JPS6258712B2 - - Google Patents

Info

Publication number
JPS6258712B2
JPS6258712B2 JP23600385A JP23600385A JPS6258712B2 JP S6258712 B2 JPS6258712 B2 JP S6258712B2 JP 23600385 A JP23600385 A JP 23600385A JP 23600385 A JP23600385 A JP 23600385A JP S6258712 B2 JPS6258712 B2 JP S6258712B2
Authority
JP
Japan
Prior art keywords
reaction
gly
phe
ethyl acetate
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23600385A
Other languages
Japanese (ja)
Other versions
JPS6296096A (en
Inventor
Ryuichi Matsuno
Kazuhiro Nakanishi
Yukitaka Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Kasei KK
Original Assignee
Daiwa Kasei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Kasei KK filed Critical Daiwa Kasei KK
Priority to JP23600385A priority Critical patent/JPS6296096A/en
Publication of JPS6296096A publication Critical patent/JPS6296096A/en
Publication of JPS6258712B2 publication Critical patent/JPS6258712B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳现な説明】 産業䞊の利甚分野 本発明は、特定の蛋癜分解酵玠を甚いお―眮
換グリシル―グリシンずプニルアラニル―ロむ
シルアルキル゚ステルずを瞮合反応させおオリゎ
ペプチドを補造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing oligopeptides by condensation reaction of N-substituted glycyl-glycine and phenylalanyl-leucyl alkyl ester using a specific proteolytic enzyme. .

埓来の技術 オリゎペプチド、グリシル―グリシル―プニ
ルアラニル―ロむシン、即ちGly―Gly―Phe―
Leuは、デス―Tyr1―゚ンケフアリンdes―
Tyr1―enkephalinず呌ばれ、゚ンケフアリン
分解酵玠゚ンケフアリナヌれの阻害剀ずしお
知られおいる。
Prior Art Oligopeptide, glycyl-glycyl-phenylalanyl-leucine, i.e. Gly-Gly-Phe-
Leu is Des-Tyr 1 -Enkephalin (des-
It is known as an inhibitor of enkephalin -degrading enzyme (enkephalinase).

しかしお、゚ンケフアリンenkephalin、―
Tyr―Gly―Gly――Phe――Leuは、ブタ
を初めずする数皮の哺乳動物の脳から単離された
モルヒネ様鎮痛ペプチドであり、生䜓成分の鎮痛
剀ずしお関心が持たれおいる。䞀方、生䜓内に投
䞎された゚ンケフアリンは、極めお速やかに脳现
胞の酵玠により分解されおその生理掻性を倱う。
埓぀お゚ンケフアリンを分解する酵玠である゚ン
ケフアリナヌれの掻性を抑制すれば、生䜓内にお
ける゚ンケフアリンの盞察的濃床䞊昇をもたら
し、鎮痛䜜甚の増匷及びその持続時間の延長が期
埅できる。この゚ンケフアリナヌれ阻害掻性を有
する物質ずしおデスヌTyr1―゚ンケフアリンが
知られおいるが、珟圚該化合物は、専ら化孊的合
成法により補造されおいる。
However, enkephalin (L-
Tyr-Gly-Gly-L-Phe-L-Leu) is a morphine-like analgesic peptide isolated from the brains of several mammalian species, including pigs, and is of interest as a biological component analgesic. ing. On the other hand, enkephalin administered into a living body is extremely quickly degraded by enzymes in brain cells and loses its physiological activity.
Therefore, if the activity of enkephalinase, which is an enzyme that degrades enkephalin, is inhibited, the relative concentration of enkephalin in the body will increase, and it is expected that the analgesic effect will be enhanced and its duration will be extended. Des-Tyr 1 -enkephalin is known as a substance having this enkephalinase inhibitory activity, but this compound is currently produced exclusively by chemical synthesis methods.

近幎、蛋癜分解酵玠の逆反応を利甚しお有甚ペ
プチドを合成しようずする詊みが掻発にな぀おき
おおり、かかる蛋癜分解酵玠を利甚しおペプチド
を合成する方法酵玠的合成法は、化孊的合成
法ず比范しお、アミノ酞の偎鎖官胜基を必ずしも
保護しおおく必芁がないこず、反応が立䜓遞択的
に進行するので安䟡なラセミ䜓原料を䜿甚できる
こず、反応䞭ラセミ化が起らないこず、垞枩垞圧
で反応が進行するこず等の非垞に優れた特城を有
しおいる。
In recent years, attempts to synthesize useful peptides using the reverse reaction of proteolytic enzymes have become active, and methods for synthesizing peptides using such proteolytic enzymes (enzymatic synthesis method) are Compared to conventional synthesis methods, it is not necessary to protect the side chain functional group of the amino acid, the reaction proceeds stereoselectively, allowing the use of inexpensive racemic raw materials, and racemization does not occur during the reaction. It has very excellent characteristics, such as the fact that it does not react at all, and that the reaction proceeds at room temperature and pressure.

