WO2004113527A1 - Gene involved in abscisic acid inactivation - Google Patents

Gene involved in abscisic acid inactivation Download PDF

Info

Publication number
WO2004113527A1
WO2004113527A1 PCT/JP2004/008949 JP2004008949W WO2004113527A1 WO 2004113527 A1 WO2004113527 A1 WO 2004113527A1 JP 2004008949 W JP2004008949 W JP 2004008949W WO 2004113527 A1 WO2004113527 A1 WO 2004113527A1
Authority
WO
WIPO (PCT)
Prior art keywords
aba
gene
seq
amino acid
plant
Prior art date
Application number
PCT/JP2004/008949
Other languages
French (fr)
Japanese (ja)
Inventor
Eiji Nambara
Yuji Kamiya
Tetsuo Kushiro
Masanori Okamoto
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Publication of WO2004113527A1 publication Critical patent/WO2004113527A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8267Seed dormancy, germination or sprouting
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Definitions

  • the present invention relates to a gene involved in inactivating the plant hormone abscisic acid, a recombinant vector containing the gene, a transgenic plant, and a transformant containing the recombinant vector.
  • BACKGROUND ART 'Apsidic acid hereinafter abbreviated as ABA
  • ABA BACKGROUND ART 'Apsidic acid
  • ABA is synthesized in vivo when plants are exposed to environmental stresses such as drying and low temperatures. As ABA is biosynthesized in plants, plants gain the ability to adapt to these environmental stresses. ABA is also biosynthesized during normal development. For example, ABA is synthesized in maturing seeds. The synthesized ABA induces dormancy in seeds and suppresses seed germination. As described above, various studies have been conducted on ABA, but sufficient studies have not been made on the reaction process of ABA degradation or on the enzymes' genes involved in ABA degradation. If research progresses on the reaction process of ABA degradation and on the enzymes and genes involved in ABA degradation, and if ABA degradation can be controlled in plants, it will be possible to elucidate the mechanism of adaptation to environmental stress and control germination.
  • Inactivation of ABA occurs through oxidative and branidation pathways (Cutler and rochko 1999, Zeevaart and Creelman 1988; both reviewed).
  • the inactivation pathways related to the main physiology of ABA such as plant drying and water absorption during seed germination, are oxidation pathways.In many plant species, seed germination and plant drying and re-absorption are important.
  • the amount of phaseic acid (PA), an inactivation product of the oxidation pathway, and the amount of dihydrophaseic acid (DPA) generated by reduction of the ketone at the 4'-position of PA are observed.
  • metabolite analysis has rarely pointed out the importance of the physiological role of the conjugate pathway.
  • There is only one report of a gene involved in ABA inactivation and a glycosylase has been cloned from Azuki by Xu et al. (2002).
  • Non-Patent Document 1 Cutler, A.J., and Krochko, J.E. (1999) .Formation and breakdown of ABA.Trens Plant Sci. 4, 472-478
  • Non-Patent Document 2 Zeevaart, J.A., and Creelman, R.A. (1988) .Metaboli sm and physiology of abscisic acid.Annu.Rev.Plant Physiol.Plant Mol.Biol. 39, 439-473.
  • Non-Patent Document 3 Xu, Z.-J., Nakajima, M., Suzuki, Y., and Yamaguchi, I. (2002) .Shir onirtg and characterization of the abscisic acid-specific glucosyl transferase gene from Adzuki bean seedlings. Plant Physiol. 129, 1285-1295.
  • an object of the present invention is to provide a novel gene involved in ABA inactivation and its use. Disclosure of the invention
  • the present inventors have conducted intensive studies and as a result, have newly found a gene encoding a protein having ABA inactivating activity, and have completed the present invention.
  • the present invention includes the following.
  • Absidine derived from a protein having an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 4, and having an activity of inactivating abscisic acid Seeds whose acid inactivating activity has been inhibited.
  • FIG. 9 is a characteristic diagram showing a result of the operation.
  • FIG. 2 is a characteristic diagram showing the results obtained when the reaction solution obtained from the transformed yeast into which the CYP707A3 cDNA was introduced was subjected to HPLC.
  • FIG. 3 shows the results when the reaction solution from the transformed yeast into which only empty pYeDP60 plasmid was introduced was subjected to HPLC.
  • FIG. 4 is a characteristic diagram showing the results when a reaction solution obtained from the transformed yeast into which the CYP707A2 cDNA was introduced was subjected to HPLC.
  • FIG. 5 is a characteristic diagram showing the results obtained when the reaction solution obtained from the transformed yeast into which the CYP707A4 cDNA was introduced was subjected to HPLC.
  • Fig. 6 is a characteristic diagram showing the inhibition of ABA 8'-hydroxylase (CYP707A1) activity by inhibitors (Tetcyclacis, Metyrapone and Uniconazole).
  • FIG. 7 is a diagram showing the expression of CYP707A1, CYP707A2, CYP707A3 and CYP707A4 in each organ by mRNA level.
  • FIG. 8 is a graph showing a change in the amount of endogenous ABA when absorbing dry seeds. :
  • FIG. 9 is a diagram showing the expression of CYP707A1, CYP707A2, CYP707A3, and CYP707A4 genes at the time of seed water absorption.
  • FIG. 10 is a graph showing a change in ABA amount at the time of drying and water absorption of a plant at the second week.
  • FIG. 11 is a graph showing changes in the amount of NCED3 mRNA during drying and water absorption of plants at 2 weeks.
  • FIG. 12 is a graph showing changes in the amounts of CYP707A1, CYP707A2, CYP707A3, and CYP707A4raRNA at the time of drying and water absorption of plants at the second week.
  • FIG. 13 is a graph showing changes in CYP707A1, CYP707A2, CYP707A3 and CYP707A4 mRNA levels when plants were treated with ABA (30 M) and water on the second week.
  • Cyp707a2- 1 mutant gene, Cyp707a2_2 mutant gene is a schematic diagram showing the configuration of Cyp707a3- 1 mutant gene and cy P 707a3- 2 mutant gene.
  • FIG. 15 is a characteristic diagram showing the relationship between the water absorption treatment and the germination rate in the CYP707A2 gene knockout gun and the CYP707A3 gene knockout line.
  • FIG. 16 is a characteristic diagram comparing the amounts of ABA, PA and DPA contained in dried seeds between the CYP707A2 gene knockout line and the wild type.
  • Figure 17 shows ABA in CYP707A2 gene knockout line and wild type seeds. It is a special use figure which shows a time-dependent change of quantity.
  • the gene according to the present invention encodes a protein having a function of inactivating ABA (hereinafter, ABA inactivating enzyme).
  • the function of inactivating ABA means a function of converting ABA to phaseinate (hereinafter abbreviated as PA).
  • PA phaseinate
  • Sources of genomic DNA include part of a plant or whole plant such as plant leaves, stems and roots.
  • the target plant is not particularly limited, and includes Arabidopsis, rice, tomato, and soybean. Plants can be grown in the field by sowing seeds in soil, or can be grown under aseptic conditions by sowing in solid media such as GM and MS media. If necessary, a systemic acquired resistance (SAR) inducer such as PBZ (probenazole) can be added.
  • SAR systemic acquired resistance
  • PBZ probenazole
  • Preparation of genomic DNA from grown plants can be performed according to a conventional method. For example, first, a plant frozen with liquid nitrogen is ground in a mortar or the like, and the ground material is suspended in a buffer containing a surfactant such as TritonX-100 and filtered with gauze or the like. Subsequently, the cell nucleus is precipitated by centrifuging the filtrate, and a sodium lauroylpsychosinate solution or the like is added to the precipitate to digest the cell nucleus. Digestion fluid After the sample is subjected to, for example, centrifugation using a shim-brominated medium, the DNA layer is recovered, and the obtained DNA solution is dialyzed against a TE buffer or the like. Finally, the obtained DNA solution is precipitated by adding ethanol, and then dissolved in an appropriate amount of TE buffer or the like, whereby genomic DNA can be obtained.
  • a surfactant such as TritonX-100 and filtered with gauze or the like.
  • the ABA inactivating enzyme gene can be cloned from genomic DNA prepared according to “(1) Preparation of plant genome”.
  • a genome can be prepared from plants such as Arabidopsis, rice, tomato, and soybean, and an ABA-inactivating enzyme gene derived from Arabidopsis, rice, tomato, and soybean can be cloned.
  • Arabidopsis thaliana ABA inactivating enzyme genes have four types of homologues, which are called CYP707A1, CYP707A2, CYP707A3 and CYP707A4, respectively.
  • the nucleotide sequences of these CYP707A1, CYP707A2, CYP707A3, and CYP707A4 are shown in SEQ ID NOs: 1, 3, 5, and 7, respectively.
  • the amino acid sequences of the proteins (ABA inactivating enzymes) encoded by these SEQ ID NOs: 1, 3, 5 and 7 are shown in SEQ ID NOs: 2, 4, 6 and 8, respectively.
  • amino acid sequence of Arabidopsis ABA-inactivating enzyme (CYP707A1, CYP707A2, CYP707A3 and CYP707A4) is limited to the amino acid sequences shown in SEQ ID NOs: 2, 4, 6 and 8 as long as they have the function of inactivating ABA. However, it may be an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8.
  • several amino acids mean, for example, 2 to 50 amino acids, preferably 2 to 30 amino acids, and more preferably 2 to 10 amino acids.
  • a database containing the genomic nucleotide sequences of various plants was searched.
  • ABA inactivating enzyme genes in various plants can be identified. For example, by searching a database (http: ⁇ drnelson. Utmem. Edmem / edu / rice, html) that stores the nucleotide sequence of the rice (0. sativa (japonica)) genome, accession numbers AP004129.1 and AP004162 are obtained.
  • accession numbers AP004129.1 and AP004162 are obtained.
  • ABA inactivating enzyme gene in rice identified in 1 can be identified.
  • Tomato Geno Database containing the base sequence of the system
  • the ABA inactivating enzyme gene in tomato identified by the accession numbers EST; AI489171 and EST247510 cLED17I4 can be identified.
  • the soybean identified by accession numbers AI431116, AI735873, and AI966688 ABA inactivating enzyme genes can be identified.
  • a database containing these rice, tomato, and soybean genome sequences can be accessed on Dr. David Nelson's Cytochrome P450 Homepage at the University of Tennessee.
  • examples of the rice-derived ABA inactivating enzyme exhibiting high homology to Arabidopsis-derived ABA inactivating enzyme include those having the amino acid sequence shown in SEQ ID NOS: 24 and 25. it can.
  • examples of the tomato-derived ABA-inactivating enzyme having high homology to Arabidopsis-derived ABA-inactivating enzyme include those having the amino acid sequence shown in SEQ ID NO: 26.
  • the amino acid sequences of ABA inactivating enzymes from Arabidopsis thaliana (CYP707A1, CYP707A2, CYP707A3 and CYP707A4), the amino acid sequences of ABA inactivating enzymes from rice (SEQ ID NOS: 24 and 25), and ABA inactivating from tomato
  • Table 1 shows the results of comparing the homology with the amino acid sequence of the activating enzyme (SEQ ID NO: 26).
  • the unit of the numerical values in Table 1 is%.
  • GYP707A4 56.5 57.5 57.4 SEQ ID NO: 24 52.9 67.5 SEQ ID NO: 25 49.9
  • the ABA inactivating enzyme gene can be isolated according to a conventional method.
  • “(1) ABA inactivating enzyme gene can be isolated by PCR using a pair of appropriately designed primers with the genome prepared according to “Preparation of product genome” as type III.
  • a cDNA library is prepared using total mRNA extracted from plant cells, and a cDNA containing the ABA inactivating enzyme gene is isolated from the cDNA library using a DNA probe designed based on the nucleotide sequence. can do.
  • the ABA inactivating enzyme gene is not limited to the nucleotide sequences shown in SEQ ID NOs: 1, 3, 5, and 7, but may be a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NOs: 1, 3, 5, or 7.
  • DNAs that hybridize under stringent conditions and that encode a protein having a function of inactivating ABA are also included.
  • the stringent conditions refer to, for example, conditions at a sodium concentration of 800 to 1000 l ⁇ m, preferably 850 to 950 mM, and a temperature of 60 to 70 ° (: preferably 65 to 68 ° C).
  • the introduction of the mutation into the ABA inactivating enzyme gene can be carried out according to a standard method, using a known method such as the Kunkel method or the Gapped duplex method or a method similar thereto, for example, using a site-directed mutagenesis method.
  • Mutation-introduced kits such as Mutant-K (TAKARA) and Mutant-G (TAKARA)
  • TAKARA LA PCR in vitro Mutagenesis series kit .
  • the recombinant vector of the present invention can be obtained by ligating (inserting) the gene of the present invention into an appropriate vector.
  • the vector for introducing the gene of the present invention is not particularly limited as long as it can be replicated in a host, and examples include plasmid DNA and phage DNA.
  • Plasmid DNA includes plasmids for Escherichia coli host such as pBR322, pBR325, pUC118 and pUC119, plasmids for Bacillus subtilis such as pUB110 and pTP5, plasmids for yeast host such as YEpl3, YEp24 and YCp50, and plants such as pBI221 and pBI121. And phage DNA; and I phage. Furthermore, animal viruses such as retrovirus or vaccinia virus, and insect virus vectors such as vaccinia virus can also be used.
  • purified DNA is appropriately A method of cutting with a restriction enzyme, inserting into an appropriate restriction enzyme site of vector DNA or a multicloning site, and ligating to a vector is employed.
  • the vector of the present invention includes a vector containing a promoter, a gene of the present invention, and, if desired, a cis element such as an enhancer, a splicing signal, a polyA addition signal, a selection marker, a ribosome binding sequence (SD sequence), and the like.
  • a selection marker include an ampicillin resistance gene, a neomycin resistance gene, a dihydrofolate reductase gene, and the like.
  • the transformant of the present invention can be obtained by introducing the recombinant vector of the present invention into a host so that the target gene can be expressed.
  • the host is not particularly limited as long as it can express the gene of the present invention.
  • the genus Escherichia such as Escherichia coli
  • the genus Bachinoles such as Bacillus subtilis
  • the genus Pseudomonas such as Pseudomonas putida
  • the recombinant vector of the present invention is capable of autonomous replication in the bacterium, and comprises a promoter, a ribosome binding sequence, a gene of the present invention, and a transcription termination sequence. Is preferred. Further, a gene that controls a promoter may be included.
  • Escherichia coli examples include Escherichia coli HMS174 (DE3), K12 and DH1, and examples of Bacillus subtilis include Bacillus subtilis Ml114 and 207-21. No.
  • Any promoter can be used as long as it can be expressed in a host such as E. coli.
  • those derived from Escherichia coli such as trp promoter, lac promoter, PL promoter and PR promoter and those derived from phage such as T7 promoter are used.
  • artificially designed and modified promoters such as the tac promoter may be used.
  • the method for introducing the recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria.
  • a method using calcium ions [Cohen, SN, et al .: Proc. Natl. Acad. Sci., USA, 69: 2110-2114 (1972)], an electroporation method, and the like.
  • yeast When yeast is used as a host, for example, Saccharomyces 'Celebiche, Schizosaccharomyces' bomb, Pichia's Pastris and the like are used.
  • the promoter is not particularly limited as long as it can be expressed in yeast.
  • examples include gall promoter, gal10 promoter, heat shock protein promoter, MFal promoter, PH05 promoter, PGK promoter, GAP promoter, ADH promoter. Promoter and A0X1 promoter.
  • the method for introducing a recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast.
  • the electroporation method [Becker, DM, et al .: Methods. Enzymol., 194: 182- 187 (1990)]
  • Spheroplast method [Hinnen, A. et al .: Proc. Natl. Acad. Sci., USA, 75: 1929-1933 (1978)]
  • lithium acetate method [Itoh, H .: J Bacteriol., 153: 163-168 (1983)].
  • a plant cell for example, a cell established from Arabidopsis thaliana, tobacco, sorghum, rice, carrot, etc., or protoplasts prepared from the plant are used.
  • the promoter is not particularly limited as long as it can be expressed in plants, and examples thereof include a cauliflower mosaic virus 35S RNA promoter, an rd29A gene promoter, and rbcS proquita.
  • Methods for introducing a recombinant vector into a plant include a method using polyethylene glycol of Abel et al. [Abel, H., et al .: Plant J. 5: 421-427 (1994)] and an electroporation method. Is mentioned.
  • animal cells are used as the host, monkey cells COS-7, Vero, Chinese hamster ovary cells (CH0 cells), mouse L cells, rat GH3, and human FL cells are used.
  • a promoter an SRa promoter, an SV40 promoter, an LTR promoter, a CMV promoter, or the like may be used, or an early gene promoter of a human cytomegalovirus may be used.
  • Methods for introducing the recombinant vector into animal cells include, for example, the electoral poration method, the calcium phosphate method, and the lipofection method.
  • Sf9 cells When insect cells are used as a host, Sf9 cells, Sf21 cells, and the like are used.
  • a method for introducing a recombinant vector into an insect cell for example, a calcium phosphate method, a lipofection method, an electoral poration method and the like are used.
  • the ABA inactivating enzyme of the present invention has an amino acid sequence encoded by the ABA inactivating enzyme gene of the present invention, or has an amino acid sequence in which the mutation is introduced into one or several amino acids in the amino acid sequence. And has an inactivating activity.
  • the ABA-inactivating enzyme can be obtained by culturing the transformant in a medium and collecting from the culture.
  • culture means any of a culture supernatant, a cultured cell or a cultured bacterial cell, and a crushed cell or bacterial cell.
  • a usual method used for culturing a host can be applied.
  • the medium for culturing the transformant obtained using a microorganism such as Escherichia coli or yeast as a host contains a carbon source, a nitrogen source, inorganic salts, and the like, which can be used by the microorganism, to efficiently culture the transformant.
  • any of a natural medium and a synthetic medium may be used as long as the medium can be used. If plant cells are used as a host, the medium may be supplemented with vitamins such as thiamine and pyridoxine as necessary. If animal cells are used as the host, serum such as RPMI1640 may be used. Is added.
  • carbon sources include carbohydrates such as glucose, fructose, sucrose and starch; organic acids such as acetic acid and propionic acid; ethanol and propanol. Such alcohols are used.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and other ammonium salts of inorganic or organic acids or other nitrogen-containing compounds, as well as peptone, meat extract, corn steep liquor, etc. Is used.
  • potassium (I) phosphate potassium (II) phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like are used.
  • an antibiotic such as ampicillin or tetracycline may be added to the medium as needed.
  • the cultivation is usually carried out at 30 to 37 ° C for 6 to 24 hours under aerobic conditions such as shaking culture or aeration and stirring culture.
  • the pH is maintained at 7.0 to 7.5.
  • the pH is adjusted using an inorganic or organic acid, an alkaline solution, or the like.
  • an inducer may be added to the medium, if necessary.
  • an inducer may be added to the medium, if necessary.
  • an inducer may be added to the medium, if necessary.
  • isopropyl- / 3-D-thiogalatatopyranoside (IPTG) is transformed with an expression vector using the trp promoter.
  • IPTG isopropyl- / 3-D-thiogalatatopyranoside
  • IAA indole ataryl acid
  • the ABA-inactivating enzyme When the ABA-inactivating enzyme is produced in the cells or cells after the culture, the cells or cells are disrupted to extract the ABA-inactivating enzyme.
  • the culture solution is used as it is, or the cells or cells are removed by centrifugation or the like. Then, common biochemical methods used for protein isolation and purification, such as ammonium sulfate precipitation, gel chromatography, ion exchange chromatography, affinity chromatography, etc., may be used alone or in appropriate combination. Thereby, the ABA-inactivating enzyme of the present invention can be isolated and purified from the culture.
