WO2004114353A1 - Tube generateur de rayons x a ensemble porte-cible orientable - Google Patents

Tube generateur de rayons x a ensemble porte-cible orientable Download PDF

Info

Publication number
WO2004114353A1
WO2004114353A1 PCT/EP2004/051143 EP2004051143W WO2004114353A1 WO 2004114353 A1 WO2004114353 A1 WO 2004114353A1 EP 2004051143 W EP2004051143 W EP 2004051143W WO 2004114353 A1 WO2004114353 A1 WO 2004114353A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
holder assembly
assembly
axis
tube
Prior art date
Application number
PCT/EP2004/051143
Other languages
English (en)
Inventor
André Gabioud
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to EP04741818A priority Critical patent/EP1636818B1/fr
Priority to US10/561,262 priority patent/US7302044B2/en
Publication of WO2004114353A1 publication Critical patent/WO2004114353A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/106Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/086Target geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1204Cooling of the anode

Definitions

  • the field of the invention is that of X-ray generating tubes.
  • the invention relates more particularly to the arrangement of the emitting surfaces which are at the source of the X-ray.
  • FIG. 1 The operating principle of an X-ray generator tube 10 is exposed in FIG. 1. It mainly comprises a vacuum enclosure 6 comprising at one of these ends a cathode block 4 carried by an insulator 3 and at the other end an anode block 2.
  • the anode block 2 comprises a target holder assembly 1 comprising a flat metal surface said target 9 disposed opposite the cathode block.
  • the electron beam 7 coming from the cathode is accelerated under the action of very high electric voltages greater than 10 kVolts and strikes the target 9 in a focusing zone O where the electrons lose their kinetic energy. There follows a significant release of heat and an emission 8 of X-rays (symbolized by the arrows in FIG. 1). X-rays pass through the wall of the anode block at privileged locations 5 called windows.
  • the release of heat causes very intense localized heating at the target.
  • the rise in the temperature of the target is such that it could lead to the destruction of the target by fusion.
  • the release of heat is evacuated by a cooling circuit 60 passing through the target holder 1 under the target 9.
  • the target 9 is inclined at an angle ⁇ relative to the mean direction of the electron beam 7.
  • the production of a target holder assembly therefore has two main constraints. On the one hand, the angle of inclination a must be adapted to the use and on the other hand, the cooling circuit must allow sufficient removal of the calories due to the impact of the electron beam.
  • the target holder assembly In known X-ray tubes, the target holder assembly generally has the shape of a shouldered cylinder as shown in FIGS. 2, 3 and 4. The axis of this cylinder is parallel to the direction of the electron beam .
  • a cutaway of the cylinder inclined at an angle ⁇ constitutes the target subjected to the beam.
  • the target holder assembly is connected to the anode block so that the calories are first transmitted to the periphery of the anode block by conduction through the various metal parts of the target holder assembly and of the anode block (internal white arrows in Figure 2) then evacuated to the outside by convection (external white arrows in Figure 2).
  • FIG. 3 illustrates a first embodiment of the cooling duct arranged inside the target holder assembly. It comprises a single tube 60 passing under the surface of the target and which best matches said surface.
  • FIG. 4 illustrates a second embodiment of a coaxial type conduit. It comprises an inlet tube 60 located in the axis of the cylinder of the target holder, an internal cavity 61 which conforms as best as possible to the interior of the target holder and an outlet tube 62 connected to the internal cavity. This arrangement optimizes the exchange surface between the cooling fluid and the target holder assembly.
  • This indicator has a maximum for ⁇ zero and tends to 0 when 0 tends to 90 degrees. It is not possible to use all the X-ray emitted and only part is recovered through a transmission window which defines a limited solid angle of emission. This window is necessarily located outside the path of the electron beam. If it is desired to recover a large part of the radiation emitted, the angle of inclination ⁇ must then be sufficiently large.
  • the angle of inclination also conditions the geometric resolution of the emission source X as illustrated in FIGS. 6 and 7.
  • An electron beam 7 with a circular section of diameter, section also called finesse, falls on an inclined target of an angle ⁇ with respect to the direction of incidence. This beam will generate X-ray radiation.
  • the X-ray radiation passing through a diaphragm 11 of very small diameter, then has a divergence ⁇ .
  • This divergence ⁇ is proportional to the angle ⁇ as shown in FIGS. 6 and 7.
  • This divergence ⁇ conditions the resolution of the X-ray generator tube and the sharpness of the images observed.
  • the angle of inclination ⁇ is necessarily the result of a compromise between, on the one hand the energy of the X-ray radiation and on the other hand, the resolution of the tube.
  • the tube designers are thus led to propose, for the same configuration of tubes, different versions of target-holder assemblies in which the inclinations of the target vary.
  • the study, implementation and management of these different variants generate additional costs and additional delays which can be important, given the complexity of the room and the materials used.
  • the invention proposes to replace these different variants by a single assembly making it possible to adjust the angle of inclination of the target.
  • the arrangement of the part also makes it possible to improve the geometry of the cooling circuit in order to significantly increase its efficiency.
  • the various mechanical parts do not involve complex machining.
  • the subject of the invention is an X-ray generator tube comprising an electron gun emitting an electron beam, an anode block comprising a target holder assembly having a plane surface called the target on which the electron beam is focused in a spot.
  • focusing characterized in that the target holder assembly has an axis of revolution substantially perpendicular to the mean direction of the electron beam and passing through the plane of the target.
  • the target-holder assembly is of generally cylindrical shape with circular section, the target being located in a plane passing through the axis of revolution of the cylinder and the anode block comprises a housing of also generally cylindrical shape in which is housed said target holder assembly so that the axis of revolution of the target holder assembly passes through the focusing spot.
  • the target holder assembly comprises at least one internal main coolant circulation duct passing through the target holder assembly in a direction substantially parallel to its axis of revolution and passing under the target to cool it.
  • Figure 1 shows a sectional view of an X-ray generator tube comprising a target holder assembly according to the prior art.
