WO2005001465A1 - Chemical substance detector and method of detecting chemical substance - Google Patents

Chemical substance detector and method of detecting chemical substance Download PDF

Info

Publication number
WO2005001465A1
WO2005001465A1 PCT/JP2003/008237 JP0308237W WO2005001465A1 WO 2005001465 A1 WO2005001465 A1 WO 2005001465A1 JP 0308237 W JP0308237 W JP 0308237W WO 2005001465 A1 WO2005001465 A1 WO 2005001465A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical substance
detected
ions
ion
mass
Prior art date
Application number
PCT/JP2003/008237
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Yamakoshi
Hiroshi Futami
Minoru Danno
Shigenori Tsuruga
Shizuma Kuribayashi
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to DE10393404T priority Critical patent/DE10393404T5/en
Priority to US10/495,044 priority patent/US7064323B2/en
Priority to PCT/JP2003/008237 priority patent/WO2005001465A1/en
Priority to CNB038014912A priority patent/CN100458435C/en
Priority to TW092117658A priority patent/TWI222096B/en
Publication of WO2005001465A1 publication Critical patent/WO2005001465A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/426Methods for controlling ions
    • H01J49/427Ejection and selection methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/162Direct photo-ionisation, e.g. single photon or multi-photon ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/424Three-dimensional ion traps, i.e. comprising end-cap and ring electrodes

Definitions

  • the present invention relates to an apparatus for detecting a chemical substance and a method for measuring the concentration of a chemical substance.
  • the present invention relates to a chemical substance detection device and a chemical substance detection method for detecting with high accuracy.
  • the above-mentioned atmospheric pressure chemical ionization method has the following problems.
  • the ionization probability of the chemical substance to be measured is greatly affected by the atmosphere and gas composition. Therefore, the measured electrical signal strength
  • a certain precursor e.g., phenolic trichloride
  • other furnaces may have different furnace types and combustion conditions. is there.
  • the indicator substance in one furnace is not always optimal, and the versatility is low if only one precursor can be measured. That is, in order to enhance versatility, it is preferable that various types of chemical substances can be detected at the same time, if possible.
  • the present invention improves the detection sensitivity of the chemical substance to be detected, and controls the combustion conditions even during the operation of an incinerator, a heating furnace, or another combustion furnace. It is an object of the present invention to provide a chemical substance detection apparatus and a chemical substance detection method that can achieve at least one of improving the detection speed of a chemical substance and reducing the cost of a detection facility. . Disclosure of the invention
  • the chemical substance detection device provides a chemical substance to be detected that has a large ionization potential and a smaller energy than the sum of the ionization potential and the dissociation energy of ions of the chemical substance to be detected.
  • Ionization means for applying to the substance and ionizing the chemical substance to be detected, electric field, magnetic field and other means
  • Ion trap means for confining the ion group containing ions of the chemical substance to be detected ionized by the ionization means according to the above, and a frequency excluding a frequency corresponding to the orbital resonance frequency of the ion of the chemical substance to be detected
  • An impurity removing means for applying energy to the ion group by a SW IFT waveform including a component to remove impurities, and a mass analyzing means for measuring a mass of the chemical substance to be detected.
  • the chemical substance detection device is configured to calculate the ionization potential greater than the ionization potential of the chemical substance to be detected and the dissociation energy of the ions of the chemical substance to be detected. A small amount of energy is given to the target chemical. As a result, the chemical substance to be detected can be ionized without being destroyed, so that the ionization efficiency can be increased.
  • the generation of extra fragment ions can be extremely reduced. As a result, it is possible to suppress a decrease in trap efficiency due to a large amount of extra ions in the ion trap.
  • a time-of-flight measurement method as the mass analysis means, because the measurement time can be shortened.
  • the ion trap means a means for confining ions inside by an electric or magnetic field or other electromagnetic force can be used. An electric field, a magnetic field, etc., may be used alone, or a plurality of them may be used in combination as appropriate. Traps are known and are preferred because they are relatively easy to handle (and so on).
  • the substance to be detected in the present invention refers to, for example, a dioxin precursor or dioxin contained in exhaust gas from an incinerator or the like.
  • the chemical substance detection device according to the present invention can detect a precursor having a high correlation with dioxins and estimate the concentration of dioxins contained in the exhaust gas. It is also possible to directly detect dioxins contained in exhaust gas and determine their concentrations. The latter can also be used to test precursor estimates.
  • dioxins include molecules generally called dioxins ⁇ furan ⁇ cobraner PCB.
  • the precursors include, for example, benzenes such as benzene, dichlorobenzene, and monochlorobenzene, and phenols such as phenol.
  • SWIFT is a Stored Waveform Inverse Fourier Transform
  • Shinoita describes in the literature ⁇ Development of a Capillary High-performance Liquid Chromato graphy randem Mass Spectrometry System Using SWIFT Technology in an Ion Trap / Reflectron Time-of-flight Mass Spectrometer Rapid Communication in mass spectrometry, vol. 11 1739-1748 (1997).
  • the chemical substance detection device detects the energy larger than the ionization potential of the chemical substance to be detected and smaller than the sum of the ionization potential and the dissociation energy of the ion of the chemical substance to be detected.
  • ionization means for ionizing the substance to be detected and an ion group containing ion of the chemical substance to be detected ionized by the ionization means by an electric field, a magnetic field or other means are confined.
  • Ion trap means impurity removing means for applying energy to the ion group by a SWIFT waveform including a frequency component excluding a frequency corresponding to the orbital resonance frequency of the ion of the detection target chemical substance to remove impurities,
  • the ion Energy is given to the group to detect ions of the target substance.
  • Fragmentation means for fragmentation; and mass analysis means for measuring the mass of the fragment of the chemical substance to be detected.
  • the chemical substance to be detected is fragmented by fragmentation means that gives a TICKLE waveform, so even if there is an impurity in the mass number of the chemical substance to be detected, this effect can be eliminated and accurate measurement can be performed .
  • the target chemical substance to be detected can be efficiently fragmented when the chemical substance to be detected is fragmented.
  • almost all of the fragments of the substance to be detected can be measured by the mass spectrometry means, so that the detection sensitivity of the mass spectrometry means can be increased and more precise combustion control can be performed.
  • TICKLE is an operation of fragmenting the chemical substance to be detected and separating the chemical substance to be detected from the impurities whose mass number is similar to that of the chemical substance to be detected.
  • the apparatus for detecting a chemical substance is the apparatus for detecting a chemical substance, wherein the ionization means outputs an energy higher than an ionization potential and equal to or less than a value obtained by adding 4 eV to the ionization potential. It is characterized by being given to substances.
  • the chemical substance detection device according to the next invention is the chemical substance detection device, wherein the ionization means is a light generation means for generating light having a wavelength of 50 nm or more and 200 nm or less.
  • the ionization means is a vacuum ultraviolet light lamp.
  • the energy is preferably higher than the ionization potential and equal to or less than the value obtained by adding 4 eV to the ionization potential.
  • the wavelength should be 50 nm or more and 200 n m or less is desirable. It is preferable to use a vacuum ultraviolet lamp because such light can be easily obtained.
  • An apparatus for detecting a chemical substance comprises an ion trap means for confining an ion group including an ion of the chemical substance to be detected ionized by an electric field, a magnetic field, or other means; and a signal intensity higher than a predetermined signal intensity.
  • Arbitrary waveform generating means for generating a SW IFT waveform having an amplitude; and applying the SW IFT waveform generated by the arbitrary waveform generating means to a group of ions confined in the ion trap means to remove the impurities.
  • Mass spectrometry means for measuring the mass of the target chemical substance or its fragment. Sign.
  • the voltage amplitude of the SW IFT waveform at a frequency corresponding to the mass number of an impurity present at a concentration higher than a specific signal intensity is increased, and the voltage amplitude at a frequency corresponding to the mass number at a low impurity concentration is increased.
  • the concentration By lowering the concentration, highly concentrated impurities can be selectively removed.
  • impurities can be selectively removed, and the energy required for SWIFT can be reduced.
  • the power supply unit can be made compact, it is economical because it is not necessary to use a large power supply without necessity.
  • the impurity that increases the voltage amplitude of the SW IFT waveform is preferably an impurity that exists at a concentration that exhibits a signal intensity at least as high as the signal intensity of the chemical substance to be detected.
  • impurities with even lower mass numbers may be targeted, the energy required for SW IFT increases, so it is preferable to target impurities with a signal intensity of 50% or more of the signal intensity of the target chemical substance. .
  • the chemical substance detection device comprises: an ion trap means for confining an ion group including an ion of the chemical substance to be detected ionized by an electric field, a magnetic field or other means; and a voltage amplitude as the frequency increases.
  • An arbitrary waveform generating means for generating a reduced SW IFT waveform; and Mass spectrometry means for measuring the mass of the chemical substance to be detected or a fragment thereof, after removing the impurities by giving the ions to the group of ions confined in the trapping means.
  • the chemical substance detection device is configured to give, to an impurity having a large mass number, energy equivalent to energy given to an impurity having a small mass number.
  • the orbital resonance frequency in an ion trap is a function of the mass number, but as the mass number increases, the frequency decreases, and the frequency interval corresponding to the mass number interval 1 decreases.
  • SW IFT waveform generation generally performed in (1997) and the like, a SW IFT waveform is generated by converting a frequency spectrum having a constant voltage amplitude into a time domain by an inverse Fourier transform. In this case, a sum waveform having a constant voltage amplitude at a constant frequency interval is generated. Therefore, in this case, as the mass number is larger, the number of sine waves per mass number interval 1 is smaller, and the energy per mass number interval 1 is smaller. That is, the energy applied to a molecule having a large mass number becomes relatively small.
  • the present invention since the voltage amplitude of the sine wave is increased and compensated by the decrease in the number of sine waves, sufficient energy can be given to ions having a large mass number. Such impurities can be more reliably removed. Also, energy can be given to ions having a small mass number in a necessary and sufficient range, so that the energy use efficiency can be increased. Furthermore, since a large power supply is not required, the installation cost of the equipment can be reduced.
  • the chemical substance detection device includes an ion trap means for confining an ion group including an ion of the chemical substance to be detected ionized by an electric field, a magnetic field, or the like, and a mass number of a molecule to be removed by SWIFT.
  • An arbitrary waveform generator for generating a SWIFT waveform having a constant voltage amplitude regardless of the SWIFT waveform;
  • Mass spectrometry means for measuring the mass of the chemical substance to be detected or a fragment thereof after applying the T waveform to the ion group confined in the ion trap means to remove the impurities.
  • An apparatus for detecting a chemical substance comprises an ion trap means for confining an ion group including an ion of the chemical substance to be detected ionized by an electric field, a magnetic field, or the like, and a mass number of the plurality of chemical substances to be detected.
  • An arbitrary waveform generating means for generating a SW IFT waveform that does not apply a voltage amplitude in a plurality of frequency bands corresponding to the frequency band and gives a voltage amplitude in a frequency band corresponding to the mass number of the impurity; and Fragmentation means for energizing the ion group with a TICKLE waveform having a plurality of frequency components corresponding to the orbital resonance frequency of the elephant chemical to fragment the ions of the plurality of detection target substances, and the SWIFT After giving the waveform to the ions trapped in the ion trap means to remove the impurities, the detection target chemical substance Alternatively, a mass spectrometer for measuring the mass of the fragment is provided.
  • the chemical substance detection device provides a SWIFT that does not apply a voltage amplitude in a frequency band corresponding to a plurality of detection target chemical substances.
  • the impurities are removed using the waveform.
  • a plurality of chemical substances to be detected are simultaneously detected by the mass spectrometry means. As described above, since a plurality of chemical substances to be detected are simultaneously detected, highly accurate measurement can be performed, and combustion control accuracy can be increased.
  • the apparatus for detecting a chemical substance is the above-described apparatus for detecting a chemical substance, wherein the ionization potential of the chemical substance to be detected is larger than the ionization potential of the chemical substance to be detected, and It is characterized in that it comprises ionization means for applying an energy smaller than the sum of the dissociation energy to the chemical substance to be detected and ionizing the chemical substance to be detected.
  • the chemical substance detecting device according to the present invention is the chemical substance detecting device according to the above, wherein the ionizing means is higher than the ionization potential and equal to or less than a value obtained by adding 4 eV to the ionization potential: ic Energy is given to the chemical substance to be detected.
  • the chemical substance detection apparatus provides the detection target chemical substance with high ionization potential and smaller energy than the dissociation energy to the detection target chemical substance to ionize the detection target chemical substance. . For this reason, unnecessary fragments are not generated, and the remaining detection target chemical substances do not need to be destroyed, so that the detection sensitivity of the mass spectrometry means can be increased. Therefore, in combination with the action and effect exerted by the above-mentioned chemical substance detection device, the detection sensitivity of the mass spectrometer can be further improved, and highly accurate measurement can be performed. And, in the combustion control of the incinerator, more precise control is possible. Further, since the SWIFT voltage can be kept low, there is no need to prepare a large power supply, and the manufacturing cost of the device can be further reduced.
  • the method for detecting a chemical substance according to the next invention is characterized in that an energy that is larger than the ionization potential of the chemical substance to be detected and smaller than the sum of the ionization potential and the dissociation energy of the ion of the target substance.
  • the SWIFT waveform including a frequency component excluding the frequency corresponding to the orbital resonance frequency of the ions of the chemical substance to be detected An impurity removing step of applying energy to the group to remove impurities, and a mass spectrometric step of measuring the mass of the chemical substance to be detected.
  • the ionization according to the present invention since the generation of fragments is very small, the amount of impurities to be removed in the process of removing impurities is extremely small. As a result, the SW IFT voltage can be kept low, so there is no need to prepare a large power supply, and the manufacturing cost of the device can be reduced.
  • an energy that is larger than the ionization potential of the chemical substance to be detected and smaller than the sum of the ionization potential and the dissociation energy of the ion of the chemical substance to be detected is detected.
  • a method for detecting a chemical substance comprises: an ion trapping step of confining an ion group containing ion of the chemical substance to be detected ionized by an electric field, a magnetic field, or other means; and a distribution of impurities contained in the ion group.
  • An impurity removal step of applying a SWIFT waveform including a frequency component corresponding to impurities present at a predetermined ratio or more to the ion group to remove impurities, and measuring the mass of the chemical substance to be detected or this fragment. And a mass spectrometry step.
  • the predetermined ratio targets impurities present at least as high as the signal intensity of the chemical substance to be measured. Although impurities having a smaller signal intensity may be targeted, the energy required for SWIFT is increased, so that impurities having a signal intensity of 50% or more of the signal intensity of the chemical substance to be measured are preferably targeted.
  • the method for detecting a chemical substance includes an ion trapping step of confining an ion group including ions of the chemical substance to be detected by an electric field, a magnetic field, or other means, and a signal intensity higher than a predetermined signal intensity.
  • the voltage amplitude is larger than the voltage amplitude in the frequency band corresponding to the orbital resonance frequency of the impurity present at a concentration indicating a signal intensity lower than the predetermined signal intensity.
  • An impurity removing step of applying a SW IFT waveform having the following to the ion group to remove impurities; Mass spectrometry step of measuring the mass of the component.
  • the voltage amplitude of the SWIFT waveform having a frequency corresponding to an impurity present at a concentration indicating a signal intensity higher than a predetermined signal intensity is increased, and the frequency of a portion having a low impurity concentration is increased.
  • the voltage amplitude is reduced. Therefore, particularly high-concentration impurities can be selectively removed, and the energy required for removing low-concentration impurities can be reduced. As a result, the energy required for SW IFT is reduced, and the power supply device can be made compact, so that a large power supply need not be used unnecessarily, which is economical.
  • the impurity that increases the voltage amplitude of the SW IFT waveform is preferably an impurity that has at least the same signal intensity as the signal intensity of the chemical substance to be measured.
  • impurities with a smaller mass number may be targeted, the energy required for SWIFT will increase, so impurities with a signal intensity of 50% or more of the signal intensity of the chemical substance to be measured should be targeted. Is preferred. '
  • the method for detecting a chemical substance includes an ion trapping step of confining an ion group including ions of the chemical substance to be detected by an electric field, a magnetic field, or other means, and a voltage amplitude as the included frequency increases. And a mass spectrometry step of measuring the mass of the chemical substance to be detected or a fragment thereof by applying a SWIFT waveform with a reduced value to the ion group to remove impurities.
  • an impurity having a large mass number is supplied with the same energy as an energy given to an impurity having a small mass number.
  • the orbital resonance frequency in an ion trap is a function of the mass number. As the mass number increases, the frequency decreases and the frequency interval corresponding to mass interval 1 also decreases.
  • the conventional literature ⁇ Development of a Capillary High-performance Liquid Chromatography Tandem Mass Spectrometry System Using SWIFT Technology in an Ion Trap / Ref lectron Time-of-flight Mass Spectrometer Rapid Communication in mass spectrometry, vol.
  • a SW IFT waveform is generated by converting a frequency spectrum having a constant voltage amplitude into a time domain by an inverse Fourier transform.
  • a waveform of a sum of sine waveforms having a constant voltage amplitude is generated at a constant frequency interval. Therefore, in this case, as the mass number increases, the number of sine waves per mass number interval 1 decreases, so the energy per mass number interval 1 decreases. In other words, the energy applied to a molecule having a large mass number becomes relatively small.
  • the present invention since the voltage amplitude of the relatively small divided sine wave is increased and corrected, sufficient energy can be given to ions having a large mass number. Even impurities can be more reliably removed. Also, energy can be given to ions having a small mass number in a necessary and sufficient range, so that the use efficiency of energy can be increased. Furthermore, since a large power supply is not required, installation costs can be reduced.
  • the method for detecting a chemical substance according to the next invention is based on an ion trapping step of confining an ion group containing ions of a chemical substance to be detected by an electric field, a magnetic field, or other means, and a method of detecting the number of molecules to be removed by SWIFT.
  • This chemical substance detection method is such that when the frequency spectrum of a SW IFT waveform whose voltage amplitude increases as the frequency decreases becomes smaller, the voltage amplitude per mass number becomes a substantially constant value when the mass number is converted to the horizontal axis. It is made to become. Therefore, almost constant energy can be given to molecules of any mass to be removed by SWIFT. As a result, sufficient energy can be given to ions having a large mass number, so that such impurities can be more reliably removed. In addition, for ions with a small mass number, the energy is necessary and Energy efficiency can be increased. Furthermore, since a large power supply is not required, installation costs can be reduced.
  • the method for detecting a chemical substance includes an ion trapping step of confining an ion group including ion ions of the target chemical substance to be ionized by an electric field, a magnetic field, or other means; Applying a SW IFT waveform that does not give a voltage amplitude to the ion group to remove impurities and leave a plurality of substances to be detected in a plurality of frequency bands corresponding to the mass number; And a mass spectrometry step for measuring the mass of the substance or the fragment. Since dioxins and their precursors contained in the exhaust gas from incinerators are extremely small, it is extremely important to improve their detection accuracy when controlling the incinerator combustion conditions in real time.
  • impurities are removed by using a SWIFT waveform that does not provide a voltage amplitude in a frequency band corresponding to a plurality of detection target substances. Then, a plurality of chemical substances to be detected are simultaneously detected by the mass spectrometry means. As described above, since a plurality of chemical substances to be detected are detected simultaneously, for example, even if the accuracy of detecting each of the target substances is insufficient, dioxins and dioxins are included as a total of the plurality of chemical substances. Accurate measurement can be performed by determining the correlation between the parameters and evaluating the combustion state, and the accuracy of combustion control can be improved.
  • the method for detecting a chemical substance comprises: an ion trapping step of confining an ion group containing ions of a plurality of target chemical substances having different mass numbers by an electric field, a magnetic field, or other means; Applying a SW IFT waveform not giving a voltage amplitude to the ion group to remove impurities and leaving a plurality of chemical substances to be detected in a plurality of frequency bands corresponding to the mass number of the chemical substance; A fragmentation step of fragmenting the chemical substances to be detected in ascending order of chemical substances among the chemical substances to be output, and a mass spectrometry step of measuring the mass of the chemical substances to be detected or the fragments. .
  • the mass number of multiple Fragmentation is performed in order starting from the smallest chemical substance to be detected. For this reason, fragmentation of the chemical substance to be detected having a small mass number can prevent a fragment of a substance having a mass number greater than that of the substance to be detected from being broken. As a result, all of the plurality of target substances can be detected, so that the sensitivity in mass spectrometry can be increased and more accurate measurement can be performed.
  • the method for detecting a chemical substance comprises: an ion trapping step of confining an ion group including ion ions of a plurality of target chemical substances having different mass numbers by an electric field, a magnetic field, or other means; Applying a SWIFT waveform that does not provide a voltage amplitude to the ion group to remove impurities and leave a plurality of detection target chemical substances in a plurality of frequency bands corresponding to the mass number of the target chemical substance; and Providing a TICKLE waveform including frequencies corresponding to at least two of the isotopes of the substance, and fragmenting at least two of the isotopes of the target chemical substance; and Mass spectrometry for measuring the mass of the substance or its fragment.
  • a TICKLE waveform including frequencies corresponding to at least two of the isotopes of the target chemical substance is given, and at least two of the isotopes of the target chemical substance are detected. Fragment and submit to mass spectrometry.
  • detection accuracy can be improved even when only a trace amount of dioxins or their precursors is present in exhaust gas. Also, when used for combustion control in incinerators, control accuracy can be increased.
  • the method for detecting a chemical substance in the method for detecting a chemical substance, in the mass spectrometry step, at least two types of isotopes of fragments generated from the chemical substance to be detected are to be measured. It is characterized.
  • the method for detecting a chemical substance according to the next invention is the method for detecting a chemical substance, wherein, before the ion trapping step, the ionization potential of the chemical substance to be detected is large.
  • An ionization step of applying energy smaller than the sum of the dissociation energies of ions of the chemical substance to be detected to the chemical substance to be detected and ionizing the chemical substance to be detected is provided.
  • the ionization potential is high, and energy equal to or less than a value obtained by adding 4 eV to the ionization potential is given to the detection target substance. It is characterized.
  • the ionization potential of the chemical substance to be detected is large, and the energy smaller than the sum of the ionization potential and the dissociation energy of the ions of the chemical substance to be detected is obtained. This is given to the chemical substance to be detected, and the substance to be detected is ionized. As a result, unnecessary fragments are not generated, and the remaining detection target chemical substance does not need to be destroyed, so that the detection sensitivity in mass spectrometry can be increased. Therefore, in combination with the effect of the chemical substance detection method described above, the detection sensitivity of the mass spectrometer can be further improved, and highly accurate measurement can be performed. And, in the combustion control of the incinerator, more precise control is possible. Furthermore, since the SW IFT voltage can be kept low, there is no need to provide a large power supply 1 without any need, and the production cost of the apparatus can be further reduced.
  • FIG. 1 is an explanatory diagram showing a chemical substance detection device according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing a chemical substance detection method according to Embodiment 1 of the present invention.
  • FIG. 3 is an explanatory diagram showing the ion signal intensity distribution with respect to the RF voltage when the trap frequency is fixed, and
  • FIG. 4 is a graph showing the ion signal with respect to the RF frequency when the RF voltage is fixed.
  • FIG. 5 is an explanatory diagram showing a signal intensity distribution, and FIG. 5 shows a relationship between a SW IFT frequency and an amplitude, an ion signal, FIG.
  • FIG. 6 is an explanatory diagram showing a frequency spectrum of a SWIFT waveform according to Embodiment 5 of the present invention
  • FIG. 7 is a diagram showing a frequency spectrum of a conventional SWIFT waveform.
  • FIG. 8 is an explanatory diagram showing a frequency spectrum of a SWIFT waveform according to the sixth embodiment of the present invention
  • FIG. 9 is a diagram showing a SWIFT waveform according to the seventh embodiment of the present invention.
  • FIG. 10 is an explanatory diagram showing a frequency spectrum
  • FIG. 10 is an explanatory diagram showing a frequency spectrum of a TICKLE waveform according to Embodiment 7 of the present invention
  • FIG. FIG. 19 is an explanatory diagram in which a frequency spectrum of a TICKLE waveform according to the ninth embodiment of the invention is converted with a mass number as a horizontal axis.
  • FIG. 1 is an explanatory diagram showing a chemical substance detection device according to Embodiment 1 of the present invention.
  • the chemical substance detection device 100 includes an ion chamber 1, a gas introduction device 2, a vacuum ultraviolet light lamp 3 as ionization means, and a time-of-flight mass spectrometer 4 as mass analysis means. ing.
  • the ionization chamber 1 is provided with an RF ion trap device 10 having an RF (Radio Frequency) ring as an ion trap means.
  • RF Radio Frequency
  • Means that confine ions inside by electric or magnetic fields or other electromagnetic forces can be used.
  • the electric field, the magnetic field, and the like may be used alone, or may be used in an appropriate combination.
  • ion trap means There are several types, and among them, the above-mentioned RF ion trap device 11 in which a high-frequency electric field is formed is preferable because it is relatively easy to handle.
  • a Penning trap using a DC voltage and a static magnetic field can be used in addition to the RF type.
  • the RF ion trap device 10 which is an ion trap means, includes a first end cap 12, a second end cap 13, and an RF ring 14, and is a three-dimensional quadrupole type. As shown in FIG. 1, the RF ring 14 is disposed inside the first end cap 12 and the second end cap 13.
  • a high-frequency power supply 21 for applying a trap voltage is connected to the RF ring 14, and applies a high-frequency voltage as a trap voltage to the RF ring 14. Due to this high frequency, chemical substances to be detected and other substances in the ionized exhaust gas are trapped in the trap 11 1.
  • An arbitrary waveform generator 20 as an arbitrary waveform generating means is connected to the first and second end caps 12 and 13, and a specific frequency is applied between both end caps at the time of SWIFT and TICKLE described later. Apply voltage.
  • the gas introduction device 2 is provided with a gas injection tube 5, and the gas injection tube 5 is formed by an on-off valve using an orifice such as a pulse valve or a capillary tube.
  • the exhaust gas G s from the incinerator and the like introduced into the gas injection pipe 5 is introduced into the ionization chamber 1.
  • a heater 6 is provided around the gas injection pipe 5. The heater 6 is a heating device for preventing the chemical substance to be detected from adhering to the inner wall of the gas injection pipe 5.
  • the ionization chamber 1 is provided with a vacuum ultraviolet light lamp 3 as ionization means for applying energy to the detection target chemical substance to perform ionization.
  • Vacuum ultraviolet light lamp 3, A r, K r, and rare gas such as X e, H 2, 0 2 , C 1 2 etc.
  • Lymana light having a wavelength of 121.6 nm from hydrogen plasma is used.
  • the vacuum ultraviolet light lamp 3 generates vacuum ultraviolet light by changing the type of gas to be discharged.
  • the amount of photon energy of external light can be changed. For this reason, it is possible to apply a photon energy that is larger than this and does not dissociate the target chemical substance according to the ionization potential of the target chemical substance. As a result, ionization of a mixed substance having an ionization potential higher than the photon energy can be prevented, and fragmentation of the detection target chemical substance can be suppressed.
  • a laser or a harmonic thereof can be used instead of the vacuum ultraviolet light lamp 3.
  • the amount of generated photon energy can be changed to select a substance to be ionized.
  • a well-known tunable laser can be used.
  • vacuum ultraviolet light having a wavelength of 50 nm or more and 200 nm or less can be applied to the present invention, more preferably 100 nm or more and 200 nm, and the generation of unnecessary fragments is further reduced. From the viewpoint of suppression, the range of 1 1 2 11 111 or more and 1 38 nm is desirable.
  • a laser or an excimer lamp having a wavelength of vacuum ultraviolet light may be used as a means for applying energy to the chemical substance to be detected and ionizing the same.
  • ions such as He ions may be ejected by a particle accelerator to collide with a detection target chemical substance contained in the sample gas in the ionization chamber 1.
  • the electron beam may be separated at each sector to extract an electron beam having an energy of about 10 eV and collide with the detection target chemical contained in the exhaust gas in the ionization chamber 1.
  • the time-of-flight mass spectrometer 4 which is a mass spectrometer, specifies the chemical substance to be detected by measuring the mass of the ion of the chemical substance to be detected in the exhaust gas ionized in the ionization chamber 1.
  • the ionized chemical substance to be detected is introduced into the mass spectrometer 4 by applying a pulsed extraction voltage to the second end cap 13 of the RF ion trap device 10, and flies through the mass spectrometer 4. .
  • the flying ions are detected by the ion detector 30, and the signal detected here is amplified by the preamplifier 31 and then taken into the data processor 32 for data processing.
  • Mass spectrometer 4 Measure line time. Since there is a high-level correspondence between the time of flight and the mass of the flying substance, the mass of the flying substance is detected from the time of flight, and the substance is identified from this mass.
  • FIG. 2 is a flowchart showing a method for detecting a chemical substance according to Embodiment 1 of the present invention.
  • the exhaust gas Gs of the incinerator is introduced into the ionization chamber 1 (step S101).
  • the vacuum ultraviolet light lamp 3 irradiates vacuum ultraviolet light L to the exhaust gas G s introduced into the ionization chamber 1, and the exhaust gas G s is ionized by receiving photon energy from the vacuum ultraviolet light L.
  • the ionization potential of the precursor to be inspected is in the range of 8.5 to 10 OeV.