  • a solution containing the ABA-inactivating enzyme and ABA obtained in “(1) Production of ABA-inactivating enzyme” is prepared and reacted for a predetermined time, and the amount of ABA and the ABA contained in the solution after the reaction are inactivated. Measure the amount of 8'-hydroxy ABA or PA obtained. As a result, ABA inactivating enzyme ABA inactivation function can be analyzed.
  • ABA is a plant hormone biosynthesized in plants and is involved in plant morphogenesis and physiological phenomena. For example, it is known that dormancy is induced by biosynthesis of ABA in plant seeds, and germination is promoted by inactivation of ABA, that is, inactivation of ABA.
  • ABA-inactivating enzymes convert ABA to 8'-hydroxy ABA (or PA) and inactivate ABA. Therefore, morphogenesis and physiological phenomena caused by inactivation of ABA can be suppressed by functionally deficient of the ABA inactivating enzyme in the plant. For example, in a transgenic plant in which the ABA inactivating enzyme is functionally deficient, seed germination can be suppressed. In a transgenic plant modified so that the ABA inactivating enzyme can be expressed only under predetermined conditions, the timing of germination can be regulated.
  • CYP707A2 (SEQ ID NO: 4) is relatively highly expressed in seeds and is greatly involved in seed germination. Therefore, in the seed in which the function of CYP707A2 (SEQ ID NO: 4) is inhibited, dormancy is maintained as compared with the wild-type seed.
  • maintaining dormancy means delaying the germination of the seed under conditions that induce germination such as the state of water absorption of the seed. Whether or not the dormancy of the seed has been maintained can be determined by measuring the time until germination after the seed is brought into a water absorbing state.
  • the function of the ABA-inactivating enzyme can be suppressed by, but not limited to, an antisense method or an RNA interference (RNAi) method. Alternatively, it can be carried out by knocking out an ABA inactivating enzyme by a homologous gene recombination method or the like. Furthermore, it can also be performed by introducing a mutant ABA inactivating enzyme gene into a plant.
  • RNAi RNA interference
  • cereals with deep seed dormancy and strong resistance to stress are screened by screening plants with abnormal ABA-inactivating enzyme genes from crops. You can get a crop. For example, in rice, a transposon is randomly inserted into a gene, It is known that the function is lost, and a transposon is inserted into the ABA inactivating enzyme gene, so that a plant having a defective function can be screened.
  • the target site is not particularly limited, and it is possible to target a protein coding region, a 5 ′ untranslated region, or the like.
  • An antisense nucleotide that hybridizes to the base sequence of the gene encoding the ABA inactivating enzyme represented by SEQ ID NOS: 1, 3, 5, 7, or the like or any part of its complementary sequence may be used.
  • the antisense nucleotide is preferably an antisense nucleotide corresponding to at least 15 or more consecutive nucleotides in the nucleotide sequence of the gene encoding ABA inactivating enzyme.
  • Antisense nucleotides include not only those in which all nucleotides corresponding to nucleotides constituting a predetermined region of DNA or mRNA are complementary sequences, and those in which DNA or mRNA and nucleotides encode an ABA inactivating enzyme. As long as it can specifically hybridize to the nucleotide sequence, it includes those having a mismatch of one or more nucleotides.
  • RNAi refers to a phenomenon in which, when double-stranded RNA (dsRNA) is introduced into a cell, the mRNA in the cell corresponding to the RNA sequence is specifically degraded, and the protein is not expressed. In the RNAi method, double-stranded RNA is usually used, but is not particularly limited.
  • double-stranded RNA formed in self-complementary single-stranded RNA can be used.
  • the double-stranded region may be a double-stranded region in all regions, or even if some regions (for example, both ends or one end) have a single-stranded structure or the like.
  • the length of the oligo RNA used for RNAi is not limited, and is, for example, 25 bases or more (25 bp or more in the case of double strand).
  • Knockout of the gene encoding the ABA inactivating enzyme can be performed as follows. Knockouts are caused by foreign DNA and endogenous transposons. In the case of exogenous DNA, screening can be performed using a library of transgenic plants into which exogenous DNA has been randomly introduced, and in the case of endogenous transposons, can be screened using a plant library that has been regenerated through tissue culture that facilitates transposon flight. . Primers based on known sequences of foreign DNA and endogenous transposons
  • Transgenic plants in which the ABA inactivating enzyme is functionally deficient can be produced as follows. That is, first, a mutant ABA-inactivating enzyme gene that is deficient in ABA-inactivating enzyme activity is constructed.
  • the mutant ABA inactivating enzyme gene can be prepared according to the mutation introduction method described in “1. (2) Cloning of ABA inactivating enzyme gene” above.
  • the above-mentioned transgenic plant can be produced by introducing the mutant ABA inactivating enzyme gene into a plant host using genetic engineering techniques.
  • Methods for introducing a mutant ABA-inactivating enzyme gene into a plant host include indirect methods such as the agrobacterium infection method and direct methods such as the particle gun method, polyethylene glycol method, ribosome method, and microinjection method. No.
  • a transgenic plant into which a mutant ABA inactivating enzyme gene has been introduced can be prepared as follows.
  • the recombinant vector for plant introduction is prepared by cutting out the mutant ABA inactivating enzyme gene from the plasmid containing the mutant ABA inactivating enzyme gene using an appropriate restriction enzyme, and adding an appropriate linker to the obtained fragment as necessary. After ligation, it can be obtained by inserting into a cloning vector for a plant cell.
  • a cloning vector a plasmid of a binary vector system such as pBI101, pBI121, pGA482, pGAH, or pBIG—an intermediate vector system plasmid such as pLGV23Neo, pNCAT, or pM0N200 can be used.
  • the target gene is inserted between the boundary sequences (LB, RB) of the binary vector, and the recombinant vector is amplified in E. coli.
  • the amplified recombinant vector is introduced into Agrobacterium tumefaciens C58, LBA4404, EHA101, C58ClRifR, EHA105, etc. by a freeze-thaw method, an electoral poration method or the like, and the Agrobacterium teriformum is planted.
  • an agrobacterium for plant infection containing the gene of the present invention is prepared by a three-way conjugation method [Nucleic Acids Research, 12: 8711 (1984)].
  • a plant promoter or a terminator In order to express a foreign gene or the like in a plant, it is necessary to arrange a plant promoter or a terminator before and after the structural gene, respectively.
  • Promoters that can be used in the present invention include, for example, 35S transcript derived from the force reflower mosaic virus (CaMV) [Jefferson, RA et al .: EMBO J 6: 3901-3907 (1987)], maize Ubiquitin [Christensen, AH et al .: Plant Mol. Biol. 18: 675-689 (1992)], nopaline synthase (N0S) gene, otatobin (OCT) synthase gene promoter, and the like.
  • the terminator sequence include a terminator derived from cauliflower mosaic virus-derived ⁇ nopaline synthase gene.
  • the present invention is not limited to these promoters and terminators as long as they are known to function in plants.
  • an intron sequence between the promoter sequence and the gene of the present invention which has a function of enhancing gene expression, such as an intron of corn alcohol dehydrogenase (Adhl) [Genes & Development 1: 1183-1200. (1987)] can be introduced.
  • Adhl corn alcohol dehydrogenase
  • an effective selectable marker gene in combination with the gene of the present invention in order to efficiently select a desired transformed cell.
  • the selection markers used in this case include the kanamycin resistance gene ( ⁇ ), the hygromycin phosphotransferase (htp) gene that confers resistance to the antibiotic hygromycin to plants, and bialaphos resistance.
  • htp hygromycin phosphotransferase
  • bar phosphinothricin acetyltransferase
  • the mutant ABA inactivating enzyme gene and the selectable marker gene may be integrated together into a single vector, or two types of recombination, each incorporated into a separate vector. DNA may be used.
  • a plant host refers to a plant cultured cell, a whole plant of a cultivated plant, a plant organ (eg, leaf, petal, stem, root, rhizome, seed, etc.), or a plant tissue (eg, epidermis, phloem, soft tissue) , Xylem, vascular bundle, etc.).
  • a plant organ eg, leaf, petal, stem, root, rhizome, seed, etc.
  • a plant tissue eg, epidermis, phloem, soft tissue
  • Xylem vascular bundle, etc.
  • the mutant ABA inactivating enzyme gene can be obtained by transfecting a vector into a collected plant section using an agrobacterium infection method, a particle gun method, or a polyethylene glycol method. Can be used to transform a plant host. Alternatively, transgenic plants can be prepared by introducing them into protoplasts by electroporation.
  • the step of infecting a plant with an agrobacterium containing a plasmid containing the target gene is essential.
  • This is the vacuum infiltration method [CR Acad. Sci. Paris, Life Science, 316: 1194 (1993)]. That is, Arabidopsis thaliana grown in soil in which equal amounts of permikilite and perlite were combined in Arabidopsis thaliana was directly immersed in a culture solution of Agrobacterium containing a plasmid containing the gene of the present invention, and the Arabidopsis thawed.
  • seeds are sown on an MS agar medium supplemented with an appropriate antibiotic in order to select an individual having the target gene.
  • the seeds of the transgenic plant into which the gene of the present invention has been introduced can be obtained by transferring the plant grown in this medium into a pot and growing it.
  • transgene is similarly introduced into the genome of a host plant, but a phenomenon called a position effect in which the expression of the transgene differs due to a different location of the transgene is observed.
  • Northern method using DNA fragment of transgene as probe By performing the assay, a transformant in which the transgene is more strongly expressed can be selected.
  • DNA can be extracted from these cells and tissues in accordance with a conventional method, using a known PCR method or The detection can be performed by detecting the introduced gene using Southern analysis.
  • transgenic plants modified so that the ABA inactivating enzyme can be expressed only under predetermined conditions can be carried out according to the above-mentioned method.
  • the activity of the ABA-inactivating enzyme of the plant in which the function of the ABA-inactivating enzyme thus obtained is suppressed or the activity of the mutant ABA-inactivating enzyme is determined by the above-mentioned “3. Production and functional analysis of ABA-inactivating enzyme”. The analysis can be performed according to the method described above.
  • Seeds can be obtained by cultivating the plant produced as described above, in which the ABA inactivating enzyme gene is knocked out, or the transgenic plant, into which the mutant ABA inactivating enzyme gene is introduced, by an ordinary method. For example, in a seed collected from a transgenic plant into which a mutant ABA inactivating enzyme gene has been introduced, ABA inactivation is suppressed, so that a dormant state can be maintained for a long period of time. This makes the seed suitable for long-term storage and transportation.
  • ABA can be inactivated at a desired timing in a seed collected from a transgenic plant modified so that the ABA inactivating enzyme can be expressed only under predetermined conditions.
  • the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited to these Examples. '
  • the resulting cDNA fragments are yeast expression vector pYeDP60 (Denis Pompon provide Mr. 0 Pompon, D., Louerat, B. , Bronine, A., and Urban, P. (1996). Yeast expression of Animal and plant P450s in optimized redox environment. Mothod. Enzymol. 272, 51-64).
  • the Bam HI site of pYeDP60 was blunt-ended, and ligation was performed using Eco RI-treated Bam HI site.
  • the BamHI site of pYeDP60 was blunt-ended and ligated using Kpnl-treated one.
  • Each of the obtained plasmids was used as a WAT11 strain of yeast (Saccharomyces cerevisiae) (Fe from Denis Pompon ft, Pompon, D., Louerat, B., Bronine, A., and Urban, P. (1996). Expression of animal and plant P450s in an optimized redox environment. Mothod. Enzymol. 272, 51-64) according to a standard method.
  • the transformed yeast into which each plasmid was introduced was cultured in an SGI medium containing glucose, and then transferred to an SLI medium containing galactose. After culturing for 12 hours, the cells were collected. Then, the transformed yeast was suspended in a phosphate buffer (pH 7.6), and the cells were disrupted by a French press.
  • a PEGASIL-0DS column (4.6 x 250 bars) was used. 10% methanol and 0.1% acetic acid Solution A and solution B consisting of 60% methanol and 0.1% acetic acid are prepared.Elute 0 to 3 minutes with 50% solution B, then elute with 50% B for 3 to 33 minutes. Elution was carried out with a gradient of ⁇ 100% B solution. The elution time is 16 minutes for the product PA and 30 minutes for the starting material ABA.
  • FIGS. 1 shows the results obtained when the reaction solution obtained from the transformed yeast into which the CYP707A1 cDNA was introduced was subjected to HPLC.
  • FIG. 2 shows the results obtained when the reaction solution obtained from the transformed yeast into which the CYP707A3 cDNA was introduced was subjected to HPLC.
  • FIGS. 1 to 3 shows the results when the reaction solution from the transformed yeast into which only empty pYeDP60 plasmid was introduced was subjected to HPLC.
  • the PA peak is shown as “PA”
  • the ABA peak is shown as “ABAJ”.
  • the peak was obtained at the same retention time (11 minutes) as that of PA, and the pattern of the mass spectrum was known. It completely matched the spectrum pattern of PA.
  • the transformed yeast into which the CYP707A1 cDNA was introduced and the transformed yeast into which the CYP707A3 cDNA had been introduced had the activity of converting ABA to PA. That is, the cDNA of CYP707A1 and the cDNA of CYP707A3 could be identified as genes encoding ABA 8'-hydroxylase.
  • CYP707A2 cDNA and CYP707A4 cDNA were obtained from dried seeds and immature seeds according to a standard method.
  • cDNA of CYP707A2 and the cDNA of CYP707A4 the ability of the proteins encoded by CYP707A2 and CYP707A4 to inactivate ABA was examined according to the method described above. The results are shown in FIGS.
  • FIG. 4 shows the results obtained when the reaction solution obtained from the transformed yeast into which the CYP707A2 cDNA was introduced was subjected to HPLC.
  • FIG. 4 shows the results obtained when the reaction solution obtained from the transformed yeast into which the CYP707A4 cDNA was introduced was subjected to HPLC.
  • FIGS. 4 and 5 it was revealed that the transformed yeast into which the CYP707A2 cDNA was introduced and the transformed yeast into which the CYP707A4 cDNA was introduced also had an activity of converting ABA to PA.
  • the cDNA of CYP707A2 and the cDNA of CYP707A4 could be identified as genes encoding ABA 8'-hydroxylase.
  • ABA 8'-hydroxylase inhibitors were studied for the biochemical analysis of Arabidopsis ABA 8'-hydroxylase (here, CYP707A1).
  • CYP707A1 Arabidopsis ABA 8'-hydroxylase
  • Tetcyclacis, Metyrapone and Uniconazole known as P450 inhibitors were used as the inhibitor.
  • CYP707A1, A2, A3 and A4 mRNA in Arabidopsis thaliana was analyzed by quantitative PCR.
  • RNAqueous TM (Ambion) was used to extract total RNA from pods and seeds.
  • TRIZOL Reagent (Invitrogen) was used for extraction of total RNA from other organs. The extraction was performed according to the manual attached to the extraction kit, and the total RNA was subjected to LiCl precipitation before the reverse transcription reaction. Reverse transcription was performed using Superscript TM First-Strand Synthesis System for RT-PCR (manufactured by Invitrogen) according to the attached manual.
  • ABI PRISM 7000 (Applied Biosystems) was used to quantify the reverse transcript by the Taqman probe method.
  • the conditions of the thermal cycler were such that the enzyme was activated by treatment at 50 ° C for 2 minutes, followed by treatment at 95 ° C for 15 minutes. Subsequently, the denaturation reaction was performed at 95 ° C for 15 seconds, and the anneal / extension reaction was performed at 60 ° C for 1 minute, and the denaturation reaction and the anneal / extension reaction were repeated 45 times.
  • the forward primer, reverse primer and TaqMan probe used for quantification of CYP707A1 are as follows.
  • the forward primer, reverse primer and TaqMan probe used for quantification of CYP707A2 are as follows.
  • the forward primer, reverse primer and TaqMan probe used for the quantification of CYP707A3 are as follows.
  • the forward primer, reverse primer and TaqMan probe used for quantification of CYP707A4 are as follows.
  • the forward primer, reverse primer and TaqMan probe used for quantification of AtNCED3 are as follows.
  • Arabidopsis CYP707A mRNA was detected in all organs examined, including rosette leaves, roots, stems, inflorescences, immature fruits, and dried seeds. In particular, immature fruits had higher CYP707A1 force S and dried seeds had higher CYP707A2 mRNA levels (Fig. 7).
  • RNA prepared from water-absorbed seeds that had been treated twice in a light place for 6, 12, 24 hours after absorption of dried seeds, potatoes, and CYP707A2 mRNA The amount of mRNA rapidly increased 6 hours after water absorption, and then decreased.
  • CYP707A1 and CYP707A3 did not accumulate much mRNA in dried seeds, but tended to increase after 12 hours after water absorption.
  • CYP707A4 mRNA could not be detected within 24 hours of water absorption (Fig. 9). In the studies showing the results in FIGS. 8 and 9, seeds 4 weeks after harvest were used.
  • knockout lines of the CYP707A2 gene and the CYP707A3 gene were created, and the phenotype related to the dormancy of the seed was analyzed.
  • Arabidopsis Stock Center (ABRC) Using CYP707A2 gene and CYP707A3 gene obtained by obtaining T-DNA into the CYP707A3 gene obtained from (Alonso et al., Science, 301, 653-657 (2003)), homozygous strains were respectively produced.
  • the T-DNA was inserted between the fifth exon and the fifth intron in the CYP707A2 gene, the cyp707a2-1 mutant gene, and the seventh intron in the CYP707A2 gene -Cyp707a2-2 mutant gene with inserted DNA, c-707a3-l mutant gene with T-DNA inserted into the first exon of CYP707A3 gene, and T- DNA inserted into the second etason of CYP707A3 gene
  • the cyp707a3-2 mutant gene was obtained.
  • Fig. 15 The relationship between the number of days until germination and the germination rate is shown in Fig. 15 using the appearance of the radicle as the germination standard. As can be seen from Fig. 15, the germination rate of seeds in which the CYP707A3 gene was knocked out was slightly reduced as compared with the wild type. On the other hand, the germination rate of the seeds in which the CYP707A2 gene was knocked out was significantly reduced as compared with the wild type and the line in which the CYP707A3 gene was knocked out.
  • FIG. 16 shows the results of comparing the amounts of ABA, PA and DPA contained in the dried seeds in the wild type and in the line in which the CYP707A2 gene was knocked out.
  • FIG. 17 shows the results of comparing the change in the amount of ABA contained in the seeds after the start of the water absorption treatment in the wild type and the line in which the CYP707A2 gene was knocked out.
  • a larger amount of ABA was accumulated than in the wild type, and even after 24 hours from the start of water absorption, a larger amount of ABA was accumulated. Had been accumulated.
  • the CYP707A2 gene is a major ABA 8′-hydroxylase that determines the amount of ABA contained in seeds, and in Arabidopsis, ABA 8 ′ derived from the CYP707A2 gene -Inhibition of hydroxylase activity has been shown to maintain seed dormancy.
  • a novel gene having a function of inactivating ABA can be provided. Further, according to the present invention, an expression vector transformant having the novel gene, a transgenic plant and a seed can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Novel gene involved in ABA inactivation; and use thereof. In particular, a gene coding for: (a) protein consisting of an amino acid sequence of SEQ ID NO. 2, 4, 6 or 8, or (b) protein consisting of an amino acid sequence of SEQ ID NO. 2, 4, 6 or 8, having undergone deletion, substitution or addition of one or more amino acids, which has the activity of inactivating abscisic acid.