  • Figure 2 shows a sectional view of an anode block comprising a target holder assembly without cooling circuit according to the prior art.
  • Figure 3 shows a sectional view of an anode block comprising a target holder assembly comprising a first type of cooling circuit according to the prior art.
  • Figure 4 shows a sectional view of an anode block comprising a target holder assembly comprising a second type of cooling circuit according to the prior art.
  • Figure 5 shows the X-ray emission indicator.
  • Figures 6 and 7 represent [influence of the angle of inclination of the target on the resolution of the tube.
  • Figure 8 shows a perspective view of the target holder assembly according to the invention.
  • Figure 9 shows a front view and a side view of the target holder assembly according to the invention.
  • Figure 10 shows a sectional view of a target holder assembly according to the invention comprising a coolant circulation duct.
  • Figure 11 shows a perspective view of the part of the conduit located under the target.
  • Figure 12 shows a perspective view of a set of cylindrical secondary conduits with circular section placed under the target.
  • Figure 13 shows a sectional front view and a side view of the target holder assembly comprising cylindrical secondary conduits with circular section.
  • Figure 14 shows a perspective view of a set of secondary cylindrical conduits of triangular section placed under the target.
  • Figure 15 shows a perspective view of a set of cylindrical secondary conduits in the shape of an arch placed under the target.
  • Figure 16 shows a sectional front view and a sectional side view of the target holder assembly comprising cylindrical secondary conduits of triangular section.
  • the heart of the invention is to make the angle of inclination of the target adjustable on the mean direction of the electron beam while maintaining the focusing of the beam on the target.
  • the target holder assembly 1 has the general shape shown in the perspective view of FIG. 8.
  • This figure represents a target holder assembly 1 without a coolant circulation duct.
  • the target holder assembly generally has the shape of a cylinder of revolution.
  • the central part of this cylinder includes machining.
  • half of the cylinder has been removed in order to define a planar surface 9 which constitutes the surface of the target.
  • the target is in a plane passing through the axis 20 of the cylinder so that when the cylinder rotates about its axis, the center of the target always occupies a fixed position.
  • FIG. 9 represents a front view and a sectional profile view of the target holder assembly 1 mounted in the anode block 2.
  • This comprises a cylindrical recess of diameter substantially equal to that of the target holder assembly so that said assembly 1 can rotate without play in the anode block.
  • the axis of revolution of this cylinder is substantially perpendicular to the mean direction of the electron beam and this axis passes through the focusing spot of the electron beam 7 as indicated in FIG. 8.
  • This arrangement makes it possible to optimize the diameter of the focusing spot O. Under these conditions, when the target holder assembly is rotated in the anode block, the target surface tilts at a variable angle ⁇ and the focusing of the electron beam on the target is preserved .
  • To position the target at a particular angle ⁇ there are different possible methods using, for example, a suitable tool which are not the subject of this invention and which are known to those skilled in the art.
  • the target-holder assembly is brazed in the anode block in order on the one hand to maintain this inclination and on the other hand to ensure the vacuum tightness of the assembly, sealing necessary for the operation of the electron gun.
  • This provision is very advantageous insofar as the machining operations of the various parts (target holder assembly and anode block) are simple and can be carried out with great precision.
  • FIG. 10 represents a sectional view of a target-holder assembly of the type of that of FIGS. 8 and 9 comprising a coolant circulation pipe 60.
  • This passes right through 'target carrier assembly along its axis of revolution and passes under the target 9.
  • the exchange of calories is mainly in the area below the target called exchanger.
  • This geometry which does not have mechanical bends ensures good transfer of the coolant through the target holder assembly, greater than that of the devices according to the prior art.
  • Sleeves 63 arranged at the ends of the duct ensure its connection with the circuits for the arrival and discharge of the coolant.
  • the exchanger conditions the efficiency of the coolant circulation duct. It results from a compromise between optimal efficiency and acceptable mechanical complexity.
  • the exchanger mainly consists of two plane walls parallel to each other and separated by a thickness e.
  • the first wall is located under the target and parallel to it. Consequently, the water circulates in the exchanger in the form of a sheet of thickness e (parallel arrows in FIG. 11).
  • This exchanger has reduced performance given its limited exchange surface. It is possible to improve its efficiency by using it in two-phase mode, the quantities of heat absorbed by the phase changes, for example when the liquid water passes in the form of vapor, thus making it possible to improve the efficiency of the circuit of cooling.
  • FIG. 12 shows a first embodiment of an exchanger with a large exchange surface.
  • the exchange surface consists of a plurality of secondary conduits 64 of cylindrical shape and generator parallel to the axis of revolution of the target holder assembly.
  • the conduits 64 are separated from a wall of thickness P and have a diameter d.
  • the diameter d is between 0.8 millimeters and 3 millimeters and the thickness P must be less than d. This optimizes the exchange surface which is, in this case, much greater than that illustrated in Figure 1 1.
  • Figure 13 shows two views of the target holder assembly comprising an exchanger according to the previous arrangement.
  • the conduit 60 has at its ends two cylindrical bores 65 and in the area of the exchanger a plurality of secondary conduits 64 according to the arrangement of FIG. 12, each of these conduits opening into the cylindrical bores 65.
  • the exchanger assembly follows the inclination of the target.
  • the machining of the conduit can be done simply by drilling through one of the ends of the cylinder. However, drilling holes of small diameter, typically less than 1.5 millimeters in materials such as copper can be difficult over long lengths, typically greater than 10 times the diameter. In this case, it is possible to replace the process for producing the exchanger by conventional machining with the process comprising the following production steps:
  • This second set can be of generally cylindrical shape.
  • FIGS. 14 and 15 show two forms of grooves 103.
  • FIG. 14 represents a front view in section and a profile view in section showing the arrangement of the target holder assembly 1 comprising the mechanical assembly 102 in the anode block 2.
  • the ends of the conduit can also have adapter sleeves 63.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • X-Ray Techniques (AREA)

