WO2005001086A1 - IMMOBILIZED mRNA-PUROMYCIN CONJUGATE AND USE THEREOF - Google Patents

IMMOBILIZED mRNA-PUROMYCIN CONJUGATE AND USE THEREOF Download PDF

Info

Publication number
WO2005001086A1
WO2005001086A1 PCT/JP2004/009396 JP2004009396W WO2005001086A1 WO 2005001086 A1 WO2005001086 A1 WO 2005001086A1 JP 2004009396 W JP2004009396 W JP 2004009396W WO 2005001086 A1 WO2005001086 A1 WO 2005001086A1
Authority
WO
WIPO (PCT)
Prior art keywords
mrna
protein
puromycin
conjugate
solid phase
Prior art date
Application number
PCT/JP2004/009396
Other languages
French (fr)
Japanese (ja)
Inventor
Naoto Nemoto
Jun-Ichi Yamaguchi
Original Assignee
Genefield, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genefield, Inc. filed Critical Genefield, Inc.
Priority to JP2005511126A priority Critical patent/JPWO2005001086A1/en
Publication of WO2005001086A1 publication Critical patent/WO2005001086A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1062Isolating an individual clone by screening libraries mRNA-Display, e.g. polypeptide and encoding template are connected covalently
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase

Definitions

  • the present invention relates to an immobilized mRNA-puromycin conjugate, an immobilized mRNA / DNA-puromycin-protein conjugate, and uses thereof. More specifically, the present invention uses an immobilized mRNA-pure mycin conjugate, an mRNA bead or an mRNA chip containing the conjugate, a protein chip, an mRNA bead or an mRNA chip prepared from the mRNA chip. Diagnostic kit, immobilized mRNA / DNA-puromycin monoprotein conjugate, solid-phase immobilization of mRNA or protein, solid-phase synthesis of protein, interaction between protein and molecule using the immobilized mRNA-puromycin conjugate The present invention relates to a method of analyzing an action and the like. Background art
  • the yeast-to-hybrid method (Chien, C., et al., Proc. Natl. Acad. ScI. USA, 88, 9578-9582 (1991)) was used as an analysis method for protein-protein interaction.
  • the phage display method (Smith, GP, Science, 228, pp. 1315-1317 (1985)), the GST-fusion protein pull-down method, the co-immunoprecipitation method and the like are known.
  • electrophoretic mobility shift assay Re vz in, A., et al., Anal. Biochem., 153, 172 (1986)
  • DNasel footprint method Calas, D., et al., Nucleic Acids Res., 5, 3157 (1978)
  • the methylation buffer method and the like are known.
  • a DNA chip in which DNA is synthesized on a glass substrate and a protein chip in which proteins are arranged on a substrate are extremely important as tools for genome analysis and gene function analysis.
  • immobilized proteins, including antibodies, on a substrate without losing their functions are expected to have a wide range of uses as sensor chips in the future.
  • proteins are unstable compared to DNA and cannot be stored for a long period of time. Disclosure of the invention
  • the present inventors have intensively studied to solve the above problems.
  • the present inventors have developed a tool that can easily determine the interaction between a protein composed of various amino acid sequences and a target substance. That is, the present inventors have proposed a conjugate of a nucleic acid molecule (mRNA) encoding a test protein whose interaction with a target substance is to be determined, and puromycin, which plays a role as a connecting portion when synthesizing the protein. Prepared an “immobilized mRNA-purominsin conjugate” having a structure immobilized on a solid phase.
  • mRNA nucleic acid molecule
  • a microarray chip (mRNA chip) immobilized on a substrate such as a chip can be exemplified.
  • a protein chip By using the chip and bringing it into contact with a translation system, a protein chip can be appropriately prepared.
  • protein (protein) chips have problems in storage or handling due to instability of the protein.
  • it is possible to convert the chip into a protein chip by forming a chip in the form of a relatively stable mRNA instead of a protein, for example, by bringing it into contact with a translation system immediately before use. is there. That is, the present invention provides a protein interaction analysis tool which is immobilized on a solid phase in the form of a relatively stable mRNA instead of an unstable protein.
  • the “immobilized mRNA-puromycin-protein conjugate” in which the protein of the translation product of the mRNA synthesized by providing the immobilized mRNA-puromycin conjugate to the translation system is bound to the puromycin is a protein It can be used for analysis or screening of molecules that can interact with and is very useful. Furthermore, the present inventors provide the above-described “immobilized mRNA-puromycin-protein conjugate” to a reverse transcription reaction system to thereby obtain a complementary DN of a reverse transcript of the mRNA.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and includes the following: an immobilized mRNA-puromycin conjugate; an mRNA bead or an mRNA chip containing the conjugate; Protein chip, mRNA bead, or diagnostic kit using mRNA chip, immobilized DNA-puromycin-tamper A solid phase immobilization method of a protein conjugate, mRNA or protein, a solid phase synthesis method of a protein, and a method of analyzing the interaction between a protein and a molecule using the immobilized mRNA-puromycin conjugate. . More specifically, the present invention provides
  • the spacer comprises a polynucleotide, polyethylene, polyethylene glycol, polystyrene, peptide nucleic acid, or a combination thereof as a main skeleton.
  • the solid phase is selected from styrene beads, glass beads, agarose beads, sepharose beads, magnetic beads, glass substrates, silicon substrates, plastic substrates, metal substrates, glass containers, plastic containers, and membranes.
  • [6] a protein of a translation product of the immobilized mRNA-puromycin conjugate according to any one of [1] to [5], which is synthesized by providing the conjugate to a translation system, An immobilized mRNA-puromycin-protein conjugate, which is linked via a mycin or puromycin-like compound, [7] The immobilized mRNA-puromycin-protein conjugate according to [6] is reverse-transcribed. The complementary DNA of the mRNA synthesized for the system is linked to the ligated product. An immobilized DNA-puromycin-protein conjugate comprising the immobilized mRNA-puromycin conjugate according to any one of [8] [1] to [5], which is immobilized on a microarray substrate. , MRNA chip,
  • [1 2] (a) a step of preparing an mRNA-puromycin conjugate by linking the mRNA and puromycin through a sensor provided with a solid-phase binding site;
  • step (b) contacting the protein synthesized in step (a) with one or more target substances;
  • the above analysis method comprising:
  • step (b) contacting the mRNA-puromycin-protein conjugate synthesized in step (a) with a reverse transcription reaction system to prepare a DNA-puromycin-protein conjugate;
  • step (c) contacting the DNA-puromycin overnight protein conjugate prepared in step (b) with one or more target substances;
  • the above analysis method comprising:
  • a first embodiment of the present invention relates to an immobilized mRNA-puromycin conjugate (hereinafter referred to as “immobilized mRNA-PM”) comprising a conjugate of mRNA and puromycin or a puromycin-like compound immobilized on a solid phase. Also referred to as “linkage”).
  • immobilized mRNA-PM immobilized mRNA-puromycin conjugate
  • the mRNA used in the present invention includes both those of unknown sequence and those of known sequence. That is, when a substance that binds to a protein with a known sequence is searched or quantified using the mRNA-PM conjugate of the present invention, an mRNA having a nucleic acid sequence encoding a protein with a known sequence is used. Conversely, when analyzing the function of a protein of unknown sequence using the mRNA-PM conjugate of the present invention, an mRNA having a nucleic acid sequence encoding a protein of unknown sequence can be used.
  • the mRNA used here is, for example, transcribed from mRNAs encoding various receptor proteins with known sequences, mRNAs encoding various antibodies or their fragments, mRNAs encoding various enzymes, and DNAs from various gene libraries.
  • the sequence is selected from mRNAs having unknown sequences, mRNAs having random sequences transcribed from DNAs having sequences randomly synthesized by organic synthesis, and the like.
  • the mRNA-PM conjugate of the present invention is generally one in which pure mouth mycin is ligated to the 3 ′ end of the mRNA via a spacer.
  • puromycin or puromycin-like compound is a hinge that connects mRNA and translated protein when a mRNA-PM conjugate immobilized on a solid phase is introduced into a translation system to synthesize a protein. Or it acts as a connection.
  • an in vitro virus virion is generated in which the mRNA is linked to a protein translated through puromycin.
  • Puromycin has a chemical structural skeleton similar to aminoacyl-tRNA at its 3 'end. The following formula (I): (Chemical 1)
  • puromycin-like compound means that the 3 'end of the compound has a similar chemical structural skeleton to aminoacyl-tRNA and is synthesized at the C-terminus of the synthesized protein when the protein is synthesized by the translation system.
  • a compound that has the ability to bind is a compound that has the ability to bind.
  • puromycin-like compounds examples include 3'-N-aminoacylpuromycin aminonucleoside (3'-N-Aminoacylpuromyc in aminonucleoside, PANS-amino acid), for example, PANS_Gly in which the amino acid part is glycine and PANS_Gly in the amino acid part PAN S-VaK PANS-Ala in which the amino acid portion corresponds to alanine, and other PANS-amino acid compounds in which the amino acid portion corresponds to all amino acids.
  • PANS-amino acid 3'-N-aminoacylpuromycin aminonucleoside
  • 3'-N-aminoacyl adenosine aminonucleoside (3'-amino-acyl adenosine amino acid) is linked by an amide bond formed by dehydration-condensation of the amino group of 3'-aminoadenosine and the amino group of amino acid.
  • AANS—amino acids) for example, AANS-Gly with amino acid portion of glycine, AANS-Val with amino acid portion of palin, AANS_Al a with amino acid portion of alanine, and other amino acids whose amino acid portions correspond to all amino acids of all amino acids —Amino acid compounds can be used.
  • nucleosides or nucleosides and ester bonds of amino acids can also be used.
  • Puromycin-like compounds that are preferably used include lipocitidyl puromycin (rCpPur), deoxydilpuromycin (dCpPur), and deoxyperidylbile single-mouthed mycin (dUpPur). Is shown.
  • the mRNA and the puromycin or puromycin-like compound are usually linked via a spacer.
  • the conjugate is usually immobilized on a solid phase via a solid phase binding site provided on the probe.
  • Spiral is mainly used to efficiently incorporate piuromycin into a site called ribosome A site.
  • the spacer is not particularly limited as long as it has such properties, but a spacer having a skeleton having flexibility, hydrophilicity and a simple structure with few side chains is preferable.
  • examples of the spacer used herein include, but are not limited to, polynucleotides (including DNA), polyalkylenes such as polyethylene, polyalkylene glycols such as polyethylene glycol, and peptide nucleic acids (PNA) And those containing a linear substance such as polystyrene or a combination thereof as a main skeleton.
  • polynucleotides including DNA
  • polyalkylenes such as polyethylene
  • polyalkylene glycols such as polyethylene glycol
  • PNA peptide nucleic acids
  • linear chain substances When the above linear chain substances are used in combination, they may be appropriately connected to a suitable linking group (-NH-, -CO-, -0-, -NHC0-, -C0NH-, -NHNH-,-(C3 ⁇ 4)
  • n- is, for example, 1 to 10, preferably 1 to 3,] -S-, -SO-and the like.
  • connection between the mRNA and the spacer can be performed directly or indirectly using a known method. Can be performed chemically or physically. For example, when DNA is used as a spacer, both can be linked by providing a sequence complementary to the end of the DNA spacer at the 3 ′ end of the mRNA. In addition, when the spacer and the puromycin are connected, they are usually connected by a known chemical method.
  • a restriction enzyme recognition site can be provided in the DNA chain as such a cleavable site.
  • a restriction enzyme for example, Alul, BamHL EcoRL HindI L Hindl I L PvuI, etc.
  • a restriction enzyme for example, Alul, BamHL EcoRL HindI L Hindl I L PvuI, etc.
  • the mRNA-PM conjugate of the present invention can be labeled by binding a labeling substance as necessary.
  • a labeling substance is appropriately selected from a fluorescent substance, a radioactive labeling substance and the like.
  • the fluorescent substance has a free functional group (for example, a hydroxyl group that can be converted to an active ester, a hydroxyl group or an amino group that can be converted to a phosphoramidide), and has a spacer or puromycin or puromycin-like compound.
  • Various fluorescent dyes that can be linked to are used.
  • Suitable target ⁇ quality for example, full-O fluorescein isothiocyanate Xia sulfonates, Fikopiritan Park, rare earth metal chelate, fluorescent material such as Danshiruku port chloride or tetramethylammonium loader Mi emissions isothiocyanate Xia sulfonates; 3 ⁇ 4, 1, '25 1 or the like radioisotopes 131 1 or the like. 2.
  • a method for immobilization is provided. That is, the solid phase immobilization method of mRNA of the present invention,
  • the solid phase to which the mRNA-PM conjugate is immobilized is not particularly limited, and is appropriately selected depending on the purpose for which the conjugate is used.
  • those which can be used as a carrier for immobilizing biomolecules can be used.
  • beads such as styrene beads, glass beads, agarose beads, sepharose beads, and magnetic beads;
  • Substrates such as silicon substrates, silicon (quartz) substrates, plastic substrates, and metal substrates (eg, gold foil substrates); containers such as glass containers and plastic containers; made of materials such as nitrocellulose and polyvinylidene fluoride (PVDF) Membrane etc. are mentioned.
  • PVDF polyvinylidene fluoride
  • mRNA beads the mRNA-PM conjugate immobilized on beads.
  • mRNA beads an mRNA bead comprising a conjugate of mRNA and puromycin or a puromycin-like compound immobilized on the bead.
  • the immobilization means of the mRNA-PM conjugate of the present invention is not particularly limited as long as the mRNA is immobilized on a solid phase so as not to hinder translation when the mRNA comes into contact with the translation system.
  • a solid phase binding site is provided in the spacer connecting the mRNA and the PM, and the solid phase binding site is connected to the solid phase by a ⁇ solid phase binding site recognition site '', and the mRNA is bound to the solid phase binding site.
  • the solid phase binding site is not particularly limited as long as it can bind the mRNA_PM conjugate to a desired solid phase.
  • a molecule eg, a ligand, an antibody, etc.
  • a specific polypeptide is used as such a solid phase binding site, and in this case, the solid phase surface has a solid phase binding site recognition site.
  • a specific polypeptide that binds to the molecule is bound.
  • Solid phase binding site Z Solid phase binding site Recognition site examples of the combination of the above include, for example, a biotin-binding protein such as avidin and streptavidin, nopiotin, a maltose-binding protein Z maltose, a G protein Z guanine nucleotide, a polyhistidine peptide Z, a metal ion such as nickel or cobalt, and glutathione.
  • a biotin-binding protein such as avidin and streptavidin, nopiotin
  • a maltose-binding protein Z maltose a G protein Z guanine nucleotide
  • a polyhistidine peptide Z a polyhistidine peptide Z
  • metal ion such as nickel or cobalt
  • glutathione examples of the combination of the above include, for example, a biotin-binding protein such as avidin and streptavidin, nopiotin, a maltose
  • S-transferase Z dalyuthione DNA binding protein / DNA, antibody Z antigen molecule (epitope), calmodulin / force lumodiulin binding peptide, ATP binding protein ZATP, or estradio receptor protein / estradio And various receptor proteins Z and their ligands.
  • solid-phase binding sites and solid-phase binding site recognition sites include biotin-binding proteins such as avidin and streptavidin, maltose-binding protein / maltose, polyhistidine peptide nickel or cobalt, etc.
  • a known method can be used for binding the protein to the solid phase surface.
  • Such known methods include, for example, tannic acid, formalin, darthal aldehyde, pyrvicaldehyde, benzodiazobis benzodizone, toluene-1,2,4-diisocyanate, amino group, carboxylic acid group, or hydroxyl group or amino.
  • PM Abdella, PK Smith, GP Royer, A New Cleavable Reagent for Cross-Linking and Reversible Immobi lizaion of Proteins, Biochem. Biophys. Res. Commun , 87, 734 (1979), etc. The above combination can be used with the solid phase binding site and the solid phase binding site recognition site reversed.
  • the above-mentioned immobilization method is an immobilization method using two substances having mutual affinity.
  • the solid phase is a plastic material such as styrene beads or a styrene substrate, if necessary, a publicly known method may be used.
  • a part of the spacer can also be directly covalently bonded to the solid phase by using the method described in (1) (see Qiagen, LiduiChip Appliance Handbook, etc.).
  • the fixing means is as described above. Without limitation to the method, any fixing means known to those skilled in the art can be used.
  • a solid phase immobilization or solid phase synthesis method for a protein wherein after the step (b), (c) contacting the mRNA-PM conjugate with a translation system (For example, introducing a translation system into the conjugate or introducing the conjugate into the translation system) provides a method for solid-phase immobilization or synthesis of a protein, comprising a step of synthesizing a protein.
  • step (b) the mRNA-PM conjugate is immobilized on the solid phase, and when this conjugate is introduced into the translation system, the above-mentioned //?
  • the synthesized protein is immobilized on the solid phase via puromycin.
  • step (c) protein synthesis is performed by bringing the mRNA-PM conjugate into contact with the translation system.
  • the translation system that can be used here include a cell-free translation system and living cells.
  • a cell-free translation system composed of a prokaryotic or eukaryotic extract, for example, Escherichia coli, Egret reticulocytes, wheat germ extract, etc. can be used (Lamiroiii Grunberg-Manago M. Ambiguit). ies of trans lat ion of poly U in the rabbi tret iculocyte system. Biochem Biophys Res Commun. 1967 27 (1): 1-6, etc.).
  • Prokaryotic or eukaryotic organisms such as E. coli cells, can be used as a live cell translation system. In the present invention, it is preferable to use a cell-free system from the viewpoint of easy handling.
  • FIG. 1a shows the immobilized mRNA-PM conjugate during storage
  • Figure 1b shows the cell-free translation system is inserted and the protein is being synthesized
  • Figure 1c shows the completion of protein synthesis.
  • FIG. 1a the immobilized mRNA-puromycin conjugate 1
  • the solid-phase phase-coupled joint was formed by connecting the 11-port Mamaishishin ll bb to the DDNNAA via a 11 cc connection. It is bound to the solid-phase phase 22 via the site 11 dd. .
  • the solid-phase phase 22 is designed to allow for the later introduction of a cell-free cell-free translation system. It has a shape and shape. . As shown in Fig. Ll bb, solid-fixed and normalized mmRRNN AA- When the translation system 33 was introduced and introduced, it was due to the mmRRNNAA and the non-cellular cell vesicles 55 due to the translation reaction using the translation system. As a result, a protein 44 corresponding to the nuclear nucleic acid sequence of mmRRNNAA is synthesized. . After completion of the translation, the unnecessary components of the cell-free cell-free translation system 33 are removed and removed, and the protein protein 44 is released.
  • the mmRRNNAA—Pipum-llomai-issin-tin-protein complex complex bound to the Puro-roma-maisin-shin 11 bb is a solid-solid phase It is formed in a state fixed to 22.
  • the target substance may be brought into contact with the target substance by contacting with the synthetic protein, thereby forming a bond with the synthetic protein protein.
  • the target material that is to be obtained can be created. .
  • a solid-fixed stabilized mmRRNNAA as described above, wherein
  • the mmRRNNAA tip ((mmRRNNAA Mamayik chloroa alley)), which contains a plurality of .
  • the invention of the present invention is a fixed solidification of the invention of the present invention.
  • MmRRNNAA—Pipuro-Romamaiisin Provide the mmRRNNAA chip, which is fixed and fixed to the base substrate plate for use. .
  • the mmRRNNAA chip here is obtained by solidifying and stabilizing the mmRRNNAA-PPMM linked body described above on a plurality of base plates. . .
  • the above-mentioned "multiple number” means that the value of the upper and lower limits is restricted, especially in particular. Good, but
  • a plurality of mRNAs encoding proteins with known functions may be immobilized on a solid phase as mRNA-PM conjugates
  • a plurality of encoded mRNAs may be immobilized on a solid phase as mRNA-puromycin conjugate.
  • mRNA encoding a protein with a known function involved in a disease is immobilized on a plurality of chips
  • an mRNA chip for diagnosing a disease an mRNA chip for protein interaction analysis, or the like can be used.
  • mRNA encoding a protein that binds to the diagnosis of a particular disease is fixed to a predetermined position on each plate.
  • a cell-free translation system is put into this plate immediately before diagnosis, and a protein that binds to a desired diagnostic marker is synthesized and fixed at a predetermined position on the plate.
  • a protein chip can be prepared immediately before diagnosis. Protein chips have problems in storage or handling.
  • One of the features of the present invention is that the chip is formed in the form of a stable mRNA instead of an unstable protein.
  • a diagnostic kit including the above-described mRNA beads or the above-described mRNA chip and a cell-free translation system, or a kit for analyzing protein interaction is also within the scope of the present invention.
  • a kit for analyzing protein interaction is also within the scope of the present invention.
  • an mRNA chip By using such an mRNA chip, it can be used for protein-protein interaction, DNA-protein interaction, ligand search, disease marker search, disease diagnosis, drug efficacy evaluation, pharmacokinetic evaluation, etc. Can be.