Description

明 細 書 ァブシジン酸不活性化に関与する遺伝子  Description Genes involved in abscisic acid inactivation
技術分野 Technical field
本発明は、 植物ホルモンであるアブシジン酸の不活性化に関与する遺伝子、 当 該遺伝子を含む組換えベクター及ひ、トランスジヱニック植物、 並びに、 当該組換 えベクターを含む形質転換体及び当該トランスジエニック植物から採取された種 子に関する。 背景技術 ' ァプシジン酸 (以下、 ABA と略記する) は、 植物内で生合成され、 形態形成や 生理現象を引き起こす植物ホルモンである。 各組織における ABA の濃度や、 ABA の組織分布によって、 様々な形態形成や生理現象が調節されていると考えられて いる。  The present invention relates to a gene involved in inactivating the plant hormone abscisic acid, a recombinant vector containing the gene, a transgenic plant, and a transformant containing the recombinant vector. For seeds collected from transgenic plants. BACKGROUND ART 'Apsidic acid (hereinafter abbreviated as ABA) is a plant hormone that is biosynthesized in plants and causes morphogenesis and physiological phenomena. It is thought that various morphogenesis and physiological phenomena are regulated by the concentration of ABA and the distribution of ABA in each tissue.
ABA は、 植物が乾燥や低温などの環境ストレスにさらされた時、 生体内で合成 される。 ABA が植物内で生合成されることによって、 植物がこれら環境ス ト レス に適応する能力を獲得する。 また、 ABA は、 通常の発生過程においても生合成さ れる。 例えば、 成熟中の種子において、 ABA が合成されている。 合成された ABA によって、 種子における休眠が誘導されるとともに、 種子発芽が抑制される。 このように、 ABAに関しては、種々の研究がなされているが、 ABA分解の反応過 程や ABA分解に関与する酵素'遺伝子について十分な研究がなされていない。 ABA 分解の反応過程や ABA分解に関与する酵素 ·遺伝子について研究が進み、 ABA分 解が植物内で制御可能となれば、 環境ス トレスに対する適応のメカニズムの解明 や発芽の制御が可能となる。  ABA is synthesized in vivo when plants are exposed to environmental stresses such as drying and low temperatures. As ABA is biosynthesized in plants, plants gain the ability to adapt to these environmental stresses. ABA is also biosynthesized during normal development. For example, ABA is synthesized in maturing seeds. The synthesized ABA induces dormancy in seeds and suppresses seed germination. As described above, various studies have been conducted on ABA, but sufficient studies have not been made on the reaction process of ABA degradation or on the enzymes' genes involved in ABA degradation. If research progresses on the reaction process of ABA degradation and on the enzymes and genes involved in ABA degradation, and if ABA degradation can be controlled in plants, it will be possible to elucidate the mechanism of adaptation to environmental stress and control germination.
ABA の不活性化は、 酸化経路と配糠体化経路によって起こる(Cutler and rochko 1999, Zeevaart and Creelman 1988; ともに総説)。 これらのうち、 植物 体の乾燥、 種子発芽時の吸水といった ABAの主要な生理に関わる不活性化経路は oxidation経路であり、 多くの植物種で種子発芽時や植物体の乾燥 ·再吸水時に oxidation経路の不活性化産物である phaseic acid (PA)やさらに PAの 4'位のケ トンが還元されて生じる dihydrophaseic acid (DPA)の量の変動がみられる。 そ れに対して、 代謝産物の分析から conjugate経路の生理的役割の重要性が指摘さ れている例は少ない。 ABA の不活性化に関わる遺伝子は一つだけ報告例があり、 配糖化酵素が Xu et al. (2002) .らによってァズキからクローユングされている。 Inactivation of ABA occurs through oxidative and branidation pathways (Cutler and rochko 1999, Zeevaart and Creelman 1988; both reviewed). Of these, the inactivation pathways related to the main physiology of ABA, such as plant drying and water absorption during seed germination, are oxidation pathways.In many plant species, seed germination and plant drying and re-absorption are important. The amount of phaseic acid (PA), an inactivation product of the oxidation pathway, and the amount of dihydrophaseic acid (DPA) generated by reduction of the ketone at the 4'-position of PA are observed. In contrast, metabolite analysis has rarely pointed out the importance of the physiological role of the conjugate pathway. There is only one report of a gene involved in ABA inactivation, and a glycosylase has been cloned from Azuki by Xu et al. (2002).
しかしながら、 ABA分解の反応過程や ABA分解に関与する酵素 ·遺伝子につい ての有用な知見は、 まだ殆どないのが現状である。  However, at present, there is almost no useful knowledge about the reaction process of ABA degradation or the enzymes and genes involved in ABA degradation.
非特許文献 1 Cutler, A. J. , and Krochko, J. E. (1999) . Formation and breakdown of ABA. Trens Plant Sci. 4, 472-478  Non-Patent Document 1 Cutler, A.J., and Krochko, J.E. (1999) .Formation and breakdown of ABA.Trens Plant Sci. 4, 472-478
非特許文献 2 Zeevaart, J. A. , and Creelman, R. A. (1988) . Metaboli sm and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 439-473.  Non-Patent Document 2 Zeevaart, J.A., and Creelman, R.A. (1988) .Metaboli sm and physiology of abscisic acid.Annu.Rev.Plant Physiol.Plant Mol.Biol. 39, 439-473.
非特許文献 3 Xu, Z. -J. , Nakajima, M. , Suzuki, Y. , and Yamaguchi, I. (2002) . し丄 onirtg and characterization of the abscisic acid-specific glucosyl transferase gene from Adzuki bean seedl ings. Plant Physiol. 129, 1285-1295.  Non-Patent Document 3 Xu, Z.-J., Nakajima, M., Suzuki, Y., and Yamaguchi, I. (2002) .Shir onirtg and characterization of the abscisic acid-specific glucosyl transferase gene from Adzuki bean seedlings. Plant Physiol. 129, 1285-1295.
そこで、 本発明は、 ABA不活性化に関与する新規な遺伝子及びその利用を提供 することを目的とする。 発明の開示  Therefore, an object of the present invention is to provide a novel gene involved in ABA inactivation and its use. Disclosure of the invention
上述した実状に鑑み、 本発明者が鋭意検討した結果、 ABA不活性化活性を有す るタンパク質をコードする遺伝子を新規に見いだし、本発明を完成するに至った。 本発明は、 以下を包含する。  In view of the above-described circumstances, the present inventors have conducted intensive studies and as a result, have newly found a gene encoding a protein having ABA inactivating activity, and have completed the present invention. The present invention includes the following.
( 1 ) 以下の (a ) 又は (b ) のタンパク質をコ一ドする遺伝子。  (1) A gene encoding the following protein (a) or (b):
( a ) 配列番号 2 、 4 、 6又は 8で表されるアミノ酸配列からなるタンパク質 (a) a protein consisting of the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8
( b ) 配列番号 2 、 4 、 6又は 8で表されるアミノ酸配列において 1若しくは数 個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 且つ、 ァ ブシジン酸の不活性化活性を有するタンパク質 (b) an amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8 in which one or several amino acids have been deleted, substituted or added, and have an activity of inactivating abscisic acid; Protein
( 2 ) 以下の (a ) 又は (b ) の DNAを含む遺伝子。 ( a ) 配列番号 1、 3、 5又は 7で表される塩基配列からなる DNA (b) 配列番号 1、 3、 5又は 7で表される塩基配列に対して相補的な塩基配列 からなる DNAに対してス トリンジェントな条件下でハイブリダィズし、 且つ、 了 ブシジン酸の不活性化活性を有するタンパク質をコードする DNA (2) A gene containing the following DNA of (a) or (b). (a) DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1, 3, 5, or 7 (b) DNA consisting of the nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1, 3, 5, or 7 DNA that codes for a protein that hybridizes under stringent conditions to
(3) シロイヌナズナ、 イネ又はトマト由来であることを特徴とする (1) 又 は (2) 記載の遺伝子。  (3) The gene according to (1) or (2), which is derived from Arabidopsis, rice or tomato.
(4) 上記 (1) 又は (2) 記載の遺伝子を含む組換えベクター。  (4) A recombinant vector containing the gene according to (1) or (2).
(5) 上記 (4) 記載の組換えベクターを含む形質転換体。  (5) A transformant containing the recombinant vector according to (4).
(6) 上記 (1) 又は (2) 記載の遺伝子を含むトランスジエニック植物。 (7) 上記 (6) 記載のトランスジヱニック植物から採取された種子。  (6) A transgenic plant containing the gene according to (1) or (2). (7) A seed collected from the transgenic plant according to (6).
(8) 上記 (1) 又は (2) 記載の遺伝子がノックアウトされた植物。  (8) A plant in which the gene according to (1) or (2) is knocked out.
(9) (a)配列番号 4で表されるアミノ酸配列からなるタンパク質、若しくは(b) 配列番号 4で表されるアミノ酸配列において 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 且つ、 アブシジン酸の不活性化 活性を有するタンパク質に由来するアブシジン酸の不活性化活性を阻害すること によって、 種子の休眠を維持する方法。  (9) (a) a protein consisting of the amino acid sequence represented by SEQ ID NO: 4, or (b) an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 4 A method of maintaining seed dormancy by inhibiting the inactivating activity of abscisic acid derived from a protein having the activity of inactivating abscisic acid.
(1 0)テトシクラシス(Tetcyclacis)及び/又はゥェコナゾーノレ (Uniconazole) によって上記タンパク質に由来するアブシジン酸の不活性化活性を阻害すること を特徴とする (9) 記載の種子の休眠を維持する方法。  (10) The method for maintaining dormancy of a seed according to (9), wherein the activity of inactivating abscisic acid derived from the protein is inhibited by Tetcyclacis (Tetcyclacis) and / or Uniconazole.
(1 1) (a)配列番号 4で表されるアミノ酸配列からなるタンパク質、若しくは (1 1) (a) a protein consisting of the amino acid sequence represented by SEQ ID NO: 4, or
(b)配列番号 4で表されるアミノ酸配列において 1若しくは数個のアミノ酸が欠 失、 置換若しくは付加されたアミノ酸配列からなり、 且つ、 アブシジン酸の不活 性化活性を有するタンパク質に由来するアブシジン酸の不活性化活性が阻害され た種子。 (b) Absidine derived from a protein having an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 4, and having an activity of inactivating abscisic acid Seeds whose acid inactivating activity has been inhibited.
本明細書は本願の優先権の基礎である日本国特許出願 2003-176423 号と 2003-367857号の明細書および/または図面に記載される内容を包含する。 図面の簡単な説明  This description includes part or all of the contents as disclosed in the description and / or drawings of Japanese Patent Application Nos. 2003-176423 and 2003-367857, which are the priority documents of the present application. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 CYP707A1の cDNAを導入した形質転換酵母から得た反応液を HPLCに供 した際の結果を示す特性図である。 Figure 1 shows that the reaction solution obtained from the transformed yeast into which the CYP707A1 cDNA was introduced was subjected to HPLC. FIG. 9 is a characteristic diagram showing a result of the operation.
図 2は、 CYP707A3の cDNAを導入した形質転換酵母から得た反応液を HPLCに供 した際の結果を示す特性図である。  FIG. 2 is a characteristic diagram showing the results obtained when the reaction solution obtained from the transformed yeast into which the CYP707A3 cDNA was introduced was subjected to HPLC.
図 3は、 空の pYeDP60プラスミ ドだけを導入した形質転換酵母からの反応液を HPLCに供した際の結果を示している。  FIG. 3 shows the results when the reaction solution from the transformed yeast into which only empty pYeDP60 plasmid was introduced was subjected to HPLC.
図 4は、 CYP707A2の cDNAを導入した形質転換酵母から得た反応液を HPLCに供 した際の結果を示す特性図である。  FIG. 4 is a characteristic diagram showing the results when a reaction solution obtained from the transformed yeast into which the CYP707A2 cDNA was introduced was subjected to HPLC.
図 5は、 CYP707A4の cDNAを導入した形質転換酵母から得た反応液を HPLCに供 した際の結果を示す特性図である。  FIG. 5 is a characteristic diagram showing the results obtained when the reaction solution obtained from the transformed yeast into which the CYP707A4 cDNA was introduced was subjected to HPLC.
図 6は、 阻害剤 (Tetcyclaci s, Metyrapone及ぴ Uniconazole) による ABA 8' - 水酸化酵素 (CYP707A1) の活性阻害を示す特性図である'  Fig. 6 is a characteristic diagram showing the inhibition of ABA 8'-hydroxylase (CYP707A1) activity by inhibitors (Tetcyclacis, Metyrapone and Uniconazole).
図 7は、 CYP707A1 , CYP707A2 , CYP707A3および CYP707A4の器官別の発現を mRNA レベルにより示す図である。  FIG. 7 is a diagram showing the expression of CYP707A1, CYP707A2, CYP707A3 and CYP707A4 in each organ by mRNA level.
図 8は、 乾燥種子吸水時の内生 ABA量の変動を示す図である。 :  FIG. 8 is a graph showing a change in the amount of endogenous ABA when absorbing dry seeds. :
図 9は、 CYP707A1、 CYP707A2、 CYP707A3および CYP707A4遺伝子の種子吸水時 の発現を示す図である。  FIG. 9 is a diagram showing the expression of CYP707A1, CYP707A2, CYP707A3, and CYP707A4 genes at the time of seed water absorption.
図 1 0は、 2週間目植物の乾燥 ·吸水時の ABA量の変動を示す図である。  FIG. 10 is a graph showing a change in ABA amount at the time of drying and water absorption of a plant at the second week.
図 1 1は、 2週間目植物の乾燥.吸水時の NCED3 mRNA量の変動を示す図である。 図 1 2は、 2週間目植物の乾燥 ·吸水時の CYP707A1、 CYP707A2, CYP707A3およ ぴ CYP707A4raRNA量の変動を示す図である。  FIG. 11 is a graph showing changes in the amount of NCED3 mRNA during drying and water absorption of plants at 2 weeks. FIG. 12 is a graph showing changes in the amounts of CYP707A1, CYP707A2, CYP707A3, and CYP707A4raRNA at the time of drying and water absorption of plants at the second week.
図 1 3は、 2週間目植物を ABA (30 M) および水で処理したときの CYP707A1、 CYP707A2、 CYP707A3および CYP707A4 mRNA量の変動を示す図である。  FIG. 13 is a graph showing changes in CYP707A1, CYP707A2, CYP707A3 and CYP707A4 mRNA levels when plants were treated with ABA (30 M) and water on the second week.
図 1 4は、 cyp707a2- 1変異遺伝子、 cyp707a2_2変異遺伝子、 cyp707a3- 1変異 遺伝子及び cyP707a3- 2変異遺伝子の構成を示す模式図である。 1 4, Cyp707a2- 1 mutant gene, Cyp707a2_2 mutant gene is a schematic diagram showing the configuration of Cyp707a3- 1 mutant gene and cy P 707a3- 2 mutant gene.
図 1 5は、 CYP707A2遺伝子ノックアウト系銃及び CYP707A3遺伝子ノックァゥ ト系統における吸水処理と発芽率との関係を示す特性図である。  FIG. 15 is a characteristic diagram showing the relationship between the water absorption treatment and the germination rate in the CYP707A2 gene knockout gun and the CYP707A3 gene knockout line.
図 1 6は、 CYP707A2遺伝子ノックァゥト系統及び野生型における、 乾燥種子に 含まれる ABA量、 PA量及ぴ DPA量を比較した特性図である。  FIG. 16 is a characteristic diagram comparing the amounts of ABA, PA and DPA contained in dried seeds between the CYP707A2 gene knockout line and the wild type.
図 1 7は、 CYP707A2 遺伝子ノックァゥト系統及び野生型の種子における、 ABA 量の経時変化を示す特使図である。 発明を実施するための最良の形態 Figure 17 shows ABA in CYP707A2 gene knockout line and wild type seeds. It is a special use figure which shows a time-dependent change of quantity. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明に係る遺伝子は、 ABA を不活性化する機能を有するタンパク質 (以下、 ABA不活化酵素)をコードするものである。ここで、 ABAを不活性化する機能とは、 ABAをファゼイン酸 (以下、 PAと略記する) に変換する機能を意味する。 ABAの 不活性化には、 大きく分けて 2つの経路が知られている。 ひとつは、 ABA におけ る 1位のカルボキシル基や 1'位の水酸基にグルコースが付加する配糖体化経路、 もうひとつは、 ABAにおける 8'位や 7'位といった環状メチル基が水酸化を受ける 酸化経路である。 これらのうち、 酸化経路は不可逆な経路であり、 ABA の本質的 な不活性化経路である。 ABAにおける 8'位の環状メチル基が水酸化されることに よって、 8 ヒ ドロキシ ABAとなる。 この 8,-ヒ ドロキシ ABAは、 熱力学的により 安定な PAとの平衡混合物として単離される。 したがって、 ABAを PAに変換する 機能とは、 より具体的には、 ABAの 8'位の環状メチル基を水酸化する ABA 8' -水 酸化酵素活性を意味する。  The gene according to the present invention encodes a protein having a function of inactivating ABA (hereinafter, ABA inactivating enzyme). Here, the function of inactivating ABA means a function of converting ABA to phaseinate (hereinafter abbreviated as PA). There are two known pathways for ABA inactivation. One is the glycosylation pathway in which glucose is added to the carboxyl group at the 1-position or the hydroxyl group at the 1'-position in ABA, and the other is the cyclic methyl group such as the 8'- or 7'-position of ABA that hydroxylates. Undergo oxidation pathway. Of these, the oxidative pathway is the irreversible pathway and is the essential inactivation pathway of ABA. Hydroxylation of the cyclic methyl group at position 8 'in ABA results in 8 hydroxy ABA. This 8, -hydroxy ABA is isolated as an equilibrium mixture with the more thermodynamically stable PA. Therefore, the function of converting ABA to PA more specifically means an ABA 8'-hydroxylase activity that hydroxylates the cyclic methyl group at the 8'-position of ABA.
1 . ABA不活化酵素遺伝子のクローニング  1. Cloning of ABA inactivating enzyme gene
(1)植物ゲノムの調製 (1) Preparation of plant genome
ゲノム DNAの供給源としては、 植物の葉、 茎及び根などの植物体の一部又は植 物体全体が挙げられる。 対象となる植物は、 特に限定されないが、 シロイヌナズ ナ、 イネ、 トマト、 及ぴ大豆を挙げることができる。 植物は、 種子を土壌に播種 し野外において生育させたり、 あるいは GM培地、 MS培地などの固体培地に播種 し無菌条件下で生育させることができる。なお、必要に応じて、 PBZ (probenazole) などの全身獲得抵抗性 (SAR)誘導薬剤を添加することも可能である。  Sources of genomic DNA include part of a plant or whole plant such as plant leaves, stems and roots. The target plant is not particularly limited, and includes Arabidopsis, rice, tomato, and soybean. Plants can be grown in the field by sowing seeds in soil, or can be grown under aseptic conditions by sowing in solid media such as GM and MS media. If necessary, a systemic acquired resistance (SAR) inducer such as PBZ (probenazole) can be added.
生育させた植物からのゲノム DNAの調製は、 常法に従って行うことができる。 例えば、 まず液体窒素で凍結した植物体を乳鉢などで摩砕後、 摩砕物を TritonX- 100 などの界面活性剤を含有するバッファーに懸濁し、 ガーゼ等で濾過 する。 次いで、 濾液を遠心分離することによって細胞核を沈殿後、 沈殿物にラウ ロイルサイコシン酸ナトリゥム溶液等を加え細胞核を消化する。 消化液を塩化セ シゥム -臭化工チジゥム密度勾配遠心等に供試後、 DNAの層を回収し、得られた DNA 溶液を TEバッファ一等に対して透析する。最後に、得られた DNA溶液にエタノー ルを加えることによって沈殿後、適当量の TEバッファ一等に溶解させることによ つてゲノム DNAを得ることができる。 Preparation of genomic DNA from grown plants can be performed according to a conventional method. For example, first, a plant frozen with liquid nitrogen is ground in a mortar or the like, and the ground material is suspended in a buffer containing a surfactant such as TritonX-100 and filtered with gauze or the like. Subsequently, the cell nucleus is precipitated by centrifuging the filtrate, and a sodium lauroylpsychosinate solution or the like is added to the precipitate to digest the cell nucleus. Digestion fluid After the sample is subjected to, for example, centrifugation using a shim-brominated medium, the DNA layer is recovered, and the obtained DNA solution is dialyzed against a TE buffer or the like. Finally, the obtained DNA solution is precipitated by adding ethanol, and then dissolved in an appropriate amount of TE buffer or the like, whereby genomic DNA can be obtained.
(2) ABA不活化酵素遺伝子のクローユング (2) Cloning of ABA inactivating enzyme gene
ABA不活化酵素遺伝子は、「(1)植物ゲノムの調製」に従って調製したゲノム DNA からクローニングすることができる。 例えばシロイヌナズナ、 イネ、 トマト、 及 び大豆等の植物からゲノムを調製し、 シロイヌナズナ、 イネ、 トマト、 及ぴ大豆 由来の ABA不活化酵素遺伝子をクローニングすることができる。  The ABA inactivating enzyme gene can be cloned from genomic DNA prepared according to “(1) Preparation of plant genome”. For example, a genome can be prepared from plants such as Arabidopsis, rice, tomato, and soybean, and an ABA-inactivating enzyme gene derived from Arabidopsis, rice, tomato, and soybean can be cloned.
