WO2005001107A1 - Method of separating optical isomers of a protected aminoacid - Google Patents

Method of separating optical isomers of a protected aminoacid Download PDF

Info

Publication number
WO2005001107A1
WO2005001107A1 PCT/RU2004/000244 RU2004000244W WO2005001107A1 WO 2005001107 A1 WO2005001107 A1 WO 2005001107A1 RU 2004000244 W RU2004000244 W RU 2004000244W WO 2005001107 A1 WO2005001107 A1 WO 2005001107A1
Authority
WO
WIPO (PCT)
Prior art keywords
sidechain
carboxyl
protected
chosen
protected aminoacid
Prior art date
Application number
PCT/RU2004/000244
Other languages
French (fr)
Inventor
Maxim Ilich Youshko
Vytautas-Juozapas Kajetono Svedas
Roger Arthur Sheldon
Lukas Michael Van Langen
Original Assignee
Clea Technologies Bv
Biotir Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clea Technologies Bv, Biotir Ltd filed Critical Clea Technologies Bv
Priority to EP04748942A priority Critical patent/EP1656456A1/en
Publication of WO2005001107A1 publication Critical patent/WO2005001107A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/38Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Aspergillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • C12P41/005Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of carboxylic acid groups in the enantiomers or the inverse reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/006Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
    • C12P41/007Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures by reactions involving acyl derivatives of racemic amines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method of enzy- matically separating optical isomers of a protected aminoacid chosen from the group of protected natural and non-natural aminoacids , wherein an enzyme is contacted with a mixture comprising R and S isomers of the protected aminoacid to be separated .
  • Separation of optical isomers is an important procedure in industrial synthesis of aminoacids . Low cost and optical purity (enantiomeric excess ) are important parameters . For this reason , enzymes are used because of their selectivity . To keep cost down, it is generally preferred not to use pure enzyme but rather enzyme preparations .
  • the obj ective of the present invention is to provide a method according to the preambule, allowing the separation at low cost and excellent optical purity ( e . e ) .
  • the present invention is characterized in that the protected aminoacid is a (non-sidechain- carboxyl ) -protected aminoacid having the general formula ( I ) HR 1 N-CR 2 - (CH ) n -C (0) ZR 3 I wherein - R 1 is an amino-protective group or hydrogen; - R 2 is a side chain; - n is a number chosen from 0, 1, and 2; - ZR 3 is a carboxy-protective group where Z is chosen from 0 or NH; and R 1 and R 3 may be integrated, forming a heterocy-oul (non-sidechain-carboxyl) -protected ring, the ring backbone comprising 5 to 8 atoms; the (non-sidechain-carboxyl) -protected
  • the (non-sidechain carboxy) deprotected product carries the now free carboxylgroup.
  • the examples below demonstrate the excellent results obtained with the method according to the invention.
  • the term 'enzymatically separating' is to be understood to increase the number and/or magnitude of properties in which the enzymatically converted product and starting material differ. That is, a physical separation in terms of space is not a requirement, as this may occur later, for example in case of synthesis.
  • a preferred set of substrates having the formula (I) are characterized in that R 3 , with Z is O, represents a group chosen from the set consisting of a branched or unbranched (C ⁇ -C 4 ) alkylgroup, a phenylgroup, and an (C ⁇ -C 4 ) alkylphenylgroup; each of which may be substituted or not with one or more of halogen atoms, car- boxy, hydroxy and aminogroup.
  • Z. is NH
  • R 3 is as defined above, or hydrogen.
  • the nature of the side chain R 2 is believed to be of no particular relevance for the enzymatic reaction.
  • the molecular weight of the (non-sidechain- carboxyl) -protected aminoacid (I) is less than 500.
  • the enzyme is derived from Aspergillus sp., preferably chosen from Aspergillus melleus and Aspergillus oryzae.
  • the (non- sidechain-carboxyl) -protected aminoacid is chosen from a hy- dantoin derivative and diketopiperazine derivative.
  • the enzyme is immobilized, and more preferrably comprised in a CLEA.
  • a CLEA is a cross-linked enzyme aggregate. This pro- vides a cost-effective solution, allowing easy separation of the biocatalytic CLEA and the solution in which the separation is performed.
  • the present invention will now be illustrated with reference to the following examples.
  • use is made of a crude enzyme preparation from Aspergillus, said enzyme preparation having an aminoacylase activity and available from Fluka.
  • This preparation also contains an hydrolase activity exploited in the present invention, more specifically an esterase and/or an amidase activity. Immobilization of enzyme was performed by making a CLEA, according to standard procedures (Cao L. et al, Org. Lett. 2, pp. 1361-1364, (2000) ) .
  • a 10 m solution of D, L-phenylglycine amide (D,L- PGA) was prepared in 5 ml of 50 mM TRIS buffer pH 7.5. Enzymatic reaction was started by addition of 50 U of A inoa- cylase I from Aspergillus melleus (Fluka, 1.3U/mg) and performed at permanent stirring at room temperature. Periodically, samples were taken, diluted by eluent in order to stop enzymatic reaction and subjected to chiral HPLC analysis (Crownpack CR+, pH 2, 25°C) . After 4 hours reaction reached 50.6% conversion, and further hydrolysis was negligible (51% after 18 hours) . Optical purity of remaining D-phenylglycine amide was 99+%, optical purity of converted L-phenylglycine was 99%.
  • D,L-2-aminobutyric acid ethyl ester was prepared by esterification of D, L-2-aminobutyric acid (D,L-ABA, obtained from ACROS) in ethanol in the presence of sulfuric acid. The excess of ethanol was evaporated under reduced pressure. The obtained D,L-ABAE sulfuric salt (24 mmol) was dissolved in 100 ml water and pH was adjusted to 6.7 using NaOH. The reaction was started by adding 1 g of Aminoacylase I from Aspergillus melleus (Fluka, 1.3U/mg) and was performed at the room temperature, at continuous stirring and automated pH-control.
  • Aminoacylase I from Aspergillus melleus

