient for purposes of imaging organs and other anatomies.
  • the CT modality is commonly employed for purposes of diagnosing disease because such a modality provides precise images that illustrate the size, shape, and location of various anatomical structures such as organs, soft tissues, and bones, and enables a more accurate evaluation of lesions and abnormal anatomical structures such as cancer, polyps, etc.
  • One method that physicians, clinicians, radiologists, etc., use for diagnosing and evaluating medical conditions is to manually review hard-copies (X-ray films, prints, photographs, etc.) of medical images that are reconstructed from an acquired dataset, to discern characteristic features of interest.
  • CT image data that is acquired during a CT examination can be used to produce a set of 2D medical images (X-ray films) that can be viewed to identify potential abnormal anatomical structures or lesions by a trained physician, clinician, radiologist, etc.
  • 3D renderings of the 2D data typically enable, for example, a trained radiologist to determine whether a suspicious structure is truly an abnormality.
  • 3D renderings of the 2D data typically enable, for example, a trained radiologist to determine whether a suspicious structure is truly an abnormality.
  • Various image processing systems and tools have been developed to assist physicians, clinicians, radiologists, etc.
  • CAD computer-aided detection and/or diagnosis
  • image data e.g., CT data
  • examination tools have been developed that allow a user to select and annotate portions of the image data. The CAD and examination tools are used to produce locations within the image data that may be examined with both 2D and 3D rendering techniques.
  • a virtual colonoscopy When conducting a virtual colonoscopy, a functional model is used to explore a virtual space rendered from three-dimensional (3D) images acquired by a scanner.
  • a virtual camera which can be used as a point of reference for the viewer and/or operator, e.g., a radiologist located at a workstation, to explore the virtual space.
  • the operator has two types of camera control from which they can use to navigate through the virtual space. The first gives the operator full control of the camera, which allows the operator to manipulate the camera in different positions and orientations to achieve a desired view. In other words, the operator can pilot the camera.
  • the second technique of camera control is a pre-planned navigation method, which assigns the camera a predetermined path to take and which does not require intervention by the operator. In other words, the operator has engaged an "autopilot". This allows the operator to concentrate on the virtual space being viewed, and not have to worry about steering into walls of the environment being examined. However, this second technique may not give the operator sufficient time to fully investigate an interesting area viewed along the flight path.
  • the present invention overcomes the foregoing and other problems encountered in the known teachings by providing a system and method for determining a location and a direction for viewing a protrusion.
  • a method for determining a location and a direction for viewing a protrusion comprises: casting a plurality of rays in an outward direction from a point, wherein the point is inside a protrusion; selecting at least one of the plurality of rays for determining a location and a direction for viewing the protrusion; and determining the location and the direction for viewing the protrusion using the selected at least one of the plurality of rays.
  • the plurality of rays are cast in one of a spherical and an ellipsoidal formation.
  • the protrusion is one of a nodule, lesion, polyp, pre-cancerous growth, and cancerous growth.
  • the method further comprises: acquiring a medical image comprising the protrusion, wherein the medical image is acquired by one of a computed tomographic (CT), helical CT, x-ray, positron emission tomographic, fluoroscopic, ultrasound, and magnetic resonance (MR) imaging technique.
  • CT computed tomographic
  • helical CT helical CT
  • x-ray positron emission tomographic
  • fluoroscopic fluoroscopic
  • ultrasound magnetic resonance
  • MR magnetic resonance
  • the method also comprises: detecting the protrusion using a computer-aided protrusion detection technique; storing the determined location and direction for viewing the protrusion; and viewing the protrusion from the determined location and direction for viewing the protrusion.
  • the point is manually selected by a user.
  • the point is a center-point of the protrusion.
  • One of the plurality of rays that has traveled a shortest distance from the point to a surface of the protrusion is selected to determine the location and the direction for viewing the protrusion.
  • the plurality of rays that stop at a voting surface of the protrusion are used to determine one of the plurality of rays that has traveled a shortest distance from the point to the surface of the protrusion.
  • the stopping point of the plurality of rays is determined by a gradient of an image, wherein the stopping point is used to determine one of the plurality of rays that has traveled a shortest distance from the point to the surface of the protrusion.
  • the stopping point of the plurality of rays is also determined using an air threshold, wherein the stopping point is used to determine one of the plurality of rays that has traveled a shortest distance from the point to the surface of the protrusion.
  • a group of the plurality of rays that has traveled a shortest average distance from the point to a surface of the protrusion is selected to determine the location and the direction for viewing the protrusion.