シロイヌナズナ由来の ABA不活化酵素遺伝子には、 ホモログが 4種類あり、 そ れぞれ CYP707A1、 CYP707A2、 CYP707A3及び CYP707A4と呼ぶ。 これら CYP707A1、 CYP707A2、 CYP707A3及ぴ CYP707A4の塩基配列をそれぞれ配列番号 1、 3、 5及 び 7に示す。 また、 これら配列番号 1、 3、 5及ぴ 7によってコードされるタン パク質 (ABA 不活化酵素) のアミノ酸配列をそれぞれ配列番号 2、 4、 6及ぴ 8 に示す。  Arabidopsis thaliana ABA inactivating enzyme genes have four types of homologues, which are called CYP707A1, CYP707A2, CYP707A3 and CYP707A4, respectively. The nucleotide sequences of these CYP707A1, CYP707A2, CYP707A3, and CYP707A4 are shown in SEQ ID NOs: 1, 3, 5, and 7, respectively. The amino acid sequences of the proteins (ABA inactivating enzymes) encoded by these SEQ ID NOs: 1, 3, 5 and 7 are shown in SEQ ID NOs: 2, 4, 6 and 8, respectively.
シロイヌナズナ由来の ABA不活化酵素 (CYP707A1、 CYP707A2, CYP707A3 及ぴ CYP707A4) のアミノ酸配列は、 ABA を不活化する機能を有するのであれば、 配列 番号 2、 4、 6及ぴ 8に示すアミノ酸配列に限定されず、 配列番号 2、 4、 6又 は 8で表されるアミノ酸配列において 1若しくは数個のアミノ酸が欠失、 置換若 しくは付加されたアミノ酸配列であってもよい。 ここで、 数個のアミノ酸とは、 例えば 2〜 5 0個のアミノ酸、 好ましくは 2〜3 0個のアミノ酸、 より好ましく は 2〜1 0個のアミノ酸を意味する。  The amino acid sequence of Arabidopsis ABA-inactivating enzyme (CYP707A1, CYP707A2, CYP707A3 and CYP707A4) is limited to the amino acid sequences shown in SEQ ID NOs: 2, 4, 6 and 8 as long as they have the function of inactivating ABA. However, it may be an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8. Here, several amino acids mean, for example, 2 to 50 amino acids, preferably 2 to 30 amino acids, and more preferably 2 to 10 amino acids.
また、 配列番号 1、 3、 5及ぴ 7に示した塩基配列、 配列番号 2、 4、 6及び 8に示したアミノ酸配列に基づいて、 各種植物体のゲノム塩基配列を格納したデ ータベースを検索することによって、 種々の植物における ABA不活化酵素遺伝子 を同定することができる。 例えば、 イネ (0. sativa (japonica) ) ゲノムの塩基 配列を格納したデータベース(http:〃 drnelson. utmem. edu/rice, html) を検索す ることによって、 ァクセッション番号 AP004129. 1及ぴ AP004162. 1で特定される イネにおける ABA不活化酵素遺伝子を同定することができる。 また、 トマトゲノ ム の 塩 基 配 列 を 格 納 し た デ ー タ ベ ー スIn addition, based on the nucleotide sequences shown in SEQ ID NOs: 1, 3, 5, and 7, and the amino acid sequences shown in SEQ ID NOs: 2, 4, 6, and 8, a database containing the genomic nucleotide sequences of various plants was searched. By doing so, ABA inactivating enzyme genes in various plants can be identified. For example, by searching a database (http: 〃 drnelson. Utmem. Edmem / edu / rice, html) that stores the nucleotide sequence of the rice (0. sativa (japonica)) genome, accession numbers AP004129.1 and AP004162 are obtained. ABA inactivating enzyme gene in rice identified in 1 can be identified. Also, Tomato Geno Database containing the base sequence of the system
(http : //drnelson. utmem. edu/toraato. html) を検索することによって、ァクセッ ション番号 EST; AI489171、 EST247510 cLED17I4で特定されるトマトにおける ABA 不活化酵素遺伝子を同定することができる。 さらに、 大豆ゲノムの塩基配列を格 糸内したァータベース (http : //drnelson. utmem. edu/soybean. html) を検索するこ とによって、 ァクセッション番号 AI431116、 AI735873および AI966688で特定さ れる大豆における ABA不活化酵素遺伝子を同定することができる。これらのイネ、 トマトおよび大豆ゲノムの塩基配列を格納したデータベースは、 テネシー大学の デヴィッ ド ·ネルソン博士の 「Cytochrome P450 Homepage] でアクセスすること が可能である。 By searching for (http: // drnelson. utmem. edu / toraato. html), the ABA inactivating enzyme gene in tomato identified by the accession numbers EST; AI489171 and EST247510 cLED17I4 can be identified. Furthermore, by searching the database (http: //drnelson.utmem.edu/soybean.html) containing the base sequence of the soybean genome, the soybean identified by accession numbers AI431116, AI735873, and AI966688 ABA inactivating enzyme genes can be identified. A database containing these rice, tomato, and soybean genome sequences can be accessed on Dr. David Nelson's Cytochrome P450 Homepage at the University of Tennessee.
具体的には、 シロイヌナズナ由来の ABA不活化酵素に対して高い相同性を示す イネ由来 ABA不活性化酵素としては、 配列番号 2 4及び 2 5に示すァミノ酸配列 を有するものを例示することができる。 また、 シロイヌナズナ由来の ABA不活化 酵素 (CYP707A3) に対して高い相同性を示すトマト由来 ABA不活性化酵素として は、 配列番号 2 6に示すアミノ酸配列を有するものを例示することができる。 シロイヌナズナ由来の ABA不活化酵素 (CYP707A1、 CYP707A2, CYP707A3 及ぴ CYP707A4) のァミノ酸配列と、 イネ由来 ABA不活性化酵素のァミノ酸配列 (配列 番号 2 4及ぴ 2 5 ) と、 トマト由来 ABA不活性化酵素のアミノ酸配列 (配列番号 2 6 ) との相同性を比較した結果を表 1に示す。 なお、 表 1の数値の単位は%で ある。  Specifically, examples of the rice-derived ABA inactivating enzyme exhibiting high homology to Arabidopsis-derived ABA inactivating enzyme include those having the amino acid sequence shown in SEQ ID NOS: 24 and 25. it can. Examples of the tomato-derived ABA-inactivating enzyme having high homology to Arabidopsis-derived ABA-inactivating enzyme (CYP707A3) include those having the amino acid sequence shown in SEQ ID NO: 26. The amino acid sequences of ABA inactivating enzymes from Arabidopsis thaliana (CYP707A1, CYP707A2, CYP707A3 and CYP707A4), the amino acid sequences of ABA inactivating enzymes from rice (SEQ ID NOS: 24 and 25), and ABA inactivating from tomato Table 1 shows the results of comparing the homology with the amino acid sequence of the activating enzyme (SEQ ID NO: 26). The unit of the numerical values in Table 1 is%.
GYP707A1 CYP707A2 CYP707A3 CYP707A4 配列番号 24配列番号 25配列番号 26GYP707A1 CYP707A2 CYP707A3 CYP707A4 SEQ ID NO: 24 SEQ ID NO: 25 SEQ ID NO: 26
CYP707A1 56.9 86.1 57.5 68.3 52.4 75. CYP707A1 56.9 86.1 57.5 68.3 52.4 75.
CYP707A2 57.6 53.9 55.6 49.8 56.8 CYP707A2 57.6 53.9 55.6 49.8 56.8
CYP707A3 57.4 66.9 52.4 74.4CYP707A3 57.4 66.9 52.4 74.4
GYP707A4 56.5 57.5 57.4 配列番号 24 52.9 67.5 配列番号 25 49.9 GYP707A4 56.5 57.5 57.4 SEQ ID NO: 24 52.9 67.5 SEQ ID NO: 25 49.9
このように各種植物における ABA不活化酵素遺伝子の塩基配列が同定されると、 常法に従って ABA不活化酵素遺伝子を単離することができる。 すなわち、 「(1)植 物ゲノムの調製」 に従って調製したゲノムを铸型として、 適宜設計した一対のプ ライマーを用いて PCRにより ABA不活化酵素遺伝子を単離することができる。 ま た、 植物細胞から抽出した全 mRNAを用いて cDNAライブラリーを調製し、 塩基配 列に基づいて設計した DNAプローブを用いて当該 cDNAライブラリ一から ABA不活 化酵素遺伝子を含む cDNAを単離することができる。 When the nucleotide sequence of the ABA inactivating enzyme gene in various plants is thus identified, the ABA inactivating enzyme gene can be isolated according to a conventional method. In other words, “(1) ABA inactivating enzyme gene can be isolated by PCR using a pair of appropriately designed primers with the genome prepared according to “Preparation of product genome” as type III. In addition, a cDNA library is prepared using total mRNA extracted from plant cells, and a cDNA containing the ABA inactivating enzyme gene is isolated from the cDNA library using a DNA probe designed based on the nucleotide sequence. can do.
一方、 ABA不活化酵素遺伝子としては、 配列番号 1、 3、 5及ぴ 7に示す塩基 配列に限定されず、 これら配列番号 1、 3、 5又は 7に示す塩基配列と相補的な 塩基配列に対してス トリンジェントな条件でハイブリダイズする DNAであって、 ABAを不活性化する機能を有するタンパク質をコードする DNAも含まれる。また、 ストリンジヱントな条件とは、 例えば、 ナトリゥム濃度が 800〜1000ιηΜ、 好まし くは 850〜950mM、 温度が 60〜70° (:、 好ましくは 65〜68°Cでの条件をいう。  On the other hand, the ABA inactivating enzyme gene is not limited to the nucleotide sequences shown in SEQ ID NOs: 1, 3, 5, and 7, but may be a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NOs: 1, 3, 5, or 7. On the other hand, DNAs that hybridize under stringent conditions and that encode a protein having a function of inactivating ABA are also included. Also, the stringent conditions refer to, for example, conditions at a sodium concentration of 800 to 1000 lηm, preferably 850 to 950 mM, and a temperature of 60 to 70 ° (: preferably 65 to 68 ° C).
なお、 ABA不活化酵素遺伝子への変異の導入は、定法に従って行うことができ、 Kunkel法や Gapped duplex法などの公知の手法又はこれに準ずる方法により、 例 えば部位特異的突然変異誘発法を利用した変異導入用キッ ト (例えば Mutant - K (TAKARA社製)や Mutant- G (TAKARA社製)など)を用いて、あるいは、 TAKARA 社の LA PCR in vitro Mutagenesis シリーズキットを用いて行うことができる。 2 . 組換えべクタ一及び形質転換体の作製  The introduction of the mutation into the ABA inactivating enzyme gene can be carried out according to a standard method, using a known method such as the Kunkel method or the Gapped duplex method or a method similar thereto, for example, using a site-directed mutagenesis method. Mutation-introduced kits (such as Mutant-K (TAKARA) and Mutant-G (TAKARA)) or using the TAKARA LA PCR in vitro Mutagenesis series kit . 2. Production of recombinant vectors and transformants
(1)組換えベクターの調製 (1) Preparation of recombinant vector
本発明の組換えベクターは、 適当なベクターに本発明の遺伝子を連結(揷入)す ることにより得ることができる。 本発明の遺伝子を揷入するためのベクターは、 宿主中で複製可能なものであれば特に限定されず、 例えば、 プラスミ ド DNA、 フ ァージ DNAなどが挙げられる。  The recombinant vector of the present invention can be obtained by ligating (inserting) the gene of the present invention into an appropriate vector. The vector for introducing the gene of the present invention is not particularly limited as long as it can be replicated in a host, and examples include plasmid DNA and phage DNA.
プラスミド DNAとしては、 pBR322、 pBR325、 pUC118、 pUC119などの大腸菌宿主 用プラスミ ド、 pUB110、 pTP5 などの枯草菌用プラスミ ド、 YEpl3、 YEp24、 YCp50 などの酵母宿主用プラスミ ド、 pBI221、 pBI121などの植物細胞宿主用プラスミ ド などが挙げられ、 ファージ DNAとしては; Iファージなどが挙げられる。 さらに、 レトロウィルス又はワクシニアウィルスなどの動物ウィルス、 バキュ口ウィルス などの昆虫ウィルスベクターを用いることもできる。  Plasmid DNA includes plasmids for Escherichia coli host such as pBR322, pBR325, pUC118 and pUC119, plasmids for Bacillus subtilis such as pUB110 and pTP5, plasmids for yeast host such as YEpl3, YEp24 and YCp50, and plants such as pBI221 and pBI121. And phage DNA; and I phage. Furthermore, animal viruses such as retrovirus or vaccinia virus, and insect virus vectors such as vaccinia virus can also be used.
ベクターに本発明の遺伝子を揷入するには、 まず、 精製された DNAを適当な制 限酵素で切断し、適当なベクター DNAの制限酵素部位又はマルチクローニングサ ィトに挿入してベクターに連結する方法などが採用される。 In order to introduce the gene of the present invention into a vector, first, purified DNA is appropriately A method of cutting with a restriction enzyme, inserting into an appropriate restriction enzyme site of vector DNA or a multicloning site, and ligating to a vector is employed.
本発明の遺伝子は、 その遺伝子の機能が発揮されるようにベクターに組み込ま れることが必要である。 そこで、 本発明のベクターには、 プロモーター、 本発明 の遺伝子のほか、 所望によりェンハンサーなどのシスエレメント、 スプライシン グシグナル、ポリ A付加シグナル、選択マーカー、 リボソーム結合配列(SD配列) などを含有するものを連結することができる。 なお、 選択マーカーとしては、 例 えば、 アンピシリン耐性遺伝子、 ネオマイシン耐性遺伝子、 ジヒ ドロ葉酸還元酵 素遺伝子などが挙げられる。  The gene of the present invention needs to be incorporated into a vector so that the function of the gene is exhibited. Thus, the vector of the present invention includes a vector containing a promoter, a gene of the present invention, and, if desired, a cis element such as an enhancer, a splicing signal, a polyA addition signal, a selection marker, a ribosome binding sequence (SD sequence), and the like. Can be linked. In addition, examples of the selection marker include an ampicillin resistance gene, a neomycin resistance gene, a dihydrofolate reductase gene, and the like.
(2)形質転換体の調製 (2) Preparation of transformant
本発明の形質転換体は、 本発明の組換えベクターを、 目的遺伝子が発現し得るよ うに宿主中に導入することにより得ることができる。 ここで、 宿主としては、 本 発明の遺伝子を発現できるものであれば特に限定されるものではない。 例えば、 エッシェリ ヒァ ' コリ (Escherichia col i) などのェッシェリ ヒァ属、 バチノレス · ズブチリ ス(Bacillussubtil is)などのバチノレス属、 シユー ドモナス ' プチダ (Pseudomonas putida)などのシユー ドモナス属、 リ ゾビゥム · メ リ ロティ (Rhizobiu膽 eli loti)などのリゾビゥム属に属する細菌が挙げられ、サッカロマイ セス · セレピシェ (Saccharomyces cerevis iae)、 シゾサッカロマイセス · ポンべ (Schizosaccharomycespombe)、 ピヒア ·ノ ス トリス (Pichia pastoris などの酵母 が挙げられ、 シロイヌナズナ、 タバコ、 トウモロコシ、 イネ、 ニンジンなどから 株化した植物細胞ゃ該植物から調製したプロトプラストが挙げられ、 COS 細胞、 CH0細胞などの動物細胞が挙げられ、 あるいは Sf9、 Sf21などの昆虫細胞が挙げ られる。 The transformant of the present invention can be obtained by introducing the recombinant vector of the present invention into a host so that the target gene can be expressed. Here, the host is not particularly limited as long as it can express the gene of the present invention. For example, the genus Escherichia such as Escherichia coli, the genus Bachinoles such as Bacillus subtilis, the genus Pseudomonas such as Pseudomonas putida, and the lysozyme meliloti (Rhizobiu eli loti) and other yeasts belonging to the genus Rhizobium, such as Saccharomyces cerevis iae, Schizosaccharomyces pombe, and yeasts such as Pichia pastoris. Plant cells established from Arabidopsis, tobacco, corn, rice, carrot, etc .; protoplasts prepared from such plants; animal cells such as COS cells, CH0 cells; and insect cells such as Sf9, Sf21. Are mentioned.
大腸菌などの細菌を宿主とする場合は、 本発明の組換えベクターが該細菌中で 自律複製可能であると同時に、 プロモーター、 リボゾーム結合配列、 本発明の遺 伝子、 転写終結配列により構成されていることが好ましい。 また、 プロモーター を制御する遺伝子が含まれていてもよい。  When a bacterium such as Escherichia coli is used as a host, the recombinant vector of the present invention is capable of autonomous replication in the bacterium, and comprises a promoter, a ribosome binding sequence, a gene of the present invention, and a transcription termination sequence. Is preferred. Further, a gene that controls a promoter may be included.
大腸菌としては、 例えばエツシヱリヒア ' コリ HMS174 (DE3)、 K12、 DH1などが 挙げられ、 枯草菌としては、 例えばバチルス ·ズプチリス Ml 114, 207-21などが 挙げられる。 Examples of Escherichia coli include Escherichia coli HMS174 (DE3), K12 and DH1, and examples of Bacillus subtilis include Bacillus subtilis Ml114 and 207-21. No.
プロモーターとしては、 大腸菌などの宿主中で発現できるものであればいずれ を用いてもよい。例えば trpプロモーター、 lacプロモーター、 PLプロモーター、 PR プロモーターなどの大腸菌由来のものや T7 プロモーターなどのファージ由来 のものが用いられる。 さらに、 tac プロモーターなどのように人為的に設計改変 されたプロモーターを用いてもよい。  Any promoter can be used as long as it can be expressed in a host such as E. coli. For example, those derived from Escherichia coli such as trp promoter, lac promoter, PL promoter and PR promoter and those derived from phage such as T7 promoter are used. Furthermore, artificially designed and modified promoters such as the tac promoter may be used.
細菌への組換えベクターの導入方法としては、 細菌に DNAを導入する方法であ れば特に限定されるものではない。例えばカルシウムイオンを用いる方法 [Cohen, S. N. , et al.: Proc. Natl. Acad. Sci. , USA, 69 : 2110—2114 (1972) ]、 エレク トロ ポレーシヨン法などが挙げられる。  The method for introducing the recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria. For example, a method using calcium ions [Cohen, SN, et al .: Proc. Natl. Acad. Sci., USA, 69: 2110-2114 (1972)], an electroporation method, and the like.
酵母を宿主とする場合は、 例えばサッカロマイセス 'セレビシェ、 シゾサッカ ロマイセス ' ボンべ、 ピヒア 'パス トリスなどが用いられる。 この場合、 プロモ 一ターとしては酵母中で発現できるものであれば特に限定されず、 例えば gall プロモーター、 gal lO プロモーター、 ヒートショ ックタンノ ク質プロモーター、 MF a lプロモーター、 PH05プロモーター、 PGKプロモーター、 GAPプロモーター、 ADHプロモーター、 A0X1プロモーターなどが挙げられる。  When yeast is used as a host, for example, Saccharomyces 'Celebiche, Schizosaccharomyces' bomb, Pichia's Pastris and the like are used. In this case, the promoter is not particularly limited as long as it can be expressed in yeast.Examples include gall promoter, gal10 promoter, heat shock protein promoter, MFal promoter, PH05 promoter, PGK promoter, GAP promoter, ADH promoter. Promoter and A0X1 promoter.
酵母への組換えベクターの導入方法としては、 酵母に DNAを導入する方法であ れば特に限定されず、 例えばエレク トロポレーシヨン法 [Becker, D. M. , et al.: Methods. Enzymol. , 194 : 182— 187 (1990) ]、 スフエロプラスト法 [Hinnen, A. et al.: Proc. Natl. Acad. Sci. , USA, 75 : 1929-1933 (1978) ]、 酢酸リチウム法 [Itoh, H. : J. Bacteriol. , 153 : 163-168 (1983) ]などが挙げられる。  The method for introducing a recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast. For example, the electroporation method [Becker, DM, et al .: Methods. Enzymol., 194: 182- 187 (1990)], Spheroplast method [Hinnen, A. et al .: Proc. Natl. Acad. Sci., USA, 75: 1929-1933 (1978)], lithium acetate method [Itoh, H .: J Bacteriol., 153: 163-168 (1983)].
植物細胞を宿主とする場合は、例えばシロイヌナズナ、タバコ、 トゥモロコシ、 イネ、 ニンジンなどから株化した細胞ゃ該植物から調製したプロトプラストが用 いられる。 この場合、 プロモーターとしては植物中で発現できるものであれば特 に限定されず、 例えばカリフラワーモザイクウィルスの 35S RNAプロモーター、 rd29A遺伝子プロモーター、 rbcSプロキータ一などが挙げられる。  When a plant cell is used as a host, for example, a cell established from Arabidopsis thaliana, tobacco, sorghum, rice, carrot, etc., or protoplasts prepared from the plant are used. In this case, the promoter is not particularly limited as long as it can be expressed in plants, and examples thereof include a cauliflower mosaic virus 35S RNA promoter, an rd29A gene promoter, and rbcS proquita.
植物への組換えベクターの導入方法としては、 Abelらのポリエチレングリコー ルを用いる方法 [Abel, H. , et al. : Plant J. 5 : 421 - 427 (1994) ]やエレクトロポレー ション法などが挙げられる。 動物細胞を宿主とする場合は、 サル細胞 COS- 7、 Vero、 チャイニーズハムスタ 一卵巣細胞 (CH0細胞)、マウス L細胞、 ラット GH3、 ヒ ト FL細胞などが用いられ る。 プロモーターとして SR aプロモーター、 SV40プロモーター、 LTRプロモータ 一、 CMV プロモーターなどが用いられ、 また、 ヒ トサイトメガロウィルスの初期 遺伝子プロモーターなどを用いてもよい。 動物細胞への組換えベクターの導入方 法としては、 例えばエレク ト口ポレーシヨン法、 リン酸カルシウム法、 リポフエ クション法などが挙げられる。 Methods for introducing a recombinant vector into a plant include a method using polyethylene glycol of Abel et al. [Abel, H., et al .: Plant J. 5: 421-427 (1994)] and an electroporation method. Is mentioned. When animal cells are used as the host, monkey cells COS-7, Vero, Chinese hamster ovary cells (CH0 cells), mouse L cells, rat GH3, and human FL cells are used. As a promoter, an SRa promoter, an SV40 promoter, an LTR promoter, a CMV promoter, or the like may be used, or an early gene promoter of a human cytomegalovirus may be used. Methods for introducing the recombinant vector into animal cells include, for example, the electoral poration method, the calcium phosphate method, and the lipofection method.
昆虫細胞を宿主とする場合は、 Sf9細胞、 Sf21細胞などが用いられる。 昆虫細 胞への組換えベクターの導入方法としては、 例えばリン酸カルシウム法、 リポフ ェクシヨン法、 エレク ト口ポレーシヨン法などが用いられる。  When insect cells are used as a host, Sf9 cells, Sf21 cells, and the like are used. As a method for introducing a recombinant vector into an insect cell, for example, a calcium phosphate method, a lipofection method, an electoral poration method and the like are used.
3 . ABA不活化酵素の生産及び機能解析 3. Production and functional analysis of ABA-inactivating enzyme
(1) ABA不活化酵素の生産 (1) Production of ABA-inactivating enzyme
本発明の ABA不活化酵素は、 本発明の ABA不活化酵素遺伝子によりコードされ るアミノ酸配列を有するもの、 または該アミノ酸配列において 1若しくは数個の アミノ酸に前記変異が導入されたアミノ酸配列を有し、 かつ不活性化活性を有す るものである。  The ABA inactivating enzyme of the present invention has an amino acid sequence encoded by the ABA inactivating enzyme gene of the present invention, or has an amino acid sequence in which the mutation is introduced into one or several amino acids in the amino acid sequence. And has an inactivating activity.