Abstract

Tube générateur de rayons X comprenant un ensemble porte-cible permettant de régler l’inclinaison de la surface émettrice de la cible sur le faisceau électronique pour conditionner l’intensité d’émission de rayons X et la résolution du tube en fonction de l'application souhaitée. Pour les applications à haute énergie nécessitant un circuit de refroidissement, la disposition de la pièce permet également d'améliorer sensiblement la géométrie dudit circuit de refroidissement afin d'accroître sensiblement son efficacité. Plusieurs dispositions du circuit de refroidissement sont présentées ainsi que leur procédé de réalisation.

Description

TUBE GENERATEUR DE RAYONS X A ENSEMBLE PORTE-CIBLE
ORIENTABLE
Le domaine de l'invention est celui des tubes générateurs de rayons X. L'invention concerne plus particulièrement la disposition des surfaces émettrices qui sont à la source du rayonnement X.
Le principe de fonctionnement d'un tube générateur 10 de rayons X est exposé en figure 1 . Il comprend principalement une enceinte à vide 6 comportant à une de ces extrémités un bloc cathode 4 porté par un isolateur 3 et à l'autre extrémité un bloc anode 2. Le bloc anode 2 comprend un ensemble porte-cible 1 comportant une surface plane métallique dite cible 9 disposée en regard du bloc cathode. Le faisceau d'électrons 7 issus de la cathode est accéléré sous l'action de très hautes tensions électriques supérieures à 10 kVolts et vient percuter la cible 9 dans une zone de focalisation O où les électrons perdent leur énergie cinétique. Il s'ensuit un dégagement de chaleur important et une émission 8 de rayons X (symbolisée par les flèches de la figure 1). Le rayonnement X traverse la paroi du bloc anode à des endroits privilégiés 5 appelés fenêtres.
Le dégagement de chaleur provoque un échauffement localisé très intense au niveau de la cible. Dans le cas de tubes fonctionnant à forte puissance, l'élévation de la température de la cible est telle qu'elle pourrait conduire à la destruction de la cible par fusion. Aussi, dans ce cas, le dégagement de chaleur est évacué par un circuit de refroidissement 60 passant dans le porte-cible 1 sous la cible 9. Afin d'opti miser la répartition du rayonnement X dans l'espace en direction et en intensité, la cible 9 est inclinée d'un angle α par rapport à la direction moyenne du faisceau électronique 7.
La réalisation d'un ensemble porte-cible a donc deux contraintes principales. D'une part, l'angle d'inclinaison a doit être adapté à l'utilisation et d'autre part, le circuit de refroidissement doit permettre une évacuation suffisante des calories dues à l'impact du faisceau électronique. Dans les tubes à rayonnement X connus, l'ensemble porte-cible a, en général, la forme d'un cylindre épaulé comme représenté en figures 2, 3 et 4. L'axe de ce cylindre est parallèle à la direction du faisceau électronique.
Un pan coupé du cylindre incliné d'un angle α constitue la cible soumise au faisceau.
Lorsque la puissance est faible, un circuit de refroidissement n'est pas nécessaire. Dans ce cas illustré en figure 2, l'ensemble porte -cible est raccordé au bloc anode afin que les calories soient d'abord transmises vers la périphérie du bloc anode par conduction à travers les différentes parties métalliques de l'ensemble porte-cible et du bloc anode (flèches blanches internes de la figure 2) puis évacuées vers l'extérieur par convection (flèches blanches externes de la figure 2).
Lorsque la puissance émise est plus importante, la disposition précédente ne suffit plus. Dans ces cas, un conduit de circulation de fluide de refroidissement qui peut être, par exemple, de l'eau ou de l'huile est nécessaire pour extraire les calories de la cible. L'entrée et la sortie de ce fluide se font dans la partie opposée à la cible de l'ensemble porte-cible. La figure 3 illustre un premier mode de réalisation du conduit de refroidissement disposé à l'intérieur de l'ensemble porte-cible. Il comprend un tube unique 60 passant sous la surface de la cible et qui épouse au mieux ladite surface. La figure 4 illustre un second mode de réalisation de conduit de type coaxial. Il comprend un tube d'arrivée 60 situé dans l'axe du cylindre du porte-cible, une cavité interne 61 épousant au mieux l'intérieur du porte-cible et un tube de sortie 62 raccordée à la cavité interne. Cette disposition permet d'optimiser la surface d'échange entre le fluide de refroidissement et l'ensemble porte-cible.