  • An opposite direction of the selected at least one of the plurality of rays determines the direction for viewing the protrusion.
  • the location for viewing the detected protrusion is determined by selecting a point along an extended direction of the selected at least one of the plurality of rays.
  • the selected point is one of a fixed distance from the surface of the protrusion and a longest the selected ray can be extended within the air to the fixed distance.
  • the fixed distance is based on an estimated size of the protrusion.
  • a system for visualizing a protrusion in a medical image comprises: a memory device for storing a program; a processor in communication with the memory device, the processor operative with the program to: cast a plurality of rays in an outward direction from a point, wherein the point is inside a protrusion; select at least one of the plurality of rays for determining a location for viewing the protrusion; and determine the location for viewing the protrusion using the selected at least one of the plurality of rays.
  • One of the plurality of rays that has traveled a shortest distance from the point to a surface of the protrusion is selected to determine the location for viewing the protrusion.
  • a group of rays that has traveled a shortest average distance from the point to a surface of the protrusion is selected to determine the location for viewing the protrusion.
  • the location for viewing the protrusion is determined by selecting a point along an extended direction of the selected at least one of the plurality of rays.
  • the selected point is one of a fixed distance from the surface of the protrusion and a longest the ray can be extended within the air to the fixed distance, wherein the fixed distance is based on an estimated size of the protrusion.
  • At least one of the plurality of rays is selected for determining a direction for viewing the protrusion.
  • One of the plurality of rays that has traveled a shortest distance from the point to a surface of the protrusion is selected to determine the direction for viewing the protrusion.
  • An opposite direction of the selected at least one of the plurality of rays determines the direction for viewing the protrusion.
  • a group of rays that has traveled a shortest average distance from the point to a surface of the protrusion is selected to determine the direction for viewing the protrusion.
  • a second plurality of rays is cast from the surface point into an air region of a lumen, wherein a longest ray of the second plurality of rays is selected for determining the location and the direction for viewing the protrusion, wherein the direction for viewing the protrusion is opposite the direction of the selected longest ray.
  • the location is determined using one of a point along the selected ray and an estimated size of the protrusion.
  • a computer program product comprising a computer useable medium having computer program logic recorded thereon for visualizing a protrusion in a medical image
  • the computer program logic comprising: program code for casting a plurality of rays in one of a spherical and ellipsoidal pattern from a point, wherein the point is inside a protrusion; program code for selecting at least one of the plurality of rays for determining a direction for viewing the protrusion; and program code for determining the direction for viewing the protrusion using the selected at least one of the plurality of rays.
  • One of the plurality of rays that has traveled a shortest distance from the point to a surface of the protrusion is selected to determine the direction for viewing the protrusion.
  • a group of rays that has traveled a shortest average distance from the point to a surface of the protrusion is selected to determine the direction for viewing the protrusion.
  • An opposite direction of the selected at least one of the plurality of rays determines the direction for viewing the protrusion.
  • At least one of the plurality of rays is selected for determining a location for viewing the protrusion.
  • One of the plurality of rays that has traveled a shortest distance from the point to a surface of the protrusion is selected to determine the location for viewing the protrusion.
  • a group of rays that has traveled a shortest average distance from the point to a surface of the protrusion is selected to determine the location for viewing the protrusion.
  • the location for viewing the protrusion is determined by selecting a point along an extended direction of the selected at least one of the plurality of rays.
  • the selected point is one of a fixed distance from the surface of the protrusion and a longest the ray can be extended within the air to the fixed distance, wherein the fixed distance is based on an estimated size of the protrusion.
  • a second plurality of rays is cast from the surface point into an air region of a lumen, wherein a longest ray of the second plurality of rays is selected for determining the location with the direction for viewing the protrusion, wherein the direction for viewing the protrusion is opposite the direction of the selected longest ray.
  • the location is determined using one of a point along the selected rays and an estimated size of the protrusion.
  • a system for determining a location and a direction for viewing a protrusion comprises: means for casting a plurality of rays in an outward direction from a point, wherein the point is inside a protrusion; means for selecting at least one of the plurality of rays for determining a location and a direction for viewing the protrusion; and means for determining the location and the direction for viewing the protrusion using the selected at least one of the plurality of rays.
