WO2005001166A1 - Process for producing metal plating film, process for producing electronic part and plating film forming apparatus - Google Patents

Process for producing metal plating film, process for producing electronic part and plating film forming apparatus Download PDF

Info

Publication number
WO2005001166A1
WO2005001166A1 PCT/JP2004/009353 JP2004009353W WO2005001166A1 WO 2005001166 A1 WO2005001166 A1 WO 2005001166A1 JP 2004009353 W JP2004009353 W JP 2004009353W WO 2005001166 A1 WO2005001166 A1 WO 2005001166A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating film
metal plating
film
substrate
metal
Prior art date
Application number
PCT/JP2004/009353
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiro Higashihara
Hideto Sakoda
Atsuyuki Nakagawa
Yoshiharu Dan
Katsunori Kita
Kouichirou Ikeuchi
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US10/562,712 priority Critical patent/US20060163073A1/en
Priority to CN200480017902.0A priority patent/CN1813084B/en
Publication of WO2005001166A1 publication Critical patent/WO2005001166A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/205Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a pattern electroplated or electroformed on a metallic carrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Definitions

  • the present invention relates to a method for forming a metal plating film used as a conductor pattern of an electronic component such as a capacitor, an inductor, a filter, a circuit board, and the like, and an electronic component formed by combining the metal plating film and a dielectric layer.
  • the present invention relates to a manufacturing method, and a plating film forming apparatus used for forming the metal plating film.
  • capacitors such as capacitors, inductors, filters, and circuit boards have been formed using dielectric materials such as ceramic materials and conductor materials.
  • a conventional electronic component for example, a plurality of ceramic layers having a predetermined dielectric constant are laminated by alternately interposing first internal electrodes and second internal electrodes therebetween.
  • a multilayer capacitor in which a pair of external electrodes electrically connected to the first and second internal electrodes respectively is provided on a side surface or a main surface of the multilayer body is well known.
  • a predetermined voltage is applied between the first internal electrode and the second internal electrode, and a ceramic layer disposed between the first internal electrode and the second internal electrode.
  • the capacitor functions as a capacitor by forming a predetermined capacitance in the capacitor. Further, the above-described multilayer capacitor is manufactured through the following steps (for example, see Japanese Patent Application Laid-Open No. 2000-244650).
  • an organic binder and an organic solvent are added to and mixed with a predetermined ceramic material powder to prepare a slurry-like inorganic composition, which is then formed by a conventionally well-known doctor plate method or the like to obtain a sheet having a predetermined thickness.
  • a ceramic green sheet is formed.
  • a conductor paste containing a metal such as nickel as a main component is printed in a predetermined pattern on the main surface of the obtained ceramic green sheet by screen printing or the like.
  • a laminate of ceramic green sheets is formed.
  • the laminate is fired at a high temperature to form a laminate of ceramic layers with the internal electrodes interposed.
  • a conductor paste is applied to the end face of the laminate by a well-known diving method or the like, and the paste is baked to form external electrodes, whereby a multilayer capacitor is manufactured.
  • the average particle size of the metal powder contained in the conductor paste used for forming the internal electrode is set to, for example, 0.1. It is important to make it as small as 3 Atm.
  • the metal plating film serving as the internal electrode of such a multilayer capacitor forms a mask having an opening pattern having a shape corresponding to the internal electrode on a metal substrate, and immerses the substrate in a plating tank. It is formed by depositing a metal by a well-known electrolytic plating method on the surface of the substrate located in the opening of the mask. A ceramic green sheet or the like is pressed against the main surface of such a substrate to form a mask formed inside the mask. The metal plating film is transferred onto one main surface of the ceramic green sheet, whereby the metal plating film is formed on the ceramic green sheet.
  • the above-described manufacturing method using the metal plating film has a disadvantage that a large internal stress (tensile stress) is generated in the metal plating film when the metal plating film is deposited. Therefore, if the surface of the metal plate used for depositing the metal plating film is flat, if the metal plating film is peeled off from the metal plate, the metal plating film will protrude in the direction opposite to the deposition direction. Trying to bend, so-called "warp" occurs. For this reason, when the metal plating film is transferred to the ceramic green sheet, a defect such as deformation or cracking of the ceramic green sheet or the metal plating film or delamination during firing is induced.
  • tensile stress tensile stress
  • An object of the present invention is to provide a method for forming a metal plating film that can obtain a metal plating film having good peelability and no curvature.
  • Another object of the present invention is to make it possible to manufacture a small-sized electronic component by reducing the thickness of the conductor layer, and to effectively prevent the conductor layer and the dielectric layer from being deformed or damaged. To provide a method for manufacturing an electronic component.
  • a metal substrate having a convex curved surface is prepared, a metal plating film is deposited on the surface of the substrate, and the metal plating film is separated from the substrate. This is a method for obtaining a plating film.
  • the surface of the base on which the metal plating film is deposited is formed into a convex curved surface, a metal plating film having a convex cross section is formed on the surface of the base. . Since an internal stress (tensile stress) is generated in the metal print film thus obtained, when the metal print film is peeled off from the substrate and transferred to a dielectric sheet, the metal print film is deformed in the direction of flattening. Therefore, it is possible to effectively prevent the metal plating film from being deformed or damaged in a material to be transferred such as a dielectric sheet to which the metal plating film has been transferred, thereby improving the productivity.
  • tensile stress tensile stress
  • the metal plating film described above is heat-treated together with the dielectric sheet at a temperature lower than the melting point of the metal forming the metal plating film, the metal plating film is melted and the metal plating film is separated during the heat treatment. Therefore, a conductor layer having excellent continuity can be formed.
  • a substrate having a columnar surface can be used as the substrate.
  • a part of the surface of the substrate is immersed in a plating solution in a plating tank, and an electric field is applied between the substrate and the plating tank while rotating the substrate around an axis.
  • a metal plating film can be deposited on the substrate.
  • the plating film forming apparatus of the present invention comprises: a plating tank into which a plating liquid is injected; and a rotatable substrate having a cylindrical surface, and a part of the surface being arranged to be immersed in the plating liquid.
  • An electrolysis applying means for applying an electric field between the substrate and the plating tank; a metal plating film on the surface of the substrate pulled up from the plating solution on the downstream side in the rotational direction of the substrate; And a transfer means for pressing against The substrate on which the metal plating film is deposited is formed in a cylindrical or columnar shape. In the deposition process of the metal plating film, a part of the substrate is immersed in the plating liquid in the plating tank while rotating the substrate around an axis.
  • An electric field is applied to the plating solution between the substrate and the plating tank to form a metal plating film, thereby continuously forming a metal plating film.
  • productivity can be improved.
  • the current density between the base and the plating tank is made substantially uniform, so that the metal plating film can be formed with a substantially constant thickness.
  • the metal plating film on the substrate surface pulled up from the plating liquid is transferred to the resin film once, and the dielectric sheet is adhered from above. Or if the metal plating film is re-transferred onto the dielectric sheet, the dielectric sheet does not come into direct contact with the mask layer on the substrate surface formed of the hard material. Therefore, there is an advantage that the metal plating film can be favorably adhered to the dielectric sheet without damaging the dielectric sheet by contact with the mask layer.
  • the metal plating film When peeling the metal plating film from the base, the metal plating film may be directly transferred onto a dielectric sheet of a resin film on which a dielectric sheet is formed. According to this method, although the dielectric sheet comes into contact with the mask layer on the surface of the base formed of a hard material, the metal plating film can be directly transferred onto the dielectric sheet without the interposition of a resin film. Therefore, the device configuration can be simplified.
  • the metal plating film is peeled from the substrate and transferred to a resin film
  • a dielectric slurry is adhered so as to cover the metal plating film transferred to the resin film, and the resin to which the dielectric slurry has adhered is attached.
  • the film may be dried.
  • the metal print film on the resin film can be embedded in the dielectric sheet.
  • the dielectric sheet can be formed substantially flat without forming a step between the portion where the metal make-up film exists and the portion where the metal make-up film does not exist. Even if a plurality of such dielectric sheets are stacked, the deformation of the metal plating film can be suppressed well, so that electrical defects such as delamination can be effectively prevented.
  • a mask layer for regulating a deposition region of the metal plating film may be formed on a surface of the base.
  • the mask layer comprises, for example, diamond 'like' carbon (DLC) or graphite-like carbon (GLC).
  • DLC diamond 'like' carbon
  • GLC graphite-like carbon
  • the metal plating film can be made to have good releasability when it is peeled from the substrate, and since the DLC and GLC are hard, the metal plating film can be used as a dielectric sheet. In the case of direct transfer, there is an advantage that the dielectric sheet hardly adheres to the mask layer surface and stable transfer can be repeated.
  • the metal plating film contains non-conductive fine particles. If the metal plating film containing such non-conductive fine particles contains the non-conductive fine particles in the plating solution, the non-conductive fine particles are deposited when the metal plating film is deposited on the substrate surface. Is obtained by adhering to the metal component. Since the metal conductive film containing the non-conductive fine particles is formed by the non-conductive fine particles adhering to the metal component deposited on the surface of the substrate, the adhesion between the metal conductive film and the substrate becomes relatively small, and The film can be easily peeled from the substrate.
  • the peak temperature during heat treatment of the dielectric sheet including the laminated metal plating film is higher than the recrystallization temperature of the metal constituting the metal plating film.
  • the metal plating film described above is heat-treated with the dielectric sheet at a temperature lower than the melting point of the metal forming the metal plating film and higher than the recrystallization temperature, so that the metal plating film melts during the heat treatment.
  • the metal plating film is not divided, and a conductive layer having excellent continuity can be formed.Also, the metal that forms the metal plating film is recrystallized to moderately soften the metal. A good conductor layer having excellent adhesion to the dielectric layer can be obtained.
  • the metal plating film is peeled off from the substrate and transferred to a resin film, a portion of the surface where the metal plating film is formed and a portion where the metal plating film is not present are present on the resin film.
  • a thin dielectric sheet having a thickness substantially equal to the metal plating film may be pressed against both of them to selectively adhere the dielectric sheet to a portion of the resin film where the metal plating film does not exist.
  • a metal plating film is transferred to one main surface of a resin film having an adhesive layer, and a dielectric sheet having a thickness substantially equal to that of the metal plating film is pressed against both a portion where the metal plating film exists and a portion where the metal plating film does not exist.
  • a metal plating film and a dielectric film are formed on the resin film.
  • the body sheet adheres and forms substantially flush with each other without forming a large gap therebetween. Therefore, when these are separated from the resin film and a plurality of dielectric sheets are laminated with a dielectric sheet or the like interposed therebetween to form a laminate of dielectric sheets, both main surfaces of the laminate are made flat. Therefore, even if an electronic component is manufactured by heat-treating this, there is almost no electrical failure such as delamination, and an electronic component having excellent reliability and productivity can be obtained. .
  • the surface of the base may be divided into a plurality of blocks detachably supported with respect to a core of the base.
  • the plating tank has a first potential region that is held at a more positive potential than the substrate and deposits a metal plating film on the substrate surface.
  • a second layer which is located downstream of the substrate in the rotation direction and is kept at a negative potential with respect to the substrate and re-dissolves the surface layer of the metal plating film deposited on the surface of the substrate in the plating solution.
  • the surface portion of the metal plating film once formed, particularly the contact portion with the substrate is redissolved in the plating solution, and a minute gap is formed between the metal plating film and the substrate.
  • Electrical isolation between the two regions can be realized by interposing an insulating member between the first potential region and the second potential region.
  • FIG. 1 is a cross-sectional view showing a multilayer capacitor manufactured by the method for manufacturing an electronic component of the present invention.
  • FIG. 2 shows the plating of the present invention in which a substrate 9 is rotatably arranged in a plating tank 18 and a transfer means of a metal plating film is arranged on a side of the substrate 9 opposite to the plating tank 18. It is a side view which shows a film forming apparatus typically.
  • FIG. 3 is a plan view of the base 9 used in this plating device for forming a plate S, viewed from above (A direction in FIG. 2).
  • FIG. 4 is an enlarged sectional side view showing the structure of the substrate surface used in the plating film forming apparatus.
  • FIG. 5 shows a plating film of the present invention in which the metal plating film 8 once transferred to the resin film 20 is transferred again to the surface of the ceramic green sheet 26 held on the resin film 25. It is a side view which shows an apparatus typically.
  • FIG. 6 shows a plating film forming apparatus of the present invention in which a metal plating film 8 deposited on a substrate 9 is directly transferred to a main surface of a ceramic green sheet 26 held on a resin film 25. It is a side view which shows typically.
  • FIG. 7 illustrates a method of forming a thin dielectric sheet 43 for filling a step in a portion where the metal plating film 8 does not exist, with respect to the resin film 20 on which the metal plating film 8 is transferred from the base 9.
  • FIG. 7 illustrates a method of forming a thin dielectric sheet 43 for filling a step in a portion where the metal plating film 8 does not exist, with respect to the resin film 20 on which the metal plating film 8 is transferred from the base 9.
  • FIG. 8 shows that a ceramic slurry 31 is applied to the main surface of the resin film 20 to which the metal plating film 8 has been transferred so as to cover the metal make-up film 8, which is dried to form a metal plating film 8.
  • FIG. 1 is a side view schematically showing a plating film forming apparatus of the present invention in which ceramic green sheets 26 having embedded therein are obtained.
  • FIG. 9 schematically shows the plating film forming apparatus of the present invention in which plating tank 18 is divided into a high-potential area 18 A functioning as an anode and a low-potential area 18 B functioning as a cathode.
  • FIG. 1 is a side view schematically showing a plating film forming apparatus of the present invention in which ceramic green sheets 26 having embedded therein are obtained.
  • FIG. 9 schematically shows the plating film forming apparatus of the present invention in which plating tank 18 is divided into a high-potential area 18 A functioning as an anode and a low-potential area 18 B functioning as a cath
  • FIG. 10 shows that a plurality of insulating partition members 35 are arranged at predetermined intervals on the surface of the base 4, and that the conductive film 6 is provided on the insulating members 34 and between the insulating partition members 35.
  • FIG. 2 is a side view schematically showing a plating film forming apparatus of the present invention in which a base member 4 is formed by fitting a block member 36 on which a mask layer 7 is formed.
  • FIG. 11 is a side view schematically showing the plating film forming apparatus of the present invention in which not only the surface layer of the base 4 but also the core is blocked.
  • FIG. 1 is a cross-sectional view showing a multilayer capacitor manufactured by a method for manufacturing an electronic component according to the present invention.
  • the multilayer capacitor 1 shown in FIG. 1 includes a dielectric layer 4 stacked on a plurality of layers, an internal electrode 3 formed on each dielectric layer 4, an insulating layer 2 sandwiching the dielectric layer 4 from above and below, It is composed of electrodes 5.
  • internal electrodes 3 are formed on a dielectric layer 4 having a predetermined dielectric constant, and are alternately laminated to form a rectangular parallelepiped laminate.
  • An insulating layer 2 made of the same material as the dielectric layer 4 is formed on both upper and lower surfaces of the laminate.
  • external electrodes 5 that are electrically connected to the internal electrodes 3 are formed on both ends of the laminate.
  • the outer shape of the multilayer capacitor 1 is formed, for example, with dimensions of 1.2 mm in width, 2 mm in length, and 1.2 mm in height.
  • the dielectric layer 4 is formed of a ceramic material or an organic material. When made of a ceramic material, for example, it is formed of barium titanate, calcium titanate, strontium titanate, or the like. When it is made of an organic material, it is formed of, for example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PP (polypropylene), PPS (polyphenylene sulfide), or the like.
  • the thickness of the dielectric layer 4 is set, for example, from 1.0 zm to 4.0 m per layer, and the number of layers is set, for example, from 30 layers to 600 layers. In addition, as the material of the insulating layer 2, the same ceramic material or organic material as that of the dielectric layer 4 is used.
  • the internal electrode 3 interposed between the dielectric layers 4 is made of, for example, nickel, copper, silver, gold, platinum, palladium, chromium, an alloy of these metals, or the like, and has a thickness of, for example, 0.5 m to 2.5 m. Set to O ⁇ m.
  • the material and thickness of the dielectric layer 4 and the number of layers, the facing area of the internal electrodes 3, and the like are appropriately determined depending on the desired capacitance of the multilayer capacitor.
  • the multilayer capacitor described above is manufactured using the plating film forming apparatus shown in FIGS.
  • FIG. 2 is a side view schematically showing the plating film forming apparatus of the present invention.
  • FIG. 3 is a plan view of the substrate 9 used in the plating fluge forming apparatus as viewed from above (A direction in FIG. 2).
  • FIG. 2 is an enlarged sectional side view showing a structure of a substrate surface used in the plating film forming apparatus.
  • the printing film forming apparatus includes a base 9 rotatably arranged in a printing tank 18.
  • the transfer means is arranged on the opposite side of the plating tank 18 from the transfer means.
  • the cleaning unit, the cleaning liquid suction unit, the plating liquid suction unit, and the circulation device are not essential components in the plating film forming apparatus of the present invention but are positioned as additional components. Things.
  • the base 9 functions as a cathode of the plating film forming apparatus.
  • it is formed of a conductive metal such as stainless steel, iron, aluminum, copper, nickel, titanium, tantalum, and molybdenum.
  • a conductive film 6 (see FIG. 4) is formed on the entire surface of the base 9, and a mask layer for exposing the conductive film 6 to a predetermined pattern is formed on the surface of the conductive film 6. 7 is formed.
  • the surface of the substrate 9 and the conductive film 6 may be referred to as “the surface of the substrate”.
  • the surface of such a substrate 9 is cylindrical, the radius of curvature is set, for example, in the range of 50 mm to 200 mm, and the surface roughness is, for example, 0. Set to 5 m or less. That is, R y ⁇ 0.5 Aim.
  • a material having a specific resistance of 10 2 ⁇ cm or less is used as the conductive film 6 formed on the surface of the base 9.
  • a material having a specific resistance of 10 to 3 ⁇ cm or less is preferable.
  • the material of the conductive film 6 having a specific resistance of 10 to 3 Qcm or less include, for example, titanium aluminum nitride, chromium nitride, titanium nitride, titanium chromium nitride, titanium carbonitride, titanium carbide, and titanium carbide. DLC (diamond-like carbon) or the like can be used.
  • the conductive film 6 may be formed of titanium aluminum nitride, chromium nitride, titanium nitride, titanium nitride nitride, titanium carbonitride, or the like. Preferably, it is formed. In particular, in order to enhance the durability, it is preferable to form the conductive film 6 with titanium nitride or the like.
  • the conductive film 6 is formed on the surface of the base 9 by a conventionally known thin film forming method, for example, a sputtering method, an ion plating method, a chemical vapor deposition method (CVD), or the like.
  • the mask layer 7 formed on the surface of the conductive film 6 defines the deposition region of the metal plating film 8. It is to control. It is preferable that the mask layer 7 has sufficient electric insulation.
  • the resistivity may be set to more than 1 0 4 ⁇ ⁇ cm.
  • a material having a Beakers hardness Hv of, for example, 100 or more and a friction coefficient a of, for example, 0.3 or less is used. Materials satisfying such characteristics include, for example, amorphous structure DLC and GLC (Graphite-like-force-carbon).
  • the base 9 can be converted into the make-up liquid 19 without a complicated process such as photoetching.
  • the metal plating film 8 having a desired pattern can be easily obtained simply by immersion and applying an electric field between the plating tank 18 and the substrate 9 described later.
  • the thickness of the mask layer 7 is the same as the thickness of the metal plating film 8 or slightly larger than the thickness of the metal plating film 8. This is to prevent the metal plating film 8 grown beyond the thickness of the mask layer 7 from spreading on the mask layer 7.
  • the angle of the corner formed between the side surface and the bottom surface of the mask layer 7 is preferably set to 90 degrees or less, for example, 90 degrees to 85 degrees. If the angle is set to 90 degrees or less, the area of the lower surface of the metal plating film 8 in contact with the base 9 becomes smaller than the area of the upper surface. When transferring to the like, the outer periphery of the metal plating film 8 is less likely to be caught on the mask layer 7, and the metal plating film 8 can be easily separated.
  • the mask layer 7 is formed, for example, by applying DLC, GLC, or the like to a predetermined thickness on the surface of the substrate 9 by a conventionally known thin film forming method such as a sputtering method, an ion plating method, and a CVD method. It is formed by processing into a pattern having a plurality of openings by employing a well-known photo-etching method or the like. The opening is a portion corresponding to the deposition region of the metal plating film 8.
  • a conventionally known thin film forming method such as a sputtering method, an ion plating method, and a CVD method. It is formed by processing into a pattern having a plurality of openings by employing a well-known photo-etching method or the like.
  • the opening is a portion corresponding to the deposition region of the metal plating film 8.
  • DLC and GLC used as the material of the mask layer 7 have relatively high electric resistance, so that no plating is deposited on the surface of the mask layer 7 and the surface has good peelability and friction resistance. Is also small. Therefore, when the metal print film 8 is transferred to the resin film 20 or the like as the transfer target, the transfer target is less likely to be damaged. As described above, by selecting the material of the mask layer 7, the durability of the base 9 is improved. As a result, a high quality metal plating film 8 can be obtained even when used repeatedly over a long period of time.
  • the base 9 as described above is rotatably supported by a rotating shaft 10 as shown in FIG.
  • the rotating shaft 10 is connected to the main shaft of the electric motor, and the base 9 is rotated around the axis by transmitting the rotating motion of the electric motor.
  • the rotating shaft 10 is connected to the power supply 11 via a rotating brush, whereby a negative voltage is applied to the base 9. That is, the base 9 functions as a cathode of the plating film forming apparatus.
  • the printing tank 18 functions as an anode of the plating film forming apparatus, and at the same time, functions as a container for forming a printing bath by filling the plating liquid 19 therein.
  • the inner surface shape of the plating tank 18 and the surface of the base 9 are substantially concentrically arranged so that a certain space is formed between them.
  • the distance between the surface of the base 9 and the inner surface of the plating tank 18 is, for example, 2 mn! Set to ⁇ 50 mm.
  • the plating liquid 19 flows between the base 9 and the plating tank 18 at a predetermined flow rate by a circulating device 15 described later.
  • a nickel plating solution suitable for obtaining a metal plating film 8 having a small internal stress is preferably used as the plating solution 19.
  • a nickel sulfamate plating solution for example, an aqueous solution having a composition of 30 g / liter of nickel chloride, 300 g of nickel sulfamate, and 30 g of boric acid is used.
  • the value is set to, for example, 3.0 to 4.2.
  • the pH value is set to 3.5 to 4.0 and the temperature of the plating solution 19 is set to 45 ° C to 50 ° C. It is better to keep it.
  • non-conductive fine particles 30 made of ceramic, resin, or the like are added to the plating liquid 19.