Cependant, ces différents types de circuits de refroidissement ont des inconvénients. En particulier, ces conduits présentent des coudes qui entraînent des changements de direction pour le fluide. Ceux-ci génèrent au niveau des surfaces d'échange thermique avec l'ensemble porte-cible des zones où la vitesse du fluide est quasiment nulle et où les échanges thermiques sont, par conséquent, très faibles. De plus, ces changements de direction induisent des pertes de charge qui peuvent se révéler prohibitives lorsqu'on souhaite augmenter le débit de fluide afin d'accroître les possibilité de dissipation thermique. Lorsqu'un faisceau d'électrons frappe la surface de la cible sous une incidence α correspondant à l'angle d'inclinaison de la cible, le rayonnement X est émis dans toutes les directions de l'espace comme indiqué sur la figure 5. L'indicatrice d'intensité d'émission dépend de l'angle θ que fait la direction du rayonnement avec la normale N à la surface de la cible (périmètre en pointillés de la figure 5). Cette indicatrice présente un maximum pour θ nul et tend vers 0 lorsque 0 tend vers 90 degrés. On ne peut utiliser tout le rayonnement X émis et seule une partie est récupérée à travers une fenêtre de transmission qui définit un angle solide d'émission limité. Cette fenêtre est nécessairement située hors du trajet du faisceau électronique. Si l'on souhaite récupérer une partie importante du rayonnement émis, l'angle d'inclinaison α doit alors être suffisamment important.
Cependant, l'angle d'inclinaison conditionne également la résolution géométrique de la source d'émission X comme illustré en figures 6 et 7. Un faisceau électronique 7 à section circulaire de diamètre , section encore appelée finesse, tombe sur une cible inclinée d'un angle α par rapport à la direction d'incidence. Ce faisceau va générer un rayonnement X. Dans une direction d'émission donnée, le rayonnement X, passant par un diaphragme 11 de très petit diamètre, a alors une divergence β. Cette divergence β est proportionnelle à l'angle α comme il est montré sur les figures 6 et 7. Cette divergence β conditionne la résolution du tube générateur de rayons X et la netteté des images observées. En effet, si l'on place un écran 12 dans le rayonnement X, l'image du diaphragme n'est plus quasiment ponctuelle mais a une certaine dimension directement proportionnelle à la divergence β. Par conséquent, pour obtenir des tailles d'image de petite dimension, c'est-à-dire des résolutions élevées, il faut réduire l'angle d'inclinaison α.
L'angle d'inclinaison α est nécessairement le résultat d'un compromis entre, d'une part l'énergie du rayonnement X et d'autre part, la résolution du tube. Selon les applications, les concepteurs de tubes sont ainsi amenés à proposer, pour une même configuration de tubes, différentes versions d'ensembles porte-cible dans lesquelles les inclinaisons de la cible varient. L'étude, la réalisation et la gestion de ces différentes variantes génèrent des surcoûts et des délais supplémentaires qui peuvent être importants, compte-tenu de la complexité de la pièce et des matériaux employés.
L'invention propose de remplacer ces différentes variantes par un ensemble unique permettant d'assurer le réglage de l'angle d'inclinaison de la cible. La disposition de la pièce permet également d'améliorer la géométrie du circuit de refroidissement afin d'accroître sensiblement son efficacité. D'autre part, les différentes pièces mécaniques ne comportent pas d'usinage complexe.
Plus précisément, l'invention a pour objet un tube générateur de rayon X comprenant un canon à électrons émettant un faisceau électronique, un bloc anode comportant un ensemble porte-cible possédant une surface plane dite cible sur laquelle est focalisée le faisceau électronique en une tache de focalisation (O), caractérisé en ce que l'ensemble porte-cible possède un axe de révolution sensiblement perpendiculaire à la direction moyenne du faisceau électronique et passant par le plan de la cible.
Avantageusement, l'ensemble porte-cible est de forme globalement cylindrique à section circulaire, la cible étant située dans un plan passant par l'axe de révolution du cylindre et le bloc anode comporte un logement de forme également globalement cylindrique dans lequel se loge ledit ensemble porte-cible de façon que l'axe de révolution de l'ensemble porte-cible passe par la tache de focalisation.
Pour les applications nécessitant un rayonnement X important, avantageusement, l'ensemble porte -cible comporte au moins un conduit principal interne de circulation de fluide de refroidissement traversant l'ensemble porte-cible dans une direction sensiblement parallèle à son axe de révolution et passant sous la cible pour la refroidir.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles :
• La figure 1 représente une vue en coupe d'un tube générateur de rayons X comportant un ensemble porte-cible selon l'art antérieur. • La figure 2 représente une vue en coupe d'un bloc anode comportant un ensemble porte -cible sans circuit de refroidissement selon l'art antérieur.
• La figure 3 représente une vue en coupe d'un bloc anode comportant un ensemble porte-cible comprenant un premier type de circuit de refroidissement selon l'art antérieur.
• La figure 4 représente une vue en coupe d'un bloc anode comportant un ensemble porte-cible comprenant un second type de circuit de refroidissement selon l'art antérieur. • La figure 5 représente l'indicatrice d'émission de rayonnement X.
• Les figures 6 et 7 représentent [influence de l'angle d'inclinaison de la cible sur la résolution du tube.
• La figure 8 représente une vue en perspective de l'ensemble porte- cible selon l'invention. • La figure 9 représente une vue de face et une vue de profil de l'ensemble porte-cible selon l'invention.
• La figure 10 représente une vue en coupe d'un ensemble porte- cible selon l'invention comportant un conduit de circulation de fluide de refroidissement. • La figure 11 représente une vue en perspective de la partie du conduit située sous la cible.
• La figure 12 représente une vue en perspective d'un ensemble de conduits secondaires cylindriques à section circulaire placés sous la cible. • La figure 13 représente une vue de face en coupe et une vue de profil de l'ensemble porte-cible comportant des conduits secondaires cylindriques à section circulaire.
• La figure 14 représente une vue en perspective d'un ensemble de conduits secondaires cylindriques à section triangulaire placés sous la cible.
• La figure 15 représente une vue en perspective d'un ensemble de conduits secondaires cylindriques à section en forme d'arche placés sous la cible. • La figure 16 représente une vue de face en coupe et une vue de profil en coupe de l'ensemble porte-cible comportant des conduits secondaires cylindriques à section triangulaire.
Le cœur de l'invention est de rendre réglable l'angle d'inclinaison de la cible sur la direction moyenne du faisceau électronique tout en conservant la focalisation du faisceau sur la cible. Il existe différentes dispositions mécaniques possibles.
A titre d'exemple non limitatif, l'ensemble porte-cible 1 a la forme générale représentée sur la vue en perspective de la figure 8. Cette figure représente un ensemble porte-cible 1 sans conduit de circulation de liquide de refroidissement. L'ensemble porte-cible a globalement la forme d'un cylindre de révolution. La partie centrale de ce cylindre comporte un usinage. Dans cette partie usinée, une moitié du cylindre a été enlevée afin de définir une surface plane 9 qui constitue la surface de la cible. Ainsi, la cible se trouve dans un plan passant par l'axe 20 du cylindre de façon que lorsque le cylindre tourne en rotation autour de son axe, le centre de la cible occupe toujours une position fixe. La figure 9 représente une vue de face et une vue de profil en coupe de l'ensemble porte-cible 1 monté dans le bloc anode 2. Celui-ci comporte un évidement cylindrique de diamètre sensiblement égal à celui de l'ensemble porte-cible de façon que ledit ensemble 1 puisse tourner sans jeu dans le bloc anode. L'axe de révolution de ce cylindre est sensiblement perpendiculaire à la direction moyenne du faisceau d'électrons et cet axe passe par la tache de focalisation du faisceau électronique 7 comme indiqué sur la figure 8. Cette disposition permet d'optimiser le diamètre de la tache de focalisation O. Dans ces conditions, lorsque l'on tourne l'ensemble porte-cible dans le bloc anode, la surface de la cible s'incline d'un angle α variable et la focalisation du faisceau électronique sur la cible est conservée. Pour positionner la cible à un angle α particulier, il existe différentes méthodes possibles utilisant, par exemple, un outillage adapté qui ne font pas l'objet de cette invention et qui sont connues de l'homme du métier. Une fois cette inclinaison réglée, l'ensemble porte-cible est brasée dans le bloc anode afin d'une part de conserver cette inclinaison et d'autre part d'assurer l'étanchéité au vide de l'ensemble, étanchéité nécessaire au fonctionnement du canon à électrons. Cette disposition est très avantageuse dans la mesure où les opérations d'usinage des différentes pièces (ensemble porte-cible et bloc anode) sont simples et peuvent être réalisées avec une grande précision.
Pour les tubes à haute puissance nécessitant un conduit de circulation de liquide de refroidissement, la disposition précédente se prête particulièrement bien à l'implantation dudit conduit. A titre d'exemple, la figure 10 représente une vue en coupe d'un ensemble porte -cible du type de celui des figures 8 et 9 comportant un conduit de rculation de fluide de refroidissement 60. Celui-ci traverse de part en part l'ensemble porte-cible selon son axe de révolution et passe sous la cible 9. L'échange des calories se fait principalement dans la zone située sous la cible que l'on appelle échangeur. Cette géométrie qui ne présente pas de coudes mécaniques permet d'assurer un bon transfert du liquide de refroidissement à travers l'ensemble porte-cible, supérieur à celui des dispositifs selon l'art antérieur. Des manchons 63 disposés aux extrémités du conduit assure sa liaison avec les circuits d'arrivée et d'évacuation du liquide de refroidissement.
La conception de l'échangeur conditionne l'efficacité du conduit de circulation du liquide de refroidissement. Elle résulte d'un compromis entre une efficacité optimale et une complexité mécanique acceptable. Dans un premier type de réalisation présentée sur la vue en perspective de la figure 11 , l'échangeur est principalement constitué de deux parois planes parallèles entre elles et séparées d'une épaisseur e. La première paroi est située sous la cible et parallèle à celle-ci. Par conséquent, l'eau circule dans l'échangeur sous la forme d'une nappe d'épaisseur e (flèches parallèles de la figure 11). Cet échangeur a des performances réduites compte-tenu de sa surface d'échange limitée. Il est possible d'améliorer son rendement en l'utilisant en mode diphasique, les quantités de chaleur absorbées par les changements de phase, par exemple lorsque l'eau liquide passe sous forme de vapeur, permettant ainsi d'améliorer le rendement du circuit de refroidissement.
Pour améliorer le rendement de l'échangeur, on peut également augmenter l'aire de la surface d'échange. La vue en perspective de la figure 12 présente un premier mode de réalisation d'un échangeur à grande surface d'échange. Dans ce mode de réalisation, la surface d'échange est constituée d'une pluralité de conduits secondaires 64 de forme cylindrique et de génératrice parallèle à l'axe de révolution de l'ensemble porte-cible. Les conduits 64 sont séparés d'une paroi d'épaisseur P et ont un diamètre d. Typiquement, le diamètre d est compris entre 0.8 millimètres et 3 millimètres et l'épaisseur P doit être inférieure à d. On optimise ainsi la surface d'échange qui est, dans ce cas, bien supérieure à celle illustrée en figure 1 1. La figure 13 représente deux vues de l'ensemble porte-cible comprenant un échangeur selon la disposition précédente. Dans ce cas, le conduit 60 comporte à ses extrémités deux perçages cylindriques 65 et dans la zone de l'échangeur une pluralité de conduits secondaires 64 selon la disposition de la figure 12, chacun de ces conduits débouchant dans les perçages cylindriques 65. Lorsque l'on oriente l'ensemble porte-cible comme indiqué sur la vue de profil, l'ensemble de l'échangeur suit l'inclinaison de la cible. L'usinage du conduit peut être fait simplement par perçage par une des extrémités du cylindre. Cependant, le perçage de trous de faible diamètre, typiquement inférieur à 1.5 millimètres dans des matériaux tels que le cuivre peut se révéler difficile sur de grandes longueurs, typiquement supérieures à 10 fois le diamètre. Dans ce cas, il est possible de remplacer le procédé de réalisation de l'échangeur par usinage classique par le procédé comportant les étapes de réalisation suivantes :
• Réalisation d'un premier ensemble 1 mécanique de forme globalement cylindrique comprenant un conduit principal 65 traversant ledit premier ensemble dans une direction sensiblement parallèle à son axe de révolution et dans sa partie centrale un évidement comportant une surface plane
101 , le conduit principal 65 débouchant dans cet évidement.
• Réalisation d'un second ensemble mécanique 102 comportant une surface supérieure plane et une surface inférieure comportant des rainures 103 identiques. Ce second ensemble peut être de forme globalement cylindrique.
• Assemblage du second ensemble dans l'évidement du premier ensemble de telle sorte que les rainures 103 sont placées en regard de la surface plane 101 de l'évidement, la surface supérieure du second ensemble constituant la cible 9, l'ensemble des rainures du second ensemble et de la surface plane de l'évidement constituant autant de conduits secondaires formant l'échangeur.
La forme finale des conduits dépend de la forme initiale des rainures, permettant ainsi de paramétrer la surface d'échange souhaitée. A titre d'exemple, les figures 14 et 15 présentent deux formes de rainures 103.
Sur la figure 14, les rainures sont en forme de V et la section finale des conduits est triangulaire. Sur la figure 15, les rainures sont en en forme d'arche et la section finale des conduits est en forme de D renversé. La figure 16 représente une vue de face en coupe et une vue de profil en coupe montrant la disposition de l'ensemble porte-cible 1 comportant l'ensemble mécanique 102 dans le bloc anode 2. Dans cette disposition, les extrémités du conduit peuvent également comporter des manchons d'adaptation 63.

Claims

REVENDICATIONS
1. Tube (10) générateur de rayon X comprenant un canon à électrons (4) émettant un faisceau électronique (7), un bloc anode (2) comportant un ensemble porte-cible (1 ) possédant une surface plane (9) dite cible sur laquelle est focalisée le faisceau électronique (7) en une tache de focalisation (O), caractérisé en ce que l'ensemble porte-cible (1) possède un axe de révolution (20) sensiblement perpendiculaire à la direction moyenne du faisceau électronique (7) et passant par le plan de la cible (9).
2. Tube (10) selon la revendication 1 , caractérisé en ce que l'ensemble porte-cible (1 ) est de forme globalement cylindrique à section circulaire, la cible (9) étant située dans un plan passant par l'axe de révolution (20) du cylindre et que le bloc anode (2) comporte un logement de forme également globalement cylindrique dans lequel se loge ledit ensemble porte-cible (1) de façon que l'axe de révolution (20) de l'ensemble porte-cible passe par la tache de focalisation.
3. Tube (10) selon la revendication 2, caractérisé en ce que l'ensemble porte-cible (1) comporte au moins un conduit (60) interne de circulation de fluide de refroidissement traversant l'ensemble porte-cible dans une direction sensiblement parallèle à son axe de révolution et passant sous la cible pour la refroidir.
4. Tube (10) selon la revendication 3, caractérisé en ce que le conduit (60) comporte une partie centrale appelée échangeur placée sous la cible et formée de plusieurs conduits secondaires (64) de forme cylindrique et de génératrice parallèle à l'axe de révolution de l'ensemble porte-cible.
5. Tube (10) selon la revendication 4, caractérisé en ce que la section des conduits secondaires est circulaire.
6. Tube (10) selon la revendication 5, caractérisé en ce que les conduits secondaires ont un diamètre de dimension supérieure à l'épaisseur de la paroi les séparant.
7. Tube (10) selon la revendication 4, caractérisé en ce que la section des conduits secondaires est triangulaire ou en forme d'arche.
8. Procédé de réalisation d'un ensemble bloc-anode pour tube (10) générateur de rayons X, comprenant les étapes suivantes : • Réalisation d'un ensemble porte-cible (1 ) possédant une surface plane (9) dite cible possédant un axe de révolution (20) passant par le plan de la cible (9) ;
• Réalisation d'un bloc anode (2) comportant un logement ;
• Mise en place de l'ensemble porte-cible (1) dans le logement du bloc-anode (2) de façon que l'axe de révolution (20) soit sensiblement perpendiculaire à la direction moyenne du faisceau électronique (7) d'émission du tube (10) ;
• Réglage de l'angle d'inclinaison α de la cible (9) sur ladite direction moyenne par rotation de l'axe (20) ; • Fixation de l'ensemble porte -cible (1) dans le bloc anode (2).
9. Procédé de réalisation d'un ensemble bloc-anode selon la revendication 8 comportant un ensemble porte-cible (1 ) selon la revendication 4 , caractérisé en ce que l'étape de réalisation de l'ensemble porte-cible comporte les sous-étapes de réalisation suivantes :
• Réalisation d'un premier ensemble mécanique de forme globalement cylindrique comprenant un conduit principal (66) traversant ledit premier ensemble dans une direction sensiblement parallèle à son axe de révolution et dans sa partie centrale un évidement comportant une surface plane
(101 ), le conduit principal (66) débouchant dans cet évidement.
• Réalisation d'un second ensemble mécanique (102) comportant une surface supérieure plane et une surface inférieure comportant des rainures (103) identiques. Assemblage du second ensemble (102) dans l'évidement du premier ensemble de telle sorte que les rainures (103) sont placées en regard de la surface plane (101) de l'évidement, la surface supérieure du second ensemble constituant la cible, l'ensemble des rainures du second ensemble et de la surface plane de l'évidement constituant autant de conduits secondaires formant l'échangeur.
PCT/EP2004/051143 2003-06-20 2004-06-17 Tube generateur de rayons x a ensemble porte-cible orientable WO2004114353A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04741818A EP1636818B1 (fr) 2003-06-20 2004-06-17 Tube generateur de rayons x a ensemble porte-cible orientable
US10/561,262 US7302044B2 (en) 2003-06-20 2004-06-17 X-ray generator tube comprising an orientable target carrier system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0307498A FR2856513A1 (fr) 2003-06-20 2003-06-20 Tube generateur de rayons x a ensemble porte-cible orientable
FR0307498 2003-06-20

Publications (1)

Publication Number Publication Date
WO2004114353A1 true WO2004114353A1 (fr) 2004-12-29

Family

ID=33484614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/051143 WO2004114353A1 (fr) 2003-06-20 2004-06-17 Tube generateur de rayons x a ensemble porte-cible orientable

Country Status (4)

Country Link
US (1) US7302044B2 (fr)
EP (1) EP1636818B1 (fr)
FR (1) FR2856513A1 (fr)
WO (1) WO2004114353A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2739232C1 (ru) * 2020-07-31 2020-12-22 Андрей Владимирович Сартори Рентгеновская трубка для радиационной обработки объектов

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
US8094784B2 (en) 2003-04-25 2012-01-10 Rapiscan Systems, Inc. X-ray sources
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
GB0812864D0 (en) 2008-07-15 2008-08-20 Cxr Ltd Coolign anode
US9046465B2 (en) 2011-02-24 2015-06-02 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
GB0816823D0 (en) 2008-09-13 2008-10-22 Cxr Ltd X-ray tubes
GB0901338D0 (en) 2009-01-28 2009-03-11 Cxr Ltd X-Ray tube electron sources
DE102009007218A1 (de) * 2009-02-03 2010-09-16 Siemens Aktiengesellschaft Elektronenbeschleuniger zur Erzeugung einer Photonenstrahlung mit einer Energie von mehr als 0,5 MeV
WO2013163256A1 (fr) * 2012-04-26 2013-10-31 American Science And Engineering, Inc. Tube à rayons x à ouverture d'anode rotative
CN103906340B (zh) * 2012-12-28 2017-04-12 清华大学 一种驻波电子直线加速器装置及其方法
CN104749199B (zh) * 2013-12-30 2019-02-19 同方威视技术股份有限公司 双能/双视角的高能x射线透视成像系统
CN104749198B (zh) * 2013-12-30 2019-08-06 同方威视技术股份有限公司 双通道高能x射线透视成像系统
US11721514B2 (en) * 2021-04-23 2023-08-08 Oxford Instruments X-ray Technology Inc. X-ray tube anode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE619561C (de) * 1935-10-03 Gerhard Borrmann Dipl Ing Roentgenroehre mit rotierender Antikathode
FR1129144A (fr) * 1955-07-16 1957-01-16 Dutertre & Cie Ets Tube radiogène à anode tournante
FR2208298A5 (fr) * 1972-11-27 1974-06-21 Subrem Sarl

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1714975A (en) * 1923-12-10 1929-05-28 Gen Electric X-ray anode
FR2627899B1 (fr) * 1988-02-26 1990-06-22 Thomson Csf Tube electronique de puissance refroidi par circulation d'un fluide
FR2698721B1 (fr) * 1992-11-27 1995-01-27 Gen Electric Cgr Système de refroidissement d'une anode pour tube à rayons X dans un bloc radiogène sans échangeur de chaleur.
US5892809A (en) * 1997-09-10 1999-04-06 Wittry; David B. Simplified system for local excitation by monochromatic x-rays
US7162005B2 (en) * 2002-07-19 2007-01-09 Varian Medical Systems Technologies, Inc. Radiation sources and compact radiation scanning systems
FR2853450B1 (fr) * 2003-04-04 2006-09-08 Thales Sa Grille de commande d'un tube electronique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE619561C (de) * 1935-10-03 Gerhard Borrmann Dipl Ing Roentgenroehre mit rotierender Antikathode
FR1129144A (fr) * 1955-07-16 1957-01-16 Dutertre & Cie Ets Tube radiogène à anode tournante
FR2208298A5 (fr) * 1972-11-27 1974-06-21 Subrem Sarl

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2739232C1 (ru) * 2020-07-31 2020-12-22 Андрей Владимирович Сартори Рентгеновская трубка для радиационной обработки объектов

Also Published As

Publication number Publication date
EP1636818B1 (fr) 2011-08-03
US7302044B2 (en) 2007-11-27
US20070064873A1 (en) 2007-03-22
EP1636818A1 (fr) 2006-03-22
FR2856513A1 (fr) 2004-12-24

Similar Documents

Publication Publication Date Title
EP1636818B1 (fr) Tube generateur de rayons x a ensemble porte-cible orientable
EP0982976B1 (fr) Propulseur à plasma à dérive fermée d'électrons adapté à de fortes charges thermiques
EP2176877B1 (fr) Dispositif de delivrance d'un faisceau de rayons x a haute energie
EP1804271B1 (fr) Source compacte à faisceau de rayons X de très grande brillance
FR3035937A1 (fr) Systeme de frein
EP0048690B1 (fr) Tube à gaz à décharge pour émission laser de puissance à très haute stabilité
EP3652772B1 (fr) Source generatrice de rayons ionisants compacte
WO2004042769A1 (fr) Generateur de rayons x a dissipation thermique amelioree et procede de realisation du generateur
FR3064753B1 (fr) Systeme de generation d’un champ magnetique vectoriel
FR2463502A1 (fr) Perfectionnements aux appareils a hyperfrequences du type magnetron
FR2675628A1 (fr) Ensemble anodique a forte dissipation thermique pour tube a rayons x et tube ainsi obtenu.
WO2009083534A1 (fr) Refroidissement d'un tube générateur de rayons x
EP1579469A2 (fr) Tube a micro-ondes a accord mecanique de frequence
EP0330542B1 (fr) Tube électronique de puissance refroidi par circulation d'un fluide
FR2536584A1 (fr) Disque en graphite pour anode tournante de tubes a rayons x
FR2765727A1 (fr) Radiateur thermique utilise pour refroidir un tube a onde progressive par un rayonnement thermique
FR2859819A1 (fr) Tubes a ondes progressives comprenant une structure de rayonnement thermique avec une conductivite thermique elevee
EP4111831A1 (fr) Applicateur d'onde haute fréquence, coupleur et dispositif associés pour la production d'un plasma
FR2493615A1 (fr) Tube a gaz a decharge pour emission laser de puissance a tres haute stabilite
FR2627898A1 (fr) Tube electronique refroidi par circulation d'un fluide
FR2833749A1 (fr) Refroidissement d'un tube electronique
CH653182A5 (en) Gas discharge tube for laser power emission with very high stability
EP3839396A1 (fr) Dispositif de refroidissement à ailette et insert
FR2925759A1 (fr) Accord d'un tube electronique
EP1123567B1 (fr) Charge hyperfrequence surdimensionnee de grande puissance continue et son utilisation comme calorimetre

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004741818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007064873

Country of ref document: US

Ref document number: 10561262

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004741818

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10561262

Country of ref document: US