  • a method for determining a location and a direction for viewing a polyp in an image of a colon comprises: acquiring the image of the colon, wherein the image is acquired by one of a computed tomographic (CT), helical CT, x-ray, positron emission tomographic, fluoroscopic, ultrasound, and magnetic resonance (MR) imaging technique; detecting the polyp using a computer-aided polyp detection technique; casting a plurality of rays from a point within the polyp, wherein the plurality of rays are cast in one of a spherical and an ellipsoidal pattern; selecting a ray that has traveled a shortest distance from the point to a surface of the polyp, wherein one of the plurality of rays that has traveled a shortest distance from the point to a surface of the polyp is selected to determine the location and the direction for viewing the polyp; determining the location and the direction for viewing the polyp using the selected ray, wherein an opposite
  • FIG. 1 is a block diagram of a system for determining a location and a direction for viewing a protrusion according to an exemplary embodiment of the present invention
  • FIG. 2 is a flowchart illustrating a method for determining a location and a direction for viewing a protrusion according to an exemplary embodiment of the present invention
  • FIG. 3 illustrates determining a location and a direction for viewing a protrusion according to an exemplary embodiment of the present invention
  • FIG. 4A is another illustration of determining a location and a direction for viewing a protrusion according to an exemplary embodiment of the present invention
  • FIG. 4B is yet another illustration of determining a location and a direction for viewing a protrusion according to an exemplary embodiment of the present invention
  • FIG. 5 illustrates "flying-around" a marked polyp in a colon
  • FIG. 6 illustrates "flying-through” a colon in accordance with an exemplary embodiment of the present invention.
  • FIG. 1 is a block diagram of a system 100 for determining a location and a direction for viewing a protrusion according to an exemplary embodiment of the present invention.
  • the system 100 includes, inter alia, a scanning device 105, a personal computer (PC) 110 and an operator's console and/or virtual navigation terminal 115 connected over, for example, an Ethernet network 120.
  • PC personal computer
  • the scanning device 105 may be a magnetic resonance imaging (MRI) device, a computed tomography (CT) imaging device, a helical CT device, a positron emission tomography (PET) device, a two-dimensional (2D) or three-dimensional (3D) fluoroscopic imaging device, a 2D, 3D, or four-dimensional (4D) ultrasound imaging device, or an x-ray device, etc.
  • the PC 110 which may be a portable or laptop computer, a personal digital assistant (PDA), etc., includes a central processing unit (CPU) 125 and a memory 130, which are connected to an input 150 and an output 155.
  • CPU central processing unit
  • the CPU 125 includes a visualization module 145 that includes one or more methods for determining a location and a direction for viewing a protrusion in a medical image.
  • the CPU 125 may also include a detection module, which is a computer-aided detection (CAD) module for detecting protrusions such as polyps in a medical image, and a diagnostic module, which is used to perform automated diagnostic or evaluation functions of medical image data.
  • the memory 130 includes a random access memory (RAM) 135 and a read only memory (ROM) 140.
  • the memory 130 can also include a database, disk drive, tape drive, etc., or a combination thereof.
  • the RAM 135 functions as a data memory that stores data used during execution of a program in the CPU 125 and is used as a work area.
  • the ROM 140 functions as a program memory for storing a program executed in the CPU 125.
  • the input 150 is constituted by a keyboard, mouse, etc.
  • the output 155 is constituted by a liquid crystal display (LCD), cathode ray tube (CRT) display, printer, etc.
  • the operation of the system 100 is controlled from the virtual navigation terminal 115, which includes a controller 165, for example, a keyboard, and a display 160, for example, a CRT display.
  • the virtual navigation terminal 115 communicates with the PC 110 and the scanning device 105 so that 2D image data collected by the scanning device 105 can be rendered into 3D data by the PC 110 and viewed on the display 160.
  • the PC 110 can be configured to operate and display information provided by the scanning device 105 absent the virtual navigation terminal 115, using, for example, the input 150 and output 155 devices to execute certain tasks performed by the controller 165 and display 160.
  • the virtual navigation terminal 115 further includes any suitable image rendering system/tool/application that can process digital image data of an acquired image dataset (or portion thereof) to generate and display 2D and or 3D images on the display 160.
  • the image rendering system may be an application that provides 2D/3D rendering and visualization of medical image data, and which executes on a general purpose or specific computer workstation.
  • the image rendering system enables a user to navigate through a 3D image or a plurality of 2D image slices.
  • the PC 110 may also include an image rendering system/tool/application for processing digital image data of an acquired image dataset to generate and display 2D and/or 3D images.
  • the visualization module 145 is also used by the PC 110 to receive and process digital medical image data, which as noted above, may be in the form of raw image data, 2D reconstructed data (e.g., axial slices), or 3D reconstructed data such as volumetric image data or multiplanar reformats, or any combination of such formats.