  • a protein synthesized by bringing the immobilized mRNA-puromycin conjugate of the present invention into contact with a translation system is converted to a conjugate having a structure added to the above conjugate (“immobilized mRNA-puromycin”).
  • Protein conjugate is also included in the present invention. That is, the present invention relates to the “immobilized mRNA-puromycin” of the present invention. Immobilized mRNA-puro, wherein a protein (polypeptide) of a translation product of the mRNA synthesized by providing the “conjugate” to a translation system is linked via puromycin or a puromycin-like compound in the conjugate.
  • a protein (polypeptide) of a translation product of the mRNA synthesized by providing the “conjugate” to a translation system is linked via puromycin or a puromycin-like compound in the conjugate.
  • the conjugate can be suitably used, for example, in the “method for analyzing the interaction between a protein and a target molecule” described below.
  • a protein chip having a structure in which an immobilized mRNA-puromycin-protein conjugate is fixed to a microarray substrate as described above can be exemplified.
  • the above “immobilized mRNA-puromycin-protein conjugate” is subjected to a reverse transcription reaction system (contacted with the reverse transcription reaction system) to obtain a reverse transcription product of the mRNA. It is possible to synthesize a certain complementary DNA (a DNA that hybridizes with the mRNA).
  • the complementary sequence serves as a primer in a reverse transcription reaction of the mRNA. It is expected to work. That is, by providing the mRNA-puromycin-protein conjugate to a reverse transcription reaction system, a DNA synthesis reaction using the primer as a synthesis starting point is started, and a DNA having a sequence complementary to the mRNA is synthesized. .
  • a conjugate containing DNA synthesized in this manner (described as “DNA-puromycin-protein conjugate”) is also included in the present invention.
  • the present invention relates to a method wherein the “immobilized mRNA-pieuromycin-protein conjugate” of the present invention is subjected to a reverse transcription reaction system, and a complementary DNA of the mRNA is bound to the conjugate.
  • An immobilized DNA-puromycin-protein conjugate is provided.
  • the nucleic acid molecule linked to puromycin in the above-described conjugate of the present invention is usually a double-stranded nucleic acid molecule of mRNA and a complementary DNA of the mRNA, but the mRNA in the nucleic acid molecule is subsequently nucleated. It may be digested by a reaction such as zeolitic reaction. That is, the “immobilized DNA-puromycin-protein conjugate” comprising a structure in which a single-stranded (complementary to mRNA) DNA molecule is linked to puromycin is also a linking agent of the present invention.
  • the nucleic acid molecule linked to puromycin may be a double-stranded DNA consisting of a DNA having complementarity with the DNA.
  • the “reverse transcription reaction system” refers to a reaction system that controls so-called “reverse transcription” for synthesizing DNA using mRNA as type II, and the reaction system usually contains a reverse transcriptase.
  • the reverse transcription reaction of the present invention More specifically, it can be carried out by the method described in Examples described later.
  • step (b) contacting the protein synthesized in step (a) with one or more target substances;
  • This analysis method includes, for example, (i) when screening for a substance that acts on a protein whose sequence is known, (ii) screening for a protein whose sequence is unknown to which a specific substance (for example, a ligand) binds. It can be used in such cases.
  • a plurality of conjugates of puromycin and mRNA having a nucleic acid sequence encoding a protein having a known sequence are prepared (that is, a plurality of conjugates are prepared).
  • a plurality of orphan receptor proteins are synthesized from the mRNA of each mRNA-PM conjugate.
  • Each orphan receptor protein is composed of mRNA- It is immobilized by attaching the C-terminus to puromycin of the PM conjugate. If necessary, perform a binding experiment by washing and removing unnecessary components, adding a target substance and a buffer to the target substance, and binding the target substance to the protein receptor.
  • a plurality of mRNAs are obtained from one gene library, a conjugate of a plurality of mRNAs and puromycin is prepared, and immobilized on a solid phase.
  • a protein is synthesized in the same manner, and a binding experiment is performed by bringing a target substance into contact with the protein.
  • the protein synthesized in the step (a) is brought into contact with the target substance described above.
  • target substance refers to a substance for examining whether or not it interacts with the protein synthesized in the present invention, and specifically includes proteins, nucleic acids, sugar chains, and low-molecular compounds. And the like.
  • the protein is not particularly limited, and may be a full-length protein or a partial peptide containing a binding active site.
  • the protein may be a protein whose amino acid sequence and function are known, or may be an unknown protein. These can be used as target molecules even with a synthesized peptide chain, a protein purified from a living body, or translated from a cDNA library or the like using an appropriate translation system, and a purified protein or the like can be used as a target molecule.
  • the synthesized peptide chain may be a glycoprotein having a sugar chain bonded thereto. Among these, preferably, a purified protein having a known amino acid sequence, or a protein translated and purified from a cDNA library or the like using an appropriate method can be used.
  • the nucleic acid is not particularly limited, and DNA or RNA can also be used. Further, the nucleic acid may have a known nucleotide sequence or function, or may have an unknown nucleic acid. Preferably, those having a known function as a nucleic acid capable of binding to a protein and having a known nucleotide sequence, or those which have been cut and isolated from a genomic library or the like using a restriction enzyme or the like can be used.
  • sugar chain there is no particular limitation on the sugar chain, and even if the sugar sequence or function is a known sugar chain. An unknown sugar chain may be used. Preferably, a sugar chain which has already been separated and analyzed and whose sugar sequence or function is known is used.
  • the low-molecular compound is not particularly limited and may be a compound having an unknown function or a compound having a known ability to bind to a protein.
  • the “interaction” between the target substance and the protein is usually defined as at least one of a covalent bond, a hydrophobic bond, a hydrogen bond, a van der Waals bond, and an electrostatic force bond between the protein and the target molecule. It refers to the action of the forces acting between the molecules resulting from each other, but this term should be interpreted in the broadest sense and not in any way limited.
  • the covalent bond includes a coordinate bond and a dipole bond.
  • the coupling by electrostatic force includes not only electrostatic coupling but also electric repulsion.
  • the interaction also includes a binding reaction, a synthesis reaction, and a decomposition reaction resulting from the above action.
  • Specific examples of the interaction include binding and dissociation between an antigen and an antibody, binding and dissociation between a protein receptor and a ligand, binding and dissociation between an adhesion molecule and a partner molecule, and binding and dissociation between an enzyme and a substrate. Binding and dissociation between nucleic acids and proteins that bind to them, binding and dissociation between proteins in the signal transduction system, binding and dissociation between glycoproteins and proteins, or binding between sugar chains and proteins And dissociation.
  • the target substance used here can be labeled with a labeling substance as necessary. Labeling can be performed by binding a labeling substance as necessary.
  • a labeling substance is appropriately selected from a fluorescent substance, a radioactive labeling substance and the like.
  • the fluorescent substance it is possible to use various fluorescent dyes which have a free functional group (for example, a hydroxyl group which can be converted into an active ester, a hydroxyl group which can be converted into a phosphoramidide, or an amino group) and can be linked to a target substance. it can.
  • Suitable labeling substances include, for example, fluorescent substances such as fluorescein isothiocyanate, phycopyriprotein, rare earth metal chelates, dansyl chloride or tetramethylrhodamine isothiocyanate; 3 ⁇ 4, “ 1M I or 131 1st radioisotope Body and the like.
  • fluorescent substances such as fluorescein isothiocyanate, phycopyriprotein, rare earth metal chelates, dansyl chloride or tetramethylrhodamine isothiocyanate
  • 3 ⁇ 4 “ 1M I or 131 1st radioisotope Body and the like.
  • step (c) it is measured whether or not the protein and the target substance interact.
  • the measurement of whether or not the protein and the target substance are interacting is performed by measuring and detecting a change in a signal generated based on the interaction between the two molecules.
  • Examples of such measurement methods include surface plasmon resonance (Cullen, DC, et al., Biosensors, 3 (4), 211-225 (187-88)), evanescent field molecular imaging (Funatsu, T., et al., Nature, 374, 555-559 (1995)), Fluorescence imaging analysis, Enzyme Linked Immunosorbent Assay (ELISA): Crowther, JR, Methods in Molecular Biology, 42 (1995)), fluorescence depolarization (Perran, J., et al., J. Ph ys.
  • FCS Fluorescence Correl at ion Spectroscopy
  • the protein and / or the target substance in the protein-target substance conjugate determined to have an interaction in the step (c) are identified.
  • the protein can be identified using a normal amino acid sequencer or by reverse transcription of MA from mRNA bound to the protein and analyzing the nucleotide sequence of the obtained DNA. . Identification of the target substance can be performed by NMR, IR, various types of mass spectrometry, and the like.
  • the time-of-flight mass spectrometer (MALDI-TOF MS) can be used in the same manner as in the analysis of a sample on a normal protein chip. Can be used.
  • the method of the present invention further comprises the step of: synthesizing the step (a) following the step (a).
  • a conjugate containing DNA complementary to the mRNA in the conjugate (DNA-puromycin-protein conjugate) is prepared.
  • the subsequent steps described above may be performed. That is, a preferred embodiment of the present invention provides a method for analyzing the interaction between a protein and a molecule, comprising the following steps.
  • step (b) contacting the mRNA-puromycin-protein conjugate synthesized in step (a) with a reverse transcription reaction system to prepare a DNA-puromycin-protein conjugate;
  • step (c) contacting the DNA-puromycin-protein conjugate prepared in step (b) with one or more target substances;
  • FIG. 1 is a schematic diagram showing a method for synthesizing and immobilizing a protein using the immobilized mRNA-puromycin conjugate of the present invention.
  • FIG. 2 is a diagram showing the types of genes used in Examples 1 and 2.
  • FIG. 3 is a diagram showing a schematic diagram of a protein A B_domain or GFP mRNA to which a spacer DNA with a puromachine is covalently bound.
  • FIG. 4 is a photograph showing the result of SDS-PAGE in Example 1.
  • FIG. 5 is a photograph obtained by observing the fluorescence of GFP translated on the beads in Example 2 under a microscope.
  • 1 d solid phase binding site
  • 2 solid phase
  • 3 cell-free translation system
  • spacer BioLoop-Puro (hereinafter abbreviated as "spacer DNA with PM")
  • Puro-FS [Sequence; 5 '-(S) -TC (F)-(Specl8)-(Specl8)-( Specl8)-(Specl8) -CC- (Puro) -3 ', purchased from BEX] lOnmol, 100x1 50mM phosphate buffer (pH7.
  • TCEP Tris (2-carbo xyethyDphosphine hydrochloride) was removed using NAP5 (Amersham, 17-0853-02) equilibrated in (0), where (S) was 5, 5 in the Puro-FS sequence.
  • -Thiot Modifier C6 (F) is Fluorescein_dT, (Puro) is Puromycin CPG,
  • Spacerl8 is a product (18-0-dimethoxytritylhexaethyleneglycol, 1-[(2-cyanoetyl)-(N, N-diisopropyl)]-phosphoramidite) manufactured by Glen Research Search and has the following chemical structure.
  • HPLC fraction was analyzed on an 18% acrylamide gel (8 M urea, 62 ° C), and the target fraction was dried under reduced pressure and dissolved in DEPC-treated water to 10 pmol / U.
  • ProteinA B-domain (371 bp; SEQ ID NO: 2) with T7, Cap, Omega sequence, Kozak sequence at the 5 'end, 6x histidine tag at the 3' end, and a stop codon, and T7, Cap, Mutation described in GFP (Green Fluorescent prote in) (717 bp; SEQ ID NO: 3, I to, et al., Biochem Biophys Res Commun. 1999: 264 (2): 556-60 having Kozak sequence and having a termination codon deleted) was cloned and used.
  • GFP Green Fluorescent prote in
  • Both primers are designed to contain a tag sequence (5'-aggacggggggcggggaaa (SEQ ID NO: 4), which is complementary to a part of the spacer DNA, and the underline is a part complementary to the spacer sequence).
  • SEQ ID NO: 4 a tag sequence
  • DNA having a tag sequence at the 3 ′ end was obtained.
  • PCR reaction was performed by adding 1 unit of Ta KaRa ExTaa (TakaraBio) to 501 PCR reaction solutions, adding im imol for ⁇ type MA, and using the following primers under the following conditions.
  • Fig. 2 shows the structure of the obtained DNA.
  • mRNA was synthesized in in vitro ears (Promega, P1300). Transcription was performed as follows on a DNA lug, 201 scale according to the protocol attached to the kit of Promega. That is, after leaving at 37 ° C for 1 hour, 1 unit of DNase (RQ1 DNase) included in the kit was added, and the mixture was further left at 37 ° C for 15 minutes. During the synthesis, m7G Cap Analog (Promega, P1711) was added according to the protocol of Promega. The mRNA with the 5 'cap analog was treated with DNase and phenol-chloroform, and then purified and quantified with DS Primer Remover (Edge Biosystems).
  • FIG. 3 shows a schematic diagram of a protein AB-domain or GFP mRNA covalently linked to a PM-attached spacer MA.
  • P indicates puromycin
  • F indicates FIT
  • B indicates biotin
  • ATCGu indicates DNA and RNA sequences.
  • the upper case indicates DNA containing the restriction enzyme PvuII site (enclosed in a square frame).
  • the part shown in lowercase letters is mRNA, and the part that forms a complementary strand with the DNA at the 3 'end is linked to the Tag sequence. I agree.
  • the 3 'end of the RNA and the 5' end of the DNA are ligated with the "T4 RNA Ligase".
  • the complex of PM-attached DNA and mRNA synthesized as described above was applied to avidin beads (MAGNOTEX-SA, TaKaRa, 9088) with a diameter of 2.3 m ⁇ 0. As described above.
  • the 60 xl avidin beads were washed twice with 200 xl 1X Binding Buffer (attached) using a magnetic stand to precipitate the avidin beads and replacing the supernatant. After washing, add 48 pmol of the complex of spacer DNA and mRNA with PM synthesized in 2-2 above to the precipitated beads, and add 1 x Binding Buffer (attached) to a total of 120 zl. In addition, it was left still at room temperature for 10 minutes. Thereafter, as described above, the beads were washed with 1X Binding Buffer (supplied) to remove the complex of PM-attached spacer DNA and mRNA that did not bind to the beads. Further, 190 l of 20 ⁇ Translation Mix (Amion) 10 ⁇ K DEPC-treated water was added, and the beads were washed in the same manner.
  • the beads were sedimented on a magnet stand, and a cell-free translation system (Retic Lysate IVT Kit, Ambion, 1200) was added for 300_U, and a translation reaction was performed at 30 ° C for 15 minutes. Thereafter, MgCl 2 and KC1 were added to the final concentrations of 63 mM and 750 mM, respectively, and left at 37 ° C. for 1.5 hours. The sample was gently agitated approximately every hour. The beads were precipitated as above and washed twice with 200 l of 1x Binding Buffer (attached) containing 20 units of SUPERase-In (Ambion, 2694).
  • Retic Lysate IVT Kit Ambion, 1200
  • the precipitated beads are left to stand at 37 ° C for 1 hour with 24 units of restriction enzyme PvuI I (TaKaRa) on a scale of, and the DNA-protein on the beads is separated from the beads.
  • PvuI I restriction enzyme I
  • BSA was added to a final 0.1 mg / ml to avoid nonspecific adsorption of beads and DNA-protein.
  • the beads were precipitated as described above, and the supernatant was transferred to a new sample tube.
  • the template mRNA still forms a complementary strand with the DNA-DNA portion of the protein, so add 2 units of Ribonuclease H (Promega, M4281) to the supernatant, and add The remaining mRNA after reverse transcription was degraded by reaction for 20 minutes.
  • Figure 4a shows the results of adding a complex of PM-based spacer DNA and iiRNA to a cell-free translation system to form an mRNA-protein complex in solution (as usual). Is visualized. Lane 1 is before translation and 2 is after translation. Judging from the molecular weight, the band at the position indicated as “RNA virus” that appeared after the translation reaction showed that mRNA and the protein encoded by that mRNA were mediated by puromycin in the splicer DNA. It is thought to be a covalently bound complex. The band at the position marked "genome” is a complex of spacer DNA and mRNA to which no protein is bound.
  • the amount of DNA-protein complex recovered was measured based on the band visualized by the fluorescence of FITC in SDS-PAGE. As a result, it was synthesized on the solid phase and separated with the restriction enzyme. At the time of recovery, the DNA-protein (Fig. 4b arrowhead) was added at 0.4% of the added mRNA, and the His-tag purified and extracted (Fig. 4b "DNA virus") was added. It was 0.1% of mRNA. [Execution line 2] Detection of function of protein synthesized on solid phase (GFP)
  • the beads were washed twice with 100 1 of 0.5 X Binding buf fer (50 mM Tris HC1 pH 8.0, 0.05% Tween 20, 500 mM NaCl). Washing was performed by centrifuging the solution containing the beads at 15, OOOrpm for 5 minutes at 4 ° C, and exchanging the supernatant. To the precipitate of the washed beads, 8 pmol of a complex of a probe DNA with PM and a GFP mRNA synthesized in the same manner as in 2-2 of Example 1 was added, and the mixture was added to a 40 x 40 ⁇ g binding buffer. and allowed to stand at room temperature for 15 minutes to bind to the beads.
  • 0.5 X Binding buf fer 50 mM Tris HC1 pH 8.0, 0.05% Tween 20, 500 mM NaCl. Washing was performed by centrifuging the solution containing the beads at 15, OOOrpm for 5 minutes at 4 ° C, and exchanging the superna
  • Washing was performed once with 100 l of 0.5 X Binding buf fer as described above to remove mRNA not bound to the beads. Further, 10 X / L of 20 ⁇ TransLationMix (Ambion) and 1901 of DEPC-treated water were added, and the beads were washed in the same manner.
  • the suspension containing the above beads was further diluted to 1/5 with 50 mM phosphate buffer pH 7.0, and an enzyme system for removing active oxygen (25 glucose, 2.5 ⁇ M glucose oxidase, ⁇ microscopic observation was performed in the presence of catalase, lOmM ditiothreitol).
  • the microscope was excited by 473nm 0.35mW objective evanescent illumination using Nicon, TE2000, and the fluorescence of GFP was photographed with a cooled CCD camera 0RCA-ER (Hamamatsu Photonics) for 1.04 second exposure.
  • As a negative control only spacer DNA was bound to beads in the same manner as in Examples 3-1 and 3-2 in the same manner, and observation was performed under the same conditions.
  • Figure 5 shows the observation results.
  • Figure 5 is a photograph of the fluorescence of GFP translated on the beads observed under a microscope. The fluorescence image when excited with a 473 nm laser was superimposed on the bright-field image of the beads (460 nm in diameter).
  • Figure 5a shows a translation reaction performed by binding 8 pmol of a complex of spacer DNA with PM and GFP mRNA to avidin beads at 10 z for 1 min.
  • Figure 5b shows a DNA spacer with PM.
  • a microscopic observation image of the result of performing a translation reaction under the same conditions with 8 pmol of only one bound to 10 l of avidin beads is shown. The fluorescent image was confirmed by a green pseudo color.
  • Example 1 To further confirm the results of Example 1, we attempted to translate GFP on beads in the same way and look directly under the evanescent microscope for the fluorescence of GFP on the translated beads. As a result, the GFP mRNA was linked to the PM-attached spacer DNA, as compared to the case where only the PM-attached spacer DNA was bound to the beads and observed. After that, the fluorescence of GFP could be observed on the beads fixed and translated on the beads. Therefore, it was again confirmed that the target protein was synthesized and immobilized on the solid phase. Industrial potential
  • a method for solid-phase immobilization of mRNA and protein, an immobilized mRNA-puromycin conjugate, an mRNA bead or an mRNA chip containing this conjugate, and an mRNA chip prepared from this mRNA chip can be provided. Since such an mRNA chip is easy to store, there is an advantage that handling is extremely easy as compared with an existing protein chip.
  • the present invention relates to a "fixed mRNA-puromycin-protein linkage" in which a protein of a translation product of the mRNA synthesized by providing the immobilized mRNA-puromycin conjugate to a translation system is bound to the puromycin.
  • the conjugate can be used for analysis or screening of a molecule that can interact with a protein.
  • the present invention provides the above-described “immobilized mRNA-puromycin-protein conjugate” to a reverse transcription reaction system, whereby the “immobilized DNA-puromycin” has a structure in which complementary DNA of a reverse transcript of the mRNA is linked. And a "mycin-protein conjugate".
  • DNA is more stable than RNA, and therefore, the conjugate is very useful when the conjugate is brought into contact with a test molecule in protein interaction analysis.
  • the mRNA chip of the present invention can be used for diagnosis of various diseases by fixing mRNA used for synthesis of a protein recognizing a diagnostic marker for various diseases. Furthermore, the method for immobilizing or synthesizing a protein of the present invention can be suitably used for analyzing the interaction between protein and molecules.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