  • the vacuum ultraviolet light used in the present embodiment has a wavelength of 121.6 nm, and its photon energy is 101.5 eV.
  • the precursor can be ionized without giving extra energy to the precursor.
  • the ionized precursor which is a target chemical substance to be detected.
  • the generation of fragments is very small in ionization by vacuum ultraviolet light, so that almost all ionized precursors can be measured by the mass spectrometer 4.
  • this effect is significant because only a very small amount of precursor is present in the exhaust gas from the incinerator.
  • a decrease in trap efficiency of the trap 11 can be suppressed.
  • the potential created by the ions generated by the ions confined in the trap 11 acts to cancel the potential of the trap.
  • the generation of extra fragment ions can be extremely suppressed, so that the reduction in the trapping efficiency of the ion trap device 11 can be reduced.
  • SW IFT is an operation to change the trajectory of the ion by applying a voltage waveform having a specific frequency between the first end cap 12 and the second end cap 13 of the trap 11 to remove impurities.
  • the mass number to be removed in the process of SW IFT generates a large amount of fragments with the precursor to be detected or the other molecule as a parent molecule. I will. Since a very large voltage is required to remove this by SW IFT, a high-output SW IFT voltage generator (arbitrary waveform generator) is required.
  • SW IFT This is an operation to remove unnecessary substances other than the target chemical substance present in the exhaust gas.
  • the orbital resonance frequency of the material to be removed by the arbitrary waveform generator 20 is placed between the first end cap 12 and the second end cap 13 of the RF ion trap device 10.
  • a voltage is applied at a wide band frequency.
  • the impurity removing means according to the present invention is formed.
  • the orbital resonance frequency corresponding to the frequency of the mass number of the chemical substance to be detected is eliminated from the frequency in the wide band.
  • the material to be shaken has a large amplitude, collides with the wall of the RF ion trap device 10, loses electric charge, and does not exist as ions.
  • the chemical to be detected remains trapped in the trap 11 by the trap voltage applied to the RF ring 14.
  • Such an operation is referred to as SWIFT.
  • impurities other than the chemical substance to be detected can be removed (step S103).
  • TICKLE is an operation in which the chemical substance to be detected is fragmented to separate the chemical substance to be detected from the impurity whose mass number is close to that of the chemical substance to be detected. Then, the target chemical substance is identified by measuring the mass number of a fragment generated from the molecule of the target chemical substance that is the parent molecule. Also, by measuring the amount of the fragment, the concentration of the chemical substance to be detected can be obtained.
  • TICKLE unlike the above-described SWIFT, applies a voltage between the first end cap 12 and the second end cap 13 at a frequency corresponding to the orbital resonance frequency of the target chemical substance to be detected, which is the parent molecule.
  • the voltage of the frequency is applied between the end caps by the arbitrary waveform generator 20.
  • ions of the chemical substance to be detected collide with other substances coexisting in the trap 11 to fragment the chemical substance to be detected. This completes fragmentation by TICKLE (step S104).
  • step S105 When the fragmentation by TI CKLE is completed, the application of the voltage to the RF ring 14 is stopped, and a pulsed extraction voltage is applied to the second end cap 13, so that the ions of the fragmented chemical substance to be detected are massed. Pull out to analyzer 4 side (step S105).
  • the ions of the chemical substance to be detected fly in the mass spectrometer 4, and the time of flight is measured by the mass spectrometer 4.
  • the mass of the flying material is detected from the time of flight, and the material is identified from this mass (step S106). ), The measurement ends (step S107).
  • the time-of-flight mass spectrometer used in this embodiment is a single Since the measurement is completed, there is the advantage that the measurement time is very fast and the response is excellent. Therefore, it is particularly suitable for controlling combustion conditions in real time in an actual plant.
  • mass spectrometry means such as an electric field type or an RF coil type can be used.
  • RF coil type only needs to provide an ion detector at the exit of the trap 11, a mass spectrometer can be configured with a simple structure.
  • the chemical substance detection device 100 ionizes a substance to be measured by directly irradiating exhaust gas introduced into the trap 11 with vacuum ultraviolet light. Then, SWIFT and TICKLE are applied to this to fragment the ions of the target substance. For this reason, SWIFT and fragmentation may not always succeed under the same conditions as the conventional ionization. Thus, here, the conditions of SWIFT and TICKLE will be described.
  • FIG. 3 is an explanatory diagram showing an ion signal intensity distribution with respect to an RF voltage when a trap frequency is fixed.
  • FIG. 4 is an explanatory diagram showing the ion signal intensity distribution with respect to the RF frequency when the RF voltage is fixed.
  • the chemical substance to be detected is ionized outside the trap 11.
  • a collision gas such as an inert gas or a nitrogen gas is supplied into the trap 11 from the outside to fragment the chemical substance to be detected. Therefore, almost no atmospheric components such as water vapor and oxygen contained in the exhaust gas as the gas to be measured were present in the trap 11. Therefore, the ion signal intensity distribution as shown in FIG. 3 (a) and FIG. 4 (a) was shown.
  • the exhaust gas introduced into the trap 11 is directly irradiated with vacuum ultraviolet light to ionize the chemical substance to be detected. Therefore, the trap 11 contains atmospheric components such as water vapor and oxygen present in the exhaust gas.
  • atmospheric components such as water vapor and oxygen coexist with the chemical substance to be detected
  • a TI CKLE voltage described later is applied to fragment the chemical substance to be detected. Fragmentation may result in a condition where fragments cannot be trapped. For example, when the RF voltage exceeds 1500 V, fragments can no longer be trapped (Fig. 3 (b)). When the RF frequency is lower than 1.0 MHz, fragments can no longer be trapped (Fig. 4 (b)).
  • the trap condition refers to a value of an RF voltage and an RF frequency applied to the RF ring 14. This is because the water vapor, that is, water molecules and oxygen molecules have polarities, and the orbit of the fragmented chemical substance to be detected increases, so that the ions collide with the wall surface of the trap 11 and lose charge. It is thought that this is the cause.
  • trapping can be performed favorably when the RF voltage is 700 V or more and 130 OV or less, and more stable when the RF voltage is 900 V or more and 110 OV or less. Ions can be trapped (see Fig. 3 (b)).
  • the RF voltage is set to 160 OV
  • the RF frequency of 1.OMhz is appropriate in the conventional method, but in this method, the RF frequency is 1.2 MHz or more and 1.7 MHz or less. Within this range, fragment ions can be stably trapped.
  • the RF frequency is in the range of 1.4 MHz to 1.6 MHz, fragment ions can be trapped more stably (see Fig. 4 (b)).
  • the RF frequency is constant at 1 MHz
  • the RF voltage may be kept constant at 1600 V
  • the RF frequency may be trapped at 1.4 MHz during SWIFT and may be trapped at 1.0 MHz during TICKLE.
  • the time required for TICKLE be appropriately shortened. Specifically, it is preferable to increase the T I CKLE voltage.
  • the RF voltage applied to the RF ring 14 should be set at least after the end of TI CKLE. It is necessary to increase the RF frequency. However, if the RF voltage applied to the RF ring 14 is decreased or the RF frequency is increased, the trapping efficiency of fragments having a small mass number decreases. Therefore, if much time elapses after the end of TIC KLE in this state, the number of the fragments decreases, and the detection sensitivity in the mass spectrometer 4 decreases. Therefore, it is preferable to switch as described above immediately after the time for fragmentation of the target chemical substance has elapsed after the input of the TICKLE waveform. (Embodiment 4)
  • a SWIFT waveform having a frequency component corresponding to a very wide mass number range must be applied.
  • the SWIFT waveform having a wide range of frequency components has low energy per unit frequency, the energy that can be added to a molecule having a certain mass number is also small. As a result, the efficiency of removing impurities is reduced, and the detection accuracy of the target chemical substance is also reduced. Therefore, when a SW IFT waveform having a wide range of frequency components is added, the high-frequency generator 21 that is the SWIFT waveform generation source is made to have high performance, the output of an amplifier that amplifies this output is increased, or the amplification is performed. It is necessary to widen the frequency band. As a result, the device becomes large and expensive.
  • the mass spectrum of the impurities contained in the exhaust gas is examined, and the impurities are removed using a SW IFT waveform having a frequency component corresponding to the range of the mass number that must be removed at a minimum.
  • the range of the mass number that must be removed at a minimum can be determined by, for example, making the signal intensity of the mass spectrum include impurities having a certain value or more. This constant value should be at least as high as the signal intensity of the chemical substance to be measured, and it is preferable to target impurities with a signal intensity higher than this value. Although impurities with even lower mass numbers may be targeted, the energy required for SWIFT increases. Therefore, chemical substances to be measured It is preferable to target impurities having a signal intensity of 50% or more of the signal intensity of the above.
  • the range where the mass number is 48 or more and 355 or less is the minimum range that must be removed, so impurities are removed by SWIFT waveforms having a frequency component corresponding to this range. I do.
  • the chemical substance to be detected can be measured with practically sufficient accuracy without increasing the energy input to the trap 11 indiscriminately. This eliminates the necessity of using a large device unnecessarily, and reduces the cost of the device.
  • FIG. 5 is an explanatory diagram showing the relationship between SWIFT frequency and amplitude and the relationship between ion signal and mass number.
  • the mass number in FIG. 5 corresponds to the SWIFT frequency in FIG.
  • FIG. 6 is an explanatory diagram showing a frequency spectrum of a SWIFT waveform according to Embodiment 5 of the present invention.
  • the frequency spectrum represents the intensity (voltage amplitude) of the SWIFT waveform or TICKLE waveform as a function of the frequency of the SWIFT waveform or the like.
  • the SWIFT voltage is determined by the voltage required to remove the highest concentration impurity. For this reason, when removing very high concentration impurities, very high voltage amplitude is required as a whole, and energy use efficiency is reduced. In addition, power supplies and devices need to have large capacities, resulting in increased costs. Furthermore, in order to leave the parent molecule, which is the chemical substance to be detected, the frequency band corresponding to the mass number of the substance to be detected is reduced from the SWIFT waveform, but a high voltage amplitude is obtained. In the case of stamping, the range of the mass number actually remaining becomes smaller even if the same frequency band is excluded. As a result, there is also a problem that the detection target chemical substance is partially removed, and the detection accuracy is reduced.
  • the voltage amplitude of the SWIFT waveform having a frequency corresponding to the mass number of the high-concentration impurity is increased, and the voltage amplitude is reduced in a portion where the impurity concentration is low.
  • the impurity that increases the voltage amplitude of the SWIFT waveform is preferably an impurity having at least the same signal intensity as the signal intensity of the chemical substance to be measured.
  • impurities with even lower mass numbers may be targeted, the energy required for SWIFT is increased. For this reason, it is preferable to target impurities having a signal intensity of 50% or more of the signal intensity of the chemical substance to be measured.
  • the voltage amplitude of the SWIFT waveform can be suppressed as a whole, so that the energy use efficiency can be increased and impurities can be removed.
  • the size of the power supply can be reduced, and the cost can be reduced.
  • the detection target chemical substance can be reliably left, so that the detection accuracy of the mass spectrometer 4 can be increased.
  • FIG. 7 is an explanatory diagram showing a frequency spectrum of a conventional SWIFT waveform.
  • FIG. 8 is an explanatory diagram showing a frequency spectrum of a SWIFT waveform according to Embodiment 6 of the present invention.
  • (b) in both figures is obtained by converting the frequency spectrum of the SWIFT waveform on the horizontal axis of the mass number, that is, as a function of the mass number.
  • a normal SWIFT waveform is generated by performing an inverse Fourier transform on a rectangular frequency spectrum whose amplitude does not change even if the ion resonance frequency increases (Fig. 7 (a)).
  • the SWIFT waveform at this time is a waveform in which a resonance frequency corresponding to the mass number of the impurity to be removed is superimposed.
  • This waveform is ideally a continuous waveform containing all orbital resonance frequencies corresponding to a certain mass range.
  • the frequency components included in the obtained SW IFT waveform are discrete, and the frequency pitch is constant. Conversely, when this is converted into a mass number, the frequency pitch is coarse in the region with a large mass number and fine in the region with a small mass number.
  • a SWIFT waveform generated by performing an inverse Fourier transform on the frequency spectrum with the reduced voltage amplitude is used (FIG. 8 (a)).
  • a SW IFT waveform having a constant voltage amplitude distribution can be given regardless of the mass number of the molecule to be removed by SW IFT (Fig. 8 (b)), even if the ion has a large mass number It can be removed more reliably.
  • energy can be given to ions having a small mass number in a sufficient range, so that the energy use efficiency can be increased.
  • a large power supply is unnecessary, installation costs can be reduced.
  • FIG. 9 is an explanatory diagram showing a frequency spectrum of a SW IFT waveform according to Embodiment 7 of the present invention.
  • FIG. 10 is an explanatory diagram showing a frequency spectrum of a TICKLE waveform according to Embodiment 7 of the present invention.
  • the voltage amplitude in the resonance frequency band corresponding to the mass number of the chemicals to be detected was set to 0 in SWI FT, that is, the SWI without voltage amplitude was applied.
  • the frequency spectrum of the FT waveform is used (Fig. 9).
  • an inverse Fourier transform is performed on the frequency spectrum of the SWIFT waveform to generate a SWIFT waveform.
  • SWIFT is performed using the SWIFT waveform after the inverse conversion, the chemical substance to be detected remains trapped in the trap 11 of the ion trap device 10 and can be separated from other impurities.
  • the TICKLE frequency spectrum which has a large amplitude in the frequency band corresponding to the mass number of the target substances, is inversely Fourier-transformed and the TICKLE waveform is used to generate the target objects. Fragment the substance (Fig. 10 (a)). Then, the ions of the fragmented chemical substance to be detected can be measured by the mass spectrometer 4 (see Fig. 1) to identify the chemical substance to be detected and determine its concentration.
  • TI CKLE is applied by a TI CKLE waveform generated by performing an inverse Fourier transform of the TI CKLE frequency spectrum having a large amplitude in a range including all the frequencies corresponding to the mass numbers of the plurality of detection target chemical substances. (Fig. 10 (b)). Furthermore, the respective frequencies corresponding to the mass numbers of the plurality of chemical substances to be detected may be provided singly and sequentially.
  • the TCB fragment has a mass number of 145 and a DCB with a mass number of 146.
  • the mass numbers differ only by 1. Therefore, the TCB and DCB are When CKLE is applied, the fragment of the adjacent TCB may be damaged by the TI CKLE frequency of the DCB.
  • the TCB is fragmented to separate the TCB from impurities having a mass number similar to that of the TCB, and it is no longer possible to determine the TCB concentration or the like by measuring the signal of the fragment.
  • the accuracy of TCB detection is reduced. Therefore, in the TI CKLE according to the seventh embodiment, various precautions are required, such as accurately giving a frequency corresponding to the mass number and appropriately adjusting the TI CKLE voltage. Moreover, even with such precautions, fragmentation may not be performed properly.
  • the detection target chemical substance having a small mass number is broken by TI CKLE and fragmented, and the detection target chemical substance and impurities within the mass number range of the detection target chemical substance are removed. deep. Then, the TI CKLE is applied to the chemical substance having a larger mass number to detect the chemical substance having a larger mass number within the range of the mass number in which the chemical substance having the smaller mass number was present. Generate a fragment of the target chemical.
  • TCB mass number 180, 182, 184, 186
  • DCB masses number 146, 148, 150
  • ⁇ 1 ⁇ 8 (monochrome benzene: mass number 1 12, 1 14) are detected simultaneously.
  • SWIFT removes these impurities and removes other impurities.
  • a TI CKLE frequency corresponding to the mass number of the MCB is applied to the first and second end caps 12 and 13 to generate a 77 mass fragment.
  • the inside of the trap 11 of the ion trap device 10 The substance of mass number 112 to 114 does not exist.
  • the TICBLE frequency corresponding to the mass number of the DCB is applied to fragment the DCB.
  • This fragment has a mass number of 111 and 113 with one chlorine separated from DCB and a mass of 75 with two chlorine and one hydrogen separated.
  • a frequency corresponding to the mass number of the TCB is applied to fragment the TCB.
  • the fragments generated at this time are those with a mass number of 145, 147 and 149 where one chlorine is separated, those with a mass number of 109 and 111 where two chlorines and one hydrogen are separated, and three chlorines. And one hydrogen separated with a mass number of 74.
  • the above fragments are applied with respective TICKLE frequencies sequentially with a certain time difference.
  • the voltage of the fragment ions in the trap 11 is changed to C 0 01 in without applying a voltage between the first and second end caps 12 and 13 of the ion trap device 10. Cooling means that fragment ions collide with a neutral gas in the trap 11 and lose energy, whereby the fragment ions are cooled.
  • the accuracy of mass measurement by the mass spectrometer 4 can be improved by using Coo ling.
  • the fragment is guided to the mass spectrometer 4 by applying an extraction voltage to the second end cap 13 and the mass thereof is measured, whereby the concentration of the chemical substance to be detected can be measured.
  • the concentration of MCB can be obtained by selecting the fragment signal intensity of mass number 77
  • the concentration of DCB can be obtained by selecting the fragment signal intensity of mass numbers 113 and 75.
  • the concentration of TCB can be determined by selecting a mass number that does not overlap with the above-mentioned MCB and DCB fragments, such as the signal intensity of mass numbers 145, 147, 149, 109, and 74.
  • the chemicals to be detected for example, TCB and TCP
  • the chemicals to be detected can be simultaneously destroyed by the TI CKLE waveform.
  • Some target chemicals have isotopes, and even the same target chemical has a different mass number.
  • MC B has isotopes with mass numbers of 112 and 114. This is because there are two kinds of chlorine, 35 and 37, in the mass number of chlorine bonded to the benzene ring.
  • the density of the target substance is lower than the total density of the target substance, and thus the density of the target substance is lower than that of the entire target substance. If only the mass number is used as the substance to be measured in the mass spectrometer 4, the measurement sensitivity is reduced.
  • the concentration is detected lower by the MCB with a mass number of 114, which was not measured as the whole MCB.
  • the concentration of dioxin precursors which are the chemical substances to be detected in the exhaust gas from incinerators, is extremely low, it is necessary to increase the detection sensitivity even a little. Therefore, if at least two isotopes of at least two chemicals to be detected are fragmented, the above problem of the decrease in measurement sensitivity can be avoided.
  • FIG. 11 is an explanatory diagram in which the frequency spectrum of the TICKLE waveform according to the ninth embodiment of the present invention is converted with the mass number on the horizontal axis.
  • FIG. 3A shows the distribution of isotopes in the TCB ion.
  • the fragmentation of all isotopes of the target chemical substance the removal of theoretically low-concentration isotopes from all isotopes, or the detection of target substances by removing mass numbers with a high percentage of impurities It can fragment an isotope of a substance.
  • the TICKLE waveform contains at least two chemicals to be detected.
  • An inverse Fourier transform of a frequency spectrum that gives a large amplitude over a wide resonance frequency band and includes mass numbers for all isotopes of quality can be used (Fig. 11 (b)). .
  • the resonance frequency has a certain range in the mass number that affects the ion
  • the isotopes with the largest and smallest mass numbers are less likely to be subjected to TI CKLE, and the middle Isotopes are relatively susceptible to TI CKLE.
  • the frequency spectrum is set so that the voltage amplitude at the part where the mass number of the chemical substance isotope to be detected is the largest and the part where the mass number is the smallest is almost constant for all of the multiple isotopes targeted by TI CKLE.
  • TI CKLE can be applied. Thereby, fragmentation can be performed substantially uniformly.
  • the frequency spectrum in which the voltage amplitude is large in the part where the mass number is the largest and the part where the mass number is small among the isotopes to be fragmented, and the voltage amplitude in the part where the mass number is medium is relatively small (The solid line in Fig. 11 (c)).
  • a frequency spectrum in which the voltage amplitude is smaller than that in an isotope having a relatively high ion signal intensity may be used (first example). 1 (dashed line in Fig. (C)).
  • a large amount of impurities having a mass number substantially the same as a certain isotope may exist. For example, suppose that a large amount of impurities having the same mass number as the TCB isotope having a mass number of 180 in FIG. 11 (d) existed. In such a case, a high-precision measurement may be performed by fragmenting a plurality of isotopes excluding the isotope and not fragmenting a large amount of impurities.
  • a plurality of isotopes with few impurities in the same mass number are selected, and a plurality of isotopes are selected from the plurality of resonance frequencies corresponding to the mass number.
  • a TICKLE waveform obtained by inverse Fourier transforming a frequency spectrum can be used (Fig. 11 (d)).
  • Isotopes also exist in the target chemical, but fragments of the target chemical Also have isotopes. Therefore, the same problem as described in the eighth embodiment exists for the measurement of fragments.
  • the concentration of the target chemical substance was estimated by measuring the concentration of the target chemical substance with only one fragment or by matching the appearance pattern of the fragments.
  • At least two types of isotopes of fragments generated from the chemical substance to be detected are measured. Specifically, of the spectrum (signal voltage) of a fragment, the sum of the maximum values of the spectra of multiple isotopes that appear, or the sum of the areas of the spectrums of multiple isotopes that appear, is calculated as Used as the measured value of mass spectrometer 4. In this way, all isotopes of a fragment can be used, so that the measurement sensitivity can be increased in the measurement by the mass spectrometer 4 even when the concentration of the substance to be measured is extremely low.
  • the mass number of the isotope excluding the spectrum of the isotope is calculated. It suffices to select and determine the concentration of the measurement object. In this way, noise such as impurities can be eliminated, so that more accurate measurement can be performed.
  • the ionization potential is larger than the ionization potential of the detection target chemical substance and the ionization potential of the detection target chemical substance.
  • Ion dissociation energy An energy smaller than the sum of the dissociation energy and the ion is given to the chemical substance to be detected. For this reason, the target chemical substance can be ionized without being destroyed, and the generation of unnecessary fragments that are a problem when removing impurities by SW IFT is extremely small. Therefore, it is not necessary to remove the remaining chemicals to be detected. Can be higher. Furthermore, when removing impurities, only a SW IFT waveform is given, so that impurities can be removed quickly. As a result, the detection speed of the target chemical substance can be increased, which is suitable for actual incinerator control.
  • the chemical substance to be detected is fragmented by the fragmentation means for giving a TICKLE waveform, so that impurities in the frequency band corresponding to the mass number of the chemical substance to be detected are included. Even if there is, measurement can be performed accurately by eliminating this effect.
  • fragments generated during ionization are extremely small, when the chemical substance to be detected is fragmented, the target chemical substance to be detected can be efficiently fragmented. As a result, the detection sensitivity of the mass spectrometer can be increased, and more precise combustion control can be performed.
  • the value when energy is applied to the chemical substance to be detected by the ionization means, the value is higher than the ionization potential and equal to or less than a value obtained by adding 4 eV to the ionization potential.
  • the wavelength is set to 5 nm or more and 200 nm or less. Therefore, impurities can be removed without generating unnecessary fragments. And since such a light uses a vacuum ultraviolet lamp, it is easy to handle and the configuration of the device can be simplified.
  • the voltage amplitude of the SW IFT waveform having a frequency corresponding to the mass number of the impurity present at a high concentration that gives a signal intensity higher than the specific signal intensity is increased,
  • the voltage amplitude was reduced in the portion where the impurity concentration was low. Therefore, particularly high-concentration impurities can be selectively removed, and the impurities can be selectively removed, so that the energy required for SW IFT can be reduced. This makes it possible to reduce the size of the power supply device, so that there is no need to use a large power supply indiscriminately, which is economical.
  • the frequency is low.
  • the voltage amplitude per unit mass was made to be a substantially constant value. For this reason, sufficient energy is given to impurities having a large mass number to remove them, and energy can be given to a small mass ion and an ion in a necessary and sufficient range, thereby increasing the energy use efficiency. it can. This eliminates the need for a large power supply, which can reduce installation costs.
  • the chemical substance detection device in the chemical substance detection device according to the present invention, impurities are removed using a SW IFT waveform that does not give a voltage amplitude in a frequency band corresponding to a plurality of chemical substances to be detected. Then, multiple chemical substances to be detected were detected simultaneously by mass spectrometry. As described above, since a plurality of chemical substances to be detected are simultaneously detected, highly accurate measurement can be performed, and combustion control accuracy can be increased.
  • the chemical substance detecting apparatus may further have a larger ion ion potential than the chemical substance to be detected.
  • An ion irradiation unit is provided which gives an energy smaller than the sum of the dissociation energy of the ion to the substance to the detection target substance and ionizes the detection target chemical substance.
  • the ionization means detects an energy higher than an ionization potential and equal to or less than a value obtained by adding 4 eV to the ionization potential. It was given to target chemical substances.
  • the chemical substance detection device detects an energy larger than the ionization potential of the chemical substance to be detected and smaller than the sum of the ionization potential and the dissociation energy of the ion of the chemical substance to be detected. This was given to the target chemical substance, and the detection target chemical substance was ionized. For this reason, the detection sensitivity of the mass spectrometry means can be increased because unnecessary fragments are not generated and the remaining chemical substances to be detected need not be destroyed. Therefore, in combination with the action and effect exerted by the chemical substance detection device, the detection sensitivity of the mass spectrometer can be further improved, and highly accurate measurement can be performed.
  • the method for detecting a chemical substance when the ionization is performed, An energy larger than the ionization potential of the chemical substance and smaller than the sum of the ionization potential of the chemical substance and the dissociation energy of the ions of the chemical substance to be detected is given to the chemical substance to be detected. Therefore, it can be ionized without destroying the chemical substance to be detected, and the generation of unnecessary fragments during ionization is extremely small. Therefore, it is not necessary to destroy remaining detection target chemical substances, and the detection sensitivity of the mass spectrometry method can be increased.
  • a TICKLE waveform is given to the chemical substance to be detected to fragment the chemical substance to be detected. Therefore, even if there is an impurity in the frequency band corresponding to the mass number of the chemical substance to be detected, it is possible to measure accurately by eliminating this effect. As a result, almost all the fragments of the target chemical substance can be subjected to mass spectrometry, and the detection sensitivity of the analysis can be increased in the mass spectrometry process.
  • impurities present at a predetermined ratio or more are selectively removed. For this reason, necessary and sufficient impurities can be removed with less energy than in the case of removing all impurities. Also, less energy is required, so the power supply can be made smaller and more economical.
  • the voltage amplitude of the SW IFT waveform at a frequency corresponding to an impurity giving a signal intensity higher than a predetermined signal intensity is increased, and the frequency of a portion where the impurity concentration is low is increased.
  • the voltage amplitude was reduced. Therefore, particularly high-concentration impurities can be selectively removed, so that the energy required for removing low-concentration impurities can be reduced. This requires less energy to remove impurities, and is economical because it is not necessary to use a large power source unnecessarily.
  • the method for detecting a chemical substance according to the present invention larger energy is given to an impurity having a large mass number than to an impurity having a small mass number.
  • the voltage amplitude per mass number is converted when the mass number is plotted on the horizontal axis. Is almost constant Cried.
  • sufficient energy is given to ions having a large mass number to remove the ions, and energy can be given to a small mass ion or ion in a necessary and sufficient range. Efficiency can be increased. This eliminates the need for a large power supply, which can reduce installation costs.
  • impurities are removed using a SWIFT waveform that does not give a voltage amplitude in a frequency band corresponding to a plurality of chemical substances to be detected. Then, multiple chemical substances to be detected were detected simultaneously by mass spectrometry. As described above, since a plurality of chemical substances to be detected are simultaneously detected, highly accurate measurement can be performed.
  • the fragmentation is performed in order from the detection target substance having the smallest mass number among the plurality of detection target chemical substances.
  • the method for detecting a chemical substance may include providing a TICKLE waveform including frequencies corresponding to at least two types of isotopes of the chemical substance to be detected, At least two of the chemical isotopes were fragmented for mass spectrometry.
  • TICKLE waveform including frequencies corresponding to at least two types of isotopes of the chemical substance to be detected. At least two of the chemical isotopes were fragmented for mass spectrometry.
  • the method for detecting a chemical substance In the method for detecting a chemical substance according to the present invention, at least two of the isotopes of fragments generated from the chemical substance to be detected are subjected to mass spectrometry. As described above, since isotopes of a plurality of fragments are used in mass spectrometry, detection accuracy can be improved even when dioxins and their precursors are present only in trace amounts in exhaust gas.
  • the method for detecting a chemical substance may further include, before the ion trapping step, an ionization potential that is larger than an ionization potential of the chemical substance to be detected.
  • Object Energy smaller than the sum of the dissociation energies of the ions is given to the target chemical substance to ionize the target chemical substance.
  • energy higher than an ionization potential and equal to or less than a value obtained by adding 4 eV to the ionization potential is applied to the chemical substance to be detected. did.
  • the detection sensitivity in mass spectrometry can be increased because unnecessary fragments are not generated and the target chemical substance to be left is not destroyed. Therefore, in addition to the action and effect exerted by the above-described method for detecting a chemical substance, the detection sensitivity of the mass spectrometer can be further improved, and highly accurate measurement can be performed.
  • the chemical substance detection device and the chemical substance detection method of the present invention are useful for highly accurately detecting dioxins and their precursors contained in very small amounts in exhaust gas from refuse incineration facilities and the like. It is suitable for improving the detection speed of the target chemical substance to the extent that the combustion conditions can be controlled even while operating a heating furnace or other combustion furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Chemical substance detector (100) comprising vacuum ultraviolet lamp (3) whereby a chemical substance to be detected contained in exhaust gas (Gs) is ionized. The ionized chemical substance to be detected is confined in ion trapping unit (10) adapted to generate high-frequency electric field thereinside. The ion group present in the ion trapping unit (10) is energized by SWIFT waveforms containing frequency components excluding the frequency corresponding to the orbit resonance frequency of the ion of chemical substance to be detected to thereby remove impurities. Subsequently, the above ion group is energized by TICKLE waveform having the frequency component corresponding to the orbit resonance frequency of the ion of chemical substance to be detected to thereby fragment the ion of chemical substance to be detected. The masses of resultant fragments are measured by means of mass spectrometer (4), thereby attaining identification of the chemical substance to be detected.