  • the data processing results can be output from the PC 110 via the network 120 to an image rendering system in the virtual navigation terminal 115 for generating 2D and/or 3D renderings of image data in accordance with the data processing results, such as segmentation of organs or anatomical structures, color or intensity variations, and so forth.
  • CAD systems and methods according to the present invention for determining a location and a direction for viewing a protrusion in a medical image may be implemented as extensions or alternatives such as manual selection to conventional CAD methods or other automated visualization and detection methods for processing image data.
  • the exemplary systems and methods described herein can be readily implemented with 3D medical images and CAD systems or applications that are adapted for a wide range of imaging modalities (e.g., CT, MRI, etc.) and for diagnosing and evaluating various abnormal anatomical structures or lesions such as colonic polyps, aneurysms, lung nodules, etc.
  • imaging modalities e.g., CT, MRI, etc.
  • anatomical structures or lesions such as colonic polyps, aneurysms, lung nodules, etc.
  • the present invention may be implemented in various forms of hardware, software, firmware, special purpose processors, or a combination thereof.
  • the present invention may be implemented in software as an application program tangibly embodied on a program storage device (e.g., magnetic floppy disk, RAM, CD ROM, DND, ROM, and flash memory).
  • the application program may be uploaded to, and executed by, a machine comprising any suitable architecture.
  • FIG. 2 is a flowchart showing an operation of a method for determining a location and a direction for viewing a protrusion in a medical image according to an exemplary embodiment of the present invention. As shown in FIG. 2, 3D data is acquired from a medical image of a protrusion, which in this example is a colon (step 205).
  • the scanning device 105 for example a CT scanner, operated at the virtual navigation terminal 115, to scan the colon thereby generating a series of 2D images associated with the colon.
  • the 2D images of the colon may then be converted or transformed into a 3D rendered image.
  • the medical image can be a lumen, which can be in addition to a colon, any one of a pancreas, a bronchi, a larynx, a trachea, a sinus, an ear canal, a blood vessel, a urethra and a bladder, etc.
  • the medical image can also be a non-tubular structure, such as the lung-parenchyma or liver.
  • the 3D data of the colon is processed to detect polyps (step 210). More specifically, polyps are detected using a conventional (CAD) technique. It is to be understood that a variety of conventional CAD techniques may be used in accordance with the present invention, hi addition, during step 210 a medical expert can manually select polyps from the medical image, for example, by selecting a portion of the medical image using a mouse or a computer input means such as the input 150. As further shown in FIG. 2, after data associated with the polyps has been received, rays are cast from a point (e.g., a center point) in each of the polyps (step 215).
  • a point e.g., a center point
  • the points may be provided to an operator of the virtual navigation terminal 115 after the operator requests such data.
  • the operator may also manually select the point within a polyp by marking, for example, the center of a 2D image of the polyp to view a 3D endoscopic rendering of the polyp as discussed above in step 210.
  • the rays are then cast using a ray-casting technique in a spherical pattern and/or formation.
  • the rays may be cast in an ellipsoidal pattern when, for example, the data is anisotropic.
  • An example of a plurality of rays being cast from a center point in a polyp is shown in FIG. 3 and will be discussed in more detail hereinafter.
  • Each ray cast from the center point of the polyp or polyps is defined as a point and a direction.
  • the rays pass through solid objects such as tissue but stop at air. As shown in FIG. 3, the rays start at the center point and continue in an assigned direction until the rays hit air.
  • a ray that has traveled the shortest distance from the points to the surface of the polyps is selected (step 220).
  • Each ray is cast and/or extended from, for example, the point until it intersects the surface of the colon.
  • the distance from the point to the surface of the colon is the stopping distance.
  • the ray with the shortest length is the ray with the shortest stopping distance.
  • a group of rays having the shortest average length can be selected in step 220, for example, by averaging the stopping distances of several groups of N rays, where N is a predetermined number. After the averages are taken, the group with the shortest average or mean stopping distance will be chosen.
  • Determining the distance from a point in a polyp to the polyp's surface can be defined using a variety of methods.
  • a gradient difference can be used to determine the stopping point and thus be used to determine which ray or group of rays are to be selected in step 220. This is accomplished by using standard methods of computing the gradient of an image. Sharp edges, such as the boundary between the air and the colon wall and/or tissue, which tend to have high gradients, are more easily identified. Thus, gradients exceeding a predetermined threshold set, for example, at higher gradient magnitudes, become the stopping distance of the rays.
  • an air threshold can be used to determine the stopping distance of the rays.
  • the scanning device 105 can be calibrated so that air will have a certain value or range of values in an acquired image, and soft tissue such as blood will have a different value or range of values.