Abstract

The invention relates to a method Method of enzy­matically separating optical isomers of a protected amino­ acid. According to the invention, a (non-sidechain-carboxyl)­ protected aminoacid is used having the general formula (I) HR1N-CR2- (CH) n-C (0) ZR3 wherein R1 is an amino-protective group or hydrogen; - R2 is a side chain; n is a number chosen from 0, 1, and 2; ZR3 is a carboxy-protective group where Z is chosen from 0 or NH; and R1 and R3 may be integrated, forming a heterocy­clic (non-sidechain-carboxyl)-protected ring, the ring backbone comprising 5 to 8 atoms; the (non-sidechain-carboxyl)-protected aminoacid having a mo­lecular weight of less than 1000 Dalton, said method comprising the steps of - contacting the (non-sidechain-carboxyl) -protected aminoacid (I) in the presence of water with an optionally partially pu­rified cell-free extract of a fungus containing an enzyme having at least one of an esterase and amidase activity yielding a mixture of (non-sidechain carboxyl) deprotected product and starting material; and - optionally separating the (non-sidechain carboxyl) depro­tected product and starting material.

Description

Method of separating optical isomers of a protected aminoacid The present invention relates to a method of enzy- matically separating optical isomers of a protected aminoacid chosen from the group of protected natural and non-natural aminoacids , wherein an enzyme is contacted with a mixture comprising R and S isomers of the protected aminoacid to be separated . Separation of optical isomers is an important procedure in industrial synthesis of aminoacids . Low cost and optical purity (enantiomeric excess ) are important parameters . For this reason , enzymes are used because of their selectivity . To keep cost down, it is generally preferred not to use pure enzyme but rather enzyme preparations . The obj ective of the present invention is to provide a method according to the preambule, allowing the separation at low cost and excellent optical purity ( e . e ) . To this end, the present invention is characterized in that the protected aminoacid is a (non-sidechain- carboxyl ) -protected aminoacid having the general formula ( I ) HR1N-CR2- (CH ) n-C (0) ZR3 I wherein - R1 is an amino-protective group or hydrogen; - R2 is a side chain; - n is a number chosen from 0, 1, and 2; - ZR3 is a carboxy-protective group where Z is chosen from 0 or NH; and R1 and R3 may be integrated, forming a heterocy- clic (non-sidechain-carboxyl) -protected ring, the ring backbone comprising 5 to 8 atoms; the (non-sidechain-carboxyl) -protected aminoacid having a molecular weight of less than 1000 Dalton, said method comprising the steps of - contacting the (non-sidechain-carboxyl) -protected aminoacid (I) in the presence of water with an optionally partially purified cell-free extract of a fungus containing an enzyme having at least one of an esterase and amidase activity yielding a mixture of (non-sidechain carboxyl) deprotected product and starting material; and optionally separating the (non-sidechain carboxyl) deprotected product and starting material. The (non-sidechain carboxy) deprotected product carries the now free carboxylgroup. The examples below demonstrate the excellent results obtained with the method according to the invention. In the present application, the term 'enzymatically separating' is to be understood to increase the number and/or magnitude of properties in which the enzymatically converted product and starting material differ. That is, a physical separation in terms of space is not a requirement, as this may occur later, for example