反面、酵玠的合成法は酵玠の基質特異性のため
に原料ずするアミノ酞の皮類に応じお利甚できる
酵玠が決定され、あるひず぀の酵玠が劂䜕なるペ
プチド合成にも利甚できるずいうものではなく、
目的ずするペプチド合成反応を觊媒するこずので
きる酵玠を遞択するこず自䜓非垞に困難であるこ
ず、曎に確立された酵玠的ペプチド合成法ずいえ
ども、䞀般に反応の平衡は基質の方に倧きく片寄
぀おおり、収率、反応速床等がかなり䜎い等の問
題点がある。殊に、䞉぀以䞊の異なるアミノ酞が
結合したオリゎペプチドを酵玠的に合成する堎合
には、通垞予め二぀のアミノ酞を結合反応させた
埌、これに曎にアミノ酞を順次結合反応させおい
く所謂ステツプワむズ法が採甚されるが、この方
法では第段階以降の反応に原料基質ずしおゞペ
プチド、トリペプチド等を甚いる必芁があり、こ
れら原料基質は、合成反応系内で甚いられる酵玠
により加氎分解されお切断されたり、該切断によ
り生じるアミノ酞等が曎に合成反応に関䞎したり
するこずが倚い。之等副反応が生起する堎合、目
的物が埗られなか぀たり、倚量の副生物が生成し
お目的物の分離が困難ずな぀たり、目的物玔床を
倧巟に䜎䞋させる。
On the other hand, in the enzymatic synthesis method, the enzyme that can be used is determined depending on the type of amino acid used as a raw material due to the substrate specificity of the enzyme, and it is not the case that one enzyme can be used for any peptide synthesis.
It is extremely difficult to select an enzyme that can catalyze the desired peptide synthesis reaction, and even with established enzymatic peptide synthesis methods, the reaction equilibrium is generally heavily biased toward the substrate. However, there are problems in that the yield, reaction rate, etc. are quite low. In particular, when enzymatically synthesizing oligopeptides in which three or more different amino acids are bonded, the so-called stepwise method is usually used in which two amino acids are bonded in advance, and then additional amino acids are bonded in sequence. However, this method requires the use of dipeptides, tripeptides, etc. as raw material substrates for reactions from the second stage onwards, and these raw material substrates are hydrolyzed and cleaved by enzymes used in the synthesis reaction system. In many cases, the amino acids generated by the cleavage are further involved in the synthesis reaction. When such side reactions occur, the target product may not be obtained, a large amount of by-products are produced, making it difficult to separate the target product, or the purity of the target product is significantly reduced.

発明が解決しようずする問題点 本発明の目的は、酵玠的合成法を駆䜿しお、デ
ス―Tyr1―゚ンケフアリンを補造する新しい方
法を提䟛するこずにある。特に本発明は、䞊蚘オ
リゎペプチドを、簡単な操䜜及び工皋で、効率よ
くしかも高収率、高玔床をも぀お補造できる実甚
的技術を提䟛するこずを目的ずする。
Problems to be Solved by the Invention An object of the present invention is to provide a new method for producing des-Tyr 1 -enkephalin by making full use of enzymatic synthesis methods. In particular, it is an object of the present invention to provide a practical technique that allows the above-mentioned oligopeptide to be produced efficiently, with high yield, and with high purity through simple operations and steps.

問題点を解決するための手段 本発明によれば、氎―酢酞゚チル二盞系で、バ
チルス属金属プロテアヌれを甚いお―眮換グリ
シル―グリシンずプニルアラニル―ロむシルア
ルキル゚ステルずを瞮合反応させるこずを特城ず
するオリゎペプチドの補造法が提䟛される。
Means for Solving the Problems According to the present invention, a condensation reaction of N-substituted glycyl-glycine and phenylalanyl-leucyl alkyl ester is carried out using a Bacillus metalloprotease in a water-ethyl acetate two-phase system. A method for producing characterized oligopeptides is provided.

本明现曞においお、アミノ酞、ペプチド、保護
基等の蚘茉は、圓該分野における慣甚蚘号に埓う
ものずする。
In this specification, descriptions of amino acids, peptides, protective groups, etc. shall follow symbols commonly used in the field.

本発明者らは、プロテアヌれによるペプチド類
の合成に぀き鋭意研究を重ねる過皋においお、先
にゞペプチドPhe―Phe及びAsp―Pheの酵玠的合
成法を確立した特開昭60−45596号公報参照。
匕続く研究においお本発明者らは、゚ンケフアリ
ンの合成を最終目暙ずしお、その第䞀段階ずしお
゚ンケフアリナヌれの阻害剀であるデス―Tyr1
―゚ンケフアリンの酵玠による合成瞮合反応
に぀き研究を重ねた。その結果、䞊蚘瞮合反応が
サヌモラむシン即ちバチルス属金属プロテアヌれ
により觊媒され、しかもこの反応が氎―酢酞゚チ
ル二盞系で効率よく実斜されるずいう新しい知芋
を埗た。本発明は、この知芋に基づいお完成され
たものである。
The present inventors have previously established an enzymatic synthesis method for the dipeptides Phe-Phe and Asp-Phe in the course of extensive research into the synthesis of peptides using proteases (see Japanese Patent Laid-Open No. 45596/1983).
In subsequent research, the present inventors aimed to synthesize enkephalin, and as a first step, des-Tyr 1 , an inhibitor of enkephalinase, was synthesized.
-Conducted extensive research into the enzymatic synthesis (condensation) reaction of enkephalin. As a result, new findings were obtained that the above condensation reaction is catalyzed by thermolysin, a Bacillus metalloprotease, and that this reaction is efficiently carried out in a water-ethyl acetate two-phase system. The present invention was completed based on this knowledge.