It is intended to provide an immobilized mRNA-puromycin conjugate; an mRNA bead or an mRNA chip containing this conjugate; a protein chip produced from the mRNA chip; a diagnosis kit with the use of the mRNA bead or the mRNA chip; a method of immobilizing an mRNA or a protein on a solid phase; a solid phase method of synthesizing a protein; a method of analyzing an interaction between a protein and a molecule by using the immobilized mRNA-puromycin conjugate as described above; and so on.

Description

明細書 固定化 mRNA—ピューロマイシン連結体及びその用途 技術分野  Description Immobilized mRNA-puromycin conjugate and uses thereof
本発明は、 固定化 mRNA—ピューロマイシン連結体、 固定化 mRNA/DNA—ピュー ロマイシン一タンパク質連結体、 及びこれらの用途に関する。 本発明は、 より詳 しくは、 固定化 mRNA—ピュー口マイシン連結体、 この連結体を含む mRNAビーズ 又は mRNAチップ、 この mRNAチップから作製されるプロティンチップ、 mRNAビ ーズ又は mRNAチップを用いた診断キット、 固定化 mRNA/DNA—ピューロマイシン 一タンパク質連結体、 mRNA又はタンパク質の固相固定化法、 タンパク質の固相 合成法、 前記固定化 mRNA—ピューロマイシン連結体を用いるタンパク質と分子 との相互作用を解析する方法等に関する。 背景技術  The present invention relates to an immobilized mRNA-puromycin conjugate, an immobilized mRNA / DNA-puromycin-protein conjugate, and uses thereof. More specifically, the present invention uses an immobilized mRNA-pure mycin conjugate, an mRNA bead or an mRNA chip containing the conjugate, a protein chip, an mRNA bead or an mRNA chip prepared from the mRNA chip. Diagnostic kit, immobilized mRNA / DNA-puromycin monoprotein conjugate, solid-phase immobilization of mRNA or protein, solid-phase synthesis of protein, interaction between protein and molecule using the immobilized mRNA-puromycin conjugate The present invention relates to a method of analyzing an action and the like. Background art
最近のゲノム科学の領域においては、 遺伝子配列を明らかにするという 「構造 解析」 から遺伝子の発現産物による 「機能解析」 へと研究テーマがシフトしてい る。 遺伝子の機能を具現するのは、 基本的に、 タンパク質などの発現産物だから である。 ゆえに、 遺伝子の機能解析にはタンパク質の解析が必須となる。 タンパ ク質の機能解析は、 例えば、 タンパク質一タンパク質相互作用やタンパク質一核 酸相互作用等の解析による生化学的機能解析を通して行われている。  In the field of recent genomics, the research theme has shifted from “structural analysis”, which clarifies gene sequences, to “functional analysis” using gene expression products. Basically, the functions of genes are realized by expression products such as proteins. Therefore, protein analysis is essential for functional analysis of genes. Functional analysis of proteins is performed through, for example, biochemical functional analysis based on analysis of protein-protein interaction and protein-nucleic acid interaction.
タンパク質—夕ンパク質相互作用の解析法としては、 イーストツーハイブリッ ド法 (Chien, C. , et al. , Proc. Nat l. Acad. Sc i. USA, 88, 9578-9582 (19 91) )、 ファージディスプレー法 (Smi th, G. P. , Science, 228, pp. 1315-1317 (1 985) )、 GST—融合タンパク質プルダウン法、 免疫共沈法等が知られている。 タン パク質一核酸相互作用の解析法としては、 電気泳動移動度シフトアツセィ法 (Re vz in, A., et al., Anal. Biochem. , 153, 172 (1986) ) , DNaselフットプリント 法 (Calas, D. , et al. , Nucle ic Ac ids Res. , 5, 3157 (1978) )、 メチル化緩衝 法等が知られている。 The yeast-to-hybrid method (Chien, C., et al., Proc. Natl. Acad. ScI. USA, 88, 9578-9582 (1991)) was used as an analysis method for protein-protein interaction. The phage display method (Smith, GP, Science, 228, pp. 1315-1317 (1985)), the GST-fusion protein pull-down method, the co-immunoprecipitation method and the like are known. As a method for analyzing protein-nucleic acid interaction, electrophoretic mobility shift assay (Re vz in, A., et al., Anal. Biochem., 153, 172 (1986)), DNasel footprint method (Calas, D., et al., Nucleic Acids Res., 5, 3157 (1978)) ), The methylation buffer method and the like are known.
また、 ピューロマイシンの特異的性質を利用した //? 7 ? virus法 (Nemoto et al. , FEBS Let t. 414, 405 (1997) ; Tabuchi et al. , FEBS Let t. 508, 309 (2 001)等参照) を用いてタンパク質相互作用の解析方法も開発されている (W001/0 16600号公報参照)。  Also, the //? 7? Virus method utilizing the specific properties of puromycin (Nemoto et al., FEBS Let t. 414, 405 (1997); Tabuchi et al., FEBS Let t. 508, 309 (2 001) ) Etc.), a method for analyzing protein interaction has also been developed (see W001 / 016600).
一方、 DNAをガラス基板上に合成した DNAチップやタンパク質を基板上に並べ たタンパク質チップは、 ゲノム解析ツールや遺伝子機能解析ツールとして極めて 重要である。 また、 抗体を含むタンパク質を基板上に機能を失わせずに固定化し たものはセンサーチップとしても今後広い範囲にわたる用途が予想される。 しか し、 タンパク質は DNAに比べて不安定なため長期保存ができず、 チップ化した際 の取り扱いが極めて難しいという問題がある。 発明の開示  On the other hand, a DNA chip in which DNA is synthesized on a glass substrate and a protein chip in which proteins are arranged on a substrate are extremely important as tools for genome analysis and gene function analysis. In addition, immobilized proteins, including antibodies, on a substrate without losing their functions are expected to have a wide range of uses as sensor chips in the future. However, proteins are unstable compared to DNA and cannot be stored for a long period of time. Disclosure of the invention
上記したように、 種々の遺伝子機能解析手法が開発されてきたが、 現在でも、 遺伝子機能解析をより効率良くより迅速に行うためのツールの開発が望まれてい る。 特にタンパク質の機能を安定に保持したままの発現法、 固定化方法の開発が 望まれている。  As described above, various gene function analysis methods have been developed, but even today, there is a need for tools for more efficient and faster gene function analysis. In particular, development of an expression method and an immobilization method while stably retaining the function of the protein is desired.
本発明者らは上記課題を解決すべく鋭意研究を行った。 まず本発明者らは、 種々のァミノ酸配列からなる夕ンパク質と標的物質との相互作用を容易に判定可 能なツールの開発を行った。 即ち本発明者らは、 標的物質との相互作用を判定す べき被検タンパク質をコードする核酸分子 (mRNA)と、 該タンパク質を合成する際 に連結部としての役割を担うピューロマイシンとの連結体が、 固相に固定された 構造からなる 「固定化 mRNA—ピューロマインシン連結体」 を作製した。  The present inventors have intensively studied to solve the above problems. First, the present inventors have developed a tool that can easily determine the interaction between a protein composed of various amino acid sequences and a target substance. That is, the present inventors have proposed a conjugate of a nucleic acid molecule (mRNA) encoding a test protein whose interaction with a target substance is to be determined, and puromycin, which plays a role as a connecting portion when synthesizing the protein. Prepared an “immobilized mRNA-purominsin conjugate” having a structure immobilized on a solid phase.
上記の固定化 mRNA—ピュ一ロマインシン連結体を翻訳系と接触させることに より、 固相上においてタンパク質を合成させることが可能である。 合成された夕 ンパク質は、 ピューロマイシンを介して固相に固定される。 Contacting the immobilized mRNA-purominsin conjugate with a translation system Thus, it is possible to synthesize a protein on a solid phase. The synthesized protein is immobilized on the solid phase via puromycin.
上記の固定化 mRNA—ピューロマインシン連結体の好ましい態様としては、 チ ップ等の基板上へ固定化されたマイクロアレイ用チップ (mRNAチップ) を例示 することができる。 当該チップを用いて、 翻訳系と接触させることにより適宜、 プロテインチップを作製することが可能である。 通常、 プロテイン (タンパク 質) チップは、 タンパク質が不安定であることから、 保存上あるいは取り扱い上 に問題がある。 本発明の好ましい態様においては、 タンパク質の代わりに比較的 安定な mRNAの形でチップ化し、 例えば、 使用する直前に翻訳系と接触させるこ とにより、 該チップをプロテインチップへ変換させることが可能である。 即ち、 本発明は、 不安定な夕ンパク質の代わりに比較的安定な mRNAの形で固相上へ固 定化させた、 タンパク質相互作用解析ツールを提供する。  As a preferred embodiment of the above immobilized mRNA-purominsin conjugate, a microarray chip (mRNA chip) immobilized on a substrate such as a chip can be exemplified. By using the chip and bringing it into contact with a translation system, a protein chip can be appropriately prepared. Usually, protein (protein) chips have problems in storage or handling due to instability of the protein. In a preferred embodiment of the present invention, it is possible to convert the chip into a protein chip by forming a chip in the form of a relatively stable mRNA instead of a protein, for example, by bringing it into contact with a translation system immediately before use. is there. That is, the present invention provides a protein interaction analysis tool which is immobilized on a solid phase in the form of a relatively stable mRNA instead of an unstable protein.
また、 上記固定化 mRNA—ピューロマイシン連結体を翻訳系へ供して合成され る該 mRNAの翻訳産物のタンパク質が、 該ピューロマイシンと結合した 「固定化 mRNA—ピューロマイシン一タンパク質連結体」 は、 タンパク質と相互作用し得る 分子の解析あるいはスクリーニングに利用することができ、 非常に有用である。 さらに本発明者らは、 上記 「固定化 mRNA—ピューロマイシン一タンパク質連 結体」 を、 逆転写反応系へ供することにより、 該 mRNAの逆転写産物の相補的 DN The “immobilized mRNA-puromycin-protein conjugate” in which the protein of the translation product of the mRNA synthesized by providing the immobilized mRNA-puromycin conjugate to the translation system is bound to the puromycin is a protein It can be used for analysis or screening of molecules that can interact with and is very useful. Furthermore, the present inventors provide the above-described “immobilized mRNA-puromycin-protein conjugate” to a reverse transcription reaction system to thereby obtain a complementary DN of a reverse transcript of the mRNA.
Aが連結した 「固定化 DNA-ピューロマイシン—タンパク質連結体」 の作製に成功 した。 通常、 RNAに比べて DNAはより安定であることから、 タンパク質相互作用 解析において、 該連結体を被検分子と接触させる際に、 該 「固定化 DNA-ピュー ロマイシン—タンパク質連結体」 は非常に有用である。 We succeeded in producing an “immobilized DNA-puromycin-protein conjugate” to which A was linked. Usually, DNA is more stable than RNA, and therefore, when the conjugate is brought into contact with a test molecule in protein interaction analysis, the “immobilized DNA-puromycin-protein conjugate” is extremely Useful.
本発明は、 上記従来技術の問題を解決するためになされたもので、 次に示すよ うな、 固定化 mRNA—ピュ一ロマイシン連結体、 この連結体を含む mRNAビーズ又 は mRNAチップ、 この mRNAチップから作製されるプロティンチップ、 mRNAビー ズ又は mRNAチップを用いた診断キット、 固定化 DNA-ピューロマイシン一タンパ ク質連結体、 mRNA又はタンパク質の固相固定化法、 タンパク質の固相合成法、 前記固定化 mRNA—ピューロマイシン連結体を用いる夕ンパク質と分子との相互 作用を解析する方法等を提供する。 より具体的には、 本発明は、 The present invention has been made to solve the above-mentioned problems of the prior art, and includes the following: an immobilized mRNA-puromycin conjugate; an mRNA bead or an mRNA chip containing the conjugate; Protein chip, mRNA bead, or diagnostic kit using mRNA chip, immobilized DNA-puromycin-tamper A solid phase immobilization method of a protein conjugate, mRNA or protein, a solid phase synthesis method of a protein, and a method of analyzing the interaction between a protein and a molecule using the immobilized mRNA-puromycin conjugate. . More specifically, the present invention provides
〔1〕 mRNAとピューロマイシン又はピューロマイシン様化合物との連結体を 固相に固定してなる、 固定化] nRNA—ピューロマイシン連結体、  [1] Immobilized by immobilizing a conjugate of mRNA and puromycin or a puromycin-like compound on a solid phase, nRNA-puromycin conjugate,
〔2〕 前記 mRNA—ピューロマイシン連結体が、 mRNAの 3'末端にスぺ一サーを 介してピューロマイシン又はピューロマイシン様化合物を連結したもので ある 〔1〕 に記載の固定化 mRNA—ピューロマイシン連結体、  [2] the immobilized mRNA-puromycin according to [1], wherein the mRNA-puromycin conjugate is obtained by linking puromycin or a puromycin-like compound to the 3 ′ end of the mRNA via a spacer; Concatenation,
〔3〕 前記 mRNA—ピューロマイシン連結体が、 前記スぺーサ一に設けた固相 結合部位を介して固相に結合されている、 〔1〕 又は 〔2〕 に記載の固定 化 mRNA—ピューロマイシン連結体、  [3] The immobilized mRNA-puro according to [1] or [2], wherein the mRNA-puromycin conjugate is bound to a solid phase via a solid phase binding site provided on the spacer. Mycin conjugate,
〔4〕 前記スぺ一サ一が、 ポリヌクレオチド、 ポリエチレン、 ポリエチレング リコール、 ポリスチレン、 ペプチド核酸又はこれらの組合せを主骨格とし て含むものである、 〔1〕 〜 〔3〕 のいずれかに記載の固定化 mRNA—ピュ 一口マイシン連結体、  (4) the immobilization according to any one of (1) to (3), wherein the spacer comprises a polynucleotide, polyethylene, polyethylene glycol, polystyrene, peptide nucleic acid, or a combination thereof as a main skeleton. MRNA-pure bitemycin conjugate,
〔5〕 前記固相が、 スチレンビーズ、 ガラスビーズ、 ァガロースビーズ、 セフ ァロースビーズ、 磁性体ビーズ、 ガラス基板、 シリコン基板、 プラスチッ ク基板、 金属基板、 ガラス容器、 プラスチック容器及びメンブレンから選 択される、 〔1〕 〜 〔4〕 のいずれかに記載の固定化 mRNA—ピュー口マイ シン連結体、  (5) The solid phase is selected from styrene beads, glass beads, agarose beads, sepharose beads, magnetic beads, glass substrates, silicon substrates, plastic substrates, metal substrates, glass containers, plastic containers, and membranes. 1) the immobilized mRNA-pure mouth mycin conjugate according to any one of-
〔6〕 〔1〕 〜 〔5〕 のいずれかに記載の固定化 mRNA—ピュ一ロマイシン連 結体を翻訳系へ供して合成される該 mRNAの翻訳産物のタンパク質が、 該 連結体におけるピュー口マイシン又はピュー口マイシン様化合物を介して 連結してなる、 固定化 mRNA—ピューロマイシン—タンパク質連結体、 〔7〕 〔6〕 に記載の固定化 mRNA—ピューロマイシン一タンパク質連結体を、 逆転写反応系へ供して合成される該 mRNAの相補的 DNAが、 該連結体と結 合してなる、 固定化 DNA—ピューロマイシン一タンパク質連結体、 〔8〕 〔1〕 〜 〔5〕 のいずれかに記載の固定化 mRNA—ピューロマイシン連 結体をマイクロアレイ用基板に固定してなる、 mRNAチップ、 [6] a protein of a translation product of the immobilized mRNA-puromycin conjugate according to any one of [1] to [5], which is synthesized by providing the conjugate to a translation system, An immobilized mRNA-puromycin-protein conjugate, which is linked via a mycin or puromycin-like compound, [7] The immobilized mRNA-puromycin-protein conjugate according to [6] is reverse-transcribed. The complementary DNA of the mRNA synthesized for the system is linked to the ligated product. An immobilized DNA-puromycin-protein conjugate comprising the immobilized mRNA-puromycin conjugate according to any one of [8] [1] to [5], which is immobilized on a microarray substrate. , MRNA chip,
〔9〕 〔8〕 記載の mRNAチップを用いて作製されるプロテインチップ、 〔1 0〕 mRNAとピューロマイシン又はピューロマイシン様化合物との連結体 がビーズに固定してなる mRNAビーズ、 (9) a protein chip prepared using the mRNA chip according to (8), (10) an mRNA bead in which a conjugate of mRNA and puromycin or a puromycin-like compound is immobilized on a bead,
〔1 1〕 〔 8〕 記載の mRNAチップ又は 〔1 0〕 記載の mRNAビーズ、 及び無細 胞翻訳系を含むタンパク質相互作用解析用キット、 (11) an mRNA chip according to (8) or an mRNA bead according to (10), and a kit for protein interaction analysis comprising a cell-free translation system,
〔1 2 ] ( a )固相結合部位を設けたスぺ一サ一を介して、 mRNAとピューロマ イシンを連結して、 mRNA—ピューロマイシン連結体を調製する工程、 及び、 [1 2] (a) a step of preparing an mRNA-puromycin conjugate by linking the mRNA and puromycin through a sensor provided with a solid-phase binding site; and
( b )該スぺ一サ一の固相結合部位を固相に結合させることによって、 該 mRNA—ピューロマイシン連結体を固相に固定する工程  (b) a step of immobilizing the mRNA-puromycin conjugate on a solid phase by binding the solid phase binding site of the supplier to a solid phase;
を含む、 mRNAを固相に固定化する方法、  A method of immobilizing mRNA on a solid phase,
〔1 3〕 (a )固相結合部位を設けたスぺーサーを介して、 mRNAとピューロマ イシンを連結して、 mRNA—ピューロマイシン連結体を調製する工程、[13] (a) a step of linking mRNA and puromycin through a spacer provided with a solid-phase binding site to prepare an mRNA-puromycin conjugate;
( b )該スぺーサ一の固相結合部位を固相に結合させることによって、 該 mRNA—ピュ一ロマイシン連結体を固相に固定する工程;及び(b) fixing the mRNA-puromycin conjugate to a solid phase by binding the solid phase binding site of the spacer to a solid phase; and
( c )該 mRNA—ピューロマイシン連結体と翻訳系とを接触させること によって、 タンパク質を合成する工程 (c) a step of synthesizing a protein by bringing the mRNA-puromycin conjugate into contact with a translation system;
を含む、 タンパク質を固相に固定化する方法、  A method for immobilizing a protein on a solid phase,
〔1 4〕 (a )固相結合部位を設けたスぺーサ一を介して、 mRNAとピューロマ イシンを連結して、 mRNA—ピューロマイシン連結体を調製する工程、[14] (a) a step of linking mRNA and puromycin through a spacer provided with a solid phase binding site to prepare an mRNA-puromycin conjugate;
( b )該スぺーサ一の固相結合部位を固相に結合させることによって、 該 mRNA—ピューロマイシン連結体を固相に固定する工程;及び(b) fixing the mRNA-puromycin conjugate to a solid phase by binding the solid phase binding site of the spacer to a solid phase; and
( c )該 mRNA—ピューロマイシン連結体と翻訳系とを接触させること によって、 タンパク質を合成する工程 (c) contacting the mRNA-puromycin conjugate with a translation system; The process of synthesizing proteins
を含む、 タンパク質を固相で合成する方法、  A method for synthesizing a protein in a solid phase,
〔1 5〕 タンパク質と分子との相互作用を解析する方法であって、  [15] a method for analyzing the interaction between a protein and a molecule,
( a )—以上の、 〔1〕 〜 〔5〕 のいずれかに記載の固定化 mRNA—ピュ 一口マイシン連結体と、 翻訳系とを接触させて、 固相上でタンパク質 を合成する工程;  (a) a step of contacting the immobilized mRNA-pikumycin conjugate of any one of [1] to [5] and a translation system to synthesize a protein on a solid phase;
( b )工程(a )において合成されたタンパク質と一以上の標的物質とを 接触させる工程;及び  (b) contacting the protein synthesized in step (a) with one or more target substances; and
( c )該タンパク質と該標的物質とが相互作用しているか否かを測定す る工程;  (c) a step of determining whether the protein and the target substance interact with each other;
を含む上記解析方法、  The above analysis method comprising:
〔1 6〕 タンパク質と分子との相互作用を解析する方法であって、  [16] A method for analyzing the interaction between a protein and a molecule,
( a )—以上の、 〔1〕 〜 〔5〕 のいずれかに記載の固定化 mRNA—ピュ —ロマイシン連結体と、 翻訳系とを接触させて、 固相上でタンパク質 を合成する工程;  (a) contacting the immobilized mRNA-puromycin conjugate according to any one of [1] to [5] above with a translation system to synthesize a protein on a solid phase;
( b )工程(a )において合成された mRNA—ピューロマイシン一タンパ ク質連結体と、 逆転写反応系とを接触させて、 DNA—ピューロマイシ ン—タンパク質連結体を調製する工程;  (b) contacting the mRNA-puromycin-protein conjugate synthesized in step (a) with a reverse transcription reaction system to prepare a DNA-puromycin-protein conjugate;
( c )工程( b )において調製された DNA—ピューロマイシン一夕ンパク 質連結体と一以上の標的物質とを接触させる工程;及び  (c) contacting the DNA-puromycin overnight protein conjugate prepared in step (b) with one or more target substances; and
( d )該連結体におけるタンパク質と該標的物質とが相互作用している か否かを測定する工程;  (d) determining whether the protein in the conjugate interacts with the target substance;
を含む上記解析方法、  The above analysis method comprising:
〔1 7〕 さらに、 相互作用していると判断されたタンパク質及び/又は標的物 質を同定する工程を含む、 前記 〔1 5〕 又は 〔1 6〕 に記載の解析方法、 を、 提供するものである。 以下、 本発明をその実施態様に基づいて詳細に説明する。 [17] The method according to [15] or [16], further comprising the step of identifying a protein and / or a target substance determined to have interacted with the protein. It is. Hereinafter, the present invention will be described in detail based on its embodiments.
1 . 固定化 mRNA—ピューロマイシン連結体 1. Immobilized mRNA-puromycin conjugate
本発明の第 1の態様は、 mRNAとピューロマイシン又はピューロマイシン様化 合物との連結体を固相に固定してなる、 固定化 mRNA—ピューロマイシン連結体 (以下、 「固定化 mRNA- PM連結体」 ともいう) に関する。  A first embodiment of the present invention relates to an immobilized mRNA-puromycin conjugate (hereinafter referred to as “immobilized mRNA-PM”) comprising a conjugate of mRNA and puromycin or a puromycin-like compound immobilized on a solid phase. Also referred to as "linkage").
本発明で用いられる mRNA は、 配列未知のもの、 配列既知のものの両者を含む。 すなわち、 本発明の mRNA- PM連結体を用いて配列既知のタンパク質に結合する物 質を探索あるいは定量する場合は、 配列既知のタンパク質をコードする核酸配列 を有する mRNAを用いる。 逆に、 本発明の mRNA- PM連結体を用いて配列未知の夕 ンパク質の機能を解析する場合は、 配列未知のタンパク質をコードする核酸配列 を有する mRNAを用いることができる。 ここで用いられる、 mRNAは、 例えば、 配 列既知の各種レセプ夕一タンパク質をコードする mRNA、 各種抗体又はその断片 をコードする mRNA、 各種酵素をコードする mRNA、 各種遺伝子ライブラリ一中の DNAから転写される配列未知の mRNA、 有機合成によってランダムに合成された配 列を有する DNAから転写されたランダムな配列を有する mRNAなどから選択され る。  The mRNA used in the present invention includes both those of unknown sequence and those of known sequence. That is, when a substance that binds to a protein with a known sequence is searched or quantified using the mRNA-PM conjugate of the present invention, an mRNA having a nucleic acid sequence encoding a protein with a known sequence is used. Conversely, when analyzing the function of a protein of unknown sequence using the mRNA-PM conjugate of the present invention, an mRNA having a nucleic acid sequence encoding a protein of unknown sequence can be used. The mRNA used here is, for example, transcribed from mRNAs encoding various receptor proteins with known sequences, mRNAs encoding various antibodies or their fragments, mRNAs encoding various enzymes, and DNAs from various gene libraries. The sequence is selected from mRNAs having unknown sequences, mRNAs having random sequences transcribed from DNAs having sequences randomly synthesized by organic synthesis, and the like.
本発明の mRNA- PM連結体は、 通常、 mRNAの 3'末端にスぺ一サーを介してピュ 一口マイシンを連結したものである。 ここで、 ピューロマイシン又はピューロマ イシン様化合物は、 固相に固定された mRNA-PM連結体を翻訳系に投入してタンパ ク質を合成する際に、 mRNAと翻訳されたタンパク質とを連結するヒンジあるい は連結部の役割をする。 すなわち、 mRNAにスぺーサ一を介してピュ一ロマイシ ンを結合したものと翻訳系を接触させると、 その mRNAがピューロマイシンを介 して翻訳されたタンパク質と結合した In vitro virusビリオンが生成すること が知られている (Nemo to et al. , FEBS Let t. 414, 405 (1997)参照)。 ピュー口 マイシン(Puromyc in)は、 その 3'末端がアミノアシル tRNAに化学構造骨格が類 似している、 下記式 (I) : 〔化 1〕 The mRNA-PM conjugate of the present invention is generally one in which pure mouth mycin is ligated to the 3 ′ end of the mRNA via a spacer. Here, puromycin or puromycin-like compound is a hinge that connects mRNA and translated protein when a mRNA-PM conjugate immobilized on a solid phase is introduced into a translation system to synthesize a protein. Or it acts as a connection. In other words, when the translation system is brought into contact with mRNA that is linked to puromycin via a spacer, an in vitro virus virion is generated in which the mRNA is linked to a protein translated through puromycin. (See Nemo to et al., FEBS Lett. 414, 405 (1997)). Puromycin has a chemical structural skeleton similar to aminoacyl-tRNA at its 3 'end. The following formula (I): (Chemical 1)
Figure imgf000010_0001
Figure imgf000010_0001
( I ) (I)
に示される化合物で、 翻訳系でタンパク質の合成が行われた際に、 合成された夕 ンパク質の C末端に結合する能力を有する。 本明細書中、 「ピューロマイシン様 化合物」 とは、 その 3'末端がアミノアシル tRNAに化学構造骨格が類似し、 翻訳 系でタンパク質の合成が行われた際に、 合成されたタンパク質の C末端に結合す る能力を有する化合物をいう。 It has the ability to bind to the C-terminus of the synthesized protein when the protein is synthesized in the translation system. In the present specification, the term "puromycin-like compound" means that the 3 'end of the compound has a similar chemical structural skeleton to aminoacyl-tRNA and is synthesized at the C-terminus of the synthesized protein when the protein is synthesized by the translation system. A compound that has the ability to bind.
ピューロマイシン様化合物としては、 3'—N—アミノアシルピューロマイシン アミノヌクレオシド (3' -N-Aminoacylpuromyc in aminonuc leos ide、 PANS—アミ ノ酸)、 例えば、 アミノ酸部がグリシンの PANS_Gly、 アミノ酸部がパリンの PAN S-VaK アミノ酸部がァラニンの PANS- Al a、 その他、 アミノ酸部が全ての各アミ ノ酸に対応する PANS—アミノ酸化合物が挙げられる。 また、 3'—アミノアデノ シンのァミノ基とアミノ酸の力ルポキシル基が脱水縮合して形成されるアミド結 合で連結した 3' 一 N—アミノアシルアデノシンアミノヌクレオシド (3' - Aminoac yl adenos ine aminonuc leos ide, AANS—アミノ酸)、 たとえば、 アミノ酸部がグリ シンの AANS - Gly、 アミノ酸部がパリンの AANS - Val、 アミノ酸部がァラニンの AA NS_Al a、 その他、 アミノ酸部が全アミノ酸の各アミノ酸に対応する AANS—アミ ノ酸化合物を使用できる。 また、 ヌクレオシドあるいはヌクレオシドとアミノ酸 のエステル結合したものなども使用できる。 なお、 上記ピューロマイシン以外に 好ましく用いられるピューロマイシン様化合物は、 リポシチジルピューロマイシ ン (rCpPur)、 デォキシジルピューロマイシン (dCpPur)、 デォキシゥリジルビユ 一口マイシン (dUpPur) などであり、 下記にその化学構造式を示す。 Examples of puromycin-like compounds include 3'-N-aminoacylpuromycin aminonucleoside (3'-N-Aminoacylpuromyc in aminonucleoside, PANS-amino acid), for example, PANS_Gly in which the amino acid part is glycine and PANS_Gly in the amino acid part PAN S-VaK PANS-Ala in which the amino acid portion corresponds to alanine, and other PANS-amino acid compounds in which the amino acid portion corresponds to all amino acids. In addition, 3'-N-aminoacyl adenosine aminonucleoside (3'-amino-acyl adenosine amino amino acid) is linked by an amide bond formed by dehydration-condensation of the amino group of 3'-aminoadenosine and the amino group of amino acid. , AANS—amino acids), for example, AANS-Gly with amino acid portion of glycine, AANS-Val with amino acid portion of palin, AANS_Al a with amino acid portion of alanine, and other amino acids whose amino acid portions correspond to all amino acids of all amino acids —Amino acid compounds can be used. In addition, nucleosides or nucleosides and ester bonds of amino acids can also be used. In addition to the above puromycin, Puromycin-like compounds that are preferably used include lipocitidyl puromycin (rCpPur), deoxydilpuromycin (dCpPur), and deoxyperidylbile single-mouthed mycin (dUpPur). Is shown.
〔化 2〕  (Chemical 2)
Figure imgf000011_0001
Figure imgf000011_0001
rCpPur dCpPur  rCpPur dCpPur
〔化 3〕  (Chemical 3)
Figure imgf000011_0002
Figure imgf000011_0002
dUpPur Fluoropur 0 - dUpPur Fluoropur 0-
〔化 4〕 (Chemical 4)
Figure imgf000012_0001
Figure imgf000012_0001
Luroth i opu r 本発明の mRNA- PM連結体においては、 mRNAとピューロマイシン又はピュー口 マイシン様化合物 (以下、 単に 「ピューロマイシン」 と称する) は、 通常、 スぺ —サ一を介して連結される。 また、 この連結体は、 通常、 このスぺ一サ一に設け られた固相結合部位を介して固相に固定化される。 スぺ一サ一は、 主として、 ピ ユーロマイシンをリボソームの Aサイトと呼ばれる部位に効率良く取り込ませる ために用いられる。 したがって、 スぺ一サ一としては、 そのような性質を有する 限り特に限定されないが、 柔軟性があり、 親水性で、 側鎖の少ない単純な構造を 有する骨格を有するものが好ましい。 具体的には、 ここで用いられるスぺーサ一 として、 これらに限定されないが、 ポリヌクレオチド (DNA含む)、 ポリエチレ ンなどのポリアルキレン、 ポリエチレングリコールなどのポリアルキレングリコ ール、 ペプチド核酸 (PNA)、 ポリスチレン等の直鎖状物質又はこれらの組合せを 主骨格として含むものが好ましく用いられる。 上記直鎖上物質を組み合わせて用 いる際は、 適宜、 それらを適当な連結基 (-NH -、 - CO-、 - 0-、 - NHC0-、 - C0NH -、 - NHNH -、 - (C¾) n- [nは例えば 1〜10、 好ましくは 1〜3]、 - S -、 - SO -など) で化学 的に連結することができる。 Lurothiopur In the mRNA-PM conjugate of the present invention, the mRNA and the puromycin or puromycin-like compound (hereinafter, simply referred to as "puromycin") are usually linked via a spacer. You. The conjugate is usually immobilized on a solid phase via a solid phase binding site provided on the probe. Spiral is mainly used to efficiently incorporate piuromycin into a site called ribosome A site. Accordingly, the spacer is not particularly limited as long as it has such properties, but a spacer having a skeleton having flexibility, hydrophilicity and a simple structure with few side chains is preferable. Specifically, examples of the spacer used herein include, but are not limited to, polynucleotides (including DNA), polyalkylenes such as polyethylene, polyalkylene glycols such as polyethylene glycol, and peptide nucleic acids (PNA) And those containing a linear substance such as polystyrene or a combination thereof as a main skeleton. When the above linear chain substances are used in combination, they may be appropriately connected to a suitable linking group (-NH-, -CO-, -0-, -NHC0-, -C0NH-, -NHNH-,-(C¾) n- [n is, for example, 1 to 10, preferably 1 to 3,] -S-, -SO-and the like.
mRNAとスぺ一サ一との連結は、 公知の手法を用いて直接 又は間接的に、 ィ匕 学的又は物理的に行うことができる。 例えば、 DNAをスぺーサ一として用いる場 合は、 mRNAの 3'末端にその DNAスぺ一サ一の末端と相補的な配列を設けておく ことにより、 両者を連結することができる。 また、 スぺーサ一とピューロマイシ ンを連結する場合は、 通常、 公知の化学的手法によって連結される。 The connection between the mRNA and the spacer can be performed directly or indirectly using a known method. Can be performed chemically or physically. For example, when DNA is used as a spacer, both can be linked by providing a sequence complementary to the end of the DNA spacer at the 3 ′ end of the mRNA. In addition, when the spacer and the puromycin are connected, they are usually connected by a known chemical method.
なお、 タンパク質を合成した後に、 mRNA- PM -タンパク質の複合体を固相から切 り離す必要がある場合は、 スぺ一サ一中に切断可能部位を設けると好ましい。 DN Aをスぺ一サ一の一部に用いた場合は、 そのような切断可能部位として、 DNA鎖 中に制限酵素認識部位を設けることができる。 このような制限酵素認識部位をも っスぺーサ一を用いた場合は、 タンパク質合成後など所望の時に、 制限酵素 (例 えば、 Alul、 BamHL EcoRL HindI L Hindl l L PvuI Iなど) を投入することに よって、 mRNA- PM-タンパク質の複合体を固相から切り離すことができる。 制限酵 素認識部位とその部位を切断する酵素の組合せは公知である (New Engl and BioL abs 2000 - 01 Catalog & Technical reference等参照)。  When it is necessary to separate the mRNA-PM-protein complex from the solid phase after protein synthesis, it is preferable to provide a cleavable site in the spacer. When DNA is used as a part of a supplier, a restriction enzyme recognition site can be provided in the DNA chain as such a cleavable site. When a spacer having such a restriction enzyme recognition site is used, a restriction enzyme (for example, Alul, BamHL EcoRL HindI L Hindl I L PvuI, etc.) is introduced at a desired time such as after protein synthesis. Thus, the mRNA-PM-protein complex can be separated from the solid phase. Combinations of restriction enzyme recognition sites and enzymes that cleave the sites are known (see New Engl and BioLabs 2000-01 Catalog & Technical reference, etc.).
なお、 本発明の mRNA- PM連結体には、 必要に応じて標識物質を結合させること によって標識することができる。 そのような標識物質は、 蛍光性物質、 放射性標 識物質などから適宜選択される。 蛍光物質としては、 フリーの官能基 (例えば活 性エステルに変換可能な力ルポキシル基、 ホスホアミダイドに変換可能な水酸基、 あるいはアミノ基など) を持ち、 スぺーサ一又はピューロマイシン又はピュー口 マイシン様化合物に連結可能な種々の蛍光色素を用いることができる。 適当な標 識物質としては、 例えばフルォレスセインイソチオシァネート、 フィコピリタン パク、 希土類金属キレート、 ダンシルク口ライド若しくはテトラメチルローダミ ンイソチオシァネート等の蛍光物質; ¾、 1 、 '251若しくは1311等の放射性同位 体などが挙げられる。 2 . mRNAの固相固定化方法 The mRNA-PM conjugate of the present invention can be labeled by binding a labeling substance as necessary. Such a labeling substance is appropriately selected from a fluorescent substance, a radioactive labeling substance and the like. The fluorescent substance has a free functional group (for example, a hydroxyl group that can be converted to an active ester, a hydroxyl group or an amino group that can be converted to a phosphoramidide), and has a spacer or puromycin or puromycin-like compound. Various fluorescent dyes that can be linked to are used. Suitable target識物quality, for example, full-O fluorescein isothiocyanate Xia sulfonates, Fikopiritan Park, rare earth metal chelate, fluorescent material such as Danshiruku port chloride or tetramethylammonium loader Mi emissions isothiocyanate Xia sulfonates; ¾, 1, '25 1 or the like radioisotopes 131 1 or the like. 2. Method for solid phase immobilization of mRNA
本発明の別の態様によれば、 上記の mRNA-PM連結体を用いて、 mRNAを固相に 固定化する方法が提供される。 すなわち、 本発明の mRNAの固相固定化法は、According to another aspect of the present invention, using the above mRNA-PM conjugate, A method for immobilization is provided. That is, the solid phase immobilization method of mRNA of the present invention,
( a ) 固相結合部位を設けたスぺーサーを介して、 mRNAとピューロマイシンを 連結して、 mRNA- PM連結体を調製する工程、 及び、 (a) linking mRNA and puromycin through a spacer provided with a solid phase binding site to prepare an mRNA-PM conjugate; and
( b ) 該スぺ一サ一の固相結合部位を固相に結合させることによって、 該 mRNA - PM連結体を固相に固定する工程  (b) immobilizing the mRNA-PM conjugate on a solid phase by binding the solid phase binding site of the spacer to a solid phase;
を含む。 including.
mRNA-PM連結体が固定される固相は特に限定されず、 その連結体が使用される 目的に応じて適宜選択される。 本発明で用いられる固相としては、 生体分子を固 定する担体となるものを用いることができ、 例えば、 スチレンビーズ、 ガラスビ ーズ、 ァガロースビーズ、 セファロースビーズ、 磁性体ビ一ズ等のビーズ;ガラ ス基板、 シリコン (石英) 基板、 プラスチック基板、 金属基板 (例えば、 金箔基 板) 等の基板;ガラス容器、 プラスチック容器等の容器;ニトロセルロース、 ポ リビニリデンフルオリド (PVDF) 等の材料からなるメンブレンなどが挙げられる。 なお、 本明細書では、 上記 mRNA- PM連結体がビーズに固定されたものを 「mRNA ビーズ」 という。 本発明の好ましい態様においては、 mRNAとピューロマイシン 又はピュー口マイシン様化合物との連結体がビーズに固定してなる mRNAビーズ を提供する。  The solid phase to which the mRNA-PM conjugate is immobilized is not particularly limited, and is appropriately selected depending on the purpose for which the conjugate is used. As the solid phase used in the present invention, those which can be used as a carrier for immobilizing biomolecules can be used. For example, beads such as styrene beads, glass beads, agarose beads, sepharose beads, and magnetic beads; Substrates such as silicon substrates, silicon (quartz) substrates, plastic substrates, and metal substrates (eg, gold foil substrates); containers such as glass containers and plastic containers; made of materials such as nitrocellulose and polyvinylidene fluoride (PVDF) Membrane etc. are mentioned. In the present specification, the mRNA-PM conjugate immobilized on beads is referred to as “mRNA beads”. In a preferred embodiment of the present invention, there is provided an mRNA bead comprising a conjugate of mRNA and puromycin or a puromycin-like compound immobilized on the bead.
本発明の mRNA- PM連結体は、 mRNAが翻訳系と接触する際に、 その翻訳の障害 とならないように固相に固定されれば、 その固定化手段は特に限定されない。 通 常は、 mRNAと PMを連結するスぺーサ一に固相結合部位を設け、 その固相結合部 位を、 固相に結合させた 「固相結合部位認識部位」 を介して、 mRNA- PM連結体を 固相に固定する。 固相結合部位は、 mRNA_PM連結体を所望の固相に結合し得るも のであれば特に限定されない。 例えば、 このような固相結合部位として、 特定の ポリペプチドに特異的に結合する分子 (例えば、 リガンド、 抗体など) が用いら れ、 この場合は、 固相表面には固相結合部位認識部位として、 その分子と結合す る特定のポリぺプチドを結合させておく。 固相結合部位 Z固相結合部位認識部位 の組合せの例としては、 例えば、 アビジン及びストレプトアビジン等のピオチン 結合タンパク質ノピオチン、 マルトース結合タンパク質 Zマルトース、 Gタンパ ク質 Zグァニンヌクレオチド、 ポリヒスチジンペプチド Zニッケルあるいはコバ ルト等の金属イオン、 グルタチオン一 S—トランスフェラーゼ Zダル夕チオン、 D NA結合タンパク質 /DNA、 抗体 Z抗原分子 (ェピ卜一プ)、 カルモジュリン/力 ルモジユリン結合ペプチド、 ATP結合タンパク質 ZATP、 あるいはェストラジオ —ル受容体タンパク質/エス卜ラジオ一ルなどの、 各種受容体タンパク質 Zその リガンドなどが挙げられる。 これらの中で、 固相結合部位ノ固相結合部位認識部 位の組合せとしては、 アビジン及びストレプトアビジンなどのピオチン結合タン パク質、 マルトース結合タンパク質/マルトース、 ポリヒスチジンペプチドノ二 ッケルあるいはコバルト等の金属イオン、 ダル夕チオン一 S—卜ランスフェラー ゼ /ダル夕チオン、 抗体ノ抗原分子(ェピトープ)などが好ましく、 特にストレブ トァピジン Zピオチンの組合せが最も好ましい。 The immobilization means of the mRNA-PM conjugate of the present invention is not particularly limited as long as the mRNA is immobilized on a solid phase so as not to hinder translation when the mRNA comes into contact with the translation system. Normally, a solid phase binding site is provided in the spacer connecting the mRNA and the PM, and the solid phase binding site is connected to the solid phase by a `` solid phase binding site recognition site '', and the mRNA is bound to the solid phase binding site. Immobilize PM conjugate on solid phase. The solid phase binding site is not particularly limited as long as it can bind the mRNA_PM conjugate to a desired solid phase. For example, a molecule (eg, a ligand, an antibody, etc.) that specifically binds to a specific polypeptide is used as such a solid phase binding site, and in this case, the solid phase surface has a solid phase binding site recognition site. In particular, a specific polypeptide that binds to the molecule is bound. Solid phase binding site Z Solid phase binding site Recognition site Examples of the combination of the above include, for example, a biotin-binding protein such as avidin and streptavidin, nopiotin, a maltose-binding protein Z maltose, a G protein Z guanine nucleotide, a polyhistidine peptide Z, a metal ion such as nickel or cobalt, and glutathione. S-transferase Z dalyuthione, DNA binding protein / DNA, antibody Z antigen molecule (epitope), calmodulin / force lumodiulin binding peptide, ATP binding protein ZATP, or estradio receptor protein / estradio And various receptor proteins Z and their ligands. Among these, combinations of solid-phase binding sites and solid-phase binding site recognition sites include biotin-binding proteins such as avidin and streptavidin, maltose-binding protein / maltose, polyhistidine peptide nickel or cobalt, etc. Preferred are a metal ion, dalhythion-S-transferrase / dalhythione, an antibody-antigen molecule (epitope), and most preferably a combination of streptapidine Z-biotin.
上記タンパク質の固相表面への結合は、 公知の方法を用いることができる。 そ のような公知の方法としては、 例えば、 タンニン酸、 ホルマリン、 ダルタルアル デヒド、 ピルビックアルデヒド、 ビス一ジァゾ化べンジゾン、 トルエン一 2, 4— ジイソシァネート、 アミノ基、 力ルポキシル基、 又は水酸基あるいはァミノ基な どを利用する方法を挙げることができる (P. M. Abdel la, P. K. Smi th, G. P. Royer, A New Cleavable Reagent for Cross-Linking and Revers ible Immobi l i zat ion of Prote ins, Biochem. Biophys. Res. Commun. , 87, 734 (1979)等参照)。 なお、 上記組合せは、 固相結合部位と固相結合部位認識部位とを逆転させて用 いることもできる。 上記の固定化手段は、 2つの相互に親和性を有する物質を利 用した固定化方法であるが、 固相がスチレンビーズ、 スチレン基板などのプラス チック材料であれば、 必要に応じて、 公知の手法を用いてスぺーサ一の一部を直 接それらの固相に共有結合させることもできる (Qiagen社、 LiduiChip Appl ica t ions Handbook等参照)。 なお、 本発明においては、 固定手段については上記の 方法に限定されることなく、 当業者に公知である如何なる固定手段をも利用する ことができる。 A known method can be used for binding the protein to the solid phase surface. Such known methods include, for example, tannic acid, formalin, darthal aldehyde, pyrvicaldehyde, benzodiazobis benzodizone, toluene-1,2,4-diisocyanate, amino group, carboxylic acid group, or hydroxyl group or amino. (PM Abdella, PK Smith, GP Royer, A New Cleavable Reagent for Cross-Linking and Reversible Immobi lizaion of Proteins, Biochem. Biophys. Res. Commun , 87, 734 (1979), etc.). The above combination can be used with the solid phase binding site and the solid phase binding site recognition site reversed. The above-mentioned immobilization method is an immobilization method using two substances having mutual affinity. If the solid phase is a plastic material such as styrene beads or a styrene substrate, if necessary, a publicly known method may be used. A part of the spacer can also be directly covalently bonded to the solid phase by using the method described in (1) (see Qiagen, LiduiChip Appliance Handbook, etc.). In the present invention, the fixing means is as described above. Without limitation to the method, any fixing means known to those skilled in the art can be used.
3 . タンパク質の固相固定化方法及び夕ンパク質の固相合成方法 3. Solid phase immobilization method of protein and solid phase synthesis method of protein
本発明の別の態様によれば、 タンパク質の固相固定化又は固相合成法であって、 上記 (b ) 工程の後に、 (c ) 該 mRNA-PM連結体と翻訳系とを接触させることに より (例えば、 該連結体に翻訳系を投入、 あるいは該連結体を翻訳系に投入)、 タンパク質を合成する工程を含む、 タンパク質の固相固定化又は合成法が提供さ れる。 工程 (b ) において、 mRNA- PM連結体が固相に固定されているので、 この 連結体を翻訳系に投入した際に、 前述の //? vi rus法の対応づけ技術を利 用して、 合成されたタンパク質がピューロマイシンを介して固相に固定化される のである。  According to another aspect of the present invention, there is provided a solid phase immobilization or solid phase synthesis method for a protein, wherein after the step (b), (c) contacting the mRNA-PM conjugate with a translation system (For example, introducing a translation system into the conjugate or introducing the conjugate into the translation system) provides a method for solid-phase immobilization or synthesis of a protein, comprising a step of synthesizing a protein. In step (b), the mRNA-PM conjugate is immobilized on the solid phase, and when this conjugate is introduced into the translation system, the above-mentioned //? The synthesized protein is immobilized on the solid phase via puromycin.
上記 (c ) 工程では、 mRNA-PM連結体を翻訳系と接触させることによって、 夕 ンパク質の合成を行う。 ここで用いることができる翻訳系としては、 無細胞翻訳 系又は生細胞などが挙げられる。 無細胞翻訳系としては、 原核又は真核生物の抽 出物により構成される無細胞翻訳系、 例えば大腸菌、 ゥサギ網状赤血球、 小麦胚 芽抽出物などが使用できる (Lamiroiii Grunberg-Manago M. Ambigui t ies of t rans lat ion of poly U in the rabbi t ret iculocyte system. Biochem Biophys Res Commun. 1967 27 (1) : 1-6等参照)。 生細胞翻訳系としては、 原核又は真核生 物、 例えば大腸菌の細胞などが使用できる。 本発明においては、 取り扱いの容易 さから、 無細胞系を使用することが好ましい。  In the above step (c), protein synthesis is performed by bringing the mRNA-PM conjugate into contact with the translation system. Examples of the translation system that can be used here include a cell-free translation system and living cells. As the cell-free translation system, a cell-free translation system composed of a prokaryotic or eukaryotic extract, for example, Escherichia coli, Egret reticulocytes, wheat germ extract, etc. can be used (Lamiroiii Grunberg-Manago M. Ambiguit). ies of trans lat ion of poly U in the rabbi tret iculocyte system. Biochem Biophys Res Commun. 1967 27 (1): 1-6, etc.). Prokaryotic or eukaryotic organisms, such as E. coli cells, can be used as a live cell translation system. In the present invention, it is preferable to use a cell-free system from the viewpoint of easy handling.
ここで、 図 1に基づいて、 本発明の mRNA—ピューロマイシン連結体を用いた タンパク質の固定化について簡単に説明する。 図 1 aは保存時の固定化 mRNA - PM 連結体を示す図、 図 1 bは無細胞翻訳系を投入し、 タンパク質が合成されている 状態を示す図、 図 1 cはタンパク質の合成が終了した状態を示す図である。 図 1 aに示すように、 固定化 mRNA—ピューロマイシン連結体 1は、 mRNA l aとピュ 一一口口ママイイシシンン ll bbがが、、 DDNNAAススぺぺ一一ササ一一 11 ccをを介介ししてて連連結結さされれたたももののでで、、 固固相相結結合合 部部位位 11 ddをを介介ししてて固固相相 22にに結結合合さされれてていいるる。。 固固相相 22はは、、 後後にに、、 無無細細胞胞翻翻訳訳系系をを投投 入入すするるここととをを考考慮慮ししてて容容器器のの形形状状ををししてていいるる。。 図図 ll bbにに示示すすよよううにに、、 固固定定化化 mmRRNN AA——ピピュューーロロママイイシシンン連連結結体体 11にに、、 無無細細胞胞翻翻訳訳系系 33をを投投入入すするるとと、、 mmRRNNAAとと無無細細胞胞 55 翻翻訳訳系系をを利利用用ししたた翻翻訳訳反反応応にによよっってて、、 そそのの mmRRNNAAのの核核酸酸配配列列にに対対応応すするるタタンンパパクク 質質 44がが合合成成さされれるる。。 翻翻訳訳終終了了後後はは、、 不不要要なな無無細細胞胞翻翻訳訳系系 33のの成成分分をを除除去去しし、、 タタンン パパクク質質 44ががピピュューーロロママイイシシンン 11 bbにに結結合合ししたた、、 mmRRNNAA——ピピュュ一一ロロママイイシシンン一一タタンンパパ クク質質複複合合体体がが、、 固固相相 22にに固固定定さされれたた状状態態でで形形成成さされれるる。。 ななおお、、 ここののよよううなな mmRRNNAA 一一ピピュューーロロママイイシシンン一一タタンンパパクク質質複複合合体体 ((連連結結体体)) にに、、 例例ええばば、、 標標的的物物質質をを接接触触 1100 ささせせるるここととにによよっってて、、 合合成成さされれたたタタンンパパクク質質とと結結合合しし得得るる標標的的物物質質ををススククリリ一一二二 ンンググすするるここととががででききるる。。 Here, the immobilization of a protein using the mRNA-puromycin conjugate of the present invention will be briefly described based on FIG. Figure 1a shows the immobilized mRNA-PM conjugate during storage, Figure 1b shows the cell-free translation system is inserted and the protein is being synthesized, and Figure 1c shows the completion of protein synthesis. FIG. As shown in Figure 1a, the immobilized mRNA-puromycin conjugate 1 The solid-phase phase-coupled joint was formed by connecting the 11-port Mamaishishin ll bb to the DDNNAA via a 11 cc connection. It is bound to the solid-phase phase 22 via the site 11 dd. . The solid-phase phase 22 is designed to allow for the later introduction of a cell-free cell-free translation system. It has a shape and shape. . As shown in Fig. Ll bb, solid-fixed and normalized mmRRNN AA- When the translation system 33 was introduced and introduced, it was due to the mmRRNNAA and the non-cellular cell vesicles 55 due to the translation reaction using the translation system. As a result, a protein 44 corresponding to the nuclear nucleic acid sequence of mmRRNNAA is synthesized. . After completion of the translation, the unnecessary components of the cell-free cell-free translation system 33 are removed and removed, and the protein protein 44 is released. The mmRRNNAA—Pipum-llomai-issin-tin-protein complex complex bound to the Puro-roma-maisin-shin 11 bb is a solid-solid phase It is formed in a state fixed to 22. . In addition, like the mmRRNNAA 11-pipuro-romamaiisinshin-tantan-protein complex complex ((continuously linked body)), for example, For example, the target substance may be brought into contact with the target substance by contacting with the synthetic protein, thereby forming a bond with the synthetic protein protein. The target material that is to be obtained can be created. .
44 .. mmRRNNAAチチッッププ及及びびププロロテティィンンチチッッププ 44 .. mmRRNNAA tips and prototyping tips
本本発発明明のの別別のの態態様様にによよれればば、、 上上記記ししたた固固定定化化 mmRRNNAA——ピピュューーロロママイイシシンン連連結結体体 1155 をを複複数数含含むむ mmRRNNAAチチッッププ ((mmRRNNAAママイイククロロアアレレイイ)) にに関関すするる。。 即即ちち本本発発明明はは、、 本本発発 明明のの固固定定化化 mmRRNNAA——ピピュューーロロママイイシシンン連連結結体体ををママイイククロロアアレレイイ用用基基板板にに固固定定ししてて ななるる、、 mmRRNNAAチチッッププをを提提供供すするる。。 ここのの mmRRNNAAチチッッププはは、、 上上述述ししたた mmRRNNAA--PPMM連連結結体体をを 複複数数基基板板上上にに固固定定化化ししたたももののででああるる。。 ななおお、、 上上記記 「「複複数数」」 ととはは、、 特特ににそそのの上上限限のの 値値はは制制限限さされれるるももののででははなないいがが、、
Figure imgf000017_0001
According to another aspect of the present invention, there is provided a solid-fixed stabilized mmRRNNAA as described above, wherein The mmRRNNAA tip ((mmRRNNAA Mamayik chloroa alley)), which contains a plurality of . In other words, the invention of the present invention is a fixed solidification of the invention of the present invention. MmRRNNAA—Pipuro-Romamaiisin Provide the mmRRNNAA chip, which is fixed and fixed to the base substrate plate for use. . The mmRRNNAA chip here is obtained by solidifying and stabilizing the mmRRNNAA-PPMM linked body described above on a plurality of base plates. . . It should be noted that the above-mentioned "multiple number" means that the value of the upper and lower limits is restricted, especially in particular. Good, but
Figure imgf000017_0001
20 に固定可能な実用的な数を指す。 この mRNAチップを翻訳系に投入することによ り、 あるいは、 翻訳系を mRNAチップに投入することにより、 上述のタンパク質 合成がチップ上で起こり、 各タンパク質が固相に結合した、 いわゆるプロテイン チップが作製される。 このようにして作製されるプロテインチップもまた、 本発 明に含まれる。  A practical number that can be fixed to 20. By introducing this mRNA chip into the translation system, or by introducing the translation system into the mRNA chip, the protein synthesis described above occurs on the chip, and a so-called protein chip in which each protein is bound to a solid phase is obtained. It is made. Protein chips produced in this manner are also included in the present invention.
25 本発明の mRNAチップにおいては、 機能既知のタンパク質をコードする mRNA複 数を、 mRNA- PM連結体として固相に固定してもよいし、 機能未知のタンパク質を コードする mRNA複数を mRNA—ピューロマイシン連結体として固相に固定しても よい。 例えば、 疾病に関与する機能既知のタンパク質をコードする mRNAを複数 チップに固定する場合は、 例えば、 疾病の診断用 mRNAチップ、 タンパク質相互 作用解析用 mRNAチップ等とすることができる。 診断用チップとして用いる場合 は、 ある特定の疾病の診断マ一力一と結合するタンパク質をコードする mRNAを それぞれプレー卜の所定の位置に固定しておく。 そして、 診断を行う直前にこの プレートに無細胞翻訳系を投入して、 プレート上の所定の位置に所望の診断マー カーと結合するタンパク質を合成し、 固定する。 このようにすれば、 診断の直前 にプロテインチップを作製することができる。 プロテインチップは、 その保存上 あるいは取り扱い上に問題がある。 不安定なプロテインの代わりに安定な mRNA の形でチップ化した点は、 本発明の特徴の一つと言える。 ゆえに、 mRNAの固相 固定化及びタンパク質の合成 ·固定化以外の技術 (例えば、 使用するプレートの 材料 'サイズ、 使用するプロテインの種類 '配置、 プロテインチップを用いた夕 ンパク質の機能解析方法等) は、 公知のプロテインチップの技術をそのまま利用 することができる (Kukar T, Eckenrode S, Gu Y, Lian W, Megginson M, She J X, Wu D. Prote in microarrays to detect prote in-prote in interact ions us in g red and green f luorescent prote ins. Anal Biochem. 2002 : 306 (1) : 50 - 4等 参照)。 なお、 上記 mRNAビーズ又は上記 mRNAチップと無細胞翻訳系を含む診断 キット、 あるいは、 タンパク質相互作用解析用キットも本発明の範囲内である。 このような mRNAチップを用いることによって、 タンパク質一タンパク質相互作 用、 DNA—タンパク質相互作用、 リガンドの探索、 疾病マ一カーの探索、 疾病の 診断、 薬効評価、 薬物動態の評価などに利用することができる。 25 In the mRNA chip of the present invention, a plurality of mRNAs encoding proteins with known functions may be immobilized on a solid phase as mRNA-PM conjugates, A plurality of encoded mRNAs may be immobilized on a solid phase as mRNA-puromycin conjugate. For example, when mRNA encoding a protein with a known function involved in a disease is immobilized on a plurality of chips, for example, an mRNA chip for diagnosing a disease, an mRNA chip for protein interaction analysis, or the like can be used. When used as a diagnostic chip, mRNA encoding a protein that binds to the diagnosis of a particular disease is fixed to a predetermined position on each plate. A cell-free translation system is put into this plate immediately before diagnosis, and a protein that binds to a desired diagnostic marker is synthesized and fixed at a predetermined position on the plate. In this way, a protein chip can be prepared immediately before diagnosis. Protein chips have problems in storage or handling. One of the features of the present invention is that the chip is formed in the form of a stable mRNA instead of an unstable protein. Therefore, techniques other than solid-phase immobilization of mRNA and protein synthesis / immobilization (for example, material of plate to be used, size of protein to be used, arrangement, protein function analysis method using protein chip, etc.) ) Can use the known protein chip technology as it is (Kukar T, Eckenrode S, Gu Y, Lian W, Megginson M, She JX, Wu D. Prote in microarrays to detect prote in-prote in interact ions) us in g red and green fluorescent prote ins. Anal Biochem. 2002: 306 (1): 50-4 etc.). Note that a diagnostic kit including the above-described mRNA beads or the above-described mRNA chip and a cell-free translation system, or a kit for analyzing protein interaction is also within the scope of the present invention. By using such an mRNA chip, it can be used for protein-protein interaction, DNA-protein interaction, ligand search, disease marker search, disease diagnosis, drug efficacy evaluation, pharmacokinetic evaluation, etc. Can be.
また、 本発明の固定化 mRNA—ピューロマイシン連結体を翻訳系と接触させる ことによつて合成されるタンパク質が、 上記連結体へ付加された構造からなる連 結体 (「固定化 mRNA—ピューロマイシン—タンパク質連結体」 と記載する) も、 本発明に含まれる。 即ち本発明は、 本発明の 「固定化 mRNA—ピューロマイシン 連結体」 を翻訳系へ供して合成される該 mRNAの翻訳産物のタンパク質 (ポリべ プチド) が、 該連結体におけるピューロマイシン又はピューロマイシン様化合物 を介して連結してなる、 固定化 mRNA—ピューロマイシン一タンパク質連結体に 関する。 該連結体は、 例えば、 後述の 「タンパク質と標的分子との相互作用を解 析する方法」 に好適に用いることができる。 また上記連結体の一つの態様として は、 上述のように、 固定化 mRNA—ピューロマイシン—タンパク質連結体がマイ クロアレイ用基板へ固定された構造のプロテインチップを例示することができる。 また本発明の好ましい態様においては、 上記 「固定化 mRNA—ピューロマイシ ンータンパク質連結体」 を、 逆転写反応系へ供する (逆転写反応系と接触させ る) ことにより、 該 mRNAの逆転写産物である相補的 DNA (該 mRNAとハイブリダ ィズする DNA) を合成することが可能である。 例えば、 本発明の上記スぺ一サ一 として、 mRNAの 3'末端配列と相補的な配列を含む DNAスぺ一サーを用いる場合、 該相補的な配列が該 mRNAの逆転写反応においてプライマーとして機能すること が期待される。 即ち、 該 mRNA—ピューロマイシン—タンパク質連結体を逆転写 反応系へ供することにより、 該プライマ一を合成起点とする DNA合成反応が開始 され、 該 mRNAと相補的な配列からなる DNAが合成される。 このようにして合成 される DNAを含む連結体 (「DNA—ピューロマイシン一タンパク質連結体」 と記載 する) もまた、 本発明に含まれる。 即ち本発明は、 本発明の 「固定化 mRNA—ピ ユーロマイシン—タンパク質連結体」 を、 逆転写反応系へ供して合成される該 m RNAの相補的 DNAが、 該連結体と結合してなる、 固定化 DNA—ピューロマイシン 一タンパク質連結体を提供する。 Further, a protein synthesized by bringing the immobilized mRNA-puromycin conjugate of the present invention into contact with a translation system is converted to a conjugate having a structure added to the above conjugate (“immobilized mRNA-puromycin”). —Protein conjugate ”) is also included in the present invention. That is, the present invention relates to the “immobilized mRNA-puromycin” of the present invention. Immobilized mRNA-puro, wherein a protein (polypeptide) of a translation product of the mRNA synthesized by providing the “conjugate” to a translation system is linked via puromycin or a puromycin-like compound in the conjugate. Related to mycin-protein conjugate. The conjugate can be suitably used, for example, in the “method for analyzing the interaction between a protein and a target molecule” described below. As one embodiment of the above-mentioned conjugate, a protein chip having a structure in which an immobilized mRNA-puromycin-protein conjugate is fixed to a microarray substrate as described above can be exemplified. In a preferred embodiment of the present invention, the above “immobilized mRNA-puromycin-protein conjugate” is subjected to a reverse transcription reaction system (contacted with the reverse transcription reaction system) to obtain a reverse transcription product of the mRNA. It is possible to synthesize a certain complementary DNA (a DNA that hybridizes with the mRNA). For example, when a DNA spacer containing a sequence complementary to the 3 ′ terminal sequence of mRNA is used as the above-mentioned spacer of the present invention, the complementary sequence serves as a primer in a reverse transcription reaction of the mRNA. It is expected to work. That is, by providing the mRNA-puromycin-protein conjugate to a reverse transcription reaction system, a DNA synthesis reaction using the primer as a synthesis starting point is started, and a DNA having a sequence complementary to the mRNA is synthesized. . A conjugate containing DNA synthesized in this manner (described as “DNA-puromycin-protein conjugate”) is also included in the present invention. That is, the present invention relates to a method wherein the “immobilized mRNA-pieuromycin-protein conjugate” of the present invention is subjected to a reverse transcription reaction system, and a complementary DNA of the mRNA is bound to the conjugate. An immobilized DNA-puromycin-protein conjugate is provided.
本発明の上記連結体においてピューロマイシンと連結される核酸分子は、 通常、 mRNAと該 mRNAの相補的 DNAとの二本鎖核酸分子であるが、 当該核酸分子におけ る mRNA は、 その後のヌクレア一ゼ反応等によって消化されていてもよい。 即ち、 —本鎖の (mRNAと相補的) DNA分子がピューロマイシンと連結された構造からな る 「固定化 DNA—ピューロマイシン一タンパク質連結体」 もまた、 本発明の連結 体の一つの態様である。 さらに、 本発明の上記連結体において、 ピューロマイシ ンと連結される核酸分子は、 該 DNAと相補性を有する DNAからなる二本鎖 DNAで あってもよい。 The nucleic acid molecule linked to puromycin in the above-described conjugate of the present invention is usually a double-stranded nucleic acid molecule of mRNA and a complementary DNA of the mRNA, but the mRNA in the nucleic acid molecule is subsequently nucleated. It may be digested by a reaction such as zeolitic reaction. That is, the “immobilized DNA-puromycin-protein conjugate” comprising a structure in which a single-stranded (complementary to mRNA) DNA molecule is linked to puromycin is also a linking agent of the present invention. One embodiment of the body. Furthermore, in the above-described conjugate of the present invention, the nucleic acid molecule linked to puromycin may be a double-stranded DNA consisting of a DNA having complementarity with the DNA.
なお、 本発明において 「逆転写反応系」 とは、 mRNAを鍀型として DNAを合成 する所謂 「逆転写」 を司る反応系をいい、 当該反応系は通常、 逆転写酵素を含有 する。 本発明の逆転写反応は、 当業者においては、 適宜実施することが可能であ る。 より具体的には、 後述の実施例に記載の方法により行うことができる。  In the present invention, the “reverse transcription reaction system” refers to a reaction system that controls so-called “reverse transcription” for synthesizing DNA using mRNA as type II, and the reaction system usually contains a reverse transcriptase. Those skilled in the art can appropriately carry out the reverse transcription reaction of the present invention. More specifically, it can be carried out by the method described in Examples described later.
5 . タンパク質と分子との相互作用を解析する方法 5. How to analyze the interaction between protein and molecule
本発明の別の態様によれば、 上記した mRNA- PM連結体を用いたタンパク質と分 子との相互作用を解析する方法が提供される。 この解析方法は、  According to another aspect of the present invention, there is provided a method for analyzing an interaction between a protein and a molecule using the above-described mRNA-PM conjugate. This analysis method
( a ) 一以上の本発明の固定化 mRNA—ピューロマイシン連結体を、 翻訳系に投 入し、 固相上でタンパク質を合成する工程;  (a) introducing one or more of the immobilized mRNA-puromycin conjugates of the present invention into a translation system to synthesize a protein on a solid phase;
( b ) 工程 (a ) において合成されたタンパク質と一以上の標的物質とを接触さ せる工程;及び  (b) contacting the protein synthesized in step (a) with one or more target substances; and
( c ) 該タンパク質と該標的物質とが相互作用しているか否かを測定する工程 を含む。  (c) determining whether the protein and the target substance interact with each other.
この解析方法は、 例えば、 (i)配列既知のタンパク質に作用する物質をスクリ 一二ングする場合、 (i i)ある特定の物質 (例えば、 リガンド) が結合する配列未' 知のタンパク質をスクリーニングする場合等に用いることができる。 例えば、 (i)の場合は、 配列既知のタンパク質 (例えばォーファンレセプタータンパク 質) をコードする核酸配列を有する mRNAとピューロマイシンとの連結体を複数 用意しておき (すなわち、 複数のォーファンレセプタータンパク質に対応する m RNAをそれぞれ有する mRNA-PM連結体を複数用意)、 これを翻訳系に投入する。 すると、 各 mRNA- PM連結体の mRNAから複数のォーファンレセプタータンパク質 が合成される。 各ォーファンレセプタータンパク質は、 固相に固定された mRNA- PM連結体のピューロマイシンに C末端が結合することによって固定される。 必 要に応じて、 不要な成分を洗浄除去し、 これに標的物質及びバッファ一等を加え て、 標的物質をォ一ファンレセプ夕一タンパク質に結合させることによって、 結 合実験を行う。 (i i)の場合は、 例えば、 ある遺伝子ライブラリ一から複数の mRN Aを取得し、 複数の mRNAとピューロマイシンとの連結体を作成し、 固相に固定 する。 以下、 同様にタンパク質の合成を行い、 標的物質をそのタンパク質に接触 させて結合実験を行う。 This analysis method includes, for example, (i) when screening for a substance that acts on a protein whose sequence is known, (ii) screening for a protein whose sequence is unknown to which a specific substance (for example, a ligand) binds. It can be used in such cases. For example, in the case of (i), a plurality of conjugates of puromycin and mRNA having a nucleic acid sequence encoding a protein having a known sequence (for example, orphan receptor protein) are prepared (that is, a plurality of conjugates are prepared). Prepare a plurality of mRNA-PM conjugates each having mRNA corresponding to the fan receptor protein), and put them into the translation system. Then, a plurality of orphan receptor proteins are synthesized from the mRNA of each mRNA-PM conjugate. Each orphan receptor protein is composed of mRNA- It is immobilized by attaching the C-terminus to puromycin of the PM conjugate. If necessary, perform a binding experiment by washing and removing unnecessary components, adding a target substance and a buffer to the target substance, and binding the target substance to the protein receptor. In the case of (ii), for example, a plurality of mRNAs are obtained from one gene library, a conjugate of a plurality of mRNAs and puromycin is prepared, and immobilized on a solid phase. Hereinafter, a protein is synthesized in the same manner, and a binding experiment is performed by bringing a target substance into contact with the protein.
上記工程 (b ) においては、 工程 (a ) において合成されたタンパク質とー以 上の標的物質とを接触させる。 ここで用いられる 「標的物質」 とは、 本発明にお いて合成されるタンパク質と相互作用するか否か調べるための物質を意味し、 具 体的にはタンパク質、 核酸、 糖鎖、 低分子化合物などが挙げられる。  In the step (b), the protein synthesized in the step (a) is brought into contact with the target substance described above. As used herein, the term “target substance” refers to a substance for examining whether or not it interacts with the protein synthesized in the present invention, and specifically includes proteins, nucleic acids, sugar chains, and low-molecular compounds. And the like.
タンパク質としては、 特に制限はなく、 タンパク質の全長であっても結合活性 部位を含む部分ペプチドでもよい。 またアミノ酸配列、 及びその機能が既知の夕 ンパク質でも、 未知のタンパク質でもよい。 これらは、 合成されたペプチド鎖、 生体より精製されたタンパク質、 あるいは cDNAライブラリ一等から適当な翻訳 系を用いて翻訳し、 精製したタンパク質等でも標的分子として用いることができ る。 合成されたペプチド鎖はこれに糖鎖が結合した糖タンパク質であってもよい。 これらのうち好ましくはアミノ酸配列が既知の精製されたタンパク質か、 あるい は cDNAライブラリ一等から適当な方法を用いて翻訳、 精製されたタンパク質を 用いることができる。  The protein is not particularly limited, and may be a full-length protein or a partial peptide containing a binding active site. The protein may be a protein whose amino acid sequence and function are known, or may be an unknown protein. These can be used as target molecules even with a synthesized peptide chain, a protein purified from a living body, or translated from a cDNA library or the like using an appropriate translation system, and a purified protein or the like can be used as a target molecule. The synthesized peptide chain may be a glycoprotein having a sugar chain bonded thereto. Among these, preferably, a purified protein having a known amino acid sequence, or a protein translated and purified from a cDNA library or the like using an appropriate method can be used.