ABA不活化酵素は、 前記形質転換体を培地に培養し、 その培養物から採取する ことにより得ることができる。 「培養物」 とは、 培養上清、 あるいは培養細胞若し くは培養菌体又は細胞若しくは菌体の破砕物のいずれをも意味するものである。 形質転換体を培地にて培養する際には、 宿主の培養に用いられる通常の方法を 適用することができる。 大腸菌や酵母菌などの微生物を宿主として得られた形質 転換体を培養する培地としては、 微生物が資化し得る炭素源、 窒素源、 無機塩類 などを含有し、 形質転換体の培養を効率的に行うことができる培地であれば、 天 然培地、 合成培地のいずれを用いてもよい。 また植物細胞を宿主として用いてい る場合には、 必要に応じて、 培地にチアミン、 ピリ ドキシンなどのビタミン類を 添カ卩し、 動物細胞を宿主として用いている場合には、 RPMI1640などの血清を添加 する。  The ABA-inactivating enzyme can be obtained by culturing the transformant in a medium and collecting from the culture. The term “culture” means any of a culture supernatant, a cultured cell or a cultured bacterial cell, and a crushed cell or bacterial cell. When culturing the transformant in a medium, a usual method used for culturing a host can be applied. The medium for culturing the transformant obtained using a microorganism such as Escherichia coli or yeast as a host contains a carbon source, a nitrogen source, inorganic salts, and the like, which can be used by the microorganism, to efficiently culture the transformant. Any of a natural medium and a synthetic medium may be used as long as the medium can be used. If plant cells are used as a host, the medium may be supplemented with vitamins such as thiamine and pyridoxine as necessary.If animal cells are used as the host, serum such as RPMI1640 may be used. Is added.
例えば、 炭素源としては、 グルコース、 フラクトース、 スクロース、 デンプン などの炭水化物、 酢酸、 プロピオン酸などの有機酸、 エタノール、 プロパノール などのアルコール類が用いられる。 窒素源としては、 アンモニア、 塩化アンモニ ゥム、 硫酸アンモニゥム、 酢酸アンモニゥム、 リン酸アンモニゥムなどの無機酸 若しくは有機酸のアンモニゥム塩又はその他の含窒素化合物のほか、 ペプトン、 肉エキス、 コーンスティープリカ一などが用いられる。 無機物としては、 リン酸 第一カリウム、 リン酸第二カリウム、 リン酸マグネシウム、 硫酸マグネシウム、 塩化ナトリウム、 硫酸第一鉄、 硫酸マンガン、 硫酸銅、 炭酸カルシウムなどが用 いられる。 さらに、 培地中には、 必要に応じてアンピシリンやテトラサイクリン などの抗生物質を培地に添加してもよい。 For example, carbon sources include carbohydrates such as glucose, fructose, sucrose and starch; organic acids such as acetic acid and propionic acid; ethanol and propanol. Such alcohols are used. Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and other ammonium salts of inorganic or organic acids or other nitrogen-containing compounds, as well as peptone, meat extract, corn steep liquor, etc. Is used. As inorganic substances, potassium (I) phosphate, potassium (II) phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like are used. Furthermore, an antibiotic such as ampicillin or tetracycline may be added to the medium as needed.
培養は、 通常、 振盪培養又は通気攪拌培養などの好気的条件下、 30〜37°Cで 6 〜24時間行う。 培養期間中、 pHは 7. 0〜7. 5に保持する。 pHの調整は、 無機又は 有機酸、 アル力リ溶液などを用いて行う。  The cultivation is usually carried out at 30 to 37 ° C for 6 to 24 hours under aerobic conditions such as shaking culture or aeration and stirring culture. During the cultivation period, the pH is maintained at 7.0 to 7.5. The pH is adjusted using an inorganic or organic acid, an alkaline solution, or the like.
プロモーターとして誘導性のプロモーターを含むベクターで形質転換した微生 物を培養する場合には、 必要に応じてィンデューサーを培地に添加してもよい。 例えば、 Lac プロモーターを用いた発現ベクターで形質転換した微生物を培養す るときにはイソプロピル- /3 -D-チォガラタトピラノシド(IPTG)などを、 trp プロ モーターを用いた発現べクタ一で形質転換した微生物を培養するときにはインド ールアタリル酸(IAA)などを培地に添加してもよい。  When culturing a microorganism transformed with a vector containing an inducible promoter as a promoter, an inducer may be added to the medium, if necessary. For example, when culturing a microorganism transformed with an expression vector using the Lac promoter, isopropyl- / 3-D-thiogalatatopyranoside (IPTG) is transformed with an expression vector using the trp promoter. When culturing the isolated microorganisms, indole ataryl acid (IAA) or the like may be added to the medium.
培養後、 ABA不活化酵素が菌体内又は細胞内に生産される場合には、 菌体又は 細胞を破碎することにより ABA不活化酵素を抽出する。 また、 ABA不活化酵素が 菌体外又は細胞外に生産される場合には、 培養液をそのまま使用するか、 遠心分 離などにより菌体又は細胞を除去する。 その後、 タンパク質の単離精製に用いら れる一般的な生化学的方法、 例えば硫酸アンモニゥム沈殿、 ゲルクロマトグラフ 'ィ一、 イオン交換クロマトグラフィー、 ァフィ二ティークロマトグラフィーなど を単独で又は適宜組み合わせて用いることにより、 前記培養物中から本発明の ABA不活化酵素を単離精製することができる。  When the ABA-inactivating enzyme is produced in the cells or cells after the culture, the cells or cells are disrupted to extract the ABA-inactivating enzyme. When the ABA-inactivating enzyme is produced outside the cells or cells, the culture solution is used as it is, or the cells or cells are removed by centrifugation or the like. Then, common biochemical methods used for protein isolation and purification, such as ammonium sulfate precipitation, gel chromatography, ion exchange chromatography, affinity chromatography, etc., may be used alone or in appropriate combination. Thereby, the ABA-inactivating enzyme of the present invention can be isolated and purified from the culture.
(2) ABA不活化酵素の機能解析  (2) Functional analysis of ABA inactivating enzyme
「(1) ABA不活化酵素の生産」 で得られた ABA不活化酵素及ぴ ABAを含む溶液を 調製し、 所定時間反応させ、 反応後の溶液に含まれる ABA量及ぴ ABAが不活化さ れた 8' -ヒドロキシ ABA或いは PA量を測定する。 これによつて、 ABA不活化酵素 における ABAを不活化する機能を解析することができる。 A solution containing the ABA-inactivating enzyme and ABA obtained in “(1) Production of ABA-inactivating enzyme” is prepared and reacted for a predetermined time, and the amount of ABA and the ABA contained in the solution after the reaction are inactivated. Measure the amount of 8'-hydroxy ABA or PA obtained. As a result, ABA inactivating enzyme ABA inactivation function can be analyzed.
4 . ABA不活化酵素の機能が抑制された植物の作出 4. Production of plants in which the function of ABA inactivating enzyme is suppressed
ABA は、 植物内で生合成される植物ホルモンであり、 植物の形態形成や生理現 象等に関与している。 例えば、 植物種子内において ABAが生合成されることによ つて休眠が誘導され、 ABAの代鶴す、 すなわち ABAが不活化されることよって発芽 が促進されることが知られている。  ABA is a plant hormone biosynthesized in plants and is involved in plant morphogenesis and physiological phenomena. For example, it is known that dormancy is induced by biosynthesis of ABA in plant seeds, and germination is promoted by inactivation of ABA, that is, inactivation of ABA.
ABA不活化酵素は、 ABAを 8' -ヒドロキシ ABA (或いは PA) に変換し、 ABAを不 活化する。 したがって、 植物体内において ABA不活化酵素を機能的に欠損させる ことによって、 ABA が不活化されることに起因する形態形成や生理現象等を抑制 することができる。 例えば、 ABA不活化酵素を機能的に欠損させたトランスジェ ニック植物では、 種子の発芽を抑制することができる。 また、 ABA不活化酵素を 所定の条件下でのみ発現できるように改変したトランスジエニック植物では、 発 芽のタイミングを調節することができる。  ABA-inactivating enzymes convert ABA to 8'-hydroxy ABA (or PA) and inactivate ABA. Therefore, morphogenesis and physiological phenomena caused by inactivation of ABA can be suppressed by functionally deficient of the ABA inactivating enzyme in the plant. For example, in a transgenic plant in which the ABA inactivating enzyme is functionally deficient, seed germination can be suppressed. In a transgenic plant modified so that the ABA inactivating enzyme can be expressed only under predetermined conditions, the timing of germination can be regulated.
特に、シロイヌナズナ由来 ABA不活性化酵素のうち CYP707A2 (配列番号 4 )は、 種子内で比較的に高発現しており、 種子の発芽に大きく関与している。 したがつ て、 CYP707A2 (配列番号 4 ) の機能を阻害した種子においては、 野生型の種子と 比較して休眠が維持されたものとなる。 ここで、 休眠を維持するとは、 種子の吸 水状態等の発芽を誘導する条件下において、 当該種子の発芽を遅延させることを 意味する。 種子の休眠が維持されたか否かは、 当該種子を吸水状態とした後、 発 芽までの時間を測定することによって判断することができる。  In particular, among Arabidopsis thaliana-derived ABA inactivating enzymes, CYP707A2 (SEQ ID NO: 4) is relatively highly expressed in seeds and is greatly involved in seed germination. Therefore, in the seed in which the function of CYP707A2 (SEQ ID NO: 4) is inhibited, dormancy is maintained as compared with the wild-type seed. Here, maintaining dormancy means delaying the germination of the seed under conditions that induce germination such as the state of water absorption of the seed. Whether or not the dormancy of the seed has been maintained can be determined by measuring the time until germination after the seed is brought into a water absorbing state.
ABA不活化酵素の機能の抑制は、限定されないがアンチセンス法や RNA干渉(RNA interfearenece: RNAi) 法により行うことができる。 また、 相同遺伝子組換え法 等により ABA不活化酵素をノックァゥトすることによつても行うことができる。 さらに、 変異型 ABA不活化酵素遺伝子を植物に導入することによつても行うこと ができる。  The function of the ABA-inactivating enzyme can be suppressed by, but not limited to, an antisense method or an RNA interference (RNAi) method. Alternatively, it can be carried out by knocking out an ABA inactivating enzyme by a homologous gene recombination method or the like. Furthermore, it can also be performed by introducing a mutant ABA inactivating enzyme gene into a plant.
また、 人為的に ABA不活化酵素の機能を抑制するだけではなく、 農作物の中か ら ABA不活化酵素遺伝子に異常がある植物をスクリーニングすることによって、 種子休眠性が深い穀類ゃストレス耐性が強い作物を得ることができる。 例えば、 イネにおいては、 トランスポゾンがランダムに遺伝子に挿入され、 その遺伝子の 機能を欠損させることが知られており、 ABA 不活化酵素遺伝子にトランスポゾン が揷入され、 機能を欠損した植物をスクリーニングすることができる。 In addition to artificially suppressing the function of ABA-inactivating enzyme, cereals with deep seed dormancy and strong resistance to stress are screened by screening plants with abnormal ABA-inactivating enzyme genes from crops. You can get a crop. For example, in rice, a transposon is randomly inserted into a gene, It is known that the function is lost, and a transposon is inserted into the ABA inactivating enzyme gene, so that a plant having a defective function can be screened.
アンチセンス法において、 その標的部位は特に限定されず、 タンパク質コード 領域や 5'非翻訳領域などを標的とすることが可能である。 配列番号 1、 3、 5お ょぴ 7等で表される ABA不活化酵素をコードする遺伝子の塩基配列中又はその相 補配列中のいずれかの箇所にハイブリダィズするアンチセンスヌクレオチドを用 いればよい。 このアンチセンスヌクレオチドは、 好ましくは ABA不活化酵素をコ 一ドする遺伝子の塩基配列中の連続する少なく とも 15 個以上のヌクレオチドに 対するアンチセンスヌクレオチドである。 アンチセンスヌクレオチドは、 DNA 又 は mRNA の所定の領域を構成するヌクレオチドに対応するヌクレオチドが全て相 補配列であるもののみならず、 DNAまたは mRNAとヌクレオチドとが ABA不活化酵 素をコードする遺伝子の塩基配列に特異的にハイブリダイズできる限り、 1又は 複数個のヌクレオチドのミスマッチが存在しているものも含まれる。 RNAiは、 二 本鎖 RNA (dsRNA)を細胞内に導入した際に、その RNA配列に対応する細胞内の mRNA が特異的に分解され、 タンパク質が発現されなくなる現象をいう。 RNAi法におい て、 通常は二本鎖 RNAが用いられるが、 特に限定されず、 例えば、 自己相補的な 一本鎖 RNA中で形成される二本鎖を用いることも可能である。 二本鎖を形成する 領域は、 全ての領域において二本鎖を形成していてもよいし、 一部の領域 (例え ば両末端又は片方の末端など) がー本鎖等になっていてもよい。 RNAiに用いられ るオリゴ RNAは、 その長さは限定されず、 例えば、 25塩基以上 (二本鎖の場合に は、 25bp以上) である。  In the antisense method, the target site is not particularly limited, and it is possible to target a protein coding region, a 5 ′ untranslated region, or the like. An antisense nucleotide that hybridizes to the base sequence of the gene encoding the ABA inactivating enzyme represented by SEQ ID NOS: 1, 3, 5, 7, or the like or any part of its complementary sequence may be used. . The antisense nucleotide is preferably an antisense nucleotide corresponding to at least 15 or more consecutive nucleotides in the nucleotide sequence of the gene encoding ABA inactivating enzyme. Antisense nucleotides include not only those in which all nucleotides corresponding to nucleotides constituting a predetermined region of DNA or mRNA are complementary sequences, and those in which DNA or mRNA and nucleotides encode an ABA inactivating enzyme. As long as it can specifically hybridize to the nucleotide sequence, it includes those having a mismatch of one or more nucleotides. RNAi refers to a phenomenon in which, when double-stranded RNA (dsRNA) is introduced into a cell, the mRNA in the cell corresponding to the RNA sequence is specifically degraded, and the protein is not expressed. In the RNAi method, double-stranded RNA is usually used, but is not particularly limited. For example, double-stranded RNA formed in self-complementary single-stranded RNA can be used. The double-stranded region may be a double-stranded region in all regions, or even if some regions (for example, both ends or one end) have a single-stranded structure or the like. Good. The length of the oligo RNA used for RNAi is not limited, and is, for example, 25 bases or more (25 bp or more in the case of double strand).
ABA 不活化酵素をコードする遺伝子のノックァゥトは以下のようにして行うこ とができる。 ノックァゥトは外来 DNAおよび内在性のトランスポゾンによって起 こされる。 外来 DNAの場合にはランダムに外来 DNAを導入した形質転換植物ラィ ブラリーを、 内在性トランスポゾンの場合はトランスポゾンが飛びやすくなる組 織培養を経て再生させた植物ライプラリーを用いてスクリーニングすることがで きる。 外来 DNAおよぴ内在性トランスポゾンの既知配列を元にしたプライマーと Knockout of the gene encoding the ABA inactivating enzyme can be performed as follows. Knockouts are caused by foreign DNA and endogenous transposons. In the case of exogenous DNA, screening can be performed using a library of transgenic plants into which exogenous DNA has been randomly introduced, and in the case of endogenous transposons, can be screened using a plant library that has been regenerated through tissue culture that facilitates transposon flight. . Primers based on known sequences of foreign DNA and endogenous transposons
CYP707A 遺伝子 (もしくはそのホモログ) 由来の既知配列を元にしたプライマー の組み合わせで、 植物ライブラリーから調製したゲノム DNAを铸型に PCRを行う ことによって、 また、 CYP707A遺伝子おょぴそのホモログの DNAをプローブにサ ザンハイブリダィゼーション法によって揷入変異を確認することができる。 Perform PCR on genomic DNA prepared from a plant library using a combination of primers based on known sequences derived from the CYP707A gene (or its homolog). Thus, the introduced mutation can be confirmed by Southern hybridization using the DNA of the CYP707A gene or its homolog as a probe.
ABA 不活化酵素を機能的に欠損させたトランスジエニック植物は、 以下のよう にして作出することができる。 すなわち、 先ず、 ABA不活化酵素活性を欠損させ るような変異型 ABA不活化酵素遺伝子を構築する。 変異型 ABA不活化酵素遺伝子 は、 上記 「1 . (2)ABA不活化酵素遺伝子のクローユング」 で述べたような突然変 異導入方法に準じて作製することができる。  Transgenic plants in which the ABA inactivating enzyme is functionally deficient can be produced as follows. That is, first, a mutant ABA-inactivating enzyme gene that is deficient in ABA-inactivating enzyme activity is constructed. The mutant ABA inactivating enzyme gene can be prepared according to the mutation introduction method described in “1. (2) Cloning of ABA inactivating enzyme gene” above.
次に、 変異型 ABA不活化酵素遺伝子を、 遺伝子工学的手法を用いて植物宿主に 導入することにより、上述したトランスジェニック植物を作製することができる。 変異型 ABA不活化酵素遺伝子の植物宿主への導入方法としては、 ァグロパクテリ ゥム感染法などの間接導入法や、 パーティクルガン法、 ポリエチレングリコール 法、 リボソーム法、 マイクロインジェクション法などの直接導入法などが挙げら れる。  Next, the above-mentioned transgenic plant can be produced by introducing the mutant ABA inactivating enzyme gene into a plant host using genetic engineering techniques. Methods for introducing a mutant ABA-inactivating enzyme gene into a plant host include indirect methods such as the agrobacterium infection method and direct methods such as the particle gun method, polyethylene glycol method, ribosome method, and microinjection method. No.
ァグロパクテリゥム感染法を用いる場合、 以下のようにして、 変異型 ABA不活 化酵素遺伝子を導入したトラ スジエニック植物を作製ことができる。  When the Agrobacterium infection method is used, a transgenic plant into which a mutant ABA inactivating enzyme gene has been introduced can be prepared as follows.
(1) 植物導入用組換えベクターの作製及ぴァグロバクテリゥムの形質転換  (1) Construction of recombinant vector for plant introduction and transformation of Agrobacterium
植物導入用組換えベクターは、 変異型 ABA不活化酵素遺伝子を含むプラスミ ド から適当な制限酵素を用いて変異型 ABA不活化酵素遺伝子を切り出し、 得られた 断片に必要に応じて適切なリンカーを連結後、 植物細胞用のクローニングベクタ 一に挿入することにより得ることができる。 クローニング用ベクターとしては、 pBI101、 pBI121、 pGA482、 pGAH、 pBIG等のバイナリーベクター系のプラスミ ドゃ pLGV23Neo、 pNCAT、 pM0N200 などの中間ベクター系のプラスミ ドを用いることが できる。  The recombinant vector for plant introduction is prepared by cutting out the mutant ABA inactivating enzyme gene from the plasmid containing the mutant ABA inactivating enzyme gene using an appropriate restriction enzyme, and adding an appropriate linker to the obtained fragment as necessary. After ligation, it can be obtained by inserting into a cloning vector for a plant cell. As a cloning vector, a plasmid of a binary vector system such as pBI101, pBI121, pGA482, pGAH, or pBIG—an intermediate vector system plasmid such as pLGV23Neo, pNCAT, or pM0N200 can be used.
バイナリーベクター系プラスミ ドを用いる場合、 上記のバイナリーベクターの 境界配列(LB, RB)間に、 目的遺伝子を挿入し、 この組換えベクターを大腸菌中で増 幅する。 次いで、 増幅した組換えベクターをァグロバタテリゥム 'チュメファシ エンス C58、 LBA4404、 EHA101、 C58ClRifR、 EHA105等に、 凍結融解法、 エレク ト 口ポレーシヨン法等により導入し、 該ァグロバタテリゥムを植物の形質導入用に 用いる。 上記の方法以外にも、本発明においては、三者接合法 [Nucleic Aci ds Research, 12 : 8711 (1984) ]によつて本発明の遺伝子を含む植物感染用ァグロパクテリゥムを 調製することができる。 すなわち、 目的遺伝子を含むプラスミ ドを保有する大腸 菌 、 ヘルパープラスミ ド(例えば pRK2013など)を保有する大腸菌 、 及びァグロ バタテリゥムを混合培養し、 リファンピシリン及びカナマイシンを含む培地上で 培養することにより植物感染用の接合体ァグロバタテリゥムを得ることができる 植物体内で外来遺伝子などを発現させるためには、 構造遺伝子の前後に、 それ ぞれ植物用のプロモーターやターミネータ一などを配置させる必要がある。 本発 明において利用可能なプロモーターとしては、 例えば力リフラワーモザイクウイ ノレス(CaMV)由来の 35S転写物 [Jefferson, R. A. et al.: EMBO J 6: 3901-3907 (1987) ] , ト ウモロ コシのュビキチン [Chri stensen, A. H. et al.: Plant Mol. Biol. 18 : 675-689 (1992) ]、 ノパリン合成酵素(N0S)遺伝子、オタ トビン(OCT)合成酵素遺 伝子のプロモーターなどが挙げられ、 ターミネータ一配列としては、 例えばカリ フラワーモザィクウィルス由来ゃノパリン合成酵素遺伝子由来のターミネータ一 などが挙げられる。 但し、 植物体内で機能することが知られているプロモーター やターミネータ一であればこれらのものに限定されるものではない。 When a binary vector-based plasmid is used, the target gene is inserted between the boundary sequences (LB, RB) of the binary vector, and the recombinant vector is amplified in E. coli. Next, the amplified recombinant vector is introduced into Agrobacterium tumefaciens C58, LBA4404, EHA101, C58ClRifR, EHA105, etc. by a freeze-thaw method, an electoral poration method or the like, and the Agrobacterium teriformum is planted. Use for transduction of In addition to the above method, in the present invention, an agrobacterium for plant infection containing the gene of the present invention is prepared by a three-way conjugation method [Nucleic Acids Research, 12: 8711 (1984)]. Can be. That is, Escherichia coli having a plasmid containing a target gene, Escherichia coli having a helper plasmid (for example, pRK2013, etc.) and agrobacterium are mixed-cultured, and cultured on a medium containing rifampicillin and kanamycin. In order to express a foreign gene or the like in a plant, it is necessary to arrange a plant promoter or a terminator before and after the structural gene, respectively. Promoters that can be used in the present invention include, for example, 35S transcript derived from the force reflower mosaic virus (CaMV) [Jefferson, RA et al .: EMBO J 6: 3901-3907 (1987)], maize Ubiquitin [Christensen, AH et al .: Plant Mol. Biol. 18: 675-689 (1992)], nopaline synthase (N0S) gene, otatobin (OCT) synthase gene promoter, and the like. Examples of the terminator sequence include a terminator derived from cauliflower mosaic virus-derived ゃ nopaline synthase gene. However, the present invention is not limited to these promoters and terminators as long as they are known to function in plants.