Description

化学物質の検出装置および化学物質の検出方法 Chemical substance detection device and chemical substance detection method
技術分野 Technical field
この発明は、 化学物質の検出装置および化学物質の濃度測定方法に関し、 特に、 ごみ焼却施設等の排ガス中にごく微量含まれるダイォキシン類やその前駆体を高 明  The present invention relates to an apparatus for detecting a chemical substance and a method for measuring the concentration of a chemical substance.
精度に検出するための化学物質の検出装置および化学物質の検出方法に関するも のである。 The present invention relates to a chemical substance detection device and a chemical substance detection method for detecting with high accuracy.
書 背景技術  Background art
近年、 ごみ焼却施設から排出される排ガス中に含まれるダイォキシン類を低減 させるために、 排ガス中に含まれるダイォキシン類またはその前駆体をリアルタ ィムに測定して焼却炉の燃焼制御に用いる試みが始まっている。 ダイォキシン類 の測定には、 高分解能の G CZM S (ガスクロマトグラフ Z質量分析計) による 測定法が知られているが、 この方法は複雑な前処理を要するため、 試料採取から 結果が判明するまでに数週間を要するのが現状である。 したがって上記のような リアルタイム制御に適用することは極めて困難である。 この問題を解決するため、 大気圧化学ィオン化法により排ガス中に含まれるダイォキシン類やその前駆体を イオン化し、 このイオンを三次元四重極質量分析計によって測定するオンライン モニターが開示されている。 なお、 このオンラインモニターについては、 第 1 1 回廃棄物学会研究発表会講演論文集 2 0 0 0にその詳細が記載されているので、 必要があればこちらを参照されたレ、。  In recent years, in order to reduce dioxins contained in exhaust gas discharged from refuse incineration facilities, attempts have been made to measure dioxins or their precursors contained in exhaust gas in real time and use them for combustion control in incinerators. Has begun. For the measurement of dioxins, a high-resolution G CZMS (Gas Chromatography Z-Mass Spectrometer) measurement method is known. It currently takes several weeks. Therefore, it is extremely difficult to apply to real-time control as described above. To solve this problem, an online monitor has been disclosed that ionizes dioxins and their precursors contained in exhaust gas by atmospheric pressure chemical ionization and measures these ions with a three-dimensional quadrupole mass spectrometer. . The details of this online monitor are described in the 1st Annual Meeting of the Society of Waste Management Research, 2000, so please refer to it if necessary.
ところで、 上記大気圧化学イオンィ匕法ではつぎのような問題点があった。 まず、 その計測原理のため、 負イオンになりにくい分子を計測する感度が低く、 精密な 制御には適用し難かった。 つぎに、 計測対象化学物質のイオン化確率は、 雰囲気 ガス組成によって大きく影響を受ける。 このため、 計測される電気的な信号強度 力 らその濃度を算出するためには、 高価な C同位体を含む化学物質を内部標準試 料として使用必要があるため、 測定に要するコストが高くなつていた。 By the way, the above-mentioned atmospheric pressure chemical ionization method has the following problems. First, due to its measurement principle, the sensitivity for measuring molecules that are unlikely to become negative ions is low, making it difficult to apply to precise control. Next, the ionization probability of the chemical substance to be measured is greatly affected by the atmosphere and gas composition. Therefore, the measured electrical signal strength In order to calculate the concentration from the force, it is necessary to use an expensive chemical substance containing a C isotope as an internal standard sample, so that the cost required for the measurement was high.
つぎに、 上記大気圧化学イオン化法においては、 ダイォキシン類の濃度と相関 があるとされ、 かつ、 計測感度の比較的高いフエノール類を検出する場合が一般 的である。 し力 し、 フエノール類は配管に付着しやすいためメモリー効果が大き く、 配管に工夫しないと感度よく測定できない。 また、 このメモリー効果のため、 排ガスがきれいになってもフヱノール類が検出されて測定精度が低下する。 さら に、 測りたい前駆体よりもイオン化されやすい物質が排ガス中に存在する場合に は、 そちらの方が先にイオン化してしまレ、、 測定したい物質を正確に測定するこ とが困難である。  Next, in the above-mentioned atmospheric pressure chemical ionization method, it is generally assumed that there is a correlation with the concentration of dioxins and that phenols having relatively high measurement sensitivity are detected. However, phenols easily adhere to the piping, so they have a large memory effect, and cannot be measured with good sensitivity unless the piping is devised. Also, due to this memory effect, even if the exhaust gas becomes clean, phenols are detected and the measurement accuracy is reduced. Furthermore, if there is a substance in the exhaust gas that is more easily ionized than the precursor to be measured, it will be ionized first, making it difficult to accurately measure the substance to be measured. .
また、 ある炉において、 ある 1つの前駆体 (例えばトリクロ口フエノーノレ)がダ ィォキシン類濃度の最適な指標物質であつたとしても、 他の炉においては炉の種 類や燃焼条件等が異なる場合がある。 このため、 他の炉において前記ある炉にお ける指標物質が最適であるとは限らず、 一つの前駆体が計測できるだけでは汎用 性が低い。 すなわち、 汎用性を高めるためには、 様々な種類の化学物質を、 でき れば同時に検出できる方が好ましい。  Also, even if a certain precursor (e.g., phenolic trichloride) is an optimal indicator of dioxins concentration in one furnace, other furnaces may have different furnace types and combustion conditions. is there. For this reason, in other furnaces, the indicator substance in one furnace is not always optimal, and the versatility is low if only one precursor can be measured. That is, in order to enhance versatility, it is preferable that various types of chemical substances can be detected at the same time, if possible.
従って、 本発明は、 検出対象化学物質の検出感度を向上させること、 焼却炉や 加熱炉その他の燃焼炉を運転している最中であってもその燃焼条件を制御できる 程度に検出対象ィ匕学物質の検出速度を向上させること、 検出設備の低コスト化を 図ることのうち少なくとも一つを達成できる化学物質の検出装置およぴィヒ学物質 の検出方法を提供することを目的としている。 発明の開示  Therefore, the present invention improves the detection sensitivity of the chemical substance to be detected, and controls the combustion conditions even during the operation of an incinerator, a heating furnace, or another combustion furnace. It is an object of the present invention to provide a chemical substance detection apparatus and a chemical substance detection method that can achieve at least one of improving the detection speed of a chemical substance and reducing the cost of a detection facility. . Disclosure of the invention
本発明に係る化学物質の検出装置は、 検出対象化学物質のイオン化ポテンシャ ルょりも大きく、 当該イオン化ポテンシャルと前記検出対象化学物質のイオンの 解離エネルギーとの和よりも小さいエネルギーを当該検出対象化学物質に与え、 この検出対象化学物質をイオン化するイオン化手段と、 電界、 磁界その他の手段 によつて前記ィオン化手段でィオン化された前記検出対象化学物質のイオンを含 むィオン群を閉じ込めるイオントラップ手段と、 前記検出対象化学物質のィオン の軌道共鳴周波数に対応する周波数を除いた周波数成分を含む SW I F T波形に よって前記イオン群にエネルギーを与えて不純物を除去する不純物除去手段と、 前記検出対象化学物質の質量を測定する質量分析手段と、 を備えたことを特徴と する。 The chemical substance detection device according to the present invention provides a chemical substance to be detected that has a large ionization potential and a smaller energy than the sum of the ionization potential and the dissociation energy of ions of the chemical substance to be detected. Ionization means for applying to the substance and ionizing the chemical substance to be detected, electric field, magnetic field and other means Ion trap means for confining the ion group containing ions of the chemical substance to be detected ionized by the ionization means according to the above, and a frequency excluding a frequency corresponding to the orbital resonance frequency of the ion of the chemical substance to be detected An impurity removing means for applying energy to the ion group by a SW IFT waveform including a component to remove impurities, and a mass analyzing means for measuring a mass of the chemical substance to be detected.
この化学物質の検出装置は、 検出対象化学物質をイオン化する際に検出対象化 学物質のイオン化ポテンシャルよりも大きく、 当該イオン化ポテンシャルと前記 検出対象ィヒ学物質のイオンの解離エネルギーとの和よりも小さいエネルギーを当 該検出対象化学物質に与える。 このため、 検出対象化学物質を壊さずにイオン化 できるため、 イオン化効率を高くできる。  When the chemical substance to be detected is ionized, the chemical substance detection device is configured to calculate the ionization potential greater than the ionization potential of the chemical substance to be detected and the dissociation energy of the ions of the chemical substance to be detected. A small amount of energy is given to the target chemical. As a result, the chemical substance to be detected can be ionized without being destroyed, so that the ionization efficiency can be increased.
さらに、 不純物除去の際には S W I F T波形を与えるだけなので、 素早く不純 物が除去できる。 また、 この発明に係るイオン化においては、 イオン化に要する エネルギーを適度に設定しているため、 無闇に各種の分子を解離したりイオン化 したりすることがない。 このため、 フラグメントの発生が非常に少ないので、 不 純物を取り除く過程で除去すべき不純物も極めて少なくなる。 その結果、 S W I F T電圧を低く抑えることができるので、 残すべき検出対象化学物質を壊さない で済み、 質量分析手段の検出感度を高くできる。 また、 無闇に大きな電源を用意 する必要はなく、 装置の製造コストを抑えることができる。 さらに、 この発明に 係る化学物質の検出装置では、 余分なフラグメントイオンの発生を極めて小さく 抑えることができる。 これによつて、 イオントラップ内に余分なイオンが多量に 存在することによるトラップ効率低下を小さく抑えることができる。 ここで、 質 量分析手段には、 特に飛行時間計測方式のものを使用すると、 計測時間を短くで きるので好ましい。 また、 イオントラップ手段には電界や磁界その他の電磁気学 的力によってイオンを内部に閉じ込めるものが使用できる。 電界や磁界等はそれ ぞれ単独で使用してもよく、 またこれら複数を適宜組み合わせて使用してもよい このようなイオントラップ手段としては、 高周波電界が内部に形成されるイオン トラップが知られており、 これは取り扱いが比較的容易であるため好ましい (以 下同様) 。 Furthermore, when removing impurities, only a SWIFT waveform is given, so that impurities can be removed quickly. In addition, in the ionization according to the present invention, since the energy required for the ionization is appropriately set, various molecules are not dissociated or ionized indiscriminately. Because of this, the generation of fragments is very small, and the amount of impurities to be removed in the process of removing impurities is extremely small. As a result, the SWIFT voltage can be kept low, so that the remaining detection target chemical substances need not be destroyed, and the detection sensitivity of the mass spectrometry means can be increased. In addition, there is no need to prepare a large power supply unnecessarily, and the manufacturing cost of the device can be reduced. Further, in the chemical substance detection device according to the present invention, the generation of extra fragment ions can be extremely reduced. As a result, it is possible to suppress a decrease in trap efficiency due to a large amount of extra ions in the ion trap. Here, it is preferable to use a time-of-flight measurement method as the mass analysis means, because the measurement time can be shortened. Further, as the ion trap means, a means for confining ions inside by an electric or magnetic field or other electromagnetic force can be used. An electric field, a magnetic field, etc., may be used alone, or a plurality of them may be used in combination as appropriate. Traps are known and are preferred because they are relatively easy to handle (and so on).
なお、 この発明にいう検出対象ィ匕学物質は、 例えば、 焼却炉等の排ガス中に含 まれるダイォキシン類の前駆体やダイォキシン類等をいう。 この場合、 この発明 に係る化学物質の検出装置では、 ダイォキシン類と相関の高い前駆体を検出して 排ガス中に含まれるダイォキシン類濃度を推定することができる。 また、 直接排 ガス中に含まれるダイォキシン類を検出してその濃度を求めたりすることもでき る。 後者は前駆体による推定値を検定する際にも使用できる。 ここで、 ダイォキ シン類とは、 一般にダイォキシン類ゃフランゃコブラナー P C Bと呼ばれる分子 を含むものである。 また、 前駆体には、 例えばトリクロ口ベンゼン、 ジクロロべ ンゼン、 モノクロロベンゼン等のベンゼン類や、 トリクロ口フエノーノレ等のフエ ノール類が含まれる。  The substance to be detected in the present invention refers to, for example, a dioxin precursor or dioxin contained in exhaust gas from an incinerator or the like. In this case, the chemical substance detection device according to the present invention can detect a precursor having a high correlation with dioxins and estimate the concentration of dioxins contained in the exhaust gas. It is also possible to directly detect dioxins contained in exhaust gas and determine their concentrations. The latter can also be used to test precursor estimates. Here, dioxins include molecules generally called dioxins {furan} cobraner PCB. The precursors include, for example, benzenes such as benzene, dichlorobenzene, and monochlorobenzene, and phenols such as phenol.
ま 7こ、 S W I F Tとは Stored Waveform Inverse Fourier Transformであり、 詳糸田は、 文献〃 Development of a Capillary High-performance Liquid Chromato graphy randem Mass Spectrometry System Using SWIFT Technology in an Ion T rap/Reflectron Time- of- flight Mass Spectrometer Rapid Communication in mass spectrometry, vol. 11 1739-1748 (1997) を参照されたい。  In addition, SWIFT is a Stored Waveform Inverse Fourier Transform, and Shinoita describes in the literature 〃 Development of a Capillary High-performance Liquid Chromato graphy randem Mass Spectrometry System Using SWIFT Technology in an Ion Trap / Reflectron Time-of-flight Mass Spectrometer Rapid Communication in mass spectrometry, vol. 11 1739-1748 (1997).
つぎの発明に係る化学物質の検出装置は、 検出対象化学物質のイオン化ポテン シャルよりも大きく、 当該イオン化ポテンシャルと前記検出対象化学物質のィォ ンの解離エネルギーとの和よりも小さいエネルギーを当該検出対象化学物質に与 え、 この検出対象ィ匕学物質をイオン化するイオン化手段と、 電界、 磁界その他の 手段によって前記ィオン化手段でィオン化された前記検出対象化学物質のィオン を含むイオン群を閉じ込めるイオントラップ手段と、 前記検出対象化学物質のィ オンの軌道共鳴周波数に対応する周波数を除いた周波数成分を含む S W I F T波 形によって前記イオン群にエネルギーを与えて不純物を除去する不純物除去手段 と、 検出対象化学物質のイオンの軌道共鳴周波数に対応する周波数成分の T I C K L E波形で前記ィオン群にエネルギーを与えて検出対象ィ匕学物質のイオンをフ ラグメント化するフラグメント化手段と、 前記検出対象化学物質のフラグメント の質量を測定する質量分析手段と、 を備えたことを特徴とする。 The chemical substance detection device according to the next invention detects the energy larger than the ionization potential of the chemical substance to be detected and smaller than the sum of the ionization potential and the dissociation energy of the ion of the chemical substance to be detected. In addition to the target chemical substance, ionization means for ionizing the substance to be detected and an ion group containing ion of the chemical substance to be detected ionized by the ionization means by an electric field, a magnetic field or other means are confined. Ion trap means; impurity removing means for applying energy to the ion group by a SWIFT waveform including a frequency component excluding a frequency corresponding to the orbital resonance frequency of the ion of the detection target chemical substance to remove impurities, In the TICKLE waveform of the frequency component corresponding to the orbital resonance frequency of the ion of the target chemical substance, the ion Energy is given to the group to detect ions of the target substance. Fragmentation means for fragmentation; and mass analysis means for measuring the mass of the fragment of the chemical substance to be detected.
この化学物質の検出装置では、 T I C K L E波形を与えるフラグメント化手段 によって検出対象化学物質をフラグメント化するので、 検出対象化学物質の質量 数に不純物があっても、 この影響を排除して正確に測定できる。 また、 イオン化 の際に発生するフラグメントも極めて少ないため、 検出対象化学物質をフラグメ ント化する場合には、 目的とする検出対象化学物質を効率的にフラグメント化で きる。 その結果、 ほとんどすべての検出対象ィ匕学物質のフラグメントを質量分析 手段の測定対象とすることができるので、 質量分析手段の検出感度を高くでき、 より緻密に燃焼制御ができる。 ここで、 T I C K L Eとは、 検出対象化学物質を フラグメント化させて、 検出対象化学物質と質量数が近似する不純物と検出対象 化学物質とを分離する操作であり、 詳細は、 上記文献" Development of a Capill ary high— performance Liquid Chromatography Tandem Mass Spectrometry Syste m Using SWIFT Technology in an Ion Trap/Ref lectron Time-of- flight Mass Sp ectrometer" を参照 れたレヽ。  In this chemical substance detection device, the chemical substance to be detected is fragmented by fragmentation means that gives a TICKLE waveform, so even if there is an impurity in the mass number of the chemical substance to be detected, this effect can be eliminated and accurate measurement can be performed . In addition, since the number of fragments generated during ionization is extremely small, the target chemical substance to be detected can be efficiently fragmented when the chemical substance to be detected is fragmented. As a result, almost all of the fragments of the substance to be detected can be measured by the mass spectrometry means, so that the detection sensitivity of the mass spectrometry means can be increased and more precise combustion control can be performed. Here, TICKLE is an operation of fragmenting the chemical substance to be detected and separating the chemical substance to be detected from the impurities whose mass number is similar to that of the chemical substance to be detected. Capillary high—performance Liquid Chromatography Tandem Mass Spectrometry System Using SWIFT Technology in an Ion Trap / Reflectron Time-of-flight Mass Spectrum Meter.
つぎの発明に係る化学物質の検出装置は、 上記化学物質の検出装置において、 上記イオン化手段は、 イオン化ポテンシャルよりも高く当該イオン化ポテンシャ ルに 4 e Vを加算した値以下のエネルギーを前記検出対象化学物質に与えること を特徴とする。 また、 つぎの発明に係る化学物質の検出装置は、 上記化学物質の 検出装置において、 上記イオン化手段は、 波長が 5 0 n m以上 2 0 0 n m以下の 光を発生する光発生手段であることを特徴とする。 また、 つぎの発明に係る化学 物質の検出装置は、 上記化学物質の検出装置において、 上記イオン化手段は、 真 空紫外光ランプであることを特徴とする。  The apparatus for detecting a chemical substance according to the next invention is the apparatus for detecting a chemical substance, wherein the ionization means outputs an energy higher than an ionization potential and equal to or less than a value obtained by adding 4 eV to the ionization potential. It is characterized by being given to substances. Further, the chemical substance detection device according to the next invention is the chemical substance detection device, wherein the ionization means is a light generation means for generating light having a wavelength of 50 nm or more and 200 nm or less. Features. Further, in the chemical substance detection device according to the next invention, in the chemical substance detection device, the ionization means is a vacuum ultraviolet light lamp.
これらの発明のように、 イオン化手段において検出対象ィ匕学物質にエネルギー を与える場合には、 イオン化ポテンシャルよりも高く当該イオン化ポテンシャノレ に 4 e Vを加算した値以下であることが望ましい。 また、 光のエネルギーによつ て検出対象化学物質をイオン化する場合には、 その波長を 5 0 n m以上 2 0 0 n m以下とすることが望ましい。 そして、 このような光は真空紫外光ランプを使用 すると、 容易に得ることができるので好ましい。 In the case where energy is applied to the substance to be detected by the ionization means as in these inventions, the energy is preferably higher than the ionization potential and equal to or less than the value obtained by adding 4 eV to the ionization potential. When the chemical substance to be detected is ionized by the energy of light, the wavelength should be 50 nm or more and 200 n m or less is desirable. It is preferable to use a vacuum ultraviolet lamp because such light can be easily obtained.
つぎの発明に係る化学物質の検出装置は、 電界、 磁界その他の手段によって、 ィオン化された検出対象化学物質のィオンを含むィオン群を閉じ込めるイオント ラップ手段と、 所定の信号強度よりも高い信号強度を示す濃度で存在する不純物 の軌道共鳴周波数に対応した周波数においては、 所定の信号強度よりも低い信号 強度を示す濃度で存在する不純物の軌道共鳴周波数に対応する周波数帯における 電圧振幅よりも大きい電圧振幅を有する SW I F T波形を生成する任意波形発生 手段と、 この任意波形発生手段で生成された前記 SW I F T波形を、 前記イオン トラップ手段に閉じ込められているイオン群に与えて前記不純物を除去した後に、 前記 出対象化学物質またはこのフラグメントの質量を測定する質量分析手段と、 を備えたことを特徴とする。  An apparatus for detecting a chemical substance according to the next invention comprises an ion trap means for confining an ion group including an ion of the chemical substance to be detected ionized by an electric field, a magnetic field, or other means; and a signal intensity higher than a predetermined signal intensity. At a frequency corresponding to the orbital resonance frequency of the impurity present at a concentration that indicates a voltage greater than the voltage amplitude in the frequency band corresponding to the orbital resonance frequency of the impurity existing at a concentration that indicates a signal intensity lower than the predetermined signal intensity Arbitrary waveform generating means for generating a SW IFT waveform having an amplitude; and applying the SW IFT waveform generated by the arbitrary waveform generating means to a group of ions confined in the ion trap means to remove the impurities. Mass spectrometry means for measuring the mass of the target chemical substance or its fragment. Sign.
この発明では、 特定の信号強度よりも高い濃度で存在する不純物の質量数に対 応する周波数の SW I F T波形の電圧振幅を高くし、 不純物の濃度が低い質量数 に対応する周波数においては電圧振幅を低くすることで、 特に濃度の高い不純物 を選択的に除去できる。 これによつて、 不純物を選択的に除去できるので、 S W I F Tに要するエネルギーが少なくて済む。 また、 電源装置を小型にできるので、 無闇に大きな電源を使用しなくともよいため、 経済的である。 ここで、 SW I F T波形の電圧振幅を高くする不純物は、 少なくとも検出対象化学物質の信号強度 と同じ程度の信号強度を示す濃度で存在する不純物を対象とすることが好ましい。 さらに少ない質量数存在する不純物を対象としてもよいが、 そうすると SW I F Tに要するエネルギーが大きくなるため、 検出対象化学物質の信号強度の 5割以 上の信号強度を持つ不純物を対象とすることが好ましい。  According to the present invention, the voltage amplitude of the SW IFT waveform at a frequency corresponding to the mass number of an impurity present at a concentration higher than a specific signal intensity is increased, and the voltage amplitude at a frequency corresponding to the mass number at a low impurity concentration is increased. By lowering the concentration, highly concentrated impurities can be selectively removed. As a result, impurities can be selectively removed, and the energy required for SWIFT can be reduced. In addition, since the power supply unit can be made compact, it is economical because it is not necessary to use a large power supply without necessity. Here, the impurity that increases the voltage amplitude of the SW IFT waveform is preferably an impurity that exists at a concentration that exhibits a signal intensity at least as high as the signal intensity of the chemical substance to be detected. Although impurities with even lower mass numbers may be targeted, the energy required for SW IFT increases, so it is preferable to target impurities with a signal intensity of 50% or more of the signal intensity of the target chemical substance. .
つぎの発明に係る化学物質の検出装置は、 電界、 磁界その他の手段によって、 ィオン化された検出対象化学物質のィオンを含むィオン群を閉じ込めるイオント ラップ手段と、 周波数が大きくなるにしたがって電圧振幅を小さくした SW I F T波形を発生させる任意波形発生手段と、 前記 SW I F T波形を前記イオントラ ップ手段に閉じ込められているイオン群に与えて前記不純物を除去した後に、 前 記検出対象化学物質またはこのフラグメントの質量を測定する質量分析手段と、 を備えたことを特徴とする。 The chemical substance detection device according to the next invention comprises: an ion trap means for confining an ion group including an ion of the chemical substance to be detected ionized by an electric field, a magnetic field or other means; and a voltage amplitude as the frequency increases. An arbitrary waveform generating means for generating a reduced SW IFT waveform; and Mass spectrometry means for measuring the mass of the chemical substance to be detected or a fragment thereof, after removing the impurities by giving the ions to the group of ions confined in the trapping means.
この発明に係る化学物質の検出装置は、 質量数の大きい不純物に対して、 質量 数の小さい不純物に与えるエネルギーと同程度のエネルギーを与えるようにして ある。 一般に、 イオントラップにおける軌道共鳴周波数は質量数の関数であるが、 質量数が大きくなるほど、 周波数は小さくなり、 質量数間隔 1に相当する周波数 間膈が狭 なる。 一方、 従来文献 Lleve丄 opmeir of a Capillary High-performan ce Liquid Chromatography Tandem Mass Spectrometry System Using SWIFT Tech no logy in an Ion Trap/Reflectron Time - of -flight Mass Spectrometer Rapid Communication in mass spectrometry, vol. 11 1739- 1748 (1997)等で一般に行 われている SW I F T波形の生成では、 電圧振幅が一定の周波数スぺクトルを逆 フーリエ変換により時間領域に変換することにより SW I F T波形を生成してい る。 この場合、 一定の周波数間隔で一定の電圧振幅を持つ形の和の波形を生成す ることになる。 したがってこの場合、 質量数が大きいほど、 質量数間隔 1あたり の正弦波の数が少ないため、 質量数間隔 1あたりのエネルギーは少ない。 すなわ ち、 質量数が大きい分子に加えられるエネルギーは相対的に小さくなつてしまう。 これに対し本発明では、 正弦波の数が少なくなった分正弦波の電圧振幅を大き くして補正するため、 質量数の大きいイオンに対しても十分なエネルギーを与え ることができるので、 このような不純物でもより確実に除去できる。 また、 質量 数の小さいイオンには必要十分な範囲でエネルギーを与えることができるので、 エネルギーの使用効率を高くできる。 さらに、 無闇に大きな電源装置も不要とな るので、 装置の設置コストも低減できる。  The chemical substance detection device according to the present invention is configured to give, to an impurity having a large mass number, energy equivalent to energy given to an impurity having a small mass number. Generally, the orbital resonance frequency in an ion trap is a function of the mass number, but as the mass number increases, the frequency decreases, and the frequency interval corresponding to the mass number interval 1 decreases. On the other hand, conventional literature Lleve 丄 opmeir of a Capillary High-performance Liquid Chromatography Tandem Mass Spectrometry System Using SWIFT Tech no logy in an Ion Trap / Reflectron Time-of -flight Mass Spectrometer Rapid Communication in mass spectrometry, vol. 11 1739-1748 In the SW IFT waveform generation generally performed in (1997) and the like, a SW IFT waveform is generated by converting a frequency spectrum having a constant voltage amplitude into a time domain by an inverse Fourier transform. In this case, a sum waveform having a constant voltage amplitude at a constant frequency interval is generated. Therefore, in this case, as the mass number is larger, the number of sine waves per mass number interval 1 is smaller, and the energy per mass number interval 1 is smaller. That is, the energy applied to a molecule having a large mass number becomes relatively small. On the other hand, in the present invention, since the voltage amplitude of the sine wave is increased and compensated by the decrease in the number of sine waves, sufficient energy can be given to ions having a large mass number. Such impurities can be more reliably removed. Also, energy can be given to ions having a small mass number in a necessary and sufficient range, so that the energy use efficiency can be increased. Furthermore, since a large power supply is not required, the installation cost of the equipment can be reduced.
つぎの発明に係る化学物質の検出装置は、 電界、 磁界その他の手段によって、 ィオン化された検出対象化学物質のィオンを含むィオン群を閉じ込めるイオント ラップ手段と、 S W I F Tによる除去対象分子の質量数に関わらず電圧振幅が一 定の分布を持つ S W I F T波形を発生させる任意波形発生手段と、 前記 S W I F T波形を前記イオントラップ手段に閉じ込められているイオン群に与えて前記不 純物を除去した後に、 前記検出対象化学物質またはこのフラグメントの質量を測 定する質量分析手段と、 を備えたことを特徴とする。 The chemical substance detection device according to the next invention includes an ion trap means for confining an ion group including an ion of the chemical substance to be detected ionized by an electric field, a magnetic field, or the like, and a mass number of a molecule to be removed by SWIFT. An arbitrary waveform generator for generating a SWIFT waveform having a constant voltage amplitude regardless of the SWIFT waveform; Mass spectrometry means for measuring the mass of the chemical substance to be detected or a fragment thereof after applying the T waveform to the ion group confined in the ion trap means to remove the impurities. Features.
この化学物質の検出装置は、 周波数が小さくなるにしたがって電圧振幅を大き くした S W I F T波形の周波数スぺクトルを、 質量数を横軸として変換したとき に単位質量数あたりの電圧振幅が略一定値となるようにしてある。 このため、 S W I F Tによる除去の対象とするどのような質量の分子に対しても略一定のエネ ルギーを与えることができる。 これによつて、 質量数の大きいイオンに対しても 十分なエネルギーを与えることができるので、 このような不純物でもより確実に 除去できる。 また、 質量数の小さいイオンには必要十分な範囲でエネルギーを与 えることができるので、 エネルギーの使用効率を高くできる。 さらに、 無闇に大 きな電源装置も不要となるので、 設置コストも低減できる。  In this chemical substance detection device, when the frequency spectrum of the SWIFT waveform whose voltage amplitude is increased as the frequency decreases is converted to the mass number on the horizontal axis, the voltage amplitude per unit mass number is substantially constant. It is made to become. For this reason, substantially constant energy can be given to molecules of any mass to be removed by SWIFT. As a result, sufficient energy can be given to ions having a large mass number, so that such impurities can be more reliably removed. Also, energy can be given to ions having a small mass number in a necessary and sufficient range, so that the energy use efficiency can be increased. In addition, since a large power supply is not required, installation costs can be reduced.
つぎの発明に係る化学物質の検出装置は、 電界、 磁界その他の手段によって、 ィオン化された検出対象化学物質のィオンを含むィオン群を閉じ込めるイオント ラップ手段と、 複数の検出対象化学物質の質量数に対応する複数の周波数帯にお いては電圧振幅を与えず、 不純物の質量数に対応する周波数帯においては電圧振 幅を与える SW I F T波形を発生させる任意波形発生手段と、 前記複数の検出対 象化学物質の軌道共鳴周波数に対応する複数の周波数成分を持つ T I C K L E波 形で前記イオン群にエネルギーを与えて前記複数の検出対象ィ匕学物質のイオンを フラグメント化するフラグメント化手段と、 前記 S W I F T波形を前記イオント ラップ手段に閉じ込められているイオン群に与えて前記不純物を除去した後に、 前記検出対象化学物質またはこのフラグメントの質量を測定する質量分析手段と、 を備えたことを特 ί敫とする。  An apparatus for detecting a chemical substance according to the next invention comprises an ion trap means for confining an ion group including an ion of the chemical substance to be detected ionized by an electric field, a magnetic field, or the like, and a mass number of the plurality of chemical substances to be detected. An arbitrary waveform generating means for generating a SW IFT waveform that does not apply a voltage amplitude in a plurality of frequency bands corresponding to the frequency band and gives a voltage amplitude in a frequency band corresponding to the mass number of the impurity; and Fragmentation means for energizing the ion group with a TICKLE waveform having a plurality of frequency components corresponding to the orbital resonance frequency of the elephant chemical to fragment the ions of the plurality of detection target substances, and the SWIFT After giving the waveform to the ions trapped in the ion trap means to remove the impurities, the detection target chemical substance Alternatively, a mass spectrometer for measuring the mass of the fragment is provided.
焼却炉の排ガス中に含まれるダイォキシン類やその前駆体は極めて微量である ため、 これらの検出精度を高めることは焼却炉の燃焼条件をリアルタイムで制御 する場合には極めて重要である。 この発明に係る化学物質の検出装置は、 複数の 検出対象ィヒ学物質に対応する周波数帯においては電圧振幅を与えない S W I F T 波形を用いて不純物を除去する。 そして、 複数の検出対象化学物質を質量分析手 段で同時に検出する。 このように、 複数の検対象化学物質を同時に検出するので、 精度の高い測定ができ、 燃焼制御の精度も高くできる。 Since dioxins and their precursors contained in the exhaust gas from incinerators are extremely small, it is extremely important to improve their detection accuracy when controlling the incinerator combustion conditions in real time. The chemical substance detection device according to the present invention provides a SWIFT that does not apply a voltage amplitude in a frequency band corresponding to a plurality of detection target chemical substances. The impurities are removed using the waveform. Then, a plurality of chemical substances to be detected are simultaneously detected by the mass spectrometry means. As described above, since a plurality of chemical substances to be detected are simultaneously detected, highly accurate measurement can be performed, and combustion control accuracy can be increased.