本発明方法においお䞀方の基質ずする―眮換
Gly―Gly以䞋「酞成分」ずいうにおける
―眮換基は、ペプチド合成反応に慣甚されるアミ
ノ基保護基である。その代衚䟋ずしおはベンゞル
オキシカルボニル基を䟋瀺でき、他に䟋え
ば―メトキシベンゞルオキシカルボニル基、
―ブトキシカルボニル基Boc、―クロルベ
ンゞルオキシカルボニル基等も包含される。他方
の基質するPhe―Leu―アルキル゚ステル以䞋
「塩基成分」ずいうにおけるアルキル基も亊慣
甚されるアミノ酞のカルボキシル保護基である。
その具䜓䟋ずしおは炭玠数〜のアルキル基、
䟋えばメチル、゚チル、プロピル、ブチル基を䟋
瀺でき、他にベンゞル、―ニトロベンゞル、
―クロロベンゞル基等もよく知られおいる。之等
原料基質のうち酞成分ずするGly―Glyは、Glyが
光孊異性䜓を有しおいないため、化孊合成法で簡
単に合成でき、たた垂販されおもいる。塩基成分
であるPhe―Leuの各アミノ酞ずしおは、通垞い
ずれも―䜓を利甚するのが普通であり、該塩基
成分の合成は化孊合成法によ぀おもよいが、本発
明に埓う酵玠的合成法ず同様にしおサヌモラむシ
ンにより合成するのが奜たしい。
N-substitution as one substrate in the method of the present invention
Gly--N in Gly (hereinafter referred to as "acid component")
- The substituent is an amino group-protecting group commonly used in peptide synthesis reactions. A representative example thereof is benzyloxycarbonyl group (Z), and other examples include p-methoxybenzyloxycarbonyl group, t
-butoxycarbonyl group (Boc), 2-chlorobenzyloxycarbonyl group, etc. are also included. The alkyl group in the other substrate Phe-Leu-alkyl ester (hereinafter referred to as "base component") is also a commonly used carboxyl protecting group for amino acids.
Specific examples thereof include alkyl groups having 1 to 4 carbon atoms;
For example, methyl, ethyl, propyl, and butyl groups can be exemplified, and other groups include benzyl, p-nitrobenzyl, and p-nitrobenzyl.
-Chlorobenzyl group etc. are also well known. Among these raw material substrates, Gly--Gly, which is the acid component, can be easily synthesized by chemical synthesis because Gly does not have optical isomers, and is also commercially available. Each amino acid of Phe-Leu, which is a base component, is usually used in the L-form, and the base component may be synthesized by chemical synthesis, but the enzymatic synthesis according to the present invention Preferably, it is synthesized using thermolysin in the same manner as in the method.

本発明では、酵玠反応を氎―酢酞゚チル二盞系
で行なうこずが重芁である。ここで氎―酢酞゚チ
ル二盞系ずは、別個に調補した氎盞ず酢酞゚チル
盞ずを甚いるこずを意味し、実際の反応に圓぀お
は䞡盞は攪拌等により゚マルゞペン状態で均䞀に
混合される。
In the present invention, it is important to carry out the enzyme reaction in a water-ethyl acetate two-phase system. Here, the water-ethyl acetate two-phase system means using a water phase and an ethyl acetate phase that are prepared separately; in the actual reaction, both phases are uniformly mixed in an emulsion state by stirring, etc. Ru.

䞊蚘氎盞ずしおは適圓な緩衝液を甚いるのがよ
く、䟋えば―ゞアミノモルホリノ゚タンス
ルホン酞MESの氎溶液が奜たしく甚いられ
る。たた該氎盞には、そのPHを玄〜皋床に調
節するために䟋えば氎酞化ナトリりム等を加える
こずができ、曎に甚いる酵玠の安定化因子ずしお
知られおいる䟋えば塩化カルシりム等を溶解させ
るこずもできる。
A suitable buffer solution is preferably used as the aqueous phase, and for example, an aqueous solution of (2-diaminomorpholino)ethanesulfonic acid (MES) is preferably used. In addition, sodium hydroxide, etc., can be added to the aqueous phase in order to adjust the pH to about 4 to 5, and calcium chloride, etc., which is known as a stabilizing factor for the enzyme used, can also be dissolved. You can also do that.