in case of synthesis. According to a preferred embodiment, a preferred set of substrates having the formula (I) , are characterized in that R3, with Z is O, represents a group chosen from the set consisting of a branched or unbranched (Cι-C4) alkylgroup, a phenylgroup, and an (Cι-C4) alkylphenylgroup; each of which may be substituted or not with one or more of halogen atoms, car- boxy, hydroxy and aminogroup. According to a highly preferred embodiment, if Z. is NH, R3 is as defined above, or hydrogen. The nature of the side chain R2 is believed to be of no particular relevance for the enzymatic reaction. However, small substrates having the formula (I) will be preferred because they allow a rapid turn-over and are suitable building blocks for synthesis. Hence, according to an advantageous embodiment, the molecular weight of the (non-sidechain- carboxyl) -protected aminoacid (I) is less than 500. Preferrably, the enzyme is derived from Aspergillus sp., preferably chosen from Aspergillus melleus and Aspergillus oryzae. According to a favourable embodiment, the (non- sidechain-carboxyl) -protected aminoacid is chosen from a hy- dantoin derivative and diketopiperazine derivative. These substrates according to the general formula (I) were found to be excellent substrates. Finally, according to a preferred embodiment, the enzyme is immobilized, and more preferrably comprised in a CLEA. A CLEA is a cross-linked enzyme aggregate. This pro- vides a cost-effective solution, allowing easy separation of the biocatalytic CLEA and the solution in which the separation is performed. The present invention will now be illustrated with reference to the following examples. In the examples, use is made of a crude enzyme preparation from Aspergillus, said enzyme preparation having an aminoacylase activity and available from Fluka. This preparation also contains an hydrolase activity exploited in the present invention, more specifically an esterase and/or an amidase activity. Immobilization of enzyme was performed by making a CLEA, according to standard procedures (Cao L. et al, Org. Lett. 2, pp. 1361-1364, (2000) ) .
Example 1. Enantioselective hydrolysis of D,L-phenylglycine amide (PGA).
A 10 m solution of D, L-phenylglycine amide (D,L- PGA) was prepared in 5 ml of 50 mM TRIS buffer pH 7.5. Enzymatic reaction was started by addition of 50 U of A inoa- cylase I from Aspergillus melleus (Fluka, 1.3U/mg) and performed at permanent stirring at room temperature. Periodically, samples were taken, diluted by eluent in order to stop enzymatic reaction and subjected to chiral HPLC analysis (Crownpack CR+, pH 2, 25°C) . After 4 hours reaction reached 50.6% conversion, and further hydrolysis was negligible (51% after 18 hours) . Optical purity of remaining D-phenylglycine amide was 99+%, optical purity of converted L-phenylglycine was 99%.
Example 2.
Enantioselective hydrolysis of D,L-amino acids amides.
In all cases, a 10 mM solution of appropriate D,L- ~ amino acid amide was prepared in 5 ml of 50 mM TRIS buffer pH 7.5. Enzymatic reaction was started by addition of 50 U of Aminoacylase I from Aspergillus melleus (Fluka, 1.3U/mg) and performed at permanent stirring at room temperature. Periodically, samples were taken, diluted by eluent in order to stop enzymatic reaction and subjected to chiral HPLC analysis (Crownpack CR+) . The optical purity of remaining D-α-amino acid amide was determined after reaching of about 50% conversion.
Preferred Con . e. e . ε Entry Substrate configurat (%) (S) xoπ
D,L-leucine 50.2 97.8 320 amide
D, L-p-hydroxy- 50.1 >99 >300 phenylglycine amide
D, L-homo- 48.2 90.7 240 phenylalanine
D,L-2- aminobutyric L 49.2 96.3 >300 acid amide
Example 3.
Enantioselective hydrolysis of D,L-2-aminobutyric acid ethyl ester.
D,L-2-aminobutyric acid ethyl ester (ABAE) was prepared by esterification of D, L-2-aminobutyric acid (D,L-ABA, obtained from ACROS) in ethanol in the presence of sulfuric acid. The excess of ethanol was evaporated under reduced pressure. The obtained D,L-ABAE sulfuric salt (24 mmol) was dissolved in 100 ml water and pH was adjusted to 6.7 using NaOH. The reaction was started by adding 1 g of Aminoacylase I from Aspergillus melleus (Fluka, 1.3U/mg) and was performed at the room temperature, at continuous stirring and automated pH-control. Periodically, samples were taken and subjected to chiral HPLC analysis (Crownpack CR+) . After four hours the pH was increased to the 8.0 and reaction mixture was 3 times ex- tracted by ethyl acetate. After evaporization of the ethyl acetate layer 1.38 g D-ABAE with optical purity of 98 % was obtained (10.5 mmol, 88% of theoretical yield). The water layer contained 0.1 M (0.9 g) of L-ABA with optical purity of 94 % (8.7 mmol, 73% of theoretical yield). The isolated D-ABAE was then hydrolyzed in the presence of hydrochloric acid (pH 0.5, 100°C) . The water was evaporated and the crude product was washed with a TBME/ 2- propanol mixture, yielding 1 gram of D-ABA hydrochloric acid salt (7.1 mmol, 59% of theoretical yield). The product had 99+% chemical purity and 98+% optical purity and [α.D20 = -15 (c=l, 2.5M HC1)
Example 4.
Enantioselective hydrolysis of D, L- _amino acid esters .
In all cases, 10 mM of appropriate D, L- ~amino acid ester was dissolved in 5 ml of 50 mM TRIS buffer pH 6. 5. Enzymatic reaction was started by addition of 50 U of Aminoacylase I from Aspergillus melleus ( Fluka, 1. 3U/mg) and per- formed at permanent stirring at room temperature . Periodically, samples were taken, diluted by eluent in order to stop enzymatic reaction and subjected to chiral HPLC analysis (Crownpack CR+) . Optical purity of remaining D-α-amino acid ester was determined after achieving of about 50% conversion . Entry Substrate Preferred Conv. e.e E configurati (%) (S) on
1 D,L-2- 53 98 65 aminobutyric L acid ethyl ester
2 D,L-2- 53 92 33 aminobutyric L acid methyl ester D, L-p-hydroxy-
3 phenylglycine L 56 87 15 methyl ester 4 D,L-tyrosine L 51 82 21 ethyl ester
Examp e 5.
Enantioselective hydrolysis of D,L-2-aminobutyric acid ethyl ester by immobilized Aminoacylase I.
10 ml of a solution of 10 mM D,L-2-aminobutyric acid ethyl ester (D,L-ABAE) was prepared in 50 mM TRIS buffer at pH 6.7. The enzymatic reaction was started by addition of 100 mg of immobilized Aminoacylase I from Aspergillus (Fluka, 388 U/g) and performed at permanent stirring and room temperature. Periodically, samples were taken and subjected to chiral HPLC analysis (Crownpack CR+) . After 6 hours reaction reached 49% conversion. Optical purity of remaining D-ABAE was 90%, the optical purity of 2-aminobutyric acid was 94% (L) .
Example 6.
Enantioselective hydrolysis of D,L-beta-phenylalanine ethyl ester. A 10 mM solution of D,L-beta-phenylalanine ethyl ester was prepared in 5 ml of 50 mM TRIS buffer at pH 7.5. Enzymatic reaction was started by addition of 50 ϋ of Aminoa- cylase I from Aspergillus melleus (Fluka, 1.3U/mg) and performed at permanent stirring at room temperature. Periodically, samples were taken, diluted by eluent in order to stop enzymatic reaction and subjected to chiral HPLC analysis (Crownpack CR+, pH 2, 25 C) . After 8 hours reaction reached 46% conversion. Optical purity of remaining D- beta- phenylalanine ethyl ester was 81% (E = 100) .

Claims

1. Method of enzymatically separating optical isomers of a protected aminoacid chosen from the group of protected natural and non-natural aminoacids, wherein an enzyme is contacted with a mixture comprising R and S isomers of the protected aminoacid to be separated, characterized in that the protected aminoacid is a (non-sidechain-carboxyl) - protected aminoacid having the general formula (I)
HR1N-CR2-(CH)„-C(0)ZR3 I
wherein R1 is an amino-protective group or hydrogen; R2 is a side chain; n is a number chosen from 0, 1, and 2; - ZR3 is a carboxy-protective group where Z is chosen from O or NH; and R1 and R3 may be integrated, forming a heterocy- clic (non-sidechain-carboxyl) -protected ring, the ring backbone comprising 5 to 8 atoms; the (non-sidechain-carboxyl) -protected aminoacid having a mo- lecular weight of less than 1000 Dalton, said method comprising the steps of
- contacting the (non-sidechain-carboxyl) -protected aminoacid (I) in the presence of water with an optionally partially purified cell-free extract of a fungus containing an enzyme having at least one of an esterase and amidase activity yielding a mixture of (non-sidechain carboxyl) deprotected product and starting material; and and optionally separating the (non-sidechain carboxyl) deprotected product and starting material.
2. Method according to claim 1, characterized in that R3, with Z is 0, represents a group chosen from the set consisting of a branched or unbranched (Cι-C4) alkylgroup, a phenylgroup, and an (C1-C4) alkylphenylgroup; each of which may be substituted or not with one or more of halogen atoms, car- boxy, hydroxy and aminogroup.
3. Method according to claim 1, characterized in that R3, with Z is NH, represents a group chosen from the set consisting of hydrogen, a branched or unbranched (Ci- C4) alkylgroup, a phenylgroup, and an (Cι-C4) alkylphenylgroup; each of which may be substituted or not with one or more of halogen atoms, carboxy, hydroxy and aminogroup.
4. Method according to claim 3, characterized in that Z is NH and R3 is hydrogen.
5. Method according to any of the preceding claims, characterized in that the molecular weight of the (non- sidechain-carboxyl) -protected aminoacid (I) is less than 500.
6. Method according to any of the preceding claims, characterized in that the fungus is derived from Aspergillus sp., preferably chosen from Aspergillus melleus and Aspergil- lus oryzae.
7. Method according to any of the preceding claims, characterized in that the (non-sidechain-carboxyl) -protected aminoacid is chosen from a hydantoin derivative and dike- topiperazine derivative.
8. Method according to any of the preceding claims, characterized in that the enzyme is immobilized.
9. Method according to claim 8, characterized in that the enzyme is comprised in a CLEA.
PCT/RU2004/000244 2003-06-27 2004-06-25 Method of separating optical isomers of a protected aminoacid WO2005001107A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04748942A EP1656456A1 (en) 2003-06-27 2004-06-25 Method of separating optical isomers of a protected aminoacid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1023767A NL1023767C1 (en) 2003-06-27 2003-06-27 Process for separating optical isomers from a protected amino acid.
NL1023767 2003-06-27

Publications (1)

Publication Number Publication Date
WO2005001107A1 true WO2005001107A1 (en) 2005-01-06

Family

ID=33550490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2004/000244 WO2005001107A1 (en) 2003-06-27 2004-06-25 Method of separating optical isomers of a protected aminoacid

Country Status (4)

Country Link
EP (1) EP1656456A1 (en)
NL (1) NL1023767C1 (en)
RU (1) RU2006100556A (en)
WO (1) WO2005001107A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085845A1 (en) * 2011-12-08 2013-06-13 Binoptics Corporation Edge-emitting etched-facet lasers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823996A (en) * 1994-07-20 1996-01-30 Musashino Kagaku Kenkyusho:Kk Production of optically active alanine
JPH09206089A (en) * 1996-01-30 1997-08-12 Tanabe Seiyaku Co Ltd Production of optically active amino acid derivative

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823996A (en) * 1994-07-20 1996-01-30 Musashino Kagaku Kenkyusho:Kk Production of optically active alanine
JPH09206089A (en) * 1996-01-30 1997-08-12 Tanabe Seiyaku Co Ltd Production of optically active amino acid derivative

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085845A1 (en) * 2011-12-08 2013-06-13 Binoptics Corporation Edge-emitting etched-facet lasers

Also Published As

Publication number Publication date
EP1656456A1 (en) 2006-05-17
RU2006100556A (en) 2007-08-27
NL1023767C1 (en) 2004-12-28

Similar Documents

Publication Publication Date Title
US4668625A (en) Process for preparing peptides
JPH04501056A (en) Enzymatic production method for dipeptides or structurally related compounds
EP0149594A2 (en) Enzymatic coupling of n-formyl amino acids and/or peptide residues
US8883444B2 (en) Peptide synthesis using enzymatic activation and coupling
EP0182517B1 (en) Enantioselective hydrolysis of n-acylamino acid esters using a combined enzyme system
JP4856184B2 (en) Enzymatic conversion of oligopeptide amides to oligopeptide alkyl esters
WO2005001107A1 (en) Method of separating optical isomers of a protected aminoacid
EP2198037B1 (en) Chemo-enzymatic peptide synthesis via C-terminal ester interconversion
JPH09206089A (en) Production of optically active amino acid derivative
JPH10286098A (en) Production of d-amino acid, and production of amine
US20050153401A1 (en) Process for preparing optically active beta-aminocarboxylic acids from racemic n-acylated beta-aminocarboxylic acids
US7439036B2 (en) Process for producing optically active octahydro-1H-indole-2-carboxylic acid
EP0269390B1 (en) Enzymatic l-aspartyl-l-phenylalanine alkyl ester production
JP3866357B2 (en) Thermostable, solvent-resistant esterase
JP5261709B2 (en) Methods for adding fatty acids to amino acids, peptides, and proteins
JPH07106149B2 (en) Aminopeptidase and use thereof
EP1123410A1 (en) The enzyme-mediated synthesis of peptidomimetics
WO2007039079A1 (en) Process for the synthesis of beta amino acids
JPH04299988A (en) Production of lysine-epsilon-peptide
JPS6258712B2 (en)
MXPA99011966A (en) Process for preparing enantiomerically enriched n-derivatised lactams

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004748942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006100556

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004748942

Country of ref document: EP