つぎの発明に係る化学物質の検出装置は、 上記化学物質の検出装置において、 さ らに、 検出対象化学物質のイオン化ポテンシャルよりも大きく、 当該イオン化ポ テンシャルと前記検出対象ィ匕学物質のイオンの解離エネルギーとの和よりも小さ レ、エネルギーを当該検出対象化学物質に与え、 この検出対象ィ匕学物質をイオン化 するイオン化手段を備えたことを特徴とする。 また、 つぎの発明に係る化学物質 の検出装置は、 上記ィ匕学物質の検出装置において、 上記イオン化手段は、 イオン 化ポテンシャルよりも高く当該イオン化ポテンシャルに 4 e Vを加算した値以下 の: icネルギーを前記検出対象化学物質に与えることを特徴とする。 The apparatus for detecting a chemical substance according to the next invention is the above-described apparatus for detecting a chemical substance, wherein the ionization potential of the chemical substance to be detected is larger than the ionization potential of the chemical substance to be detected, and It is characterized in that it comprises ionization means for applying an energy smaller than the sum of the dissociation energy to the chemical substance to be detected and ionizing the chemical substance to be detected. Further, the chemical substance detecting device according to the present invention is the chemical substance detecting device according to the above, wherein the ionizing means is higher than the ionization potential and equal to or less than a value obtained by adding 4 eV to the ionization potential: ic Energy is given to the chemical substance to be detected.
これらの発明に係る化学物質の検出装置は、 検出対象化学物質のィオン化ポテ ンシャルょりも高く解離エネルギーよりも小さいエネルギーを当該検出対象ィ匕学 物質に与え、 この検出対象化学物質をイオン化する。 このため、 余計なフラグメ ントを生成せず、 残すべき検出対象化学物質も壊さないで済むので質量分析手段 の検出感度を高くできる。 したがって、 上記化学物質の検出装置で奏される作用 •効果と相まって、 さらに質量分析手段における検出感度を向上させて、 精度の 高い測定ができる。 そして、 焼却炉の燃焼制御においても、 より緻密に制御でき る。 さらに、 S W I F T電圧を低く抑えることができるので、 無闇に大きな電源、 を用意する必要はなく、 装置の製造コストをより抑えることができる。  The chemical substance detection apparatus according to these inventions provides the detection target chemical substance with high ionization potential and smaller energy than the dissociation energy to the detection target chemical substance to ionize the detection target chemical substance. . For this reason, unnecessary fragments are not generated, and the remaining detection target chemical substances do not need to be destroyed, so that the detection sensitivity of the mass spectrometry means can be increased. Therefore, in combination with the action and effect exerted by the above-mentioned chemical substance detection device, the detection sensitivity of the mass spectrometer can be further improved, and highly accurate measurement can be performed. And, in the combustion control of the incinerator, more precise control is possible. Further, since the SWIFT voltage can be kept low, there is no need to prepare a large power supply, and the manufacturing cost of the device can be further reduced.
つぎの発明に係る化学物質の検出方法は、 検出対象化学物質のイオン化ポテン シャルよりも大きく、 当該イオン化ポテンシャルと前記検出対象ィ匕学物質のィォ ンの解離エネルギーとの和よりも小さいエネルギーを当該検出対象化学物質に与 え、 この検出対象化学物質をイオン化するイオン化工程と、 電界、 磁界その他の 手段によって、 イオン化された検出対象化学物質のイオンを含むイオン群を閉じ 込めるイオントラップ工程と、 前記検出対象化学物質のイオンの軌道共鳴周波数 に対応する周波数を除いた周波数成分を含む S W I F T波形によって前記イオン 群にエネルギーを与えて不純物を除去する不純物除去工程と、 前記検出対象化学 物質の質量を測定する質量分析工程と、 を有することを特徴とする。 The method for detecting a chemical substance according to the next invention is characterized in that an energy that is larger than the ionization potential of the chemical substance to be detected and smaller than the sum of the ionization potential and the dissociation energy of the ion of the target substance. An ionization step of ionizing the detection target chemical substance to the detection target chemical substance; an ion trapping step of confining an ion group including ions of the detection target chemical substance ionized by an electric field, a magnetic field, or other means; The SWIFT waveform including a frequency component excluding the frequency corresponding to the orbital resonance frequency of the ions of the chemical substance to be detected An impurity removing step of applying energy to the group to remove impurities, and a mass spectrometric step of measuring the mass of the chemical substance to be detected.
この化学物質の検出方法は、 不純物を除去する際に検出対象化学物質のイオン 化ポテンシャルよりも高く解離エネルギーよりも小さいエネルギーを当該検出対 象化学物質に与える。 このため、 検出対象化学物質を壌さずに不純物を除去でき、 また、 不純物除去の際には余計なフラグメントの発生が極めて少ない。 したがつ て、 残すべき検出対象化学物質も壊さないで済むので質量分析手段の検出感度を 高くできる。 さらに、 不純物除去の際には SW I F T波形を与えるだけなので、 素早く不純物が除去できる。 また、 この発明に係るイオン化においてはフラグメ ントの発生が非常に少ないため、 不純物を取り除く過程で除去すべき不純物も極 めて少なくなる。 その結果、 SW I F T電圧を低く抑えることができるので、 無 闇に大きな電源を用意する必要はなく、 装置の製造コストを抑えることができる。 つぎの発明に係る化学物質の検出方法は、 検出対象化学物質のイオン化ポテン シャルよりも大きく、 当該イオン化ポテンシャルと前記検出対象化学物質のィォ ンの解離エネルギーとの和よりも小さいエネルギーを当該検出対象ィ匕学物質に与 え、 この検出対象ィ匕学物質をイオンィ匕するイオン化工程と、 電界、 磁界その他の 手段によって、 ィオン化された検出対象化学物質のィオンを含むィオン群を閉じ 込めるイオントラップ工程と、 前記検出対象化学物質のイオンの軌道共鳴周波数 に対応する周波数を除いた周波数成分を含む SW I F T波形によって前記イオン 群にエネルギーを与えて不純物を除去する不純物除去工程と、 検出対象化学物質 のイオンの軌道共鳴周波数に対応する周波数成分の T I C K L E波形で前記ィォ ン群にエネルギーを与えて検出対象化学物質のィオンをフラグメント化するフラ グメント化工程と、 前記検出対象化学物質のフラグメントの質量を測定する質量 分析工程と、 を有することを特徴とする。  In this method of detecting a chemical substance, when removing impurities, energy that is higher than the ionization potential of the chemical substance to be detected and smaller than the dissociation energy is given to the chemical substance to be detected. For this reason, impurities can be removed without removing the chemical substance to be detected, and when the impurities are removed, generation of unnecessary fragments is extremely small. Accordingly, the detection sensitivity of the mass spectrometry means can be increased because the remaining detection target chemical substance does not have to be destroyed. Furthermore, since only a SW IFT waveform is applied when removing impurities, impurities can be removed quickly. In addition, in the ionization according to the present invention, since the generation of fragments is very small, the amount of impurities to be removed in the process of removing impurities is extremely small. As a result, the SW IFT voltage can be kept low, so there is no need to prepare a large power supply, and the manufacturing cost of the device can be reduced. In the method for detecting a chemical substance according to the next invention, an energy that is larger than the ionization potential of the chemical substance to be detected and smaller than the sum of the ionization potential and the dissociation energy of the ion of the chemical substance to be detected is detected. An ionization step of ionizing the object to be detected, the ion to be detected, and confining an ion group including ion of the ionized chemical to be detected by an electric field, a magnetic field or other means. A trapping step, an impurity removing step of applying energy to the ion group by a SW IFT waveform including a frequency component excluding a frequency corresponding to an orbital resonance frequency of ions of the detection target chemical substance to remove impurities, The energy is applied to the ion group with the TICKLE waveform of the frequency component corresponding to the orbital resonance frequency of the ion of the substance. And having a fragment of step fragmenting Ion detection object chemical substances giving ghee, and a mass analyzing step of measuring the mass of a fragment of the detection target chemical substance.
この化学物質の検出方法は、 T I C K L E波形を検出対象ィヒ学物質に与えて検 出対象化学物質をフラグメント化するので、 検出対象ィヒ学物質の質量数に対応す る周波数帯に不純物があっても、 この影響を排除して正確に測定できる。 また、 イオン化の際に発生するフラグメントも極めて少ないため、 検出対象化学物質を フラグメント化する場合には、 目的とする検出対象化学物質を効率的にフラグメ ント化できる。 その結果、 ほとんどすべての検出対象化学物質のフラグメントを 質量分析の対象とすることができるので、 質量分析工程においては、 分析の検出 感度を高くできる。 この検出方法によれば、 焼却炉の燃焼条件を制御する際によ り緻密に燃焼制御ができる。 In this method for detecting a chemical substance, since the TICKLE waveform is given to the target chemical substance to fragment the chemical substance to be detected, impurities are not present in the frequency band corresponding to the mass number of the target chemical substance. However, accurate measurements can be made without this effect. Also, Since very few fragments are generated during ionization, the target chemical substance to be detected can be efficiently fragmented when the chemical substance to be detected is fragmented. As a result, almost all fragments of the chemical substance to be detected can be subjected to mass spectrometry, so that the detection sensitivity of the analysis can be increased in the mass spectrometry process. According to this detection method, more precise combustion control can be performed when controlling the combustion conditions of the incinerator.
つぎの発明に係る化学物質の検出方法は、 電界、 磁界その他の手段によって、 ィオン化された検出対象化学物質のィオンを含むィオン群を閉じ込めるイオント ラップ工程と、 上記イオン群に含まれる不純物の分布を測定し、 所定の割合以上 存在する不純物に対応する周波数成分を含む S W I F T波形を前記イオン群に与 えて不純物を除去する不純物除去工程と、 前記検出対象化学物質またはこのフラ グメントの質量を測定する質量分析工程と、 を有することを特徴とする。  A method for detecting a chemical substance according to the next invention comprises: an ion trapping step of confining an ion group containing ion of the chemical substance to be detected ionized by an electric field, a magnetic field, or other means; and a distribution of impurities contained in the ion group. An impurity removal step of applying a SWIFT waveform including a frequency component corresponding to impurities present at a predetermined ratio or more to the ion group to remove impurities, and measuring the mass of the chemical substance to be detected or this fragment. And a mass spectrometry step.
この化学物質の検出方法においては、 所定の割合以上存在する不純物を選択的 に除去するようにしてある。 このため、 すべての不純物を除去する場合と比較し て少ないエネルギーで必要十分な不純物を除去できる。 このため、 電源装置を小 さくでき、 経済的である。 ここで、 所定の割合とは、 少なくとも計測対象化学物 質の信号強度と同じ程度の強度以上存在する不純物を対象とすることが好ましい。 さらに小さい信号強度の不純物を対象としてもよいが、 そうすると S W I F Tに 要するエネルギーが大きくなるため、 上記計測対象化学物質の信号強度の 5割以 上の信号強度を有する不純物を対象とすることが好ましい。  In this method of detecting a chemical substance, impurities present at a predetermined ratio or more are selectively removed. For this reason, necessary and sufficient impurities can be removed with less energy than in the case of removing all impurities. For this reason, the power supply unit can be made smaller and economical. Here, it is preferable that the predetermined ratio targets impurities present at least as high as the signal intensity of the chemical substance to be measured. Although impurities having a smaller signal intensity may be targeted, the energy required for SWIFT is increased, so that impurities having a signal intensity of 50% or more of the signal intensity of the chemical substance to be measured are preferably targeted.
つぎの発明に係る化学物質の検出方法は、 電界、 磁界その他の手段によって、 イオン化された検出対象化学物質のイオンを含むイオン群を閉じ込めるイオント ラップ工程と、 所定の信号強度よりも高い信号強度を示す濃度で存在する不純物 の軌道共鳴周波数に対応した周波数においては、 所定の信号強度よりも低い信号 強度を示す濃度で存在する不純物の軌道共鳴周波数に対応する周波数帯における 電圧振幅よりも大きい電圧振幅を有する SW I F T波形を前記イオン群に与えて 不純物を除去する不純物除去工程と、 前記検出対象化学物質またはこのフラグメ ントの質量を測定する質量分析工程と、 を有することを特徴とする。 The method for detecting a chemical substance according to the next invention includes an ion trapping step of confining an ion group including ions of the chemical substance to be detected by an electric field, a magnetic field, or other means, and a signal intensity higher than a predetermined signal intensity. At a frequency corresponding to the orbital resonance frequency of the impurity present at the indicated concentration, the voltage amplitude is larger than the voltage amplitude in the frequency band corresponding to the orbital resonance frequency of the impurity present at a concentration indicating a signal intensity lower than the predetermined signal intensity. An impurity removing step of applying a SW IFT waveform having the following to the ion group to remove impurities; Mass spectrometry step of measuring the mass of the component.
この発明に係る化学物質の検出方法では、 所定の信号強度よりも高い信号強度 を示す濃度で存在する不純物に対応する周波数の S W I F T波形の電圧振幅を高 くし、 不純物の濃度が低い部分の周波数は電圧振幅を低くしてある。 このため、 特に濃度の高い不純物を選択的に除去できるので、 濃度の低い不純物除去に要す るエネルギーを小さくできる。 これによつて、 SW I F Tに要するエネルギーが 少なくて済み、 また、 電源装置も小型にできるので、 無闇に大きな電源を使用し なくともよく、 経済的である。 ここで、 SW I F T波形の電圧振幅を高くする不 純物は、 少なくとも計測対象化学物質の信号強度と同じ程度の信号強度を持つ不 純物を対象とすることが好ましい。 さらに少ない質量数存在する不純物を対象と してもよいが、 そうすると S W I F Tに要するエネルギーが大きくなるため、 上 記計測対象化学物質の信号強度の 5割以上の信号強度を持つ不純物を対象とする ことが好ましい。 '  In the method for detecting a chemical substance according to the present invention, the voltage amplitude of the SWIFT waveform having a frequency corresponding to an impurity present at a concentration indicating a signal intensity higher than a predetermined signal intensity is increased, and the frequency of a portion having a low impurity concentration is increased. The voltage amplitude is reduced. Therefore, particularly high-concentration impurities can be selectively removed, and the energy required for removing low-concentration impurities can be reduced. As a result, the energy required for SW IFT is reduced, and the power supply device can be made compact, so that a large power supply need not be used unnecessarily, which is economical. Here, the impurity that increases the voltage amplitude of the SW IFT waveform is preferably an impurity that has at least the same signal intensity as the signal intensity of the chemical substance to be measured. Although impurities with a smaller mass number may be targeted, the energy required for SWIFT will increase, so impurities with a signal intensity of 50% or more of the signal intensity of the chemical substance to be measured should be targeted. Is preferred. '
つぎの発明に係る化学物質の検出方法は、 電界、 磁界その他の手段によって、 イオン化された検出対象化学物質のイオンを含むイオン群を閉じ込めるイオント ラップ工程と、 含まれる周波数が大きくなるにしたがって電圧振幅を小さくした S W I F T波形を前記イオン群に与えて不純物を除去する不純物除去工程と、 前 記検出対象化学物質またはこのフラグメントの質量を測定する質量分析工程と、 を有することを特徴とする。  The method for detecting a chemical substance according to the next invention includes an ion trapping step of confining an ion group including ions of the chemical substance to be detected by an electric field, a magnetic field, or other means, and a voltage amplitude as the included frequency increases. And a mass spectrometry step of measuring the mass of the chemical substance to be detected or a fragment thereof by applying a SWIFT waveform with a reduced value to the ion group to remove impurities.
この発明に係る化学物質の検出方法は、 質量数の大きい不純物に対しては、 質 量数の小さい不純物に与えるエネルギーと同程度のエネルギーを与えるようにし てある。 一般に、 イオントラップにおける軌道共鳴周波数は質量数の関数である 力 質量数が大きくなるほど、 周波数は小さくなり、 質量数間隔 1に相当する周 波数間隔も狭くなる。 一方、 従来文献" Development of a Capillary High- perfo rmance Liquid Chromatography Tandem Mass Spectrometry System Using SWIFT Technology in an Ion Trap/Ref lectron Time-of - flight Mass Spectrometer Ra pid Communication in mass spectrometry, vol. 11 1739 - 1748 (1997)などで一般 に行われている S W I F T波形の生成では、 電圧振幅が一定の周波数スぺクトル を逆フーリェ変換により時間領域に変換することにより SW I F T波形を生成し ている。 この場合、 一定の周波数間隔で一定の電圧振幅の正弦波形の和の波形を 生成することになる。 したがってこの場合、 質量数が大きいほど、 質量数間隔 1 あたりの正弦波の数が少ないため、 質量数間隔 1あたりのエネルギーは少ない。 すなわち、 質量数が大きい分子に加えられるエネルギーは相対的に小さくなつて しまう。 In the method for detecting a chemical substance according to the present invention, an impurity having a large mass number is supplied with the same energy as an energy given to an impurity having a small mass number. In general, the orbital resonance frequency in an ion trap is a function of the mass number. As the mass number increases, the frequency decreases and the frequency interval corresponding to mass interval 1 also decreases. On the other hand, the conventional literature `` Development of a Capillary High-performance Liquid Chromatography Tandem Mass Spectrometry System Using SWIFT Technology in an Ion Trap / Ref lectron Time-of-flight Mass Spectrometer Rapid Communication in mass spectrometry, vol. 11 1739-1748 ( 1997) In the SWIFT waveform generation performed in (1), a SW IFT waveform is generated by converting a frequency spectrum having a constant voltage amplitude into a time domain by an inverse Fourier transform. In this case, a waveform of a sum of sine waveforms having a constant voltage amplitude is generated at a constant frequency interval. Therefore, in this case, as the mass number increases, the number of sine waves per mass number interval 1 decreases, so the energy per mass number interval 1 decreases. In other words, the energy applied to a molecule having a large mass number becomes relatively small.
これに対し本発明では、 相対的に小さくなつた分正弦波の電圧振幅を大きくし て補正するため、 質量数の大きいイオンに対しても十分なエネルギーを与えるこ とができるので、 このような不純物でもより確実に除去できる。 また、 質量数の 小さいイオンには必要十分な範囲でエネルギーを与えることができるので、 エネ ルギ一の使用効率を高くできる。 さらに、 無闇に大きな電源装置も不要となるの で、 設置コストも低減できる。  On the other hand, in the present invention, since the voltage amplitude of the relatively small divided sine wave is increased and corrected, sufficient energy can be given to ions having a large mass number. Even impurities can be more reliably removed. Also, energy can be given to ions having a small mass number in a necessary and sufficient range, so that the use efficiency of energy can be increased. Furthermore, since a large power supply is not required, installation costs can be reduced.
つぎの発明に係る化学物質の検出方法は、 電界、 磁界その他の手段によって、 イオン化された検出対象化学物質のイオンを含むイオン群を閉じ込めるイオント ラップ工程と、 S W I F Tによる除去対象分子の質量数に関わらず電圧振幅が一 定の分布を持つ S W I F T波形を発生させる任意波形発生工程と、 前記 S W I F T波形を前記ィオントラップ手段に閉じ込められているイオン群に与えて前記不 純物を除去した後に、 前記検出対象化学物質またはこのフラグメントの質量を測 定する質量分析工程と、 を備えたことを特徴とする。  The method for detecting a chemical substance according to the next invention is based on an ion trapping step of confining an ion group containing ions of a chemical substance to be detected by an electric field, a magnetic field, or other means, and a method of detecting the number of molecules to be removed by SWIFT. An arbitrary waveform generating step of generating a SWIFT waveform having a constant voltage amplitude distribution, and applying the SWIFT waveform to the ions confined in the ion trap means to remove the impurities, And a mass spectrometry step of measuring the mass of the target chemical substance or its fragment.
この化学物質の検出方法は、 周波数が小さくなるにしたがって電圧振幅を大き くした SW I F T波形の周波数スぺクトルを、 質量数を横軸として変換したとき に質量数あたりの電圧振幅が略一定値になるになるようにしてある。 このため、 S W I F Tによる除去の対象とするどのような質量の分子に対しても略一定のェ ネルギーを与えることができる。 これによつて、 質量数の大きいイオンに対して も十分なエネルギーを与えることができるので、 このような不純物でもより確実 に除去できる。 また、 質量数の小さいイオンには必要十分な範囲でエネルギーを 与えることができるので、 エネルギーの使用効率を高くできる。 さらに、 無闇に 大きな電源装置も不要となるので、 設置コストも低減できる。 This chemical substance detection method is such that when the frequency spectrum of a SW IFT waveform whose voltage amplitude increases as the frequency decreases becomes smaller, the voltage amplitude per mass number becomes a substantially constant value when the mass number is converted to the horizontal axis. It is made to become. Therefore, almost constant energy can be given to molecules of any mass to be removed by SWIFT. As a result, sufficient energy can be given to ions having a large mass number, so that such impurities can be more reliably removed. In addition, for ions with a small mass number, the energy is necessary and Energy efficiency can be increased. Furthermore, since a large power supply is not required, installation costs can be reduced.
つぎの発明に係る化学物質の検出方法は、 電界、 磁界その他の手段によって、 ィオン化された検出対象化学物質のィオンを含むィオン群を閉じ込めるイオント ラップ工程と、 複数の検出対象ィヒ学物質の質量数に対応する複数の周波数帯にお いては電圧振幅を与えない SW I F T波形を前記イオン群に与えて不純物を除去 し、 複数の検出対象ィヒ学物質を残す工程と、 前記検出対象化学物質またはこのフ ラグメントの質量を測定する質量分析工程と、 を有することを特徴とする。 焼却炉の排ガス中に含まれるダイォキシン類やその前駆体は極めて微量である ため、 これらの検出精度を高めることは焼却炉の燃焼条件をリアルタイムで制御 する場合には極めて重要である。 この発明に係る化学物質の検出方法は、 複数の 検出対象ィ匕学物質に対応する周波数帯においては電圧振幅を与えない SW I F T 波形を用いて不純物を除去する。 そして、 複数の検出対象化学物質を質量分析手 段で同時に検出する。 このように、 複数の検出対象化学物質を同時に検出するの で、 例えば、 たとえ一つ一つの検出対象物質を検出する精度が不十分であつたと しても、 複数物質のトータルとして、 ダイォキシン類との相関を求めたり燃焼状 態を評価したりすることにより精度の高い測定ができ、 燃焼制御の精度も高くで ぎる。  The method for detecting a chemical substance according to the next invention includes an ion trapping step of confining an ion group including ion ions of the target chemical substance to be ionized by an electric field, a magnetic field, or other means; Applying a SW IFT waveform that does not give a voltage amplitude to the ion group to remove impurities and leave a plurality of substances to be detected in a plurality of frequency bands corresponding to the mass number; And a mass spectrometry step for measuring the mass of the substance or the fragment. Since dioxins and their precursors contained in the exhaust gas from incinerators are extremely small, it is extremely important to improve their detection accuracy when controlling the incinerator combustion conditions in real time. In the method for detecting a chemical substance according to the present invention, impurities are removed by using a SWIFT waveform that does not provide a voltage amplitude in a frequency band corresponding to a plurality of detection target substances. Then, a plurality of chemical substances to be detected are simultaneously detected by the mass spectrometry means. As described above, since a plurality of chemical substances to be detected are detected simultaneously, for example, even if the accuracy of detecting each of the target substances is insufficient, dioxins and dioxins are included as a total of the plurality of chemical substances. Accurate measurement can be performed by determining the correlation between the parameters and evaluating the combustion state, and the accuracy of combustion control can be improved.
つぎの発明に係る化学物質の検出方法は、 電界、 磁界その他の手段によって、 イオン化された複数の質量数が異なる検出対象化学物質のイオンを含むイオン群 を閉じ込めるイオントラップ工程と、 複数の検出対象化学物質の質量数に対応す る複数の周波数帯においては電圧振幅を与えない SW I F T波形を前記イオン群 に与えて不純物を除去し、 複数の検出対象化学物質を残す工程と、 前記複数の検 出対象化学物質のうち質量数が小さい検出対象化学物質から順にフラグメント化 するフラグメント化工程と、 前記検出対象化学物質またはこのフラグメントの質 量を測定する質量分析工程と、 を有することを特徴とする。  The method for detecting a chemical substance according to the next invention comprises: an ion trapping step of confining an ion group containing ions of a plurality of target chemical substances having different mass numbers by an electric field, a magnetic field, or other means; Applying a SW IFT waveform not giving a voltage amplitude to the ion group to remove impurities and leaving a plurality of chemical substances to be detected in a plurality of frequency bands corresponding to the mass number of the chemical substance; A fragmentation step of fragmenting the chemical substances to be detected in ascending order of chemical substances among the chemical substances to be output, and a mass spectrometry step of measuring the mass of the chemical substances to be detected or the fragments. .
この化学物質の検出方法では、 複数存在する検出対象化学物質のうち質量数の 小さレ、検出対象化学物質から順にフラグメント化するようにしてある。 このため、 質量数の小さい検出対象化学物質のフラグメント化によって、 この検出対象ィ匕学 物質よりも質量数の大きい物質のフラグメントが壊れないようにできる。 これに よって、 複数の検出対象ィ匕学物質をすベて検出できるので、 質量分析における感 度を高くして、 より精度の高い測定ができる。 In this chemical substance detection method, the mass number of multiple Fragmentation is performed in order starting from the smallest chemical substance to be detected. For this reason, fragmentation of the chemical substance to be detected having a small mass number can prevent a fragment of a substance having a mass number greater than that of the substance to be detected from being broken. As a result, all of the plurality of target substances can be detected, so that the sensitivity in mass spectrometry can be increased and more accurate measurement can be performed.
つぎの発明に係る化学物質の検出方法は、 電界、 磁界その他の手段によって、 ィオン化された複数の質量数が異なる検出対象化学物質のィオンを含むィオン群 を閉じ込めるイオントラップ工程と、 複数の検出対象化学物質の質量数に対応す る複数の周波数帯においては電圧振幅を与えない S W I F T波形を前記イオン群 に与えて不純物を除去し、 複数の検出対象化学物質を残す工程と、 前記検出対象 化学物質の同位体のうち少なくとも 2種類の同位体に対応する周波数を含む T I C K L E波形を与えて、 当該検出対象化学物質の同位体のうち少なくとも 2種類 をフラグメント化するフラグメント化工程と、 前記検出対象化学物質またはこの フラグメントの質量を測定する質量分析工程と、 を有することを特徴とする。 この化学物質の検出方法は、 検出対象化学物質の同位体のうち少なくとも 2種 類の同位体に対応する周波数を含む T I C K L E波形を与えて、 検出対象化学物 質の同位体のうち少なくとも 2種類をフラグメント化し、 質量分析に供する。 こ のように、 質量分析においては複数の同位体を使用するので、 排ガス中に極微量 しかダイォキシン類やその前駆体が存在しない場合でも、 検出精度を高くできる。 また、 焼却炉の燃焼制御に使用した場合には制御の精度も高くできる。  The method for detecting a chemical substance according to the next invention comprises: an ion trapping step of confining an ion group including ion ions of a plurality of target chemical substances having different mass numbers by an electric field, a magnetic field, or other means; Applying a SWIFT waveform that does not provide a voltage amplitude to the ion group to remove impurities and leave a plurality of detection target chemical substances in a plurality of frequency bands corresponding to the mass number of the target chemical substance; and Providing a TICKLE waveform including frequencies corresponding to at least two of the isotopes of the substance, and fragmenting at least two of the isotopes of the target chemical substance; and Mass spectrometry for measuring the mass of the substance or its fragment. In this method of detecting a chemical substance, a TICKLE waveform including frequencies corresponding to at least two of the isotopes of the target chemical substance is given, and at least two of the isotopes of the target chemical substance are detected. Fragment and submit to mass spectrometry. As described above, since multiple isotopes are used in mass spectrometry, detection accuracy can be improved even when only a trace amount of dioxins or their precursors is present in exhaust gas. Also, when used for combustion control in incinerators, control accuracy can be increased.
つぎの発明に係る化学物質の検出方法は、 上記化学物質の検出方法において、 上記質量分析工程においては、 検出対象化学物質から生成されるフラグメントの 同位体のうち少なくとも 2種類を計測対象とすることを特徴とする。  In the method for detecting a chemical substance according to the next invention, in the method for detecting a chemical substance, in the mass spectrometry step, at least two types of isotopes of fragments generated from the chemical substance to be detected are to be measured. It is characterized.
この化学物質の検出方法は、 検出対象化学物質から生成されるフラグメントの 同位体のうち少なくとも 2種類を質量分析の対象とする。 このように、 質量分析 においては複数のフラグメントの同位体を使用するので、 排ガス中に極微量しか ダイォキシン類やその前駆体が存在しない場合でも、 検出精度を高くできる。 ま た、 焼却炉の燃焼制御に使用した場合には制御の精度も高くできる。 In this method of detecting chemical substances, at least two types of isotopes of fragments generated from the target chemical substance are subjected to mass spectrometry. As described above, since isotopes of a plurality of fragments are used in mass spectrometry, detection accuracy can be improved even when dioxins and their precursors are present in only a trace amount in exhaust gas. Ma In addition, when used for combustion control of an incinerator, the control accuracy can be increased.
つぎの発明に係る化学物質の検出方法は、 上記化学物質の検出方法において、 さらに、 上記イオントラップ工程の前に、 検出対象化学物質のイオン化ポテンシ ャルょりも大きく、 当該イオンィ匕ポテンシャルと前記検出対象化学物質のイオン の解離エネルギーとの和よりも小さいエネルギーを当該検出対象化学物質に与え、 この検出対象化学物質をィオン化するイオン化工程を有することを特徴とする。 つぎの発明に係る化学物質の検出方法は、 上記イオン化工程は、 イオン化ポテ ンシャルょりも高く当該イオン化ポテンシャルに 4 e Vを加算した値以下のエネ ルギーを前記検出対象ィ匕学物質に与えることを特徴とする。  The method for detecting a chemical substance according to the next invention is the method for detecting a chemical substance, wherein, before the ion trapping step, the ionization potential of the chemical substance to be detected is large. An ionization step of applying energy smaller than the sum of the dissociation energies of ions of the chemical substance to be detected to the chemical substance to be detected and ionizing the chemical substance to be detected is provided. In the chemical substance detection method according to the next invention, in the ionization step, the ionization potential is high, and energy equal to or less than a value obtained by adding 4 eV to the ionization potential is given to the detection target substance. It is characterized.
これらの発明に係る化学物質の検出方法は、 検出対象化学物質のイオン化ポテ ンシャルょりも大きく、 当該イオンィ匕ポテンシャルと前記検出対象化学物質のィ オンの解離エネルギーとの和よりも小さいエネルギーを当該検出対象化学物質に 与え、 この検出対象ィ匕学物質をイオン化する。 このため、 余計なフラグメントを 生成せず、 残すべき検出対象化学物質も壊さないで済むので質量分析における検 出感度を高くできる。 したがって、 上記化学物質の検出方法で奏される作用 '効 果と相まって、 さらに質量分析手段における検出感度を向上させて、 精度の高い 測定ができる。 そして、 焼却炉の燃焼制御においても、 より緻密に制御できる。 さらに、 SW I F T電圧を低く抑えることができるので、 無闇に大きな電¾1を用 意する必要はなく、 装置の製造コストをより抑えることができる。 図面の簡単な説明  In the method for detecting a chemical substance according to these inventions, the ionization potential of the chemical substance to be detected is large, and the energy smaller than the sum of the ionization potential and the dissociation energy of the ions of the chemical substance to be detected is obtained. This is given to the chemical substance to be detected, and the substance to be detected is ionized. As a result, unnecessary fragments are not generated, and the remaining detection target chemical substance does not need to be destroyed, so that the detection sensitivity in mass spectrometry can be increased. Therefore, in combination with the effect of the chemical substance detection method described above, the detection sensitivity of the mass spectrometer can be further improved, and highly accurate measurement can be performed. And, in the combustion control of the incinerator, more precise control is possible. Furthermore, since the SW IFT voltage can be kept low, there is no need to provide a large power supply 1 without any need, and the production cost of the apparatus can be further reduced. Brief Description of Drawings
第 1図は、 この発明の実施の形態 1に係る化学物質の検出装置を示す説明図で あり、 第 2図は、 この発明の実施の形態 1に係る化学物質の検出方法を示すフロ 一チャートであり、 第 3図は、 トラップ周波数を一定とした場合における R F電 圧に対するイオン信号強度分布を示した説明図であり、 第 4図は、 R F電圧を一 定とした場合における R F周波数に対するイオン信号強度分布を示した説明図で あり、 第 5図は、 SW I F T周波数と振幅との関係およびイオン信号と質量数と の関係を示した説明図であり、 第 6図は、 この発明の実施の形態 5に係る S W I F T波形の周波数スペクトルを示す説明図であり、 第 7図は、 従来における S W I F T波形の周波数スペクトルを示す説明図であり、 第 8図は、 この発明の実施 の形態 6に係る S W I F T波形の周波数スぺクトルを示す説明図であり、 第 9図 は、 この発明の実施の形態 7に係る S W I F T波形の周波数スぺクトルを示す説 明図であり、 第 1 0図は、 この発明の実施の形態 7に係る T I C K L E波形の周 波数スぺク トルを示す説明図であり、 第 1 1図は、 この発明の実施の形態 9に係 る T I C K L E波形の周波数スぺクトルを、 質量数を横軸として変換した説明図 である。 発明を実施するための最良の形態 FIG. 1 is an explanatory diagram showing a chemical substance detection device according to Embodiment 1 of the present invention. FIG. 2 is a flowchart showing a chemical substance detection method according to Embodiment 1 of the present invention. FIG. 3 is an explanatory diagram showing the ion signal intensity distribution with respect to the RF voltage when the trap frequency is fixed, and FIG. 4 is a graph showing the ion signal with respect to the RF frequency when the RF voltage is fixed. FIG. 5 is an explanatory diagram showing a signal intensity distribution, and FIG. 5 shows a relationship between a SW IFT frequency and an amplitude, an ion signal, FIG. 6 is an explanatory diagram showing a frequency spectrum of a SWIFT waveform according to Embodiment 5 of the present invention, and FIG. 7 is a diagram showing a frequency spectrum of a conventional SWIFT waveform. FIG. 8 is an explanatory diagram showing a frequency spectrum of a SWIFT waveform according to the sixth embodiment of the present invention, and FIG. 9 is a diagram showing a SWIFT waveform according to the seventh embodiment of the present invention. FIG. 10 is an explanatory diagram showing a frequency spectrum, FIG. 10 is an explanatory diagram showing a frequency spectrum of a TICKLE waveform according to Embodiment 7 of the present invention, and FIG. FIG. 19 is an explanatory diagram in which a frequency spectrum of a TICKLE waveform according to the ninth embodiment of the invention is converted with a mass number as a horizontal axis. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明につき図面を参照しつつ詳細に説明する。 なお、 この実施の形 態によりこの発明が限定されるものではない。 また、 下記実施の形態における構 成要素には、 当業者が容易に想定できるもの或いは実質的に同一のものが含まれ る。 また、 下記実施の形態における構成要素には、 当業者が容易に想定できるも のが含まれるものとする。  Hereinafter, the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited by the embodiment. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same. Further, components in the following embodiments include those that can be easily assumed by those skilled in the art.
(実施の形態 1 )  (Embodiment 1)
第 1図は、 この発明の実施の形態 1に係る化学物質の検出装置を示す説明図で ある。 この化学物質の検出装置 1 0 0は、 イオンィヒ室 1と、 ガス導入装置 2と、 イオン化手段である真空紫外光ランプ 3と、 質量分析手段である飛行時間型の質 量分析計 4とを備えている。 イオン化室 1にはイオントラップ手段である R F ( Radio Frequency:高周波) リングを備えた R Fイオントラップ装置 1 0が備え られている。 これは、 内部に形成される高周波電界によって、 イオン化された排 ガス中の検出対象化学物質をトラップ 1 1内に閉じ込めておく。  FIG. 1 is an explanatory diagram showing a chemical substance detection device according to Embodiment 1 of the present invention. The chemical substance detection device 100 includes an ion chamber 1, a gas introduction device 2, a vacuum ultraviolet light lamp 3 as ionization means, and a time-of-flight mass spectrometer 4 as mass analysis means. ing. The ionization chamber 1 is provided with an RF ion trap device 10 having an RF (Radio Frequency) ring as an ion trap means. In this method, the detection target chemical substance in the ionized exhaust gas is confined in the trap 11 by a high-frequency electric field formed inside.
手段には電界や磁界その他の電磁気学的力によってィオンを内部に閉じ込める ものが使用できる。 そして、 電界や磁界等はそれぞれ単独で使用してもよく、 ま たこれらを適宜組み合わせて使用してもよレ、。 このようなイオントラップ手段と してはいくつかの種類が知られており、 中でも高周波電界が内部に形成される上 記 R Fイオントラップ装置 1 1は取り扱いが比較的容易であるため好ましい。 ま た、 他のイオントラップ手段としては、 この R F型の他、 直流電圧と静磁場とに よるぺニング (Penning) トラップを使用することもできる。 Means that confine ions inside by electric or magnetic fields or other electromagnetic forces can be used. The electric field, the magnetic field, and the like may be used alone, or may be used in an appropriate combination. With such ion trap means There are several types, and among them, the above-mentioned RF ion trap device 11 in which a high-frequency electric field is formed is preferable because it is relatively easy to handle. As other ion trap means, a Penning trap using a DC voltage and a static magnetic field can be used in addition to the RF type.
イオントラップ手段である R Fイオントラップ装置 1 0は、 第一エンドキヤッ プ 1 2と第二エンドキャップ 1 3と R Fリング 1 4とから構成されており、 三次 元四重極型である。 第 1図に示すように、 R Fリング 1 4は、 第一エンドキヤッ プ 1 2と第二エンドキャップ 1 3との内部に配置されている。 また、 R Fリング 1 4にはトラップ電圧を印加するための高周波電源装置 2 1が接続されており、 R Fリング 1 4にトラップ電圧として高周波電圧を印加する。 この高周波によつ て、 イオン化された排ガス中の検出対象化学物質その他の物質がトラップ 1 1內 に閉じ込められる。 また、 第一および第二エンドキャップ 1 2および 1 3には任 意波形発生手段である任意波形発生装置 2 0が接続されており、 後述する S W I F Tおよび T I C K L E時には両エンドキャップ間に特定の周波数を持つ電圧を 印加する。  The RF ion trap device 10, which is an ion trap means, includes a first end cap 12, a second end cap 13, and an RF ring 14, and is a three-dimensional quadrupole type. As shown in FIG. 1, the RF ring 14 is disposed inside the first end cap 12 and the second end cap 13. A high-frequency power supply 21 for applying a trap voltage is connected to the RF ring 14, and applies a high-frequency voltage as a trap voltage to the RF ring 14. Due to this high frequency, chemical substances to be detected and other substances in the ionized exhaust gas are trapped in the trap 11 1. An arbitrary waveform generator 20 as an arbitrary waveform generating means is connected to the first and second end caps 12 and 13, and a specific frequency is applied between both end caps at the time of SWIFT and TICKLE described later. Apply voltage.
ガス導入装置 2にはガス噴射管 5が備えられており、 ガス噴射管 5は、 パルス バルブのようなオリフィスを用いた開閉弁あるいはキヤビラリ管により形成され ている。 ガス噴射管 5に導入された焼却炉等の排ガス G sはイオン化室 1に導入 される。 ガス噴射管 5の周囲にはヒータ 6が設けられている。 ヒータ 6は検出対 象化学物質がガス噴射管 5の内壁に付着することを防止するための加熱装置であ る。  The gas introduction device 2 is provided with a gas injection tube 5, and the gas injection tube 5 is formed by an on-off valve using an orifice such as a pulse valve or a capillary tube. The exhaust gas G s from the incinerator and the like introduced into the gas injection pipe 5 is introduced into the ionization chamber 1. A heater 6 is provided around the gas injection pipe 5. The heater 6 is a heating device for preventing the chemical substance to be detected from adhering to the inner wall of the gas injection pipe 5.
イオンィ匕室 1は、 検出対象化学物質にエネルギーを与えてイオンィ匕するための イオン化手段として真空紫外光ランプ 3を備えている。 真空紫外光ランプ 3は、 A r、 K r、 X e等の希ガスや、 H2、 02、 C 1 2等を A r、 H eに添加したガス の放電により真空紫外光 Lを発生する。 本実施の形態においては、 1 2 1 . 6 n mの波長を持つ、 水素プラズマからの L y m a n a光を用いている。 The ionization chamber 1 is provided with a vacuum ultraviolet light lamp 3 as ionization means for applying energy to the detection target chemical substance to perform ionization. Vacuum ultraviolet light lamp 3, A r, K r, and rare gas such as X e, H 2, 0 2 , C 1 2 etc. A r, generating vacuum ultraviolet light L by discharge gas added to the H e I do. In this embodiment, Lymana light having a wavelength of 121.6 nm from hydrogen plasma is used.
真空紫外光ランプ 3は、 放電するガスの種類を変えることで、 発生する真空紫 外光の光子エネルギー量を変えることができる。 このため、 検出対象化学物質の ' イオン化ポテンシャルに合わせて、 これよりも大きく検出対象化学物質を解離さ せない程度の光子エネルギーを与えることができる。 これによつて、 光子エネル ギー量より高いイオン化ポテンシャルを持つ混在物質のイオン化を阻止すると共 に、 検出対象化学物質のフラグメント化を抑制することができる。 The vacuum ultraviolet light lamp 3 generates vacuum ultraviolet light by changing the type of gas to be discharged. The amount of photon energy of external light can be changed. For this reason, it is possible to apply a photon energy that is larger than this and does not dissociate the target chemical substance according to the ionization potential of the target chemical substance. As a result, ionization of a mixed substance having an ionization potential higher than the photon energy can be prevented, and fragmentation of the detection target chemical substance can be suppressed.
また、 イオン化手段は、 真空紫外光ランプ 3に代えて、 レーザーあるいはその 高調波を用いることもできる。 この場合、 波長可変レーザーを使用することによ り、 発生する光子エネルギー量を変化させることで、 イオンィヒする物質を選別す ることができる。 波長可変レーザーには、 周知のものを用いることができる。 な お、 この発明には 5 0 n m以上 2 0 0 n m以下の波長をもつ真空紫外光が適用で き、 より好ましくは 1 0 0 n m以上 2 0 0 n mであり、 不要なフラグメント発生 をより少なく抑える観点からは 1 1 2 11 111以上1 3 8 n mの範囲が望ましい。  Further, as the ionization means, a laser or a harmonic thereof can be used instead of the vacuum ultraviolet light lamp 3. In this case, by using a tunable laser, the amount of generated photon energy can be changed to select a substance to be ionized. A well-known tunable laser can be used. Incidentally, vacuum ultraviolet light having a wavelength of 50 nm or more and 200 nm or less can be applied to the present invention, more preferably 100 nm or more and 200 nm, and the generation of unnecessary fragments is further reduced. From the viewpoint of suppression, the range of 1 1 2 11 111 or more and 1 38 nm is desirable.
さらに、 検出対象化学物質にエネルギーを与えてイオン化する手段としては、 真空紫外光の波長を持つレーザー、 エキシマランプを使用してもよい。 また、 例 えば H eイオン等のイオンを粒子加速器で打ち出して、 イオン化室 1内のサンプ ルガス中に含まれる検出対象化学物質に衝突させてもよい。 さらに、 電子ビーム をセクタ一で分離して 1 0 e V程度のエネルギーを持つものを取り出し、 イオン 化室 1内の排ガス中に含まれる検出対象化学物質に衝突させてもよい。  Further, as a means for applying energy to the chemical substance to be detected and ionizing the same, a laser or an excimer lamp having a wavelength of vacuum ultraviolet light may be used. Further, for example, ions such as He ions may be ejected by a particle accelerator to collide with a detection target chemical substance contained in the sample gas in the ionization chamber 1. Furthermore, the electron beam may be separated at each sector to extract an electron beam having an energy of about 10 eV and collide with the detection target chemical contained in the exhaust gas in the ionization chamber 1.
質量分析手段である飛行時間型の質量分析計 4は、 イオン化室 1内でイオン化 された排ガス中の検出対象化学物質のイオンについて、 その質量を測定すること で検出対象化学物質を特定する。 イオン化された検出対象化学物質は、 上記 R F イオントラップ装置 1 0の第二ェンドキャップ 1 3にパルス状の引出し電圧を印 加することによって質量分析計 4に導入され、 質量分析計 4内を飛行する。 飛行 したイオンはイオン検出器 3 0によって検出され、 ここで検出された信号はプリ アンプ 3 1によって増幅された後、 データ処理装置 3 2に取り込まれデータ処理 される。 なお、 本実施の形態においては、 イオン検出器にマイクロチャネルプレ ートが用いられており、 イオンの検出感度を高めている。 質量分析計 4はその飛 行時間を測定する。 飛行時間と飛行物質の質量との間には高度の対応関係がある ので、 飛行時間から飛行物質の質量を検出し、 この質量から物質を同定するので ある。 The time-of-flight mass spectrometer 4, which is a mass spectrometer, specifies the chemical substance to be detected by measuring the mass of the ion of the chemical substance to be detected in the exhaust gas ionized in the ionization chamber 1. The ionized chemical substance to be detected is introduced into the mass spectrometer 4 by applying a pulsed extraction voltage to the second end cap 13 of the RF ion trap device 10, and flies through the mass spectrometer 4. . The flying ions are detected by the ion detector 30, and the signal detected here is amplified by the preamplifier 31 and then taken into the data processor 32 for data processing. Note that, in the present embodiment, a microchannel plate is used for the ion detector to increase the ion detection sensitivity. Mass spectrometer 4 Measure line time. Since there is a high-level correspondence between the time of flight and the mass of the flying substance, the mass of the flying substance is detected from the time of flight, and the substance is identified from this mass.
つぎに、 第 2図を用いてこの化学物質の検出装置 1 0 0を用いて排ガス中の検 出対象である前駆体を検出する手順について説明する。 ここで、 第 2図は、 この 発明の実施の形態 1に係る化学物質の検出方法を示すフローチヤ一トである。 ま ず、 イオン化室 1に焼却炉の排ガス G sを導入する (ステップ S 1 0 1 ) 。 つぎ に、 真空紫外光ランプ 3からィォン化室 1内に導入された排ガス G sに対して真 空紫外光 Lを照射し、 排ガス G sが真空紫外光 Lから光子エネルギーを受け取つ てイオン化される (ステップ S 1 0 2 ) 。 ここで、 検査対象物質である前駆体の イオン化ポテンシャルは 8 . 5 ~ 1 0 . O e Vの範囲である。 また、 上述したよ うに、 本実施の形態で使用する真空紫外光は 1 2 1 . 6 n mの波長を持っており、 その光子エネルギーは 1 0 . l e Vである。 このように、 前駆体のイオン化ポテ ンシャルよりもやや大きい程度のエネルギーを与えるため、 余分なエネルギーを 前駆体に与えないで前駆体をイオン化できる。  Next, a procedure for detecting a precursor to be detected in exhaust gas using the chemical substance detection apparatus 100 will be described with reference to FIG. Here, FIG. 2 is a flowchart showing a method for detecting a chemical substance according to Embodiment 1 of the present invention. First, the exhaust gas Gs of the incinerator is introduced into the ionization chamber 1 (step S101). Next, the vacuum ultraviolet light lamp 3 irradiates vacuum ultraviolet light L to the exhaust gas G s introduced into the ionization chamber 1, and the exhaust gas G s is ionized by receiving photon energy from the vacuum ultraviolet light L. (Step S102). Here, the ionization potential of the precursor to be inspected is in the range of 8.5 to 10 OeV. Further, as described above, the vacuum ultraviolet light used in the present embodiment has a wavelength of 121.6 nm, and its photon energy is 101.5 eV. As described above, since the energy is applied to a degree slightly larger than the ionization potential of the precursor, the precursor can be ionized without giving extra energy to the precursor.
その結果、 イオン化した検出対象ィヒ学物質である前駆体を効率よく計測できる ようになった。 これは、 真空紫外光によるイオン化においてはフラグメントの発 生が非常に少ないため、 ィオン化した前駆体のほとんどすベてを質量分析計 4の 測定対象とすることができるからである。 特に、 焼却炉からの排ガス中には極め て微量の前駆体しか存在しないため、 この効果は大きい。 また、 トラップ 1 1の トラップ効率低下を抑えることができる。 ここで、 フラグメント化したイオンが 多い場合には、 トラップ 1 1内に閉じ込められているイオンによって生ずるィォ ンの作るポテンシャルがトラップのポテンシャルを打ち消すように作用する。 し かし、 この真空紫外光によるィオン化では、 余分なフラグメントイオンの発生を 極めて小さく抑えることができるので、 イオントラップ装置 1 1のトラップ効率 低下を小さくすることができる。  As a result, it has become possible to efficiently measure the ionized precursor, which is a target chemical substance to be detected. This is because the generation of fragments is very small in ionization by vacuum ultraviolet light, so that almost all ionized precursors can be measured by the mass spectrometer 4. In particular, this effect is significant because only a very small amount of precursor is present in the exhaust gas from the incinerator. In addition, a decrease in trap efficiency of the trap 11 can be suppressed. Here, when there are many fragmented ions, the potential created by the ions generated by the ions confined in the trap 11 acts to cancel the potential of the trap. However, in the ionization using the vacuum ultraviolet light, the generation of extra fragment ions can be extremely suppressed, so that the reduction in the trapping efficiency of the ion trap device 11 can be reduced.
さらに、 つぎに説明する S W I F T電圧を低く抑えることができる。 ここで、 SW I F Tとは、 不純物を除去するために特定の周波数を持つ電圧波形をトラッ プ 1 1の第一エンドキャップ 1 2と第二エンドキャップ 1 3間に与えることによ つてィオンの軌道を変える操作をいう。 フラグメントの発生が多いィオン化方法 においては、 SW I F Tの過程で除去しておくべき質量数に、 検出対象化学物質 である前駆体、 あるいは他の物質を親分子とする大量のフラグメントが発生して しまう。 これを SW I F Tで除去するためには非常に大きな電圧を必要とするた め、 出力の大きな SW I F T電圧発生装置 (任意波形発生器) が必要である。 一 方、 SW I F T電圧を大きくすると、 壌したい質量数以外の質量数を持つ分子も 壌してしまうので、 残したい前駆体も壌してしまう。 その結果、 質量分析におい ては分析精度の低下を招いてしまう。 ' Further, the SWIFT voltage described below can be kept low. here, SW IFT is an operation to change the trajectory of the ion by applying a voltage waveform having a specific frequency between the first end cap 12 and the second end cap 13 of the trap 11 to remove impurities. Say. In the ionization method, which generates a lot of fragments, the mass number to be removed in the process of SW IFT generates a large amount of fragments with the precursor to be detected or the other molecule as a parent molecule. I will. Since a very large voltage is required to remove this by SW IFT, a high-output SW IFT voltage generator (arbitrary waveform generator) is required. On the other hand, if the SW IFT voltage is increased, molecules having a mass number other than the mass number to be exfoliated will also be exfoliated, so that the precursor to be retained will be exfoliated. As a result, the accuracy of mass spectrometry is reduced. '
この発明に係るイオン化においてはフラグメントの発生が非常に少ないため、 SW I F Tの過程で除去すべきフラグメントも極めて少なくなる。 その結果、 S W I F T電圧を低く抑え、 且つ残すべき前駆体も壊さないで済むので、 上記問題 点はほとんど回避できる。 また、 SW I F T後に残った親分子へ後述する T I C K L Eをかける場合や C O O L I N Gしたりする場合にも、 フラグメントの多い ィオン化方法では種々の親分子からフラグメントが発生してしまう。 その結果、 目的とする前駆体以外のフラグメントが不純物として含まれる結果、 質量分析の 精度低下を引き起こしていた。 し力 し、 この発明に係るイオン化方法によれば、 ィオン化の際に発生するフラグメントが極めて少ないため、 この問題点もほとん ど回避できる。  In the ionization according to the present invention, since the generation of fragments is very small, the number of fragments to be removed in the process of SW IFT becomes extremely small. As a result, since the SWIFT voltage is kept low and the remaining precursor is not destroyed, the above problems can be almost avoided. In addition, when TICKLE described later is applied to the parent molecule remaining after SWIFT or when COOLING is performed, fragments are generated from various parent molecules by the ionization method with many fragments. As a result, fragments other than the target precursor were included as impurities, resulting in a decrease in the accuracy of mass spectrometry. However, according to the ionization method of the present invention, since the number of fragments generated during ionization is extremely small, this problem can be substantially avoided.
つぎに SW I F Tについて説明する。 これは、 排ガス中に存在している検出対 象化学物質以外の不要物質を除去するための操作である。 このために、 R Fィォ ントラップ装置 1 0の第一エンドキャップ 1 2と第二ェン,ドキャップ 1 3との間 に、 任意波形発生装置 2 0によって取り除きたい物質の軌道共鳴周波数に対応し た広域帯の周波数で電圧を印加する。 これによつて、 この発明に係る不純物除去 手段を形成している。 なお、 この広域帯の周波数からは、 検出対象化学物質の質 量数の周波数に対応する軌道共鳴周波数は除力れている。 これによつて、 取り除 きたい物質は大きな振幅で振られることになり、 R Fイオントラップ装置 10の 壁に衝突して電荷を失ってイオンとしては存在しなくなる。 検出対象化学物質は R Fリング 14に印加されるトラップ電圧によって、 トラップ 11内に閉じ込め られたままである。 このような操作を SWI FTとレ、い、 この操作によって検出 対象化学物質以外の不純物を取り除くことができる (ステップ S 103) 。 Next, SW IFT will be described. This is an operation to remove unnecessary substances other than the target chemical substance present in the exhaust gas. For this purpose, the orbital resonance frequency of the material to be removed by the arbitrary waveform generator 20 is placed between the first end cap 12 and the second end cap 13 of the RF ion trap device 10. A voltage is applied at a wide band frequency. Thereby, the impurity removing means according to the present invention is formed. The orbital resonance frequency corresponding to the frequency of the mass number of the chemical substance to be detected is eliminated from the frequency in the wide band. This removes The material to be shaken has a large amplitude, collides with the wall of the RF ion trap device 10, loses electric charge, and does not exist as ions. The chemical to be detected remains trapped in the trap 11 by the trap voltage applied to the RF ring 14. Such an operation is referred to as SWIFT. By this operation, impurities other than the chemical substance to be detected can be removed (step S103).
つぎに T I CKLEについて説明する。 T I CKLEは検出対象化学物質をフ ラグメント化させて、 検出対象化学物質と質量数が近似する不純物と検出対象化 学物質とを分離する操作である。 そして、 親分子である検出対象化学物質の分子 から生成されたフラグメントの質量数を測定することで、 検出対象化学物質を特 定する。 また、 当該フラグメントの量を測定すれば、 検出対象化学物質の濃度も 求めることができる。 T I CKLEは、 上述した SWI FTとは異なり、 親分子 である検出対象化学物質の軌道共鳴周波数に対応する周波数で第一ェンドキヤッ プ 12と第二エンドキャップ 13との間に電圧を印加する。 このときには、 任意 波形発生装置 20によって前記ェンドキヤップ間に前記周波数の電圧を印加する。 これによつて、 本発明に係るフラグメント化手段を構成する。 そして、 検出対象 化学物質のイオンをトラップ 11内に共存する他の物質と衝突させて、 検出対象 化学物質をフラグメント化する。 これによつて T I CKLEによるフラグメント 化が完了する (ステップ S 104) 。  Next, TICKLE will be described. TICKLE is an operation in which the chemical substance to be detected is fragmented to separate the chemical substance to be detected from the impurity whose mass number is close to that of the chemical substance to be detected. Then, the target chemical substance is identified by measuring the mass number of a fragment generated from the molecule of the target chemical substance that is the parent molecule. Also, by measuring the amount of the fragment, the concentration of the chemical substance to be detected can be obtained. TICKLE, unlike the above-described SWIFT, applies a voltage between the first end cap 12 and the second end cap 13 at a frequency corresponding to the orbital resonance frequency of the target chemical substance to be detected, which is the parent molecule. At this time, the voltage of the frequency is applied between the end caps by the arbitrary waveform generator 20. This constitutes the fragmentation means according to the present invention. Then, ions of the chemical substance to be detected collide with other substances coexisting in the trap 11 to fragment the chemical substance to be detected. This completes fragmentation by TICKLE (step S104).
T I CKLEによるフラグメント化が完了したら、 RFリング 14に対する電 圧の印加を止めて、 第二エンドキャップ 13にパルス状の引出し電圧を印加する ことによって、 フラグメント化された検出対象化学物質のイオンを質量分析計 4 側に引き出す (ステップ S 105) 。 この検出対象化学物質のイオンは質量分析 計 4内を飛行し、 質量分析計 4によってその飛行時間が測定される。 上述したと おり、 飛行時間と飛行物質の質量との間には高度の対応関係があるので、 飛行時 間から飛行物質の質量を検出し、 この質量から物質を同定して (ステップ S 10 6) 、 測定が終了する(ステップ S 107)。  When the fragmentation by TI CKLE is completed, the application of the voltage to the RF ring 14 is stopped, and a pulsed extraction voltage is applied to the second end cap 13, so that the ions of the fragmented chemical substance to be detected are massed. Pull out to analyzer 4 side (step S105). The ions of the chemical substance to be detected fly in the mass spectrometer 4, and the time of flight is measured by the mass spectrometer 4. As described above, since there is an altitude correspondence between the time of flight and the mass of the flying material, the mass of the flying material is detected from the time of flight, and the material is identified from this mass (step S106). ), The measurement ends (step S107).
この実施の形態で使用する飛行時間型の質量分析計は、 数 1 Ομ秒で一回の 計測が完了するため、 計測時間が非常に早く、 応答性に優れるという利点がある。 このため、 特に、 実際のプラントにおいてリアルタイムで燃焼条件を制御する際 に好適である。 なお、 他の質量分析手段としては、 電場型、 RFコイル型等の質 量分析手段も使用できる。 特に RFコイル型はトラップ 11の出口にイオン検出 器を設けるだけでよいので、 簡単な構造で質量分析器を構成できる。 The time-of-flight mass spectrometer used in this embodiment is a single Since the measurement is completed, there is the advantage that the measurement time is very fast and the response is excellent. Therefore, it is particularly suitable for controlling combustion conditions in real time in an actual plant. As other mass spectrometry means, mass spectrometry means such as an electric field type or an RF coil type can be used. In particular, since the RF coil type only needs to provide an ion detector at the exit of the trap 11, a mass spectrometer can be configured with a simple structure.
(実施の形態 2)  (Embodiment 2)
この発明に係る化学物質の検出装置 100は、 トラップ 11内へ導入した排ガ スに真空紫外光を直接照射することで、 計測対象物質をイオン化する。 そして、 これに SWI FTおよび T I CKLEをかけて計測対象物質のイオンをフラグメ ント化する。 このため、 これまでのイオン化と同じ条件では SWI FTやフラグ メント化が必ずしも成功しない場合がある。 そこで、 ここでは、 SWI FTおよ ぴ T I CKLEの条件について説明する。 第 3図は、 トラップ周波数を一定とし た場合における RF電圧に対するイオン信号強度分布を示した説明図である。 ま た、 第 4図は、 RF電圧を一定とした場合における RF周波数に対するイオン信 号強度分布を示した説明図である。  The chemical substance detection device 100 according to the present invention ionizes a substance to be measured by directly irradiating exhaust gas introduced into the trap 11 with vacuum ultraviolet light. Then, SWIFT and TICKLE are applied to this to fragment the ions of the target substance. For this reason, SWIFT and fragmentation may not always succeed under the same conditions as the conventional ionization. Thus, here, the conditions of SWIFT and TICKLE will be described. FIG. 3 is an explanatory diagram showing an ion signal intensity distribution with respect to an RF voltage when a trap frequency is fixed. FIG. 4 is an explanatory diagram showing the ion signal intensity distribution with respect to the RF frequency when the RF voltage is fixed.
これまで用いられてきた真空紫外光以外との組み合わせによるイオン化では、 トラップ 11の外部で検出対象化学物質をイオン化していた。 そして、 検出対象 化学物質をフラグメント化するときには、 外部から不活性ガスや窒素ガス等の衝 突ガスをトラップ 11内に供給して、 検出対象化学物質をフラグメント化してい た。 したがって、 被測定ガスである排ガスに含まれる水蒸気や酸素等の大気成分 はトラップ 11内にほとんど存在していなかった。 このため、 第 3図 (a) や第 4図 (a) に示すようなイオン信号強度分布を示していた。  In the ionization using a combination other than vacuum ultraviolet light, which has been used so far, the chemical substance to be detected is ionized outside the trap 11. When fragmenting the chemical substance to be detected, a collision gas such as an inert gas or a nitrogen gas is supplied into the trap 11 from the outside to fragment the chemical substance to be detected. Therefore, almost no atmospheric components such as water vapor and oxygen contained in the exhaust gas as the gas to be measured were present in the trap 11. Therefore, the ion signal intensity distribution as shown in FIG. 3 (a) and FIG. 4 (a) was shown.
しかし、 この発明に係るイオン化方法では、 トラップ 11内に導入した排ガス に真空紫外光を直接照射して検出対象化学物質をイオン化する。 したがって、 ト ラップ 11内には排ガス中に存在する水蒸気や酸素等の大気成分が存在すること になる。 このような水蒸気や酸素等の大気成分分子が検出対象化学物質と共存す る環境下で、 後述する T I CKLE電圧を印加して検出対象化学物質をフラグメ ント化すると、 フラグメントがトラップできない条件が発生することがある。 例 えば、 RF電圧が 1 500 Vを超えると、 もはやフラグメントはトラップできな い (第 3図 (b) ) 。 また、 RF周波数が 1. 0MHzよりも小さくなると、 も はやフラグメントはトラップできない (第 4図 (b) ) 。 ここで、 トラップ条件 とは、 RFリング 14に印加する RF電圧および RF周波数の値をいう。 これは、 上記水蒸気、 すなわち水の分子や酸素分子は極性を持っため、 フラグメント化し た検出対象化学物質のイオンの軌道が大きくなる結果、 当該イオンがトラップ 1 1の壁面に衝突して電荷を失うことが原因であると考えられる。 However, in the ionization method according to the present invention, the exhaust gas introduced into the trap 11 is directly irradiated with vacuum ultraviolet light to ionize the chemical substance to be detected. Therefore, the trap 11 contains atmospheric components such as water vapor and oxygen present in the exhaust gas. In an environment where such atmospheric components such as water vapor and oxygen coexist with the chemical substance to be detected, a TI CKLE voltage described later is applied to fragment the chemical substance to be detected. Fragmentation may result in a condition where fragments cannot be trapped. For example, when the RF voltage exceeds 1500 V, fragments can no longer be trapped (Fig. 3 (b)). When the RF frequency is lower than 1.0 MHz, fragments can no longer be trapped (Fig. 4 (b)). Here, the trap condition refers to a value of an RF voltage and an RF frequency applied to the RF ring 14. This is because the water vapor, that is, water molecules and oxygen molecules have polarities, and the orbit of the fragmented chemical substance to be detected increases, so that the ions collide with the wall surface of the trap 11 and lose charge. It is thought that this is the cause.
そこで、 上記水分子や酸素分子が共存してもフラグメント化した検出対象化学 物質のイオンをトラップできるように、 トラップ条件を調整する必要がある。 例 えば、 TCB (質量数 1 80、 1 82、 1 84) を親分子として、 ここから塩素 がー個取れたフラグメント (質量数 145、 147) 、 塩素二個と水素一個とが 取れたフラグメント (質量数 1 09、 1 1 1) および塩素三個と水素一個とが取 れたフラグメント (質量数 74) を検出する場合を考える。 従来のイオン化方法 においては、 RF周波数が 1. OMHzの場合に RF電圧を 1 000 V以上 20 0 OV以下とすると好適にフラグメントイオンがトラップできた (第 3図 (a) 参照) 。  Therefore, it is necessary to adjust the trapping conditions so that the fragmented ions of the chemical substance to be detected can be trapped even when the water molecules and the oxygen molecules coexist. For example, using the TCB (mass number 180, 182, 184) as the parent molecule, a fragment from which chlorine was removed (mass number 145, 147), a fragment from which two chlorine and one hydrogen were removed ( Let us consider the case of detecting fragments (mass number 74) with mass numbers of 109 and 1 1 1) and 3 chlorines and 1 hydrogen. In the conventional ionization method, when the RF frequency was 1. OMHz, the fragment ions could be trapped appropriately when the RF voltage was set to be between 1,000 V and 200 OV (see FIG. 3 (a)).