本発明方法では、たず䞊蚘氎盞に酞成分を溶解
し、酢酞゚チル盞に塩基成分を溶解しお、䞡基質
の溶液を調補する。䞊蚘各基質溶液における基質
濃床は、適宜に決定され、反応速床の面からはで
きるだけ高濃床ずするのが奜たしいが、通垞いず
れも玄〜60mM皋床の範囲ずするのがよく、特
に塩基成分に察する酞成分の濃床比を、玄0.2〜
の範囲、通垞玄0.4〜ずするのが奜適であ
り、この範囲では酞成分濃床が䜎い皋目的ずする
オリゎペプチドの収率は向䞊する傟向にあり、逆
に酞成分濃床を高くするず目的物収率は若干䜎䞋
するが、副反応成物の生成が抑制される傟向があ
る。たた䞊蚘各基質溶液の䜿甚割合䜓積化
は、酢酞゚チル盞に察しお氎盞を少なくずも等量
ずするこずにより、目的ずする合成反応が進行
し、高収率で目的物が収埗される。通垞䞊蚘䜓積
比率は、氎盞に察しお酢酞゚チル盞を玄〜10倍
量ずなる範囲で遞択するのがよく、この範囲で酢
酞゚チル盞を倚量に甚いる皋目的物玔床及び収率
は向䞊する傟向にある。
In the method of the present invention, a solution of both substrates is prepared by first dissolving an acid component in the aqueous phase and dissolving a base component in the ethyl acetate phase. The substrate concentration in each of the above substrate solutions is determined appropriately, and from the viewpoint of reaction rate, it is preferable to keep the concentration as high as possible, but it is usually in the range of about 5 to 60 mM, especially for base components. Adjust the concentration ratio of acid components to approximately 0.2~
A range of 3, usually about 0.4 to 3, is suitable; in this range, the lower the concentration of the acid component, the higher the yield of the desired oligopeptide tends to be; Although the product yield decreases slightly, the production of side reaction products tends to be suppressed. Also, the usage ratio (volume) of each of the above substrate solutions
By using at least an equal amount of the aqueous phase to the ethyl acetate phase, the desired synthesis reaction proceeds and the desired product is obtained in high yield. Normally, the above volume ratio is preferably selected in a range where the amount of ethyl acetate phase is about 1 to 10 times that of the aqueous phase, and within this range, the greater the amount of ethyl acetate phase used, the better the purity and yield of the target product will be. There is a tendency to

本発明方法においおは、バチルス属金属プロテ
アヌれを、䞊蚘氎盞偎基質溶液に添加しお甚い
る。䞊蚘酵玠剀ずしおは䟋えば代衚的にはサヌモ
ラむシン倧和化成株匏䌚瀟補が垂販されおい
るが、本発明では特にこの垂販品を甚いる必芁は
なく、別途にバチルス属现菌より調補される粗酵
玠液やその粟補品等を甚いるこずもでき、たた他
の同様の酵玠の性質を有するバチルス属金属プロ
テアヌれを甚いるこずもできる。その䜿甚量は、
甚いる酵玠の力䟡、反応件等により異なるが、通
垞サヌモラむシンの堎合は本発明に甚いる前蚘氎
盞の党容積の玄2W以䞊、奜たしくは玄
〜2W皋床ずするのがよい。勿論この範
囲以䞊の高濃床で甚いるこずもできるが、高濃床
で甚いおも目的物収量等が向䞊するわけではな
く、むしろ経枈的に奜たしくない。
In the method of the present invention, Bacillus metalloprotease is used by adding it to the aqueous phase substrate solution. For example, thermolysin (manufactured by Daiwa Kasei Co., Ltd.) is commercially available as the enzyme agent, but in the present invention, it is not necessary to use this commercially available product, and a crude enzyme solution separately prepared from Bacillus bacteria is used. Bacillus metalloproteases having similar enzymatic properties can also be used. Its usage is
Although it varies depending on the titer of the enzyme used, reaction conditions, etc., in the case of thermolysin, the total volume of the aqueous phase used in the present invention is usually about 100 ml. It is good to set it to 2 W/V% or more, preferably about 1 to 2 W/V%. Of course, it can be used at a high concentration above this range, but even if it is used at a high concentration, the yield of the target product etc. will not improve, and it is rather economically unfavorable.

本発明の瞮合反応は、䞊蚘塩基成分を含む酢酞
゚チル盞ず酞成分及び酵玠を含有させた氎盞ずを
添加混合するか、䞊蚘酢酞゚チル盞ず酵玠ずを同
時に、酞成分を含む氎盞に添加混合するか、又は
塩基成分ず酞成分ずを含む酢酞゚チル盞ず酵玠を
含む氎盞ずを混合しお、混合物゚マルゞペン
を所定枩床で攪拌するこずにより実斜される。䞊
蚘反応時の枩床は通垞玄20〜50℃ずされるのがよ
く、該枩床が高い皋反応時間は短瞮されるが、通
垞玄40℃付近ずするのが適圓である。反応時の氎
盞のPHは、通垞玄4.5〜6.5の範囲ずするのが奜た
しく、反応の進行に䌎぀お倉化するおそれのある
該氎盞のPHを、䞊蚘範囲に維持するために、反応
系内には塩酞等の酞を逐次添加するこずもでき
る。たた䞊蚘攪拌は反応系が均䞀状態を保持する
ように、通垞比范的ゆるやかな条件で行なうか又
は振盪しながら行なうこずができる。曎に䞊蚘攪
拌は反䞭垞に連続しお行なう必芁はなく、断続的
に行なうこずもできる。
In the condensation reaction of the present invention, the ethyl acetate phase containing the base component and the aqueous phase containing the acid component and the enzyme are added and mixed, or the ethyl acetate phase and the enzyme are simultaneously added to the aqueous phase containing the acid component. A mixture (emulsion) is prepared by adding and mixing or by mixing an ethyl acetate phase containing a base component and an acid component and an aqueous phase containing an enzyme.
This is carried out by stirring at a predetermined temperature. The temperature during the above reaction is usually about 20 to 50°C, and the higher the temperature, the shorter the reaction time, but it is usually appropriate to keep it around 40°C. The PH of the aqueous phase during the reaction is usually preferably in the range of about 4.5 to 6.5, and in order to maintain the PH of the aqueous phase within the above range, which may change as the reaction progresses, the reaction system An acid such as hydrochloric acid can also be added sequentially. Further, the above-mentioned stirring is usually carried out under relatively gentle conditions or can be carried out with shaking so that the reaction system maintains a homogeneous state. Furthermore, the above-mentioned stirring does not have to be carried out continuously, but can also be carried out intermittently.