  • a threshold can be set that falls at a midpoint between the values of air and the value of soft tissue that is optimal for segmenting a colon, and thus, enables the stopping distance of rays to be determined.
  • a CAD technique when a CAD technique is employed, only the rays that intersect a "voting surface" of a detected polyp will be used to determine the stopping distance and thus the shortest ray thereof will be selected.
  • the "voting surface” is defined as an intersection of the voxels of the surface of the colon with those voxels that lead to the detection of a polyp, which vary by the CAD technique employed. Such a technique is disclosed in U.S. Patent Application, Attorney Docket No. 2003P08958US, entitled, "Method and System for Response Image Feature Collection and Candidate Summit, Surface and Core Estimation," a copy of which is herein incorporated by reference. As further shown in FIG. 2, once the ray or group of rays is selected, a location and a direction for viewing the detected polyps are determined using the selected ray or group of rays (step 225).
  • the distance from the polyps from which to place the virtual camera and the direction from which to angle the camera for viewing the polyps is determined. It is to be understood that the distance from a polyp, which is typically equal to the shortest distance from the center point in the polyp to the polyp's surface, is constrained so that the distance remains within portions of air located in the inner space of the colon. The distance may also be set to a fixed value for all detected and/or marked polyps.
  • the shortest ray and/or group of rays defines a direction from the center point of the polyp outwards. As a result, the point chosen along the shortest ray determines the viewing location in the air portion of the colon, and the opposite direction of the shortest ray determines the viewing direction.
  • a rendering direction of the shortest ray is the inverse thereof, thus the camera is positioned so that it is looking back at the polyp as shown in FIG. 3.
  • the viewing location is determined by extending the shortest ray within the air space of the colon (as shown in FIG. 4A) and determining a location along this ray that remains within the air space and allows the entire polyp to be in view of the camera shown, for example, in FIG.4 A.
  • the shortest ray can be extended from the surface of the polyp until either: (1) the ray hits the opposite wall of the colon, or (2) the entire polyp is in view, depending on which event occurs first.
  • FIG. 4B illustrates yet another method for determining the location and direction for viewing the detected polyps.
  • a spherical set of rays are cast from a surface point of intersection (at the polyp's surface) of a shortest ray. The rays travel through the air until they hit a solid surface. The longest ray of a group of rays is then used to determine the virtual camera's location and direction for viewing.
  • the location is selected as a point along the ray, which can be a fixed distance within the air region, or it can be variable based on an estimated polyp size.
  • the determined locations and directions for viewing detected polyps are then used to augment an existing or used to create a new "fly-through" program for navigating through the colon or any other lumen (step 230).
  • the data associated with the determined locations and directions for viewing the detected polyps can be stored, for example, in the memory 130 of the CPU 125 for further manipulation and/or analysis.
  • a few additional actions may occur: (1) it can be used by the operator of the virtual navigation terminal 115 to instantly view each polyp that has been marked and/or detected or (2) it can be used to provide a cine around the polyp to allow a medical expert to view the polyp from several sides and/or angles as shown in FIG. 5.
  • a medical expert can navigate through the colon along the "fly-through” path (step 235).
  • the operator of the virtual navigation terminal 115 performs a planned or guided navigation according to the "fly-through" of the virtual organ being examined as shown in FIG. 6. As shown in FIG.
  • the "fly-through” immediately proceeds to a first location (A) (i.e., the first determined location for viewing) in the virtual organ, thus bringing the operator directly to a detected polyp for viewing.
  • A i.e., the first determined location for viewing
  • the "fly-through” will pause and allow the operator to view the detected polyp (i.e., to view the polyp using the determined direction for viewing) and then proceed to a second location (B) for viewing and so forth.
  • the "fly-through” may provide a level of interaction with the virtual camera, so that the virtual camera can navigate through a virtual environment automatically in the case of no operator interaction, and yet, allow the operator to manipulate the camera when necessary.
  • a location and a direction for viewing protrusions can be automatically determined and used to create and/or augment a program associated with virtual navigation of a lumen.
  • a "fly-through" programmed with location and direction information in accordance with the present invention enables an operator of a virtual navigation terminal to proceed directly to protrusions that have been detected using a conventional CAD technique without having to manually navigate a virtual camera through a lumen.
  • conventional CAD systems can be enhanced by employing the present invention to create and/or augment a program associated with virtual navigation of a lumen to improve the speed at which a user can parse through detected protrusions and to examine previously detected protrusions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

Cette invention se rapporte à un système et à un procédé servant à déterminer une position et une direction en vue de permettre la visualisation d'une protubérance, ce procédé consistant : à projeter plusieurs rayons dans une direction vers l'extérieur à partir d'un point, lequel se trouve à l'intérieur d'une protubérance (215) ; à sélectionner au moins l'un de ces rayons pour déterminer une position et une direction destinée à permettre la visualisation de la protubérance (220) ; et à déterminer ladite position et ladite direction permettant la visualisation de ladite protubérance, en utilisant le ou les rayons sélectionnés (225).
PCT/US2004/020385 2003-06-25 2004-06-24 Systeme et procede pour la visualisation de polypes WO2005002432A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112004001138T DE112004001138T5 (de) 2003-06-25 2004-06-24 System und Verfahren zur Polypvisualisierung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US48259103P 2003-06-25 2003-06-25
US60/482,591 2003-06-25
US10/873,337 2004-06-22
US10/873,337 US7349563B2 (en) 2003-06-25 2004-06-22 System and method for polyp visualization

Publications (2)

Publication Number Publication Date
WO2005002432A2 true WO2005002432A2 (fr) 2005-01-13
WO2005002432A3 WO2005002432A3 (fr) 2005-09-22

Family

ID=33567652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/020385 WO2005002432A2 (fr) 2003-06-25 2004-06-24 Systeme et procede pour la visualisation de polypes

Country Status (2)

Country Link
DE (1) DE112004001138T5 (fr)
WO (1) WO2005002432A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103238A1 (fr) * 2012-12-27 2014-07-03 富士フイルム株式会社 Dispositif et procédé d'affichage d'images d'endoscope virtuelles, et programme

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008012313A1 (de) 2008-03-03 2009-09-10 Siemens Aktiengesellschaft Verfahren zur automatischen Befundungsunterstützung von Darm-Divertikeln mit Hilfe tomographischer Aufnahmen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366800B1 (en) * 1994-10-27 2002-04-02 Wake Forest University Automatic analysis in virtual endoscopy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366800B1 (en) * 1994-10-27 2002-04-02 Wake Forest University Automatic analysis in virtual endoscopy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOBBETTI E ET AL: "Interactive virtual angioscopy" VISUALIZATION '98. PROCEEDINGS RESEARCH TRIANGLE PARK, NC, USA 18-23 OCT. 1998, PISCATAWAY, NJ, USA,IEEE, US, 18 October 1998 (1998-10-18), pages 435-438,561, XP010321024 ISBN: 0-8186-9176-X *
KIRALY A P ET AL: "Analysis of branching tubular structures in 3d digital images" PROCEEDINGS 2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING. ICIP 2002. ROCHESTER, NY, SEPT. 22 - 25, 2002, INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, NEW YORK, NY : IEEE, US, vol. VOL. 2 OF 3, 22 September 2002 (2002-09-22), pages 333-336, XP010607976 ISBN: 0-7803-7622-6 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103238A1 (fr) * 2012-12-27 2014-07-03 富士フイルム株式会社 Dispositif et procédé d'affichage d'images d'endoscope virtuelles, et programme
JP2014124384A (ja) * 2012-12-27 2014-07-07 Fujifilm Corp 仮想内視鏡画像表示装置および方法並びにプログラム
US9619938B2 (en) 2012-12-27 2017-04-11 Fujifilm Corporation Virtual endoscopic image display apparatus, method and program

Also Published As

Publication number Publication date
DE112004001138T5 (de) 2006-08-10
WO2005002432A3 (fr) 2005-09-22

Similar Documents

Publication Publication Date Title
US7349563B2 (en) System and method for polyp visualization
JP6877868B2 (ja) 画像処理装置、画像処理方法および画像処理プログラム
US7822461B2 (en) System and method for endoscopic path planning
US7935055B2 (en) System and method of measuring disease severity of a patient before, during and after treatment
US7840051B2 (en) Medical image segmentation
US20070276214A1 (en) Systems and Methods for Automated Segmentation, Visualization and Analysis of Medical Images
US8077948B2 (en) Method for editing 3D image segmentation maps
US8150120B2 (en) Method for determining a bounding surface for segmentation of an anatomical object of interest
JP5345934B2 (ja) 観察のための三次元レンダリングからのデータ集合の選択
US20090022375A1 (en) Systems, apparatus and processes for automated medical image segmentation
US20080117210A1 (en) Virtual endoscopy
JP2003225231A (ja) 肺疾患検出のための方法及びシステム
US8150121B2 (en) Information collection for segmentation of an anatomical object of interest
US20060050991A1 (en) System and method for segmenting a structure of interest using an interpolation of a separating surface in an area of attachment to a structure having similar properties
US20040202990A1 (en) System and method for performing a virtual endoscopy
EP2601637B1 (fr) Système et procédé de segmentation multi-modalité d'un tissu interne avec rétroaction en direct
JP2008510565A (ja) 標識された糞便または虚脱結腸領域の存在下で結腸壁を抽出するためのシステムおよび方法
US7391893B2 (en) System and method for the detection of shapes in images
US20050197558A1 (en) System and method for performing a virtual endoscopy in a branching structure
US7369638B2 (en) System and method for detecting a protrusion in a medical image
US20110285695A1 (en) Pictorial Representation in Virtual Endoscopy
WO2005002432A2 (fr) Systeme et procede pour la visualisation de polypes
JP2007534352A (ja) すりガラス様小結節(ggn)セグメンテーションを行うためのシステムおよび方法
JP2022107639A (ja) 画像処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480024408.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006517651

Country of ref document: JP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
RET De translation (de og part 6b)

Ref document number: 112004001138

Country of ref document: DE

Date of ref document: 20060810

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004001138

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607