酸素および水分子の共存下においては、 同じ周波数条件において、 RF電圧を 700 V以上 1 30 OV以下にすると好適にトラップでき、 さらには 900 V以 上 1 1 0 OV以下とするとより安定してフラグメントイオンをトラップできる ( 第 3図 (b) 参照) 。 また、 RF電圧を 1 60 OVとした場合には、 従来法にお いては RF周波数を 1. OMH zが適当であつたが、 この方法においては RF周 波数を 1. 2MHz以上 1. 7MHz以下の範囲とすると安定してフラグメント イオンをトラップできる。 さらには、 RF周波数を1. 4MH z以上 1. 6MH z以下の範囲とすると、 さらに安定してフラグメントイオンをトラップできる ( 第 4図 (b) 参照) 。  In the coexistence of oxygen and water molecules, under the same frequency conditions, trapping can be performed favorably when the RF voltage is 700 V or more and 130 OV or less, and more stable when the RF voltage is 900 V or more and 110 OV or less. Ions can be trapped (see Fig. 3 (b)). When the RF voltage is set to 160 OV, the RF frequency of 1.OMhz is appropriate in the conventional method, but in this method, the RF frequency is 1.2 MHz or more and 1.7 MHz or less. Within this range, fragment ions can be stably trapped. Furthermore, when the RF frequency is in the range of 1.4 MHz to 1.6 MHz, fragment ions can be trapped more stably (see Fig. 4 (b)).
(実施の形態 3) SWI FT時には高い質量を持つ親分子である計測対象物質のトラップ効率を 高くする必要がある。 一方、 T I CKLE時には低い質量数を持つフラグメント 化された計測対象物のトラップ効率を高くする必要がある。 したがって、 SWI FT時には RFリング 14に印加するエネルギー値、 すなわち RF電圧と RF周 波数との積が高くなる設定とする。 そして T I CKLE時には、 RF電圧と RF 周波数との積が小さくなる設定とする。 このようにすることによって、 SWI F Tおよび T I CKLE時における計測対象物質やこのフラグメントのトラップ効 率を高くすることができる。 (Embodiment 3) At the time of SWIFT, it is necessary to increase the trapping efficiency of the target substance, which is the parent molecule with a high mass. On the other hand, during TI CKLE, it is necessary to increase the trapping efficiency of fragmented measurement objects with low mass numbers. Therefore, at the time of SWIFT, the setting is such that the energy value applied to the RF ring 14, that is, the product of the RF voltage and the RF frequency is increased. And at TI CKLE, it is set so that the product of RF voltage and RF frequency becomes small. By doing so, the trapping efficiency of the target substance and its fragments during SWIFT and TI CKLE can be increased.
例えば、 RF周波数を 1 MHzで一定として、 SWI FT時において 1600 Vでトラップし、 T I CKLE時には 1000 Vでトラップする。 また、 RF電 圧を 1600 Vで一定としておき、 SWI FT時には RF周波数を 1. 4MHz でトラップして、 T I CKLE時には 1. 0MHzでトラップしてもよい。 また RF周波数と RF電圧とを両方変化させてもよレ、。 なお、 この変化はステップ応 答的に変化させてもよいし、 徐々に変化させるようにしてもよい。 なお、 検出対 象化学物質は、 ある一定の寿命でトラップ 11から外部へ散逸していくため、 T I CKLEに要する時間を短くする方向に適正ィ匕した方がよい。 具体的には T I CKLE電圧を高くするようにするとよい。  For example, assuming that the RF frequency is constant at 1 MHz, trap at 1600 V during SWIFT and 1000 V during TICKLE. Alternatively, the RF voltage may be kept constant at 1600 V, and the RF frequency may be trapped at 1.4 MHz during SWIFT and may be trapped at 1.0 MHz during TICKLE. You can also change both the RF frequency and the RF voltage. This change may be changed in a step response or may be changed gradually. In addition, since the chemical substance to be detected is dissipated from the trap 11 to the outside with a certain life, it is preferable that the time required for TICKLE be appropriately shortened. Specifically, it is preferable to increase the T I CKLE voltage.
検出対象化学物質は、 T I CKLEによってフラグメント化した後は、 フラグ メント化する前よりも質量数が小さくなつているため、 少なくとも T I CKLE 終了後には RFリング 14に印加する RF電圧を T I CKLE前よりも小さくす るカ RF周波数を大きくする必要がある。 し力 し、 RFリング 14に印加する R F電圧を小さくするか R F周波数を大きくする方向に変化させると、 質量数の 小さいフラグメントのトラップ効率が低下する。 したがって、 この状態で T I C KLE終了後あまり時間が経過すると、 当該フラグメントが減少して質量分析計 4における検出感度が低下する。 このため、 T I CKLE波形を入力後、 検出対 象化学物質がフラグメント化される時間が経過してからただちに、 上記のように 切替えることが好ましい。 (実施の形態 4 ) Since the mass of the target chemical is smaller after fragmentation by TI CKLE than before fragmentation, the RF voltage applied to the RF ring 14 should be set at least after the end of TI CKLE. It is necessary to increase the RF frequency. However, if the RF voltage applied to the RF ring 14 is decreased or the RF frequency is increased, the trapping efficiency of fragments having a small mass number decreases. Therefore, if much time elapses after the end of TIC KLE in this state, the number of the fragments decreases, and the detection sensitivity in the mass spectrometer 4 decreases. Therefore, it is preferable to switch as described above immediately after the time for fragmentation of the target chemical substance has elapsed after the input of the TICKLE waveform. (Embodiment 4)
SW I F Tにおいては、 検出対象化学物質以外の物質を除去するが、 このとき に必ず除去しなければならないのは、 検出対象化学物質をフラグメント化したと きに発生するフラグメントイオンと同程度の質量数をもつ不純物である。 これは、 T I C K L Eによるフラグメント化の後における質量分析において、 この不純物 もフラグメントイオンと共に測定される結果、 検出対象化学物質の計測精度が低 下するからである。 また、 上記以外の不純物も、 これらがトラップ 1 1内へ大量 に存在する場合にはトラップ 1 1が飽和し、 トラップ効率が低下してしまうため、 検出対象化学物質以外の不純物は SW I F T時に極力除去しておいた方がよい。 し力 し、 検出対象化学物質以外の不純物をすベて除去するためには、 非常に広 い質量数の範囲に対応する周波数成分をもつ SW I F T波形を印加しなければな らない。 しかしながら、 広い範囲の周波数成分を持つ SW I F T波形は、 単位周 波数当たりのエネルギーが小さくなるため、 ある質量数を持つ分子に加えること のできるエネルギーも小さくなってしまう。 その結果、 不純物の除去効率が低下 して、 検出対象化学物質の検出精度も低下してしまう。 したがって、 広い範囲の 周波数成分を持つ SW I F T波形を加える場合には、 S W I F T波形発生源であ る高周波発生装置 2 1を高性能にしたり、 この出力を増幅するアンプの出力を大 きくしたり、 増幅周波数の帯域を広くする必要がある。 その結果、 装置が大型ィ匕 したり、 高価になったりしてしまう。  In SW IFT, substances other than the chemical substance to be detected are removed, but the mass that must be removed at this time is the same as the mass number of fragment ions generated when the chemical substance to be detected is fragmented. Is an impurity having This is because, in the mass spectrometry after fragmentation by TICKLE, this impurity is also measured together with the fragment ion, and as a result, the measurement accuracy of the target chemical substance is reduced. In addition, when impurities other than the above are present in a large amount in the trap 11, the trap 11 is saturated and the trap efficiency is reduced, so that impurities other than the chemical substance to be detected are minimized during SW IFT. It is better to remove it. However, in order to remove all impurities other than the target chemical, a SWIFT waveform having a frequency component corresponding to a very wide mass number range must be applied. However, since the SWIFT waveform having a wide range of frequency components has low energy per unit frequency, the energy that can be added to a molecule having a certain mass number is also small. As a result, the efficiency of removing impurities is reduced, and the detection accuracy of the target chemical substance is also reduced. Therefore, when a SW IFT waveform having a wide range of frequency components is added, the high-frequency generator 21 that is the SWIFT waveform generation source is made to have high performance, the output of an amplifier that amplifies this output is increased, or the amplification is performed. It is necessary to widen the frequency band. As a result, the device becomes large and expensive.
そこで、 排ガス中に含まれる不純物の質量スぺクトルを調べ、 最低限除去しな ければならない質量数の範囲に対応する周波数成分を持つ SW I F T波形によつ て不純物を除去するようにする。 最低限除去しなければならない質量数の範囲は、 例えば、 質量スぺクトルの信号強度がある一定値以上の値を持つ不純物を含むよ うにすることで決定できる。 この一定値は、 少なくとも計測対象化学物質の信号 強度と同程度とし、 この値以上の信号強度を持つ不純物を対象とすることが好ま しい。 なお、 さらに少ない質量数存在する不純物を対象としてもよいが、 そうす ると S W I F Tに要するエネルギーが大きくなる。 このため、 計測対象化学物質 の信号強度の 5割以上の強さを有する信号強度である不純物を対象とすることが 好ましい。 Therefore, the mass spectrum of the impurities contained in the exhaust gas is examined, and the impurities are removed using a SW IFT waveform having a frequency component corresponding to the range of the mass number that must be removed at a minimum. The range of the mass number that must be removed at a minimum can be determined by, for example, making the signal intensity of the mass spectrum include impurities having a certain value or more. This constant value should be at least as high as the signal intensity of the chemical substance to be measured, and it is preferable to target impurities with a signal intensity higher than this value. Although impurities with even lower mass numbers may be targeted, the energy required for SWIFT increases. Therefore, chemical substances to be measured It is preferable to target impurities having a signal intensity of 50% or more of the signal intensity of the above.
ある焼却炉の例においては、 例えば質量数が 48以上 355以下の範囲が最低 限除去しなければならない範囲となっているので、 この範囲に対応する周波数成 分を持つ SWI FT波形によって不純物を除去する。 このようにすると、 トラッ プ 1 1に投入するエネルギーを無闇に大きくしなくとも、 実用上十分な精度で検 出対象化学物質を測定できる。 これによつて、 無闇に大きな装置を使用する必要 がなくなり、 装置のコストも抑えることができる。  In one incinerator example, for example, the range where the mass number is 48 or more and 355 or less is the minimum range that must be removed, so impurities are removed by SWIFT waveforms having a frequency component corresponding to this range. I do. In this way, the chemical substance to be detected can be measured with practically sufficient accuracy without increasing the energy input to the trap 11 indiscriminately. This eliminates the necessity of using a large device unnecessarily, and reduces the cost of the device.
(実施の形態 5)  (Embodiment 5)
第 5図は、 SWI FT周波数と振幅との関係およびイオン信号と質量数との関 係を示した説明図である。 ここで、 第 5図における質量数は、 同図中の SWI F T周波数に対応する。 また、 第 6図は、 この発明の実施の形態 5に係る SWI F T波形の周波数スペクトルを示す説明図である。 周波数スペクトルは、 SWI F T波形や T I CKLE波形の強度 (電圧振幅) を、 SWI FT波形等の周波数に 対する関数として表したものである。 非常に濃度の高い不純物を除去するために は非常に高い SWI FT電圧を印加する必要があるが、 従来の SWI FTにおい てはすべての質量数に相当する周波数を同じ電圧振幅で印加する。 すなわち、 S WI FT電圧は、 濃度の最も高い不純物を除去するために必要な電圧によって決 定される。 このため、 非常に濃度が高い不純物を除去する場合には、 全体として 非常に高い電圧振幅が必要となるので、 エネルギーの使用効率が低下する。 また、 電源、装置も容量の大きいものが必要となるため、 コスト増加を招く。 さ らに、 検出対象化学物質である親分子を残すために、 SWI FT波形からは当該 検出対象ィ匕学物質の質量数に対応する周波数帯は除力、れているが、 高い電圧振幅 を印カ卩した場合には、 同じ周波数帯だけ除いていても実際に残る質量数の範囲が 小さくなる。 その結果、 検出対象化学物質も一部除去されてしまい、 検出精度が 低下するという問題もあった。 これは、 実際の SWI FT波形の周波数スぺクト ルは第 5図 (a) の実線で示すような理想的な矩形ではなく、 第 5図 (b) の破 線で示すようなやや末広がりの形状になることが原因である。 すなわち、 S W I F T波形の周波数スぺクトルが実際には末広がりの形状になるため、 図中 Δ F で示す検出対象化学物質の質量数に対応する周波数帯が小さくなる結果、 検出精 度が低下するからである。 FIG. 5 is an explanatory diagram showing the relationship between SWIFT frequency and amplitude and the relationship between ion signal and mass number. Here, the mass number in FIG. 5 corresponds to the SWIFT frequency in FIG. FIG. 6 is an explanatory diagram showing a frequency spectrum of a SWIFT waveform according to Embodiment 5 of the present invention. The frequency spectrum represents the intensity (voltage amplitude) of the SWIFT waveform or TICKLE waveform as a function of the frequency of the SWIFT waveform or the like. To remove very high concentration impurities, it is necessary to apply a very high SWIFT voltage, but in the conventional SWIFT, the frequencies corresponding to all mass numbers are applied with the same voltage amplitude. That is, the SWIFT voltage is determined by the voltage required to remove the highest concentration impurity. For this reason, when removing very high concentration impurities, very high voltage amplitude is required as a whole, and energy use efficiency is reduced. In addition, power supplies and devices need to have large capacities, resulting in increased costs. Furthermore, in order to leave the parent molecule, which is the chemical substance to be detected, the frequency band corresponding to the mass number of the substance to be detected is reduced from the SWIFT waveform, but a high voltage amplitude is obtained. In the case of stamping, the range of the mass number actually remaining becomes smaller even if the same frequency band is excluded. As a result, there is also a problem that the detection target chemical substance is partially removed, and the detection accuracy is reduced. This is because the frequency spectrum of the actual SWIFT waveform is not an ideal rectangle as shown by the solid line in Fig. 5 (a), but is a break in Fig. 5 (b). This is because the shape is slightly divergent as shown by the line. In other words, since the frequency spectrum of the SWIFT waveform actually has a divergent shape, the frequency band corresponding to the mass number of the target chemical substance indicated by ΔF in the figure becomes smaller, resulting in lower detection accuracy. It is.
このため、 第 6図に示すように、 濃度の高い不純物の質量数に対応する周波数 の SWI FT波形の電圧振幅を高くし、 不純物の濃度が低い部分は電圧振幅を低 くする。 このようにして、 特に濃度の高い不純物を選択的に除去できる。 ここで、 SWI FT波形の電圧振幅を高くする不純物は、 少なくとも計測対象化学物質の 信号強度と同程度の信号強度を持つ不純物を対象とすることが好ましい。 さらに 少ない質量数存在する不純物を対象としてもよいが、 そうすると SWI FTに要 するエネルギーが大きくなる。 このため、 計測対象化学物質の信号強度の 5割以 上の信号強度を有する不純物を対象とすることが好ましい。 これによつて、 全体 としては SWI FT波形の電圧振幅を低く抑えることができるので、 エネルギー の使用効率を高くして不純物を除去できる。 また、 電源装置も容量が小さいもの を使用できるので、 電源装置を小型にでき、 コストも低く抑えることができる。 さらに、 SWI FT操作をしても、 検出対象化学物質も確実に残すことができる ので、 質量分析計 4における検出精度を高くすることができる。  For this reason, as shown in FIG. 6, the voltage amplitude of the SWIFT waveform having a frequency corresponding to the mass number of the high-concentration impurity is increased, and the voltage amplitude is reduced in a portion where the impurity concentration is low. In this way, particularly high-concentration impurities can be selectively removed. Here, the impurity that increases the voltage amplitude of the SWIFT waveform is preferably an impurity having at least the same signal intensity as the signal intensity of the chemical substance to be measured. Although impurities with even lower mass numbers may be targeted, the energy required for SWIFT is increased. For this reason, it is preferable to target impurities having a signal intensity of 50% or more of the signal intensity of the chemical substance to be measured. As a result, the voltage amplitude of the SWIFT waveform can be suppressed as a whole, so that the energy use efficiency can be increased and impurities can be removed. In addition, since a power supply having a small capacity can be used, the size of the power supply can be reduced, and the cost can be reduced. Furthermore, even if the SWIFT operation is performed, the detection target chemical substance can be reliably left, so that the detection accuracy of the mass spectrometer 4 can be increased.
(実施の形態 6)  (Embodiment 6)
第 7図は、 従来における SWI FT波形の周波数スぺクトルを示す説明図であ る。 また、 第 8図は、 この発明の実施の形態 6に係る SWI FT波形の周波数ス ベクトルを示す説明図である。 ここで、 両図中の (b) は、 SWI FT波形の周 波数スぺクトルを、 質量数を横軸として、 すなわち質量数の関数として変換した ものである。 通常の SWI FT波形は、 イオンの共振周波数が大きくなつても振 幅の大きさが変化しない矩形状の周波数スぺクトルを逆フーリエ変換して発生さ せる (第 7図 (a) ) 。 このときの SWI FT波形は、 取り除きたい不純物の質 量数に対応した共鳴周波数が重畳した波形となっている。 この波形は、 理想的に はある質量範囲に対応したすべての軌道共鳴周波数を含む、 連続的な波形となる。 しかしながら、 実際には必ず有限個の共鳴周波数のデータを基に逆フーリエ変換 をするため、 得られる SW I F T波形に含まれる周波数成分は離散的で、 その周 波数ピッチは一定となる。 これを逆に質量数に換算してみると、 質量数が大きい 領域では周波数ピッチが粗く、 質量数が小さい領域では周波数ピッチが細かくな つている。 FIG. 7 is an explanatory diagram showing a frequency spectrum of a conventional SWIFT waveform. FIG. 8 is an explanatory diagram showing a frequency spectrum of a SWIFT waveform according to Embodiment 6 of the present invention. Here, (b) in both figures is obtained by converting the frequency spectrum of the SWIFT waveform on the horizontal axis of the mass number, that is, as a function of the mass number. A normal SWIFT waveform is generated by performing an inverse Fourier transform on a rectangular frequency spectrum whose amplitude does not change even if the ion resonance frequency increases (Fig. 7 (a)). The SWIFT waveform at this time is a waveform in which a resonance frequency corresponding to the mass number of the impurity to be removed is superimposed. This waveform is ideally a continuous waveform containing all orbital resonance frequencies corresponding to a certain mass range. However, in practice, since the inverse Fourier transform is always performed based on data of a finite number of resonance frequencies, the frequency components included in the obtained SW IFT waveform are discrete, and the frequency pitch is constant. Conversely, when this is converted into a mass number, the frequency pitch is coarse in the region with a large mass number and fine in the region with a small mass number.
このような SW I F T波形を使用すると、 質量数の小さいイオンは高いエネル ギー密度で振幅が与えられ、 反対に質量数の大きレ、ィオンは小さレ、エネルギー密 度でしか振幅が与えられない (第 7図 (b ) ) 。 このため、 質量数の小さいィォ ンは容易に壊すことができるが、 質量数の大きいイオンは壊れにくく、 不純物と して残ってしまう。 そして、 T I K C Lによって余分なフラグメントを発生させ て質量分析の精度を低下させてしまう。  Using such a SW IFT waveform, ions with a low mass number are given an amplitude at a high energy density, and conversely, large ions and a small ion are given an amplitude only at a small energy density ( Fig. 7 (b)). For this reason, ions with a small mass number can be easily broken, but ions with a large mass number are not easily broken and remain as impurities. In addition, extra fragments are generated by T I KCL, thereby reducing the accuracy of mass spectrometry.
そこで、 イオンの質量数に対応した共鳴周波数が大きくなるにしたがって、 電 圧振幅を小さくした周波数スぺクトルを逆フーリエ変換して生成される SW I F T波形を用いる (第 8図 (a ) ) 。 このようにすると、 質量数の大きいイオンに 対しても十分なエネルギーを与えることができる (第 8図 (b ) ) 。 すなわち、 SW I F Tによる除去対象分子の質量数に関わらず電圧振幅が一定の分布を持つ SW I F T波形を与えることができるため (第 8図 (b ) ) 、 質量数の大きいィ オンであってもより確実に除去できる。 また、 質量数の小さいイオンには必要十 分な範囲でエネルギーを与えることができるので、 エネルギーの使用効率を高く できる。 また、 無闇に大きな電源装置も不要となるので、 設置コストも低減でき る。  Therefore, as the resonance frequency corresponding to the mass number of the ion increases, a SWIFT waveform generated by performing an inverse Fourier transform on the frequency spectrum with the reduced voltage amplitude is used (FIG. 8 (a)). In this way, sufficient energy can be given to ions with a large mass number (Fig. 8 (b)). In other words, since a SW IFT waveform having a constant voltage amplitude distribution can be given regardless of the mass number of the molecule to be removed by SW IFT (Fig. 8 (b)), even if the ion has a large mass number It can be removed more reliably. In addition, energy can be given to ions having a small mass number in a sufficient range, so that the energy use efficiency can be increased. In addition, since a large power supply is unnecessary, installation costs can be reduced.
(実施の形態 7 )  (Embodiment 7)
第 9図は、 この発明の実施の形態 7に係る SW I F T波形の周波数スぺクトル を示す説明図である。 また、 第 1 0図は、 この発明の実施の形態 7に係る T I C K L E波形の周波数スペクトルを示す説明図である。 この化学物質の検出装置 1 0 0で、 ダイォキシン類の前駆体等である検出対象化学物質を計測するときには、 複数の検出対象化学物質を同時に計測すると、 より検出精度を高くすることがで きる。 特に、 焼却炉の排ガス中に含まれる前記ダイォキシン類の前駆体は極めて 微量であるため、 検出精度を高めることは焼却炉の燃焼条件をリアルタイムで制 御する場合には極めて重要である。 FIG. 9 is an explanatory diagram showing a frequency spectrum of a SW IFT waveform according to Embodiment 7 of the present invention. FIG. 10 is an explanatory diagram showing a frequency spectrum of a TICKLE waveform according to Embodiment 7 of the present invention. When measuring chemical substances to be detected, such as dioxin precursors, with this chemical substance detection device 100, simultaneous measurement of multiple chemical substances to be detected can increase the detection accuracy. Wear. Particularly, since the precursors of the dioxins contained in the exhaust gas of the incinerator are extremely small, it is extremely important to improve the detection accuracy when controlling the combustion conditions of the incinerator in real time.
そこで、 複数の検出対象化学物質を同時に計測するために、 SWI FTの際に は当該検出対象化学物質の質量数に対応した共鳴周波数帯における電圧振幅を 0 とした、 すなわち電圧振幅を与えない SWI FT波形の周波数スぺクトルを用い る (第 9図) 。 そして、 この SWI FT波形の周波数スペクトルを逆フーリエ変 換して SWI FT波形を生成する。 この逆変換後の SWI FT波形を使用して S WI FTをかけると、 当該検出対象化学物質はイオントラップ装置 10のトラッ プ 11に閉じ込められたままになるため、 他の不純物と分離できる。  Therefore, in order to simultaneously measure a plurality of chemicals to be detected, the voltage amplitude in the resonance frequency band corresponding to the mass number of the chemicals to be detected was set to 0 in SWI FT, that is, the SWI without voltage amplitude was applied. The frequency spectrum of the FT waveform is used (Fig. 9). Then, an inverse Fourier transform is performed on the frequency spectrum of the SWIFT waveform to generate a SWIFT waveform. When SWIFT is performed using the SWIFT waveform after the inverse conversion, the chemical substance to be detected remains trapped in the trap 11 of the ion trap device 10 and can be separated from other impurities.
つぎに、 上記複数の検出対象ィヒ学物質の質量数に対応する周波数帯に大きな振 幅を持つ T I CKLE周波数スぺクトルを逆フーリエ変換して生成した T I CK LE波形によって検出対象ィ匕学物質をフラグメント化する (第 10図 (a) ) 。 そして、 フラグメント化された検出対象化学物質のイオンを質量分析計 4 (第 1 図参照) で計測して、 検出対象化学物質を同定し、 その濃度を求めることができ る。 また、 上記複数の検出対象化学物質の質量数に対応する周波数すベてを包含 する範囲に大きな振幅を持つ T I CKLE周波数スぺクトルを逆フーリエ変換し て生成した T I CKLE波形によって T I CKLEをかけてもよい (第 10図 ( b) ) 。 さらに、 上記複数の検出対象化学物質の質量数に対応するそれぞれの周 波数を、 単一で順次与えてもよい。  Next, the TICKLE frequency spectrum, which has a large amplitude in the frequency band corresponding to the mass number of the target substances, is inversely Fourier-transformed and the TICKLE waveform is used to generate the target objects. Fragment the substance (Fig. 10 (a)). Then, the ions of the fragmented chemical substance to be detected can be measured by the mass spectrometer 4 (see Fig. 1) to identify the chemical substance to be detected and determine its concentration. In addition, TI CKLE is applied by a TI CKLE waveform generated by performing an inverse Fourier transform of the TI CKLE frequency spectrum having a large amplitude in a range including all the frequencies corresponding to the mass numbers of the plurality of detection target chemical substances. (Fig. 10 (b)). Furthermore, the respective frequencies corresponding to the mass numbers of the plurality of chemical substances to be detected may be provided singly and sequentially.
(実施の形態 8)  (Embodiment 8)
上述したとおり、 複数の検出対象化学物質を同時に計測すると、 検出精度を高 くできるので好ましい。 し力、し、 複数の検出対象化学物質を同時に計測する場合 には、 つぎのような問題点がある。 例えば、 TCB (トリクロ口ベンゼン) 、 D CB (ジクロ口ベンゼン) を親分子とするフラグメントパターンを一度に得る場 合には、 TCBのフラグメントは質量数 145であり、 質量数 146である DC Bと質量数が 1しか異なっていない。 このため、 TCBと DCBとへ同時に T I CKLEをかけると、 DCBの T I CKLE周波数によって近接した TCBのフ ラグメントがー部壊れてしまう場合がある。 こうなると、 TCBをフラグメント 化することによつて質量数が T C Bと同程度の不純物から T C Bを分離し、 当該 フラグメントの信号を測定することで T C Bの濃度等を求めることができなくな る。 その結果、 TCBの検出精度が低下してしまう。 したがって、 実施の形態 7 に係る T I CKLEにおいては、 質量数に対応する周波数を正確に与えたり、 T I CKLE電圧を適性ィ匕したりする等、 各種の注意を要する。 しかも、 このよう な注意をしても、 適切にフラグメント化できない場合もある。 As described above, it is preferable to simultaneously measure a plurality of chemical substances to be detected because detection accuracy can be increased. When measuring multiple chemical substances to be detected simultaneously, there are the following problems. For example, to obtain a fragment pattern with TCB (trichlorobenzene) and DCB (dichlorobenzene) as parent molecules at one time, the TCB fragment has a mass number of 145 and a DCB with a mass number of 146. The mass numbers differ only by 1. Therefore, the TCB and DCB are When CKLE is applied, the fragment of the adjacent TCB may be damaged by the TI CKLE frequency of the DCB. In this case, the TCB is fragmented to separate the TCB from impurities having a mass number similar to that of the TCB, and it is no longer possible to determine the TCB concentration or the like by measuring the signal of the fragment. As a result, the accuracy of TCB detection is reduced. Therefore, in the TI CKLE according to the seventh embodiment, various precautions are required, such as accurately giving a frequency corresponding to the mass number and appropriately adjusting the TI CKLE voltage. Moreover, even with such precautions, fragmentation may not be performed properly.
そこで、 本実施の形態においては、 質量数の小さい検出対象化学物質から T I CKLEで壊してフラグメント化し、 当該検出対象化学物質の質量数の範囲にお ける検出対象化学物質や不純物等を除去しておく。 その上で、 より質量数の大き い検出対象化学物質に対して T I CKLEをかけて、 前記質量数の小さい検出対 象化学物質の存在していた質量数の範囲に、 当該質量数の大きい検出対象化学物 質のフラグメントを生成させる。  Therefore, in the present embodiment, the detection target chemical substance having a small mass number is broken by TI CKLE and fragmented, and the detection target chemical substance and impurities within the mass number range of the detection target chemical substance are removed. deep. Then, the TI CKLE is applied to the chemical substance having a larger mass number to detect the chemical substance having a larger mass number within the range of the mass number in which the chemical substance having the smaller mass number was present. Generate a fragment of the target chemical.
このようにすれば、 質量数の大きい検出対象化学物質をフラグメント化する際 には、 質量数の小さい検出対象化学物質が既にフラグメント化されているので、 前記質量数の大きい検出対象ィ匕学物質のフラグメントが質量数の小さい検出対象 化学物質の T I CKLEによって壊されることはなレ、。 したがって、 質量数の異 なる複数の検出対象化学物質を同時に検出しても、 精度の高い測定ができるよう になる。  With this configuration, when the detection target chemical substance having a large mass number is fragmented, the detection target chemical substance having a small mass number has already been fragmented. Fragments of the target are not destroyed by the TI CKLE, a chemical with a low mass number. Therefore, even if a plurality of chemical substances to be detected having different mass numbers are simultaneously detected, highly accurate measurement can be performed.
具体的に、 TCB (質量数 180、 182、 184、 186) 、 DCB (質量 数 146、 148、 150) ぉょぴ1 〇8 (モノクロ口ベンゼン:質量数 1 12、 1 14) を同時に検出する場合を考える。 T I CKLEの前に、 SWI FTによ つてこれらの検出対象化学物質を残してその他の不純物を除去する。 つぎに、 M CBをフラグメント化するために、 MCBの質量数に対応する T I CKLE周波 数を第一および第二エンドキャップ 12および 13に印加して、 質量数 77のフ ラグメントを生成する。 このとき、 イオントラップ装置 10のトラップ 1 1内に は、 質量数 1 12〜1 14の物質は存在していない。 Specifically, TCB (mass number 180, 182, 184, 186), DCB (mass number 146, 148, 150) ぉ 1〇8 (monochrome benzene: mass number 1 12, 1 14) are detected simultaneously Consider the case. Prior to TI CKLE, SWIFT removes these impurities and removes other impurities. Next, in order to fragment the MCB, a TI CKLE frequency corresponding to the mass number of the MCB is applied to the first and second end caps 12 and 13 to generate a 77 mass fragment. At this time, the inside of the trap 11 of the ion trap device 10 The substance of mass number 112 to 114 does not exist.
MCBをフラグメント化した後は、 上記 DC Bの質量数に対応した T I CKL E周波数を印加して DC Bをフラグメント化する。 このフラグメントは、 DCB から塩素が一個分離した質量数 1 11と 1 13のもの、 および塩素二個と水素一 個とが分離した質量数 75のものである。 最後に、 上記 TCBの質量数に対応し た周波数を印加して T C Bをフラグメント化する。 このとき生成するフラグメン トは、 塩素が一個分離した質量数 145、 147、 149のものと、 塩素二個と 水素一個とが分離した質量数 109、 1 1 1のもの、 およぴ塩素三個と水素一個 とが分離した質量数 74のものである。 なお、 上記フラグメントは、 それぞれあ る程度の時間差を設けて逐次それぞれの T I CKLE周波数を印加する。  After fragmenting the MCB, the TICBLE frequency corresponding to the mass number of the DCB is applied to fragment the DCB. This fragment has a mass number of 111 and 113 with one chlorine separated from DCB and a mass of 75 with two chlorine and one hydrogen separated. Finally, a frequency corresponding to the mass number of the TCB is applied to fragment the TCB. The fragments generated at this time are those with a mass number of 145, 147 and 149 where one chlorine is separated, those with a mass number of 109 and 111 where two chlorines and one hydrogen are separated, and three chlorines. And one hydrogen separated with a mass number of 74. The above fragments are applied with respective TICKLE frequencies sequentially with a certain time difference.
検出対象化学物質のフラグメント化が終了したら、 イオントラップ装置 10の 第一および第二エンドキャップ 12および 13間に電圧を印加しないで、 トラッ プ 1 1内のフラグメントイオンを C 0 0 1 i n する。 Co o l i n gとは、 フ ラグメントイオンがトラップ 1 1内の中性ガスと衝突してエネルギーを失うこと であり、 これによつてフラグメントイオンが冷却される。 Co o l i n gによつ て質量分析計 4による質量計測の精度を向上させることができる。  After the fragmentation of the chemical substance to be detected is completed, the voltage of the fragment ions in the trap 11 is changed to C 0 01 in without applying a voltage between the first and second end caps 12 and 13 of the ion trap device 10. Cooling means that fragment ions collide with a neutral gas in the trap 11 and lose energy, whereby the fragment ions are cooled. The accuracy of mass measurement by the mass spectrometer 4 can be improved by using Coo ling.
Co o l i n g終了後、 第二エンドキャップ 13に引出し電圧を印加すること で上記フラグメントを質量分析計 4に導いて、 その質量を測定することによって、 検出対象化学物質の濃度を測定できる。 具体的に MCBの濃度は、 質量数 77の フラグメント信号強度を、 D C Bの濃度は質量数 1 13および 75のフラグメン ト信号強度を選んで求めることができる。 そして、 TCBの濃度は、 質量数 14 5、 147、 149、 109、 74の信号強度等、 上記 MC Bおよび D C Bのフ ラグメントと重ならない質量数を選択して求めることができる。  After the completion of Cooling, the fragment is guided to the mass spectrometer 4 by applying an extraction voltage to the second end cap 13 and the mass thereof is measured, whereby the concentration of the chemical substance to be detected can be measured. Specifically, the concentration of MCB can be obtained by selecting the fragment signal intensity of mass number 77, and the concentration of DCB can be obtained by selecting the fragment signal intensity of mass numbers 113 and 75. The concentration of TCB can be determined by selecting a mass number that does not overlap with the above-mentioned MCB and DCB fragments, such as the signal intensity of mass numbers 145, 147, 149, 109, and 74.