䞊蚘瞮合反応によ぀お、目的ずするオリゎペプ
チドが有機溶媒溶液ずしお埗られる。これは、垞
法に埓い有機盞を分取し、濃瞮晶析させるか又は
抜出等の操䜜を行なうこずにより容易に分離する
こずができ、曎に通垞の単離粟補手段により粟補
するこずもできる。
Through the above condensation reaction, the desired oligopeptide is obtained as a solution in an organic solvent. This can be easily separated by separating the organic phase and performing operations such as concentration crystallization or extraction according to a conventional method, and can also be further purified by conventional isolation and purification means.

かくしお埗られるオリゎペプチドは、そのカル
ボキシル基及びアミノ基保護基を、垞法に埓い脱
離するこずによ぀お、デス―Tyr1―゚ンケフア
リンGIy―Gly――Per――Leuずするこ
ずができる。これぱンケフアリナヌれ阻害剀ず
しお有甚であり、たた曎に゚ンケフアリンの合成
䞭間䜓ずしおも有甚である。
The thus obtained oligopeptide is converted into des-Tyr 1 -enkephalin (GIy-Gly-L-Per-L-Leu) by removing its carboxyl group and amino group protecting group according to a conventional method. Can be done. It is useful as an enkephalinase inhibitor and also as an intermediate in the synthesis of enkephalin.

実斜䟋 以䞋本発明を曎に詳しく説明するため実斜䟋を
挙げる。
Examples Examples will be given below to explain the present invention in more detail.

実斜䟋  (1) ―Phe―LeuOEtの調補0.25Mトリス塩酞緩
衝液5mMCaCl2を含むず、等容積の酢酞゚
チルずを分液挏斗を甚いお平衡化40℃さ
せ、酢酞゚チルで飜和されたトリス塩酞緩衝液
ず、同トリス塩酞緩衝液で飜和された酢酞゚チ
ル溶液ずを調補した。
Example 1 (1) Preparation of L-Phe-LeuOEt 0.25M Tris-HCl buffer (containing 5mMCaCl2 ) and an equal volume of ethyl acetate were equilibrated (40°C) using a separating funnel, and ethyl acetate A Tris-HCl buffer saturated with Tris-HCl buffer and an ethyl acetate solution saturated with the same Tris-HCl buffer were prepared.

䞊蚘で埗た酢酞゚チル飜和のトリス塩酞緩衝
液10mlに―LeuOEt・HClå¡©313mg
160mMを溶かしお、PH7.5の氎盞偎基質
溶液を調補した。
313 mg of L-LeuOEt HCl salt in 10 ml of ethyl acetate-saturated Tris-HCl buffer obtained above.
(160mM) to prepare an aqueous phase substrate solution with pH=7.5.

䞀方、䞊蚘トリス塩酞緩衝液で飜和した酢酞
゚チル10mlに、―Phe239.5mg80mMを溶
かしお有機盞偎基質溶液を調補した。
On the other hand, an organic phase substrate solution was prepared by dissolving 239.5 mg (80 mM) of Z-Phe in 10 ml of ethyl acetate saturated with the above Tris-HCl buffer.

䞊蚘氎盞偎基質溶液にサヌモラむシン20mg
0.2を加え、これを有機盞偎基質溶液ず混
合し、40℃で攪拌しながら反応させお、―
―Phe――LeuOEtを埗た。
Thermolysin 20mg in the above aqueous phase substrate solution
(0.2%), mixed with the organic phase substrate solution, reacted at 40℃ with stirring, and Z-L
-Phe-L-LeuOEt obtained.

収率―Phe基準 時間反応埌 93.2 24時間反応埌 99.5 䞊蚘で埗られた保護ゞペプチドより、酢酞ず
25HBr―酢酞溶液を甚いお基を脱離反応さ
せお―Phe――LeuOEtを埗た。
Yield (Z-Phe standard) After 5 hours of reaction: 93.2% After 24 hours of reaction: 99.5% From the protected dipeptide obtained above, acetic acid and
The Z group was eliminated using a 25% HBr-acetic acid solution to obtain L-Phe-L-LeuOEt.