  • the above-mentioned plating solution 19 may contain a pH buffer comprising boric acid, nickel formate, nickel acetate, etc., and a pipe comprising sodium lauryl sulfate, if necessary.
  • aromatic hydrocarbons such as benzene and naphthalene
  • An agent such as butyne diol, 2-butyne 1.4 diol, ethylene cyanohydrin, formaldehyde, coumarin, pyrimidine, pyrazole, imidazole and the like may be appropriately added and used.
  • stress reducing agent examples include saccharin, paratoluenesulfonamide, benzenesulfonamide, benzenesulfonimide, sodium benzenedisulfonate, sodium benzenetrisulfonate, sodium naphthalene sulfonate, and Nafrent
  • sodium resulfonate is used.
  • a conventionally known electrolytic plating method can be performed. That is, by applying a potential between the base 9 serving as a cathode and the plating tank 18 serving as an anode, the metal plating film 8 is deposited on a region of the surface of the base 9 where the mask layer 7 does not exist.
  • the printing liquid 19 in the printing tank 18 always flows between the base 9 and the printing tank 18 in a predetermined direction as described above, the film quality of the metal plating film 8 is reduced. There is an advantage that it can be made homogeneous.
  • the transfer means includes a resin film transfer means for transferring the metal plating film 8 to one main surface of the resin film 20, and a metal plating film 8 which transfers one main surface of the ceramic green sheet 26 to the resin film 20. And a ceramic green sheet transfer means to be attached to the sheet.
  • the resin film transfer means includes a feeding section 22, a pressure roll 23, and a winding section
  • the delivery section 22 is for connecting a needle shaft on which the resin film 20 with the adhesive layer is wound to a motor, and rotating the shaft by a predetermined amount to send it out.
  • the pressure roll 23 presses the base 9 while rotating the resin film 20 having the adhesive layer.
  • the winding section 24 is a pressure roll
  • the pressing roll 23 may be a rotatable roller that is not connected to an electric motor, or may be a roller that is connected to an electric motor to perform a rotating operation.
  • the resin film 20 is made of, for example, a polyethylene terephthalate film (PET film) having a thickness of 20 m to 50 m, and its main surface (the surface onto which the metal plating film 8 is transferred) has a thickness of 0.05 05 ⁇ ! What formed the adhesive layer 21 of ⁇ 10 zm is used.
  • the adhesive layer 21 is formed, for example, by applying an acrylic (solvent), acrylemulsion (aqueous), petital, phenol, silicone, or epoxy adhesive to the main surface of a PET film or the like. And dried. It is preferable to use one adjusted so that the adhesive strength after drying is, for example, 0.1 N / cm.
  • the adhesive layer 21 is formed of a material which is surely thermally decomposed at a relatively low temperature. Specifically, even when the metal plating film 8 adheres, it is preferable to use an acrylic (solvent), acrylemulsion (water), or petital-based adhesive that thermally decomposes upon firing. Among these, it is particularly preferable to use an acrylic pressure-sensitive adhesive having good releasability.
  • the adhesive force of such an adhesive layer 21 is set, for example, to 0.005 N / cm to 1.0 N / cm, and to improve the transferability, 0.01 N / cm to 1.0 N / cm. cm is preferable, and for better releasability, 0.0 1N / cn! ⁇ 0. It is preferable to set to SNZcm.
  • Such a resin film 20 is sequentially supplied to the base 9 side by the sending-out section 22, and the side on which the adhesive layer 21 is formed is, for example, with respect to the surface of the base 9 on which the metal print film 8 is formed. Pressing is performed by the pressing roller 23 with a pressing force of 1 and 1 ON. Thus, the metal plating film 8 is transferred onto the resin film 20. Thereafter, the resin film 20 is wound by the winding unit 24 at the same speed as the peripheral speed of the surface of the base 9.
  • the ceramic green sheet transfer means includes a supply unit 28, a pressure roll 27, It consists of a storage section 29.
  • the supply unit 28 connects a shaft of a roll around which the resin film 25 with the ceramic green sheet 26 is wound to an electric motor, and rotates the shaft by a predetermined amount to feed it.
  • the pressure roll 27 brings the ceramic green sheet 26 into contact with the metal print film 8 on the resin film 20 at a predetermined pressure.
  • the storage section 29 winds up the resin film 25 having passed through the pressure roll 27 with a constant tension.
  • the cleaning means 12 is for cleaning the surface of the substrate 9 lifted from the plating tank 18. Specifically, it is for washing away the metal plating film 8 formed on the surface of the base 9 and the plating liquid 1 remaining on the surface of the mask layer 7.
  • the cleaning means 12 includes a liquid supply means for supplying a cleaning liquid to the surface of the substrate 9 on which the metal plating film 8 and the mask layer 7 are formed, and a collecting means for collecting the cleaning liquid used for cleaning. .
  • the cleaning liquid is supplied to the cleaning box disposed in close proximity to the surface of the substrate 9 by the liquid supply means, and the cleaning liquid is sprayed onto the surface of the substrate 9 in the cleaning box to remove the remaining plating liquid from the substrate 9. Rinse off the surface.
  • the cleaning liquid for example, water, alcohol, acetone, toluene and the like are used. It is preferable that impurities in the cleaning liquid be suppressed to 100 Oppm or less. In order to obtain a higher cleaning effect, an air supply means for blowing air onto the surface of the base 9 may be separately provided.
  • the cleaning liquid suction means 13 is arranged downstream of the cleaning means 12 in the rotation direction of the base 9. After the cleaning liquid 12 is washed away by the cleaning means 12, the metal plating film 8 and the mask layer 7 are removed. This is for completely removing the cleaning liquid remaining on the surface.
  • the cleaning liquid suction means 13 is formed of a stainless steel plate or the like, and a plurality of suction holes are provided on the surface of the cleaning liquid suction means 13. The remaining cleaning liquid is removed.
  • the cleaning liquid suction means 13 has a fine surface, such as urethane sponge or artificial leather, on the surface. Attach one with fine holes.
  • the cleaning liquid suction means 13 may have any of a cylindrical shape, a columnar shape, and a flat shape.
  • the plating liquid suction means 14 is disposed on the upstream side in the rotation direction of the base 9 with respect to the cleaning means 12, and removes the plating liquid 19 remaining on the surface of the metal plating film 8 and the mask layer 7. belongs to.
  • the printing liquid suction means 14 is formed of a stainless steel plate or the like, and a plurality of holes are provided on the surface thereof in the same manner as the cleaning liquid suction bow I means 13 described above.
  • the liquid 19 is sucked.
  • the same structure as that of the cleaning liquid suction means 13 is employed for the surface portion of the plating liquid suction means 14.
  • the shape of the plating liquid absorbing means 1 14 may be any of a cylindrical shape, a columnar shape, and a flat plate shape.
  • the circulation device 15 is for circulating the plating liquid 19 injected into the plating tank 18.
  • a supply port 16 for the plating liquid 19 is provided at the center of the bottom of the plating tank 18 at a position facing the lowermost end of the base 9.
  • the plating liquid 19 is supplied from the supply port 16 into the plating tank 18.
  • the printing liquid 19 flows along the surface of the substrate 9 in the same direction as the rotation direction of the substrate 9 on the downstream side in the rotation direction of the substrate 9, and flows along the surface of the substrate 9 on the upstream side in the rotation direction of the substrate 9. It flows in the direction opposite to the direction of rotation of 9 and overflows from both ends of the tank 18.
  • the overflowing liquid 19 is discharged to a circulation tank disposed outside thereof. Then, the plating liquid 19 stored in the circulation tank is sucked out from a suction port 17 provided at the bottom thereof, and is again supplied into the plating tank 18 from the supply port 16 by a pump.
  • a filtration filter may be provided to remove foreign substances, or the pH value of the plating liquid 19 ⁇ the flow rate of the plating liquid 19, the non-conductive The concentration and the like of the conductive fine particles may be adjusted as necessary.
  • a metal plating film 8 is formed on the surface of the above-described base 9 by an electrolytic plating method. Since the cross-sectional shape of the surface of the base 9 is circular, the cross-sectional shape of the metal plating film 8 is also formed as a convex curved surface having the same radius of curvature as the circle.
  • the base 9 is rotated around the rotation axis 10 at a predetermined rotation speed so that the lower region of the base 9 is immersed in the nickel sulfamate plating liquid 19 injected into the plating tank 18 or the like.
  • a predetermined potential difference is applied to the plating tank 18 so that the current density is, for example, 2 AZdm 2 to 15 A / dm 2 .
  • the metal plating film 8 is formed along the circular surface of the base 9 except for the region where the above-described mask layer 7 is formed.
  • the metal print film 8 formed in this manner is made of nickel, copper, silver, gold, platinum, palladium, chromium, or an alloy of these metals, and nickel having excellent heat resistance among these metal materials. It is preferable as a material for forming the internal electrodes 3 of the multilayer capacitor.
  • the base 9 is immersed in the plating solution 19 of the printing tank 18, and an electric field is applied between the base 9 and the printing tank 18 to apply the electric field to the surface of the base 9.
  • the metal mask film 8 can be formed continuously, thereby improving the productivity of the multilayer capacitor.
  • the metal plating film 8 can be formed with a substantially constant thickness.
  • the metal print film 8 obtained in the step 1 is once transferred onto the resin film 20.
  • a resin film 20 is sequentially supplied to the base 9 side by the delivery section 22.
  • the surface of the resin film 20 on which the adhesive layer 21 is formed is pressed against the surface of the substrate 9 on which the metal plating film 8 is formed by a pressing roller 23, for example, with a pressing force of 10 N. .
  • the metal plating film 8 is transferred onto the tree S film 20.
  • the resin film 20 is wound by the winding unit 24.
  • the metal plating film 8 is formed on the surface of the circular base 9 so as to form a convex curved surface in the step 1, the metal plating film 8 is formed of a resin film.
  • the metal plating film 8 When the metal plating film 8 is deposited, even if internal stress (tensile stress) is generated in the metal plating film 8, if the obtained metal plating film 8 is separated from the substrate 9 and deposited on the resin film 20, a convex curved surface is formed. The metal plating film 8 is deformed on the resin film 20 in a direction of flattening. Therefore, the metal plating film 8 is formed on the flat resin film 20 in a flat state without any distortion.
  • internal stress tensile stress
  • nonconductive fine particles 30 made of ceramic or resin are added to the metal print film 8 on the base 9 as described above, these nonconductive fine particles 30 have poor adhesion to the base 9. Therefore, the metal plating film 8 can be relatively easily peeled from the base 9.
  • the non-conductive fine particles 30 are arranged so that a large number of the non-conductive fine particles 30 are arranged on the plating deposition surface (the portion in contact with the conductive film 6).
  • the exposed area of the non-conductive fine particles 30 exposed on the surface of the metal plating film 8 is 0.01% with respect to the total area of the metal plating film 8.
  • the ratio is about 40%, since the metal plating film can be easily peeled off from the substrate, and the deformation of the metal plating film can be prevented. If this value is less than 0.01%, the deposition rate of the metal component on the metal plating film 8 increases, making it difficult to sufficiently lower the adhesion to the substrate 9, and from the surface of the substrate. When the metal plating film is peeled, the metal plating film may be deformed. If it exceeds 40%, the mechanical strength of the metal plating film itself decreases due to a decrease in the metal component in the metal plating film 8, so that when the metal plating film is peeled off from the substrate surface, the metal plating film is removed. Cracks may occur in the film.
  • the dielectric material The same material as the ceramic material of the ceramic green sheet 26 used as the sheet is preferable.
  • resin fine particles are used as the non-conductive fine particles 30, those having the same material as the organic binder contained in the ceramic green sheet 26 are preferable.
  • the size of the non-conductive fine particles 30 it is preferable to use those having an average particle diameter smaller than the thickness of the metal plating film 8. By doing so, it is possible to effectively prevent the metal plating film 8 from being deformed when the metal plating film 8 is peeled from the substrate 9.
  • non-conductive fine particles 30 made of a ceramic material and non-conductive fine particles 30 made of a resin material may be mixed and used.
  • a ceramic green sheet 26 as a dielectric sheet is further pressed on the resin film 20 to which the metal plating film 8 has been transferred, so that the ceramic green sheet 26 is formed on the metal plating film 8.
  • the ceramic green sheet 26 has, for example, a thickness of 12 mm! While being supported on a resin film 25 composed of a PET film or the like having a length of about 100 m, it is wound around the supply port 28.
  • the ceramic green sheet 26 is supplied to the position where the ceramic green sheet 26 and the resin film 20 join, the two resin films 20 and 25 are superimposed and come into contact with the metal plating film 8 on the resin film 20. While this part is heated at a temperature of about 70 ° C by the heater provided inside the pressure roller 27, the resin film 25 is pressed by the pressure roller 27 with a pressing force of about 10 ON. Press to the film 20 side. As a result, the ceramic green sheet 26 is attached to the metal plating film 8. Thereafter, the resin film 25 from which the ceramic green sheet 26 has been peeled off is wound up by the storage section 29.
  • the ceramic green sheet 26 is formed of a hard material. Since there is no direct contact with the mask layer 7 on the surface of the substrate, the ceramic green sheet 26 is used as the mask layer. The ceramic green sheet 26 can be satisfactorily adhered to the metal print film 8 without being damaged by contact with the metal paste 7.
  • the productivity of the multilayer capacitor 1 can be improved.
  • the ceramic green sheet 26 supported on the resin S film 25 has a thickness of, for example, 1 m to 20 m, and an organic solvent, an organic binder, or the like is added to the ceramic material powder.
  • a predetermined ceramic slurry obtained by mixing is applied to the main surface of the resin film 25 by a conventionally known coating method or printing method so that the thickness after firing is about 2 ⁇ m. By drying.
  • a PET film having a thickness of 38 ⁇ m is used as the resin film 25 a PET film having a thickness of 38 ⁇ m is used.
  • a ceramic slurry is applied so that the thickness after firing becomes, for example, 2 m, and then dried to form a resin film 25 with ceramic green sheets 26.
  • the ceramic green sheet 26 of the resin film 25 is brought into contact with the metal print film 8 on the resin film 20 so that the contact portion has a radius of 100 mm and a length of 250 mm.
  • the ceramic green sheet 26 is pressed against a resin film 20 with a metal plating film 8 by sandwiching the ceramic green sheet 26 with a pressing roller 27 at a pressure of 100 N and 70 ° C. Thereafter, the ceramic green sheet 26 is peeled off from the resin film 25.
  • a plurality of ceramic green sheets 26 provided with the metal print film 8 obtained in the above-mentioned step 3 are prepared and, for example, pre-pressed at a pressure of 0.9 MPa while heating at a temperature of 60 ° C. Then, the laminate is formed by pressure bonding at a temperature of 70 ° C. and a pressure of 50 MPa by a conventionally known hydrostatic pressure press or the like.
  • the laminate obtained in step 4 is cut into a predetermined shape, and the obtained individual pieces are fired at a high temperature.
  • the firing of the laminate is performed so that the temperature is lower than the melting point of the metal forming the metal plating film 8 and higher than the recrystallization temperature of the metal at least at one point during firing.
  • the ceramic green sheet 26 becomes the dielectric layer 4 of the multilayer capacitor, and the metal print film 8 becomes the internal electrode 3.
  • recrystallization of a metal is a phenomenon in which when a processed metal material is heated, the metal rapidly softens at a certain temperature and stabilizes to reduce internal strain.
  • the temperature at which the recrystallization starts is called the recrystallization temperature.
  • the recrystallization temperature is 530 ° C to 660 ° C; the melting point is 148 ° C, and in the case of copper, the recrystallization temperature is 200 ° C to 250 ° C. C, the melting point is 1083 ° C.
  • the recrystallization temperature is about 200 ° C (and the melting point is 160 ° C. Therefore, when the metal plating film 8 is made of nickel, The firing of the laminate is performed, for example, at a temperature of 130 ° C.
  • the metal plating film 8 By firing the metal plating film 8 at a temperature lower than the melting point of the metal forming the metal plating film 8 as described above, the disadvantage that the metal plating film 8 is melted during firing and the metal plating film 8 is divided. It is possible to form the internal electrode 3 that is reliably prevented and has excellent continuity.
  • the peak temperature at the time of firing the laminate is set higher than the recrystallization temperature of the metal forming the metal plating film 8, so that the metal forming the metal plating film 8 at the time of firing.
  • the metal is appropriately softened, and the ceramic particles in the ceramic green sheet 26 enter the surface of the metal plating film 8.
  • the adhesion between the metal plating film 8 and the ceramic green sheet 26 is improved, and as a result, a multilayer capacitor with few structural defects can be obtained.
  • the non-conductive fine particles 30 are embedded in the metal plating film 8 at the portions thereof, when a ceramic material is used as the non-conductive fine particles 30, the non-conductive fine particles 30 Are simultaneously fired when the ceramic green sheet 26 is fired, and are sintered and integrated with the ceramic component contained in the ceramic green sheet 26. As a result, the adhesion between the metal plating film 8 and the ceramic green sheet 26 is improved. In addition, when a resin material is used as the non-conductive fine particles 30, the non-conductive fine particles 30 are burned out during firing of the ceramic green sheet 26 to form voids. Because the ceramic component in 6 diffuses, Also in this case, the adhesion between the metal print film 8 and the ceramic green sheet 26 is improved.
  • This embodiment is different from the above-described manufacturing method in that the metal plating film 8 once transferred to the resin film 20 is again applied to the surface of the ceramic green sheet 26 held on the resin film 25. The point is that it is transferred.
  • the ceramic green sheet 26 to which the metal printing film 8 has been transferred is wound up together with the resin film 26 by the storage section 29 and used in the subsequent steps.
  • the same effects as in the first embodiment can be obtained.
  • This embodiment is different from the above-described manufacturing method in that the metal plating film 8 deposited on the base 9 is attached to the main surface of the ceramic green sheet 26 held on the resin film 25.
  • the point is that it is transcribed directly. That is, a resin film 25 made of a PET film or the like holding the ceramic green sheet 26 is sent out from the roll of the feeding section 22 and is pressed against the base 9 by the pressure roll 23 ⁇
  • the metal plating film 8 formed on the base 9 is transferred to the main surface of the ceramic green sheet 26 held on the resin film 25.
  • the winding section 24 winds the resin finolem 25 to which the metal plating film 8 has been transferred by passing through the pressure roll 23.
  • FIG. 7 shows a thin dielectric sheet for filling a step in a portion of the resin film 20 having the adhesive layer 21, on which the metal plating film 8 is transferred from the base 9, without the metal plating film 8.
  • FIG. 4 is a cross-sectional view for explaining a method of forming 43.
  • a pair of rollers 40, 41 for pressing the resin film 20 from the front and back are arranged.
  • a resin film 42 on which a dielectric sheet 43 of substantially the same thickness as the metal plating film 8 is supported is sent.
  • the dielectric sheet 43 is preferably a ceramic green sheet.
  • the dielectric sheet 43 is pressed against one main surface of the resin film 20 by the pressure of the roller 40. At this time, by pressing the dielectric sheet 43 against both the portion where the metal plating film 8 exists and the portion where the metal plating film 8 does not exist, the cutting force of the edge of the metal plating film 8 is used, and the resin film 20 is pressed.
  • the dielectric sheet 43 can be selectively adhered only to the portion of the one main surface where the metal plating film 8 does not exist.
  • the present embodiment is different from the previous embodiments in that the metal plating film 8 is formed by being buried in the ceramic green sheet 26.
  • the manufacturing method is such that the metal plating film 8 is transferred onto the main surface of the resin film 20 from the nozzle 32 so that the metal plating film 8 is covered.
  • the rally 31 is applied and dried using the heater 33 to obtain the ceramic green sheet 26 in which the metal plating film 8 is embedded.
  • the ceramic green sheet 26 obtained as described above includes a portion where the metal plating film exists and a portion where the metal plating film exists. Since there is no large step between the non-existing portions, even when a plurality of such ceramic green sheets 26 are laminated to form a laminate, the deformation of the metal plating film embedded therein is not affected. It also has the advantage that it is effectively suppressed, and the occurrence of electrical faults and delamination is effectively prevented.
  • the printing tank 18 is a high-potential region 18 A that functions as an anode. And a low potential region 18 B functioning as a cathode.
  • the cathode of the power supply 6 A is connected to the base 9, and the anode of the power supply 6 A is connected to the high potential region 18 A of the printing tank 18. Further, an anode of a power supply 6 B is connected to the base 9, and a cathode of the power supply 6 B is connected to the low potential region 18 B of the plating tank 18.
  • the cathode of the power supply 6A and the anode of the power supply 6B are commonly connected.
  • the surface portion of the metal plating film 8 once formed, particularly the metal plating film 8 is redissolved in the plating solution 19.
  • a minute gap is formed between the metal plating film 8 and the base 9 and the mask layer 7, and the releasability of the metal plating film 8 is improved, and the accuracy of the transfer to the material to be transferred is improved. Can be.
  • the above-described printing tank 18 electrically separates the high-potential region 18A from the low-potential region 18B by interposing an insulating member 16A made of, for example, vinyl chloride at the center thereof.
  • an insulating member 16A made of, for example, vinyl chloride
  • polytetrafluoroethylene or the like can be used in addition to the above-mentioned vinyl chloride. It is preferable to use a material having a specific resistance of 100 ⁇ or more in order to maintain sufficient insulation so that the metal plating film 8 can be appropriately deposited and redissolved in both regions.
  • the insulating member 16A is preferably a material having chemical resistance, particularly preferably a material having acid resistance.
  • the plating liquid corresponding to each region is isolated from each other at a predetermined interval on the insulating member 16 and the surface of the base 9.
  • Partition member 16B may be formed.
  • the insulating member 16A and the partition member 16B may be integrally formed as the insulating partition material 16 using the same material.
  • This insulating partition wall material 16 can also be used as a plating liquid supply port which is a part of a circulation device 15 described later.
  • the insulating partition wall material 16 may be hollow so as to have an opening for supplying the plating liquid to the plating liquid 19 side in the plating tank 18.
  • This embodiment is different from the previous embodiments in that the surface of the base 9 used in the plating film forming apparatus has a plurality of protruding and removably supported at least in the surface layer portion with respect to the core of the base 9. It is a point divided into.
  • an insulating material 34 is formed so as to cover the entire surface side of the base 4, and a plurality of insulating partition members 35 are arranged at a predetermined interval on the insulating material 34.
  • the block member 36 having the mask layer 7 formed on the conductive film 6 on the insulating material 34 and between the insulating partition wall materials 35 is fitted with an adhesive or the like so that the base material 4 is formed. Is composed.
  • conductive rollers 37 A and 37 B are provided at different positions in the makeup liquid 19.
  • the conductive rollers 37A and 37B are connected to the high potential area 18A and the low potential area 18B of the plating tank 18 via power supply devices 6A and 6B, respectively.
  • the block member 36 contacting the conductive roller 37 A has a positive high potential with respect to the plating tank 18, and the block member 36 contacting the conductive roller 37 B has a plating tank 18. Becomes a negative low potential.
  • the block member 36 is configured to include not only the surface layer of the base 4 but also the core, and the individual block members 36 are arranged from the center of the base 4 to the surface.
  • An insulating partition wall material 35 that penetrates in a radial direction may be provided.
  • the metal plating film 8 is deposited on the surface of the base 9 where the mask layer 7 is not present, in the low-potential region 18B, once formed using the opposite potential.
  • the surface portion of the metal plating film 8, particularly the contact portion between the metal plating film 8 and the substrate 9 and the mask layer 7 is redissolved in the plating solution 19.
  • the metal plating film 8 pulled up from the plating solution 19 becomes the same between the metal plating film 8 and the base 9 and the mask layer 7.
  • a minute gap is formed therebetween, and the releasability of the metal make-up film 8 is improved, so that the accuracy of transfer to the material to be transferred (resin film) can be improved.
  • the mask layer 7 and the like may be formed on the block member 36 having a small surface area, the mask layer 7 and the like can be formed on the block member 36 with simple equipment.
  • the block member alone can be replaced, and there is an advantage that maintenance is excellent.
  • the case of manufacturing a multilayer capacitor has been described as an example.
  • the case of manufacturing electronic components other than the multilayer capacitor for example, other electronic components such as inductors, filters, circuit boards, and the like.
  • the present invention is also applicable to the above.

Abstract

A process for producing a metal plating film, comprising providing a substrate with convex curved surface, depositing a metal plating film on the substrate surface and detaching the metal plating film from the substrate. The substrate surface on which the metal plating film is deposited is convex curved, so that the metal plating film of convex sectional configuration is formed on the substrate surface. Internal stress (tensile stress) occurs within the thus formed metal plating film, so that when the metal plating film is detached from the substrate and transferred on a dielectric sheet, the metal plating film is transfigured toward planarization. Therefore, on transfer recipient materials, such as the dielectric sheet, having a metal plating film transferred thereonto, deformation and damaging of such a metal plating film can be effectively prevented to thereby contribute to an improvement of production efficiency.

Description

明 細 書  Specification
金属メツキ膜の形成方法、 電子部品の製造方法及びメツキ膜形成装置 <技術分野 >  Metal plating film forming method, electronic component manufacturing method and plating film forming apparatus <Technical field>
本発明は、 コンデンサ, インダク夕, フィル夕, 回路基板等の電子部品の導体 パターンとして使用される金属メッキ膜の形成方法、 該金属メツキ膜と誘電体層 とを組み合わせて構成される電子部品の製造方法、 及び前記金属メツキ膜を形成 するのに使用されるメツキ膜形成装置に関するものである。  The present invention relates to a method for forming a metal plating film used as a conductor pattern of an electronic component such as a capacitor, an inductor, a filter, a circuit board, and the like, and an electronic component formed by combining the metal plating film and a dielectric layer. The present invention relates to a manufacturing method, and a plating film forming apparatus used for forming the metal plating film.
<背景技術 >  <Background technology>
従来より、 セラミヅク材料等の誘電体材料と、 導体材料とを用いてコンデンサ, インダクタ, フィル夕, 回路基板等の電子部品が形成されている。  Conventionally, electronic components such as capacitors, inductors, filters, and circuit boards have been formed using dielectric materials such as ceramic materials and conductor materials.
このような従来の電子部品として、 例えば、 所定の誘電率を有した複数のセラ ミヅク層を、 それらの間に第 1の内部電極と第 2の内部電極とを交互に介在させ て積層するとともに、 該積層体の側面や主面に前記第 1 , 第 2の内部電極にそれ それ電気的に接続される一対の外部電極を設けてなる積層コンデンサがよく知ら れている。  As such a conventional electronic component, for example, a plurality of ceramic layers having a predetermined dielectric constant are laminated by alternately interposing first internal electrodes and second internal electrodes therebetween. A multilayer capacitor in which a pair of external electrodes electrically connected to the first and second internal electrodes respectively is provided on a side surface or a main surface of the multilayer body is well known.
かかる積層コンデンサは、 前記第 1の内部電極と第 2の内部電極との間に所定 の電圧を印加し、 第 1の内部電極と第 2の内部電極との間に配されているセラミ ヅク層に所定の静電容量を形成することによってコンデンサとして機能する。 また上述した積層コンデンサは以下の工程を経て製作される (例えば、 特開 2 0 0 0 - 2 4 3 6 5 0号公報参照) 。  In such a multilayer capacitor, a predetermined voltage is applied between the first internal electrode and the second internal electrode, and a ceramic layer disposed between the first internal electrode and the second internal electrode. The capacitor functions as a capacitor by forming a predetermined capacitance in the capacitor. Further, the above-described multilayer capacitor is manufactured through the following steps (for example, see Japanese Patent Application Laid-Open No. 2000-244650).
まず、 所定のセラミック材料粉末に有機バインダ及び有機溶剤を添加 ·混合し てスラリー状の無機組成物を作製し、 これを従来周知のドク夕一プレード法等を 採用し、 所定厚みのシ一トに成形加工することによりセラミックグリーンシート が形成される。  First, an organic binder and an organic solvent are added to and mixed with a predetermined ceramic material powder to prepare a slurry-like inorganic composition, which is then formed by a conventionally well-known doctor plate method or the like to obtain a sheet having a predetermined thickness. By forming into a ceramic green sheet, a ceramic green sheet is formed.
次に、 得られたセラミックグリーンシートの主面に従来周知のスクリーン印刷 等によってニッケル等の金属を主成分とする導体ペーストを所定パターンに印 刷 '塗布する。 これを複数枚、 積み重ねることによって、 セラミックグリーンシ 一トの積層体を形成する。 続いて、 前記積層体を高温で焼成することによって、 内部電極が介在されたセ ラミック層の積層体を形成する。 Next, a conductor paste containing a metal such as nickel as a main component is printed in a predetermined pattern on the main surface of the obtained ceramic green sheet by screen printing or the like. By stacking a plurality of these, a laminate of ceramic green sheets is formed. Subsequently, the laminate is fired at a high temperature to form a laminate of ceramic layers with the internal electrodes interposed.
最後に、 積層体の端面等に従来周知のディッビング法等によって導体ペースト を塗布し、 焼き付けて外部電極を形成することによって積層コンデンサが製作さ れる。  Finally, a conductor paste is applied to the end face of the laminate by a well-known diving method or the like, and the paste is baked to form external electrodes, whereby a multilayer capacitor is manufactured.
ところで、 近年、 電子機器の小型化に伴い、 電子部品の小型化が求められてお り、 上述した積層コンデンサの場合、 個々のセラミック層や内部電極を薄く形成 するための種々の検討がなされている。  By the way, in recent years, with the miniaturization of electronic devices, there has been a demand for miniaturization of electronic components. In the case of the above-mentioned multilayer capacitor, various studies have been made to make individual ceramic layers and internal electrodes thin. I have.
例えば、 上述した従来の積層コンデンサにおいて、 内部電極の厚みを薄くする には、 内部電極の形成に使用されている導体ぺ一スト中に含まれる金属粉末の平 均粒径を、 例えば、 0 . 3 At m程度に極めて小さくすることが重要である。  For example, in the conventional multilayer capacitor described above, in order to reduce the thickness of the internal electrode, the average particle size of the metal powder contained in the conductor paste used for forming the internal electrode is set to, for example, 0.1. It is important to make it as small as 3 Atm.
しかしながら、 導体ペースト中に含まれている金属粉末の粒径を極めて小さく した場合、 導体ペースト中で金属粉末同士が凝集することに起因して金属粉末の 分散性が悪くなつてしまうことから、 スクリーン印刷等に適した特性をもつ導体 ペーストを得ることは困難であった。  However, if the particle size of the metal powder contained in the conductor paste is extremely small, the dispersibility of the metal powder becomes worse due to the aggregation of the metal powder in the conductor paste. It was difficult to obtain a conductor paste having characteristics suitable for printing and the like.
また仮に、 導体ペースト中に含まれている種々の成分を調整することによりス クリーン印刷等に適した特性をもつ導体ペーストを得ることができたとしても、 これをセラミヅクグリーンシート上に薄く塗布して焼成すると、 焼成の際に導体 ペースト中の金属粉末が移動することによって内部電極の連続性が喪失される不 都合があり、 最悪の場合、 内部電極が分断されてしまう欠点を有していた。 そこで上述の欠点を解消するために、 厚みの薄い金属メツキ膜を用いて積層コ ンデンサを製作することが検討されている。 その場合、 金属メツキ膜が被着され たセラミックグリーンシートを複数枚、 積層することによつて積層体を形成し、 これを高温で焼成することによって積層コンデンサが製作される。  Even if it is possible to obtain a conductor paste having characteristics suitable for screen printing, etc., by adjusting various components contained in the conductor paste, apply this thinly on a ceramic green sheet. When firing, the metal powder in the conductor paste moves during firing, which causes the disadvantage that the continuity of the internal electrodes is lost.In the worst case, the internal electrodes are separated. Was. Therefore, in order to solve the above-mentioned drawbacks, it has been studied to manufacture a multilayer capacitor using a thin metal plating film. In this case, a multilayer body is formed by laminating a plurality of ceramic green sheets on which the metal plating film is adhered, and firing this at a high temperature produces a multilayer capacitor.
このような積層コンデンサの内部電極となる金属メツキ膜は、 内部電極と対応 する形状の開口パターンを有したマスクを金属製の基板上に形成するとともに、 前記基板をメツキ槽中に浸潰し、 前記マスクの開口内に位置する基板の表面に従 来周知の電解メツキ法にて金属を析出させることによって形成される。 このよう な基板の主面にセラミックグリーンシート等を押圧し、 マスクの閧口内に形成さ れた金属メヅキ膜をセラミヅクグリーンシートの一主面に転写することによって、 金属メツキ膜がセラミックグリーンシート上に付着 '形成される。 The metal plating film serving as the internal electrode of such a multilayer capacitor forms a mask having an opening pattern having a shape corresponding to the internal electrode on a metal substrate, and immerses the substrate in a plating tank. It is formed by depositing a metal by a well-known electrolytic plating method on the surface of the substrate located in the opening of the mask. A ceramic green sheet or the like is pressed against the main surface of such a substrate to form a mask formed inside the mask. The metal plating film is transferred onto one main surface of the ceramic green sheet, whereby the metal plating film is formed on the ceramic green sheet.
しかしながら、 金属メツキ膜を用いた上述の製造方法では、 金属メツキ膜の析 出時に、 金属メツキ膜中に大きな内部応力 (引張応力) を生じるという不都合が ある。 それ故、 金属メツキ膜の析出に使用される金属板の表面が平坦である場合、 金属メツキ膜を金属板より剥離させると、 金属メツキ膜が析出方向と反対側の方 向に突出した形に湾曲しようとし、 いわゆる 「反り」 が生じる。 このため、 金属 メツキ膜をセラミックグリーンシートに転写した時、 セラミヅクグリーンシ一ト もしくは金属メツキ膜に変形やクラックを発生したり、 或いは、 焼成時にデラミ ネーシヨンを発生するという欠点が誘発される。  However, the above-described manufacturing method using the metal plating film has a disadvantage that a large internal stress (tensile stress) is generated in the metal plating film when the metal plating film is deposited. Therefore, if the surface of the metal plate used for depositing the metal plating film is flat, if the metal plating film is peeled off from the metal plate, the metal plating film will protrude in the direction opposite to the deposition direction. Trying to bend, so-called "warp" occurs. For this reason, when the metal plating film is transferred to the ceramic green sheet, a defect such as deformation or cracking of the ceramic green sheet or the metal plating film or delamination during firing is induced.
更に上述した従来の製造方法においては、 セラミックグリーンシー卜から成る 積層体を焼成する際、 そのピーク温度が高すぎると、 金属メツキ膜を形成してい る金属が溶融してしまうことによって内部電極が細かく分断されてしまい、 積層 コンデンサとしての機能を喪失することがある。 また、 焼成温度が低すぎると、 セラミックグリーンシートを焼成してなるセラミック層と金属メツキ膜 (内部電 極) との密着性が低くなり、 層間剥離等の破損を生じる欠点が誘発される。  Furthermore, in the above-described conventional manufacturing method, when firing a laminate made of a ceramic green sheet, if the peak temperature is too high, the metal forming the metal plating film is melted, so that the internal electrode is formed. It may be finely divided and lose its function as a multilayer capacitor. On the other hand, if the firing temperature is too low, the adhesion between the ceramic layer formed by firing the ceramic green sheet and the metal plating film (internal electrode) becomes low, and defects such as delamination are induced.
本発明の目的は、 剥離性が良好で、 かつ湾曲のない金属メツキ膜を得ることが できる金属メッキ膜の形成方法を提供することにある。  An object of the present invention is to provide a method for forming a metal plating film that can obtain a metal plating film having good peelability and no curvature.
また本発明の他の目的は、 導体層の厚みを薄くして小型の電子部品を製作する ことができ、 しかも導体層や誘電体層に変形や破損等の不具合が生じるのを有効 に防止することができる電子部品の製造方法を提供することにある。  Another object of the present invention is to make it possible to manufacture a small-sized electronic component by reducing the thickness of the conductor layer, and to effectively prevent the conductor layer and the dielectric layer from being deformed or damaged. To provide a method for manufacturing an electronic component.
また本発明の他の目的は、 剥離性が良好で、 かつ湾曲のない金属メツキ膜を得 ることができる、 生産性に優れたメヅキ膜形成装置を提供することにある。  It is another object of the present invention to provide a metal film forming apparatus excellent in productivity and capable of obtaining a metal film having good peelability and no curvature.
<発明の開示 >  <Disclosure of Invention>
本発明の金属メツキ膜の形成方法は、 表面の形状が凸曲面状の基体を用意し、 当該基体の表面に金属メツキ膜を析出させ、 当該金属メツキ膜を前記基体より剥 離させることによって金属メツキ膜を得る方法である。  In the method for forming a metal plating film of the present invention, a metal substrate having a convex curved surface is prepared, a metal plating film is deposited on the surface of the substrate, and the metal plating film is separated from the substrate. This is a method for obtaining a plating film.
また、 本発明の電子部品の製造方法は、 基体の表面に金属メツキ膜を析出させ る工程 Aと、 当該金属メヅキ膜を前記基体より剥離させて、 当該金属メヅキ膜と 誘電体シ一トとを互いに付着させる工程 Bと、 前記金属メツキ膜が形成された誘 電体シ一トを、 前記金属メツキ膜を形成している金属の融点よりも低い温度で熱 処理することによって、 誘電体層上に導体層が被着された部分を備えた電子部品 を得る工程 Cと、 を含む方法である。 Further, in the method for manufacturing an electronic component according to the present invention, there is provided a step A of depositing a metal plating film on the surface of a base, and the metal plating film is peeled from the substrate to form a metal plating film. A step B of adhering the dielectric sheet to each other; and heat-treating the dielectric sheet on which the metal plating film is formed at a temperature lower than the melting point of the metal forming the metal plating film. Step C) of obtaining an electronic component having a portion in which a conductor layer is applied on a dielectric layer.
以上の本発明によれば、 金属メツキ膜が析出される前記基体の表面を凸曲面状 になしたことから、 基体の表面には断面が凸曲面状の金属メツキ膜が形成される ようになる。 このようにして得られる金属メヅキ膜中には内部応力 (引張応力) が生じるため、 金属メツキ膜を基体より剥離させて誘電体シートに転写すると、 金属メヅキ膜は平坦化する方向に変形する。 したがって、 金属メツキ膜が転写さ れた誘電体シートなどの被転写材において、 金属メツキ膜に変形や破損を発生す るのが有効に防止され、 生産性の向上に供することができる。  According to the present invention described above, since the surface of the base on which the metal plating film is deposited is formed into a convex curved surface, a metal plating film having a convex cross section is formed on the surface of the base. . Since an internal stress (tensile stress) is generated in the metal print film thus obtained, when the metal print film is peeled off from the substrate and transferred to a dielectric sheet, the metal print film is deformed in the direction of flattening. Therefore, it is possible to effectively prevent the metal plating film from being deformed or damaged in a material to be transferred such as a dielectric sheet to which the metal plating film has been transferred, thereby improving the productivity.
また、 上述した金属メツキ膜は、 金属メツキ膜を形成する金属の融点より低い 温度で誘電体シートと共に熱処理されることから、 熱処理の際、 金属メツキ膜が 熔けて金属メッキ膜が分断されることはなく、 連続性に優れた導体層を形成する ことができる。  In addition, since the metal plating film described above is heat-treated together with the dielectric sheet at a temperature lower than the melting point of the metal forming the metal plating film, the metal plating film is melted and the metal plating film is separated during the heat treatment. Therefore, a conductor layer having excellent continuity can be formed.
前記金属メツキ膜の形成方法において、 前記基体には、 例えば、 円柱状の表面 を有しているものを使用することができる。 前記基体の表面の一部をメツキ槽中 のメツキ液に浸漬し、 前記基体を軸周りに回転させながら、 前記基体と前記メッ キ槽との間に電界を印加することにより、 前記基体の表面に金属メツキ膜を析出 させることができる。  In the method for forming a metal plating film, for example, a substrate having a columnar surface can be used as the substrate. A part of the surface of the substrate is immersed in a plating solution in a plating tank, and an electric field is applied between the substrate and the plating tank while rotating the substrate around an axis. A metal plating film can be deposited on the substrate.
また、 本発明のメツキ膜形成装置は、 メツキ液が注入されるメツキ槽と、 円柱 状の表面を有し、 表面の一部が前記メツキ液に浸潰されるように配置された回転 可能な基体と、 前記基体と前記メツキ槽の間に電界を印加する電解印加手段と、 前記基体の回転方向下流側に、 前記メツキ液より引き上げた基体表面上の金属メ ツキ膜を、 被転写材を基体に対して押圧する転写手段とを有するものである。 金属メツキ膜が析出される基体を円筒状もしくは円柱状に成し、 金属メツキ膜 の析出工程において、 前記基体を軸周りに回転させながら、 その一部をメヅキ槽 のメツキ液に浸漬するとともに、 前記基体と前記メツキ槽との間のメツキ液に電 界を印加して金属メッキ膜を形成することにより、 金属メッキ膜を連続的に形成 して生産性の向上に供することができる。 また、 基体とメツキ槽との間の電流密 度を略均一になして、 金属メツキ膜を略一定の厚みで形成することができるよう になる。 Further, the plating film forming apparatus of the present invention comprises: a plating tank into which a plating liquid is injected; and a rotatable substrate having a cylindrical surface, and a part of the surface being arranged to be immersed in the plating liquid. An electrolysis applying means for applying an electric field between the substrate and the plating tank; a metal plating film on the surface of the substrate pulled up from the plating solution on the downstream side in the rotational direction of the substrate; And a transfer means for pressing against The substrate on which the metal plating film is deposited is formed in a cylindrical or columnar shape. In the deposition process of the metal plating film, a part of the substrate is immersed in the plating liquid in the plating tank while rotating the substrate around an axis. An electric field is applied to the plating solution between the substrate and the plating tank to form a metal plating film, thereby continuously forming a metal plating film. As a result, productivity can be improved. Also, the current density between the base and the plating tank is made substantially uniform, so that the metal plating film can be formed with a substantially constant thickness.
前記メツキ液より引き上げた基体表面上の金属メヅキ膜を、 被転写材を基体に 対して押圧した後、 金属メツキ膜を一旦、 樹脂フィルム上に転写し、 誘電体シ一 トをその上から付着させるか、 又は、 金属メツキ膜を誘電体シート上に再転写す るようにすれば、 誘電体シートが硬質材料により形成されている基体表面のマス ク層に対して直接、 接触することはないことから、 誘電体シートをマスク層との 接触によって損傷させることなく、 金属メッキ膜を誘電体シートに対して良好に 付着させることができるという利点がある。  After pressing the transfer material against the substrate, the metal plating film on the substrate surface pulled up from the plating liquid is transferred to the resin film once, and the dielectric sheet is adhered from above. Or if the metal plating film is re-transferred onto the dielectric sheet, the dielectric sheet does not come into direct contact with the mask layer on the substrate surface formed of the hard material. Therefore, there is an advantage that the metal plating film can be favorably adhered to the dielectric sheet without damaging the dielectric sheet by contact with the mask layer.
前記基体より当該金属メツキ膜を剥離させる際に、 誘電体シートが形成された 樹脂フィルムの誘電体シ一ト上に金属メヅキ膜を直接転写するようにしてもよい。 この方法によれば、 誘電体シートが硬質材料により形成されている基体表面のマ スク層に対して接触するものの、 樹脂フィルムを介在させないで、 直接、 誘電体 シート上に金属メツキ膜を転写できるので、 装置構成を簡単にすることができ る。  When peeling the metal plating film from the base, the metal plating film may be directly transferred onto a dielectric sheet of a resin film on which a dielectric sheet is formed. According to this method, although the dielectric sheet comes into contact with the mask layer on the surface of the base formed of a hard material, the metal plating film can be directly transferred onto the dielectric sheet without the interposition of a resin film. Therefore, the device configuration can be simplified.
また、 前記基体より当該金属メツキ膜を剥離させて樹脂フィルムに転写した後 に、 当該樹脂フィルムに転写された金属メツキ膜を覆うように、 誘電体スラリー を付着させ、 誘電体スラリーが付着した樹脂フィルムを乾燥させてもよい。 この 方法によれば、 樹脂フィルム上の金属メヅキ膜を誘電体シートの内部に埋設させ ることができる。 これにより、 金属メヅキ膜の存在する部位と存在しない部位と の間に段差を形成することなく誘電体シ一トを略平坦に形成することができる。 このような誘電体シートを複数枚積層しても、 金属メツキ膜の変形は良好に抑制 されることから、 これによつてもデラミネーシヨン等の電気的不良を有効に防止 することができる。  Further, after the metal plating film is peeled from the substrate and transferred to a resin film, a dielectric slurry is adhered so as to cover the metal plating film transferred to the resin film, and the resin to which the dielectric slurry has adhered is attached. The film may be dried. According to this method, the metal print film on the resin film can be embedded in the dielectric sheet. Thus, the dielectric sheet can be formed substantially flat without forming a step between the portion where the metal make-up film exists and the portion where the metal make-up film does not exist. Even if a plurality of such dielectric sheets are stacked, the deformation of the metal plating film can be suppressed well, so that electrical defects such as delamination can be effectively prevented.
本発明において、 前記基体の表面に、 前記金属メツキ膜の析出領域を規制する マスク層を形成してもよい。 該マスク層は、 例えばダイヤモンド 'ライク '力一 ボン (D L C) もしくはグラフアイト ·ライク ·カーボン (G L C) から成って いる。 この場合、 比較的厚みの薄いマスク層によって十分な電気絶縁性を得るこ とができる上に、 金属メツキ膜を基体より剥離させる際の剥離性を良好となすこ とができ、 しかも前記 D L Cや G L Cは硬質であることから、 金属メツキ膜を誘 電体シ一トに直接、 転写する場合には、 誘電体シートがマスク層表面に付着する ことは殆どなく、 安定した転写を繰り返すことができるという利点がある。 In the present invention, a mask layer for regulating a deposition region of the metal plating film may be formed on a surface of the base. The mask layer comprises, for example, diamond 'like' carbon (DLC) or graphite-like carbon (GLC). In this case, sufficient electrical insulation can be obtained with a relatively thin mask layer. In addition to the above, the metal plating film can be made to have good releasability when it is peeled from the substrate, and since the DLC and GLC are hard, the metal plating film can be used as a dielectric sheet. In the case of direct transfer, there is an advantage that the dielectric sheet hardly adheres to the mask layer surface and stable transfer can be repeated.
本発明において、 前記金属メツキ膜中に非導電性微粒子が含有されていること が好ましい。 このような非導電性微粒子が含有されている金属メヅキ膜は、 前記 メツキ液に、 非導電性微粒子を含ませておけば、 金属メツキ膜が基体表面に析出 する際に、 当該非導電性微粒子が、 金属成分に付着することによって得られる。 非導電性微粒子が基体表面に析出した金属成分に付着することによって非導電性 微粒子を含む金属メヅキ膜が形成されることから、 金属メヅキ膜と基体との密着 力が比較的小さくなり、 金属メツキ膜を基体から容易に剥離することが可能とな る。  In the present invention, it is preferable that the metal plating film contains non-conductive fine particles. If the metal plating film containing such non-conductive fine particles contains the non-conductive fine particles in the plating solution, the non-conductive fine particles are deposited when the metal plating film is deposited on the substrate surface. Is obtained by adhering to the metal component. Since the metal conductive film containing the non-conductive fine particles is formed by the non-conductive fine particles adhering to the metal component deposited on the surface of the substrate, the adhesion between the metal conductive film and the substrate becomes relatively small, and The film can be easily peeled from the substrate.
本発明において、 積層された金属メツキ膜を含む誘電体シートの熱処理時のピ 一ク温度が、 金属メツキ膜を構成している金属の再結晶温度よりも高いことが好 ましい。 上述した金属メツキ膜は、 金属メツキ膜を形成する金属の融点より低く、 且つ再結晶温度よりも高い温度で、 誘電体シ一トと共に熱処理されることから、 熱処理の際、 金属メツキ膜が熔けて金属メツキ膜が分断されることはなく連続性 に優れた導体層を形成することができるとともに、 金属メヅキ膜を形成している 金属の再結晶化が進むことで金属が適度に軟化し、 誘電体層に対する密着性に優 れた良好な導体層を得ることができる。  In the present invention, it is preferable that the peak temperature during heat treatment of the dielectric sheet including the laminated metal plating film is higher than the recrystallization temperature of the metal constituting the metal plating film. The metal plating film described above is heat-treated with the dielectric sheet at a temperature lower than the melting point of the metal forming the metal plating film and higher than the recrystallization temperature, so that the metal plating film melts during the heat treatment. The metal plating film is not divided, and a conductive layer having excellent continuity can be formed.Also, the metal that forms the metal plating film is recrystallized to moderately soften the metal. A good conductor layer having excellent adhesion to the dielectric layer can be obtained.
さらに本発明において、 金属メッキ膜を前記基体より剥離させて樹脂フィルム に転写した後、 その樹脂フィルムに対し、 その金属メツキ膜が形成された面の、 金属メツキ膜の存在する部位と存在しない部位の双方に対して、 金属メツキ膜と 略等しい厚みの薄い誘電体シートを押圧して、 樹脂フィルムの金属メヅキ膜の存 在しない部位に誘電体シートを選択的に付着させてもよい。 粘着層を有した樹脂 フィルムの一主面に金属メツキ膜を転写し、 この金属メヅキ膜が存在する部位と 存在しない部位の双方に対して金属メツキ膜と略等しい厚みの誘電体シートを押 圧し、 粘着層が露出する部位 (金属メヅキ膜の存在しない部位) にのみ誘電体シ 一トを選択的に付着させることにより、 樹脂フィルム上には金属メッキ膜と誘電 体シ一トとが間に大きな隙間を形成することなく略面一に付着 ·形成されること となる。 従って、 これらを樹脂フィルムより剥離させた上、 間に誘電体シート等 を介して複数枚積層することにより誘電体シ一トの積層体を形成した場合、 積層 体の両主面を平坦に成すことができることから、 これを熱処理して電子部品を製 作しても、 デラミネ一シヨン等の電気的不良が生じることは殆どなく、 信頼性及 び生産性に優れた電子部品を得ることができる。 Further, in the present invention, after the metal plating film is peeled off from the substrate and transferred to a resin film, a portion of the surface where the metal plating film is formed and a portion where the metal plating film is not present are present on the resin film. A thin dielectric sheet having a thickness substantially equal to the metal plating film may be pressed against both of them to selectively adhere the dielectric sheet to a portion of the resin film where the metal plating film does not exist. A metal plating film is transferred to one main surface of a resin film having an adhesive layer, and a dielectric sheet having a thickness substantially equal to that of the metal plating film is pressed against both a portion where the metal plating film exists and a portion where the metal plating film does not exist. By selectively adhering a dielectric sheet only to a portion where the adhesive layer is exposed (a portion where no metal plating film is present), a metal plating film and a dielectric film are formed on the resin film. The body sheet adheres and forms substantially flush with each other without forming a large gap therebetween. Therefore, when these are separated from the resin film and a plurality of dielectric sheets are laminated with a dielectric sheet or the like interposed therebetween to form a laminate of dielectric sheets, both main surfaces of the laminate are made flat. Therefore, even if an electronic component is manufactured by heat-treating this, there is almost no electrical failure such as delamination, and an electronic component having excellent reliability and productivity can be obtained. .
本発明のメツキ膜形成装置において、 前記基体の表面が、 前記基体の中核部に 対して着脱可能に支持された複数のブロックに区画されているものとしてもよい。 この構成であれば、 ブロックを単位とする部材毎にマスク形成等の加工やメンテ ナンスを行うことができ、 設備の取り扱いや組み立てを簡便になすことができ る。  In the plating film forming apparatus of the present invention, the surface of the base may be divided into a plurality of blocks detachably supported with respect to a core of the base. With this configuration, processing such as mask formation and maintenance can be performed for each member in units of blocks, and the handling and assembly of the equipment can be simplified.
また、 本発明のメツキ膜形成装置において、 前記メツキ槽に、 前記基体よりも 正の電位に保持されて基体表面に金属メヅキ膜を析出させる第 1の電位領域と、 該第 1の電位領域よりも前記基体の回転方向下流側に位置し、 且つ、 前記基体よ りも負の電位に保持されて基体表面に析出した金属メツキ膜の表層部を前記メヅ キ液中に再溶解させる第 2の電位領域とを設けた構成とすれば、 一旦形成された 金属メツキ膜の表面部分、 特に基体との接触部分をメツキ液中に再溶解せしめ、 金属メヅキ膜と基体との間に微小な隙間が生じさせることにより、 金属メヅキ膜 の剥離性を向上させることができる。 両領域を電気的な分離は、 前記第 1の電位 領域及び第 2の電位領域間に絶縁部材を介在させることにより、 実現することが できる。  Further, in the plating film forming apparatus of the present invention, the plating tank has a first potential region that is held at a more positive potential than the substrate and deposits a metal plating film on the substrate surface. A second layer which is located downstream of the substrate in the rotation direction and is kept at a negative potential with respect to the substrate and re-dissolves the surface layer of the metal plating film deposited on the surface of the substrate in the plating solution. In this configuration, the surface portion of the metal plating film once formed, particularly the contact portion with the substrate, is redissolved in the plating solution, and a minute gap is formed between the metal plating film and the substrate. By this, the releasability of the metal print film can be improved. Electrical isolation between the two regions can be realized by interposing an insulating member between the first potential region and the second potential region.
<図面の簡単な説明 >  <Brief description of drawings>
図 1は、 本発明の電子部品の製造方法によって製作される積層コンデンサを示 す断面図である。  FIG. 1 is a cross-sectional view showing a multilayer capacitor manufactured by the method for manufacturing an electronic component of the present invention.
図 2は、 メヅキ槽 1 8の中に基体 9を回転可能に配置し、 基体 9に対してメヅ キ槽 1 8と反対の側に金属メツキ膜の転写手段を配置した、 本発明のメツキ膜形 成装置を模式的に示す側面図である。  FIG. 2 shows the plating of the present invention in which a substrate 9 is rotatably arranged in a plating tank 18 and a transfer means of a metal plating film is arranged on a side of the substrate 9 opposite to the plating tank 18. It is a side view which shows a film forming apparatus typically.
図 3は、 このメツキ S莫形成装置に用いられる基体 9を上 (図 2の A方向) から 見た平面図である。 図 4は、 このメツキ膜形成装置に用いられる基体表面の構造を示す拡大側断面 図である。 FIG. 3 is a plan view of the base 9 used in this plating device for forming a plate S, viewed from above (A direction in FIG. 2). FIG. 4 is an enlarged sectional side view showing the structure of the substrate surface used in the plating film forming apparatus.
図 5は、 樹脂フィルム 2 0に、 一旦転写した金属メツキ膜 8を、 樹脂フィルム 2 5上に保持されているセラミックグリーンシート 2 6の表面に再度転写させる ことようにした本発明のメッキ膜形成装置を模式的に示す側面図である。  FIG. 5 shows a plating film of the present invention in which the metal plating film 8 once transferred to the resin film 20 is transferred again to the surface of the ceramic green sheet 26 held on the resin film 25. It is a side view which shows an apparatus typically.
図 6は、 基体 9上に析出させた金属メツキ膜 8を、 樹脂フィルム 2 5上で保持 されているセラミックグリーンシート 2 6の主面に直接、 転写するようにした本 発明のメツキ膜形成装置を模式的に示す側面図である。  FIG. 6 shows a plating film forming apparatus of the present invention in which a metal plating film 8 deposited on a substrate 9 is directly transferred to a main surface of a ceramic green sheet 26 held on a resin film 25. It is a side view which shows typically.
図 7は、 基体 9から金属メヅキ膜 8が転写された樹脂フィルム 2 0に対して、 金属メツキ膜 8の存在しない部分に、 段差を埋めるための薄い誘電体シート 4 3 を形成する方法を説明するための断面図である。  FIG. 7 illustrates a method of forming a thin dielectric sheet 43 for filling a step in a portion where the metal plating film 8 does not exist, with respect to the resin film 20 on which the metal plating film 8 is transferred from the base 9. FIG.
図 8は、 金属メッキ膜 8が転写された樹脂フイルム 2 0の主面に、 金属メヅキ 膜 8を覆うようにしてセラミヅクスラリー 3 1を塗布し、 これを乾燥させて、 金 属メッキ膜 8が埋設されたセラミックグリーンシート 2 6を得るようにした本発 明のメツキ膜形成装置を模式的に示す側面図である。 ' 図 9は、 メツキ槽 1 8が、 陽極として機能する高電位領域 1 8 Aと、 陰極とし て機能する低電位領域 1 8 Bとに区画されている本発明のメツキ膜形成装置を模 式的に示す側面図である。  FIG. 8 shows that a ceramic slurry 31 is applied to the main surface of the resin film 20 to which the metal plating film 8 has been transferred so as to cover the metal make-up film 8, which is dried to form a metal plating film 8. FIG. 1 is a side view schematically showing a plating film forming apparatus of the present invention in which ceramic green sheets 26 having embedded therein are obtained. '' FIG. 9 schematically shows the plating film forming apparatus of the present invention in which plating tank 18 is divided into a high-potential area 18 A functioning as an anode and a low-potential area 18 B functioning as a cathode. FIG.
である。 It is.
図 1 0は、 基体 4の表面に複数の絶縁隔壁材 3 5を所定の間隔で配置するとと もに、 絶縁材 3 4上であって絶縁隔壁材 3 5の間に、 導電性膜 6の上にマスク層 7を形成したプロック部材 3 6をはめ込むようにして基体 4を構成した本発明の メツキ膜形成装置を模式的に示す側面図である。  FIG. 10 shows that a plurality of insulating partition members 35 are arranged at predetermined intervals on the surface of the base 4, and that the conductive film 6 is provided on the insulating members 34 and between the insulating partition members 35. FIG. 2 is a side view schematically showing a plating film forming apparatus of the present invention in which a base member 4 is formed by fitting a block member 36 on which a mask layer 7 is formed.
図 1 1は、 基体 4の表層部のみならず中核部をも含めてブロック化した本発明 のメツキ膜形成装置を模式的に示す側面図である。  FIG. 11 is a side view schematically showing the plating film forming apparatus of the present invention in which not only the surface layer of the base 4 but also the core is blocked.
<発明を実施するための最良の形態 >  <Best mode for carrying out the invention>
以下、 本発明の実施の形態を、 添付図面を参照しながら詳細に説明する。 一積層コンデンサ一  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. One multilayer capacitor
図 1は本発明の電子部品の製造方法によって製作した積層コンデンサを示す断 面図である。 同図に示す積層コンデンサ 1は、 複数の層に重ねられた誘電体層 4 と、 各誘電体層 4に形成された内部電極 3と、 誘電体層 4を上下から挟む絶縁層 2と、 外部電極 5とで構成されている。 FIG. 1 is a cross-sectional view showing a multilayer capacitor manufactured by a method for manufacturing an electronic component according to the present invention. FIG. The multilayer capacitor 1 shown in FIG. 1 includes a dielectric layer 4 stacked on a plurality of layers, an internal electrode 3 formed on each dielectric layer 4, an insulating layer 2 sandwiching the dielectric layer 4 from above and below, It is composed of electrodes 5.
この積層コンデンサ 1は、 所定の誘電率を有した誘電体層 4に内部電極 3を形 成して、 交互に積層して直方体形状の積層体を形成したものである。 当該積層体 の上下両面には、 誘電体層 4と同一材料からなる絶縁層 2を形成している。 更に 前記積層体の両端部に内部電極 3と電気的に接続される外部電極 5を被着 ·形成 している。 この積層コンデンサ 1の外形は、 例えば、 巾 1 . 2 mm、 長さ 2 mm、 高さ 1 . 2 mmの寸法にて形成される。  In the multilayer capacitor 1, internal electrodes 3 are formed on a dielectric layer 4 having a predetermined dielectric constant, and are alternately laminated to form a rectangular parallelepiped laminate. An insulating layer 2 made of the same material as the dielectric layer 4 is formed on both upper and lower surfaces of the laminate. Further, external electrodes 5 that are electrically connected to the internal electrodes 3 are formed on both ends of the laminate. The outer shape of the multilayer capacitor 1 is formed, for example, with dimensions of 1.2 mm in width, 2 mm in length, and 1.2 mm in height.
前記誘電体層 4は、 セラミヅク材料又は有機材料により形成される。 セラミヅ ク材料から成る場合、 例えば、 チタン酸バリウム、 チタン酸カルシウム、 チタン 酸ストロンチウム等により形成される。 有機材料から成る場合、 例えば、 P E T (ポリエチレンテレフ夕レート) 、 P E N (ポリエチレンナフタレ一ト) 、 P P (ポリプロピレン) 、 P P S (ポリフエ二レンサルファイ ド) 等により形成され る。 誘電体層 4の厚みは、 例えば 1層あたり 1 . 0 z m〜4 . 0 mに設定され、 その積層数は、 例えば 3 0層〜 6 0 0層に設定される。 なお、 絶縁層 2の材質と しては、 誘電体層 4と同様のセラミック材料や有機材料が用いられる。  The dielectric layer 4 is formed of a ceramic material or an organic material. When made of a ceramic material, for example, it is formed of barium titanate, calcium titanate, strontium titanate, or the like. When it is made of an organic material, it is formed of, for example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PP (polypropylene), PPS (polyphenylene sulfide), or the like. The thickness of the dielectric layer 4 is set, for example, from 1.0 zm to 4.0 m per layer, and the number of layers is set, for example, from 30 layers to 600 layers. In addition, as the material of the insulating layer 2, the same ceramic material or organic material as that of the dielectric layer 4 is used.
誘電体層 4間に介在される内部電極 3は、 例えばニッケル、 銅、 銀、 金、 ブラ チナ、 パラジウム、 クロム、 これら金属の合金等から成り、 その厚みは、 例えば 0 . 5 m〜2 . O ^ mに設定される。  The internal electrode 3 interposed between the dielectric layers 4 is made of, for example, nickel, copper, silver, gold, platinum, palladium, chromium, an alloy of these metals, or the like, and has a thickness of, for example, 0.5 m to 2.5 m. Set to O ^ m.
このような誘電体層 4の材質や厚みや積層数, 内部電極 3の対向面積等は、 所 望する積層コンデンサの静電容量などによつて適宜、 決定される。  The material and thickness of the dielectric layer 4 and the number of layers, the facing area of the internal electrodes 3, and the like are appropriately determined depending on the desired capacitance of the multilayer capacitor.
—メツキ膜形成装置一  —Mekki film forming equipment
上述した積層コンデンサは、 図 2〜図 4に示すメッキ膜形成装置を用いて製造 される。  The multilayer capacitor described above is manufactured using the plating film forming apparatus shown in FIGS.
図 2は、 本発明のメツキ膜形成装置を模式的に示す側面図、 図 3はこのメツキ fl莫形成装置に用いられる基体 9を上 (図 2の A方向) から見た平面図、 図 4はこ のメツキ膜形成装置に用いられる基体表面の構造を示す拡大側断面図である。 メヅキ膜形成装置は、 メヅキ槽 1 8の中に基体 9を回転可能に配置し、 基体 9 に対してメツキ槽 1 8と反対の側に転写手段を配置することにより構成されてい る。 FIG. 2 is a side view schematically showing the plating film forming apparatus of the present invention. FIG. 3 is a plan view of the substrate 9 used in the plating fluge forming apparatus as viewed from above (A direction in FIG. 2). FIG. 2 is an enlarged sectional side view showing a structure of a substrate surface used in the plating film forming apparatus. The printing film forming apparatus includes a base 9 rotatably arranged in a printing tank 18. The transfer means is arranged on the opposite side of the plating tank 18 from the transfer means.
以下、 メヅキ膜形成装置の各構成要素について説明する。 なお、 以下に述べる 構成要素のうち、 例えば洗浄手段、 洗浄液吸引手段、 メツキ液吸引手段及び循環 装置は、 本発明のメツキ膜形成装置における必須の構成要素ではなく、 付加的な 構成要素として位置づけられるものである。  Hereinafter, each component of the metal film forming apparatus will be described. In addition, among the components described below, for example, the cleaning unit, the cleaning liquid suction unit, the plating liquid suction unit, and the circulation device are not essential components in the plating film forming apparatus of the present invention but are positioned as additional components. Things.
=基体=  = Substrate =
基体 9はメツキ膜形成装置の陰極として機能する。 例えば、 ステンレス、 鉄、 アルミニウム、 銅、 ニッケル、 チタン、 タンタル、 モリブデン等の導電性を備え た金属により形成されている。 基体 9の表面には、 その全周にわたり導電性膜 6 (図 4参照) が形成されており、 該導電性膜 6の表面には導電性膜 6を所定パ夕 —ンに露出させるマスク層 7が形成される。 以下、 基体 9の表面と導電性膜 6と を含めて 「基体の表面」 ということがある。  The base 9 functions as a cathode of the plating film forming apparatus. For example, it is formed of a conductive metal such as stainless steel, iron, aluminum, copper, nickel, titanium, tantalum, and molybdenum. A conductive film 6 (see FIG. 4) is formed on the entire surface of the base 9, and a mask layer for exposing the conductive film 6 to a predetermined pattern is formed on the surface of the conductive film 6. 7 is formed. Hereinafter, the surface of the substrate 9 and the conductive film 6 may be referred to as “the surface of the substrate”.
このような基体 9の表面は、 円柱状であり、 曲率半径は、 例えば 5 0 mm〜2 0 0 O mmの範囲に設定され、 その表面粗さは、 例えば、 最大高さ でいえば 0 . 5 m以下に設定される。 すなわち R y≤0 . 5 Aimである。  The surface of such a substrate 9 is cylindrical, the radius of curvature is set, for example, in the range of 50 mm to 200 mm, and the surface roughness is, for example, 0. Set to 5 m or less. That is, R y ≤ 0.5 Aim.
基体 9の表面に形成される導電性膜 6としては、 例えば、 比抵抗が 1 0 _2 Ω c m以下の材料が用いられる。 電解メツキの際の電流密度を均一にするためには、 比抵抗が 1 0— 3 Ω c m以下の材料が好ましい。 比抵抗が 1 0— 3 Q c m以下の導 電性膜 6の材料として、 例えば、 窒ィ匕チタンアルミニウム、 窒化クロム、 窒ィ匕チ タン、 窒化チタンクロム、 炭窒化チタン、 炭化チタン、 導電性 D L C (ダイヤモ ンド ·ライク .カーボン) 等を用いることができる。 また、 前記導電性膜 6の材 料のうち、 金属メツキ膜 8の剥離性を良好となすには、 窒化チタンアルミニウム、 窒化クロム、 窒化チタン、 窒化チダンクロム、 炭窒化チタン等で導電性膜 6を形 成するのが好ましい。 特に、 耐久性を高めるには、 窒化チタン等で導電性膜 6を 形成するのが好ましい。 なお、 導電性膜 6は、 従来周知の薄膜形成法、 例えば、 スパヅタリング法、 イオンプレーティング法、 化学的気相成長法 (C V D ) 等に よって基体 9の表面に形成される。 As the conductive film 6 formed on the surface of the base 9, for example, a material having a specific resistance of 10 2 Ωcm or less is used. In order to make the current density uniform during electroplating, a material having a specific resistance of 10 to 3 Ωcm or less is preferable. Examples of the material of the conductive film 6 having a specific resistance of 10 to 3 Qcm or less include, for example, titanium aluminum nitride, chromium nitride, titanium nitride, titanium chromium nitride, titanium carbonitride, titanium carbide, and titanium carbide. DLC (diamond-like carbon) or the like can be used. Further, among the materials of the conductive film 6, in order to improve the releasability of the metal plating film 8, the conductive film 6 may be formed of titanium aluminum nitride, chromium nitride, titanium nitride, titanium nitride nitride, titanium carbonitride, or the like. Preferably, it is formed. In particular, in order to enhance the durability, it is preferable to form the conductive film 6 with titanium nitride or the like. The conductive film 6 is formed on the surface of the base 9 by a conventionally known thin film forming method, for example, a sputtering method, an ion plating method, a chemical vapor deposition method (CVD), or the like.
導電性膜 6の表面に形成されるマスク層 7は、 金属メツキ膜 8の析出領域を規 制するためのものである。 マスク層 7は、 十分な電気絶縁性を備えることが好ま しい。 例えば、 その比抵抗は、 1 0 4 Ω · c m以上に設定するとよい。 ビヅカー ス硬度 H vは例えば 1 0 0 0以上、 摩擦係数 a は例えば 0 . 3以下の材料を用 いる。 このような諸特性を満足する材料としては、 例えば、 アモルファス構造の D L Cや G L C (グラフアイト ·ライク ·力一ボン) 等が挙げられる。 The mask layer 7 formed on the surface of the conductive film 6 defines the deposition region of the metal plating film 8. It is to control. It is preferable that the mask layer 7 has sufficient electric insulation. For example, the resistivity may be set to more than 1 0 4 Ω · cm. A material having a Beakers hardness Hv of, for example, 100 or more and a friction coefficient a of, for example, 0.3 or less is used. Materials satisfying such characteristics include, for example, amorphous structure DLC and GLC (Graphite-like-force-carbon).
このように、 基体 9の表面に金属メヅキ膜 8の析出領域を規制するマスク層 7 を形成しておくことにより、 フォトエツチング等の煩雑な工程を経ることなく、 基体 9をメヅキ液 1 9に浸漬して、 後述するメヅキ槽 1 8と基体 9との間に電界 を印加するだけで所望するパターンの金属メツキ膜 8が容易に得られる。  As described above, by forming the mask layer 7 for regulating the deposition region of the metal make-up film 8 on the surface of the base 9, the base 9 can be converted into the make-up liquid 19 without a complicated process such as photoetching. The metal plating film 8 having a desired pattern can be easily obtained simply by immersion and applying an electric field between the plating tank 18 and the substrate 9 described later.
前記マスク層 7の厚みは、 金属メツキ膜 8の厚みと同じか、 或いは、 金属メッ キ膜 8の厚みよりもやや厚く形成することが好ましい。 これは、 マスク層 7の厚 みを越えて成長した金属メツキ膜 8がマスク層 7上に広がるのを防止するためで ある。  It is preferable that the thickness of the mask layer 7 is the same as the thickness of the metal plating film 8 or slightly larger than the thickness of the metal plating film 8. This is to prevent the metal plating film 8 grown beyond the thickness of the mask layer 7 from spreading on the mask layer 7.
ここで、 マスク層 7の側面と底面との間に形成される角部の角度ひ(図 4参照) は 9 0度以下、 例えば 9 0度〜 8 5度に設定しておくことが好ましい。 このよう に 9 0度以下に設定しておけば、 基体 9と接する金属メツキ膜 8の下面の面積が、 その上面の面積よりも小さくなることから、 金属メヅキ膜 8を樹 S旨フイルム 2 0 等に転写する際、 金属メヅキ膜 8の外周部がマスク層 7に引つ掛かりにくくなり、 金属メツキ膜 8の剥離を容易することができる。  Here, the angle of the corner formed between the side surface and the bottom surface of the mask layer 7 (see FIG. 4) is preferably set to 90 degrees or less, for example, 90 degrees to 85 degrees. If the angle is set to 90 degrees or less, the area of the lower surface of the metal plating film 8 in contact with the base 9 becomes smaller than the area of the upper surface. When transferring to the like, the outer periphery of the metal plating film 8 is less likely to be caught on the mask layer 7, and the metal plating film 8 can be easily separated.
前記マスク層 7は、 例えば、 D L C , G L C等を従来周知のスパッタリング法、 イオンプレーティング法、 C V D法等の薄膜形成法によって基体 9の表面に所定 厚みに被着 '形成し、 しかる後、 従来周知のフォトェヅチング法等を採用して、 複数個の開口部を有したパターンに加工することによって形成される。 前記開口 部は、 金属メツキ膜 8の析出領域に対応する部位となる。  The mask layer 7 is formed, for example, by applying DLC, GLC, or the like to a predetermined thickness on the surface of the substrate 9 by a conventionally known thin film forming method such as a sputtering method, an ion plating method, and a CVD method. It is formed by processing into a pattern having a plurality of openings by employing a well-known photo-etching method or the like. The opening is a portion corresponding to the deposition region of the metal plating film 8.
マスク層 7の材質として用いられる D L Cや G L Cは、 その電気抵抗が比較的 高いことから、 マスク層 7の表面にメツキが析出することはない上に、 表面の剥 離性が良好で、 摩擦抵抗も小さい。 従って、 金属メヅキ膜 8を被転写体である樹 脂フィルム 2 0等に対して転写する際、 被転写体が損傷を受けることは少なくな る。 このように、 マスク層 7の材質を選ぶことにより、 基体 9の耐久性が高めら れ、 長期にわたって繰り返し使用しても高品質の金属メヅキ膜 8を得ることがで ぎる。 DLC and GLC used as the material of the mask layer 7 have relatively high electric resistance, so that no plating is deposited on the surface of the mask layer 7 and the surface has good peelability and friction resistance. Is also small. Therefore, when the metal print film 8 is transferred to the resin film 20 or the like as the transfer target, the transfer target is less likely to be damaged. As described above, by selecting the material of the mask layer 7, the durability of the base 9 is improved. As a result, a high quality metal plating film 8 can be obtained even when used repeatedly over a long period of time.
以上のような基体 9は、 図 2に示すように、 回転軸 1 0によって回転可能に支 持されるようになっている。 この回転軸 1 0を電動機の主軸に連結して、 電動機 の回転運動を伝達することにより基体 9を軸周りに回転させる。 そしてこの回転 軸 1 0は、 回転ブラシを介して電源装置 1 1に接続され、 これによつて基体 9に 負の電圧が印加される。 すなわち、 基体 9がメツキ膜形成装置の陰極として機能 することとなる。  The base 9 as described above is rotatably supported by a rotating shaft 10 as shown in FIG. The rotating shaft 10 is connected to the main shaft of the electric motor, and the base 9 is rotated around the axis by transmitting the rotating motion of the electric motor. The rotating shaft 10 is connected to the power supply 11 via a rotating brush, whereby a negative voltage is applied to the base 9. That is, the base 9 functions as a cathode of the plating film forming apparatus.
=メヅキ槽 =  = Make tank =
メヅキ槽 1 8は、 メツキ膜形成装置の陽極として機能し、 また同時に、 その内 部でメヅキ液 1 9を満たすことによりメヅキ浴を形成するための容器として機能 する。  The printing tank 18 functions as an anode of the plating film forming apparatus, and at the same time, functions as a container for forming a printing bath by filling the plating liquid 19 therein.
このようなメツキ槽 1 8の内面形状と基体 9の表面とは、 両者間に一定の間隔 が形成されるよう、 両者は、 略同心円状に設置されている。 基体 9の表面とメッ キ槽 1 8の内面との間隔は、 例えば 2 mn!〜 5 0 mmに設定される。  The inner surface shape of the plating tank 18 and the surface of the base 9 are substantially concentrically arranged so that a certain space is formed between them. The distance between the surface of the base 9 and the inner surface of the plating tank 18 is, for example, 2 mn! Set to ~ 50 mm.
メツキ液 1 9は、 後述する循環装置 1 5等によって基体 9とメツキ槽 1 8との 間を所定の流速で流動するようになっている。 かかるメヅキ液 1 9としては、 二 ッケルメツキ膜を形成する場合、 内部応力の少ない金属メツキ膜 8を得るのに適 したスルフアミン酸ニッケルメヅキ液等が好適に用いられる。 このようなスルフ アミン酸ニッケルメツキ液としては、 例えば、 塩化ニッケル 3 0 g/リットル、 スルファミン酸ニッケル 3 0 0 gノリヅトル、 ほう酸 3 0 gZリヅトルの組成を 有した水溶液等が用いられ、 その p H値は、 例えば 3 . 0〜4 . 2に設定される。 特に内部応力の小さな金属メツキ膜 8を得るには、 p H値を 3 . 5〜4 . 0に設 定するとともに、 メツキ液 1 9の温度を 4 5 °C〜5 0 °Cに設定しておくことが好 ましい。  The plating liquid 19 flows between the base 9 and the plating tank 18 at a predetermined flow rate by a circulating device 15 described later. When a nickel plating film is formed, a nickel plating solution suitable for obtaining a metal plating film 8 having a small internal stress is preferably used as the plating solution 19. As such a nickel sulfamate plating solution, for example, an aqueous solution having a composition of 30 g / liter of nickel chloride, 300 g of nickel sulfamate, and 30 g of boric acid is used. The value is set to, for example, 3.0 to 4.2. In particular, in order to obtain a metal plating film 8 having a small internal stress, the pH value is set to 3.5 to 4.0 and the temperature of the plating solution 19 is set to 45 ° C to 50 ° C. It is better to keep it.
そして、 このようなメツキ液 1 9には、 好ましくは、 セラミックや樹脂等から 成る非導電性微粒子 3 0が添加される。  Preferably, non-conductive fine particles 30 made of ceramic, resin, or the like are added to the plating liquid 19.
また、 上述したメツキ液 1 9には、 必要に応じて、 ホウ酸、 ギ酸ニッケル、 酢 酸二ヅケル等から成る p H緩衝剤や、 ラウリル硫酸ナトリウム等から成るピヅト 防止剤、 ベンゼンやナフタレン等の芳香族炭化水素にスルフォン酸、 スルフォン 酸塩、 スルフォンアミ ド、 スルフォンイミド等を付与した化学物質等から成る応 力減少剤、 芳香族スルフォン酸やその誘導体から成る硬化剤、 ブチンジオール、 2ブチン 1 . 4ジオール、 エチレンシアンヒドリン、 ホルムアルデヒド、 クマリ ン、 ピリミジン、 ピラゾール、 イミダゾール等から成る平滑剤等を適宜、 添加し て用いてもよい。 応力減少剤としては、 例えば、 サッカリン、 パラトルエンスル フォンアミ ド、 ベンゼンスルフォンアミ ド、 ベンゼンスルフォンィミ ド、 ベンゼ ンジスルフォン酸ナトリウム、 ベンゼントリスルフォン酸ナトリウム、 ナフ夕レ ンジスルフォン酸ナトリゥム、 ナフ夕レントリスルフォン酸ナトリゥム等が用い られる。 In addition, the above-mentioned plating solution 19 may contain a pH buffer comprising boric acid, nickel formate, nickel acetate, etc., and a pipe comprising sodium lauryl sulfate, if necessary. Inhibitors, stress reducing agents composed of chemical substances obtained by adding sulfonic acid, sulfonate, sulfonamide, sulfonimide, etc. to aromatic hydrocarbons such as benzene and naphthalene, and curing composed of aromatic sulfonic acids and their derivatives An agent such as butyne diol, 2-butyne 1.4 diol, ethylene cyanohydrin, formaldehyde, coumarin, pyrimidine, pyrazole, imidazole and the like may be appropriately added and used. Examples of the stress reducing agent include saccharin, paratoluenesulfonamide, benzenesulfonamide, benzenesulfonimide, sodium benzenedisulfonate, sodium benzenetrisulfonate, sodium naphthalene sulfonate, and Nafrent For example, sodium resulfonate is used.
上述したメヅキ槽 1 8と基体 9との間に電位を印加して、 従来周知の電解メッ キ法を実施することができる。 すなわち、 陰極である基体 9と陽極であるメヅキ 槽 1 8の間に電位を加えることによって、 基体 9の表面のうち、 マスク層 7の存 在しない領域に金属メツキ膜 8が析出する。  By applying a potential between the above-described plating tank 18 and the base 9, a conventionally known electrolytic plating method can be performed. That is, by applying a potential between the base 9 serving as a cathode and the plating tank 18 serving as an anode, the metal plating film 8 is deposited on a region of the surface of the base 9 where the mask layer 7 does not exist.
また、 メヅキ槽 1 8内のメヅキ液 1 9は、 上述したように基体 9とメヅキ槽 1 8との間を常に所定の方向に流動するようになっているため、 金属メツキ膜 8の 膜質を均質なものとなすことができる利点がある。  Further, since the printing liquid 19 in the printing tank 18 always flows between the base 9 and the printing tank 18 in a predetermined direction as described above, the film quality of the metal plating film 8 is reduced. There is an advantage that it can be made homogeneous.
=転写手段二  = Transfer means 2
転写手段は、 金属メツキ膜 8を樹脂フィルム 2 0の一主面に転写する樹脂フィ ルム転写手段と、 セラミックグリーンシート 2 6の一主面を、 樹脂フィルム 2 0 に転写された金属メヅキ膜 8に付着させるセラミックグリーンシート転写手段と で構成されている。 ·  The transfer means includes a resin film transfer means for transferring the metal plating film 8 to one main surface of the resin film 20, and a metal plating film 8 which transfers one main surface of the ceramic green sheet 26 to the resin film 20. And a ceramic green sheet transfer means to be attached to the sheet. ·
樹脂フィルム転写手段は、 送り出し部 2 2と、 加圧ロール 2 3と、 卷き取り部 The resin film transfer means includes a feeding section 22, a pressure roll 23, and a winding section
2 4とで構成されている。 送り出し部 2 2は、 粘着層付きの樹脂フィルム 2 0が 巻かれた口一ル軸を電動機に連結して、 この軸を所定の量だけ回転させて送り出 すためのものである。 加圧ロール 2 3は、 粘着層付きの樹脂フィルム 2 0を回転 しながら、 基体 9に加圧するためのものである。 卷き取り部 2 4は、 加圧ロールConsists of 24 and 4. The delivery section 22 is for connecting a needle shaft on which the resin film 20 with the adhesive layer is wound to a motor, and rotating the shaft by a predetermined amount to send it out. The pressure roll 23 presses the base 9 while rotating the resin film 20 having the adhesive layer. The winding section 24 is a pressure roll
2 3を通過して金属メッキ膜 8が転写された粘着層付きの樹脂フイルム 2 0を一 定の力で卷き取るためのロールからなる。 加圧ロール 23は、 樹脂フィルム 20を基体 9に対して均等に加圧することが できるように、 少なくとも表面部分がウレタンゴムコート、 ネオプレーンゴムコ —ト、 天然ゴムコート等の弾力材料によって被覆されていることが好ましい。 加 圧ロール 23は、 電動機に連結されない回転自在のものであってもよいし、 電動 機を連結して回転動作を行うようにしたものであってもよい。 It is composed of a roll for winding the resin film 20 with the adhesive layer onto which the metal plating film 8 has been transferred after passing through 23 with a constant force. At least the surface of the pressure roll 23 is coated with an elastic material such as urethane rubber coat, neoprene rubber coat, or natural rubber coat so that the resin film 20 can be evenly pressed against the substrate 9. Is preferred. The pressing roll 23 may be a rotatable roller that is not connected to an electric motor, or may be a roller that is connected to an electric motor to perform a rotating operation.
樹脂フィルム 20は、 例えば、 厚み 20 m〜50〃mのポリエチレンテレフ タレ一トフイルム (PETフィルム) 等からなり、 その主面 (金属メツキ膜 8を 転写する面) に、 厚み 0. 05 ζπ!〜 10 zmの粘着層 2 1を形成したものが用 いられる。 粘着層 2 1は、 例えば、 アクリル系 (溶剤系) 、 アクリルェマルジョ ン系 (水系) 、 プチラール系、 フエノール系、 シリコン系、 エポキシ系等の粘着 剤を PETフィルム等の主面に塗布して乾燥することによって得られる。 乾燥後 の粘着力が例えば、 0. 1 N/cmとなるように調整されたものを用いるのが好 ましい。  The resin film 20 is made of, for example, a polyethylene terephthalate film (PET film) having a thickness of 20 m to 50 m, and its main surface (the surface onto which the metal plating film 8 is transferred) has a thickness of 0.05 05π! What formed the adhesive layer 21 of ~ 10 zm is used. The adhesive layer 21 is formed, for example, by applying an acrylic (solvent), acrylemulsion (aqueous), petital, phenol, silicone, or epoxy adhesive to the main surface of a PET film or the like. And dried. It is preferable to use one adjusted so that the adhesive strength after drying is, for example, 0.1 N / cm.
また前記粘着層 2 1は、 比較的低温で確実に熱分解される材料により形成する ことが好ましい。 具体的には、 金属メツキ膜 8が付着した場合であっても、 焼成 に際して熱分解するアクリル系 (溶剤系) 、 アクリルェマルジヨン系 (水系) 、 プチラール系の粘着剤を用レヽるのが好ましく、 これらの中でも剥離性の良好なァ クリル系粘着剤を用いるのが特に好ましい。 このような粘着層 2 1の粘着力は、 例えば、 0. 005N/cm〜l . ON/ cmに設定され、 また転写性を良好と するには 0. 0 1N/cm〜l. 0 N/c mに設定することが好ましく、 さらに 剥離性を良好とするには 0. 0 1N/cn!〜 0. SNZcmに設定することが好 ましい。  Further, it is preferable that the adhesive layer 21 is formed of a material which is surely thermally decomposed at a relatively low temperature. Specifically, even when the metal plating film 8 adheres, it is preferable to use an acrylic (solvent), acrylemulsion (water), or petital-based adhesive that thermally decomposes upon firing. Among these, it is particularly preferable to use an acrylic pressure-sensitive adhesive having good releasability. The adhesive force of such an adhesive layer 21 is set, for example, to 0.005 N / cm to 1.0 N / cm, and to improve the transferability, 0.01 N / cm to 1.0 N / cm. cm is preferable, and for better releasability, 0.0 1N / cn! ~ 0. It is preferable to set to SNZcm.
このような樹脂フィルム 20を、 送り出し部 22によって基体 9側へ順次供給 し、 その粘着層 2 1が形成されている側を金属メヅキ膜 8が形成されている基体 9の表面に対して、 例えば、 1 ONの押圧力で加圧ローラ 23にて加圧する。 こ のことにより樹脂フィルム 20上に金属メツキ膜 8が転写される。 その後、 樹脂 フィルム 20は、 卷き取り部 24によって、 基体 9の表面の周速度と同じ速度で 卷き取られる。  Such a resin film 20 is sequentially supplied to the base 9 side by the sending-out section 22, and the side on which the adhesive layer 21 is formed is, for example, with respect to the surface of the base 9 on which the metal print film 8 is formed. Pressing is performed by the pressing roller 23 with a pressing force of 1 and 1 ON. Thus, the metal plating film 8 is transferred onto the resin film 20. Thereafter, the resin film 20 is wound by the winding unit 24 at the same speed as the peripheral speed of the surface of the base 9.
セラミックグリーンシート転写手段は、 供給部 28と、 加圧ロール 27と、 収 納部 2 9とで構成されている。 供給部 2 8は、 セラミヅクグリーンシート 2 6付 きの樹脂フイルム 2 5を卷いたロールの軸を電動機に連結して、 この軸を所定の 量だけ回転させて送り出す。 加圧ロール 2 7は、 セラミヅクグリーンシート 2 6 を樹脂フィルム 2 0上の金属メヅキ膜 8に所定の圧力で当接させる。 これにより、 セラミックグリーンシート 2 6が樹脂フイルム 2 0の金属メヅキ膜 8の上に転写 される。 収納部 2 9は、 加圧ロール 2 7を通過した樹脂フィルム 2 5を一定の張 力で卷き取る。 前記加圧ロール 2 7としては、 先に述べた加圧ローラ 2 3と同様 の材質、 構造のものが用いられる。 The ceramic green sheet transfer means includes a supply unit 28, a pressure roll 27, It consists of a storage section 29. The supply unit 28 connects a shaft of a roll around which the resin film 25 with the ceramic green sheet 26 is wound to an electric motor, and rotates the shaft by a predetermined amount to feed it. The pressure roll 27 brings the ceramic green sheet 26 into contact with the metal print film 8 on the resin film 20 at a predetermined pressure. Thus, the ceramic green sheet 26 is transferred onto the metal print film 8 of the resin film 20. The storage section 29 winds up the resin film 25 having passed through the pressure roll 27 with a constant tension. As the pressure roll 27, a material and a structure similar to those of the pressure roller 23 described above are used.
二洗浄手段:  Two cleaning means:
洗浄手段 1 2は、 メツキ槽 1 8から引き上げられた基体 9の表面を洗浄するも のである。 具体的には、 基体 9の表面に形成された金属メツキ膜 8やマスク層 7 の表面に残存するメツキ液 1を洗い流すためのものである。  The cleaning means 12 is for cleaning the surface of the substrate 9 lifted from the plating tank 18. Specifically, it is for washing away the metal plating film 8 formed on the surface of the base 9 and the plating liquid 1 remaining on the surface of the mask layer 7.
この洗浄手段 1 2は、 金属メツキ膜 8やマスク層 7が形成された基体 9の表面 に洗浄液を供給する給液手段と、 洗浄に供した洗浄液を回収する回収手段とで構 成されている。 給液手段によって、 基体 9の表面に近接して配された洗浄用箱体 に洗浄液を供給し、 その洗净用箱体内で洗浄液を基体 9の表面に吹き付けること により残存メツキ液を基体 9の表面より洗い流す。  The cleaning means 12 includes a liquid supply means for supplying a cleaning liquid to the surface of the substrate 9 on which the metal plating film 8 and the mask layer 7 are formed, and a collecting means for collecting the cleaning liquid used for cleaning. . The cleaning liquid is supplied to the cleaning box disposed in close proximity to the surface of the substrate 9 by the liquid supply means, and the cleaning liquid is sprayed onto the surface of the substrate 9 in the cleaning box to remove the remaining plating liquid from the substrate 9. Rinse off the surface.
洗浄液としては、 例えば、 水、 アルコール、 アセトン、 トルエン等が用いられ る。 洗浄液中の不純物は 1 0 0 O p p m以下に抑えることが好ましい。 また、 よ り一層高い洗浄効果を得るために、 基体 9の表面に空気を吹きつける空気供給手 段を別途設けても構わない。  As the cleaning liquid, for example, water, alcohol, acetone, toluene and the like are used. It is preferable that impurities in the cleaning liquid be suppressed to 100 Oppm or less. In order to obtain a higher cleaning effect, an air supply means for blowing air onto the surface of the base 9 may be separately provided.
=洗浄液吸引手段 =  = Cleaning liquid suction means =
洗浄液吸引手段 1 3は、 洗浄手段 1 2に対し、 基体 9の回転方向下流側に配置 されており、 洗浄手段 1 2によってメツキ液 1 9を洗い流した後、 金属メツキ膜 8およびマスク層 7の表面に残った洗浄液を完全に除去するためのものである。 かかる洗浄液吸引手段 1 3はステンレス板等によって形成されており、 その表 面には吸引用の複数の穴が設けられ、 これらの穴より吸引器を用いて吸引するこ とにより、 基体 9の表面に残存した洗浄液を除去するようになっている。 洗浄液 吸引手段 1 3の表面部分には、 例えばウレ夕ンスポンジや人工皮革等のように微 細な孔が形成されたものを取り付ける。 なお、 洗浄液吸引手段 1 3の形状は円筒 状、 円柱状、 平板状のいずれであっても構わない。 The cleaning liquid suction means 13 is arranged downstream of the cleaning means 12 in the rotation direction of the base 9. After the cleaning liquid 12 is washed away by the cleaning means 12, the metal plating film 8 and the mask layer 7 are removed. This is for completely removing the cleaning liquid remaining on the surface. The cleaning liquid suction means 13 is formed of a stainless steel plate or the like, and a plurality of suction holes are provided on the surface of the cleaning liquid suction means 13. The remaining cleaning liquid is removed. The cleaning liquid suction means 13 has a fine surface, such as urethane sponge or artificial leather, on the surface. Attach one with fine holes. The cleaning liquid suction means 13 may have any of a cylindrical shape, a columnar shape, and a flat shape.
=メツキ液吸引手段二  = Messy liquid suction means 2
メツキ液吸引手段 1 4は、 洗浄手段 1 2に対して、 基体 9の回転方向上流側に 配置されており、 金属メツキ膜 8やマスク層 7の表面に残存するメツキ液 1 9を 除去するためのものである。  The plating liquid suction means 14 is disposed on the upstream side in the rotation direction of the base 9 with respect to the cleaning means 12, and removes the plating liquid 19 remaining on the surface of the metal plating film 8 and the mask layer 7. belongs to.
かかるメヅキ液吸引手段 1 4はステンレス板等によって形成されており、 その 表面には、 先に述べた洗浄液吸弓 I手段 1 3と同様に、 複数の穴が設けられ、 これ らの穴からメツキ液 1 9を吸引するようになっている。 メツキ液吸引手段 1 4の 表面部分も、 洗浄液吸引手段 1 3と同様の構造が採用される。 なお、 メツキ液吸 弓 1手段 1 4の形状は円筒状、 円柱状、 平板状のいずれであっても構わない。 循環装置 1 5は、 メツキ槽 1 8に注入されているメツキ液 1 9を循環させるた めのものである。 メツキ槽 1 8の底面中央の、 基体 9の最下端部と対向する部位 にメツキ液 1 9の供給口 1 6が設けられている。 メツキ液 1 9は、 この供給口 1 6より、 メヅキ槽 1 8の中に供給される。 メヅキ液 1 9は、 基体 9の回転方向下 流側では基体 9の表面に沿って基体 9の回転方向と同じ方向に流動し、 基体 9の 回転方向上流側では基体 9の表面に沿って基体 9の回転方向と逆の方向に流動し、 メヅキ槽 1 8の両端より溢れ出す。 溢れ出したメヅキ液 1 9は、 その外側に配置 された循環槽に排出される。 そして、 この循環槽に溜まったメツキ液 1 9は、 そ の底部に設けられた吸出し口 1 7より吸出され、 ポンプによって再び前記供給口 1 6よりメツキ槽 1 8の中に供給される。  The printing liquid suction means 14 is formed of a stainless steel plate or the like, and a plurality of holes are provided on the surface thereof in the same manner as the cleaning liquid suction bow I means 13 described above. The liquid 19 is sucked. The same structure as that of the cleaning liquid suction means 13 is employed for the surface portion of the plating liquid suction means 14. It should be noted that the shape of the plating liquid absorbing means 1 14 may be any of a cylindrical shape, a columnar shape, and a flat plate shape. The circulation device 15 is for circulating the plating liquid 19 injected into the plating tank 18. A supply port 16 for the plating liquid 19 is provided at the center of the bottom of the plating tank 18 at a position facing the lowermost end of the base 9. The plating liquid 19 is supplied from the supply port 16 into the plating tank 18. The printing liquid 19 flows along the surface of the substrate 9 in the same direction as the rotation direction of the substrate 9 on the downstream side in the rotation direction of the substrate 9, and flows along the surface of the substrate 9 on the upstream side in the rotation direction of the substrate 9. It flows in the direction opposite to the direction of rotation of 9 and overflows from both ends of the tank 18. The overflowing liquid 19 is discharged to a circulation tank disposed outside thereof. Then, the plating liquid 19 stored in the circulation tank is sucked out from a suction port 17 provided at the bottom thereof, and is again supplied into the plating tank 18 from the supply port 16 by a pump.
なお、 このようにメツキ液 1 9が循環する過程に、 ろ過フィル夕を設けて異物 を除去するようにしても良いし、 メツキ液 1 9の p H値ゃメツキ液 1 9の流量, 非導電性微粒子の濃度等を必要に応じて調整するようにしても良い。  In the course of the circulation of the plating liquid 19, a filtration filter may be provided to remove foreign substances, or the pH value of the plating liquid 19 ゃ the flow rate of the plating liquid 19, the non-conductive The concentration and the like of the conductive fine particles may be adjusted as necessary.
一電子部品の製造方法一  (1) Manufacturing method of electronic parts (1)
次に、 上述したメツキ膜形成装置を用いて、 積層コンデンサを製造する方法に ついて、 工程ごとに説明する。  Next, a method for manufacturing a multilayer capacitor using the above-described plating film forming apparatus will be described for each process.
=工程 1 = まず、 電解メツキ法にて、 上述した基体 9の表面に、 金属メツキ膜 8を形成す る。 基体 9の表面の断面形状は円形なので、 金属メツキ膜 8もその断面形状は、 前記円と同じ曲率半径を持った凸曲面状に形成される。 = Process 1 = First, a metal plating film 8 is formed on the surface of the above-described base 9 by an electrolytic plating method. Since the cross-sectional shape of the surface of the base 9 is circular, the cross-sectional shape of the metal plating film 8 is also formed as a convex curved surface having the same radius of curvature as the circle.
基体 9の下部領域が、 メツキ槽 1 8に注入されているスルファミン酸ニッケル メツキ液 1 9等に浸漬されるようにして、 基体 9を所定の回転速度で回転軸 1 0 の周りに回転させながら、 電流密度が、 例えば、 2 AZd m2〜 l 5 A/ d m 2 となるようにメヅキ槽 1 8との間に所定の電位差を印加する。 これにより、 基体 9の円形面に沿って、 前述したマスク層 7が形成されている領域を除いて金属メ ツキ膜 8が凸曲面状に形成される。 The base 9 is rotated around the rotation axis 10 at a predetermined rotation speed so that the lower region of the base 9 is immersed in the nickel sulfamate plating liquid 19 injected into the plating tank 18 or the like. A predetermined potential difference is applied to the plating tank 18 so that the current density is, for example, 2 AZdm 2 to 15 A / dm 2 . As a result, the metal plating film 8 is formed along the circular surface of the base 9 except for the region where the above-described mask layer 7 is formed.
このようにして形成される金属メヅキ膜 8は、 ニヅケル、 銅、 銀、 金、 プラチ ナ、 パラジウム、 クロム等やこれら金属の合金からなり、 これらの金属材料の中 でも耐熱性に優れたニッケルが積層コンデンサの内部電極 3を形成する材料とし て好ましい。  The metal print film 8 formed in this manner is made of nickel, copper, silver, gold, platinum, palladium, chromium, or an alloy of these metals, and nickel having excellent heat resistance among these metal materials. It is preferable as a material for forming the internal electrodes 3 of the multilayer capacitor.
以上のように、 基体 9を軸周りに回転させながら、 メヅキ槽 1 8のメツキ液 1 9に浸瀆し、 基体 9とメヅキ槽 1 8との間に電界を印加して基体 9の表面に金属 メヅキ膜 8を連続的に形成することができ、 これによつて積層コンデンサの生産 性が向上される。 しかもこの場合、 基体 9とメツキ槽 1 8との間の電流密度は略 均一になることから、 金属メヅキ膜 8を略一定の厚みで形成することもできるよ うになる。  As described above, while rotating the base 9 around the axis, the base 9 is immersed in the plating solution 19 of the printing tank 18, and an electric field is applied between the base 9 and the printing tank 18 to apply the electric field to the surface of the base 9. The metal mask film 8 can be formed continuously, thereby improving the productivity of the multilayer capacitor. Moreover, in this case, since the current density between the base 9 and the plating tank 18 becomes substantially uniform, the metal plating film 8 can be formed with a substantially constant thickness.
またこの場合、 メツキ液 1 9中に、 セラミヅクや樹脂からなる多数の非導電' 微粒子 3 0を多数添加すれば、 このような非導電性微粒子 3 0は、 その一部が基 体 9と接するようにして金属メツキ膜 8中に埋設される。 その結果、 非導電性微 粒子 3 0を含んだ金属メツキ膜 8が形成される。  In this case, if a large number of non-conductive fine particles 30 made of a ceramic or a resin are added to the plating liquid 19, a part of the non-conductive fine particles 30 comes in contact with the base 9. Thus, the metal plating film 8 is buried in the metal plating film 8. As a result, a metal plating film 8 containing the non-conductive fine particles 30 is formed.
そして、 基体 9は、 基体 9の表面に形成された金属メツキ膜 8が基体 9の回転 によってメツキ液 1 9中より引き上げられた後、 メツキ液吸引手段 1 4、 洗浄手 段 1 2及び洗浄液吸引手段 1 3によって洗浄され、 乾燥される。  Then, after the metal plating film 8 formed on the surface of the substrate 9 is pulled up from the plating liquid 19 by the rotation of the substrate 9, the plating liquid suction means 14, the cleaning means 12, and the cleaning liquid suction It is washed and dried by means 13.
=工程 2 =  = Process 2 =
次に、 工程 1により得た金属メヅキ膜 8を、 一旦、 樹脂フィルム 2 0上に転写 する。 このような樹脂フィルム 2 0は、 送り出し部 2 2によって基体 9側へ順次供給 される。 樹脂フィルム 2 0の粘着層 2 1が形成されている面を、 金属メツキ膜 8 が形成されている基体 9の表面に対し加圧ローラ 2 3によって、 例えば、 1 0 N の押圧力で加圧する。 これによつて樹 S旨フィルム 2 0上に金属メツキ膜 8を転写 させる。 その後、 樹脂フィルム 2 0は卷き取り部 2 4によって卷き取られる。 このとき、 金属メツキ膜 8は、 工程 1において、 円形状の基体 9の表面上に断 面が凸曲面状をなすように形成されることから、 金属メツキ膜 8を樹脂フィルムNext, the metal print film 8 obtained in the step 1 is once transferred onto the resin film 20. Such a resin film 20 is sequentially supplied to the base 9 side by the delivery section 22. The surface of the resin film 20 on which the adhesive layer 21 is formed is pressed against the surface of the substrate 9 on which the metal plating film 8 is formed by a pressing roller 23, for example, with a pressing force of 10 N. . As a result, the metal plating film 8 is transferred onto the tree S film 20. Thereafter, the resin film 20 is wound by the winding unit 24. At this time, since the metal plating film 8 is formed on the surface of the circular base 9 so as to form a convex curved surface in the step 1, the metal plating film 8 is formed of a resin film.
2 0に析出させる際、 金属メツキ膜 8中に内部応力 (引張応力) が生じても、 得 られた金属メツキ膜 8を基体 9より剥離させ樹脂フィルム 2 0に析出させると、 凸曲面状の金属メツキ膜 8は樹脂フィルム 2 0上で平坦化する方向に変形する。 したがって、 金属メツキ膜 8は、 平らな樹脂フィルム 2 0上に、 歪を生ずること なく、 平坦な状態で形成される。 When the metal plating film 8 is deposited, even if internal stress (tensile stress) is generated in the metal plating film 8, if the obtained metal plating film 8 is separated from the substrate 9 and deposited on the resin film 20, a convex curved surface is formed. The metal plating film 8 is deformed on the resin film 20 in a direction of flattening. Therefore, the metal plating film 8 is formed on the flat resin film 20 in a flat state without any distortion.
また、 基体 9上の金属メヅキ膜 8に、 上述した如くセラミックや樹脂からなる 多数の非導電性微粒子 3 0を添加すれば、 これらの非導電性微粒子 3 0は基体 9 との密着性に乏しいことから、 金属メツキ膜 8を基体 9より比較的容易に剥離さ せることができる。  If a large number of nonconductive fine particles 30 made of ceramic or resin are added to the metal print film 8 on the base 9 as described above, these nonconductive fine particles 30 have poor adhesion to the base 9. Therefore, the metal plating film 8 can be relatively easily peeled from the base 9.
なお、 金属メツキ膜 8の剥離性を向上させるには、 メツキ析出面 (導電性膜 6 と接する部位) に非導電性微粒子 3 0が数多く配置されるように非導電性微粒子 In order to improve the releasability of the metal plating film 8, the non-conductive fine particles 30 are arranged so that a large number of the non-conductive fine particles 30 are arranged on the plating deposition surface (the portion in contact with the conductive film 6).
3 0を分布させておくことが好ましい。 特に、 金属メツキ膜 8の表面に露出する 非導電性微粒子 3 0の露出面積が、 金属メツキ膜 8の総面積に対して 0 . 0 1 %It is preferable to distribute 30. In particular, the exposed area of the non-conductive fine particles 30 exposed on the surface of the metal plating film 8 is 0.01% with respect to the total area of the metal plating film 8.
〜 4 0 %の割合となるようにしておくことが、 金属メッキ膜を基体から容易に剥 離でき、 金属メツキ膜の変形を未然に防止することができる点から好ましい。 な お、 この値が 0 . 0 1 %未満であると、 金属メツキ膜 8における金属成分の析出 割合が多くなって基体 9との密着力を十分に低下させることが困難になり、 基体 表面から金属メツキ膜を剥離する際に、 金属メツキ膜が変形する場合がある。 ま た 4 0 %を超えると、 金属メツキ膜 8中の金属成分が少なくなることによって金 属メツキ膜自体の機械的強度が低下するので、 基体表面から金属メツキ膜を剥離 する際に、 金属メツキ膜にクラックが生じる場合がある。 It is preferable to set the ratio to be about 40%, since the metal plating film can be easily peeled off from the substrate, and the deformation of the metal plating film can be prevented. If this value is less than 0.01%, the deposition rate of the metal component on the metal plating film 8 increases, making it difficult to sufficiently lower the adhesion to the substrate 9, and from the surface of the substrate. When the metal plating film is peeled, the metal plating film may be deformed. If it exceeds 40%, the mechanical strength of the metal plating film itself decreases due to a decrease in the metal component in the metal plating film 8, so that when the metal plating film is peeled off from the substrate surface, the metal plating film is removed. Cracks may occur in the film.
このような非導電性微粒子 3 0としてセラミック材料を用いる場合は、 誘電体 シートとして用いられるセラミヅクグリーンシート 2 6のセラミヅク材料と同材 質のものが好適である。 When a ceramic material is used as such non-conductive fine particles 30, the dielectric material The same material as the ceramic material of the ceramic green sheet 26 used as the sheet is preferable.
他方、 非導電性微粒子 3 0として樹脂の微粒子を用いる場合は、 セラミックグ リーンシート 2 6に含まれる有機ノ インダと同材質のものが好適である。  On the other hand, when resin fine particles are used as the non-conductive fine particles 30, those having the same material as the organic binder contained in the ceramic green sheet 26 are preferable.
なお、 非導電性微粒子 3 0の大きさとしては、 金属メツキ膜 8の厚みよりも小 さい平均粒径のものを用いることが好ましい。 このようにしておけば、 金属メッ キ膜 8を基体 9から剥離させる際、 金属メツキ膜 8が変形するのを有効に防止す ることができる。  In addition, as the size of the non-conductive fine particles 30, it is preferable to use those having an average particle diameter smaller than the thickness of the metal plating film 8. By doing so, it is possible to effectively prevent the metal plating film 8 from being deformed when the metal plating film 8 is peeled from the substrate 9.
また、 このような非導電性微粒子 3 0として、 セラミック材料から成る非導電 性微粒子 3 0と樹脂材料から成る非導電性微粒子 3 0とを混合して用いても構わ ない。  As such non-conductive fine particles 30, non-conductive fine particles 30 made of a ceramic material and non-conductive fine particles 30 made of a resin material may be mixed and used.
=ェ程 3 =  = Step 3 =
次に、 金属メツキ膜 8が転写されている樹脂フィルム 2 0上に、 更に誘電体シ —トとしてのセラミックグリーンシート 2 6を圧着させることにより、 セラミヅ クグリーンシート 2 6を金属メツキ膜 8上に付着させる。  Next, a ceramic green sheet 26 as a dielectric sheet is further pressed on the resin film 20 to which the metal plating film 8 has been transferred, so that the ceramic green sheet 26 is formed on the metal plating film 8. Adhere to
セラミヅクグリーンシート 2 6は、 例えば、 厚み 1 2 Π!〜 1 0 0 mの P E Tフィルム等から成る樹脂フィルム 2 5上に支持された状態で、 供給部 2 8の口 ールに巻き取られている。 セラミックグリーンシート 2 6が樹脂フィルム 2 0と の合流位置まで供給されると、 双方の樹脂フィルム 2 0 , 2 5が重ね合わせられ、 樹脂フィルム 2 0上の金属メツキ膜 8と接する。 この部分を加圧ローラ 2 7に内 設しておいたヒー夕によって約 7 0 °Cの温度で加熱しつつ、 樹脂フィルム 2 5を 加圧ローラ 2 7によって約 1 0 O Nの押圧力で樹脂フィルム 2 0側へ加圧する。 このことによりセラミックグリーンシート 2 6が金属メツキ膜 8に付着される。 その後、 セラミックグリーンシート 2 6が剥ぎ取られた樹脂フィルム 2 5は、 収 納部 2 9によって卷き取られる。  The ceramic green sheet 26 has, for example, a thickness of 12 mm! While being supported on a resin film 25 composed of a PET film or the like having a length of about 100 m, it is wound around the supply port 28. When the ceramic green sheet 26 is supplied to the position where the ceramic green sheet 26 and the resin film 20 join, the two resin films 20 and 25 are superimposed and come into contact with the metal plating film 8 on the resin film 20. While this part is heated at a temperature of about 70 ° C by the heater provided inside the pressure roller 27, the resin film 25 is pressed by the pressure roller 27 with a pressing force of about 10 ON. Press to the film 20 side. As a result, the ceramic green sheet 26 is attached to the metal plating film 8. Thereafter, the resin film 25 from which the ceramic green sheet 26 has been peeled off is wound up by the storage section 29.
このように、 金属メヅキ膜 8を、 一旦、 樹脂フィルム 2 0上に転写した後、 そ の上からセラミックグリーンシート 2 6を重ねて付着させれば、 セラミックグリ —ンシート 2 6が硬質材料により形成されている基体表面のマスク層 7に対して 直接、 接触することはないことから、 セラミヅクグリーンシート 2 6をマスク層 7との接触により損傷させることなく、 セラミヅクグリーンシート 2 6を金属メ ヅキ膜 8上に良好に付着させることができる。 In this way, once the metal print film 8 is transferred onto the resin film 20 and then the ceramic green sheet 26 is overlaid and adhered thereon, the ceramic green sheet 26 is formed of a hard material. Since there is no direct contact with the mask layer 7 on the surface of the substrate, the ceramic green sheet 26 is used as the mask layer. The ceramic green sheet 26 can be satisfactorily adhered to the metal print film 8 without being damaged by contact with the metal paste 7.
また、 金属メツキ膜 8は、 基体 9より剥離させたとき、 前述したように平坦化 する方向に変形していることから、 かかる金属メツキ膜 8にセラミックグリーン シート 2 6の主面を転写しても、 セラミックグリーンシート 2 6や金属メツキ膜 8に、 変形やクラックが発生するのが有効に防止される。 したがって、 積層コン デンサ 1の生産性向上に供することができる。  In addition, since the metal plating film 8 is deformed in the direction of flattening as described above when peeled from the substrate 9, the main surface of the ceramic green sheet 26 is transferred to the metal plating film 8. Also, it is possible to effectively prevent the ceramic green sheet 26 and the metal plating film 8 from being deformed or cracked. Therefore, the productivity of the multilayer capacitor 1 can be improved.
なお、 樹 S旨フィルム 2 5上に支持されたセラミックグリーンシート 2 6は、 例 えば、 1〃 m〜 2 0 / mの厚みに形成され、 セラミツク材料粉末に有機溶媒、 有 機バインダ等を添加 ·混合して得た所定のセラミックスラリーを、 焼成後の厚さ が 2〃 m程度となるように従来周知のコーティング法または印刷法等によって樹 脂フィルム 2 5の主面に塗布した後、 これを乾燥させることによって得られる。 樹脂フィルム 2 5は、 厚み 3 8〃mの P E Tフィルムが用いられる。 このよう な樹脂フィルム 2 5の一主面に、 焼成後の厚みが、 例えば 2 mとなるようにセ ラミックスラリーを塗布し乾燥させて、 セラミックグリーンシート 2 6付きの樹 脂フィルム 2 5を用意する。 次に、 樹脂フィルム 2 5のセラミックグリーンシー ト 2 6を樹脂フィルム 2 0上の金属メヅキ膜 8に接するように当接させて、 この 当接部を半径 1 0 O mm、 長さ 2 5 0 mmの加圧ローラ 2 7にて 1 0 0 N、 7 0 °Cの加圧条件で挟み込み、 セラミックグリーンシート 2 6を金属メヅキ膜 8付 き樹脂フィルム 2 0に圧着させる。 その後、 セラミックグリーンシート 2 6は樹 脂フィルム 2 5より剥離される。  The ceramic green sheet 26 supported on the resin S film 25 has a thickness of, for example, 1 m to 20 m, and an organic solvent, an organic binder, or the like is added to the ceramic material powder. A predetermined ceramic slurry obtained by mixing is applied to the main surface of the resin film 25 by a conventionally known coating method or printing method so that the thickness after firing is about 2 μm. By drying. As the resin film 25, a PET film having a thickness of 38 μm is used. On one main surface of such a resin film 25, a ceramic slurry is applied so that the thickness after firing becomes, for example, 2 m, and then dried to form a resin film 25 with ceramic green sheets 26. prepare. Next, the ceramic green sheet 26 of the resin film 25 is brought into contact with the metal print film 8 on the resin film 20 so that the contact portion has a radius of 100 mm and a length of 250 mm. The ceramic green sheet 26 is pressed against a resin film 20 with a metal plating film 8 by sandwiching the ceramic green sheet 26 with a pressing roller 27 at a pressure of 100 N and 70 ° C. Thereafter, the ceramic green sheet 26 is peeled off from the resin film 25.
=工程 4 =  = Process 4 =
次に、 前述の工程 3で得た金属メヅキ膜 8付きのセラミックグリーンシート 2 6を複数枚準備して、 例えば、 6 0 °Cの温度で加熱しながら 0 . 9 M P aの圧力 で仮圧着し、 その後、 従来周知の静水圧プレス等によって 7 0 °Cの温度、 5 0 M P aの圧力で圧着させることによって、 積層体を形成する。  Next, a plurality of ceramic green sheets 26 provided with the metal print film 8 obtained in the above-mentioned step 3 are prepared and, for example, pre-pressed at a pressure of 0.9 MPa while heating at a temperature of 60 ° C. Then, the laminate is formed by pressure bonding at a temperature of 70 ° C. and a pressure of 50 MPa by a conventionally known hydrostatic pressure press or the like.
-工程 5 =  -Step 5 =
そして最後に、 工程 4で得た積層体を所定形状に切断し、 得られた個片を高温 で焼成する。 積層体の焼成は、 金属メツキ膜 8を形成している金属の融点よりも低く、 かつ、 焼成中少なくとも一時点において、 該金属の再結晶温度よりも高い温度になるよ うにして行う。 これによつてセラミックグリーンシート 2 6は積層コンデンサの 誘電体層 4となり、 金属メヅキ膜 8は内部電極 3となる。 Finally, the laminate obtained in step 4 is cut into a predetermined shape, and the obtained individual pieces are fired at a high temperature. The firing of the laminate is performed so that the temperature is lower than the melting point of the metal forming the metal plating film 8 and higher than the recrystallization temperature of the metal at least at one point during firing. As a result, the ceramic green sheet 26 becomes the dielectric layer 4 of the multilayer capacitor, and the metal print film 8 becomes the internal electrode 3.
ここで、 金属の再結晶とは、 加工した金属材料を加熱すると、 その金属がある 温度を境に急激に軟化して、 内部歪みを軽減するように安定化する現象のことで ある。 この再結晶が開始する温度のことを再結晶温度という。 例えばニッケルの 場合、 再結晶温度は 5 3 0 °C〜6 6 0 °C;、 融点は 1 4 5 8 °C、 また銅の場合、 再 結晶温度は 2 0 0 °C〜2 5 0 °C、 融点は 1 0 8 3 °C、 また金の場合、 再結晶温度 は約 2 0 0 ° (、 融点は 1 0 6 0 °Cである。 従って、 金属メヅキ膜 8がニッケルか ら成る場合、 積層体の焼成は、 例えば、 1 3 0 0 °Cの温度で行われる。  Here, recrystallization of a metal is a phenomenon in which when a processed metal material is heated, the metal rapidly softens at a certain temperature and stabilizes to reduce internal strain. The temperature at which the recrystallization starts is called the recrystallization temperature. For example, in the case of nickel, the recrystallization temperature is 530 ° C to 660 ° C; the melting point is 148 ° C, and in the case of copper, the recrystallization temperature is 200 ° C to 250 ° C. C, the melting point is 1083 ° C. In the case of gold, the recrystallization temperature is about 200 ° C (and the melting point is 160 ° C. Therefore, when the metal plating film 8 is made of nickel, The firing of the laminate is performed, for example, at a temperature of 130 ° C.
このように金属メツキ膜 8を、 該金属メツキ膜 8を形成する金属の融点より低 い温度で焼成することにより、 焼成時に金属メッキ膜 8が熔けて金属メッキ膜 8 が分断されるといった不都合が確実に防止され、 連続性に優れた内部電極 3を形 成することができる。  By firing the metal plating film 8 at a temperature lower than the melting point of the metal forming the metal plating film 8 as described above, the disadvantage that the metal plating film 8 is melted during firing and the metal plating film 8 is divided. It is possible to form the internal electrode 3 that is reliably prevented and has excellent continuity.
またこの場合、 積層体を焼成する際のピーク温度は、 金属メツキ膜 8を形成し ている金属の再結晶温度よりも高く設定されているため、 焼成時に金属メッキ膜 8を形成している金属の再結晶化が進むことで金属が適度に軟化し、 セラミック グリーンシ一ト 2 6中のセラミヅク粒子が金属メツキ膜 8の表面に入り込む。 こ のことによって金属メツキ膜 8とセラミヅクグリーンシート 2 6との密着力が向 上し、 その結果、 構造欠陥の少ない積層コンデンサが得られるようになる。  Also, in this case, the peak temperature at the time of firing the laminate is set higher than the recrystallization temperature of the metal forming the metal plating film 8, so that the metal forming the metal plating film 8 at the time of firing. As the recrystallization progresses, the metal is appropriately softened, and the ceramic particles in the ceramic green sheet 26 enter the surface of the metal plating film 8. As a result, the adhesion between the metal plating film 8 and the ceramic green sheet 26 is improved, and as a result, a multilayer capacitor with few structural defects can be obtained.
しかもこの場合、 金属メツキ膜 8中には非導電性微粒子 3 0がー部を埋設され ているため、 非導電性微粒子 3 0としてセラミック材料を用いた場合には、 非導 電性微粒子 3 0がセラミヅクグリーンシ一ト 2 6の焼成時に同時焼成され、 セラ ミックグリーンシート 2 6に含まれるセラミヅク成分と焼結して一体化される。 その結果、 金属メツキ膜 8とセラミヅクグリーンシート 2 6との密着性が向上す る。 また、 非導電性微粒子 3 0として樹脂材料を用いた場合には、 非導電性微粒 子 3 0がセラミックグリーンシート 2 6の焼成時に焼失して空隙を形成し、 この 空隙に、 セラミックグリーンシート 2 6中のセラミヅク成分が拡散することから、 この場合も金属メヅキ膜 8とセラミックグリーンシート 2 6との密着性が向上す る Further, in this case, since the non-conductive fine particles 30 are embedded in the metal plating film 8 at the portions thereof, when a ceramic material is used as the non-conductive fine particles 30, the non-conductive fine particles 30 Are simultaneously fired when the ceramic green sheet 26 is fired, and are sintered and integrated with the ceramic component contained in the ceramic green sheet 26. As a result, the adhesion between the metal plating film 8 and the ceramic green sheet 26 is improved. In addition, when a resin material is used as the non-conductive fine particles 30, the non-conductive fine particles 30 are burned out during firing of the ceramic green sheet 26 to form voids. Because the ceramic component in 6 diffuses, Also in this case, the adhesion between the metal print film 8 and the ceramic green sheet 26 is improved.
=工程 6 =  = Process 6 =
そして最後に、 積層体の両端部に、 外部電極用の導体ペーストを従来周知のデ イツビング法等によって塗布し、 これを焼成した後、 その表面にメツキ処理を施 すことによって外部電極 5が形成され、 これによつて製品としての積層コンデン サ 1が完成する。  Finally, a conductor paste for an external electrode is applied to both ends of the laminated body by a conventionally known diving method or the like, and after baking, the surface is plated to form an external electrode 5. As a result, the laminated capacitor 1 as a product is completed.
一製造方法の変形例 1一  Modification of one manufacturing method
次に本発明の他の実施形態について図 5を用いて説明する。 なお、 先に述べた 電子部品の製造方法と同様の工程については重複する説明を省略し、 またメツキ 膜形成装置の構成についても同一の参照符を付して重複する説明を省略すること とする。  Next, another embodiment of the present invention will be described with reference to FIG. Note that the same steps as those of the above-described method for manufacturing an electronic component will not be described repeatedly, and the configuration of the plating film forming apparatus will be denoted by the same reference numerals and redundant description will be omitted. .
本実施形態が先に述べた製造方法と異なる点は、 樹脂フィルム 2 0に、 一旦、 転写した金属メツキ膜 8を、 樹脂フィルム 2 5上に保持されているセラミヅクグ リーンシート 2 6の表面に再度転写させることようにした点である。  This embodiment is different from the above-described manufacturing method in that the metal plating film 8 once transferred to the resin film 20 is again applied to the surface of the ceramic green sheet 26 held on the resin film 25. The point is that it is transferred.
この場合、 金属メヅキ膜 8が転写されたセラミックグリーンシート 2 6は収納 部 2 9によって樹脂フィルム 2 6ごと卷き取られ、 以後の工程に使用される。 このような第 2実施形態においても、 先に述べた第 1実施形態と全く同様の効 果が得られる。  In this case, the ceramic green sheet 26 to which the metal printing film 8 has been transferred is wound up together with the resin film 26 by the storage section 29 and used in the subsequent steps. In the second embodiment, the same effects as in the first embodiment can be obtained.
一製造方法の変形例 2—  Modification 2 of one manufacturing method
次に本発明の他の実施形態について図 6を用いて説明する。 なお、 先に述べた 電子部品の製造方法と同様の工程については重複する説明を省略し、 またメツキ 膜形成装置の構成についても同一の参照符を付して重複する説明を省略すること とする。  Next, another embodiment of the present invention will be described with reference to FIG. Note that the same steps as those of the above-described method for manufacturing an electronic component will not be described repeatedly, and the configuration of the plating film forming apparatus will be denoted by the same reference numerals and redundant description will be omitted. .
本実施形態が先に述べた製造方法と異なる点は、 基体 9上に析出させた金属メ ツキ膜 8を、 樹脂フィルム 2 5上で保持されているセラミックグリーンシ一ト 2 6の主面に直接、 転写するようにした点である。 すなわち、 セラミックグリーン シート 2 6が保持された P E Tフィルム等から成る樹脂フィルム 2 5を、 送り出 し部 2 2のロールから送り出して、 加圧ロール 2 3によって基体 9に圧着させる < これにより、 基体 9に形成された金属メツキ膜 8が樹脂フィルム 2 5上で保持さ れているセラミックグリーンシート 2 6の主面に転写される。 卷き取り部 2 4は、 加圧ロール 2 3を通過して金属メツキ膜 8が転写された樹脂フイノレム 2 5を卷き 取る。 This embodiment is different from the above-described manufacturing method in that the metal plating film 8 deposited on the base 9 is attached to the main surface of the ceramic green sheet 26 held on the resin film 25. The point is that it is transcribed directly. That is, a resin film 25 made of a PET film or the like holding the ceramic green sheet 26 is sent out from the roll of the feeding section 22 and is pressed against the base 9 by the pressure roll 23 < Thus, the metal plating film 8 formed on the base 9 is transferred to the main surface of the ceramic green sheet 26 held on the resin film 25. The winding section 24 winds the resin finolem 25 to which the metal plating film 8 has been transferred by passing through the pressure roll 23.
このような実施形態においても、 先の実施形態と全く同様の効果が得られる。 またこの場合、 メヅキ膜形成装置に用いられる基体 9のマスク層 7を D L Cや G L C等により形成しておけば、 セラミヅクグリーンシ一ト 2 6がマスク層 7の 表面に付着することは殆どないため、 安定した転写を繰り返すことができる。  In such an embodiment, exactly the same effects as in the previous embodiment can be obtained. Further, in this case, if the mask layer 7 of the base 9 used in the mask film forming apparatus is formed by DLC, GLC, or the like, the ceramic green sheet 26 hardly adheres to the surface of the mask layer 7. Therefore, stable transfer can be repeated.
一製造方法の変形例 3—  Modification 3 of one manufacturing method
次に本発明の他の製造方法について図 7を用いて説明する。  Next, another manufacturing method of the present invention will be described with reference to FIG.
いままでの方法では、 金属メツキ膜 8が転写された樹脂フィルム上の、 金属メ ヅキ膜 8が存在しない部分には、 何も膜が形成されていなかった。 このため、 樹 脂フィルム上に金属メツキ膜 8が形成されている部分と何も形成されていない部 分には、 段差が生じていた。  In the conventional method, no film was formed on the portion of the resin film to which the metal plating film 8 was transferred, where the metal plating film 8 did not exist. For this reason, a step was formed between the portion where the metal plating film 8 was formed on the resin film and the portion where no metal plating film 8 was formed.
図 7は、 基体 9から金属メツキ膜 8が転写された、 粘着層 2 1を有する樹脂フ イルム 2 0に対して、 金属メヅキ膜 8の存在しない部分に、 段差を埋めるための 薄い誘電体シート 4 3を形成する方法を説明するための断面図である。  FIG. 7 shows a thin dielectric sheet for filling a step in a portion of the resin film 20 having the adhesive layer 21, on which the metal plating film 8 is transferred from the base 9, without the metal plating film 8. FIG. 4 is a cross-sectional view for explaining a method of forming 43.
樹脂フィルム 2 0の送給途中には、 樹脂フィルム 2 0を表裏から加圧するため の一対のローラ 4 0, 4 1が配置されている。 樹脂フィルム 2 0の金属メヅキ膜 8が形成された主面に接するローラ 4 0には、 金属メツキ膜 8と略等しい厚みの 誘電体シート 4 3が支持された樹脂フィルム 4 2が送られてくる。 誘電体シート 4 3は、 セラミックグリーンシートであることが好ましい。  In the middle of feeding the resin film 20, a pair of rollers 40, 41 for pressing the resin film 20 from the front and back are arranged. To the roller 40 in contact with the main surface of the resin film 20 on which the metal plating film 8 is formed, a resin film 42 on which a dielectric sheet 43 of substantially the same thickness as the metal plating film 8 is supported is sent. . The dielectric sheet 43 is preferably a ceramic green sheet.
誘電体シート 4 3は、 ローラ 4 0の圧力によって、 樹脂フィルム 2 0の一主面 に押圧される。 このとき、 誘電体シート 4 3を、 金属メヅキ膜 8の存在する部位 と存在しない部位の双方に対して押圧することにより、 金属メツキ膜 8のエッジ の切断力を利用して、 樹脂フィルム 2 0の一主面のうち金属メツキ膜 8の存在し ない部位にのみ誘電体シート 4 3を選択的に付着させることができる。  The dielectric sheet 43 is pressed against one main surface of the resin film 20 by the pressure of the roller 40. At this time, by pressing the dielectric sheet 43 against both the portion where the metal plating film 8 exists and the portion where the metal plating film 8 does not exist, the cutting force of the edge of the metal plating film 8 is used, and the resin film 20 is pressed. The dielectric sheet 43 can be selectively adhered only to the portion of the one main surface where the metal plating film 8 does not exist.
このようにして、 樹脂フィルム 2 0の上に、 誘電体シート 4 3が埋設された平 らな金属メヅキ膜 8を得ることができる。 この誘電体シ一ト 4 3が埋設された平 らな金属メヅキ膜 8の上に、 図 2や図 5で説明したセラミヅクグリーンシ一ト転 写手段を用いて、 セラミックグリーンシート 2 6を転写する。 In this way, a flat metal print film 8 in which the dielectric sheet 43 is embedded on the resin film 20 can be obtained. The flat where the dielectric sheet 43 is embedded The ceramic green sheet 26 is transferred onto the metallic make-up film 8 by using the ceramic green sheet transfer means described with reference to FIGS.
このような方法においても、 先に述べた実施形態と全く同様の効果が得られる ことに加え、 金属メツキ膜 8とセラミックグリーンシート 2 6と間に大きな隙間 ができることがない。 したがって、 これを樹 S旨フィルム 2 0より剥離させた上、 複数枚積層することにより、 これを熱処理して積層型電子部品を製作しても、 デ ラミネーシヨンや電極の湾曲による電気不良が生じるのを有効に防止することが でき、 信頼性及び生産性に優れたセラミヅク電子部品が得られる。  Even in such a method, the same effect as that of the above-described embodiment can be obtained, and a large gap is not formed between the metal plating film 8 and the ceramic green sheet 26. Therefore, even if this is peeled off from the resin film 20 and a plurality of sheets are laminated and then heat-treated to produce a laminated electronic component, electrical failure due to delamination and bending of the electrodes occurs. Can be effectively prevented, and a ceramic electronic component excellent in reliability and productivity can be obtained.
一製造方法の変形例 4一  Modification of one manufacturing method 41
次に本発明の他の製造方法について図 8を用いて説明する。  Next, another manufacturing method of the present invention will be described with reference to FIG.
本実施形態が今までの実施形態と異なる点は、 金属メツキ膜 8をセラミヅクグ リーンシート 2 6の内部に埋設させて形成するようにした点である。  The present embodiment is different from the previous embodiments in that the metal plating film 8 is formed by being buried in the ceramic green sheet 26.
この製造方法は、 図 8の拡大図に示すように、 金属メツキ膜 8が転写された樹 脂フィルム 2 0の主面に、 ノズル 3 2から、 金属メツキ膜 8を覆うようにしてセ ラミックスラリー 3 1を塗布し、 これを、 加熱器 3 3を用いて乾燥させて、 金属 メヅキ膜 8が埋設されたセラミックグリーンシート 2 6を得る。  As shown in the enlarged view of FIG. 8, the manufacturing method is such that the metal plating film 8 is transferred onto the main surface of the resin film 20 from the nozzle 32 so that the metal plating film 8 is covered. The rally 31 is applied and dried using the heater 33 to obtain the ceramic green sheet 26 in which the metal plating film 8 is embedded.
得られた、 金属メッキ膜 8が埋設されたセラミックグリーンシート 2 6を複数 枚積層することによりセラミックグリーンシート 2 6の積層体が形成され、 これ を図示しない加熱炉の中で熱処理することによって積層型電子部品が製作され る。  By laminating a plurality of the obtained ceramic green sheets 26 in which the metal plating films 8 are embedded, a laminated body of the ceramic green sheets 26 is formed, and the laminated body is heat-treated in a heating furnace (not shown). Molded electronic components are manufactured.
このような実施形態においても、 先に述べた実施形態と全く同様の効果が得ら れることに加え、 上述のようにして得られるセラミックグリーンシート 2 6には、 金属メツキ膜の存在する部位と存在しない部位との間に大きな段差が存在ないた め、 これのようなセラミックグリーンシート 2 6を複数枚積層して積層体を形成 しても、 その内部に埋設される金属メツキ膜の変形は有効に抑制され、 電気的不 良ゃデラミネーシヨンの発生が有効に防止される利点もある。  In such an embodiment, in addition to obtaining exactly the same effects as those of the above-described embodiment, the ceramic green sheet 26 obtained as described above includes a portion where the metal plating film exists and a portion where the metal plating film exists. Since there is no large step between the non-existing portions, even when a plurality of such ceramic green sheets 26 are laminated to form a laminate, the deformation of the metal plating film embedded therein is not affected. It also has the advantage that it is effectively suppressed, and the occurrence of electrical faults and delamination is effectively prevented.
ーメツキ膜形成装置の変形例 1一  -Modified example of plating film forming apparatus
次に本発明の他の実施形態について図 9を用いて説明する。  Next, another embodiment of the present invention will be described with reference to FIG.
本実施形態の特徴は、 メヅキ槽 1 8が、 陽極として機能する高電位領域 1 8 A と、 陰極として機能する低電位領域 1 8 Bとに区画されている点である。 The feature of this embodiment is that the printing tank 18 is a high-potential region 18 A that functions as an anode. And a low potential region 18 B functioning as a cathode.
即ち、 基体 9に電源 6 Aの陰極を、 メヅキ槽 1 8の高電位領域 1 8 Aに電源 6 Aの陽極を接続している。 さらに、 基体 9に電源 6 Bの陽極を、 メツキ槽 1 8の 低電位領域 1 8 Bに電源 6 Bの陰極を接続している。 電源 6 Aの陰極と電源 6 B の陽極とは共通に接続される。  That is, the cathode of the power supply 6 A is connected to the base 9, and the anode of the power supply 6 A is connected to the high potential region 18 A of the printing tank 18. Further, an anode of a power supply 6 B is connected to the base 9, and a cathode of the power supply 6 B is connected to the low potential region 18 B of the plating tank 18. The cathode of the power supply 6A and the anode of the power supply 6B are commonly connected.
マスク層 7の存在しない基体 9の表面に金属メツキ膜 8を析出させた後、 電源 6 Bの逆の電位を用いて、 一旦形成された金属メツキ膜 8の表面部分、 特に金属 メツキ膜 8と基体 9及びマスク層 7との接触部分を、 メツキ液 1 9中で再溶解さ せる。 このことにより、 金属メヅキ膜 8と基体 9及びマスク層 7との間に微小な 隙間が生じて、 金属メツキ膜 8の剥離性が向上し、 被転写材への転写の精度を上 げることができる。  After depositing the metal plating film 8 on the surface of the substrate 9 where the mask layer 7 does not exist, using the opposite potential of the power supply 6B, the surface portion of the metal plating film 8 once formed, particularly the metal plating film 8, The portion in contact with the substrate 9 and the mask layer 7 is redissolved in the plating solution 19. As a result, a minute gap is formed between the metal plating film 8 and the base 9 and the mask layer 7, and the releasability of the metal plating film 8 is improved, and the accuracy of the transfer to the material to be transferred is improved. Can be.
上述したメヅキ槽 1 8は、 例えばその中央部に塩化ビニルなどからなる絶縁部 材 1 6 Aを介在させることで、 高電位領域 1 8 Aと低電位領域 1 8 Bとを電気的 に分離させる。 絶縁部材 1 6 Aとしては、 上述の塩化ビニル以外にもポリテトラ フルォロエチレン等を用いることができる。 その比抵抗値は、 両領域で金属メヅ キ膜 8の析出 ·再溶解を適切に行えるように十分な絶縁性を保っため、 1 0 0 0 Ω πι以上の材料を用いることが好ましい。 また絶縁部材 1 6 Aは、 耐薬品性を有 する材料であることが好ましく、 特に耐酸性の性質を有するものが好ましい。 また、 メヅキ槽 1 8と基体 9との間で、 前記絶縁部材 1 6 Αの上に、 基体 9表 面との間に所定の間隔をあけて、 各領域に対応するメツキ液同士を互いに隔離す るための隔壁部材 1 6 Bを形成してもよい。 この隔壁部材 1 6 Bで各領域に対応 するメツキ液同士を互いに隔離することにより、 両領域に対応する電界が互いに 干渉することがないので、 各々の領域におけるメツキ液の析出 ·再溶解をより適 切に行うことができる。  The above-described printing tank 18 electrically separates the high-potential region 18A from the low-potential region 18B by interposing an insulating member 16A made of, for example, vinyl chloride at the center thereof. . As the insulating member 16A, polytetrafluoroethylene or the like can be used in addition to the above-mentioned vinyl chloride. It is preferable to use a material having a specific resistance of 100 ΩΩπι or more in order to maintain sufficient insulation so that the metal plating film 8 can be appropriately deposited and redissolved in both regions. Further, the insulating member 16A is preferably a material having chemical resistance, particularly preferably a material having acid resistance. Further, between the plating tank 18 and the base 9, the plating liquid corresponding to each region is isolated from each other at a predetermined interval on the insulating member 16 and the surface of the base 9. Partition member 16B may be formed. By separating the plating liquids corresponding to the respective regions from each other by the partition member 16B, the electric fields corresponding to the two regions do not interfere with each other. It can be done appropriately.
前記絶縁部材 1 6 A及び前記隔壁部材 1 6 Bは、 同一の材料により絶縁隔壁材 料 1 6として一体的に形成しても良い。 この絶縁隔壁材料 1 6は、 後述する循環 装置 1 5の一部であるメツキ液供給口として用いることもできる。 この場合には、 絶縁隔壁材料 1 6は中空で、 且つメツキ槽 1 8中のメツキ液 1 9側にメツキ液を 供給するための開口部を有するように構成すればよい。 なお、 絶縁隔壁部材 1 6を複数設けることにより、 メツキ槽 1 8の領域をさら に細かく区画するようにしても良い。 このようにすることで、 複数の電界を目的 に応じてより適切に制御することができ、 所望の金属メヅキ膜を形成することが 可能となる。 The insulating member 16A and the partition member 16B may be integrally formed as the insulating partition material 16 using the same material. This insulating partition wall material 16 can also be used as a plating liquid supply port which is a part of a circulation device 15 described later. In this case, the insulating partition wall material 16 may be hollow so as to have an opening for supplying the plating liquid to the plating liquid 19 side in the plating tank 18. By providing a plurality of insulating partition members 16, the region of the plating tank 18 may be further finely divided. By doing so, the plurality of electric fields can be more appropriately controlled according to the purpose, and a desired metal plating film can be formed.
—メッキ膜形成装置の変形例 2 - 次に本発明の他の実施形態に係るメヅキ膜形成装置について図 1 0、 図 1 1を 用いて説明する。  —Modification 2 of Plating Film Forming Apparatus— Next, a plating film forming apparatus according to another embodiment of the present invention will be described with reference to FIGS. 10 and 11.
本実施形態が今までの実施形態と異なる点は、 メツキ膜形成装置に使用される 基体 9の表面が、 少なくとも表層部において、 基体 9の中核部に対して着脱可能 に支持された複数のプロヅクに区画されている点である。  This embodiment is different from the previous embodiments in that the surface of the base 9 used in the plating film forming apparatus has a plurality of protruding and removably supported at least in the surface layer portion with respect to the core of the base 9. It is a point divided into.
例えば、 図 1 0に示すように、 基体 4の表面側全面を覆うように絶縁材 3 4を 形成し、 さらに絶縁材 3 4上に複数の絶縁隔壁材 3 5を所定の間隔で配置すると ともに、 絶縁材 3 4上であって絶縁隔壁材 3 5の間に、 導電性膜 6の上にマスク 層 7を形成したブロック部材 3 6を、 接着剤などを用いてはめ込むようにして基 体 4を構成している。  For example, as shown in FIG. 10, an insulating material 34 is formed so as to cover the entire surface side of the base 4, and a plurality of insulating partition members 35 are arranged at a predetermined interval on the insulating material 34. The block member 36 having the mask layer 7 formed on the conductive film 6 on the insulating material 34 and between the insulating partition wall materials 35 is fitted with an adhesive or the like so that the base material 4 is formed. Is composed.
また、 メヅキ液 1 9中で異なる位置に導電ローラ 3 7 A , 3 7 Bが設けられて いる。 導電ローラ 3 7 A, 3 7 Bは、 それぞれ電源装置 6 A、 6 Bを介して、 メ ツキ槽 1 8の高電位領域 1 8 A及び低電位領域 1 8 Bに接続されている。 導電口 ーラ 3 7 Aに当接したブロック部材 3 6は、 メツキ槽 1 8に対して正の高電位と なり、 導電ローラ 3 7 Bに当接したブロック部材 3 6は、 メツキ槽 1 8に対して 負の低電位となる。  In addition, conductive rollers 37 A and 37 B are provided at different positions in the makeup liquid 19. The conductive rollers 37A and 37B are connected to the high potential area 18A and the low potential area 18B of the plating tank 18 via power supply devices 6A and 6B, respectively. The block member 36 contacting the conductive roller 37 A has a positive high potential with respect to the plating tank 18, and the block member 36 contacting the conductive roller 37 B has a plating tank 18. Becomes a negative low potential.
また、 図 1 1に示すように、 基体 4の表層部のみならず中核部をも含めてプロ ック部材 3 6として構成し、 個々のブロック部材 3 6は、 基体 4の中心部から表 面へ向かって放射状に貫く絶縁隔壁材 3 5を介するようにしても良い。  Further, as shown in FIG. 11, the block member 36 is configured to include not only the surface layer of the base 4 but also the core, and the individual block members 36 are arranged from the center of the base 4 to the surface. An insulating partition wall material 35 that penetrates in a radial direction may be provided.
高電位領域 1 8 Aにおいて、 マスク層 7の存在しない基体 9の表面に金属メヅ キ膜 8を析出させた後、 低電位領域 1 8 Bにおいて、 逆の電位を用いて、 一旦形 成された金属メツキ膜 8の表面部分、 特に金属メヅキ膜 8と基体 9及びマスク層 7との接触部分を、 メヅキ液 1 9中で再溶解させる。 これにより、 メツキ液 1 9 から引き上げた金属メッキ膜 8は、 金属メッキ膜 8と基体 9及びマスク層 7との 間に微小な隙間が生じて、 金属メヅキ膜 8の剥離性が向上し、 被転写材 (樹脂フ イルム) への転写の精度を上げることができる。 In the high-potential region 18A, after a metal plating film 8 is deposited on the surface of the base 9 where the mask layer 7 is not present, in the low-potential region 18B, once formed using the opposite potential. The surface portion of the metal plating film 8, particularly the contact portion between the metal plating film 8 and the substrate 9 and the mask layer 7 is redissolved in the plating solution 19. As a result, the metal plating film 8 pulled up from the plating solution 19 becomes the same between the metal plating film 8 and the base 9 and the mask layer 7. A minute gap is formed therebetween, and the releasability of the metal make-up film 8 is improved, so that the accuracy of transfer to the material to be transferred (resin film) can be improved.
また、 マスク層 7などを、 小さな表面積を有するブロック部材 3 6に対して形 成すればよいため、 簡素な設備でブロック部材 3 6にマスク層 7などを作製する ことが可能となる。 また、 基体表面に形成されるマスク層 7が部分的に摩耗した 場合などに、 当該ブロック部材のみの交換が可能となり、 メンテナンス性にも優 れるという利点がある。  Further, since the mask layer 7 and the like may be formed on the block member 36 having a small surface area, the mask layer 7 and the like can be formed on the block member 36 with simple equipment. In addition, when the mask layer 7 formed on the substrate surface is partially worn, the block member alone can be replaced, and there is an advantage that maintenance is excellent.
なお、 本発明は上述の実施形態に限定されるものではなく、 本発明の要旨を逸 脱しない範囲において種々の変更、 改良等が可能である。  Note that the present invention is not limited to the above-described embodiment, and various changes, improvements, and the like can be made without departing from the gist of the present invention.
例えば、 上述の実施形態においては、 積層コンデンサを製造する場合を例にと つて説明したが、 積層コンデンサ以外の電子部品、 例えば、 インダクタ, フィル 夕, 回路基板等の他の電子部品を製造する場合においても本発明が適用可能であ ることは言うまでもない。  For example, in the above embodiment, the case of manufacturing a multilayer capacitor has been described as an example. However, the case of manufacturing electronic components other than the multilayer capacitor, for example, other electronic components such as inductors, filters, circuit boards, and the like. Needless to say, the present invention is also applicable to the above.