また、 検出対象化学物質から生成されるフラグメントの質量数が重ならなレ、検 出対象化学物質同士、 例えば TCBと TCPとは同時に T I CKLE波形によつ て壊すことができる。 例えば、 まず MCBと MCPとをフラグメント化し、 つぎ に DCBと DCPとを、 最後に TCBと TCPとを壊すことで、 六種類の検出対 象化学物質を同時に計測することができる。 なお、 この場合には二種類ずっフラ グメント化するため、 フラグメント化に要する時間は一種類のときのおよそ 3倍 で済む。 In addition, if the mass numbers of the fragments generated from the chemicals to be detected do not overlap, the chemicals to be detected, for example, TCB and TCP, can be simultaneously destroyed by the TI CKLE waveform. For example, by breaking the MCB and MCP first, then breaking the DCB and DCP, and finally breaking the TCB and TCP, six types of detection Elephant chemicals can be measured simultaneously. In this case, since two types of fragments are used, the time required for fragmentation is approximately three times that of one type.
(実施の形態 9 )  (Embodiment 9)
検出対象化学物質には同位体を持つものがあり、 同じ検出対象化学物質であつ ても異なる質量数を持つ。 例えば、 MC Bは質量数が 1 1 2と 1 1 4との同位体 を持っている。 これは、 ベンゼン環に結合している塩素の質量数に 3 5と 3 7と の二種類があるためである。 このような同位体を持つ検出対象化学物質において は、 一種類の質量数に係る検出対象ィ匕学物質の密度は、 当該検出対象ィ匕学物質全 体の密度よりも低いため、 一種類の質量数のみを質量分析計 4における計測対象 物質とすると、 計測感度の低下を招いてしまう。  Some target chemicals have isotopes, and even the same target chemical has a different mass number. For example, MC B has isotopes with mass numbers of 112 and 114. This is because there are two kinds of chlorine, 35 and 37, in the mass number of chlorine bonded to the benzene ring. In the detection target chemical substance having such an isotope, the density of the target substance is lower than the total density of the target substance, and thus the density of the target substance is lower than that of the entire target substance. If only the mass number is used as the substance to be measured in the mass spectrometer 4, the measurement sensitivity is reduced.
上記 MC Bを例にとれば、 質量数 1 1 2の MC Bのみを計測対象とした場合に は質量数 1 1 4の MC Bは計測されない。 その結果、 MC B全体としては計測さ れなかった質量数 1 1 4の MC Bの分だけ、 濃度が低く検出されることになる。 特に、 焼却炉の排ガスにおける検出対象化学物質であるダイォキシン類の前駆体 は、 その濃度が極めて低いため、 少しでも検出感度を高くする必要がある。 そこで、 うち少なくとも 2個の検出対象化学物質の同位体すべてまでをフラグ メント化すれば、 上記計測感度の低下という問題は回避できる。 ここでは、 T C Bの同位体を例にとつて説明するが、 この発明の適用対象は T C Bに限られるも のではなく、 同位体を持つ検出対象化学物質であればすべて適用できる。 第 1 1 図は、 この発明の実施の形態 9に係る T I C K L E波形の周波数スぺクトルを、 質量数を横軸として変換した説明図である。 なお、 同図 (a ) は、 T C Bイオン における同位体の分布を示している。  Taking the above MCB as an example, if only the MCB with a mass number of 11 is targeted for measurement, the MCB with a mass number of 114 will not be measured. As a result, the concentration is detected lower by the MCB with a mass number of 114, which was not measured as the whole MCB. In particular, since the concentration of dioxin precursors, which are the chemical substances to be detected in the exhaust gas from incinerators, is extremely low, it is necessary to increase the detection sensitivity even a little. Therefore, if at least two isotopes of at least two chemicals to be detected are fragmented, the above problem of the decrease in measurement sensitivity can be avoided. Here, the isotope of TCB will be described as an example, but the object of application of the present invention is not limited to TCB, and any chemical substance to be detected having an isotope can be applied. FIG. 11 is an explanatory diagram in which the frequency spectrum of the TICKLE waveform according to the ninth embodiment of the present invention is converted with the mass number on the horizontal axis. FIG. 3A shows the distribution of isotopes in the TCB ion.
例えば、 検出対象化学物質のすべての同位体をフラグメント化したり、 すべて の同位体から理論的に濃度の低い同位体を除いたり、 あるいは不純物の混入割合 の多い質量数を除いた検出対象ィヒ学物質の同位体をフラグメント化したりするこ とができる。 このときの T I C K L E波形は、 少なくとも 2個の検出対象化学物 質のうちすべてまでの同位体に対する質量数を含むようにした、 広い共鳴周波数 帯の範囲で大きな振幅を与える周波数スぺクトルを逆フーリエ変換したものが使 用できる (第 11図 (b) ) 。 For example, the fragmentation of all isotopes of the target chemical substance, the removal of theoretically low-concentration isotopes from all isotopes, or the detection of target substances by removing mass numbers with a high percentage of impurities It can fragment an isotope of a substance. At this time, the TICKLE waveform contains at least two chemicals to be detected. An inverse Fourier transform of a frequency spectrum that gives a large amplitude over a wide resonance frequency band and includes mass numbers for all isotopes of quality can be used (Fig. 11 (b)). .
また、 共鳴周波数がイオンに影響を与える質量数にはある幅があるため、 振幅 が一定の周波数スペクトルを使用した場合、 質量数が最大と最小の同位体には T I CKLEがかかりにくく、 中間の同位体は相対的に T I CKLEがかかりやす いという現象がある。 このため、 検出対象化学物質同位体の質量数が最大の部分 と最小の部分とにおける電圧振幅を大きくとった周波数スぺクトルとすると、 T I CKLEの対象としている複数の同位体すべてに略一定の T I CKLEをかけ ることができる。 これによつて、 略均一にフラグメント化させることができる。 また、 フラグメント化の対象である同位体のうち質量数が最大の部分と最小の部 分とにおいて電圧振幅を大きくとり、 質量数が中程度の部分における電圧振幅を 相対的に小さくとった周波数スペクトルとしてもよい (第 1 1図 (c) の実線) 。 さらに、 イオンの信号強度が相対的に低い同位体においては、 電圧振幅をイオン の信号強度が相対的に高い同位体における電圧振幅よりも小さくした周波数スぺ クトルを使用してもよい (第 1 1図 (c) の破線) 。  In addition, since the resonance frequency has a certain range in the mass number that affects the ion, if a frequency spectrum with a constant amplitude is used, the isotopes with the largest and smallest mass numbers are less likely to be subjected to TI CKLE, and the middle Isotopes are relatively susceptible to TI CKLE. For this reason, if the frequency spectrum is set so that the voltage amplitude at the part where the mass number of the chemical substance isotope to be detected is the largest and the part where the mass number is the smallest is almost constant for all of the multiple isotopes targeted by TI CKLE. TI CKLE can be applied. Thereby, fragmentation can be performed substantially uniformly. In addition, the frequency spectrum in which the voltage amplitude is large in the part where the mass number is the largest and the part where the mass number is small among the isotopes to be fragmented, and the voltage amplitude in the part where the mass number is medium is relatively small (The solid line in Fig. 11 (c)). Further, in an isotope having a relatively low ion signal intensity, a frequency spectrum in which the voltage amplitude is smaller than that in an isotope having a relatively high ion signal intensity may be used (first example). 1 (dashed line in Fig. (C)).
一方、 ある一つの同位体と略同一の質量数をもつ不純物が大量に存在する場合 がある。 例えば、 第 1 1図 (d) において質量数 180の TCB同位体と同じ質 量数を持つ不純物が大量に存在していたとする。 このような場合には、 その同位 体を除いた複数の同位体をフラグメント化し、 大量の不純物をフラグメント化さ せないことで、 精度の高い計測を行うようにしてもよい。 この場合には、 その同 位体 (ここでは TCBの同位体) の中から同じ質量数に不純物があまり含まれて いない複数の同位体を選ぴ、 その質量数に対応する複数の共鳴周波数からなる周 波数スぺクトルを逆フーリエ変換した T I CKLE波形を使用することができる (第 1 1図 (d) ) 。  On the other hand, a large amount of impurities having a mass number substantially the same as a certain isotope may exist. For example, suppose that a large amount of impurities having the same mass number as the TCB isotope having a mass number of 180 in FIG. 11 (d) existed. In such a case, a high-precision measurement may be performed by fragmenting a plurality of isotopes excluding the isotope and not fragmenting a large amount of impurities. In this case, from the isotopes (here, the isotopes of TCB), a plurality of isotopes with few impurities in the same mass number are selected, and a plurality of isotopes are selected from the plurality of resonance frequencies corresponding to the mass number. A TICKLE waveform obtained by inverse Fourier transforming a frequency spectrum can be used (Fig. 11 (d)).
(実施の形態 10)  (Embodiment 10)
検出対象化学物質にも同位体は存在するが、 検出対象化学物質のフラグメント にも同様に同位体が存在する。 したがって、 フラグメントの測定についても実施 の形態 8で述べたことと同様な問題が存在する。 従来は、 一つのフラグメントの みで検出対象化学物質の濃度を測定するか、 フラグメントの出現パターンマッチ ングをとることによって、 検出対象化学物質の濃度を見積もつてレ、た。 Isotopes also exist in the target chemical, but fragments of the target chemical Also have isotopes. Therefore, the same problem as described in the eighth embodiment exists for the measurement of fragments. Conventionally, the concentration of the target chemical substance was estimated by measuring the concentration of the target chemical substance with only one fragment or by matching the appearance pattern of the fragments.
しかし、 焼却炉の排ガス中に含まれるダイォキシン類の前駆体のように、 極め て低い濃度でしか存在しない物質においてフラグメントの一つの同位体のみを測 定したのでは、 十分な感度の測定はできない。 また、 複数のフラグメントによる パターンマッチングであっても、 一つの同位体のみでは絶対的なフラグメントの 量が少なく、 統計的に濃度を見積もるためには不十分である。  However, sufficient sensitivity cannot be measured by measuring only one isotope of a fragment in a substance that exists only at a very low concentration, such as a dioxin precursor contained in the exhaust gas of an incinerator. . In addition, even for pattern matching using multiple fragments, the absolute amount of fragments is small with only one isotope, which is insufficient for statistically estimating the concentration.
そこで、 検出対象化学物質から生成されるフラグメントの同位体のうち少なく とも 2種類を計測対象とする。 具体的には、 あるフラグメントのスペクトル (信 号電圧) のうち、 複数現れる同位体のスペクトルの最大値をそれぞれ加算した値、 または、 複数現れる同位体のスぺクトルの面積をそれぞれ加算した値を質量分析 計 4の計測値として使用する。 このようにすると、 あるフラグメントの同位体を すべて使用できるので、 計測対象物質の濃度が極めて低い場合であっても、 質量 分析計 4における測定では計測感度を高くできる。 また、 ある同位体の質量数に 不純物のフラグメントが表れている場合等、 ノィズ成分の大きなスぺクトルが存 在する場合には、 その同位体のスぺクトルを除いた同位体の質量数を選択して、 計測対象物の濃度を求めればよい。 このようにすると、 不純物等のノイズを排除 できるので、 より精度の高い計測ができる。  Therefore, at least two types of isotopes of fragments generated from the chemical substance to be detected are measured. Specifically, of the spectrum (signal voltage) of a fragment, the sum of the maximum values of the spectra of multiple isotopes that appear, or the sum of the areas of the spectrums of multiple isotopes that appear, is calculated as Used as the measured value of mass spectrometer 4. In this way, all isotopes of a fragment can be used, so that the measurement sensitivity can be increased in the measurement by the mass spectrometer 4 even when the concentration of the substance to be measured is extremely low. When there is a spectrum with a large noise component, such as when an impurity fragment appears in the mass number of a certain isotope, the mass number of the isotope excluding the spectrum of the isotope is calculated. It suffices to select and determine the concentration of the measurement object. In this way, noise such as impurities can be eliminated, so that more accurate measurement can be performed.
以上説明したように、 この発明に係る化学物質の検出装置では、 検出対象化学 物質をイオン化する際に、 検出対象化学物質のイオン化ポテンシャルよりも大き く、 当該イオンィ匕ポテンシャルと前記検出対象化学物質のイオンの解離エネルギ 一との和よりも小さいエネルギーを当該検出対象化学物質に与えるようにした。 このため、 検出対象化学物質を壊さずにイオン化でき、 また、 SW I F Tによる 不純物除去の際に問題となる余計なフラグメントの発生が極めて少ない。 したが つて、 残すべき検出対象化学物質も壌さないで済むので質量分析手段の検出感度 を高くできる。 さらに、 不純物除去の際には SW I F T波形を与えるだけなので、 素早く不純物が除去できる。 これにより、 検出対象化学物質の検出速度を速くで きるので、 実際の焼却炉の制御に好適である。 As described above, in the chemical substance detection device according to the present invention, when the detection target chemical substance is ionized, the ionization potential is larger than the ionization potential of the detection target chemical substance and the ionization potential of the detection target chemical substance. Ion dissociation energy An energy smaller than the sum of the dissociation energy and the ion is given to the chemical substance to be detected. For this reason, the target chemical substance can be ionized without being destroyed, and the generation of unnecessary fragments that are a problem when removing impurities by SW IFT is extremely small. Therefore, it is not necessary to remove the remaining chemicals to be detected. Can be higher. Furthermore, when removing impurities, only a SW IFT waveform is given, so that impurities can be removed quickly. As a result, the detection speed of the target chemical substance can be increased, which is suitable for actual incinerator control.
また、 この発明に係る化学物質の検出装置では、 T I C K L E波形を与えるフ ラグメント化手段によって検出対象化学物質をフラグメント化するようにしたの で、 検出対象化学物質の質量数に対応する周波数帯に不純物があっても、 この影 響を排除して正確に測定できる。 また、 イオン化の際に発生するフラグメントも 極めて少ないため、 検出対象化学物質をフラグメント化する場合には、 目的とす る検出対象化学物質を効率的にフラグメント化できる。 その結果、 質量分析手段 の検出感度を高くでき、 より緻密に燃焼制御ができる。  Also, in the chemical substance detection device according to the present invention, the chemical substance to be detected is fragmented by the fragmentation means for giving a TICKLE waveform, so that impurities in the frequency band corresponding to the mass number of the chemical substance to be detected are included. Even if there is, measurement can be performed accurately by eliminating this effect. In addition, since fragments generated during ionization are extremely small, when the chemical substance to be detected is fragmented, the target chemical substance to be detected can be efficiently fragmented. As a result, the detection sensitivity of the mass spectrometer can be increased, and more precise combustion control can be performed.
また、 この発明に係る化学物質の検出装置では、 イオン化手段において検出対 象化学物質にエネルギーを与える場合には、 イオン化ポテンシャルよりも高く当 該イオン化ポテンシャルに 4 e Vを加算した値以下とした。 また、 光のエネルギ 一によつて検出対象ィ匕学物質をイオンィ匕する場合には、 その波長を 5 O n m以上 2 0 0 n m以下とした。 このため、 余計なフラグメントを発生させずに不純物を 除去できる。 そして、 このような光は真空紫外光ランプを使用するようにしたの で、 取り扱いが容易であり、 また、 装置の構成も簡単にできる。  In the chemical substance detection device according to the present invention, when energy is applied to the chemical substance to be detected by the ionization means, the value is higher than the ionization potential and equal to or less than a value obtained by adding 4 eV to the ionization potential. In the case where the substance to be detected is ionized by the energy of light, the wavelength is set to 5 nm or more and 200 nm or less. Therefore, impurities can be removed without generating unnecessary fragments. And since such a light uses a vacuum ultraviolet lamp, it is easy to handle and the configuration of the device can be simplified.
また、 この発明に係る化学物質の検出装置では、 特定の信号強度よりも高い信 号強度を与える、 高い濃度で存在する不純物の質量数に対応する周波数の SW I F T波形の電圧振幅を高くし、 不純物の濃度が低い部分は電圧振幅を低くした。 このため、 特に濃度の高い不純物を選択的に除去できるので、 不純物を選択的に 除去できるので、 SW I F Tに要するエネルギーが少なくて済む。 これによつて、 電源装置を小型にできるので、 無闇に大きな電源を使用しなくともよく、 経済的 である。  Further, in the chemical substance detection device according to the present invention, the voltage amplitude of the SW IFT waveform having a frequency corresponding to the mass number of the impurity present at a high concentration that gives a signal intensity higher than the specific signal intensity is increased, The voltage amplitude was reduced in the portion where the impurity concentration was low. Therefore, particularly high-concentration impurities can be selectively removed, and the impurities can be selectively removed, so that the energy required for SW IFT can be reduced. This makes it possible to reduce the size of the power supply device, so that there is no need to use a large power supply indiscriminately, which is economical.
また、 この発明に係る化学物質の検出装置では、 質量数の大きい不純物に対し ては、 質量数の小さい不純物に与えるエネルギーよりも大きなエネルギーを与え るようにした。 また、 この発明に係る化学物質の検出装置では、 周波数が小さく W In the chemical substance detection device according to the present invention, more energy is given to impurities having a large mass number than energy given to impurities having a small mass number. In the chemical substance detection device according to the present invention, the frequency is low. W
37 なるにしたがって電圧振幅を大きくした S W I F T波形の周波数スぺクトルを、 質量数を横軸として変換したときに単位質量数あたりの電圧振幅が略一定値とな るようににした。 このため、 質量数の大きい不純物に対して十分なエネルギーを 与えてこれを除去し、 質量数の小さレ、ィオンには必要十分な範囲でエネルギーを 与えることができるので、 エネルギーの使用効率を高くできる。 これによつて、 無闇に大きな電源装置も不要となるので、 設置コストも低減できる。 37 When the frequency spectrum of the SWIFT waveform whose voltage amplitude was increased as the distance became larger and the mass number was converted to the horizontal axis, the voltage amplitude per unit mass was made to be a substantially constant value. For this reason, sufficient energy is given to impurities having a large mass number to remove them, and energy can be given to a small mass ion and an ion in a necessary and sufficient range, thereby increasing the energy use efficiency. it can. This eliminates the need for a large power supply, which can reduce installation costs.
また、 この発明に係る化学物質の検出装置では、 複数の検出対象化学物質に対 応する周波数帯においては電圧振幅を与えない SW I F T波形を用いて不純物を 除去するようにした。 そして、 複数の検出対象化学物質を質量分析手段で同時に 検出するようにした。 このように、 複数の検対象化学物質を同時に検出するので、 精度の高い測定ができ、 燃焼制御の精度も高くできる。  Further, in the chemical substance detection device according to the present invention, impurities are removed using a SW IFT waveform that does not give a voltage amplitude in a frequency band corresponding to a plurality of chemical substances to be detected. Then, multiple chemical substances to be detected were detected simultaneously by mass spectrometry. As described above, since a plurality of chemical substances to be detected are simultaneously detected, highly accurate measurement can be performed, and combustion control accuracy can be increased.
また、 この発明に係る化学物質の検出装置では、 上記化学物質の検出装置にお レ、て、 さらに、 検出対象化学物質のイオンィ匕ポテンシャルよりも大きく、. 当該ィ オン化ポテンシャルと前記検出対象化学物質のィオンの解離エネルギーとの和よ りも小さいエネルギーを当該検出対象ィ匕学物質に与え、 この検出対象化学物質を イオン化するイオンィ匕手段を備えた。 また、 この発明に係る化学物質の検出装置 では、 上記化学物質の検出装置において、 上記イオン化手段は、 イオン化ポテン シャルよりも高く当該イオン化ポテンシャルに 4 e Vを加算した値以下のェネル ギーを前記検出対象化学物質に与えるようにした。 これらの発明に係る化学物質 の検出装置は、 検出対象化学物質のイオン化ポテンシャルよりも大きく、 当該ィ オン化ポテンシャルと前記検出対象化学物質のィオンの解離エネルギーとの和よ りも小さいエネルギーを当該検出対象化学物質に与え、 この検出対象化学物質を イオン化するようにした。 このため、 余計なフラグメントを生成せず、 残すべき 検出対象化学物質も壊さないで済むので質量分析手段の検出感度を高くできる。 したがって、 上記化学物質の検出装置で奏される作用 .効果と相まって、 さらに 質量分析手段における検出感度を向上させて、 精度の高い測定ができる。  Further, in the chemical substance detecting apparatus according to the present invention, the chemical substance detecting apparatus may further have a larger ion ion potential than the chemical substance to be detected. An ion irradiation unit is provided which gives an energy smaller than the sum of the dissociation energy of the ion to the substance to the detection target substance and ionizes the detection target chemical substance. Further, in the chemical substance detecting apparatus according to the present invention, in the chemical substance detecting apparatus, the ionization means detects an energy higher than an ionization potential and equal to or less than a value obtained by adding 4 eV to the ionization potential. It was given to target chemical substances. The chemical substance detection device according to these inventions detects an energy larger than the ionization potential of the chemical substance to be detected and smaller than the sum of the ionization potential and the dissociation energy of the ion of the chemical substance to be detected. This was given to the target chemical substance, and the detection target chemical substance was ionized. For this reason, the detection sensitivity of the mass spectrometry means can be increased because unnecessary fragments are not generated and the remaining chemical substances to be detected need not be destroyed. Therefore, in combination with the action and effect exerted by the chemical substance detection device, the detection sensitivity of the mass spectrometer can be further improved, and highly accurate measurement can be performed.
また、 この発明に係る化学物質の検出方法では、 イオン化の際に、 検出対象化 学物質のイオン化ポテンシャルよりも大きく、 当該イオンィ匕ポテンシャルと前記 検出対象ィヒ学物質のイオンの解離エネルギーとの和よりも小さいエネルギーを当 該検出対象化学物質に与えるようにした。 このため、 検出対象化学物質を壊さず にイオン化でき、 また、 イオン化の際には余計なフラグメントの発生が極めて少 ない。 したがって、 残すべき検出対象化学物質も壊さないで済むので質量分析手 段の検出感度を高くできる。 Further, in the method for detecting a chemical substance according to the present invention, when the ionization is performed, An energy larger than the ionization potential of the chemical substance and smaller than the sum of the ionization potential of the chemical substance and the dissociation energy of the ions of the chemical substance to be detected is given to the chemical substance to be detected. Therefore, it can be ionized without destroying the chemical substance to be detected, and the generation of unnecessary fragments during ionization is extremely small. Therefore, it is not necessary to destroy remaining detection target chemical substances, and the detection sensitivity of the mass spectrometry method can be increased.
また、 この発明に係る化学物質の検出方法では、 T I C K L E波形を検出対象 化学物質に与えて検出対象化学物質をフラグメント化するようにした。 このため、 検出対象化学物質の質量数に対応する周波数帯に不純物があっても、 この影響を 排除して正確に測定できる。 その結果、 ほとんどすべての検出対象化学物質のフ ラグメントを質量分析の対象とすることができるので、 質量分析工程においては、 分析の検出感度を高くできる。  Further, in the method for detecting a chemical substance according to the present invention, a TICKLE waveform is given to the chemical substance to be detected to fragment the chemical substance to be detected. Therefore, even if there is an impurity in the frequency band corresponding to the mass number of the chemical substance to be detected, it is possible to measure accurately by eliminating this effect. As a result, almost all the fragments of the target chemical substance can be subjected to mass spectrometry, and the detection sensitivity of the analysis can be increased in the mass spectrometry process.
また、 この発明に係る化学物質の検出方法では、 所定の割合以上存在する不純 物を選択的に除去するようにした。 このため、 すべての不純物を除去する場合と 比較して少ないエネルギーで必要十分な不純物を除去できる。 また、 エネルギー も少なくて済むので、 電源装置を小さくでき、 経済的である。  In the method for detecting a chemical substance according to the present invention, impurities present at a predetermined ratio or more are selectively removed. For this reason, necessary and sufficient impurities can be removed with less energy than in the case of removing all impurities. Also, less energy is required, so the power supply can be made smaller and more economical.
また、 この発明に係る化学物質の検出方法では、 所定の信号強度よりも高い信 号強度を与える不純物に対応する周波数の SW I F T波形の電圧振幅を高くし、 不純物の濃度が低い部分の周波数は電圧振幅を低くした。 このため、 特に濃度の 高い不純物を選択的に除去できるので、 濃度の低い不純物除去に要するエネルギ 一を小さくできる。 これによつて、 不純物の除去に要するエネルギーが少なくて 済み、 また、 無闇に大きな電源を使用しなくともよいので経済的である。  Further, in the method for detecting a chemical substance according to the present invention, the voltage amplitude of the SW IFT waveform at a frequency corresponding to an impurity giving a signal intensity higher than a predetermined signal intensity is increased, and the frequency of a portion where the impurity concentration is low is increased. The voltage amplitude was reduced. Therefore, particularly high-concentration impurities can be selectively removed, so that the energy required for removing low-concentration impurities can be reduced. This requires less energy to remove impurities, and is economical because it is not necessary to use a large power source unnecessarily.
また、 この発明に係る化学物質の検出方法では、 質量数の大きい不純物に対し ては、 質量数の小さい不純物に与えるエネルギーよりも大きなエネルギーを与え るようにした。 また、 この発明に係る化学物質の検出方法では、 周波数が小さく なるにしたがって電圧振幅を大きくした SW I F T波形の周波数スぺクトルを、 質量数を横軸として変換したときに質量数あたりの電圧振幅が略一定値となるよ うにした。 これによつて、 質量数の大きいイオンに対しては十分なエネルギーを 与えてこれを除去し、 質量数の小さレ、ィオンには必要十分な範囲でエネルギーを 与えることができるので、 エネルギーの使用効率を高くできる。 これによつて、 無闇に大きな電源装置も不要となるので、 設置コストも低減できる。 Further, in the method for detecting a chemical substance according to the present invention, larger energy is given to an impurity having a large mass number than to an impurity having a small mass number. Further, in the method for detecting a chemical substance according to the present invention, when the frequency spectrum of the SW IFT waveform whose voltage amplitude increases as the frequency decreases becomes smaller, the voltage amplitude per mass number is converted when the mass number is plotted on the horizontal axis. Is almost constant Cried. As a result, sufficient energy is given to ions having a large mass number to remove the ions, and energy can be given to a small mass ion or ion in a necessary and sufficient range. Efficiency can be increased. This eliminates the need for a large power supply, which can reduce installation costs.
また、 この発明に係る化学物質の検出方法では、 複数の検出対象化学物質に対 応する周波数帯においては電圧振幅を与えない S W I F T波形を用いて不純物を 除去するようにした。 そして、 複数の検出対象化学物質を質量分析手段で同時に 検出するようにした。 このように、 複数の検出対象化学物質を同時に検出するの で、 精度の高い測定ができる。  In the method of detecting a chemical substance according to the present invention, impurities are removed using a SWIFT waveform that does not give a voltage amplitude in a frequency band corresponding to a plurality of chemical substances to be detected. Then, multiple chemical substances to be detected were detected simultaneously by mass spectrometry. As described above, since a plurality of chemical substances to be detected are simultaneously detected, highly accurate measurement can be performed.
また、 この発明に係る化学物質の検出方法では、 複数存在する検出対象化学物 質のうち質量数の小さい検出対象ィ匕学物質から順にフラグメント化するようにし た。 このため、 複数の検出対象化学物質をすベて検出できるので、 質量分析にお ける感度を高くして、 より精度の高い測定ができる。  Further, in the method for detecting a chemical substance according to the present invention, the fragmentation is performed in order from the detection target substance having the smallest mass number among the plurality of detection target chemical substances. As a result, all of the multiple chemical substances to be detected can be detected, so that the sensitivity in mass spectrometry can be increased, and more accurate measurement can be performed.
また、 この発明に係る化学物質の検出方法では、 この化学物質の検出方法は、 検出対象化学物質の同位体のうち少なくとも 2種類の同位体に対応する周波数を 含む T I C K L E波形を与えて、 検出対象化学物質の同位体のうち少なくとも 2 種類をフラグメント化し、 質量分析に供するようにした。 このように、 質量分析 においては複数の同位体を使用するので、 排ガス中に極微量しかダイォキシン類 やその前駆体が存在しない場合でも、 検出精度を高くできる。  Further, in the method for detecting a chemical substance according to the present invention, the method for detecting a chemical substance may include providing a TICKLE waveform including frequencies corresponding to at least two types of isotopes of the chemical substance to be detected, At least two of the chemical isotopes were fragmented for mass spectrometry. As described above, since a plurality of isotopes are used in mass spectrometry, detection accuracy can be improved even when only a trace amount of dioxins or their precursors is present in exhaust gas.
また、 この発明に係る化学物質の検出方法では、 検出対象化学物質から生成さ れるフラグメントの同位体のうち少なくとも 2種類を質量分析の対象とするよう にした。 このように、 質量分析においては複数のフラグメントの同位体を使用す るので、 排ガス中に極微量しかダイォキシン類やその前駆体が存在しない場合で も、 検出精度を高くできる。  In the method for detecting a chemical substance according to the present invention, at least two of the isotopes of fragments generated from the chemical substance to be detected are subjected to mass spectrometry. As described above, since isotopes of a plurality of fragments are used in mass spectrometry, detection accuracy can be improved even when dioxins and their precursors are present only in trace amounts in exhaust gas.
また、 この発明に係る化学物質の検出方法では、 上記化学物質の検出方法にお いて、 さらに、 イオントラップ工程の前に、 検出対象化学物質のイオン化ポテン シャルよりも大きく、 当該イオン化ポテンシャルと前記検出対象ィ匕学物質のィォ ンの解離エネルギーとの和よりも小さいエネルギーを当該検出対象化学物質に与 えて検出対象化学物質をイオン化するようにした。 また、 この発明に係る化学物 質の検出方法では、 上記イオン化工程においては、 イオン化ポテンシャルよりも 高く当該イオン化ポテンシャルに 4 e Vを加算した値以下のエネルギーを前記検 出対象化学物質に与えるようにした。 このため、 余計なフラグメントを生成せず 残すべき検出対象化学物質も壊さないで済むので質量分析における検出感度を高 くできる。 したがって、 上記化学物質の検出方法で奏される作用 .効果と相まつ て、 さらに質量分析手段における検出感度を向上させて、 精度の高い測定ができ る。 産業上の利用可能性 Further, in the method for detecting a chemical substance according to the present invention, the method for detecting a chemical substance may further include, before the ion trapping step, an ionization potential that is larger than an ionization potential of the chemical substance to be detected. Object Energy smaller than the sum of the dissociation energies of the ions is given to the target chemical substance to ionize the target chemical substance. In the method for detecting a chemical substance according to the present invention, in the ionization step, energy higher than an ionization potential and equal to or less than a value obtained by adding 4 eV to the ionization potential is applied to the chemical substance to be detected. did. For this reason, the detection sensitivity in mass spectrometry can be increased because unnecessary fragments are not generated and the target chemical substance to be left is not destroyed. Therefore, in addition to the action and effect exerted by the above-described method for detecting a chemical substance, the detection sensitivity of the mass spectrometer can be further improved, and highly accurate measurement can be performed. Industrial applicability
以上のように、 本発明の化学物質の検出装置および化学物質の検出方法は、 ご み焼却施設等の排ガス中にごく微量含まれるダイォキシン類やその前駆体を高精 度に検出するために有用であり、 加熱炉その他の燃焼炉を運転している最中であ つてもその燃焼条件を制御できる程度に検出対象化学物質の検出速度を向上させ ることに適している。  As described above, the chemical substance detection device and the chemical substance detection method of the present invention are useful for highly accurately detecting dioxins and their precursors contained in very small amounts in exhaust gas from refuse incineration facilities and the like. It is suitable for improving the detection speed of the target chemical substance to the extent that the combustion conditions can be controlled even while operating a heating furnace or other combustion furnace.