核酸としては、 特に制限されることはなく、 DNAあるいは RNAも用いることが できる。 また、 塩基配列あるいは機能が既知の核酸でも、 未知の核酸でもよい。 好ましくは、 タンパク質に結合能力を有する核酸としての機能、 及び塩基配列が 既知のものか、 あるいはゲノムライブラリ一等から制限酵素等を用いて切断単離 してきたものを用いることができる。  The nucleic acid is not particularly limited, and DNA or RNA can also be used. Further, the nucleic acid may have a known nucleotide sequence or function, or may have an unknown nucleic acid. Preferably, those having a known function as a nucleic acid capable of binding to a protein and having a known nucleotide sequence, or those which have been cut and isolated from a genomic library or the like using a restriction enzyme or the like can be used.
糖鎖としては、 特に制限はなく、 その糖配列あるいは機能が、 既知の糖鎖でも 未知の糖鎖でもよい。 好ましくは、 既に分離解析され、 糖配列あるいは機能が既 知の糖鎖が用いられる。 There is no particular limitation on the sugar chain, and even if the sugar sequence or function is a known sugar chain. An unknown sugar chain may be used. Preferably, a sugar chain which has already been separated and analyzed and whose sugar sequence or function is known is used.
低分子化合物としては、 特に制限されず、 機能が未知のものでも、 あるいはタ ンパク質に結合する能力が既に知られているものでも用いることができる。 なお、 これら標的物質とタンパク質との 「相互作用」 とは、 通常は、 タンパク 質と標的分子間の共有結合、 疎水結合、 水素結合、 ファンデルワールス結合、 及 び静電力による結合のうち少なくとも 1つから生じる分子間に働く力による作用 を示すが、 この用語は最も広義に解釈すべきであり、 いかなる意味においても限 定的に解釈してはならない。 共有結合としては、 配位結合、 双極子結合を含有す る。 また静電力による結合とは、 静電結合の他、 電気的反発も含有する。 また、 上記作用の結果生じる結合反応、 合成反応、 分解反応も相互作用に含有される。 相互作用の具体例としては、 抗原と抗体間の結合及び解離、 タンパク質レセプタ 一とリガンドの間の結合及び解離、 接着分子と相手方分子の間の結合及び解離、 酵素と基質の間の結合及び解離、 核酸とそれに結合するタンパク質の間の結合及 び解離、 情報伝達系におけるタンパク質同士の間の結合と解離、 糖タンパク質と タンパク質との間の結合及び解離、 あるいは糖鎖とタンパク質との間の結合及び 解離が挙げられる。  The low-molecular compound is not particularly limited and may be a compound having an unknown function or a compound having a known ability to bind to a protein. The “interaction” between the target substance and the protein is usually defined as at least one of a covalent bond, a hydrophobic bond, a hydrogen bond, a van der Waals bond, and an electrostatic force bond between the protein and the target molecule. It refers to the action of the forces acting between the molecules resulting from each other, but this term should be interpreted in the broadest sense and not in any way limited. The covalent bond includes a coordinate bond and a dipole bond. The coupling by electrostatic force includes not only electrostatic coupling but also electric repulsion. The interaction also includes a binding reaction, a synthesis reaction, and a decomposition reaction resulting from the above action. Specific examples of the interaction include binding and dissociation between an antigen and an antibody, binding and dissociation between a protein receptor and a ligand, binding and dissociation between an adhesion molecule and a partner molecule, and binding and dissociation between an enzyme and a substrate. Binding and dissociation between nucleic acids and proteins that bind to them, binding and dissociation between proteins in the signal transduction system, binding and dissociation between glycoproteins and proteins, or binding between sugar chains and proteins And dissociation.
ここで用いられる標的物質は、 必要に応じて標識物質により標識して用いるこ とができる。 必要に応じて標識物質を結合させることによって標識することがで きる。 そのような標識物質は、 蛍光性物質、 放射性標識物質などから適宜選択さ れる。 蛍光物質としては、 フリーの官能基 (例えば活性エステルに変換可能な力 ルポキシル基、 ホスホアミダイドに変換可能な水酸基、 あるいはアミノ基など) を持ち、 標的物質に連結可能な種々の蛍光色素を用いることができる。 適当な標 識物質としては、 例えばフルォレスセインイソチオシァネート、 フィコピリタン パク、 希土類金属キレート、 ダンシルク口ライド若しくはテトラメチルローダミ ンイソチオシァネート等の蛍光物質; ¾、 " 1MI若しくは1311等の放射性同位 体などが挙げられる。 これらの標識物質は、 標的物質と固定化タンパク質との間 の相互作用に基づいて発生される信号の変化の測定又は解析方法に適したものが 適宜用いられる。 上記標識物質の標的物質への結合は、 公知の手法に基づいて行 うことができる。 The target substance used here can be labeled with a labeling substance as necessary. Labeling can be performed by binding a labeling substance as necessary. Such a labeling substance is appropriately selected from a fluorescent substance, a radioactive labeling substance and the like. As the fluorescent substance, it is possible to use various fluorescent dyes which have a free functional group (for example, a hydroxyl group which can be converted into an active ester, a hydroxyl group which can be converted into a phosphoramidide, or an amino group) and can be linked to a target substance. it can. Suitable labeling substances include, for example, fluorescent substances such as fluorescein isothiocyanate, phycopyriprotein, rare earth metal chelates, dansyl chloride or tetramethylrhodamine isothiocyanate; ¾, “ 1M I or 131 1st radioisotope Body and the like. As these labeling substances, those suitable for a method for measuring or analyzing a change in signal generated based on the interaction between the target substance and the immobilized protein are appropriately used. The binding of the labeling substance to the target substance can be performed based on a known technique.
次いで、 本解析方法によれば、 工程 (c ) において、 該タンパク質と該標的物 質とが相互作用しているか否かを測定する。 該タンパク質と該標的物質とが相互 作用しているか否かの測定は、 両分子間の相互作用に基づいて発生される信号の 変化を測定、 検出することにより行う。 そのような測定手法としては、 例えば、 表面プラズモン共鳴法 (Cul len, D. C. , et al. , Biosensors, 3 (4) , 211-225 (1 987-88) )、 エバネッセント場分子イメージング法 (Funatsu, T., et al. , Natur e, 374, 555-559 (1995) ) , 蛍光イメージングアナライズ法、 固相酵素免疫検定法 (Enzyme Linked Immunosorbent Assay (EL ISA) : Crowther, J. R. , Methods in Molecular Biology, 42 (1995) ) , 蛍光偏光解消法 (Perran, J. , et al. , J. Ph ys. Rad. , 1, 390-401 (1926) 及び蛍光相関分光法 (Fluorescence Correl at io n Spectroscopy (FCS) : Eigen, M. , et al. , Pro Nat l. Acad. Sci. USA, 91- 5740-5747 (1994) ) 等が挙げられる。  Next, according to the present analysis method, in the step (c), it is measured whether or not the protein and the target substance interact. The measurement of whether or not the protein and the target substance are interacting is performed by measuring and detecting a change in a signal generated based on the interaction between the two molecules. Examples of such measurement methods include surface plasmon resonance (Cullen, DC, et al., Biosensors, 3 (4), 211-225 (187-88)), evanescent field molecular imaging (Funatsu, T., et al., Nature, 374, 555-559 (1995)), Fluorescence imaging analysis, Enzyme Linked Immunosorbent Assay (ELISA): Crowther, JR, Methods in Molecular Biology, 42 (1995)), fluorescence depolarization (Perran, J., et al., J. Ph ys. Rad., 1, 390-401 (1926)) and fluorescence correlation spectroscopy (Fluorescence Correl at ion Spectroscopy (FCS ): Eigen, M., et al., Pro Natl. Acad. Sci. USA, 91-5740-5747 (1994)).
本発明の解析方法においては、 必要に応じて、 さらに、 工程 (c ) において相 互作用していると判断されたタンパク質—標的物質結合体中の、 タンパク質及び /又は標的物質を同定する。 タンパク質の同定は、 通常のアミノ酸配列シークェ ンサ一で行うこともできるし、 該タンパク質に結合している mRNAから MAを逆 転写し、 得られた DNAの塩基配列を解析することによって行うこともできる。 標 的物質の同定は、 NMR、 IR、 各種質量分析などによって行うことができる。 なお、 本発明の mRNAチップ及びプロティンチップを用いて、 タンパク質一タンパク質 間相互作用を解析する場合は、 通常のプロテインチップ上のサンプル解析と同様 に、 飛行時間型質量分析計 (MALDI- TOF MS) を用いることができる。  In the analysis method of the present invention, if necessary, the protein and / or the target substance in the protein-target substance conjugate determined to have an interaction in the step (c) are identified. The protein can be identified using a normal amino acid sequencer or by reverse transcription of MA from mRNA bound to the protein and analyzing the nucleotide sequence of the obtained DNA. . Identification of the target substance can be performed by NMR, IR, various types of mass spectrometry, and the like. When analyzing the protein-protein interaction using the mRNA chip and the protein chip of the present invention, the time-of-flight mass spectrometer (MALDI-TOF MS) can be used in the same manner as in the analysis of a sample on a normal protein chip. Can be used.
また本発明の上記方法は、 上記工程 (a ) に続いて、 工程 (a ) において合成 される mRNA—ピューロマイシン一タンパク質連結体を逆転写反応系へ供するこ とにより、 該連結体における mRNAと相補的な DNAを含有する連結体 (DNA—ピュ 一口マイシン一タンパク質連結体) を作製し、 上述のその後の工程を実施させて もよい。 即ち本発明の好ましい態様においては、 以下の工程を含むタンパク質と 分子との相互作用を解析する方法を提供する。 The method of the present invention further comprises the step of: synthesizing the step (a) following the step (a). By providing the mRNA-puromycin-protein conjugate to the reverse transcription reaction system, a conjugate containing DNA complementary to the mRNA in the conjugate (DNA-puromycin-protein conjugate) is prepared. However, the subsequent steps described above may be performed. That is, a preferred embodiment of the present invention provides a method for analyzing the interaction between a protein and a molecule, comprising the following steps.
( a )—以上の、 本発明のいずれかに記載の固定化 mRNA—ピューロマイシン連結 体と、 翻訳系とを接触させて、 固相上でタンパク質を合成する工程; (a) —contacting the immobilized mRNA-puromycin conjugate according to any of the present invention with a translation system to synthesize a protein on a solid phase;
(b )工程(a )において合成された mRNA—ピューロマイシン一タンパク質連結体 と、 逆転写反応系とを接触させて、 DNA—ピューロマイシン—タンパク質連 結体を調製する工程; (b) contacting the mRNA-puromycin-protein conjugate synthesized in step (a) with a reverse transcription reaction system to prepare a DNA-puromycin-protein conjugate;
( c )工程( b )において調製された DNA—ピューロマイシン一タンパク質連結体と 一以上の標的物質とを接触させる工程;及び  (c) contacting the DNA-puromycin-protein conjugate prepared in step (b) with one or more target substances; and
( d )該連結体におけるタンパク質と該標的物質とが相互作用しているか否かを測 定する工程; 図面の簡単な説明  (d) a step of measuring whether or not the protein in the conjugate interacts with the target substance;
図 1は、 本発明の固定 mRNA—ピューロマイシン連結体を用いてタンパク質を 合成 ·固定化する方法を示す概略図である。  FIG. 1 is a schematic diagram showing a method for synthesizing and immobilizing a protein using the immobilized mRNA-puromycin conjugate of the present invention.
図 2は、 実施例 1及び 2で使用した 種類の遺伝子を示す図である。  FIG. 2 is a diagram showing the types of genes used in Examples 1 and 2.
図 3は、 ProteinA B_domainまたは GFPの mRNAへ、 ピューロマシン付きスぺ ーサー DNAを共有結合させたものの概略図を示す図である。  FIG. 3 is a diagram showing a schematic diagram of a protein A B_domain or GFP mRNA to which a spacer DNA with a puromachine is covalently bound.
図 4は、 実施例 1における SDS-PAGEの結果を示す写真である。  FIG. 4 is a photograph showing the result of SDS-PAGE in Example 1.
図 5は、 実施例 2において、 ビーズの上で翻訳させた GFPの蛍光を顕微鏡下で 観察した写真である。  FIG. 5 is a photograph obtained by observing the fluorescence of GFP translated on the beads in Example 2 under a microscope.
〔符号の説明〕  [Explanation of symbols]
1 :固定化 mRNA—ピュ一ロマイシン連結体、 1 a : mRNA, 1 b :ピュー Πマイシン、 1 c : DNAスぺーサ一、 1: Immobilized mRNA-puromycin conjugate, 1a: mRNA, 1b: puromycin, 1c: DNA spacer,
1 d :固相結合部位、 2 :固相、 3 :無細胞翻訳系、 1 d: solid phase binding site, 2: solid phase, 3: cell-free translation system,
4 :タンパク質。 発明を実施するための最良の形態 4: Protein. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例に基づいてより具体的に説明する。 なお、 本発明はこれ らの実施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically based on examples. Note that the present invention is not limited to these examples.
〔実施例 1〕  (Example 1)
1. スぺーサー BioLoop- Puro (以下 "PM付きスぺーサー DNA" と略す) の合成 Puro-F-S [配列; 5' - (S) -TC (F) - (Specl8) - (Specl8) - (Specl8) - (Specl8) -CC- (P uro)- 3'、 BEX社より購入] lOnmolを、 100 x 1の 50mMリン酸バッファー (pH7. 1. Synthesis of spacer BioLoop-Puro (hereinafter abbreviated as "spacer DNA with PM") Puro-FS [Sequence; 5 '-(S) -TC (F)-(Specl8)-(Specl8)-( Specl8)-(Specl8) -CC- (Puro) -3 ', purchased from BEX] lOnmol, 100x1 50mM phosphate buffer (pH7.
0) に溶かし、 lOOmM TCEPを 加え (final lmM)、 室温で 6時間放置し、 Pur o-F-Sの Thiolを還元した。 架橋反応を行う直前に 50 リン酸バッファー (pH7.0), added lOOmM TCEP (final lmM), and allowed to stand at room temperature for 6 hours to reduce Thio of Puro-F-S. Immediately before performing the crosslinking reaction, add 50 phosphate buffer (pH 7.
0) で平衡化した NAP5 (アマシャム、 17-0853-02) を用いて TCEP (Tris (2-carbo xyethyDphosphine hydrochloride) を除いた。 なお、 Puro- F- Sの配列中、 (S) は 5, -Thio卜 Modifier C6、 (F)は Fluorescein_dT、 (Puro) は Puromycin CPG、TCEP (Tris (2-carbo xyethyDphosphine hydrochloride)) was removed using NAP5 (Amersham, 17-0853-02) equilibrated in (0), where (S) was 5, 5 in the Puro-FS sequence. -Thiot Modifier C6, (F) is Fluorescein_dT, (Puro) is Puromycin CPG,
Spacerl8は Glen Research Search社製のスぺ一サ一 (18-0-Dimethoxytritylhe xaethyleneglycol, 1- [ (2-cyanoet yl) - (N, N-diisopropyl) ] -phosphoramidite) で次の化学構造を有する。 Spacerl8 is a product (18-0-dimethoxytritylhexaethyleneglycol, 1-[(2-cyanoetyl)-(N, N-diisopropyl)]-phosphoramidite) manufactured by Glen Research Search and has the following chemical structure.
〔化 5〕  (Chemical 5)
DMTO-(CH2)2-0-[(CH2)2-0]4-(CH2)2-0  DMTO- (CH2) 2-0-[(CH2) 2-0] 4- (CH2) 2-0
(Pr)2N-P-OCH2CH2CN  (Pr) 2N-P-OCH2CH2CN
0.2Mリン酸バッファー (pH7.0) 100 lに、 500pmol/ il Biotin-loop [ (56me r) 配列; 5'-CCCGG TGCAG CTGTT TCATC (T-B) CGGA AACAG CTGCA CCCCC CGCCG CC CCC CG(T) CCT-3' (配列番号 1、 BEX社より購入) , (Τ) : Amino- Modifier C6 dT, (T-B) : Biotin-dT (アンダーラインは制限酵素 PvuII のサイトを示す) ]20 1、 lOOmM架橋剤 EMCS (344-05051; 6-Male imidohexanoic acid N-hydroxysucc inide ester, Doj indo社製) 20 z l、 を加え、 良く攪拌した後、 37°Cで 30分放置した 後に、 未反応の EMCSを取り除いた。 沈殿を減圧下で乾燥させた後、 0. 2Mリン酸 バッファ一 (PH7. 0) 10 i lに溶かし、 上記の還元した Puro-F-S (〜10nmol) を 加えて 4°Cで一晩放置した。 サンプルに最終で 4mMになるように TCEPを加え室 温で 15分放置した後、 未反応の Puro- F- Sをエタノール沈殿で取り除き、 未反応 の Biot in- loopを取り除くために以下の条件で HPLC精製を行った。 In 100 l of 0.2 M phosphate buffer (pH7.0), 500 pmol / il Biotin-loop [(56mer) sequence; 5'-CCCGG TGCAG CTGTT TCATC (TB) CGGA AACAG CTGCA CCCCC CGCCG CC CCC CG (T) CCT- 3 '(SEQ ID NO: 1, purchased from BEX), (Τ): Amino-Modifier C6 dT, (TB): Biotin-dT (Underline indicates the site of restriction enzyme PvuII)] 20 1, Add 20 zl of lOOmM cross-linking agent EMCS (344-05051; 6-Male imidohexanoic acid N-hydroxysucc inide ester, Doj indo), stir well, leave at 37 ° C for 30 minutes, and then unreact EMCS Was removed. After the precipitate was dried under reduced pressure, it was dissolved in 10 il of 0.2 M phosphate buffer (PH 7.0), and the reduced Puro-FS (〜10 nmol) described above was added thereto, and the mixture was allowed to stand at 4 ° C. overnight. After TCEP was added to the sample to a final concentration of 4 mM and left at room temperature for 15 minutes, unreacted Puro-FS was removed by ethanol precipitation, and the following conditions were used to remove unreacted Biotin loop. HPLC purification was performed.
カラム; nacalai tesque CS0M0SIL 37918-31 10x250匪 C18-AR-300 (Waters) BuiferA; 0. 1M TEAA、 Buf ferB; 80%ァセトニトリル (超純水で希釈したもの) 流速; 0. 5ml/min (B¾: 15-35% 33min)  Column; nacalai tesque CS0M0SIL 37918-31 10x250 Marauder C18-AR-300 (Waters) BuiferA; 0.1 M TEAA, Buf ferB; 80% acetonitrile (diluted with ultrapure water) Flow rate: 0.5 ml / min (B¾: (15-35% 33min)
HPLCの分画は 18%アクリルアミドゲル (8M尿素、 62°C) で解析し、 目的の分 画を減圧下で乾燥させた後、 DEPC処理水で溶かして、 10pmol/ Uにした。  The HPLC fraction was analyzed on an 18% acrylamide gel (8 M urea, 62 ° C), and the target fraction was dried under reduced pressure and dissolved in DEPC-treated water to 10 pmol / U.
2 . 固相上での翻訳 (Prote in A B-domain) 2. Translation on solid phase (Prote in A B-domain)
2-1 実験に使用する遺伝子の mRNAを合成  2-1 Synthesize mRNA of gene used in experiment
5'側に T7、 Cap, オメガ配列、 Kozak配列、 3'末端に 6xヒスチジンタグをもち、 終止コドンを削った Prote inA B- domain (371bp;配列番号 2 ) 及び 5'末端に T7、 Cap、 Kozak配列をもち終止コドンを削った GFP (Green f luorescent prote in) (717bp;配列番号 3、 I to, e t al. , Biochem Biophys Res Commun. 1999 : 264 (2) : 556- 60に記載の変異体) をクローニングし使用した。 共に、 スぺーサー DNA の一部と相補的であるタグ配列 (5'側- aggacggggggcggggaaa (配列番号 4 )、 ァ ンダーラインはスぺ一サー配列と相補的な部分) を含むように設計したプライマ 一で PCR反応を行うことで、 3'末端にタグ配列をもつ DNAを得た。 PCR反応は Ta KaRa ExTaa (TakaraBio社) 1ユニットを 50 1の PCR反応液に加え、 錡型 MA は l imol加え、 下記プライマーを用い、 下記条件で行った。  ProteinA B-domain (371 bp; SEQ ID NO: 2) with T7, Cap, Omega sequence, Kozak sequence at the 5 'end, 6x histidine tag at the 3' end, and a stop codon, and T7, Cap, Mutation described in GFP (Green Fluorescent prote in) (717 bp; SEQ ID NO: 3, I to, et al., Biochem Biophys Res Commun. 1999: 264 (2): 556-60 having Kozak sequence and having a termination codon deleted) Was cloned and used. Both primers are designed to contain a tag sequence (5'-aggacggggggcggggaaa (SEQ ID NO: 4), which is complementary to a part of the spacer DNA, and the underline is a part complementary to the spacer sequence). By performing a PCR reaction in one step, DNA having a tag sequence at the 3 ′ end was obtained. PCR reaction was performed by adding 1 unit of Ta KaRa ExTaa (TakaraBio) to 501 PCR reaction solutions, adding im imol for 錡 type MA, and using the following primers under the following conditions.
フォーワードプライマー: GATCCCGCGAAATTAATACGACTCACTATAGGG (配列番号 5 ) リバースプライマー: TTTCCCCGCCCCCCGTCCTgcttccgccgtgatg (配列番号 6 ) Forward primer: GATCCCGCGAAATTAATACGACTCACTATAGGG (SEQ ID NO: 5) Reverse primer: TTTCCCCGCCCCCCGTCCTgcttccgccgtgatg (SEQ ID NO: 6)
[条件] 熱変性 95°C 2分の後、 熱変性 95°C 30秒、  [Conditions] After heat denaturation at 95 ° C for 2 minutes, heat denaturation at 95 ° C for 30 seconds,
アニーリング 69°C 15秒、 伸長反応 72°C 45秒  Annealing 69 ° C 15 seconds, extension reaction 72 ° C 45 seconds
のサイクルを 30回繰返し  Cycle 30 times
得られた DNAの構成を図 2に示す。 後に、 in vitro 耳 (Promega、 P1300) で mRNAを合成した。 転写は、 プロメガ社のキット付属のプロトコルに従い DNA l u g, 20 1 スケールで次のように行った。 すなわち、 37°Cで一時間放置した後、 キット付属の DNase (RQ1 DNase) を 1ユニット加え、 さらに 37°Cで 15分放置し た。 合成の際、 プロメガ社のプロトコルに従い、 m7G Cap Analog (Promega, P17 11) を加えた。 5'キャップアナログがついた mRNAは、 DNase、 フエノール ·クロ ロフオルム処理した後、 DS Primer Remover (Edge Biosystems) で精製し定量し た。  Fig. 2 shows the structure of the obtained DNA. Later, mRNA was synthesized in in vitro ears (Promega, P1300). Transcription was performed as follows on a DNA lug, 201 scale according to the protocol attached to the kit of Promega. That is, after leaving at 37 ° C for 1 hour, 1 unit of DNase (RQ1 DNase) included in the kit was added, and the mixture was further left at 37 ° C for 15 minutes. During the synthesis, m7G Cap Analog (Promega, P1711) was added according to the protocol of Promega. The mRNA with the 5 'cap analog was treated with DNase and phenol-chloroform, and then purified and quantified with DS Primer Remover (Edge Biosystems).
2-2 mRNAと PM付きスぺ一サー DNAの結合 2-2 Binding of mRNA to a spacer DNA with PM
5'キャップ及び 3'にタグ配列を持った mRNA 300pmolに、 PM付きスぺ一サ一 DN Aを 300pmol、 lOxLigat ion Buf fer (TaKaRa) 6 /x K DMS0 2. を加え 55 1 になるよう DEPC処理水を加えた。 熱湯上で 85°Cから 35°Cへ 20分かけてァニー リングし、 15uni t T4 Plynucleot ide Kinase (TaKaRa, 2. 5 l)、 lOOuni t T4 RN A Ligase (TaKaRa, 2. 5 1) を加え、 25°C45分反応させた。 サンプルを RNeasy Mini Ki t (Quiagen, 74104) で処理した後、 さらに DS Primer Removerで精製し た。  To 300 pmol of mRNA with a tag sequence at the 5 'cap and 3', add 300 pmol of a DNA with PM and lOxLigation Buf fer (TaKaRa) 6 / x K DMS0 2.Add DEPC to 55 1 Treated water was added. Anneal in hot water from 85 ° C to 35 ° C for 20 minutes, and add 15unit T4 Plynucleotide Kinase (TaKaRa, 2.5 l) and lOOunitt T4 RN A Ligase (TaKaRa, 2.5 1). The reaction was carried out at 25 ° C for 45 minutes. Samples were treated with RNeasy Mini Kit (Quiagen, 74104) and further purified with DS Primer Remover.
図 3に、 ProteinA B- domainまたは GFPの mRNAへ、 PM付きスぺ一サー MAを 共有結合させたものの概略図を示す。 図 3中、 Pはピューロマイシン、 Fは FIT (、 Bはピオチン、 ATCGuは DNA、 RNAシーケンスを示している。 大文字で示した部分 は制限酵素 PvuIIサイト (四角枠で囲った部分) を含む DNA部分、 小文字で示し た部分は mRNAで、 3' 末端側の DNAと相補鎖を形成している部分が Tag配列に結 合している。 RNAの 3'末端と DNAの 5'末端は "T4 RNA Ligase" と示した部分で ライゲートされている。 FIG. 3 shows a schematic diagram of a protein AB-domain or GFP mRNA covalently linked to a PM-attached spacer MA. In Fig. 3, P indicates puromycin, F indicates FIT (, B indicates biotin, ATCGu indicates DNA and RNA sequences. The upper case indicates DNA containing the restriction enzyme PvuII site (enclosed in a square frame). The part shown in lowercase letters is mRNA, and the part that forms a complementary strand with the DNA at the 3 'end is linked to the Tag sequence. I agree. The 3 'end of the RNA and the 5' end of the DNA are ligated with the "T4 RNA Ligase".
2-3 PM付きスぺーサー DNA- mRNA複合体のビーズ上への結合 2-3 Binding of spacer DNA-mRNA complex with PM onto beads
上記のように合成した、 PM付きスぺ一サ一 DNAと mRNAの複合体を、 直径 2.3 m±0. のアビジンビーズ (MAGNOTEX- SA、 TaKaRa、 9088) へ、 添付のプロ トコルに基づき以下のようにして結合させた。  Based on the attached protocol, the complex of PM-attached DNA and mRNA synthesized as described above was applied to avidin beads (MAGNOTEX-SA, TaKaRa, 9088) with a diameter of 2.3 m ± 0. As described above.
60 xlのアビジンビーズを 200 xlの 1 X Binding Buffer (添付されたもの) で 2回、 マグネットスタンドを用いてアビジンビーズを沈殿させ、 上清を交換す ることで洗浄した。 洗浄後、 沈殿させたビーズへ、 上記 2-2で合成した PM付き スぺーサー DNAと mRNAの複合体を 48pmol加え、 1 x Binding Buffer (添付され たもの) を合計で 120 zlになるように加え、 10分間室温で静置した。 その後、 上記のように、 の 1 X Binding Buffer (添付されたもの) でビーズを洗 浄することで、 ビーズに結合しなかった PM付きスぺーサー DNAと mRNAの複合体 を取り除いた。 さらに、 20 X Translation Mix (Am ion) 10 xK DEPC処理水 19 0 lを加え、 同様にビーズを洗浄した。  The 60 xl avidin beads were washed twice with 200 xl 1X Binding Buffer (attached) using a magnetic stand to precipitate the avidin beads and replacing the supernatant. After washing, add 48 pmol of the complex of spacer DNA and mRNA with PM synthesized in 2-2 above to the precipitated beads, and add 1 x Binding Buffer (attached) to a total of 120 zl. In addition, it was left still at room temperature for 10 minutes. Thereafter, as described above, the beads were washed with 1X Binding Buffer (supplied) to remove the complex of PM-attached spacer DNA and mRNA that did not bind to the beads. Further, 190 l of 20 × Translation Mix (Amion) 10 × K DEPC-treated water was added, and the beads were washed in the same manner.
2-4 翻訳 2-4 translation
上記のビーズをマグネットスタンド上で沈殿させ、 無細胞翻訳系 (Retic Lysa te IVT Kit, Ambion社, 1200) を 300 _U分加え、 30°C15分翻訳反応を行った。 その後、 MgCl2、 KC1をそれぞれ最終で 63mM、 750mMになるように加えて 37°Cで 1.5時間放置した。 サンプルは、 約 1時間毎に軽く攪拌した。 上記のようにビー ズを沈殿させ、 SUPERase - In (Ambion社、 2694) 20unitを含んだ 1 x Binding Buffer (添付されたもの) 200 lで 2回ビーズを洗浄した。 The beads were sedimented on a magnet stand, and a cell-free translation system (Retic Lysate IVT Kit, Ambion, 1200) was added for 300_U, and a translation reaction was performed at 30 ° C for 15 minutes. Thereafter, MgCl 2 and KC1 were added to the final concentrations of 63 mM and 750 mM, respectively, and left at 37 ° C. for 1.5 hours. The sample was gently agitated approximately every hour. The beads were precipitated as above and washed twice with 200 l of 1x Binding Buffer (attached) containing 20 units of SUPERase-In (Ambion, 2694).
2-5 逆転写 洗浄後、 上記と同様にして沈殿させたビーズに対して、 TaKaRa BIOMEDICALS 社添付のプロトコルに従い、 のスケールで逆転写酵素 M- MLV (TaKaRa, 264 OA) を用いて 42°C 10分間、 逆転写反応を行った。 その後に上記と同様にして、 1 X Binding Buf fer (添付されたもの) 200 x lでビーズを洗浄した。 2-5 Reverse transcription After washing, reverse transcription of beads precipitated in the same manner as above using reverse transcriptase M-MLV (TaKaRa, 264 OA) at 42 ° C for 10 minutes according to the protocol attached to TaKaRa BIOMEDICALS. The reaction was performed. Thereafter, the beads were washed with 1 × Binding Buf fer (attached) 200 xl in the same manner as described above.
2-6 ビーズから DNA—タンパク質を回収 2-6 Recover DNA-protein from beads
沈殿させたビーズに対して、 添付のプロトコルに従い、 のスケールで 24 uni tの制限酵素 PvuI I (TaKaRa) で 37°C 1時間放置することでビーズ上の DNA— タンパク質をビーズから切り離す処理を行った。 ここでは特に、 ビーズと DNA— タンパク質の非特異的な吸着を避けるために、 BSAを最終 0. lmg/mlになるよう に加えた。 その後、 上記と同様にしてビーズを沈殿させ、 上清を新しいサンプル チューブに移した。 逆転写の際、 テンプレートとなった mRNAが DNA—夕ンパク 質の DNAの部分と相補鎖を作ったままなので、 その上清に Ribonuclease H (Pro mega, M4281) を 2uni t加え、 37°C、 20分反応させることで逆転写後に残ってい る mRNA部分を分解した。  According to the attached protocol, the precipitated beads are left to stand at 37 ° C for 1 hour with 24 units of restriction enzyme PvuI I (TaKaRa) on a scale of, and the DNA-protein on the beads is separated from the beads. Was. Here, in particular, BSA was added to a final 0.1 mg / ml to avoid nonspecific adsorption of beads and DNA-protein. Thereafter, the beads were precipitated as described above, and the supernatant was transferred to a new sample tube. At the time of reverse transcription, the template mRNA still forms a complementary strand with the DNA-DNA portion of the protein, so add 2 units of Ribonuclease H (Promega, M4281) to the supernatant, and add The remaining mRNA after reverse transcription was degraded by reaction for 20 minutes.
2-7 Hisタグ精製 2-7 Purification of His tag
Quiagen社のプロトコルに従い、 サンプルを等量の Lys i sバッファー (Na¾P04 50mM, NaCl 300mM, imidazole lOmM, Tween20 0. 05%, pH8. 0) に希釈し、 20 1 の Ni- NTAビーズ (Ni-NTA Magnet icAgaroseBeads, QIAGEN社、 36111) を加え、 室温で 40分攪拌しながら放置した。 上記と同様にしてマグネットスタンドで N i- NTAビーズを沈殿させ、 100 1の Washバッファ一 (Na¾P04 50mM, NaCl 300m M, imidazole 20mM, Tween20 0. 05%, pH8. 0) で軽く洗浄した。 ビーズを沈殿さ せた後、 Eluteバッファ一 (Na¾P04 50mM, NaCl 300mM, imidazole 250 Twee n20 0. 05%, pH8. 0) を 15 1加え 1分間室温で放置し、 DNA—タンパク質を溶出 させた。 同様にしてビーズを沈殿させ、 DNA—タンパク質が溶出した上清をとり わけ、 6M尿素を含んだ 5% SDS- PAGEで解析した。 ゲルのバンドは、 Molecular i mager FX (Bio RAD co. ) で FITCの蛍光を可視化することで定量した。 得られた 結果を図 4に示す。 3 . 固相上でのタンパク質合成 (ProteinA B- domain) の結果 According Quiagen Inc. protocol, samples of equal volume Lys IS buffer (Na¾P0 4 50mM, NaCl 300mM, imidazole lOmM, Tween20 0. 05%, pH8. 0) was diluted to 20 1 of Ni- NTA beads (Ni-NTA Magnetic AgaroseBeads, QIAGEN, 36111) was added, and the mixture was left at room temperature with stirring for 40 minutes. Precipitating the N i-NTA beads in a magnetic stand in the same manner as described above, 100 1 of Wash buffer one (Na¾P0 4 50mM, NaCl 300m M , imidazole 20mM, Tween20 0. 05%, pH8. 0) and washed lightly with. After precipitating the beads, Elute buffer one (Na¾P0 4 50mM, NaCl 300mM, imidazole 250 Twee n20 0. 05%, pH8. 0) was left for 15 1 added at room temperature for 1 min to elute the DNA- protein . Precipitate the beads in the same manner and take the supernatant from which the DNA-protein eluted. That is, analysis was performed by 5% SDS-PAGE containing 6M urea. The gel band was quantified by visualizing the fluorescence of FITC using Molecular Imager FX (Bio RAD co.). Figure 4 shows the obtained results. 3. Results of protein synthesis (ProteinA B-domain) on solid phase
図 4 aは、 PM付きスぺーサー DNAと] iiRNAの複合体を無細胞翻訳系に加え、 溶 液中で (通常どおりに) mRNA—タンパク質の複合体を作成した結果であり、 FITC の蛍光を可視化したものである。 レーン 1は翻訳前、 2は翻訳後である。 翻訳反 応後現れた "RNA virus" と示した位置のバンドは、 その分子量から判断して、 スぺ一サ一 DNAのピュ一ロマイシンを介して、 mRNAとその mRNAがコードするタ ンパク質が共有結合された複合体であると考えられる。 "genome" と記した位置 のバンドは、 タンパク質が結合していない、 スぺーサー DNA、 mRNAの複合体であ る。  Figure 4a shows the results of adding a complex of PM-based spacer DNA and iiRNA to a cell-free translation system to form an mRNA-protein complex in solution (as usual). Is visualized. Lane 1 is before translation and 2 is after translation. Judging from the molecular weight, the band at the position indicated as “RNA virus” that appeared after the translation reaction showed that mRNA and the protein encoded by that mRNA were mediated by puromycin in the splicer DNA. It is thought to be a covalently bound complex. The band at the position marked "genome" is a complex of spacer DNA and mRNA to which no protein is bound.
ビーズ上で翻訳、 逆転写反応を行い、 制限酵素でビーズから切り離し回収した ものも同様に、 2本のバンドが観察され (レーン 1)、 高分子量のバンド (矢じ り) が目的とする DNA—タンパク質の共有結合体、 低分子量の太いバンドはタン パク質がつかなかったものであると考えられる (図 4 b )。 このことは、 タンパ ク質の C末端側に導入した 6 X Hi s- tagで精製した結果、 高分子量のバンドのみ が溶出されたことから確認される (レーン 2、 3)。 また、 この結果は、 ここで合 成 ·固定化された DNA—タンパク質複合体のタンパク質部分は、 通常液相で合成 されるタンパク質同様、 完全長が合成されたことを示すものである。  Similarly, two bands were observed in the sample that had been translated and reverse-transcribed on the beads, cut off from the beads with a restriction enzyme, and recovered (lane 1), and the high-molecular-weight band (arrowhead) was the target DNA. —The covalent complex of the protein and the thick band of low molecular weight are considered to be those without protein (Fig. 4b). This is confirmed by the fact that only the high molecular weight band was eluted as a result of purification with 6XHis-tag introduced at the C-terminal side of the protein (lanes 2, 3). In addition, this result indicates that the protein portion of the DNA-protein complex synthesized and immobilized here was synthesized in full length, similarly to the protein normally synthesized in a liquid phase.
これらの結果から、 固相上に、 PM付きスぺ一サー DNAを介して mRNAを固定し、 そこに無細胞翻訳系を加える方法で、 その mRNAがコードしているタンパク質を 翻訳直後に自動的に固相上に固定化できることが示された。  From these results, it was found that the mRNA encoded on the solid phase was immobilized immediately after translation by immobilizing the mRNA via PM-attached spacer DNA and adding a cell-free translation system to the mRNA. Showed that it can be immobilized on a solid phase.
なお、 SDS- PAGEにおける FITCの蛍光で可視化したバンドを基に回収された DN A—タンパク質複合体の量を計測した結果、 固相上で合成され制限酵素で切り離 し回収した時点での DNA—タンパク質 (図 4 b矢じり) は、 加えた mRNAの 0. 4%、 さらに His- tag精製し抽出きれたもの (図 4 b "DNA vi rus") は、 加えた mRNA の 0. 1%だった。 〔実施列 2〕 固相上で合成されたタンパク質の機能を検出 (GFP) The amount of DNA-protein complex recovered was measured based on the band visualized by the fluorescence of FITC in SDS-PAGE. As a result, it was synthesized on the solid phase and separated with the restriction enzyme. At the time of recovery, the DNA-protein (Fig. 4b arrowhead) was added at 0.4% of the added mRNA, and the His-tag purified and extracted (Fig. 4b "DNA virus") was added. It was 0.1% of mRNA. [Execution line 2] Detection of function of protein synthesized on solid phase (GFP)
1 . スぺーサ一がついた mRNAをビーズ上へ固定  1. Immobilize mRNA with spacer on beads
実施例 1の 2-3と同様に PM付きスぺ一サー DNAと mRNAの複合体をアビジンビ ーズに固定した。 GFPの蛍光を観察するために、 スぺーサ一 DNAは上記 2で用い たものとは違い、 Puro- S [配列; 5, - (S) -TC (F) - (Spec l8) - (Specl8) - (Specl8) - (S pecl8) -CC- (Puro) -3\ (S) : 5' -Thio卜 Modi f ier C6、 (Puro) : Puromycin CPG, BE X社より購入]で同様に合成したものを使用した。 ァビジンビーズは Bangs社の 直径 460nmのものを使用し、 以下のようにしてビーズ上に固定化した。  In the same manner as in 2-3 of Example 1, the complex of the PM-attached spacer DNA and mRNA was immobilized on avidin beads. In order to observe the fluorescence of GFP, the spacer DNA was different from that used in 2 above, and Puro-S [sequence; 5,-(S) -TC (F)-(Specl8)-(Specl8 )-(Specl8)-(S pecl8) -CC- (Puro) -3 \ (S): 5 '-Thioto Modi fier C6, (Puro): Puromycin CPG, purchased from BEX] What was used was used. Avidin beads with a diameter of 460 nm from Bangs were used and immobilized on the beads as follows.
10 /2 1分のビーズを 100 1の 0. 5 X Bind ing buf fer (50mM Tris HC1 pH8. 0, 0. 05% Tween20, 500mM NaCl) で 2度洗浄した。 洗浄は、 ビーズを含んだ溶液を 15, OOOrpm 5分間 4°Cで遠心分離し、 上清を液交換することで行った。 洗浄した ビーズの沈殿に、 実施例 1の 2- 2と同様の方法で合成した、 8pmolの PM付きス ぺ一サ一 DNAと GFPの mRNAの複合体を加え、 1 x Binding Buf ferで 40 / lにな るように希釈し、 室温で 15分静置してビーズに結合させた。 上記のようにして 100 lの 0. 5 X Binding buf ferで 1度洗浄し、 ビーズに結合しなかった mRNA を取り除いた。 さらに、 20 X TransLat ionMix (Ambion社) 10 /i l、 DEPC処理水 190 1を加え、 同様にビーズを洗浄した。  The beads were washed twice with 100 1 of 0.5 X Binding buf fer (50 mM Tris HC1 pH 8.0, 0.05% Tween 20, 500 mM NaCl). Washing was performed by centrifuging the solution containing the beads at 15, OOOrpm for 5 minutes at 4 ° C, and exchanging the supernatant. To the precipitate of the washed beads, 8 pmol of a complex of a probe DNA with PM and a GFP mRNA synthesized in the same manner as in 2-2 of Example 1 was added, and the mixture was added to a 40 x 40 μg binding buffer. and allowed to stand at room temperature for 15 minutes to bind to the beads. Washing was performed once with 100 l of 0.5 X Binding buf fer as described above to remove mRNA not bound to the beads. Further, 10 X / L of 20 × TransLationMix (Ambion) and 1901 of DEPC-treated water were added, and the beads were washed in the same manner.
2 . 翻訳 2. Translation
遠心分離で沈殿させたビーズへ無細胞翻訳系 (Ret ic Lysate IVT Ki t, Ambion 社, 1200) を 20 1分加え、 30°C 30分反応させた後、 MgCl2、 KC1をそれぞれ最 終で 63慮、 750 になるように加え、 25°Cで 2時間放置した。 サンプルは、 約 1 時間毎に軽く攪拌した。 15, OOOrpm 6分遠心分離によりビーズを沈殿させ、 上記 と同様にして遠心分離により、 リン酸 NaClバッファ一 (50mMリン酸ナトリウム PH7. 0、 lOOmM NaCl) で I回ビーズを洗浄した。 沈殿させたビーズを 20 2 1 リン 酸 NaClバッファーに懸濁し、 氷上で保存した。 Add a cell-free translation system (Retic Lysate IVT Kit, Ambion, 1200) to the beads precipitated by centrifugation for 20 minutes, react at 30 ° C for 30 minutes, and add MgCl 2 and KC1 respectively. The temperature was adjusted to 750, and the mixture was left at 25 ° C for 2 hours. Sample is about 1 Lightly stirred every hour. The beads were precipitated by centrifugation at 15, OOOrpm for 6 minutes, and washed once with NaCl phosphate buffer (50 mM sodium phosphate PH 7.0, 100 mM NaCl) by centrifugation as described above. The precipitated beads were suspended in Na 2 phosphate phosphate buffer and stored on ice.
3 . 顕微鏡下での観察 3. Observation under a microscope
上記のビ一ズを含む懸濁液を 50mMリン酸バッファー pH7. 0でさらに 1/5に希 釈し、 活性酸素除去のための酵素系 (25慮 glucose, 2. 5 ^M glucose oxidase, ΙΟηΜ catalase, lOmM di t iothre i tol) 存在下で顕微観察を行った。 顕微鏡は Ni con, TE2000を用い、 473nm 0. 35mWの対物エバネッセント照明で励起し、 GFPの 蛍光を冷却 CCDカメラ 0RCA- ER (浜松フォト二クス) で 1. 04秒の露光で撮影し た。 ネガティブなコントロールとして、 実施例 1の 3-1及び 3- 2と同じ方法で並 列してビーズにスぺーサ一 DNAのみを同じ濃度で結合させ、 同じ条件で観察を行 つた。 観察結果を図 5に示す。 図 5は、 ビーズの上で翻訳させた GFPの蛍光を顕 微鏡下で観察した写真である。 ビーズ (直径 460nm) の明視野像に、 473nmのレ 一ザ一で励起したときの蛍光像を重ね合わせた。 図 5 aは、 PM付きスぺーサー D NAと GFPの mRNAの複合体 8pmolを 10 z 1分のアビジンビーズに結合させ翻訳反 応を行ったもの、 図 5 bは、 PM付き DNAスぺーサ一のみ 8pmolを 10 l分のァ ビジンビーズに結合させ、 同じ条件で翻訳反応を行った結果の顕微観察像を示す。 蛍光像は緑の擬似カラーで確認した。  The suspension containing the above beads was further diluted to 1/5 with 50 mM phosphate buffer pH 7.0, and an enzyme system for removing active oxygen (25 glucose, 2.5 ^ M glucose oxidase, ΙΟηΜ microscopic observation was performed in the presence of catalase, lOmM ditiothreitol). The microscope was excited by 473nm 0.35mW objective evanescent illumination using Nicon, TE2000, and the fluorescence of GFP was photographed with a cooled CCD camera 0RCA-ER (Hamamatsu Photonics) for 1.04 second exposure. As a negative control, only spacer DNA was bound to beads in the same manner as in Examples 3-1 and 3-2 in the same manner, and observation was performed under the same conditions. Figure 5 shows the observation results. Figure 5 is a photograph of the fluorescence of GFP translated on the beads observed under a microscope. The fluorescence image when excited with a 473 nm laser was superimposed on the bright-field image of the beads (460 nm in diameter). Figure 5a shows a translation reaction performed by binding 8 pmol of a complex of spacer DNA with PM and GFP mRNA to avidin beads at 10 z for 1 min.Figure 5b shows a DNA spacer with PM. A microscopic observation image of the result of performing a translation reaction under the same conditions with 8 pmol of only one bound to 10 l of avidin beads is shown. The fluorescent image was confirmed by a green pseudo color.
4 . 結果 4 Results
実施例 1の結果をさらに、 確かなものにするために、 同じ方法で GFPをビーズ 上で翻訳し、 翻訳されたビーズ上の GFPの蛍光をエバネッセント顕微鏡下で直視 することを試みた。 その結果、 PM付きスぺ一サ一 DNAのみをビーズに結合させ観 察を行ったときに比べて優位に、 PM付きスぺーサ一 DNAに GFPの mRNAをつない だ後ビーズに固定し翻訳させたビーズ上に、 GFP の蛍光を観察することができた。 したがって、 目的とするタンパク質が固相で合成され固定されたことが再度確認 された。 産業上の利用の可能性 To further confirm the results of Example 1, we attempted to translate GFP on beads in the same way and look directly under the evanescent microscope for the fluorescence of GFP on the translated beads. As a result, the GFP mRNA was linked to the PM-attached spacer DNA, as compared to the case where only the PM-attached spacer DNA was bound to the beads and observed. After that, the fluorescence of GFP could be observed on the beads fixed and translated on the beads. Therefore, it was again confirmed that the target protein was synthesized and immobilized on the solid phase. Industrial potential
以上説明したように、 本発明によれば、 mRNA及びタンパク質の固相固定化方 法、 固定化 mRNA—ピューロマイシン連結体、 この連結体を含む mRNAビーズ又は m NAチップ、 この mRNAチップから作製されるプロテインチップなどを提供する ことができる。 このような mRNAチップは、 保存が容易であるから、 既存のプロ ティンチップと比較して極めて取り扱いが容易であるという利点がある。  As described above, according to the present invention, a method for solid-phase immobilization of mRNA and protein, an immobilized mRNA-puromycin conjugate, an mRNA bead or an mRNA chip containing this conjugate, and an mRNA chip prepared from this mRNA chip Can be provided. Since such an mRNA chip is easy to store, there is an advantage that handling is extremely easy as compared with an existing protein chip.
また本発明は、 上記固定化 mRNA—ピューロマイシン連結体を翻訳系へ供して 合成される該 mRNAの翻訳産物のタンパク質が、 該ピューロマイシンと結合した 構造の 「固定化 mRNA—ピューロマイシン一タンパク質連結体」 を提供する。 該 連結体は、 タンパク質と相互作用し得る分子の解析あるいはスクリーニングに利 用することができる。  In addition, the present invention relates to a "fixed mRNA-puromycin-protein linkage" in which a protein of a translation product of the mRNA synthesized by providing the immobilized mRNA-puromycin conjugate to a translation system is bound to the puromycin. The body. The conjugate can be used for analysis or screening of a molecule that can interact with a protein.
さらに本発明は、 上記 「固定化 mRNA—ピューロマイシン—タンパク質連結 体」 を、 逆転写反応系へ供することにより、 該 mRNAの逆転写産物の相補的 DNA が連結した構造の 「固定化 DNA -ピューロマイシン一タンパク質連結体」 を提供 する。 通常、 RNAに比べて DNAはより安定であることから、 タンパク質相互作用 解析において、 該連結体を被検分子と接触させる際に、 該連結体は非常に有用で ある。  Further, the present invention provides the above-described “immobilized mRNA-puromycin-protein conjugate” to a reverse transcription reaction system, whereby the “immobilized DNA-puromycin” has a structure in which complementary DNA of a reverse transcript of the mRNA is linked. And a "mycin-protein conjugate". Generally, DNA is more stable than RNA, and therefore, the conjugate is very useful when the conjugate is brought into contact with a test molecule in protein interaction analysis.
また、 本発明の mRNAチップは、 各種疾病の診断マーカーを認識するタンパク 質の合成に用いられる' mRNAを固定することによって、 各種疾病の診断に利用す ることができる。 さらに、 本発明のタンパク質の固相固定化又は合成方法は、 夕 ンパク質と分子との相互作用の解析にも好適に利用できる。  Further, the mRNA chip of the present invention can be used for diagnosis of various diseases by fixing mRNA used for synthesis of a protein recognizing a diagnostic marker for various diseases. Furthermore, the method for immobilizing or synthesizing a protein of the present invention can be suitably used for analyzing the interaction between protein and molecules.

Claims

請求の範囲 The scope of the claims
1 . mRNAとピューロマイシン又はピューロマイシン様化合物との連結体を固相 に固定してなる、 固定化 mRNA—ピューロマイシン連結体。 1. An immobilized mRNA-puromycin conjugate comprising a conjugate of mRNA and puromycin or a puromycin-like compound immobilized on a solid phase.
2 . 前記 mRNA—ピューロマイシン連結体が、 mRNAの 3'末端にスぺ一サーを介し てピューロマイシン又はピューロマイシン様化合物を連結したものである請 求項 1に記載の固定化 mRNA—ピューロマイシン連結体。  2. The immobilized mRNA-puromycin according to claim 1, wherein the mRNA-puromycin conjugate is obtained by linking puromycin or a puromycin-like compound to the 3 'end of the mRNA via a spacer. Concatenation.
3 . 前記 mRNA—ピューロマイシン連結体が、 前記スぺーサ一に設けた固相結合 部位を介して固相に結合されている、 請求項 1又は 2に記載の固定化 mRNA 一ピューロマイシン連結体。  3. The immobilized mRNA-puromycin conjugate according to claim 1 or 2, wherein the mRNA-puromycin conjugate is bound to a solid phase via a solid phase binding site provided on the spacer. .
' 4 . 前記スぺーサ一が、 ポリヌクレオチド、 ボリエチレン、 ポリエチレングリコ —ル、 ポリスチレン、 ペプチド核酸又はこれらの組合せを主骨格として含む ものである、 請求項 1〜3のいずれかに記載の固定化 mRNA—ピュー口マイ シン連結体。  '4. The immobilization according to any one of claims 1 to 3, wherein the spacer includes a polynucleotide, a polyethylene, a polyethylene glycol, a polystyrene, a peptide nucleic acid, or a combination thereof as a main skeleton. mRNA—Pew mouth mycin conjugate.
5 . 前記固相が、 スチレンビーズ、 ガラスビーズ、 ァガロースビーズ、 セファロ —スビーズ、 磁性体ビーズ、 ガラス基板、 シリコン基板、 プラスチック基板、 金属基板、 ガラス容器、 プラスチック容器及びメンブレンから選択される、 請求項 1〜4のいずれかに記載の固定化 mRNA—ピュー口マイシン連結体。 5. The solid phase is selected from styrene beads, glass beads, agarose beads, cepharose beads, magnetic beads, glass substrates, silicon substrates, plastic substrates, metal substrates, glass containers, plastic containers and membranes. 5. The immobilized mRNA-puremycin conjugate according to any one of claims 4 to 4.
6 . 請求項 1〜 5のいずれかに記載の固定化 mRNA—ピュー口マイシン連結体を 翻訳系へ供して合成される該 mRNAの翻訳産物のタンパク質が、 該連結体に おけるピューロマイシン又はピューロマイシン様化合物を介して連結してな る、 固定化 mRNA—ピューロマイシン一タンパク質連結体。 6. The protein of the translation product of the immobilized mRNA-puromycin conjugate according to any one of claims 1 to 5, which is synthesized by providing the conjugate to a translation system, is puromycin or puromycin in the conjugate. Immobilized mRNA-puromycin-protein conjugate linked via a similar compound.
7 . 請求項 6に記載の固定化 mRNA—ピューロマイシン一タンパク質連結体を、 逆転写反応系へ供して合成される該 mRNAの相補的 DNAが、 該連結体と結合 してなる、 固定化 DNA—ピューロマイシン—タンパク質連結体。  7. An immobilized DNA obtained by subjecting the immobilized mRNA-puromycin-protein conjugate according to claim 6 to a reverse transcription reaction system and binding a complementary DNA of the mRNA to the conjugate. —Puromycin—protein conjugate.
8 . 請求項 1〜 5のいずれかに記載の固定化 mRNA—ピュー口マイシン連結体を マイクロアレイ用基板に固定してなる、 mRNAチップ。 8. The immobilized mRNA-pure mycin conjugate according to any one of claims 1 to 5, An mRNA chip fixed to a microarray substrate.
9. 請求項 8記載の mRNAチップを用いて作製されるプロテインチップ。 9. A protein chip produced using the mRNA chip according to claim 8.
10. mRNAとピューロマイシン又はピューロマイシン様化合物との連結体がビ ーズに固定してなる mRNAビーズ。 10. mRNA beads in which a conjugate of mRNA and puromycin or a puromycin-like compound is immobilized on a bead.
1 1. 請求項 8記載の mRNAチップ又は請求項 1 0記載の mRNAビーズ、 及び無細 胞翻訳系を含むタンパク質相互作用解析用キット。 1 1. A kit for protein interaction analysis comprising the mRNA chip according to claim 8 or the mRNA beads according to claim 10, and a cell-free translation system.
1 2. (a)固相結合部位を設けたスぺ一サ一を介して、 mRNAとピューロマイシ ンを連結して、 mRNA—ピューロマイシン連結体を調製する工程、 及び、 (b)該スぺ一サ一の固相結合部位を固相に結合させることによって、 該 m RNA—ピューロマイシン連結体を固相に固定する工程  1 2. (a) a step of preparing an mRNA-puromycin conjugate by linking mRNA and puromycin through a sensor provided with a solid-phase binding site; and (b) Immobilizing the mRNA-puromycin conjugate on the solid phase by binding the solid phase binding site of the probe to the solid phase;
を含む、 mRNAを固相に固定化する方法。  A method for immobilizing mRNA on a solid phase.
1 3. (a)固相結合部位を設けたスぺーサーを介して、 mRNAとピュ一ロマイシ ンを連結して、 mRNA—ピューロマイシン連結体を調製する工程、 1 3. (a) connecting mRNA and puromycin through a spacer provided with a solid-phase binding site to prepare an mRNA-puromycin conjugate;
(b)該スぺーサ一の固相結合部位を固相に結合させることによって、 該 m A—ピューロマイシン連結体を固相に固定する工程;及び(b) fixing the mA-puromycin conjugate to a solid phase by binding the solid phase binding site of the spacer to a solid phase; and
( c )該 mRNA—ピューロマイシン連結体と翻訳系とを接触させることによ つて、 タンパク質を合成する工程 (c) a step of synthesizing a protein by bringing the mRNA-puromycin conjugate into contact with a translation system;
を含む、 タンパク質を固相に固定化する方法。  A method for immobilizing a protein on a solid phase.
14. (a)固相結合部位を設けたスぺーサ一を介して、 mRNAとピューロマイシ ンを連結して、 mRNA—ピューロマイシン連結体を調製する工程、 14. (a) linking mRNA and puromycin through a spacer provided with a solid-phase binding site to prepare an mRNA-puromycin conjugate;
(b)該スぺ一サ一の固相結合部位を固相に結合させることによって、 該 m RNA—ピューロマイシン連結体を固相に固定する工程;及び(b) fixing the mRNA-puromycin conjugate to a solid phase by binding the solid phase binding site of the spacer to a solid phase; and
( c )該 mRNA—ピューロマイシン連結体と翻訳系とを接触させることによ つて、 タンパク質を合成する工程 (c) a step of synthesizing a protein by bringing the mRNA-puromycin conjugate into contact with a translation system;
を含む、 タンパク質を固相で合成する方法。  A method for synthesizing a protein in a solid phase, comprising:
1 5. タンパク質と分子との相互作用を解析する方法であって、 ( a)—以上の、 請求項 1〜 5のいずれかに記載の固定化 mRNA—ピュー口 マイシン連結体と、 翻訳系とを接触させて、 固相上でタンパク質を合 成する工程; 1 5. A method for analyzing the interaction between a protein and a molecule, (a) contacting the immobilized mRNA-pure mycin conjugate according to any one of claims 1 to 5 with a translation system to synthesize a protein on a solid phase;
(b)ェ fe (a)において合成されたタンパク質と一以上の標的物質とを接触 させる工程;及び  (b) contacting the protein synthesized in fe (a) with one or more target substances; and
(c)該タンパク質と該標的物質とが相互作用しているか否かを測定するェ 程;  (c) measuring whether the protein and the target substance interact with each other;
を含む上記解析方法。  The analysis method described above.
6. タンパク質と分子との相互作用を解析する方法であって、 6. A method for analyzing the interaction between a protein and a molecule,
(a)—以上の、 請求項 1〜 5のいずれかに記載の固定化 mRNA—ピュー口 マイシン連結体と、 翻訳系とを接触させて、 固相上でタンパク質を合 成する工程;  (a) a step of bringing the immobilized mRNA-pure mycin conjugate according to any one of claims 1 to 5 into contact with a translation system to synthesize a protein on a solid phase;
(b)工程(a)において合成された mRNA—ピューロマイシン一タンパク質 連結体と、 逆転写反応系とを接触させて、 DNA—ピューロマイシン一 タンパク質連結体を調製する工程;  (b) contacting the mRNA-puromycin-protein conjugate synthesized in step (a) with a reverse transcription reaction system to prepare a DNA-puromycin-protein conjugate;
( c )工程( b )において調製された DNA—ピューロマイシン—タンパク質連 結体と一以上の標的物質とを接触させる工程;及び  (c) contacting the DNA-puromycin-protein conjugate prepared in step (b) with one or more target substances; and
(d)該連結体におけるタンパク質と該標的物質とが相互作用しているか否 かを測定する工程;  (d) measuring whether or not the protein in the conjugate interacts with the target substance;
を含む上記解析方法。 The analysis method described above.
7. さらに、 相互作用していると判断されたタンパク質及び/又は標的物質を 同定する工程を含む、 前記請求項 1 5又は 1 6に記載の解析方法。 7. The analysis method according to claim 15 or 16, further comprising a step of identifying a protein and / or a target substance determined to have an interaction.
PCT/JP2004/009396 2003-06-27 2004-06-25 IMMOBILIZED mRNA-PUROMYCIN CONJUGATE AND USE THEREOF WO2005001086A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005511126A JPWO2005001086A1 (en) 2003-06-27 2004-06-25 Immobilized mRNA-puromycin conjugate and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003185531 2003-06-27
JP2003-185531 2003-06-27

Publications (1)

Publication Number Publication Date
WO2005001086A1 true WO2005001086A1 (en) 2005-01-06

Family

ID=33549668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009396 WO2005001086A1 (en) 2003-06-27 2004-06-25 IMMOBILIZED mRNA-PUROMYCIN CONJUGATE AND USE THEREOF

Country Status (2)

Country Link
JP (1) JPWO2005001086A1 (en)
WO (1) WO2005001086A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041194A1 (en) * 2004-10-15 2006-04-20 Japan Science And Technology Agency LINKER FOR CONSTRUCTING mRNA-PUROMYCIN-PROTEIN CONJUGATE
WO2007046520A1 (en) * 2005-10-18 2007-04-26 National Institute Of Advanced Industrial Science And Technology Method for screening of protein using immobilized puromycin linker
JP2008545984A (en) * 2005-06-09 2008-12-18 バブラハム・インスティテュート Repeatable protein arrays
WO2013073706A1 (en) * 2011-11-18 2013-05-23 国立大学法人埼玉大学 Ligand having three-finger structure, and method for detecting molecule using same
EP2571976B1 (en) 2010-05-17 2017-07-12 Curetis GmbH Universally applicable lysis buffer and processing methods for the lysis of bodily samples
WO2020095985A1 (en) * 2018-11-07 2020-05-14 公益財団法人川崎市産業振興財団 Peptide-nucleic acid complex

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348398A (en) * 2000-03-10 2001-12-18 Japan Science & Technology Corp 5-pyrimidine containing nucleic acid, and reversibly binding method by using the same
JP2003299489A (en) * 2002-02-08 2003-10-21 Mitsubishi Chemicals Corp Nucleic acid construct

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004097213A (en) * 2002-07-19 2004-04-02 Mitsubishi Chemicals Corp Method for selecting nucleic acid and/or protein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348398A (en) * 2000-03-10 2001-12-18 Japan Science & Technology Corp 5-pyrimidine containing nucleic acid, and reversibly binding method by using the same
JP2003299489A (en) * 2002-02-08 2003-10-21 Mitsubishi Chemicals Corp Nucleic acid construct

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TABUCHI I, ET AL: "An in vitro DNA virus for in vitro protein evolution", FEBS LETTERS, vol. 508, 2001, pages 309 - 312, XP004324258 *
WENG S, ET AL: "Generating addressable protein microarrays with PROfusion covalent mRNA-protein fusion technology", PROTEOMICS, vol. 2, 2002, pages 48 - 57, XP002981773 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041194A1 (en) * 2004-10-15 2006-04-20 Japan Science And Technology Agency LINKER FOR CONSTRUCTING mRNA-PUROMYCIN-PROTEIN CONJUGATE
US8445413B2 (en) 2004-10-15 2013-05-21 National Institute Of Advanced Industrial Science And Technology Linker for constructing mRNA-puromycin-protein conjugate
JP2008545984A (en) * 2005-06-09 2008-12-18 バブラハム・インスティテュート Repeatable protein arrays
WO2007046520A1 (en) * 2005-10-18 2007-04-26 National Institute Of Advanced Industrial Science And Technology Method for screening of protein using immobilized puromycin linker
EP2571976B1 (en) 2010-05-17 2017-07-12 Curetis GmbH Universally applicable lysis buffer and processing methods for the lysis of bodily samples
WO2013073706A1 (en) * 2011-11-18 2013-05-23 国立大学法人埼玉大学 Ligand having three-finger structure, and method for detecting molecule using same
JPWO2013073706A1 (en) * 2011-11-18 2015-04-02 株式会社ニコン Ligand having three-finger structure and molecule detection method using the same
WO2020095985A1 (en) * 2018-11-07 2020-05-14 公益財団法人川崎市産業振興財団 Peptide-nucleic acid complex
JP7416715B2 (en) 2018-11-07 2024-01-17 公益財団法人川崎市産業振興財団 Peptide-nucleic acid complex

Also Published As

Publication number Publication date
JPWO2005001086A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP7097627B2 (en) Large molecule analysis using nucleic acid encoding
US8445413B2 (en) Linker for constructing mRNA-puromycin-protein conjugate
JP5415264B2 (en) Detectable nucleic acid tag
JP5647113B2 (en) Multi-ligand capture agents and related compositions, methods and systems
JP2002510505A (en) Localizable protein arrays
US20070087377A1 (en) Methods and compositions for reverse translation
WO2020106889A1 (en) Design and selection of affinity reagents
US20210269863A1 (en) Systems and methods for proteomic activity analysis using dna-encoded probes
JP3942431B2 (en) Protein-molecule interaction analysis method
WO2002046395A1 (en) C-terminal modified protein and process for producing the same, modifying agent and translation template to be used in produfing c-terminal modified protein, and method of detecting protein interaction with the use of c-termial modified protein
US20210254047A1 (en) Proximity interaction analysis
JP5733784B2 (en) Efficient synthesis of cDNA / mRNA-protein conjugates
US20060105407A1 (en) Protein chip for analyzing interaction between protein and substrate peptide thereof
WO2005001086A1 (en) IMMOBILIZED mRNA-PUROMYCIN CONJUGATE AND USE THEREOF
WO2023196642A9 (en) Methods and systems for processing polymeric analytes
JP2002253240A (en) Analysis of intermolecular interaction
JPWO2007046520A1 (en) Protein screening method using immobilized puromycin linker
WO2002073201A1 (en) Reagents for labeling protein
WO2005012902A1 (en) Method of screening useful protein
AU2021318522A1 (en) Systems and methods for assaying a plurality of polypeptides
JPWO2003106675A1 (en) Translation templates and libraries thereof, proteins and protein libraries synthesized from them, elements constituting them, and methods for producing and using them
WO2005035751A1 (en) Method of quickly and efficiently selecting high-functioning protein, high-functioning protein thus obtained, method of producing the same and method of using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005511126

Country of ref document: JP

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC

122 Ep: pct application non-entry in european phase