また、 必要に応じてプロモーター配列と本発明の遺伝子の間に、 遺伝子の発現 を増強させる機能を持つィントロン配列、 例えばトウモロコシのアルコールデヒ ドロゲナーゼ(Adhl)のイントロン [Genes & Development 1: 1183- 1200 (1987) ]を 導入することができる。  If necessary, an intron sequence between the promoter sequence and the gene of the present invention, which has a function of enhancing gene expression, such as an intron of corn alcohol dehydrogenase (Adhl) [Genes & Development 1: 1183-1200. (1987)] can be introduced.
さらに、 効率的に目的の形質転換細胞を選択するために、 有効な選択マーカー 遺伝子を本発明の遺伝子と併用することが好ましい。 その際に使用する選択マー カーとしては、カナマイシン耐性遺伝子(ΝΡΤΠ)、抗生物質ハイグロマイシンに対 する抵抗性を植物に付与するハイグロマイシンホスホトランスフェラーゼ(htp) 遺伝子及ぴビアラホス(bialaphos)に対する抵抗性を付与するホスフィノスリシ ンァセチルトランスフェラーゼ(bar)遺伝子等から選ばれる 1つ以上の遺伝子を 使用することができる。  Furthermore, it is preferable to use an effective selectable marker gene in combination with the gene of the present invention in order to efficiently select a desired transformed cell. The selection markers used in this case include the kanamycin resistance gene (ΝΡΤΠ), the hygromycin phosphotransferase (htp) gene that confers resistance to the antibiotic hygromycin to plants, and bialaphos resistance. One or more genes selected from the phosphinothricin acetyltransferase (bar) gene and the like to be conferred can be used.
変異型 ABA不活化酵素遺伝子及ぴ選択マーカー遺伝子は、 単一のベクターに一 緒に組み込んでも良いし、 それぞれ別個のベクターに組み込んだ 2種類の組換え DNAを用いてもよい。 The mutant ABA inactivating enzyme gene and the selectable marker gene may be integrated together into a single vector, or two types of recombination, each incorporated into a separate vector. DNA may be used.
(2) 植物宿主への本発明の遺伝子の導入  (2) Introduction of the gene of the present invention into a plant host
本発明において、 植物宿主とは、 植物培養細胞、 栽培植物の植物体全体、 植物 器官(例えば葉、花弁、茎、根、根茎、種子等)、又は植物組織 (例えば表皮、師部、 柔組織、木部、維管束等)のいずれをも意味するものである。植物宿主として用い ることができる宿主としては、 イネ、 大豆、 トマト、 タバコ、 トウモロコシ、 シ ロイヌナズナなどが挙げられる。  In the present invention, a plant host refers to a plant cultured cell, a whole plant of a cultivated plant, a plant organ (eg, leaf, petal, stem, root, rhizome, seed, etc.), or a plant tissue (eg, epidermis, phloem, soft tissue) , Xylem, vascular bundle, etc.). Hosts that can be used as plant hosts include rice, soybeans, tomatoes, tobacco, corn, Arabidopsis and the like.
植物培養細胞、 植物体、 植物器官又は植物組織を宿主とする場合、 変異型 ABA 不活化酵素遺伝子は、採取した植物切片にベクターをァグロパクテリゥム感染法、 パーティクルガン法、 又はポリエチレングリコール法などで導入し、 植物宿主を 形質転換することができる。 あるいはプロトプラストにエレクトロポレーション 法で導入して形質転換植物を作製することもできる。  When a plant culture cell, plant, plant organ or plant tissue is used as a host, the mutant ABA inactivating enzyme gene can be obtained by transfecting a vector into a collected plant section using an agrobacterium infection method, a particle gun method, or a polyethylene glycol method. Can be used to transform a plant host. Alternatively, transgenic plants can be prepared by introducing them into protoplasts by electroporation.
ァグロパクテリゥム感染法により遺伝子を導入する場合、 目的の遺伝子を含む プラスミ ドを保有するァグロパクテリゥムを植物に感染させる工程が必須である 力 これは、 バキュームインフィルトレーシヨン法 [CR Acad. Sci. Paris, Life Science, 316 : 1194 (1993) ]により行うことができる。 すなわち、 シロイヌナズナ をパーミキユラィ トとパーライトを等量ずつ合わせた土で生育させたシロイヌナ ズナに、 本発明の遺伝子を含むプラスミ ドを含むァグロパクテリゥムの培養液に 直接のシロイヌナズナを浸し、これをデシケーターに入れパキュームポンプで 65 〜70mmHgになるまで吸引後、 5〜10分間、 室温に放置する。 鉢をトレーに移しラ ップで覆い湿度を保つ。 翌日ラップを取り、 植物をそのまま生育させ種子を収穫 する。  When a gene is introduced by the agrobacterium infection method, the step of infecting a plant with an agrobacterium containing a plasmid containing the target gene is essential. This is the vacuum infiltration method [CR Acad. Sci. Paris, Life Science, 316: 1194 (1993)]. That is, Arabidopsis thaliana grown in soil in which equal amounts of permikilite and perlite were combined in Arabidopsis thaliana was directly immersed in a culture solution of Agrobacterium containing a plasmid containing the gene of the present invention, and the Arabidopsis thawed. Place in a desiccator, suction with a vacuum pump until the pressure reaches 65 to 70 mmHg, and leave at room temperature for 5 to 10 minutes. Transfer the pot to a tray and cover with a wrap to keep humidity. Take the wrap the next day, let the plants grow and harvest the seeds.
次いで、 種子を目的の遺伝子を保有する個体を選択するために、 適切な抗生物 質を加えた MS寒天培地に播種する。 この培地で生育した植物体を鉢に移し、生育 させることにより、 本発明の遺伝子が導入されたトランスジエニック植物の種子 を得ることができる。  Next, seeds are sown on an MS agar medium supplemented with an appropriate antibiotic in order to select an individual having the target gene. The seeds of the transgenic plant into which the gene of the present invention has been introduced can be obtained by transferring the plant grown in this medium into a pot and growing it.
一般に、 導入遺伝子は宿主植物のゲノム中に同様に導入されるが、 その導入場 所が異なることにより導入遺伝子の発現が異なるポジションイフェク トと呼ばれ る現象が見られる。 プローブとして導入遺伝子の DNA断片を用いたノーザン法で 検定することによって、 より導入遺伝子が強く発現している形質転換体を選抜す ることができる。 Generally, a transgene is similarly introduced into the genome of a host plant, but a phenomenon called a position effect in which the expression of the transgene differs due to a different location of the transgene is observed. Northern method using DNA fragment of transgene as probe By performing the assay, a transformant in which the transgene is more strongly expressed can be selected.
本発明の遺伝子を導入したトランスジエニック植物及びその次世代に目的の遺 伝子が組み込まれていることの確認は、 これらの細胞及び組織から常法に従って DNAを抽出し、 公知の PCR法又はサザン分析を用いて導入した遺伝子を検出する ことにより行うことができる。  To confirm that the gene of interest has been incorporated into the transgenic plant into which the gene of the present invention has been introduced and the next generation thereof, DNA can be extracted from these cells and tissues in accordance with a conventional method, using a known PCR method or The detection can be performed by detecting the introduced gene using Southern analysis.
なお、 ABA不活化酵素を所定の条件下でのみ発現できるように改変したトラン スジニニック植物を作出する場合も、 上述した方法に準じて実施することができ る。  The production of transgenic plants modified so that the ABA inactivating enzyme can be expressed only under predetermined conditions can be carried out according to the above-mentioned method.
このようにして得られた ABA不活化酵素の機能が抑制された植物の ABA不活化 酵素の活性または変異型 ABA不活化酵素の活性は、 上記 「3 . ABA不活化酵素の 生産及び機能解析」 で述べた方法に準じて解析することができる。  The activity of the ABA-inactivating enzyme of the plant in which the function of the ABA-inactivating enzyme thus obtained is suppressed or the activity of the mutant ABA-inactivating enzyme is determined by the above-mentioned “3. Production and functional analysis of ABA-inactivating enzyme”. The analysis can be performed according to the method described above.
上述したように作出した ABA不活化酵素遺伝子をノックアウトした植物や変異 ABA不活化酵素遺伝子を導入したトランスジエニック植物を、 通常の方法によつ て栽培し、 種子を取得することができる。 例えば、 変異型 ABA不活化酵素遺伝子 を導入したトランスジエニック植物から採取された種子では、 ABA の不活化が抑 制されるため、 長期間に亘つて休眠状態を維持することができる。 これにより、 当該種子は、 長期間の保存や輸送に好適なものとなる。  Seeds can be obtained by cultivating the plant produced as described above, in which the ABA inactivating enzyme gene is knocked out, or the transgenic plant, into which the mutant ABA inactivating enzyme gene is introduced, by an ordinary method. For example, in a seed collected from a transgenic plant into which a mutant ABA inactivating enzyme gene has been introduced, ABA inactivation is suppressed, so that a dormant state can be maintained for a long period of time. This makes the seed suitable for long-term storage and transportation.
また、 ABA 不活化酵素を所定の条件下でのみ発現できるように改変したトラン スジエニック植物から採取された種子では、 所望のタイミングで ABAを不活化す ることができる。 これにより、 当該種子は、 長期間の保存や輸送に好適であり、 さらに、 穀物等を計画的に栽培するような企業型農業に適したものとなる。 以下、 実施例により本発明を更に詳細に説明するが、 本発明の技術的範囲はこ れら実施例に限定されるものではない。 '  In addition, ABA can be inactivated at a desired timing in a seed collected from a transgenic plant modified so that the ABA inactivating enzyme can be expressed only under predetermined conditions. This makes the seeds suitable for long-term storage and transportation, and also suitable for enterprise-type agriculture in which cereals and the like are cultivated systematically. Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited to these Examples. '
〔実施例 1〕  (Example 1)
くシロイヌナズナ由来チトクローム P450 CYP707A CYP707A2、 CYP707A3 及ぴArabidopsis cytochrome P450 CYP707A CYP707A2, CYP707A3 and
CYP707A4の酵母における機能解析〉 Functional analysis of CYP707A4 in yeast>
理化学研究所 筑波研究所 バイオリソースセンター(〒305 - 0074茨城県つく ば市高野台 3丁目 1番地の 1 ) より提供された、 シロイヌナズナ由来チトクロー ム F450 CYP707A1及ぴ CYP707A3の完全長 cDNA (pda03938及び pda05432) を用い て、 PCR法にて、 CYP707A1については N末端に Hpa I並びに C末端に Eco RIの制 限酵素サイトを導入した cDNA断片を調製し、 CYP707A3については N末端に Hpa I 並びに C末端に Kpnlの制限酵素サイトを導入した cDNA断片を調製した。 得られ た両 cDNA断片の塩基配列を DNAシークェンシングにより確認し、提供された完全 長 cDNAと相違なく、 また、 変異の不存在を確認した。 Arabidopsis-derived cytochrome provided by RIKEN Tsukuba Research Institute BioResource Center (3-1, Takanodai, Tsukuba, Ibaraki 305-0074, Japan) Using the full-length cDNAs (pda03938 and pda05432) of F450 CYP707A1 and CYP707A3, a cDNA fragment was prepared by PCR, in which Hpa I was introduced at the N-terminus and Eco RI restriction sites were introduced at the C-terminus for CYP707A1. For CYP707A3, a cDNA fragment was prepared in which Hpa I was introduced at the N-terminus and Kpnl restriction enzyme sites were introduced at the C-terminus. The nucleotide sequences of both the obtained cDNA fragments were confirmed by DNA sequencing, and were confirmed to be the same as the provided full-length cDNA and to be free of mutation.
次に、 得られた cDNA断片を酵母の発現ベクターである pYeDP60 (Denis Pompon 氏より提供 0 Pompon, D. , Louerat, B. , Bronine, A. , and Urban, P. (1996) . Yeast expression of animal and plant P450s in optimized redox environment. Mothod. Enzymol. 272, 51-64) に導入した。 CYP707A1の cDNA断片に関しては、 pYeDP60 の Bam HIサイトを平滑末端化処理し、 さらに Eco RIで処理したものを用いてラ ィゲーシヨンを行った。 また、 CYP707A3の cDNA断片に関しては、 pYeDP60の Bam HIサイ トを平滑末端化し、 さらに Kpn lで処理したものを用いてライゲーシヨン を行った。 Next, the resulting cDNA fragments are yeast expression vector pYeDP60 (Denis Pompon provide Mr. 0 Pompon, D., Louerat, B. , Bronine, A., and Urban, P. (1996). Yeast expression of Animal and plant P450s in optimized redox environment. Mothod. Enzymol. 272, 51-64). For the cDNA fragment of CYP707A1, the Bam HI site of pYeDP60 was blunt-ended, and ligation was performed using Eco RI-treated Bam HI site. For the cDNA fragment of CYP707A3, the BamHI site of pYeDP60 was blunt-ended and ligated using Kpnl-treated one.
各々の得られたプラスミ ドを、 酵母 (Saccharomyces cerevisiae) の WAT11株 (Denis Pompon ftより fe供、 Pompon, D. , Louerat, B. , Bronine, A. , and Urban, P. (1996) . Yeast expression of animaland plant P450s in optimized redox environment. Mothod. Enzymol. 272, 51-64) に、 定法に従って導入した。 各々 のプラスミドを導入した形質転換酵母は、グルコース入り SGI培地で培養した後、 ガラク トース入り SLI培地に移し、 12時間培養後、 菌体を集菌した。 そして、 集 菌した形質転換酵母をリン酸バッファー (pH7. 6) に懸濁し、 フレンチプレスにて 菌体を破砕した。  Each of the obtained plasmids was used as a WAT11 strain of yeast (Saccharomyces cerevisiae) (Fe from Denis Pompon ft, Pompon, D., Louerat, B., Bronine, A., and Urban, P. (1996). Expression of animal and plant P450s in an optimized redox environment. Mothod. Enzymol. 272, 51-64) according to a standard method. The transformed yeast into which each plasmid was introduced was cultured in an SGI medium containing glucose, and then transferred to an SLI medium containing galactose. After culturing for 12 hours, the cells were collected. Then, the transformed yeast was suspended in a phosphate buffer (pH 7.6), and the cells were disrupted by a French press.
次に、 これを超遠心にかけミクロソーム画分を得、 得られたミクロソーム画分 をリン酸バッファー(PH7. 6) に懸濁した。得られたミクロソーム画分溶液に、 500 μ Mの NADPHと 38 μ Μの ABA (ェタノール溶液) とを添加し、 30度で 1晚反応さ せた。  Next, this was ultracentrifuged to obtain a microsome fraction, and the obtained microsome fraction was suspended in a phosphate buffer (PH7.6). To the obtained microsomal fraction solution, 500 µM of NADPH and 38 µΜ of ABA (ethanol solution) were added, and reacted at 30 ° C for 1 晚.
反応終了後、 反応液より酢酸ェチルにて抽出操作を行い、 濃縮乾固後、 液体ク 口マトグラフィー (HPLC) にて生成物の分析を行った。 HPLCでは 0DS (Senshu Pak After completion of the reaction, the reaction solution was extracted with ethyl acetate, concentrated to dryness, and the product was analyzed by liquid chromatography (HPLC). 0DS for HPLC (Senshu Pak
PEGASIL - 0DS) カラム (4. 6 x 250讓) を使用した。 10%メタノ一ル及ぴ 0. 1%酢酸 からなる A液と、 60%メタノ一ル及ぴ 0. 1%酢酸からなる B液とを準備し、 溶出開 始 0〜3分は 50%B液で溶出し、 その後 3~33分は 50〜100%B液となるグラジェン トをかけて溶出した。溶出時間は生成物である PAが 16分、原料の ABAが 30分で ある。 A PEGASIL-0DS) column (4.6 x 250 bars) was used. 10% methanol and 0.1% acetic acid Solution A and solution B consisting of 60% methanol and 0.1% acetic acid are prepared.Elute 0 to 3 minutes with 50% solution B, then elute with 50% B for 3 to 33 minutes. Elution was carried out with a gradient of ~ 100% B solution. The elution time is 16 minutes for the product PA and 30 minutes for the starting material ABA.
CYP707A1の cDNAを導入した形質転換酵母及び CYP707A3の cDNAを導入した形 質転換酵母から得た反応液において、それぞれ 16分にピークが観測された。一方、 空の pYeDP60プラスミ ドだけを導入した形質転換酵母からの反応液においてはこ のピークは検出されなかった。 この結果を図 1乃至 3に示す。 図 1は CYP707A1 の cDNAを導入した形質転換酵母から得た反応液を HPLCに供した際の結果を示し ている。図 2は、 CYP707A3の cDNAを導入した形質転換酵母から得た反応液を HPLC に供した際の結果を示している。 図 3は空の pYeDP60プラスミ ドだけを導入した 形質転換酵母からの反応液を HPLCに供した際の結果を示している。なお、図 1乃 至 3において、 PAのピークを 「PA」 として示し、 ABAのピークを 「ABAJ として示 した。  In the reaction solution obtained from the transformed yeast into which the CYP707A1 cDNA was introduced and from the transformed yeast into which the CYP707A3 cDNA was introduced, a peak was observed at 16 minutes, respectively. On the other hand, this peak was not detected in the reaction solution from the transformed yeast into which only empty pYeDP60 plasmid was introduced. The results are shown in FIGS. FIG. 1 shows the results obtained when the reaction solution obtained from the transformed yeast into which the CYP707A1 cDNA was introduced was subjected to HPLC. FIG. 2 shows the results obtained when the reaction solution obtained from the transformed yeast into which the CYP707A3 cDNA was introduced was subjected to HPLC. FIG. 3 shows the results when the reaction solution from the transformed yeast into which only empty pYeDP60 plasmid was introduced was subjected to HPLC. In FIGS. 1 to 3, the PA peak is shown as “PA” and the ABA peak is shown as “ABAJ”.
次に、得られたこのピークの同定を行うために、ガスクロマトグラフィ ^-マス スぺク トロメ トリー (GC - MS) を用いて分析を行った。 カラムは DB- 1 (250 ra x 30 m) を用いた。 分析条件は、 初期温度 80°Cで 1分、 stepl ; 20°C/minで 220°C まで、 step2 ; 5°C/minで 240°Cまで、 step3 ; 40°C/minで 300°Cまで、 step4 ; 300°C で 5 分のプログラムとした。 CYP707A1 の cDNA を導入した形質転換酵母及び CYP707A3の cDNAを導入した形質転換酵母から得た反応液は、それぞれ PAと同じ 保持時間 (11分) にピ クが得られ、 マススペク トルのパターンが既知の PAの スぺクトルパターンと完全に一致した。  Next, in order to identify the obtained peak, analysis was performed using gas chromatography ^ -mass spectrometry (GC-MS). The column used was DB-1 (250 ra x 30 m). Analytical conditions: Initial temperature 80 ° C for 1 minute, stepl; 20 ° C / min to 220 ° C, step2; 5 ° C / min to 240 ° C, step3; 40 ° C / min to 300 ° C Up to step4; 5 minutes at 300 ° C. In the reaction solution obtained from the transformed yeast into which the CYP707A1 cDNA was introduced and from the transformed yeast into which the CYP707A3 cDNA was introduced, the peak was obtained at the same retention time (11 minutes) as that of PA, and the pattern of the mass spectrum was known. It completely matched the spectrum pattern of PA.
以上の結果から、 CYP707A1 の cDNAを導入した形質転換酵母及び CYP707A3の cDNAを導入した形質転換酵母においては、 それぞれ ABAを PAへと変換する活性 を有することが明らかとなった。すなわち、 CYP707A1の cDNA及び CYP707A3の cDNA は、 ABA 8' -水酸化酵素 (ABA 8' - hydroxylase) をコードする遺伝子であると同定 することができた。  From the above results, it was clarified that the transformed yeast into which the CYP707A1 cDNA was introduced and the transformed yeast into which the CYP707A3 cDNA had been introduced had the activity of converting ABA to PA. That is, the cDNA of CYP707A1 and the cDNA of CYP707A3 could be identified as genes encoding ABA 8'-hydroxylase.
また、 同様に CYP707A2及ぴ CYP707A4の機能を解析するために、 定法に従って 乾燥種子及び未熟種子から CYP707A2の. cDNA及び CYP707A4の cDNAを取得した。 そして、 CYP707A2の cDNA及び CYP707A4の cDNAを用い、 上述した方法に準じ、 CYP707A2及び CYP707A4がコードするタンパク質の ABA不活性化能を検討した。 その結果を図 4及ぴ 5に示す。 Similarly, in order to analyze the functions of CYP707A2 and CYP707A4, CYP707A2 cDNA and CYP707A4 cDNA were obtained from dried seeds and immature seeds according to a standard method. Using the cDNA of CYP707A2 and the cDNA of CYP707A4, the ability of the proteins encoded by CYP707A2 and CYP707A4 to inactivate ABA was examined according to the method described above. The results are shown in FIGS.