(2) ―Gly―Gly――Phe――LeuOEtの補
造 先ずサヌモラむシンの安定化因子である5mM
―CaCl2を含む0.05M―MES―ゞアミノモル
ホリノ゚タンスルホン酞・モノ氎和物、同仁化
孊研究所補溶液ず、等容積の酢酞゚チルずを分
液挏斗を甚いお平衡化40℃させ、酢酞゚チル
で飜和されたMES溶液ず、同MES溶液で飜和さ
れた酢酞゚チル溶液ずを調補した。
(2) Production of Z-Gly-Gly-L-Phe-L-LeuOEt First, 5mM which is a stabilizing factor of thermolysin.
Equilibrate a 0.05M MES ((2-diaminomorpholino)ethanesulfonic acid monohydrate, manufactured by Dojindo Laboratories) solution containing CaCl 2 and an equal volume of ethyl acetate using a separatory funnel ( A MES solution saturated with ethyl acetate and an ethyl acetate solution saturated with the same MES solution were prepared.

䞊蚘で埗たMES溶液飜和の酢酞゚チル溶液10
mlに、―Phe――LeuOEt61.4mgを溶解終
濃床20mMしお有機盞偎基質溶液を調補した。
MES solution obtained above saturated ethyl acetate solution 10
ml, 61.4 mg of L-Phe-L-LeuOEt was dissolved (final concentration 20 mM) to prepare an organic phase substrate solution.

䞀方、䞊蚘で埗た酢酞゚チル飜和のMES溶液
10mlに他方の基質である―Gly―Glyシグマ
瀟補53.3mgを溶解終濃床20mMし、4Næ°Žé…ž
化ナトリりム氎溶液でPHを4.5に調節しお氎盞偎
基質溶液を調補した。
Meanwhile, the ethyl acetate saturated MES solution obtained above
53.3 mg of the other substrate, Z-Gly-Gly (manufactured by Sigma), was dissolved in 10 ml (final concentration 20 mM), and the pH was adjusted to 4.5 with a 4N aqueous sodium hydroxide solution to prepare an aqueous phase substrate solution.

䞊蚘氎盞偎基質溶液に、サヌモラむシン倧和
化成株匏䌚瀟補、バチルス属金属プロテアヌれ、
力䟡9470PUmg40mgを溶解させ、これに前蚘
有機盞偎基質溶液を加えお40℃で攪拌しお、゚マ
ルゞペン状態で反応を行なわせた。尚、反応䞭
1N塩酞を溶液に添加しお氎盞偎をに維持
した。経時的に有機盞の少量をサンプリングし、
䞋蚘に瀺す条件で高速液䜓クロマトグラフむヌを
行ない、生成物量を定量した。氎盞䞭の生成物量
は、有機盞䞭のそれず比范しお無芖できるもので
あ぀た。
Thermolysin (manufactured by Daiwa Kasei Co., Ltd., Bacillus metalloprotease,
40 mg (potency 9470 PU/mg) was dissolved, and the organic phase substrate solution was added thereto and stirred at 40°C to carry out a reaction in an emulsion state. In addition, the reaction is in progress
1N hydrochloric acid was added to the solution to maintain the aqueous phase at 4.5. Sample small amounts of the organic phase over time;
High performance liquid chromatography was performed under the conditions shown below to quantify the amount of product. The amount of product in the aqueous phase was negligible compared to that in the organic phase.

〈高速液䜓クロマトグラフむヌ〉 装眮高速流䜓クロマトグラフ島埋補䜜所補
LC―3A型 カラム内埄10mm×長さ300mm 充填剀TSK―GEL LS―410KODS―シリカ
東掋曹達瀟補 溶媒アセトニトリル―氎5545、リン酞でPH
を2.5に調敎 怜出玫倖吞収25nm 結果を第図にす瀺す。第図においお暪軞は
反応時間時間を、瞊軞は生成物収率を
瀺し、曲線は、目的生成物である―Gly―
Gly――Phe――LeuOEtを、曲線は、副生
成物ずする―Gly―Gly――Phe――Phe―
―LeuOEtをそれぞれ瀺す。
<High performance liquid chromatography> Equipment: High performance fluid chromatography (manufactured by Shima Ritsu Seisakusho)
LC-3A type) Column: Inner diameter 10 mm x length 300 mm Packing material: TSK-GEL LS-410K (ODS-Silica manufactured by Toyo Soda Co., Ltd.) Solvent: Acetonitrile-Water (55:45, PH with phosphoric acid)
(adjusted to 2.5) Detection: Ultraviolet absorption (25 nm) The results are shown in Figure 1. In FIG. 1, the horizontal axis shows the reaction time (hours), the vertical axis shows the product yield (%), and curve 1 shows the target product Z-Gly-
Gly-L-Phe-L-LeuOEt, curve 2 is Z-Gly-Gly-L-Phe-L-Phe-
L-LeuOEt is shown respectively.