Claims

請 求 の 範 囲 The scope of the claims
1 . 表面の形状が凸曲面状の基体を用意し、  1. Prepare a substrate with a convex curved surface.
当該基体の表面に金属メヅキ膜を析出させ、  Depositing a metal plating film on the surface of the substrate,
当該金属メッキ膜を前記基体より剥離させることによって金属メッキ膜を得る 金属メツキ膜の形成方法。  A method for forming a metal plating film by obtaining the metal plating film by peeling the metal plating film from the substrate.
2 . 前記基体が円柱状の表面を有しており、  2. The substrate has a cylindrical surface,
前記基体の表面に金属メヅキ膜を析出させる工程は、  The step of depositing a metal plating film on the surface of the substrate,
前記基体の表面の一部をメッキ槽中のメッキ液に浸漬し、 前記基体を軸周りに 回転させながら、 前記基体と前記メツキ槽との間に電界を印加する請求項 1に記 載の金属メッキ膜の形成方法。  The metal according to claim 1, wherein a part of the surface of the base is immersed in a plating solution in a plating bath, and an electric field is applied between the base and the plating bath while rotating the base around an axis. A method for forming a plating film.
3 . 前記基体の表面に、 前記金属メツキ膜の析出領域を規制するマスク層が形 成されており、 該マスク層がダイヤモンド 'ライク 'カーボン (D L C ) もしく はグラフアイト .ライク '力一ボン (G L C ) から成っている請求項 1または請 求項 2に記載の金属メッキ膜の形成方法。  3. A mask layer is formed on the surface of the base to regulate the deposition area of the metal plating film, and the mask layer is made of diamond 'like' carbon (DLC) or graphite (like). 3. The method for forming a metal plating film according to claim 1 or claim 2, comprising (GLC).
4 . 前記金属メツキ膜中に非導電性微粒子が含有されている請求項 1から請求 項 3のいずれかに記載の金属メツキ膜の形成方法。 4. The method for forming a metal plating film according to claim 1, wherein the metal plating film contains non-conductive fine particles.
5 . 基体の表面に金属メツキ膜を析出させる工程 Aと、  5. Step A of depositing a metal plating film on the surface of the base;
当該金属メツキ膜を前記基体より剥離させて、 当該金属メツキ膜と誘電体シー トとを互いに付着させる工程 Bと、  A step B of peeling off the metal plating film from the base, and attaching the metal plating film and the dielectric sheet to each other;
前記金属メツキ膜が形成された誘電体シートを、 前記金属メツキ膜を形成して いる金属の融点よりも低い温度で熱処理することによって、 誘電体層上に導体層 が被着された部分を備えた電子部品を得る工程 Cと、 を含む電子部品の製造方 法。  The dielectric sheet on which the metal plating film is formed is subjected to a heat treatment at a temperature lower than the melting point of the metal forming the metal plating film, thereby providing a portion where the conductor layer is applied on the dielectric layer. A method for producing electronic components, including a process C for obtaining electronic components.
6 . 前記工程 Bは、 前記基体より当該金属メッキ膜を剥離させて樹脂フィルム に転写する工程と、 当該樹脂フィルムに転写された金属メツキ膜上に、 誘電体シ 一トを付着させる工程とを含む請求項 5記載の電子部品の製造方法。  6. The step B includes a step of peeling the metal plating film from the base and transferring the film to a resin film, and a step of attaching a dielectric sheet onto the metal plating film transferred to the resin film. 6. The method for producing an electronic component according to claim 5, comprising:
7 . 前記工程: Bは、 前記基体より当該金属メツキ膜を剥離させて樹脂フィルム に転写する工程と、 当該樹脂フィルムに転写された金属メツキ膜を、 誘電体シ一 ト上に再度転写する工程とを含む請求項 5記載の電子部品の製造方法。 7. The step: B is a step of peeling the metal plating film from the base and transferring it to a resin film, and a step of transferring the metal plating film transferred to the resin film again onto a dielectric sheet 6. The method for producing an electronic component according to claim 5, comprising:
8 . 前記工程 Bは、 前記基体より当該金属メツキ膜を剥離させ、 誘電体シート が形成された樹脂フィルムの誘電体シート上に直接転写する工程を含む請求項 5 記載の電子部品の製造方法。 8. The method of manufacturing an electronic component according to claim 5, wherein the step B includes a step of peeling the metal plating film from the base and directly transferring the resin film having the dielectric sheet formed on the dielectric sheet.
9 . 前記工程 Bは、 前記基体より当該金属メツキ膜を剥離させて樹脂フィルム に転写する工程と、 当該樹脂フィルムに転写された金属メツキ膜を覆うように、 誘電体スラリーを付着させる工程と、 誘電体スラリーが付着した樹脂フィルムを 加熱して乾燥させる工程とを含む請求項 5記載の電子部品の製造方法。  9. In the step B, a step of peeling the metal plating film from the base and transferring it to a resin film, and a step of applying a dielectric slurry so as to cover the metal plating film transferred to the resin film, 6. The method for producing an electronic component according to claim 5, comprising a step of heating and drying the resin film to which the dielectric slurry has adhered.
1 0 . 前記工程 Cにおける熱処理時のピーク温度が金属メツキ膜を形成してい る金属の再結晶温度よりも高い請求項 5に記載の電子部品の製造方法。  10. The method for producing an electronic component according to claim 5, wherein a peak temperature during the heat treatment in the step C is higher than a recrystallization temperature of a metal forming the metal plating film.
1 1 . 前記工程 Bは、 当該金属メツキ膜を前記基体より剥離させて樹脂フィル ムに転写した後、 その樹脂フィルムに対し、 その金属メヅキ膜が形成された面の、 金属メツキ膜の存在する部位と存在しない部位の双方に対して、 金属メツキ膜と 略等しい厚みの誘電体シートを押圧して、 樹脂フィルムの金属メツキ膜の存在し ない部位に誘電体シートを選択的に付着させる工程を含む請求項 5に記載の電子 部品の製造方法。  11. In the step B, after the metal plating film is peeled from the substrate and transferred to a resin film, the metal plating film is present on the surface of the resin film where the metal plating film is formed. A step of pressing a dielectric sheet having a thickness substantially equal to the metal plating film to both the region and the non-existing region to selectively attach the dielectric sheet to the resin film where the metal plating film does not exist. 6. The method for producing an electronic component according to claim 5, which includes:
1 2 . 前記基体は円柱状の表面を有しており、 前記工程 Aは、 前記基体の表面 の一部をメヅキ槽中のメツキ液に浸漬し、 前記基体を軸周りに回転させながら、 前記基体と前記メツキ槽との間に電界を印加する請求項 5から請求項 1 1のいず れかに記載の電子部品の製造方法。  12. The substrate has a columnar surface. In the step A, a part of the surface of the substrate is immersed in a plating solution in a plating tank, and the substrate is rotated around an axis. The method for producing an electronic component according to any one of claims 5 to 11, wherein an electric field is applied between the base and the plating tank.
1 3 . 前記基体の表面に、 前記金属メツキ膜の析出領域を規制するマスク層が 形成されており、 該マスク層がダイヤモンド .ライク .力一ボン (D L C ) もし くはグラフアイ卜 ·ライク -カーボン ( G L C ) から成っている請求項 5から請 求項 1 2のいずれかに記載の電子部品の製造方法。  13. A mask layer for regulating the deposition region of the metal plating film is formed on the surface of the base, and the mask layer is made of diamond-like-force-bon (DLC) or graphite-like- The method for producing an electronic component according to any one of claims 5 to 12, comprising carbon (GLC).
1 4 . 前記メツキ液は非導電性微粒子を含んで成り、 前記工程 Aにおいて、 当 該非導電性微粒子が、 基体表面に析出した金属成分に付着することによって、 非 導電性微粒子を含む金属メツキ膜が形成される請求項 5から請求項 1 3のいずれ かに記載の電子部品の製造方法。  14. The plating liquid comprises non-conductive fine particles. In the step A, the non-conductive fine particles adhere to a metal component deposited on the surface of the substrate, thereby forming a metal plating film containing the non-conductive fine particles. 14. The method for producing an electronic component according to claim 5, wherein the electronic component is formed.
1 5 . メッキ液が注入されるメツキ槽と、  1 5. A plating tank into which the plating solution is injected,
円柱状の表面を有し、 表面の一部が前記メツキ液に浸潰されるように配置され た回転可能な基体と、 It has a cylindrical surface, and is arranged such that a part of the surface is immersed in the plating liquid. A rotatable substrate,
前記基体と前記メッキ槽の間に電界を印加する電解印加手段と、  Electrolysis applying means for applying an electric field between the substrate and the plating tank,
前記基体の回転方向下流側に、 前記メッキ液より引き上げた基体表面上の金属 メツキ膜を、 被転写材を基体に対して押圧する転写手段とを有するメツキ膜形成  Forming a metal film on the surface of the substrate pulled up from the plating solution on the downstream side in the rotation direction of the substrate, and a transfer means for pressing a material to be transferred against the substrate;
1 6 . 前記被転写材は樹脂フィルムであり、 当該樹脂フィルムに転写された金 属メツキ膜上に、 誘電体シートを付着させる第 2の転写手段をさらに含む請求項 1 5記載のメツキ膜形成装置。 16. The plating film formation according to claim 15, wherein the material to be transferred is a resin film, and further comprising a second transfer means for attaching a dielectric sheet on the metal plating film transferred to the resin film. apparatus.
1 7 . 前記被転写材は樹脂フィルムであり、 当該樹脂フィルムに転写された金 属メツキ膜を、 誘電体シ一ト上に転写する第 3の転写手段をさらに含む請求項 1 5記載のメヅキ膜形成装置。  17. The method according to claim 15, wherein the material to be transferred is a resin film, and further includes a third transfer means for transferring the metal plating film transferred to the resin film onto a dielectric sheet. Film forming equipment.
1 8 . 前記被転写材は、 誘電体シートが形成された樹脂フィルムである請求項 1 5記載のメツキ膜形成装置。  18. The plating film forming apparatus according to claim 15, wherein the material to be transferred is a resin film on which a dielectric sheet is formed.
1 9 . 前記被転写材は樹脂フィルムであり、 当該樹脂フィルムに転写された金 属メツキ膜を覆うように、 誘電体スラリーを付着させるスラリー付着手段と、 誘 電体スラリ一が付着した樹脂フィルムを加熱して乾燥させる手段とをさらに含む 請求項 1 5記載のメッキ膜形成装置。  19. The transfer-receiving material is a resin film, a slurry adhering means for adhering a dielectric slurry so as to cover the metal plating film transferred to the resin film, and a resin film adhering the dielectric slurry. 16. The plating film forming apparatus according to claim 15, further comprising: means for heating and drying.
2 0 . 前記基体の表面が、 前記基体の中核部に対して着脱可能に支持された複 数のブロックに区画されている請求項 1 5から請求項 1 9のいずれかに記載のメ ツキ膜形成装置。  20. The plating film according to any one of claims 15 to 19, wherein the surface of the base is divided into a plurality of blocks detachably supported by a core of the base. Forming equipment.
2 1 . 前記メツキ槽に、 前記基体よりも正の電位に保持されて基体表面に金属 メツキ膜を析出させる第 1の電位領域と、 該第 1の電位領域よりも前記基体の回 転方向下流側に位置し、 且つ、 前記基体よりも負の電位に保持されて基体表面に 析出した金属メツキ膜の表層部を前記メツキ液中に再溶解させる第 2の電位領域 とを設けた請求項 1 5から請求項 2 0のいずれかに記載のメツキ膜形成装置。 21. A first potential region in which a metal plating film is deposited on the surface of the substrate while being maintained at a more positive potential than the substrate in the plating tank; and a rotation direction downstream of the substrate from the first potential region. A second potential region located on the side of the metal plating film, the second potential region being held at a more negative potential than the substrate and re-dissolving the surface layer portion of the metal plating film deposited on the surface of the substrate in the plating solution. The plating film forming apparatus according to any one of claims 5 to 20.
2 2 . 前記第 1の電位領域及び第 2の電位領域間に絶縁部材を介在させて両領 域を電気的に分離した請求項 2 1に記載のメツキ膜形成装置。 22. The plating film forming apparatus according to claim 21, wherein an insulating member is interposed between the first potential region and the second potential region to electrically separate the two regions.
PCT/JP2004/009353 2003-06-27 2004-06-25 Process for producing metal plating film, process for producing electronic part and plating film forming apparatus WO2005001166A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/562,712 US20060163073A1 (en) 2003-06-27 2004-06-25 Process for producing metal plating film, process for producing electronic part and plating film forming apparatus
CN200480017902.0A CN1813084B (en) 2003-06-27 2004-06-25 Process for producing metal plating film, process for producing electronic part and plating film forming apparatus

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2003-185894 2003-06-27
JP2003185894 2003-06-27
JP2003-203377 2003-07-29
JP2003203377 2003-07-29
JP2003-204151 2003-07-30
JP2003204151 2003-07-30
JP2003303758 2003-08-27
JP2003-303758 2003-08-27
JP2003-304798 2003-08-28
JP2003304798 2003-08-28
JP2003336276 2003-09-26
JP2003-336276 2003-09-26
JP2003-431560 2003-12-25
JP2003-431562 2003-12-25
JP2003431560 2003-12-25
JP2003431562 2003-12-25

Publications (1)

Publication Number Publication Date
WO2005001166A1 true WO2005001166A1 (en) 2005-01-06

Family

ID=33556849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009353 WO2005001166A1 (en) 2003-06-27 2004-06-25 Process for producing metal plating film, process for producing electronic part and plating film forming apparatus

Country Status (3)

Country Link
US (1) US20060163073A1 (en)
CN (1) CN1813084B (en)
WO (1) WO2005001166A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031878B3 (en) * 2004-07-01 2005-10-06 Epcos Ag Electrical multilayer component with reliable solder contact
US8349086B2 (en) 2004-07-30 2013-01-08 United Technologies Corporation Non-stick masking fixtures and methods of preparing same
WO2013157516A1 (en) * 2012-04-19 2013-10-24 株式会社村田製作所 Conductive paste, laminated ceramic electronic component and method for manufacturing laminated ceramic electronic component
CN104137657A (en) * 2012-06-22 2014-11-05 株式会社新克 Printed circuit board, and manufacturing device and manufacturing method therefor
JP6117520B2 (en) * 2012-07-20 2017-04-19 株式会社シンク・ラボラトリー Continuous pattern plating transfer system and method of manufacturing continuous pattern plating transfer
WO2014125972A1 (en) * 2013-02-12 2014-08-21 株式会社シンク・ラボラトリー Continuous plating patterning roll and manufacturing method therefor
CN103972687A (en) * 2014-05-13 2014-08-06 富创科技(深圳)有限公司 Electroplated metal wire and electroplating method thereof
US10040271B1 (en) * 2015-10-02 2018-08-07 Global Solar Energy, Inc. Metalization of flexible polymer sheets
US10131998B2 (en) * 2015-10-02 2018-11-20 Global Solar Energy, Inc. Metalization of flexible polymer sheets
TW201942418A (en) * 2018-04-02 2019-11-01 美商全球太陽能公司 Metalization of flexible polymer sheets
JP2022127384A (en) * 2021-02-19 2022-08-31 株式会社ジャパンディスプレイ Production method of vapor deposition mask
CN114121494B (en) * 2021-11-30 2023-04-18 上海交通大学 3D multilayer high-dielectric-constant high-power-density supercapacitor and micromachining method
CN115831611B (en) * 2023-02-06 2023-04-18 四川中星电子有限责任公司 Film roll wrapping device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302469A (en) * 1993-04-12 1994-10-28 Matsushita Electric Ind Co Ltd Formation method of internal electrode for multilayer ceramic capacitor
JPH0888305A (en) * 1994-09-16 1996-04-02 Matsushita Electric Ind Co Ltd Manufacture of lead frame
JP2000109993A (en) * 1998-08-03 2000-04-18 Sumitomo Special Metals Co Ltd Device and method for producing metallic foil and metallic foil piece
JP2001060528A (en) * 1999-08-23 2001-03-06 Tdk Corp Member for transferring metallic film, manufacture thereof, and manufacture of laminated ceramic electronic component
JP2002371382A (en) * 2001-06-15 2002-12-26 Murata Mfg Co Ltd Metal film, manufacturing method therefor, laminated ceramics electronic component, and manufacturing method therefor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3414487A (en) * 1965-06-30 1968-12-03 Texas Instruments Inc Method of manufacturing printed circuits
US3654115A (en) * 1968-12-30 1972-04-04 Texas Instruments Inc Manufacture of perforated metal foil
US4053370A (en) * 1975-09-18 1977-10-11 Koito Manufacturing Company Limited Process for the fabrication of printed circuits
US4587166A (en) * 1983-02-16 1986-05-06 Ampex Corporation Plated magnetic recording material and process for making same
EP0199132B1 (en) * 1985-04-13 1990-11-07 Licentia Patent-Verwaltungs-GmbH Process for the wet chemical production of a metal coating
DE3515629A1 (en) * 1985-05-02 1986-11-06 Held, Kurt, 7218 Trossingen METHOD AND DEVICE FOR PRODUCING COPPER-COATED LAMINATES
EP0362404B1 (en) * 1988-03-07 1995-07-12 Matsushita Electric Industrial Co., Ltd. Method of producing laminated ceramic electronic parts
US5565073A (en) * 1994-07-15 1996-10-15 Fraser; Mark E. Electrochemical peroxide generator
US5647966A (en) * 1994-10-04 1997-07-15 Matsushita Electric Industrial Co., Ltd. Method for producing a conductive pattern and method for producing a greensheet lamination body including the same
US6150186A (en) * 1995-05-26 2000-11-21 Formfactor, Inc. Method of making a product with improved material properties by moderate heat-treatment of a metal incorporating a dilute additive
US5789320A (en) * 1996-04-23 1998-08-04 International Business Machines Corporation Plating of noble metal electrodes for DRAM and FRAM
DE19716369A1 (en) * 1997-04-18 1998-10-22 Hans Josef May Device for performing continuous electrolytic deposition processes
US6183607B1 (en) * 1999-06-22 2001-02-06 Ga-Tek Inc. Anode structure for manufacture of metallic foil
JP3656612B2 (en) * 2001-06-08 2005-06-08 株式会社村田製作所 Metal film and manufacturing method thereof, multilayer ceramic electronic component and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302469A (en) * 1993-04-12 1994-10-28 Matsushita Electric Ind Co Ltd Formation method of internal electrode for multilayer ceramic capacitor
JPH0888305A (en) * 1994-09-16 1996-04-02 Matsushita Electric Ind Co Ltd Manufacture of lead frame
JP2000109993A (en) * 1998-08-03 2000-04-18 Sumitomo Special Metals Co Ltd Device and method for producing metallic foil and metallic foil piece
JP2001060528A (en) * 1999-08-23 2001-03-06 Tdk Corp Member for transferring metallic film, manufacture thereof, and manufacture of laminated ceramic electronic component
JP2002371382A (en) * 2001-06-15 2002-12-26 Murata Mfg Co Ltd Metal film, manufacturing method therefor, laminated ceramics electronic component, and manufacturing method therefor

Also Published As

Publication number Publication date
CN1813084A (en) 2006-08-02
CN1813084B (en) 2010-05-05
US20060163073A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
TWI525221B (en) Copper foil and its manufacturing method, carrier copper foil and its manufacturing method, printed circuit board and multilayer printed circuit board
WO2005001166A1 (en) Process for producing metal plating film, process for producing electronic part and plating film forming apparatus
TWI280080B (en) Nickel coated copper as electrodes for embedded passive devices
CN106413267B (en) The manufacturing method of Copper foil with carrier, laminate, the manufacturing method of printing distributing board and electronic equipment
CN106413268B (en) The manufacturing method of Copper foil with carrier, laminate, the manufacturing method of printing distributing board and electronic equipment
KR20120131808A (en) Gravure Printing Engraving Roll and Manufacturing Method thereof
WO1987005182A1 (en) Method of producing conductor circuit boards
JP3793567B2 (en) Plating film forming device
TWI551439B (en) Liquid crystal polymer film with metal foil, method for producing the same, and multilayer printed wiring board, and manufacturing method thereof
JP4226927B2 (en) Method for manufacturing double-sided copper-clad laminate for capacitor layer formation
JP4624015B2 (en) Metal plating film forming method and electronic component manufacturing method
JP4738320B2 (en) Manufacturing method of electronic parts
JP4518847B2 (en) Manufacturing method of electronic parts
US6447929B1 (en) Thin copper on usable carrier and method of forming same
JP2000109993A (en) Device and method for producing metallic foil and metallic foil piece
JP2002231574A (en) Method for manufacturing multilayer ceramic electronic component and multilayer ceramic electronic component
JP3793569B1 (en) Plating film manufacturing method and electronic component manufacturing method
JP3786674B2 (en) Plating film forming device
JP4574269B2 (en) Manufacturing method of electronic parts
JP6117520B2 (en) Continuous pattern plating transfer system and method of manufacturing continuous pattern plating transfer
JP4344555B2 (en) Manufacturing method of ceramic electronic component
JP6266965B2 (en) Multilayer printed wiring board manufacturing method and base substrate
JP3355312B2 (en) Method for manufacturing multilayer ceramic electronic component, member for transferring metal film used therefor, and method for manufacturing the same
JP4779240B2 (en) Metal film and manufacturing method thereof, multilayer ceramic electronic component and manufacturing method thereof
JP2005150349A (en) Method for manufacturing laminated electronic component

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006163073

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10562712

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048179020

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 10562712

Country of ref document: US

122 Ep: pct application non-entry in european phase