Claims

請 求 の 範 囲 The scope of the claims
1 . 検出対象ィヒ学物質のイオン化ポテンシャルよりも大きく、 当該イオン化ポ テンシャルと前記検出対象ィヒ学物質のイオンの解離エネルギーとの和よりも小さ レ、エネルギーを当該検出対象化学物質に与え、 この検出対象化学物質をイオン化 するイオン化手段と、 1. The energy is given to the chemical substance to be detected, which is larger than the ionization potential of the chemical substance to be detected and smaller than the sum of the ionization potential and the dissociation energy of the ions of the chemical substance to be detected. Ionization means for ionizing the chemical substance to be detected;
電界、 磁界その他の手段によつて前記ィオン化手段でィオン化された前記検出 対象化学物質のィオンを含むイオン群を閉じ込めるイオントラップ手段と、 前記検出対象化学物質のイオンの軌道共鳴周波数に対応する周波数を除いた周 波数成分を含む SW I F T波形によって前記イオン群にエネルギーを与えて不純 物を除去する不純物除去手段と、  An ion trap means for confining an ion group containing ions of the chemical substance to be detected ionized by the ionization means by an electric field, a magnetic field, or the like, and corresponding to an orbital resonance frequency of ions of the chemical substance to be detected Impurity removing means for applying energy to the group of ions by a SW IFT waveform including a frequency component excluding a frequency to remove impurities.
前記検出対象化学物質の質量を測定する質量分析手段と、  Mass spectrometry means for measuring the mass of the detection target chemical substance,
を備えたことを特徴とする化学物質の検出装置。 2 . 検出対象化学物質のイオン化ポテンシャルよりも大きく、 当該イオン化ポ テンシャルと前記検出対象化学物質のイオンの解離エネルギーとの和より 小さ いエネルギーを当該検出対象化学物質に与え、 この検出対象ィ匕学物質をイオン化 するイオン化手段と、  An apparatus for detecting a chemical substance, comprising: 2. An energy larger than the ionization potential of the target chemical substance and smaller than the sum of the ionization potential and the dissociation energy of the ions of the target chemical substance is given to the target chemical substance. Ionization means for ionizing a substance;
電界、 磁界その他の手段によって前記イオン化手段でイオン化された前記検出 対象化学物質のイオンを含むイオン群を閉じ込めるイオントラップ手段と、 前記検出対象ィヒ学物質のイオンの軌道共鳴周波数に対応する周波数を除いた周 波数成分を含む S W I F T波形によつて前記ィオン群にエネルギーを与えて不純 物を除去する不純物除去手段と、  An ion trap means for confining an ion group containing ions of the detection target chemical substance ionized by the ionization means by an electric field, a magnetic field, or the like; and a frequency corresponding to an orbital resonance frequency of the ions of the detection target chemical substance. Impurity removing means for removing energy by applying energy to the ion group by a SWIFT waveform including the removed frequency component;
検出対象化学物質のイオンの軌道共鳴周波数に対応する周波数成分の T I C K L E波形で前記イオン群にエネルギーを与えて検出対象化学物質のイオンをフラ グメント化するフラグメント化手段と、  Fragmentation means for applying energy to the group of ions with a TICKLE waveform of a frequency component corresponding to the orbital resonance frequency of the ions of the chemical substance to be detected to fragment the ions of the chemical substance to be detected,
前記検出対象化学物質のフラグメントの質量を測定する質量分析手段と、 2005/001465 Mass spectrometry means for measuring the mass of the fragment of the detection target chemical substance, 2005/001465
42 を備えたことを特徴とする化学物質の検出装置,  Chemical substance detection device characterized by comprising 42,
3 . 上記イオン化手段は、 イオン化ポテンシャルよりも高く.当該イオン化ポテ ンシャルに 4 e Vを加算した値以下のエネルギーを前記検出対象化学物質に与え ることを特徴とする請求の範囲第 1項または第 2項に記載の化学物質の検出装置。 3. The method according to claim 1 or 2, wherein the ionization means provides the detection target chemical substance with an energy higher than an ionization potential and not more than a value obtained by adding 4 eV to the ionization potential. The chemical substance detection device according to Item 2.
4 . 上記ィオン化手段は、 波長が 5 0 n m以上 2 0 0 n m以下の光を発生する 光発生手段であることを特徴とする請求の範囲第 1項または第 2項に記載の化学 物質の検出装置。 4. The chemical substance according to claim 1 or 2, wherein the ionizing means is a light generating means for generating light having a wavelength of 50 nm or more and 200 nm or less. Detection device.
5 . 上記イオン化手段は、 真空紫外光ランプであることを特徴とする請求の範 囲第 1項または第 2項に記載の化学物質の検出装置。 5. The chemical substance detection device according to claim 1, wherein the ionization means is a vacuum ultraviolet light lamp.
6 . 電界、 磁界その他の手段によって、 イオン化された検出対象化学物質のィ オンを含むイオン群を閉じ込めるイオントラップ手段と、 6. An ion trap means for confining an ion group containing ions of the chemical substance to be detected ionized by an electric field, a magnetic field, or other means;
所定の信号強度よりも高い信号強度を示す濃度で存在する不純物の軌道共鳴周 波数に対応した周波数においては、 所定の信号強度よりも低い信号強度を示す濃 度で存在する不純物の軌道共鳴周波数に対応する周波数帯における電圧振幅より も大きい電圧振幅を有する S W I F T波形を生成する任意波形発生手段と、 この任意波形発生手段で生成された前記 S W I F T波形を、 前記ィオントラッ プ手段に閉じ込められているイオン群に与えて前記不純物を除去した後に、 前記 検出対象化学物質またはこのフラグメントの質量を測定する質量分析手段と、 を備えたことを特徴とする化学物質の検出装置。  At a frequency corresponding to the orbital resonance frequency of the impurity present at a concentration indicating a signal intensity higher than the predetermined signal intensity, the orbital resonance frequency of the impurity existing at a concentration indicating a signal intensity lower than the predetermined signal intensity is determined. Arbitrary waveform generating means for generating a SWIFT waveform having a voltage amplitude larger than the voltage amplitude in the corresponding frequency band, and the SWIFT waveform generated by the arbitrary waveform generating means, wherein the ions are trapped in the ion trap means. Mass spectrometry means for measuring the mass of the chemical substance to be detected or a fragment thereof after removing the impurities by applying the chemical substance to the chemical substance.
7 . 電界、 磁界その他の手段によって、 イオン化された検出対象化学物質のィ オンを含むイオン群を閉じ込めるイオントラップ手段と、 7. ion trap means for confining ions containing ions of the chemical to be detected ionized by an electric field, a magnetic field or other means;
周波数が大きくなるにしたがって電圧振幅を小さくした SW I F T波形を発生 させる任意波形発生手段と、 Generates SW IFT waveform with reduced voltage amplitude as frequency increases Means for generating an arbitrary waveform,
前記 S W I F T波形を前記イオントラップ手段に閉じ込められているイオン群 に与えて前記不純物を除去した後に、 前記検出対象化学物質またはこのフラグメ ントの質量を測定する質量分析手段と、  Mass spectrometry means for measuring the mass of the chemical substance to be detected or this fragment after applying the SWIFT waveform to the ions confined in the ion trap means to remove the impurities,
を備えたことを特徴とする化学物質の検出装置。  An apparatus for detecting a chemical substance, comprising:
8 . 電界、 磁界その他の手段によって、 イオンィヒされた検出対象化学物質のィ オンを含むイオン群を閉じ込めるイオントラップ手段と、 8. An ion trap means for confining a group of ions including ions of the chemical substance to be detected ionized by an electric field, a magnetic field or other means;
S W I F Tによる除去対象分子の質量数に関わらず電圧振幅が一定の分布を持 つ S W I F T波形を発生させる任意波形発生手段と、  Arbitrary waveform generating means for generating a SWIFT waveform having a constant voltage amplitude distribution regardless of the mass number of molecules to be removed by SWIFT,
前記 S W I F T波形を前記ィオントラップ手段に閉じ込められているィオン群 に与えて前記不純物を除去した後に、 前記検出対象化学物質またはこのフラグメ ントの質量を測定する質量分析手段と、  Mass analysis means for measuring the mass of the chemical substance to be detected or this fragment after applying the SWIFT waveform to the ion group confined in the ion trap means to remove the impurities,
を備えたことを特徴とする化学物質の検出装置。  An apparatus for detecting a chemical substance, comprising:
9 . 電界、 磁界その他の手段によって、 イオン化された検出対象化学物質のィ オンを含むイオン群を閉じ込めるイオントラップ手段と、 9. An ion trap means for confining an ion group including ions of the chemical substance to be detected ionized by an electric field, a magnetic field, or other means;
複数の検出対象化学物質の質量数に対応する複数の周波数帯においては電圧振 幅を与えず、 不純物の質量数に対応する周波数帯においては電圧振幅を与える S W I F T波形を発生させる任意波形発生手段と、  An arbitrary waveform generating means for generating a SWIFT waveform that does not apply a voltage amplitude in a plurality of frequency bands corresponding to the mass numbers of a plurality of chemical substances to be detected and provides a voltage amplitude in a frequency band corresponding to the mass number of impurities; ,
前記複数の検出対象化学物質の軌道共鳴周波数に対応する複数の周波数成分を 持つ T I C K L E波形で前記イオン群にエネルギーを与えて前記複数の検出対象 化学物質のィ才ンをフラグメント化するフラグメント化手段と、  Fragmentation means for energizing the ion group with a TICKLE waveform having a plurality of frequency components corresponding to the orbital resonance frequencies of the plurality of detection target chemicals to fragment the plurality of detection target chemicals; ,
前記 S W I F T波形を前記ィオントラップ手段に閉じ込められているイオン群 に与えて前記不純物を除去した後に、 前記検出対象化学物質またはこのフラグメ ントの質量を測定する質量分析手段と、  Mass spectrometry means for measuring the mass of the chemical substance to be detected or the fragment after applying the SWIFT waveform to the ion group confined in the ion trap means to remove the impurities;
を備えたことを特徴とする化学物質の検出装置。 An apparatus for detecting a chemical substance, comprising:
1 0 . さらに、 検出対象ィヒ学物質のイオン化ポテンシャルよりも大きく、 当該 ィオン化ポテンシャルと前記検出対象ィ匕学物質のィオンの解離エネルギーとの和 よりも小さいエネルギーを当該検出対象化学物質に与え、 この検出対象化学物質 をィオン化するイオン化手段を備えたことを特徴とする請求の範囲第 6項〜第 9 項のいずれか一つに記載の化学物質の検出装置。 10. Further, an energy that is larger than the ionization potential of the target chemical substance and smaller than the sum of the ionization potential and the dissociation energy of the ion of the target chemical substance is given to the chemical substance to be detected. 10. The chemical substance detection device according to claim 6, further comprising an ionization means for ionizing the detection target chemical substance.
1 1 . 上記イオン化手段は、 イオン化ポテンシャルよりも高く当該イオン化ポ テンシャルに 4 e Vを加算した値以下のエネルギーを前記検出対象ィ匕学物質に与 えることを特徴とする請求の範囲第 1 0項に記載の化学物質の検出装置。 11. The method according to claim 10, wherein the ionization means provides the detection target substance with energy higher than an ionization potential and equal to or less than a value obtained by adding 4 eV to the ionization potential. An apparatus for detecting a chemical substance according to the above item.
1 2. 検出対象化学物質のイオン化ポテンシャルよりも大きく、 当該イオン化 ポテンシャルと前記検出対象化学物質のイオンの解離エネルギーとの和よりも小 さレ、エネルギーを当該検出対象化学物質に与え、 この検出対象化学物質をィオン 化するイオン化工程と、 1 2. The energy that is greater than the ionization potential of the chemical to be detected and less than the sum of the ionization potential and the dissociation energy of the ions of the chemical to be detected is given to the chemical to be detected. An ionization process for ionizing chemical substances;
電界、 磁界その他の手段によって、 イオン化された検出対象化学物質のイオン を含むイオン群を閉じ込めるイオントラップ工程と、  An ion trapping step for confining an ion group including ions of the chemical substance to be detected ionized by an electric field, a magnetic field, or other means;
前記検出対象ィヒ学物質のイオンの軌道共鳴周波数に 応する周波数を除いた周 波数成分を含む SW I F T波形によって前記イオン群にエネルギーを与えて不純 物を除去する不純物除去工程と、  An impurity removing step of applying energy to the ion group by a SWIFT waveform including a frequency component excluding a frequency corresponding to an orbital resonance frequency of the ions of the detection target chemical substance to remove impurities by applying an energy to the ion group;
前記検出対象化学物質の質量を測定する質量分析工程と、  Mass spectrometry step of measuring the mass of the detection target chemical substance,
を有することを特徴とする化学物質の検出方法。  A method for detecting a chemical substance, comprising:
1 3 . 検出対象化学物質のイオンィヒポテンシャルよりも大きく、 当該イオン化 ポテンシャルと前記検出対象化学物質のイオンの解離エネルギーとの和よりも小 さレ、エネルギーを当該検出対象ィ匕学物質に与え、 この検出対象化学物質をィオン 化するイオン化工程と、 電界、 磁界その他の手段によって、 イオン化された検出対象化学物質のイオン を含むイオン群を閉じ込めるイオントラップ工程と、 1 3. The energy given to the target substance is larger than the ion potential of the target substance and smaller than the sum of the ionization potential and the dissociation energy of the ions of the target substance. An ionization step for ionizing the chemical substance to be detected; An ion trapping step for confining an ion group including ions of the chemical substance to be detected ionized by an electric field, a magnetic field, or other means;
前記検出対象化学物質のイオンの軌道共鳴周波数に対応する周波数を除いた周 波数成分を含む S W I F T波形によつて前記ィオン群にエネルギーを与えて不純 物を除去する不純物除去工程と、  An impurity removal step of applying energy to the ion group by a SWIFT waveform including a frequency component excluding a frequency corresponding to an orbital resonance frequency of ions of the chemical substance to be detected to remove impurities.
検出対象化学物質のイオンの軌道共鳴周波数に対応する周波数成分の T I C K L E波形で前記ィオン群にエネルギーを与えて検出対象化学物質のィオンをフラ グメント化するフラグメント化工程と、  A fragmentation step of energizing the ion group with a TICKLE waveform of a frequency component corresponding to the orbital resonance frequency of the ion of the chemical substance to be detected to fragment the ion of the chemical substance to be detected,
前記検出対象化学物質のフラグメントの質量を測定する質量分析工程と、 を有することを特徴とする化学物質の検出方法。  A mass spectrometry step of measuring the mass of a fragment of the chemical substance to be detected, and a method for detecting a chemical substance.
1 4. 電界、 磁界その他の手段によって、 イオン化された検出対象化学物質の イオンを含むイオン群を閉じ込めるイオントラップ工程と、 1 4. An ion trap process for confining an ion group including ions of the chemical substance to be detected ionized by an electric field, a magnetic field, or other means;
上記イオン群に含まれる不純物の分布を測定し、 所定の割合以上存在する不純 物に対応する周波数成分を含む S W I F T波形を前記イオン群に与えて不純物を 除去する不純物除去工程と、  An impurity removal step of measuring a distribution of impurities contained in the ion group and applying a SWIFT waveform including a frequency component corresponding to an impurity present at a predetermined ratio or more to the ion group to remove the impurities;
前記検出対象化学物質またはこのフラグメントの質量を測定する質量分析工程 と、  A mass spectrometry step of measuring the mass of the detection target chemical substance or a fragment thereof;
を有することを特徴とする化学物質の検出方法。  A method for detecting a chemical substance, comprising:
.  .
1 5 . 電界、 磁界その他の手段によって、 イオン化された検出対象化学物質の イオンを含むイオン群を閉じ込めるイオントラップ工程と、  15. An ion trapping step for confining ions containing ions of the chemical substance to be detected by an electric field, a magnetic field, or other means;
所定の信号強度よりも高い信号強度を示す濃度で存在する不純物の軌道共鳴周 波数に対応した周波数においては、 所定の信号強度よりも低い信号強度を示す濃 度で存在する不純物の軌道共鳴周波数に対応する周波数帯における電圧振幅より も大きい電圧振幅を有する S W I F T波形を前記イオン群に与えて不純物を除去 する不純物除去工程と、 前記検出対象化学物質またはこのフラグメントの質量を測定する質量分析工程 と、 At a frequency corresponding to the orbital resonance frequency of the impurity present at a concentration indicating a signal intensity higher than the predetermined signal intensity, the orbital resonance frequency of the impurity existing at a concentration indicating a signal intensity lower than the predetermined signal intensity is determined. An impurity removing step of applying a SWIFT waveform having a voltage amplitude larger than the voltage amplitude in the corresponding frequency band to the ions to remove impurities; A mass spectrometry step of measuring the mass of the detection target chemical substance or a fragment thereof;
を有することを特徴とする化学物質の検出方法。  A method for detecting a chemical substance, comprising:
1 6 . 電界、 磁界その他の手段によって、 イオン化された検出対象化学物質の イオンを含むイオン群を閉じ込めるイオントラップ工程と、 16. An ion trapping step of confining ions containing ions of the chemical substance to be detected by an electric field, a magnetic field, or other means;
含まれる周波数が大きくなるにしたがって電圧振幅を小さくした SW I F T波 形を前記ィオン群に与えて不純物を除去する不純物除去工程と、  An impurity removing step of applying a SW I F T waveform having a reduced voltage amplitude as the included frequency increases to the ion group to remove impurities,
前記検出対象化学物質またはこのフラグメントの質量を測定する質量分析工程 と、  A mass spectrometry step of measuring the mass of the detection target chemical substance or a fragment thereof;
を有することを特徴とする化学物質の検出方法。  A method for detecting a chemical substance, comprising:
1 7. 電界、 磁界その他の手段によって、 イオン化された検出対象化学物質の イオンを含むイオン群を閉じ込めるイオントラップ工程と、 1 7. An ion trap process for confining a group of ions including ions of the chemical to be detected, which is ionized by an electric field, a magnetic field, or other means;
S W I F Tによる除去対象分子の質量数に関わらず電圧振幅が一定の分布を持 つ SW I F T波形を発生させる任意波形発生工程と、  An arbitrary waveform generation step of generating a SWIFT waveform having a constant voltage amplitude distribution regardless of the mass number of the molecule to be removed by SWIFT;
前記 SW I F T波形を前記イオントラップ手段に閉じ込められているイオン群 に与えて前記不純物を除去した後に、 前記検出対象化学物質またはこのフラグメ ントの質量を測定する質量分析工程と、  A mass spectrometry step of measuring the mass of the chemical substance to be detected or the fragment after applying the SW IFT waveform to the ions confined in the ion trap means to remove the impurities;
を備えたことを特徴とする化学物質の検出方法。  A method for detecting a chemical substance, comprising:
1 8 . 電界、 磁界その他の手段によって、 イオン化された検出対象化学物質の イオンを含むイオン群を閉じ込めるイオントラップ工程と、 18. An ion trapping step for confining ions containing ions of the chemical substance to be detected by an electric field, a magnetic field, or other means;
複数の検出対象ィ匕学物質の質量数に対応する複数の周波数帯においては電圧振 幅を与えない SW I F T波形を前記イオン群に与えて不純物を除去し、 複数の検 出对象化学物質を残す工程と、  In a plurality of frequency bands corresponding to the mass number of the plurality of substances to be detected, a SW IFT waveform that does not give a voltage amplitude is given to the group of ions to remove impurities and leave a plurality of detected chemical substances. Process and
前記検出対象化学物質またはこのフラグメントの質量を測定する質量分析工程 と、 Mass spectrometry step for measuring the mass of the chemical substance to be detected or its fragment When,
を有することを特徴とする化学物質の検出方法。  A method for detecting a chemical substance, comprising:
1 9 . 電界、 磁界その他の手段によって、 イオン化された複数の質量数が異な る検出対象ィヒ学物質のィオンを含むイオン群を閉じ込めるイオントラップ工程と、 複数の検出対象化学物質の質量数に対応する複数の周波数帯においては電圧振 幅を与えない SW I F T波形を前記イオン群に与えて不純物を除去し、 複数の検 出対象化学物質を残す工程と、 1 9. An ion trapping process for confining an ion group containing ions of a plurality of target chemical substances having different mass numbers by an electric field, a magnetic field, or other means; Applying a SW IFT waveform that does not provide a voltage amplitude to the group of ions in a plurality of corresponding frequency bands to remove impurities and leave a plurality of detection target chemical substances;
前記複数の検出対象化学物質のうち質量数が小さい検出対象化学物質から順に フラグメント化するフラグメント化工程と、  A fragmentation step of fragmenting in order from the detection target chemical substance having a smaller mass number among the plurality of detection target chemical substances;
前記検出対象化学物質またはこのフラグメントの質量を測定する質量分析工程 と、  A mass spectrometry step of measuring the mass of the detection target chemical substance or a fragment thereof;
を有することを特徴とする化学物質の検出方法。  A method for detecting a chemical substance, comprising:
2 0. 電界、 磁界その他の手段によって、 イオン化された複数の質量数が異な る検出対象化学物質のィオンを含むィオン群を閉じ込めるイオントラップ工程と、 複数の検出対象化学物質の質量数に対応する複数の周波数帯においては電圧振 幅を与えない SW I F T波形を前記イオン群に与えて不純物を除去し、 複数の検 出対象化学物質を残す工程と、 20. An ion trapping process to confine a group of ions containing multiple ions of the target chemical substance with different mass numbers ionized by electric field, magnetic field, or other means, and to respond to the mass numbers of multiple target chemical substances. Applying a SW IFT waveform that does not provide a voltage amplitude to the ion group in a plurality of frequency bands to remove impurities and leave a plurality of detection target chemical substances;
前記検出対象化学物質の同位体のうち少なくとも 2種類の同位体に対応する周 波数を含む T I C K L E波形を与えて、 当該検出対象化学物質の同位体のうち少 なくとも 2種類をフラグメント化するフラグメント化工程と、  Fragmentation by giving a TICKLE waveform containing frequencies corresponding to at least two types of isotopes of the target chemical substance and fragmenting at least two of the isotopes of the target chemical substance Process and
前記検出対象化学物質またはこのフラグメントの質量を測定する質量分析工程 と、  A mass spectrometry step of measuring the mass of the detection target chemical substance or a fragment thereof;
を有することを特徴とする化学物質の検出方法。  A method for detecting a chemical substance, comprising:
2 1 . 上記質量分析工程においては、 検出対象化学物質から生成されるフラグ メントの同位体のうち少なくとも 2種類を計測対象とすることを特徴とする請求 の範囲第 1 2項〜第 2 0項のいずれか一つに記載の化学物質の検出方法。 2 1. In the above mass spectrometry process, the flag generated from the chemical substance to be detected The method for detecting a chemical substance according to any one of claims 12 to 20, wherein at least two types of isotopes of the element are measured.
2 2. さらに、 上記イオントラップ工程の前に、 検出対象化学物質のイオン化 ポテンシャルよりも大きく、 当該イオン化ポテンシャルと前記検出対象化学物質 のイオンの解離エネルギーとの和よりも小さいエネルギーを当該検出対象化学物 質に与え、 この検出対象化学物質をィオン化するイオン化工程を有することを特 徴とする請求の範囲第 1 4項〜第 2 0項のいずれか一つに記載の化学物質の検出 方法。 2 2. Furthermore, prior to the ion trapping step, an energy that is greater than the ionization potential of the chemical to be detected and smaller than the sum of the ionization potential and the dissociation energy of the ions of the chemical to be detected is set to The method for detecting a chemical substance according to any one of claims 14 to 20, further comprising an ionization step of giving the substance and ionizing the chemical substance to be detected.
2 3 . 上記イオン化工程は、 イオン化ポテンシャルよりも高く当該イオン化ポ テンシャルに 4 e Vを加算した値以下のエネルギーを前記検出対象化学物質に与 えることを特徴とする請求の範囲第 2 2項に記載の化学物質の検出方法。 23. The method according to claim 22, wherein in the ionization step, energy higher than the ionization potential and equal to or less than a value obtained by adding 4 eV to the ionization potential is given to the chemical substance to be detected. Method for detecting the described chemical substance.
PCT/JP2003/008237 2001-12-28 2003-06-27 Chemical substance detector and method of detecting chemical substance WO2005001465A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE10393404T DE10393404T5 (en) 2003-06-27 2003-06-27 Device for detecting a chemical substance and method for detecting a chemical substance
US10/495,044 US7064323B2 (en) 2001-12-28 2003-06-27 Chemical substance detection apparatus and chemical substance detection method
PCT/JP2003/008237 WO2005001465A1 (en) 2003-06-27 2003-06-27 Chemical substance detector and method of detecting chemical substance
CNB038014912A CN100458435C (en) 2003-06-27 2003-06-27 Chemical substance detector and method for detecting chemical substance
TW092117658A TWI222096B (en) 2001-12-28 2003-06-27 Detecting device for chemical matter and detecting method for chemical matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/008237 WO2005001465A1 (en) 2003-06-27 2003-06-27 Chemical substance detector and method of detecting chemical substance

Publications (1)

Publication Number Publication Date
WO2005001465A1 true WO2005001465A1 (en) 2005-01-06

Family

ID=33549060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008237 WO2005001465A1 (en) 2001-12-28 2003-06-27 Chemical substance detector and method of detecting chemical substance

Country Status (3)

Country Link
CN (1) CN100458435C (en)
DE (1) DE10393404T5 (en)
WO (1) WO2005001465A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479661A (en) * 2010-11-30 2012-05-30 中国科学院大连化学物理研究所 Composite ionization source of vacuum ultraviolet photoionization and chemical ionization used in mass spectrometry

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015208188A1 (en) 2015-05-04 2016-11-24 Carl Zeiss Smt Gmbh Method for mass spectrometric analysis of a gas and mass spectrometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197350A (en) * 1987-05-22 1989-04-14 Finnigan Corp Method of separating a mas or narrow-ranging masses and/or raising sensitivity of ion-trap mass spectrometer
JPH0714540A (en) * 1993-05-28 1995-01-17 Finnigan Corp Method and equipment for exhausting undesired ion in ion-trapping type mass spectrometer
WO2001096852A1 (en) * 2000-06-14 2001-12-20 Mitsubishi Heavy Industries, Ltd Device for detecting chemical substance and method for measuring concentration of chemical substance
JP2002181791A (en) * 2000-12-19 2002-06-26 Mitsubishi Heavy Ind Ltd Detector for chemical substance
JP2003203601A (en) * 2001-12-28 2003-07-18 Mitsubishi Heavy Ind Ltd Detecting device for chemical matter and detecting method for chemical matter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197350A (en) * 1987-05-22 1989-04-14 Finnigan Corp Method of separating a mas or narrow-ranging masses and/or raising sensitivity of ion-trap mass spectrometer
JPH0714540A (en) * 1993-05-28 1995-01-17 Finnigan Corp Method and equipment for exhausting undesired ion in ion-trapping type mass spectrometer
WO2001096852A1 (en) * 2000-06-14 2001-12-20 Mitsubishi Heavy Industries, Ltd Device for detecting chemical substance and method for measuring concentration of chemical substance
JP2002181791A (en) * 2000-12-19 2002-06-26 Mitsubishi Heavy Ind Ltd Detector for chemical substance
JP2003203601A (en) * 2001-12-28 2003-07-18 Mitsubishi Heavy Ind Ltd Detecting device for chemical matter and detecting method for chemical matter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HE, L. et al.: "Development of a Capillary High-performance Liquid Chromatography Tandem Mass Spectrometry System Using SWIFT Technology in an Ion Trap/Refrecton Time-of-flight Mass Spectrometer", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 1997, Vol. 11, no. 16, pages 1739-1748 *
JIN, X. et al.: "On-Line Capillary Electrophoresis/Microelectro-spray Ionization - Tandem Mass Spectrometry Using an Ion Trap Strage/Time-of-flight Mass Spectrometer with SWIFT Technology", ANALYTICAL CHEMISTRY, 15 August 1999, Vol. 71, No. 16, pages 3591-3597 *
KURIBAYASHI, S. et al.: "Gokubiryo Yuki Enso Kagobutsu no Real Time Keisoku Gijutsu", Mitsubishi Juko Giho, 30 September 2001, Vol. 38, No. 5, pages 262-265 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479661A (en) * 2010-11-30 2012-05-30 中国科学院大连化学物理研究所 Composite ionization source of vacuum ultraviolet photoionization and chemical ionization used in mass spectrometry
WO2012071806A1 (en) * 2010-11-30 2012-06-07 中国科学院大连化学物理研究所 Compound ionization source of vacuum ultraviolet ionization and chemistry ionization used in analytical mass spectrum
US9412577B2 (en) 2010-11-30 2016-08-09 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Vacuum ultraviolet photoionization and chemical ionization combined ion source for mass spectrometry

Also Published As

Publication number Publication date
CN1623088A (en) 2005-06-01
CN100458435C (en) 2009-02-04
DE10393404T5 (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP6663407B2 (en) Method and mass spectrometer for mass spectrometric testing of gas mixtures
JP3676298B2 (en) Chemical substance detection apparatus and chemical substance detection method
Becker et al. Surface analysis by nonresonant multiphoton ionization of desorbed or sputtered species
JP5793207B2 (en) System and method for performing charge monitoring mass spectrometry of analyte bioparticles
US4988879A (en) Apparatus and method for laser desorption of molecules for quantitation
JP5764433B2 (en) Mass spectrometer and mass spectrometry method
US5146088A (en) Method and apparatus for surface analysis
US6797943B2 (en) Method and apparatus for ion mobility spectrometry
US20110168883A1 (en) Mass spectrometer
US9589775B2 (en) Plasma cleaning for mass spectrometers
CA2381070C (en) Detector of chemical substances and concentration-measuring method of chemical substances
JP3626940B2 (en) Chemical substance detection method and detection apparatus
Li et al. Resonant two-photon ionization of enkephalins and related peptides volatilized by using pulsed laser desorption in supersonic beam mass spectrometry
WO2005001465A1 (en) Chemical substance detector and method of detecting chemical substance
JP2003185635A (en) Apparatus and method for analyzing heated and desorbed gas using electron attachment mass spectrometry
JP2010251081A (en) Ionization analyzer and ionization analysis method
Lloyd et al. An IT-TOF mass spectrometer for the analysis of organic aerosol
JP2004171859A (en) Quadrupole type mass spectrometer
JP2007327929A (en) Ionization analyzer and ionization analysis method
JPH02115761A (en) Method and apparatus for mass spectrometric analysis of organic compound
Ledingham Resonance Ionisation Mass Spectrometry (RIMS)
Yorozu et al. Detection of hydrogen isotope atoms by mass spectrometry combined with resonant ionization
Dobashi et al. Rapid analysis of polychlorinated biphenyls in the gas phase with resonance-enhanced two-photon ionization: Optimal injection of ions into the ion-trap storage/time-of-flight mass spectrometer
JPH04248241A (en) Mass spectrograph for neutral particle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 20038014912

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10495044

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE SG US

RET De translation (de og part 6b)

Ref document number: 10393404

Country of ref document: DE

Date of ref document: 20051020

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393404

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607