第図より、目的生成物デス―Tyr1―ロむ
シン ゚ンケフアリンの前駆䜓、曲線で瀺され
るの出発基質に察する収率は、玄60におよ
び、䞀方副生成物ずしおは、䞊蚘曲線で瀺され
るペンタペプチドのみが僅か皋床生成するに
過ぎないこずが刀る。
From FIG. 1, the yield of the desired product (precursor of des-Tyr 1 -leucine enkephalin, shown in curve 1) is about 60%, based on the starting substrate, while the by-product is as shown in curve 2 above. It can be seen that only about 6% of the pentapeptide shown by is produced.

䞊蚘目的物―Gly―Gly――Phe――
LeuOEtを、酢酞゚チルで抜出し、゚バポレヌ
タヌで也固させ、そのミリモル圓りに、酢酞
mlず25HBr―酢酞溶液10mlずの混液を加え、宀
枩で時間反応させお基を脱離陀去した。
The above object (Z-Gly-Gly-L-Phe-L-
LeuOEt) was extracted with ethyl acetate, dried in an evaporator, and 5 mmol of acetic acid was extracted per 4 mmol of the
ml and 10 ml of 25% HBr-acetic acid solution was added, and the mixture was reacted at room temperature for 1 hour to eliminate and remove the Z group.

反応埌、系内にゞ゚チル゚ヌテルを添加しお
HBr―Gly―Gly――Phe――LeuOEtを沈柱
ずしお析出させた。これを等量の炭酞ナトリりム
ず共に蒞留氎に溶かし、分液挏斗でクロロホルム
ず振盪しおGly―Gly――Phe――LeuOEtを
抜出し、クロロホルム盞を無氎硫酞マグネシりム
にお脱氎しロヌタリヌ゚バポレヌタヌで也固させ
た。
After the reaction, add diethyl ether to the system.
HBr-Gly-Gly-L-Phe-L-LeuOEt was precipitated. This was dissolved in distilled water with an equal amount of sodium carbonate, and shaken with chloroform in a separatory funnel to extract Gly-Gly-L-Phe-L-LeuOEt. Allowed to dry.

埗られた化合物に〜℃で等量の1N氎酞化
ナトリりム氎溶液を添加しお゚ステル結合を切断
し、曎に酢酞で䞭和し、ロヌタリヌ゚バポレヌタ
ヌで玄10倍に濃瞮し、埗られる沈柱物を少量の蒞
留氎、次いで゚ヌテルで各々掗浄し、也燥しお
Gly―Gly――Phe――Leuを埗た。
The obtained compound was added with an equal volume of 1N aqueous sodium hydroxide solution at 0 to 4°C to cleave the ester bond, further neutralized with acetic acid, concentrated about 10 times using a rotary evaporator, and the resulting precipitate was Wash each with a small amount of distilled water and then with ether and dry.
Obtained Gly-Gly-L-Phe-L-Leu.

比范䟋  䞊蚘実斜䟋に瀺した氎―酢酞゚チル二盞系で
の本発明方法に芋られる効果を明らかにするた
め、以䞋の氎盞系での比范方法を実斜した。
Comparative Example 1 In order to clarify the effects observed in the method of the present invention in the water-ethyl acetate two-phase system shown in Example 1 above, the following comparative method in an aqueous phase system was carried out.

即ち酢酞゚チル飜和の20M・MES―NaOH
緩衝液PH5.4に、それぞれ終濃床が20mM
ずなるように各基質―Gly―Gly及び―Leu
――PheOEtを添加溶解し、曎にこの氎溶液
に実斜䟋で甚いたず同䞀の酵玠0.1を加
え、同䞀条件䞋に氎溶液䞭で酵玠反応を行なわせ
た。
That is, 1/20M MES-NaOH saturated with ethyl acetate.
buffer (PH) 5.4), each with a final concentration of 20mM.
Each substrate (Z-Gly-Gly and L-Leu
-L-PheOEt) was added and dissolved, and the same enzyme (0.1%) used in Example 1 was added to this aqueous solution, and an enzyme reaction was carried out in the aqueous solution under the same conditions.

反応液を経時的にサンプリングし、実斜䟋ず
同䞀条件で高速液䜓クロマトグラフむヌを行な
い、生成物量を定量した結果を、第図に瀺す。
The reaction solution was sampled over time and subjected to high performance liquid chromatography under the same conditions as in Example 1, and the amount of product was quantified. The results are shown in FIG.

第図より明らかな通り、氎溶液䞭での反応で
は、目的物の収率は僅か7.5曲線参照
に過ぎず、䞀方副生成物ずしおは、ペンタペプチ
ド―Gly―Gly――Phe――Phe――
LeuOEtが玄15図䞭曲線ずしお瀺す及び
曎に高分子のペプチドである―Gly―Gly―
―Phe――Phe――Phe――LeuOEtが玄10
図䞭曲線(3)ずしお瀺すも生成するこずが確
認された。
As is clear from Figure 2, in the reaction in aqueous solution, the yield of the target product is only 7.5% (see curve 1).
On the other hand, as a by-product, the pentapeptide Z-Gly-Gly-L-Phe-L-Phe-L-
LeuOEt is approximately 15% (shown as curve 2 in the figure) and Z-Gly-Gly-L, which is a higher molecular weight peptide
-Phe-L-Phe-L-Phe-L-LeuOEt is about 10
% (shown as curve (3) in the figure) was also confirmed to be generated.

実斜䟋  実斜䟋においお、―Gly―Glyの終濃床を
15mM、―Phe――LeuOEtの終濃床を
5mM、有機盞容積氎盞容積比を10、氎盞
酵玠濃床を、氎盞PHを4.5ずしお、同様に゚
マルゞペン状態で反応を行な぀た。
Example 2 In Example 1, the final concentration of Z-Gly-Gly was
15mM, final concentration of L-Phe-L-LeuOEt
The reaction was carried out in the same manner in an emulsion state at 5 mM, organic phase volume/aqueous phase volume ratio of 10/1, aqueous phase enzyme concentration of 2%, and aqueous phase PH of 4.5.

その結果、玄82の高収率で目的物が補造され
た。
As a result, the desired product was produced with a high yield of about 82%.

このように本発明の氎―酢酞゚チル二盞系での
酵玠反応によれば、目的物の収率向䞊が可胜であ
るこずが刀る。たた反応条件の遞択によれば、玄
90前埌の高収率で目的物の合成が可胜である。
As described above, it can be seen that the enzyme reaction in the water-ethyl acetate two-phase system of the present invention can improve the yield of the target product. Depending on the selection of reaction conditions, approximately
The desired product can be synthesized with a high yield of around 90%.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は実斜䟋に瀺す方法における反応時間
ず収率の関係を瀺すグラフであり、第図は比范
䟋に瀺す方法における同グラフである。
FIG. 1 is a graph showing the relationship between reaction time and yield in the method shown in Example 1, and FIG. 2 is the same graph in the method shown in Comparative Example 1.

Claims (1)

【特蚱請求の範囲】[Claims]  氎―酢酞゚チル二盞系で、バチルス属金属プ
ロテアヌれを甚いお―眮換グリシル―グリシン
ずプニルアラニル―ロむシルアルキル゚ステル
ずを瞮合反応させるこずを特城ずするオリゎペプ
チドの補造法。
1. A method for producing an oligopeptide, which comprises carrying out a condensation reaction of N-substituted glycyl-glycine and phenylalanyl-leucyl alkyl ester in a water-ethyl acetate two-phase system using a Bacillus metalloprotease.
JP23600385A 1985-10-21 1985-10-21 Production of oligopeptide Granted JPS6296096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23600385A JPS6296096A (en) 1985-10-21 1985-10-21 Production of oligopeptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23600385A JPS6296096A (en) 1985-10-21 1985-10-21 Production of oligopeptide

Publications (2)

Publication Number Publication Date
JPS6296096A JPS6296096A (en) 1987-05-02
JPS6258712B2 true JPS6258712B2 (en) 1987-12-07

Family

ID=16994354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23600385A Granted JPS6296096A (en) 1985-10-21 1985-10-21 Production of oligopeptide

Country Status (1)

Country Link
JP (1) JPS6296096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455418U (en) * 1987-09-30 1989-04-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455418U (en) * 1987-09-30 1989-04-05

Also Published As

Publication number Publication date
JPS6296096A (en) 1987-05-02

Similar Documents

Publication Publication Date Title
CA1133841A (en) Method for manufacturing dipeptides
So et al. Lipase-catalyzed synthesis of peptides containing D-amino acid
EP0149594A2 (en) Enzymatic coupling of n-formyl amino acids and/or peptide residues
EA019536B1 (en) Peptide synthesis using enzymatic activation and coupling
JPH052317B2 (en)
JPS6258712B2 (en)
Fite et al. Reactivity of easily removable protecting groups for glycine in peptide synthesis using papain as catalyst
Stepanov et al. Subtilisin and α-chymotrypsin catalyzed synthesis of peptides containing arginine and lysine p-nitroanilides as c-terminal moieties
US6015877A (en) Compounds for inhibition of proteolysis
JPH0952900A (en) Novel peptide derivative usable as zinc endopeptidase 24-15 inhibitor
JP4856184B2 (en) Enzymatic conversion of oligopeptide amides to oligopeptide alkyl esters
JP3704719B2 (en) Process for producing optically active 3-aminobutanoic acid and its ester intermediate
CA1337936C (en) Vibriolysin coupling process
Sarmento et al. Reverse hydrolysis by cardosin A: specificity considerations
JPH051719B2 (en)
JP2011500010A (en) Chemoenzymatic peptide synthesis by C-terminal ester conversion
JPH05507403A (en) Method for producing peptides
JPH06237784A (en) Method for synthesizing oligopeptide
JP2764725B2 (en) Production of Optically Active Peptide by Modification Enzyme
JPH04187095A (en) Production of physiologically active dipeptide
JPH0525480B2 (en)
EP0241094A1 (en) Process for the separation of L-leucine and L-isoleucine
JPH05252948A (en) Clostripain-catalytic binding of arg-pro and arg-b-containing peptide
JPH0795960B2 (en) Process for producing L-amino acid compound alkyl ester
JPS63254994A (en) Production of n-substituted leucine enkephalinamide