図 4は CYP707A2の cDNAを導入した形質転換酵母から得た反応液を HPLCに供し た際の結果を示している。 図 4は CYP707A4の cDNAを導入した形質転換酵母から 得た反応液を HPLCに供した際の結果を示している。これら図 4及ぴ 5から分かる ように、 CYP707A2の cDNAを導入した形質転換酵母及ぴ CYP707A4の cDNAを導入 した形質転換酵母においても、それぞれ ABAを PAへと変換する活性を有すること が明らかとなった。すなわち、 CYP707A2の cDNA及ぴ CYP707A4の cDNAは、 ABA 8' - 水酸化酵素 (ABA 8' - hydroxylase) をコードする遺伝子であると同定することが 'できた。  FIG. 4 shows the results obtained when the reaction solution obtained from the transformed yeast into which the CYP707A2 cDNA was introduced was subjected to HPLC. FIG. 4 shows the results obtained when the reaction solution obtained from the transformed yeast into which the CYP707A4 cDNA was introduced was subjected to HPLC. As can be seen from FIGS. 4 and 5, it was revealed that the transformed yeast into which the CYP707A2 cDNA was introduced and the transformed yeast into which the CYP707A4 cDNA was introduced also had an activity of converting ABA to PA. Was. That is, the cDNA of CYP707A2 and the cDNA of CYP707A4 could be identified as genes encoding ABA 8'-hydroxylase.
ンロイヌナズナ由来 CYP707A1の生化学的解析〉  Biochemical analysis of CYP707A1 from Arabidopsis thaliana>
次に、 シロイヌナズナ ABA 8' -水酸化酵素 (ここでは CYP707A1) の生化学的解 析を行うため、 ABA 8' -水酸化酵素阻害剤の影響を検討した。当該阻害剤としては、 P450阻害剤として知られている Tetcyclacis, Metyrapone及ぴ Uniconazoleを使 用した。  Next, the effects of ABA 8'-hydroxylase inhibitors were studied for the biochemical analysis of Arabidopsis ABA 8'-hydroxylase (here, CYP707A1). As the inhibitor, Tetcyclacis, Metyrapone and Uniconazole known as P450 inhibitors were used.
具体的には、 上述したように調製した反応液に Ι μ Μ 或いは 10 μ Μ の Tetcyclacis若しくは 1 μ M或!/、は': 10 μ Mの Metyrapone若しくは Ι μ Μ或レ、は 10 μ Μの Uniconazoleを添加して、 同様にして反応液に含まれる PA量を測定した。 その結果を図 6に示す。 図 6に示すように、 阻害剤として 10 の Tetcyclacis 及ぴ 10 μ Μの Uniconazoleを用いた場合には、 PAの生成量が大幅に阻害されてお り ABA 8' -水酸化酵素活性を阻害できた。 一方、 阻害剤として Metyraponeを用い た場合には、 PA量が殆ど変化せず ABA 8' -水酸化酵素活性を阻害することができ なかった。  Specifically, に μΜ or 10μΜ of Tetcyclacis or 1 μM or! /, Is: 10 μM Metyrapone or ΙμΜ or 10 μΙ Uniconazole was added, and the amount of PA contained in the reaction solution was measured in the same manner. Figure 6 shows the results. As shown in Figure 6, when 10 Tetcyclacis and 10 μM Uniconazole were used as inhibitors, the amount of PA produced was significantly inhibited, and ABA 8'-hydroxylase activity could be inhibited. Was. On the other hand, when Metyrapone was used as an inhibitor, the amount of PA was hardly changed, and ABA 8'-hydroxylase activity could not be inhibited.
〔実施例 2  (Example 2
くシロイヌナズナにおける発現解析〉  Expression analysis in Arabidopsis>
次に、 シロイヌナズナにおける CYP707A1、 A2、 A3及ぴ A4遺伝子の mRNAの蓄積 量を定量 PCRによって解析した。 1/2 Murashige &Skoogを含む 0. 8%寒天培地にシ ロイヌナズナ野生型(Columbia系統) の種を表面殺菌後に播種し、恒明下 22°Cで 2週間生育させた。 生育後の植物体のロゼット葉と根を RNA抽出に用いた。 茎と 花序はバーミユキユライ ト (緑産業社製) とジフィ一ミ ックス (サカタのタネ社 製) を等量に混合した土植え植物体からサンプリングした。鞘は開花後 10日目の ものを用いた。 乾燥種子は収穫後約 4週間後のものおょぴ 2週間後のものを用い た。 鞘と種からの全 RNAの抽出には RNAqueous™ (Ambion社製) を用いた。 それ ら以外の器官からの全 RNAの抽出には TRIZOL Reagent (Invitrogen社製)を用い た。抽出方法は抽出キツト添付のマニュアルに従い、全 RNAは逆転写反応前に LiCl 沈殿法を行った。全飄の逆転写は Superscript™ First-Strand Synthesi s System for RT- PCR (Invitrogen社製)を用い、 添付のマニュアルに従って行った。 Next, the amount of accumulated CYP707A1, A2, A3 and A4 mRNA in Arabidopsis thaliana was analyzed by quantitative PCR. Seed Arabidopsis wild-type (Columbia strain) seeds on a 0.8% agar medium containing 1/2 Murashige & Skoog after surface sterilization. Grow for 2 weeks. Rosette leaves and roots of the grown plants were used for RNA extraction. Stems and inflorescences were sampled from soil-planted plants in which Bamiyuki Light (manufactured by Ryoku Sangyo) and Difmix (made by Sakata Seed) were mixed in equal amounts. The pod was used 10 days after flowering. Dried seeds were used about four weeks after harvest, two weeks after harvest. RNAqueous ™ (Ambion) was used to extract total RNA from pods and seeds. For extraction of total RNA from other organs, TRIZOL Reagent (Invitrogen) was used. The extraction was performed according to the manual attached to the extraction kit, and the total RNA was subjected to LiCl precipitation before the reverse transcription reaction. Reverse transcription was performed using Superscript ™ First-Strand Synthesis System for RT-PCR (manufactured by Invitrogen) according to the attached manual.
定量 PCRは ABI PRISM 7000 (Appl i ed Biosystems)を用い、 Taqman probe法で逆 転写産物を定量した。 サーマルサイクラ一の条件は、 50°Cで 2分間、 続いて 95°C で 15分間の処理で酵素を活性化させた。 続いて、 変性反応は 95°Cで 15秒とし、 ァニール/伸長反応は 60°Cで 1分間とし、 これら変性反応とァニール/伸長反応を 45回繰り返した。  For quantitative PCR, ABI PRISM 7000 (Applied Biosystems) was used to quantify the reverse transcript by the Taqman probe method. The conditions of the thermal cycler were such that the enzyme was activated by treatment at 50 ° C for 2 minutes, followed by treatment at 95 ° C for 15 minutes. Subsequently, the denaturation reaction was performed at 95 ° C for 15 seconds, and the anneal / extension reaction was performed at 60 ° C for 1 minute, and the denaturation reaction and the anneal / extension reaction were repeated 45 times.
反応終了後、 増幅した cDNAを 10— 4〜10— ¾ ο1/ ^ 1に希釈したものを用い、 検量 線を作製し、 ターゲット遺伝子の mRNAを定量した。 18S RNAの検量線の作製には ' salmon sperm DNAを lOng/ 1〜: Lpg/ μ 1に希釈したものを用いた。 最終的にそれ ぞれの遺伝子発現は 18S RNAの値でノーマライズした相対値で示した。 反応組成 と Taqman PCRに用いたプライマーは以下に示す通りである。 After completion of the reaction, prepared by diluting amplified cDNA into 10- 4 ~10- ¾ ο1 / ^ 1 , to prepare a calibration curve to quantify the mRNA of the target gene. For preparing a calibration curve for 18S RNA, a solution prepared by diluting 'salmon sperm DNA to lOng / 1 to Lpg / μ1 was used. Finally, each gene expression was shown as a relative value normalized with the value of 18S RNA. The reaction composition and primers used for Taqman PCR are as shown below.
く 18S RNAの測定〉  <18S RNA measurement>
逆転写産物 5 1  Reverse transcript 5 1
Pre- Developed TaqMan RNA Assay Reagents 18s ribosomal RNA (Appl i ed Biosystems 社製) 1. 25 1  Pre-Developed TaqMan RNA Assay Reagents 18s ribosomal RNA (Applied Biosystems) 1.25 1
Quant iTect™ Probe PCR Kit (QIAGEN) 12. 5 μ 1  Quant iTect ™ Probe PCR Kit (QIAGEN) 12.5 μ 1
Water 6. 25 1  Water 6. 25 1
く 707A1〜A4 mRNAの測定〉  707A1-A4 mRNA measurement>
逆転写産物 5 μ 1  Reverse transcript 5 μ 1
フォワードプライマー (ΙΟΟ μ Μ) 0. 2 1  Forward primer (ΙΟΟ μ Μ) 0.2 1
リパースプライマー (100 /ζ Μ) 0. 2 μ 1 TaqManプローブ (50 M) 0. 1 1 Repurse primer (100 / ζ Μ) 0.2 μ 1 TaqMan probe (50 M) 0.1 1
Quant iTect™ Probe PCR Kit (QIAGEN) 12. 5 /^ 1  Quant iTect ™ Probe PCR Kit (QIAGEN) 12.5 / ^ 1
Water 7 μ 1  Water 7 μ 1
なお、 CYP707A1の定量に使用したフォワードプライマー、 リバースプライマー 及び TaqManプローブは以下の通りである。  The forward primer, reverse primer and TaqMan probe used for quantification of CYP707A1 are as follows.
フォワードプライマー; 5' - CTCACTCTCTTCGCCGGAAG - 3' (配列番号 9 ) Forward primer; 5'-CTCACTCTCTTCGCCGGAAG-3 '(SEQ ID NO: 9)
リバースプライマー; 5' -TTCCAAACTCCCACTCCCTCC-3 ' (配列番号 1 0 ) Reverse primer; 5'-TTCCAAACTCCCACTCCCTCC-3 '(SEQ ID NO: 10)
TaqManプローブ 5' FAM- TGTCTAATCTCTCAGCGCCGCTTTGG- TAMRA3' (配列番号 1 1 ) TaqMan probe 5 'FAM- TGTCTAATCTCTCAGCGCCGCTTTGG- TAMRA3' (SEQ ID NO: 11)
CYP707A2 の定量に使用したフォワードプライマー、 リバースプライマー及ぴ TaqManプローブは以下の通りである。 The forward primer, reverse primer and TaqMan probe used for quantification of CYP707A2 are as follows.
フォワードプライマー; 5' - CGTCTCTCACATCGAGCTCCTT- 3' (配列番号 1 2 ) リバースプライマー; 5, -CCAAAAGTCCATCAACACCCTC-3 ' (配列番号 1 3 ) Forward primer; 5'-CGTCTCTCACATCGAGCTCCTT-3 '(SEQ ID NO: 12) Reverse primer; 5, -CCAAAAGTCCATCAACACCCTC-3' (SEQ ID NO: 13)
TaqManプローブ; 5' FAM- TCCTCCAAACCCTTTCCTCTTGGACG- TAMRA3' (配列番号 1 4 ) TaqMan probe; 5 'FAM- TCCTCCAAACCCTTTCCTCTTGGACG- TAMRA3' (SEQ ID NO: 14)
CYP707A3 の定量に使用したフォワードプライマー、 リバースプライマー及び TaqManプローブは以下の通りである。 The forward primer, reverse primer and TaqMan probe used for the quantification of CYP707A3 are as follows.
フォワードプライマー; 5' -CTCTGTTTCTCTGTTTACTCCGATTTA-3 ' (配列番号 1 5 ) リ バースプライマー; 5, -TGCAGCAAAACAGAGAAGATACG-3' (配列番号 1 6 ) Forward primer; 5'-CTCTGTTTCTCTGTTTACTCCGATTTA-3 '(SEQ ID NO: 15) Reverse primer; 5, -TGCAGCAAAACAGAGAAGATACG-3' (SEQ ID NO: 16)
TaqManプローブ; 5, FAM- CCGCCGTAGCTCCTCCACGAAAC- TA腿 A3' (配列番号 1 7 ) TaqMan probe; 5, FAM-CCGCCGTAGCTCCTCCACGAAAC-TA thigh A3 '(SEQ ID NO: 17)
CYP707A4 の定量に使用したフォワードプライマー、 リバースプライマー及ぴ TaqManプローブは以下の通りである。 The forward primer, reverse primer and TaqMan probe used for quantification of CYP707A4 are as follows.
フォワードプライマー; 5' -CCTGAAACCATCCGTAAACTCAT-3' (配列番号 1 8 ) リパースプライマー; 5' -TTCCTTACAATCTTGGGCCAA-3 ' (配列番号 1 9 ) Forward primer; 5'-CCTGAAACCATCCGTAAACTCAT-3 '(SEQ ID NO: 18) Reparse primer; 5'-TTCCTTACAATCTTGGGCCAA-3' (SEQ ID NO: 19)
TaqManプローブ; 5' FAM- CTGATATCGAGCACATTGCCCTT- TAMRA3' (配列番号 2 0 ) TaqMan probe; 5 'FAM- CTGATATCGAGCACATTGCCCTT- TAMRA3' (SEQ ID NO: 20)
AtNCED3 の定量に使用したフォワードプライマー、 リバースプライマー及ぴ TaqManプローブは以下の通りである。 The forward primer, reverse primer and TaqMan probe used for quantification of AtNCED3 are as follows.
フォワードプライマー; 5' -GCTGCGGTTTCTGGGAGAT-3' (配列番号 2 1 ) Forward primer; 5'-GCTGCGGTTTCTGGGAGAT-3 '(SEQ ID NO: 21)
リパースプライマー; 5' - ATCGTCTTCTCAAAGCTCCGAC- 3' (配列番号 2 2 )  Reparse primer; 5'-ATCGTCTTCTCAAAGCTCCGAC-3 '(SEQ ID NO: 22)
TaqManプローブ; 5' FAM- CTTGGTGGCAATCATACTCAGCCGC- TAMRA3' (配列番号 2 3 ) その結果、 以下のことが判明した。 シロイヌナズナ CYP707A mRNAは、 ロゼット葉、 根、 茎、 花序、 未熟果実、 乾燥 種子と調べた全ての器官から検出された。 特に、未熟果実で CYP707A1力 S、乾燥種 子で CYP707A2の mRNA量が多かった (図 7 )。 TaqMan probe; 5 'FAM-CTTGGTGGCAATCATACTCAGCCGC-TAMRA3' (SEQ ID NO: 23) As a result, the following was found. Arabidopsis CYP707A mRNA was detected in all organs examined, including rosette leaves, roots, stems, inflorescences, immature fruits, and dried seeds. In particular, immature fruits had higher CYP707A1 force S and dried seeds had higher CYP707A2 mRNA levels (Fig. 7).
乾燥種子は高濃度の ABAを蓄積しており、 吸水に伴って ABA量は減少し、 それ に伴って PA量及び DPA量が増大する (図 8 )。 この急激な ABAの減少は、 休眠種 子が発芽に向かう過程の重要なプロセスであると考えられている。 乾燥種子、 お ょぴ、 吸水後、 6 , 1 2 , 2 4時間 2 2度明所で処理した吸水種子から調製した 全 RNAを鎳型に RT- PCRを行った結果、 CYP707A2 mRNAは乾燥種子で蓄積しており、 吸水後 6時間でその mRNA量は急激に増加し、その後は減少した。一方、 CYP707A1 と CYP707A3は乾燥種子で mRNAはそれほど蓄積していないが、 吸水後 1 2時間以 降で増加する傾向があった。 CYP707A4については吸水 2 4時間の間で mRNAを検 出することができなかった(図 9 )。図 8およぴ図 9に結果を示す検討においては、 収穫後 4週間目の種子を用いた。  Dried seeds accumulate a high concentration of ABA, and the amount of ABA decreases with water absorption, and the amount of PA and DPA increases accordingly (Fig. 8). This rapid decrease in ABA is thought to be an important step in the process of dormant seeds toward germination. Total RNA prepared from water-absorbed seeds that had been treated twice in a light place for 6, 12, 24 hours after absorption of dried seeds, potatoes, and CYP707A2 mRNA The amount of mRNA rapidly increased 6 hours after water absorption, and then decreased. On the other hand, CYP707A1 and CYP707A3 did not accumulate much mRNA in dried seeds, but tended to increase after 12 hours after water absorption. As for CYP707A4, mRNA could not be detected within 24 hours of water absorption (Fig. 9). In the studies showing the results in FIGS. 8 and 9, seeds 4 weeks after harvest were used.
一方、 植物体が乾燥されると ABA量の急激な増加がみられ、 さらに乾燥植物を 再吸水すると ABAの量は急激に減少する (図 1 0 )。 乾燥時には緩やかに CYP707A 遺伝子 mRNA量は増加した。 さらに、 6時間乾燥させた植物を吸水させると、 4 つ全ての CYP707A遺伝子の発現が活性化した(図 1 2 )。 この乾燥植物の再吸水時 の CYP707A遺伝子発現の活性化は、 乾燥時の ABA合成の鍵酵素をコードしている NCED3遺伝子の発現と逆であり、 乾燥で強く誘導される NCED3遺伝子は再吸水に よってその発現が急激に減少する(図 1 1 )。 さらに 30 μ Μ ABAによる誘導も全て の CYP707A遺伝子発現でみられ、 CYP707A1の ABAによる誘導性が最も顕著だった On the other hand, when the plant is dried, the amount of ABA increases sharply, and when the dried plant is re-absorbed, the amount of ABA decreases rapidly (Fig. 10). The CYP707A gene mRNA level increased slowly during drying. Furthermore, when the plants dried for 6 hours were allowed to absorb water, the expression of all four CYP707A genes was activated (Fig. 12). The activation of CYP707A gene expression during re-absorption of dried plants is opposite to the expression of the NCED3 gene, which encodes a key enzyme of ABA synthesis during drying, and the NCED3 gene, which is strongly induced by drying, is re-absorbed. Therefore, its expression decreases sharply (Fig. 11). In addition, induction by 30 μΜ ABA was also observed in all CYP707A gene expression, and the induction of CYP707A1 by ABA was most prominent.
(図 1 3 )。 なお、 図 1 0、 1 1および 1 2中、 乾燥 (白丸で示す) は 2週間目植 物をペーパータオル上で乾燥させたもので、 再吸水 (黒丸で示す) は同上の乾燥 処理を 6時間施した後、 ペーパータオルを湿らせて再吸水させたものである。 図 1 0から 1 2に結果を示す検討においては、 収穫後 2週間目の種子を用いた。(Figure 13). In Figs. 10, 11, and 12, drying (indicated by white circles) is the result of drying the plant on a paper towel for the second week, and water absorption (indicated by black circles) is the same drying treatment for 6 hours. After the application, the paper towel was moistened to absorb water again. In the studies showing the results in FIGS. 10 to 12, seeds 2 weeks after harvest were used.
〔実施例 3〕 (Example 3)
く CYP707Aノックァゥト系統の表現型解析〉 <Phenotype analysis of CYP707A knockout strain>
本実施例では、 CYP707A2遺伝子及ぴ CYP707A3遺伝子のノックァゥト系統を作 出し、 種子の休眠状態に関する表現型を解析した。 Arabidopsis Stock Center (ABRC) (Alonso et al. , Science, 301, 653-657 (2003) ) から入手した CYP707A2 遺伝子及び CYP707A3遺伝子に T- DNAが挿入された系統を用い、それぞれホモ接合 系統を作出した。 In this example, knockout lines of the CYP707A2 gene and the CYP707A3 gene were created, and the phenotype related to the dormancy of the seed was analyzed. Arabidopsis Stock Center (ABRC) Using CYP707A2 gene and CYP707A3 gene obtained by obtaining T-DNA into the CYP707A3 gene obtained from (Alonso et al., Science, 301, 653-657 (2003)), homozygous strains were respectively produced.
具体的に、 図 1 4に示すように、 CYP707A2遺伝子における 5番目のェクソンと 5 番目のイントロンとの間に T - DNA が挿入された cyp707a2 - 1 変異遺伝子、 CYP707A2遺伝子における 7番目のイントロンに T-DNAが挿入された cyp707a2- 2 変異遺伝子、 CYP707A3遺伝子における 1番目のェクソンに T- DNAが挿入された cyp707a3-l変異遺伝子及ぴ CYP707A3遺伝子における 2番目のエタソンに T- DNA が揷入された cyp707a3-2変異遺伝子を入手した。  Specifically, as shown in Figure 14, the T-DNA was inserted between the fifth exon and the fifth intron in the CYP707A2 gene, the cyp707a2-1 mutant gene, and the seventh intron in the CYP707A2 gene -Cyp707a2-2 mutant gene with inserted DNA, c-707a3-l mutant gene with T-DNA inserted into the first exon of CYP707A3 gene, and T- DNA inserted into the second etason of CYP707A3 gene The cyp707a3-2 mutant gene was obtained.
これら 4種類の変異遺伝子用いて 4種類のホモ接合系統を作出し、 植物体から 種子を採取した。 採取した種子を用いて発芽効率を検討した。 吸水させたフィル ター紙状に種子を載置し幼根の出現を観測した。 幼根の出現を発芽の基準とし、 発芽までの日数と発芽率との関係を図 1 5に示した。 図 1 5から分かるように、 CYP707A3遺伝子をノックアウトした種子では、野生型と比較してやや発芽率が減 少した。一方、 CYP707A2遺伝子をノックアウトした種子では、野生型及ぴ CYP707A3 遺伝子をノックアウトした系統と比較して、 大幅に発芽率が減少した。  Four homozygous lines were created using these four mutant genes, and seeds were collected from the plant. Germination efficiency was examined using the collected seeds. Seeds were placed on a filter paper that had absorbed water, and the appearance of radicles was observed. The relationship between the number of days until germination and the germination rate is shown in Fig. 15 using the appearance of the radicle as the germination standard. As can be seen from Fig. 15, the germination rate of seeds in which the CYP707A3 gene was knocked out was slightly reduced as compared with the wild type. On the other hand, the germination rate of the seeds in which the CYP707A2 gene was knocked out was significantly reduced as compared with the wild type and the line in which the CYP707A3 gene was knocked out.
また、 乾燥種子に含まれる ABA量、 PA量及び DPA量を、 野生型及び CYP707A2 遺伝子をノックアウトした系統において比較した結果を図 1 6に示す。 さらに、 吸水処理を開始してから種子に含まれる ABA量変化を、野生型及び CYP707A2遺伝 子をノックアウトした系統において比較した結果を図 1 7に示す。 図 1 6及ぴ図 1 7より、 CYP707A2遺伝子をノックアウトした系統においては、 野生型と比較し て ABAが多量に蓄積されており、吸水処理開始から 24時間経過後であっても多量 の ABAが蓄積されていた。  Fig. 16 shows the results of comparing the amounts of ABA, PA and DPA contained in the dried seeds in the wild type and in the line in which the CYP707A2 gene was knocked out. Furthermore, FIG. 17 shows the results of comparing the change in the amount of ABA contained in the seeds after the start of the water absorption treatment in the wild type and the line in which the CYP707A2 gene was knocked out. As shown in Figs. 16 and 17, in the line in which the CYP707A2 gene was knocked out, a larger amount of ABA was accumulated than in the wild type, and even after 24 hours from the start of water absorption, a larger amount of ABA was accumulated. Had been accumulated.
これら図 1 5乃至 1 7に示した結果より、 CYP707A2遺伝子は、 種子に含まれる ABA量を決定する主要な ABA 8' -水酸化酵素であり、 シロイヌナズナにおいては、 CYP707A2遺伝子に由来する ABA 8' -水酸化酵素活性を阻害することによって、 種 子の休眠を維持できることが明らかとなった。  From these results shown in FIGS. 15 to 17, the CYP707A2 gene is a major ABA 8′-hydroxylase that determines the amount of ABA contained in seeds, and in Arabidopsis, ABA 8 ′ derived from the CYP707A2 gene -Inhibition of hydroxylase activity has been shown to maintain seed dormancy.
本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。 産業上の利用の可能性 All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety. Industrial potential
本発明によれば、 ABA を不活性化する機能を有する新規な遺伝子を提供する とができる。 また、 本発明によれば、 当該新規な遺伝子を有する発現ベクター 形質転換体、 トランスジヱニック植物及ぴ種子を提供することができる。  According to the present invention, a novel gene having a function of inactivating ABA can be provided. Further, according to the present invention, an expression vector transformant having the novel gene, a transgenic plant and a seed can be provided.

Claims

請求の範囲 The scope of the claims
1. 以下の (a) 又は (b) のタンパク質をコードする遺伝子。 1. A gene encoding the following protein (a) or (b):
(a) 配列番号 2、 4、 6又は 8で表されるアミノ酸配列からなるタンパク質 (b) 配列番号 2、 4、 6又は 8で表されるアミノ酸配列において 1若しくは数 個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 且つ、 ァ ブシジン酸の不活性化活性を有するタンパク質  (a) a protein consisting of the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8; (b) one or several amino acids are deleted in the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8, A protein comprising a substituted or added amino acid sequence and having abscisic acid inactivating activity
2. 以下の (a) 又は (b) の DNAを含む遺伝子。  2. A gene containing the DNA of (a) or (b) below.
(a) 配列番号 1、 3、 5又は 7で表される塩基配列からなる DNA  (a) DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1, 3, 5, or 7
(b) 配列番号 1、 3、 5又は 7で表される塩基配列に対して相補的な塩基配列 からなる DNAに対してス トリンジェントな条件下でハイブリダィズし、 且つ、 ァ ブシジン酸の不活性化活性を有するタンパク質をコードする DNA  (b) hybridizes under stringent conditions to DNA consisting of a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1, 3, 5, or 7, and inactivates abscisic acid Encoding a protein having activating activity
3. シロイヌナズナ、 イネ又はトマト由来であることを特徴とする請求項 1 又は 2記載の遺伝子。  3. The gene according to claim 1, which is derived from Arabidopsis, rice or tomato.
4. 請求項 1又は 2記載の遺伝子を含む組換えベクター。  4. A recombinant vector containing the gene according to claim 1 or 2.
5. 請求項 4記載の組換えベクターを含む形質転換体。  5. A transformant containing the recombinant vector according to claim 4.
6. 請求項 1又は 2記載の遺伝子を含むトランスジヱニック植物。  6. A transgenic plant comprising the gene according to claim 1 or 2.
7. 請求項 6記載のトランスジエニック植物から採取された種子。  7. A seed collected from the transgenic plant according to claim 6.
8. 請求項 1又は 2記載の遺伝子が ックァゥトされた植物。  8. A plant in which the gene according to claim 1 or 2 is quartated.
9. (a)配列番号 4で表されるアミノ酸配列からなるタンパク質、若しくは(b) 配列番号 4で表されるアミノ酸配列において 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 且つ、 アブシジン酸の不活性化 活性を有するタンパク質に由来するアブシジン酸の不活性化活性を阻害すること によって、 種子の休眠を維持する方法。  9. (a) a protein consisting of the amino acid sequence represented by SEQ ID NO: 4 or (b) an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 4 A method for maintaining seed dormancy by inhibiting abscisic acid inactivating activity derived from a protein having abscisic acid inactivating activity.
1 0. テトシクラシス (Tetcyclacis) 及び/又はゥニコナゾーノレ (Uniconazole) によって上記タンパク質に由来するアブシジン酸の不活性化活性を阻害すること を特徴とする請求項 9記載の種子の休眠を維持する方法。  10. The method for maintaining seed dormancy according to claim 9, wherein the activity of inactivating abscisic acid derived from the protein is inhibited by Tetcyclacis and / or Uniconazole.
1 1. (a)配列番号 4で表されるァミノ酸配列からなるタンパク質、若しくは(b) 配列番号 4で表されるァミノ酸配列において 1若しくは数個のァミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 且つ、 アブシジン酸の不活性化 活性を有するタンパク質に由来するアブシジン酸の不活性化活性が阻害された種 子。 1 1. (a) a protein consisting of the amino acid sequence represented by SEQ ID NO: 4, or (b) one or several amino acids are deleted in the amino acid sequence represented by SEQ ID NO: 4, Species comprising a substituted or added amino acid sequence, wherein abscisic acid-inactivating activity derived from a protein having abscisic acid-inactivating activity is inhibited.
ΎΔΟ A3 ΎΔΟ A3
Figure imgf000030_0001
Figure imgf000030_0001
00£ οσοε 0000£ iΐls oo··. 00 £ οσοε 0000 £ iΐls oo
Figure imgf000031_0001
Figure imgf000031_0001
in o in o 〇 v 寸 CO cn ( o o o o o O 〇 o O c 〇 d d d d o d d O o d in o in o 〇 v Dimension CO cn (ooooo O 〇 o O c 〇 ddddodd O od
図 3 Fig 3
pYeDP60 (vector control) pYeDP60 (vector control)
Figure imgf000032_0001
Figure imgf000032_0001
5.00 10.00 15.00 20.00 25.00 30.00 5.00 10.00 15.00 20.00 25.00 30.00
図 4 Fig. 4
CYP707A2 CYP707A2
J しJ
10 20 30 min 10 20 30 min
4/17
Figure imgf000034_0001
4/17
Figure imgf000034_0001
PA生産量(%) o PA production (%) o
o
Figure imgf000035_0001
o
Figure imgf000035_0001
yyp Tetcclacis Ucooninazleaoのの trn  yyp Tetcclacis Ucooninazleao trn
o  o
o o
Ll/LLl / L
Figure imgf000036_0001
相対的 mRNAレベル 相対的 mRNAレベル 相対的 mRNAレベル
Figure imgf000036_0002
Figure imgf000036_0001
Relative mRNA level Relative mRNA level Relative mRNA level
Figure imgf000036_0002
相対的 mRNAレベル 相対的 mRNAレベル 相対的 mRNAレベル
Figure imgf000036_0003
Relative mRNA level Relative mRNA level Relative mRNA level
Figure imgf000036_0003
Figure imgf000036_0004
sen請 OAV ABA量、 PA量及び DPA量(ng/g DW)
Figure imgf000036_0004
sen contract OAV ABA amount, PA amount and DPA amount (ng / g DW)
N3 4^ N3 4 ^
Figure imgf000037_0001
Figure imgf000037_0001
図 9 S灰 sVN¾;IFigure 9 S ash sVN¾; I
Figure imgf000038_0001
Figure imgf000038_0001
給水時間(hour) Water supply time (hour)
9/17 図 1 0 9/17 Fig. 10
Figure imgf000039_0001
Figure imgf000039_0001
処理後時間 (h) Post-processing time (h)
10/17 図 1 1 10/17 Fig. 1 1
Figure imgf000040_0001
Figure imgf000040_0001
o 6 9 12 処理後時間 (h)  o 6 9 12 Time after treatment (h)
11/17 図 1 2
Figure imgf000041_0001
11/17 Fig. 1 2
Figure imgf000041_0001
処理後時間 (h)  Post-processing time (h)
処理後時間
Figure imgf000041_0002
Post-processing time
Figure imgf000041_0002
処理後時間 (h) 処理後時間 ( Time after processing (h) Time after processing (
図 1 3
Figure imgf000042_0001
Fig. 13
Figure imgf000042_0001
処理後時間 (h) 処理後時間 (h)  Time after processing (h) Time after processing (h)
Figure imgf000042_0002
Figure imgf000042_0002
3 6 9 3 6 9 12 処理後時間 (h) 処理後時間 (h) 3 6 9 3 6 9 12 Time after processing (h) Time after processing (h)
図 1 4 Fig. 14
CYP707A2 CYP707A3 CYP707A2 CYP707A3
Figure imgf000043_0001
Figure imgf000043_0001
707a2-l 707a2-2 707a3-l 707a3-2  707a2-l 707a2-2 707a3-l 707a3-2
:ェキソン :イン卜ロン : Exon: Intron
14/17 図 1 5 14/17 Fig. 15
Gag
ίί
Figure imgf000044_0001
Figure imgf000044_0001
吸水期間(days)  Water absorption period (days)
15/17 ABA量、 PA量、 DPAJ 15/17 ABA amount, PA amount, DPAJ
(ng/gDW) (ng / gDW)
Figure imgf000045_0001
Figure imgf000045_0001
0 0
図 "1 7
Figure imgf000046_0001
Figure "1 7
Figure imgf000046_0001
給水時間(hour) Water supply time (hour)
17/17 17/17
PCT/JP2004/008949 2003-06-20 2004-06-18 Gene involved in abscisic acid inactivation WO2004113527A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003176427 2003-06-20
JP2003-176427 2003-06-20
JP2003367857 2003-10-28
JP2003-367857 2003-10-28

Publications (1)

Publication Number Publication Date
WO2004113527A1 true WO2004113527A1 (en) 2004-12-29

Family

ID=33543490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008949 WO2004113527A1 (en) 2003-06-20 2004-06-18 Gene involved in abscisic acid inactivation

Country Status (1)

Country Link
WO (1) WO2004113527A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007045040A1 (en) 2005-10-20 2007-04-26 Commonwealth Scientific And Industrial Research Organisation Cereals with altered dormancy
CN110577938A (en) * 2019-11-11 2019-12-17 中国农业科学院生物技术研究所 Application of ABA 8' -hydroxylase gene OsABA8ox2 in plant photomorphogenesis and root development
CN114540407A (en) * 2022-01-13 2022-05-27 安庆市长三角未来产业研究院 Application of SlCYP707A gene as negative regulatory factor in promoting tomato resistance at sub-low temperature

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033405A2 (en) * 1999-02-25 2000-09-06 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033405A2 (en) * 1999-02-25 2000-09-06 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BEVAN M. ET AL.: "The pri2 databases", 30 April 1999 (1999-04-30), XP002984979 *
HIRAI N.: "Abscisic acid o fukasseika suru koso", SEIBUTSU KOGAKUSHI, vol. 76, no. 3, 1998, pages 133, XP002984980 *
HISASHIRO T. ET AL.: "Abscisic acid (ABA) no taisha ni kakawaru shiroinunazuna ABA 8'-suisanka koso idenshi no dotei", 8 October 2003 (2003-10-08), XP002984978, Retrieved from the Internet <URL:http://www.sasappa.co.jp/shokkacho38/regi/p25.html> *
KROCHKO J.E. ET AL.: "(+) -Abscisic acid 8'-hydroxylase is a cytochrome P450 monooxy genase", PLANT PHYSIOL., vol. 118, no. 3, November 1998 (1998-11-01), pages 849 - 860, XP002208829 *
KUSHIRO T. ET AL.: "The arabidopsis cytochrome P450 CYP707 encodes ABA 8'-hydroxylases: a key enzymes in ABA catabolism", EMBO J., vol. 23, no. 7, 7 April 2004 (2004-04-07), pages 1647 - 1656, XP002984977 *
LIN X. ET AL.: "Sequence and analysis of chromosome 2 of the plant arabidopsis thaliana", NATURE, vol. 402, no. 6763, 16 December 1999 (1999-12-16), pages 761 - 768, XP000877287 *
SAITO S. ET AL.: "Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid", PLANT PHYSIOL., vol. 134, no. 4, April 2004 (2004-04-01), pages 1439 - 1449, XP002984976 *
XU Z.J. ET AL.: "Cloning and characterization of the abscisic acid-specific glucosyltrans ferase gene from adzuki bean seedlings", PLANT PHYSIOL., vol. 129, no. 3, July 2002 (2002-07-01), pages 1285 - 1295, XP002247407 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007045040A1 (en) 2005-10-20 2007-04-26 Commonwealth Scientific And Industrial Research Organisation Cereals with altered dormancy
US8269082B2 (en) 2005-10-20 2012-09-18 Commonwealth Scientific And Industrial Research Organisation Cereals with altered dormancy
AU2006303820B2 (en) * 2005-10-20 2013-06-20 Commonwealth Scientific And Industrial Research Organisation Cereals with altered dormancy
CN110577938A (en) * 2019-11-11 2019-12-17 中国农业科学院生物技术研究所 Application of ABA 8' -hydroxylase gene OsABA8ox2 in plant photomorphogenesis and root development
CN110577938B (en) * 2019-11-11 2020-03-10 中国农业科学院生物技术研究所 Application of ABA 8' -hydroxylase gene OsABA8ox2 in plant photomorphogenesis and root development
CN114540407A (en) * 2022-01-13 2022-05-27 安庆市长三角未来产业研究院 Application of SlCYP707A gene as negative regulatory factor in promoting tomato resistance at sub-low temperature
CN114540407B (en) * 2022-01-13 2023-11-28 安庆市长三角未来产业研究院 Application of SlCYP707A gene as negative regulation factor in promotion of sub-low temperature resistance of tomatoes

Similar Documents

Publication Publication Date Title
JP4427103B2 (en) Transgenic plants exhibiting increased nitrogen assimilation
Clouse Molecular genetic analysis of brassinosteroid action
EP1250445B1 (en) Root-specific expression of target genes in plants
KR102491094B1 (en) Composition for elongating of hypocotyl length under darkness or strengthening of drought resistance
Curtis et al. Induction of dwarfism in transgenic Solanum dulcamara by over‐expression of a gibberellin 20‐oxidase cDNA from pumpkin
Zhang et al. Improved turf quality of transgenic bahiagrass (Paspalum notatum Flugge) constitutively expressing the ATHB16 gene, a repressor of cell expansion
JP2009540822A (en) Use of plant chromatin remodeling genes to regulate plant structure and growth
JP2006325554A (en) Method for imparting stress-preventing effect by inducing gene expression
WO2005074357A2 (en) Regulation of gene expression in plant cells
CN109748960B (en) Gene for regulating and controlling anti-aluminum virus transcription factor STOP1 protein and application thereof
JPH09509841A (en) Methods for inhibiting and inducing flower bud formation in plants
DE102005007311B4 (en) Method for producing plants with reduced resting period
KR102003114B1 (en) Method for improving the resistance to drought stress using pepper protein phosphatase CaAIPP1 in plants
AU734895B2 (en) Gene for floral regulation and methods for controlling of flowering
WO2012165714A1 (en) Gene associated with non-biological stress resistance, and transformed plant
KR101926962B1 (en) Method for improving the resistance to drought stress using RING finger E3 ligase PIR in plants
KR101926961B1 (en) Method for improving the resistance to drought stress using pepper RING Finger E3 ligase CaDIR1 in plants
Gu et al. Overexpression of ZmOPR1 in Arabidopsis enhanced the tolerance to osmotic and salt stress during seed germination
WO2004113527A1 (en) Gene involved in abscisic acid inactivation
CN116622666A (en) Method for regulating drought resistance of plants and application of TaMPK3 in regulating drought resistance of plants
JPWO2006057306A1 (en) Gramineae plant with improved stress tolerance and / or productivity, and method for producing the same
KR100861717B1 (en) Atcpl5 gene and atcpl5 overexpression transgenic plants
KR102603683B1 (en) Plant growth regulatory genes encoding seeds plant specific extensin motif containing proteins and uses thereof
EP2292777B1 (en) Transgenic sweet sorghum with altered lignin composition and process of preparation thereof
JP5833827B2 (en) Genes that increase oil and fat productivity of plants and methods for using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP