WO2004113453A1 - Crystalline nonsolvated polymethine compound - Google Patents

Crystalline nonsolvated polymethine compound Download PDF

Info

Publication number
WO2004113453A1
WO2004113453A1 PCT/JP2004/008795 JP2004008795W WO2004113453A1 WO 2004113453 A1 WO2004113453 A1 WO 2004113453A1 JP 2004008795 W JP2004008795 W JP 2004008795W WO 2004113453 A1 WO2004113453 A1 WO 2004113453A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
polymethine
formula
group
crystalline
Prior art date
Application number
PCT/JP2004/008795
Other languages
French (fr)
Japanese (ja)
Inventor
Keiki Chichiishi
Sayuri Wada
Shigeo Fujita
Original Assignee
Yamamoto Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Chemicals, Inc. filed Critical Yamamoto Chemicals, Inc.
Priority to JP2005507266A priority Critical patent/JPWO2004113453A1/en
Publication of WO2004113453A1 publication Critical patent/WO2004113453A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0066Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of a carbocyclic ring,(e.g. benzene, naphtalene, cyclohexene, cyclobutenene-quadratic acid)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical

Definitions

  • the present invention relates to a novel crystalline unsolvate of a polymethine compound, a method for producing the same,
  • the present invention relates to a near-infrared absorbing agent using the crystalline non-solvated polymethine compound.
  • polymethine compounds have been widely used as optical recording media, materials for near-infrared absorption filters, photothermal conversion agents for plate making materials using laser light, and the like.
  • general-purpose semiconductor lasers for example, have a high sensitivity in the laser region of 780 nm to 800 nm, and are suitable for general-purpose solvents, for example, alcohol solvents such as methanol and ethanol.
  • general-purpose solvents for example, alcohol solvents such as methanol and ethanol.
  • compounds having good solubility It is also important that they are stable and easy to handle, and that they do not contain impurities that can adversely affect various applications.
  • a polymethine compound satisfying such a demand has not been known.
  • the most common method is to react the indrenium-based compound of the formula (III) with the dianyl-based compound of the formula (VI) to synthesize a polymethine-based compound.
  • the type of the acidic residue Z— is restricted from the viewpoint of the reaction yield of the system compound, the operability of isolation and purification, and the like.
  • a powerful production method is generally used for the production of polymethine compounds in which is a residue of perchloric acid, a residue of tetrafluoroboronic acid, or a residue of p-toluenesulfonic acid.
  • special Is not known about what is C 1.
  • the compound having a different basic structural formula from the polymethine compound of the present invention has a force Z— having a C 1—
  • a production example is disclosed in Example 3 of Japanese Patent Application Laid-Open No. Sho 62-36469.
  • the present inventors according to the method disclosed in Example 1 of the above DE3721850 and Example 3 of JP-A-6-36469, a compound having the same structure as the polymethine compound of the present invention. Tried synthesis. However, the obtained compound is a solvate and a very low-purity product from the results of TG-DTA analysis, and cannot be purified by recrystallization with an alcoholic solvent such as methanol or ethanol. Various purification methods were examined for this compound, but it easily formed into a solvate in the presence of water, Z or alcohol, and the same compound as the present compound could not be obtained.
  • solvate is a generic term including hydrates.
  • known compounds having the same structural formula as the compound of the present invention are caused by the production method thereof. It is a low-purity solvate, which greatly restricts its use.
  • a solvate of a compound having the same structural formula as the compound of the present invention is used as a light-to-heat conversion agent for CTP (Computer To Plate) plate making, the solution stability is poor and the purity is not stable.
  • the light-to-heat conversion efficiency fluctuates greatly, which is a serious problem in practical use.
  • An object of the present invention is to provide a novel polymethine compound having good stability in a solution, high gram extinction coefficient, excellent storage stability, easy handling, and high sensitivity to a general-purpose semiconductor laser. That is.
  • a novel crystalline unsolvate of a polymethine compound having a specific structure has good solubility stability in a solvent and a gram extinction coefficient.
  • the present invention was found to be high, stable, easy to remove, and usable as a near-infrared absorbing agent that can be easily processed for various uses.
  • the first invention of the present application is a crystalline unsolvated polymethine compound represented by the following formula (I).
  • the crystalline unsolvated polymethine compound of the present application has a melting point (decomposition temperature) of 220 ° C. or higher, and the TG-DTA (thermogravimetric-differential thermal analysis) measurement diagram shows that TG weight loss at 50 ° C or less is 3% or less, and it is not substantially solvated. Furthermore diffraction angle in the powder X-ray diffraction method according Cu- kappa alpha rays (0 20 ⁇ . 2 °) 11. 8.
  • the second invention of the present application is the following formula (II):
  • R represents an alkyl group, an alkoxyalkyl group, or an aryl group which may have a substituent.
  • the third invention of the present application is a near-infrared absorbing agent containing a crystalline unsolvated polymethine compound of the formula (I).
  • FIG. 1 is a powder X-ray diffraction diagram of a polymethine compound of Example 1.
  • FIG. 2 is an IR absorption spectrum of the polymethine compound of Example 1.
  • FIG. 3 is a TG-DTA (thermogravimetry-differential thermal analysis) diagram of the polymethine compound of Example 1.
  • FIG. 4 is an X-ray powder diffraction diagram of a solid material of Comparative Example 1.
  • FIG. 5 is a graph showing TG-DTA (thermogravimetry-differential thermal analysis) measurement of the solid material of Comparative Example 1. Detailed description of the invention
  • the crystalline non-solvate of the polymethine compound represented by the formula (I) of the present invention has a melting point (decomposition temperature) of 220 ° C or more, and preferably 225 ° C to 235 ° C.
  • the melting point is below 220 ° C.
  • the melting point decomposition temperature
  • the melting point can be observed very clearly because the compound gradually foams and decomposes when it begins to be dissolved, but the solvate and / or low-purity product has a clear melting point and The decomposition temperature may not be indicated.
  • the TG-DTA (thermogravimetry-differential thermal analysis) measurement diagram of the crystalline unsolvated polymethine compound represented by the formula (I) of the present invention shows that the TG loss value at 150 ° C or less is 3%. Or less, preferably 2% or less. For hydrates and Z or low purity products, the TG weight loss below 150 ° C is more than 3%.
  • the known compound represented by the formula (I) is a compound solvated with water or an organic solvent, has a limited use, and has low industrial value.
  • the crystalline unsolvate of the polymethine compound represented by the formula (I) of the present invention is a completely novel compound that is not solvated with water or an organic solvent.
  • the crystalline unsolvate of the polymethine compound represented by the formula (I) of the present invention has a diffraction angle (2S ⁇ 0.2 °) of 11.8 in a powder X-ray diffraction method using Cu-ray. , 13.0 °, 18.7 °, 19.4 ° and 21.2 °.
  • the solvate and / or low-purity product shows a completely different powder X-ray diffraction pattern. It has been found that the crystalline non-solvate of the polymethine compound of the present invention can be produced for the first time by passing (as a starting material) a polymethine ether compound represented by the formula (II).
  • the crystalline non-solvate of the polymethine compound represented by the formula (I) of the present invention has not only the above-mentioned excellent characteristics, but also, surprisingly, a similar polymethine-based compound known so far. Compared with the compound, the solubility in methanol and ethanol is very high, and the absorbance in the 780 to 830 nm region is large.
  • near-infrared absorbers such as various markings, filters, films, etc.
  • they are more stable and can be used with high-concentration liquids of alcoholic solvents that are easy to handle, so they are excellent in handling and processability.
  • the crystalline unsolvate of the polymethine compound represented by the formula (I) of the present invention can be produced by the following method.
  • R represents an alkyl group, an alkoxyalkyl group, or an aryl group which may have a substituent.
  • R is an alkyl group, a linear or branched alkyl group having 1 to 8 carbon atoms is preferable, and a linear or branched alkyl group having 1 to 4 carbon atoms is particularly preferable.
  • Examples include methynole, ethyl, n-propyl, isopropyl, n-butynole, isobutynole, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl Group, isohexyl group, sec-hexyl group, 2-ethylbutyl group, n-heptyl group, isoheptyl group, sec-heptyl group, n-octyl group, and 2-ethylhexyl group.
  • R is an alkoxyalkyl group
  • those having 2 to 8 carbon atoms are preferred, and those having 2 to 4 carbon atoms are particularly preferred.
  • Examples include a methoxymethyl group, a 2-methoxyl group, a 3-methoxypropyl group, a 2-ethoxymethyl group, a 2-ethoxyl group, a 2-propoxyl group and a 2-butoxyl group.
  • R is an aryl group which may have a substituent
  • a substituent examples include a phenyl group which may have a substituent and a naphthyl group which may have a substituent.
  • a phenyl group which may be substituted is preferred.
  • the substituent include an alkyl group, an amino group, a nitro group, an alkoxy group, a hydroxyl group, a halogen atom, and the like, and an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms is preferable.
  • R is a phenyl group having an alkyl group
  • examples of the group in which R is a phenyl group having an alkyl group include 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group, 3,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,6-dimethylphenyl group, 2-erphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2,3-ethylphenyl A 2,4-dimethylthiophenyl group, a 3,4-dimethylthiophenylene group, a 2,5-dimethylthiophenylene group, and a 2,6-getylphenyl group.
  • R is a phenyl group having an alkoxy group
  • examples of the group in which R is a phenyl group having an alkoxy group include a 2-methoxyphenyl group, a 3-methoxyphenyl group, a 4-methoxyphenyl group, a 2,3-dimethoxyphenyl group, and a 2,3-methoxyphenyl group. 4-dimethoxyphenyl group, 3, 4-dimethoxyphenyl And 2,5-dimethoxyphenyl group and 2,6-dimethoxyphenyl group.
  • organic solvent examples include alcohols such as methanol, ethanol, n-propanol, iso-propanol, and n-butanol; ketones such as acetone, methyl ethyl ketone, methyl propyl ketone and methyl butyl ketone; tetrahydrofuran and dioxane.
  • alcohols such as methanol, ethanol, n-propanol, iso-propanol, and n-butanol
  • ketones such as acetone, methyl ethyl ketone, methyl propyl ketone and methyl butyl ketone
  • tetrahydrofuran and dioxane examples of the organic solvent.
  • Ethers such as methyl acetate, ethyl acetate and butyl acetate; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as dichloromethane, trichloromethane, dichloroethane and trichloroethane; dimethylformaldehyde; Aprotic polar solvents such as dimethylacetamide and dimethylsulfoxide; alcohols such as methanol, ethanol, n-propanol, iso-propanol and n-butanol; acetone; Chiruechiruketon, methyl propyl ketone and methyl butyl ketone, methyl acetate, acetic Echiru, esters such as ethyl acetate and butyl acetate are particularly preferred.
  • the compound represented by the formula (II) and the hydrochloric acid are usually used in an amount of about 0.5 to 3 mol, preferably about 1 to 1.5 mol, of the former per 1 mol.
  • the organic solvent is generally used in an amount of about 1 to 30 L, preferably about 3 to 20 L, per 1 mol of the compound represented by the specific example (II).
  • the above reaction proceeds suitably at a temperature of usually 100 ° C. or lower, preferably 10 ° C. to 70 ° C., and is generally completed in about several minutes to 5 hours.
  • the target substance can be easily isolated by filtration and washing. Further, it can be easily purified by conventional purification means, for example, recrystallization.
  • the solvent for crystal isolation and / or purification include organic solvents used in the above reaction, and general-purpose organic solvents such as alcohols such as methanol, ethanol, n-propanol, iso-propanol and n-butanol, and acetone.
  • Ketones such as methylethyl ketone, methylpropyl ketone and methylbutyl ketone; ethers such as tetrahydrofuran and dioxane; esters such as methyl acetate, ethyl acetate and butyl acetate Benzene, toluene, xylene, etc., aromatic hydrocarbons, dichloromethane, trichloromethane, dichloroethane, trichloroethane, etc., halogenated hydrocarbons, dimethylformaldehyde, dimethylacetamide, dimethylsulfoxide, etc., aprotic polarities Solvents can be used, but ketone solvents such as acetone, methyl ethyl ketone, methyl propyl ketone, and methyl butyl ketone, ester solvents such as methyl acetate, ethyl acetate, and butyl acetate, or
  • the polymethine ether compound ( ⁇ ) is, for example, a polymethine compound represented by the following formula (VII) and an alkali metal alkoxide salt or alkali metal represented by the following formula (VIII): It can be produced by reacting aryloxide salt in an organic solvent.
  • M represents an alkali metal
  • R represents the same as described above.
  • Z- represents an acidic residue
  • F one examples, CI-, B r-, I-, B r 0 4 -, C l 0 4 -, BF 4 one, PF 6 one, SbF 6 —, CF 3 C ⁇ 2 —, CH 3 C ⁇ 2 —, CF 3 S ⁇ 3 —, CH 3 S ⁇ 3 , benzene carbonate, benzenesulfonate, ⁇ —toluenesulfonate (hereinafter abbreviated as T s O) , naphthalene carbonate, naphthalene Nji carbonate, naphthalene sulfonate, naphthalene sulfonate or the like elevation Gerare, in particular, CI-, B r-, I-, C 1_Rei 4 one, BF 4 -, PF 6 one, SbF 6 —, C 8795
  • M includes, for example, alkali metal such as sodium and magnesium.
  • organic solvent examples include alcohols such as methanol, ethanol, n-propanol, iso-propanol and n-butanol, ethers such as tetrahydrofuran and dioxane, esters such as methyl acetate, ethyl acetate and butyl acetate, and benzene.
  • the ratio of the compound represented by the general formula (VII) to the compound represented by the general formula (VHI) is usually 1 mol of the former; About 30 mol, preferably about 2 to 10 mol is used.
  • the organic solvent is used in an amount of usually about 2 to 30 L, preferably about 5 to 20 L per 1 mol of the compound represented by the general formula (VID).
  • the above reaction proceeds normally at about 0 to 100 ° C, preferably at 10 to 70 ° C, and is generally completed in about several minutes to 10 hours.
  • the target substance After the reaction, the target substance can be easily isolated by filtration and washing. Further, it can be easily purified by conventional purification means, for example, recrystallization, column separation and the like.
  • the compound represented by the general formula (VII) can be synthesized by, for example, a method described in JP-A-2000-226528.
  • the near-infrared absorbing agent of the present invention is a crystalline non-solvate of a polymethine compound of the formula (I) JP2004 / 008795
  • a binder resin or the like may be contained.
  • the near-infrared absorbing agent various known near-infrared absorbing agents can be used in combination with the crystalline non-solvate of the polymethine compound of the general formula (I) without departing from the object of the present invention.
  • near-infrared absorbing agents examples include pigments such as carbon black and aniline black, and “near-infrared absorbing dyes” (P45-51) of Chemical Industry (May, 1986). And “Developments and Market Trends of Functional Dyes in the 1990s” CMC (1991), Polymethine Dyes (Cyanine Dyes), Phthalocyanine Dyes, and Dithiol Metal Complex Dyes described in Chapter 2.3. , Naphthoquinone, anthraquinone dyes, triphenylmethane (similar) dyes, amidium, diimmodium dyes, etc., azo dyes, indoor dilin metal complex dyes, intermolecular CT dyes, etc. Pigments and dye-based pigments.
  • the binder resin is not particularly limited, but may be, for example, a homopolymer or a copolymer of acrylic acid monomers such as acrylic acid, methacrylic acid, acrylates, and methacrylates, methylcellulose, ethynolecellulose, and cellulose.
  • Cellulose-based polymers such as acetate, polystyrene, vinyl chloride-vinyl acetate copolymer, polyvinylpyrrolidone, polyvinylbutyral, vinyl-based polymers such as polyvinyl alcohol and copolymers of vinyl compounds, polyesters and polyamides
  • Examples include a condensation polymer, a rubber thermoplastic polymer such as a butadiene-styrene copolymer, and a polymer obtained by polymerizing and crosslinking a photopolymerizable compound such as an epoxy compound.
  • the near-infrared absorber of the present invention is used for optical recording materials such as optical power
  • a liquid in which the near-infrared absorber and an organic solvent are dissolved is coated on a substrate such as glass or plastic resin by a spin coating method or the like. It can be manufactured by coating by various methods conventionally studied.
  • the resin that can be used for the substrate is not particularly limited. For example, acrylic resin, polyethylene resin, vinyl chloride resin, vinylidene chloride resin, polycarbonate And the like.
  • the solvent used for spin coating is not particularly limited, and examples thereof include hydrocarbons, halogenated hydrocarbons, ethers, ketones, alcohols, and cellosolves, and particularly, methanol, ethanol, Alcohol-based solvents such as propanol and so on-type solvents such as methinolace-type sonolebu and ethyl-type sonolebu are preferred.
  • the near-infrared absorbing agent of the present invention is used for a near-infrared absorbing filter, a heat-shielding material, or an agricultural film
  • the near-infrared absorbing agent is mixed with a plastic resin and optionally an organic solvent, and the injection molding method or casting method It can be manufactured by forming into a plate shape or a film shape by a method which has been variously studied.
  • the resin that can be used is not particularly limited, and examples thereof include acryl resin, polyethylene resin, vinyl chloride resin, vinylidene chloride resin, and polycarbonate resin.
  • the solvent to be used is not particularly limited. Examples thereof include hydrocarbons, halogenated hydrocarbons, ethers, ketones, alcohols, and cellosolves. Particularly, alcohol solvents such as methanol, ethanol, and propanol are used. Solvents such as methyl soup and ethyl sonolev are preferred.
  • the near-infrared absorbing agent of the present invention When used for a recording material such as a laser thermal transfer recording material and a laser thermosensitive recording material, the near-infrared absorbing agent may be used in combination with a coloring component or a coloring component.
  • a coloring component A layer containing a coloring component, a coloring component, or the like may be separately provided.
  • the coloring or coloring components are those that form images by physical or chemical changes due to the heat of sublimable dyes and pigments, electron-donating dye precursors, electron-accepting compounds, and polymerizable polymers. Those which have been variously studied can be used.
  • the coloring component of the laser thermal transfer recording material is not particularly limited, but the pigment type is titanium dioxide, carbon black, zinc oxide, prussian blue, thicadmium sulfate, iron oxide, and lead, zinc, and barium.
  • Inorganic pigments such as chromate of calcium, azo-based, thioindigo-based, anthraquinone-based, anthranthrone-based, trifendioxane-based, phthalocyanine-based, quinatalidone-based And other organic pigments.
  • the dye include an acid dye, a direct dye, a disperse dye, an oil-soluble dye, and a metal-containing oil-soluble dye.
  • the color forming component of the laser thermosensitive recording material is not particularly limited, but those conventionally used in thermosensitive recording materials can be used.
  • the electron-donating dye precursor has the property of developing a color by donating electrons or accepting a proton such as an acid, and has a partial skeleton such as ratatone, ratatam, sanoleton, spiropyran, ester, or amide. And a compound which has a partial skeleton ring-opened or cleaved upon contact with an electron-accepting compound.
  • triphenyl methane compounds for example, triphenyl methane compounds, fluoran compounds, phenothiazine compounds, indolyl phthalide compounds, leuco auramine compounds, rhodamine lactam compounds, triphenyl methane compounds, triazene compounds, spiropyran compounds, and flupyran compounds.
  • the electron-accepting compound include phenolic compounds, organic acids or metal salts thereof, and oxybenzoic acid esters.
  • FIG. 1 shows a powder X-ray diffraction pattern of the obtained compound.
  • FIG. 2 shows the IR spectrum of the obtained compound.
  • FIG. 3 shows a TG-DTA (thermogravimetry-differential thermal analysis) diagram of the obtained compound.
  • Laser light from a single-mode semiconductor laser (wavelength: 830 nm) was condensed by a lens and arranged so as to have a beam diameter of l O ⁇ um on the surface of the sample.
  • the semiconductor laser was adjusted so that the power of the laser reaching the surface could be changed in the range of 50 to 200 mW, and a single pulse was applied to the sample with a pulse width of 20 ⁇ s.
  • the obtained compound had the following absorption maximum wavelength ( ⁇ max) and gram extinction coefficient ( ⁇ g).
  • FIG. 4 shows a powder X-ray diffraction pattern of the obtained compound.
  • FIG. 5 shows a TG-DTA (thermogravimetry-differential thermal analysis) measurement diagram of the obtained compound.
  • the stability of the obtained compound in a 20% ethanol solution was not good, and about 5% of decomposition was observed in 10 days at room temperature.
  • the resin film thickness after drying was about 5 // m. Average thickness Thickness of 5 ⁇ was applied to polyethylene terephthalate (PET) finolem to obtain a sample with a beam diameter of 10 Aim on the surface of the sample.
  • PET polyethylene terephthalate
  • Laser light from a single-mode semiconductor laser (wavelength 83011 m) was condensed by a lens and placed.
  • the semiconductor laser was adjusted so that the power of the laser reaching the surface could be varied in the range of 50 to 20 OmW, and a single pulse was applied to the sample with a pulse width of 20 ⁇ s.
  • the irradiated sample is observed with an optical microscope, it reaches the surface. No penetrating hole was formed even when the laser power was 10 OmW.
  • the obtained solid was recrystallized with 80 ml of methanol to obtain 5.02 g of a red-brown powder.
  • the absorption maximum wavelength (max) of the obtained compound was 542 nm (diacetone alcohol solution), which was not the intended compound of the present invention.
  • the methanol filtrate was concentrated by an evaporator, 15 Oml of acetone was added to 12.4 g of the obtained concentrate, and the mixture was heated to reflux temperature and stirred at the same temperature for 20 minutes. After cooling to room temperature, the precipitated crystal was separated by filtration and dried to obtain 4.02 g.
  • ethanol was used as a recrystallization solvent as an alcoholic solvent other than methanol; acetone and methylethyl ketone as ketone solvents; ethyl ether and disopropyle as ether solvents.
  • acetate ester solvent methyl acetate, ethyl acetate; aromatic hydrocarbon solvent, toluene; halogenated aliphatic hydrocarbon solvent, dicloroethane and mixed solvents thereof, but no improvement in purity I didn't get it.
  • the crystalline non-solvated polymethine compound of the present invention has a high gram extinction coefficient and a high stability in a solution, is easy to handle, and has high sensitivity to a general-purpose semiconductor laser. In addition, since it has high solubility in alcoholic solvents, it is extremely useful in the field of recording materials and plate making materials using laser light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Indole Compounds (AREA)

Abstract

A novel polymethine compound which exhibits excellent stability in a solution, a high gram absorption coefficient, and excellent storage stability and is easily handleable and highly sensitive to general-purpose semiconductor lasers, that is, the crystalline nonsolvated polymethine compound represented by the formula (I): (I) and a process for the production of the crystalline nonsolvated polymethine compound of the formula (I), characterized by reacting a polymethine ether of the general formula (II) with hydrochloric acid: (II) wherein R is alkyl, alkoxyalkyl, or optionally substituted aryl.

Description

結晶性非溶媒和型ポリメチン系化合物 Crystalline unsolvated polymethine compound
技術分野 Technical field
本発明は、 ポリメチン系化合物の新規な結晶性非溶媒和物、 その製造方法及び 明  The present invention relates to a novel crystalline unsolvate of a polymethine compound, a method for producing the same,
該結晶性非溶媒和型ポリメチン系化合物を用いた近赤外線吸収剤に関する。 書 The present invention relates to a near-infrared absorbing agent using the crystalline non-solvated polymethine compound. book
背景技術 Background art
近年、 光学記録媒体、 近赤外線吸収フィルター用材料、 またはレーザー光を利 用した製版材料用の光熱変換剤等としてポリメチン系化合物が広く使用されてい る。 特に最近、 レーザー光を利用した製版材料分野において、 汎用半導体レーザ 一、例えば 7 8 0 n m〜8 4 0 n mのレーザー域に高感度で、 かつ汎用の溶剤、 例えばメタノール、 エタノール等のアルコール溶剤に対し良好な溶解性を有する 化合物の要求が高まっている。 更に、 安定で取扱いが容易であり、 且つ種々の用 途に悪影響を及ぼすような不純物を含んでいないことも重要である。 しかしなが ら、 このような要望を満足するポリメチン系化合物は知られていない。  In recent years, polymethine compounds have been widely used as optical recording media, materials for near-infrared absorption filters, photothermal conversion agents for plate making materials using laser light, and the like. Particularly recently, in the field of plate making materials using laser light, general-purpose semiconductor lasers, for example, have a high sensitivity in the laser region of 780 nm to 800 nm, and are suitable for general-purpose solvents, for example, alcohol solvents such as methanol and ethanol. There is an increasing demand for compounds having good solubility. It is also important that they are stable and easy to handle, and that they do not contain impurities that can adversely affect various applications. However, a polymethine compound satisfying such a demand has not been known.
本発明のポリメチン系化合物と構造式自体は類似の化合物は、 Zh.Or.Khim. (1978),14(10)において開示以来、 種々の検討例が存在する。 力、かる化合物の合成 方法としては、 例えば下式 (III):  Since the disclosure of Zh. Or. Khim. (1978), 14 (10), various investigations have been made on compounds having structural formulas similar to those of the polymethine compound of the present invention. As a method for synthesizing a compound, for example, the following formula (III):
Figure imgf000003_0001
Figure imgf000003_0001
(式中、 1^は置換基を有してもよいアルキル基を示し、 Zは酸性残基を示す。 ) で表されるインドレニウム系ィ匕合物、 または一般式 (CV) (In the formula, 1 ^ represents an alkyl group which may have a substituent, and Z represents an acidic residue.) Indolenium-based compound represented by the general formula (CV)
Figure imgf000004_0001
Figure imgf000004_0001
(式中、 1^は置換基を有してもよいアルキル基を示す。) (In the formula, 1 ^ represents an alkyl group which may have a substituent.)
で表されるインドリン系化合物と、 式 (V)で表されるジホルミル系化合物または 式 (VI)で表されるジァニル系化合物: And a diformyl compound represented by the formula (V) or a dianyl compound represented by the formula (VI):
Figure imgf000004_0002
Figure imgf000004_0002
Figure imgf000004_0003
を脂肪酸塩の存在下、 脱水性有機酸中にて縮合させる方法が知られている (WO 0 1 /00 7 5 24、 特開平 1 0— 1 9 5 3 1 9号公報の頁 8〜 1 0、 J.Org.Chem.1955,60,2394 特許公報第 3 0 4 5 4 0 4号の実施例 1、 DE3721850, 特開昭 62-36469号公報などを参照)。
Figure imgf000004_0003
Is known in the presence of a fatty acid salt in the presence of a dehydrating organic acid (WO 01/007524, JP-A-10-195319, pages 8 to 1). 0, J. Org. Chem. 1955, 60, 2394, Patent Publication No. 3044504, Example 1, DE3721850, JP-A-62-36469, etc.).
これらのうち、 前記式 (III)のィンドレニウム系化合物と前記式 (VI)のジァニル 系化合物とを反応させてポリメチン系化合物を合成する方法が最も一般的である が、 この場合、 製造されるポリメチン系化合物の反応収率、 単離及び精製の操作 性等の観点から、 酸性残基 Z—の種類が制約される。 力かる製法は、 通常、 が 過塩素酸残基、 四弗化ホウ素酸残基、 p—トルェンスルホン酸残基であるポリメ チン系化合物の製造にはよく用いられるが、 Z一が I—以外のハロゲンイオン、 特 に C 1 であるものについては知られていない。 Of these, the most common method is to react the indrenium-based compound of the formula (III) with the dianyl-based compound of the formula (VI) to synthesize a polymethine-based compound. The type of the acidic residue Z— is restricted from the viewpoint of the reaction yield of the system compound, the operability of isolation and purification, and the like. A powerful production method is generally used for the production of polymethine compounds in which is a residue of perchloric acid, a residue of tetrafluoroboronic acid, or a residue of p-toluenesulfonic acid. Other than halogen ions, special Is not known about what is C 1.
つぎに、前記式 (IV)のィンドリン系化合物と式 (V)のジホルミル系化合物とを反 応させる方法については、 ポリメチン系化合物のカウンターイオンが C 1—であ る合成例が DE3721850の実施例 1に開示されている。 しかしながら、 この文献 には最大吸収波長(え max)以外の物性値の記載はなく、 かかる合成法で得られる 化合物は、 後述する様に本発明のポリメチン系化合物とは構造が異なる。  Next, regarding the method for reacting the indolin compound of the formula (IV) with the diformyl compound of the formula (V), the synthesis example in which the counter ion of the polymethine compound is C 1-is described in Example 3 of DE3721850. It is disclosed in 1. However, there is no description of physical properties other than the maximum absorption wavelength (e.g. max) in this document, and the compound obtained by such a synthesis method has a different structure from the polymethine compound of the present invention as described later.
前記式( I V)のィンドリン系化合物と式 (VI)ジァニル系化合物とを反応させる 方法については、 本発明のポリメチン系化合物とは基本構造式が異なる化合物で はある力 Z—が C 1—の製造例が特開昭 6 2 - 3 6 4 6 9号公報の実施例 3に開 示されている。  Regarding the method of reacting the indolin compound of the formula (IV) with the dianyl compound of the formula (VI), the compound having a different basic structural formula from the polymethine compound of the present invention has a force Z— having a C 1— A production example is disclosed in Example 3 of Japanese Patent Application Laid-Open No. Sho 62-36469.
そこで本発明者らは、 前記 DE3721850の実施例 1及び特開昭 6 2 - 3 6 4 6 9号公報の実施例 3に開示されている方法に従って本発明のポリメチン系化合物 と同じ構造の化合物の合成を試みた。 しかし、得られた化合物は TG-DTAの分析 結果から、 溶媒和物であり、 かつ非常に低純度品で、 メタノール、 エタノール等 のアルコール系溶媒による再結晶精製ができない。 この化合物に対して種々の精 製方法を検討したが、 水及び Zまたはアルコールの存在下では溶媒和物になりや すく、 本願化合物と同じものを得ることはできなかった。  Therefore, the present inventors, according to the method disclosed in Example 1 of the above DE3721850 and Example 3 of JP-A-6-36469, a compound having the same structure as the polymethine compound of the present invention. Tried synthesis. However, the obtained compound is a solvate and a very low-purity product from the results of TG-DTA analysis, and cannot be purified by recrystallization with an alcoholic solvent such as methanol or ethanol. Various purification methods were examined for this compound, but it easily formed into a solvate in the presence of water, Z or alcohol, and the same compound as the present compound could not be obtained.
なお、 本発明において、 「溶媒和物」 とは水和物も含めた総称である。  In the present invention, “solvate” is a generic term including hydrates.
また、 最近ではァノレドリツチ総合カタログ日本版(2 0 0 3 - 2 0 0 4)の試薬 カタログに本発明のポリメチン系化合物と構造式自体は同じ化合物が記載されて いるが、 このものは水和物であって、 かつ低純度の化合物である。  Recently, the compound of the same formula as the polymethine compound of the present invention has been described in the reagent catalog of the Japanese version of the Anoredricht catalog (2003-2004). And a low-purity compound.
なお、 本発明のポリメチン系化合物の化学構造式自体は、 特開昭 6 2— 5 0 1 8 7号公報の 2頁目の表中に、光記録媒体への使用例の具体例化合物 (1)— 2とし て開示されている。 しかしながら、 この文献には実施例の記載はなく、 また合成 方法及び物性も全く示されていない。  Incidentally, the chemical structural formula itself of the polymethine compound of the present invention is shown in the table on page 2 of JP-A-62-150187. ) —2. However, there is no description of the examples in this document, and neither the synthesis method nor the physical properties are shown.
上記の様に本発明化合物と構造式が同じ公知の化合物は、 その製造方法に起因 する溶媒和物であり、 低純度品であるため使用上の制約が大きい。 例えば、 本特 許の化合物と構造式が同じである化合物の溶媒和物を CTP (Computer To Plate) 製版用の光熱変換剤として用いた場合、 溶液安定性が悪く、 純度が安定してない ため、 光熱変換効率が大きく変動し、 実用上問題が大きい。 As described above, known compounds having the same structural formula as the compound of the present invention are caused by the production method thereof. It is a low-purity solvate, which greatly restricts its use. For example, when a solvate of a compound having the same structural formula as the compound of the present invention is used as a light-to-heat conversion agent for CTP (Computer To Plate) plate making, the solution stability is poor and the purity is not stable. However, the light-to-heat conversion efficiency fluctuates greatly, which is a serious problem in practical use.
なお、 ポリメチン系化合物の場合、 化合物の基本構造式が同じであるものの溶 媒和の有無により溶液中での安定性及び感度に大きな違いがあるとの報告は見当 たらない。 発明の開示  In the case of polymethine compounds, there is no report that there is a significant difference in stability and sensitivity in solution depending on the presence or absence of solvation, although the basic structural formula of the compound is the same. Disclosure of the invention
本発明の目的は、 溶液中における安定性が良好で且つグラム吸光係数が高く、 保存安定性に優れ、 取り极いが容易であり、 汎用半導体レーザーに高感度な新規 なポリメチン系化合物を提供することである。  An object of the present invention is to provide a novel polymethine compound having good stability in a solution, high gram extinction coefficient, excellent storage stability, easy handling, and high sensitivity to a general-purpose semiconductor laser. That is.
前記した課題を解決するために種々検討した結果、 本発明者らは、 特定の構造 のポリメチン系化合物の新規な結晶性非溶媒和物が、 溶剤に対する溶解安定性が 良好で且つグラム吸光係数が高く、 安定で取り抜いが容易であり、 種々の用途へ の加工が容易な近赤外線吸収剤として使用し得ることを見出し、 本発明を完成し た。  As a result of various studies to solve the above-mentioned problems, the present inventors have found that a novel crystalline unsolvate of a polymethine compound having a specific structure has good solubility stability in a solvent and a gram extinction coefficient. The present invention was found to be high, stable, easy to remove, and usable as a near-infrared absorbing agent that can be easily processed for various uses.
本願の第一の発明は下記式( I )で表される結晶性非溶媒和型ポリメチン系化合 物である。  The first invention of the present application is a crystalline unsolvated polymethine compound represented by the following formula (I).
Figure imgf000006_0001
本願突明の結晶性非溶媒和型ポリメチン系化合物は、 融点 (分解温度) が 2 2 0 °C以上であり、 T G— D TA (熱重量測定一示差熱分析) 測定図において、 1 50 °C以下での T G減量値が 3 %以下であり、 実質的に溶媒和されていない。 更には Cu— Κα線による粉末 X線回折法における回折角 (20 ±0. 2° ) 11. 8。 、 13. 0° 、 18. 7° 、 19. 4° 、 21. 2° に特徴的なピー クを示す粉末 X線回折図により特徴づけられる下式( I )で表される結晶性非溶媒 和型ポリメチン系化合物である。
Figure imgf000006_0001
The crystalline unsolvated polymethine compound of the present application has a melting point (decomposition temperature) of 220 ° C. or higher, and the TG-DTA (thermogravimetric-differential thermal analysis) measurement diagram shows that TG weight loss at 50 ° C or less is 3% or less, and it is not substantially solvated. Furthermore diffraction angle in the powder X-ray diffraction method according Cu- kappa alpha rays (0 20 ±. 2 °) 11. 8. , 13.0 °, 18.7 °, 19.4 °, 21.2 ° The crystalline non-solvent represented by the following formula (I) characterized by an X-ray powder diffraction pattern showing characteristic peaks: It is a Japanese polymethine compound.
Figure imgf000007_0001
本願の第二の発明は下式 (II):
Figure imgf000007_0001
The second invention of the present application is the following formula (II):
Figure imgf000007_0002
Figure imgf000007_0002
(式中、 Rはアルキル基、 アルコキシアルキル基、 または置換基を有してもよい ァリール基を示す。) (In the formula, R represents an alkyl group, an alkoxyalkyl group, or an aryl group which may have a substituent.)
で表されるポリメチン系エーテル化合物と、 塩酸とを反応させることを特徴とす る前記式( I )で表される結晶性非溶媒和型ポリメチン系化合物の製造方法である。 本願の第三の発明は、 式(I)の結晶性非溶媒和型ポリメチン系化合物を含有す る近赤外線吸収剤である。 図面の簡単な説明 A method for producing a crystalline non-solvated polymethine compound represented by the above formula (I), which comprises reacting a polymethine ether compound represented by the formula with hydrochloric acid. The third invention of the present application is a near-infrared absorbing agent containing a crystalline unsolvated polymethine compound of the formula (I). BRIEF DESCRIPTION OF THE FIGURES
[図 1 ] 実施例 1のポリメチン系化合物の粉末 X線回折図である。  FIG. 1 is a powder X-ray diffraction diagram of a polymethine compound of Example 1.
[図 2] 実施例 1のポリメチン系化合物の I R吸収スぺクトルである。 [図 3] 実施例 1のポリメチン系化合物の TG— DT A (熱重量測定一示差 熱分析) 図である。 FIG. 2 is an IR absorption spectrum of the polymethine compound of Example 1. FIG. 3 is a TG-DTA (thermogravimetry-differential thermal analysis) diagram of the polymethine compound of Example 1.
[図 4 ] 比較例 1の固形物の粉末 X線回折図である。  FIG. 4 is an X-ray powder diffraction diagram of a solid material of Comparative Example 1.
[図 5] 比較例 1の固形物の TG— DTA (熱重量測定一示差熱分析) 測定 図である。 発明の詳細な記述  FIG. 5 is a graph showing TG-DTA (thermogravimetry-differential thermal analysis) measurement of the solid material of Comparative Example 1. Detailed description of the invention
つぎに、 本発明について詳しく説明する。  Next, the present invention will be described in detail.
本発明の式( I )で表されるポリメチン系化合物の結晶性非溶媒和物の融点 (分 解温度) は 220 °C以上であり、 好ましくは 225 °C〜 235 °Cである。 溶媒和 物及び/または低純度品となると融点が 220°C未満となる。 本発明の化合物の 場合、 溶け始めると次第に発泡し、 分解するため、 融点 (分解温度) を非常に明 確に観察することができるが、 溶媒和物及び/または低純度品は明確な融点及び 分解温度を示さなレヽ場合がある。  The crystalline non-solvate of the polymethine compound represented by the formula (I) of the present invention has a melting point (decomposition temperature) of 220 ° C or more, and preferably 225 ° C to 235 ° C. For solvates and / or low-purity products, the melting point is below 220 ° C. In the case of the compound of the present invention, the melting point (decomposition temperature) can be observed very clearly because the compound gradually foams and decomposes when it begins to be dissolved, but the solvate and / or low-purity product has a clear melting point and The decomposition temperature may not be indicated.
本発明の式( I )で表される結晶性非溶媒和型ポリメチン系化合物の TG— DT A (熱重量測定一示差熱分析)測定図は、 150°C以下での TG減量値が 3%以下、 好ましくは 2 %以下である。 水和物及び Zまたは低純度品となると 150 °C未満 での T G減量値が 3 %より多くなる。  The TG-DTA (thermogravimetry-differential thermal analysis) measurement diagram of the crystalline unsolvated polymethine compound represented by the formula (I) of the present invention shows that the TG loss value at 150 ° C or less is 3%. Or less, preferably 2% or less. For hydrates and Z or low purity products, the TG weight loss below 150 ° C is more than 3%.
前記公知の式( I)で表される化合物は、 水または有機溶媒と溶媒和された化合 物であり、 使用が制限され、 産業上利用価値が低いものである。  The known compound represented by the formula (I) is a compound solvated with water or an organic solvent, has a limited use, and has low industrial value.
一方、 本発明の式(I)で表されるポリメチン系化合物の結晶性非溶媒和物は、 水 または有機溶媒と溶媒和されていない全く新規な化合物である。本発明の式 ( I ) で表されるポリメチン系化合物の結晶性非溶媒和物は、 Cu— 線による粉末 X線回折法における回折角(2 S ±0.2° )1 1. 8。 、 13. 0° 、 18. 7° 、 19. 4° 、 21. 2° に特徴的なピークを示す。 溶媒和物及び/または低純度 品の場合、 全く異なる粉末 X線回折パターンを示す。 本発明のポリメチン系化合物の結晶性非溶媒和物は、 式 (Π) で表されるポリメ チン系エーテル化合物を経由 (出発原料と) することにより初めて製造できるこ とが判明した。 On the other hand, the crystalline unsolvate of the polymethine compound represented by the formula (I) of the present invention is a completely novel compound that is not solvated with water or an organic solvent. The crystalline unsolvate of the polymethine compound represented by the formula (I) of the present invention has a diffraction angle (2S ± 0.2 °) of 11.8 in a powder X-ray diffraction method using Cu-ray. , 13.0 °, 18.7 °, 19.4 ° and 21.2 °. The solvate and / or low-purity product shows a completely different powder X-ray diffraction pattern. It has been found that the crystalline non-solvate of the polymethine compound of the present invention can be produced for the first time by passing (as a starting material) a polymethine ether compound represented by the formula (II).
本発明の式(I )で表されるポリメチン系化合物の結晶性非溶媒和物は、 前記し た優れた特徴を有するだけでなく、 驚くべきことに、 今まで知られている類似の ポリメチン系化合物に比べ、 メタノ^ "ル、 エタノールに対する溶解度が非常に高 く、 且つ 7 8 0〜8 3 0 n m領域の吸光度が大きい。  The crystalline non-solvate of the polymethine compound represented by the formula (I) of the present invention has not only the above-mentioned excellent characteristics, but also, surprisingly, a similar polymethine-based compound known so far. Compared with the compound, the solubility in methanol and ethanol is very high, and the absorbance in the 780 to 830 nm region is large.
すなわち、 各種マーキング、 フィルター、 フィルム等の近赤外線吸収剤を加工す る場合、 より安定であり、 取り扱いが容易なアルコール系溶剤の高濃度液で使用 することができるため、 取り扱い及び加工性に優れる。 また、 レーザー光を利用 した多くの記録材料分野にて汎用の 7 8 0〜 8 3 0 に発光領域を有する半導 体レーザーにマツチングしており、 レーザー光を利用したレーザー熱転写記録材 料、 レーザー感熱記録材料等の記録材科分野及び製版材料分野において極めて有 用である。 In other words, when processing near-infrared absorbers such as various markings, filters, films, etc., they are more stable and can be used with high-concentration liquids of alcoholic solvents that are easy to handle, so they are excellent in handling and processability. . In addition, in many recording material fields that use laser light, we are matching semiconductor lasers that have a general light-emitting area in the range of 780 to 830, and we have developed laser thermal transfer recording materials and lasers that use laser light. It is extremely useful in the field of recording materials such as thermal recording materials and in the field of plate making materials.
[結晶性非溶媒和型ポリメチン系化合物の製造方法]  [Method for producing crystalline unsolvated polymethine compound]
本発明の式( I )で表されるポリメチン系化合物の結晶性非溶媒和物は下記の方 法で製造することができる。  The crystalline unsolvate of the polymethine compound represented by the formula (I) of the present invention can be produced by the following method.
—般式 (Π)のポリメチン系エーテル化合物 (例えば R = C H3)と、 塩酸とを有機 溶媒中で反応させることにより製造される。 —Manufactured by reacting a polymethine ether compound of the general formula (Π) (for example, R = CH 3 ) with hydrochloric acid in an organic solvent.
Figure imgf000009_0001
Figure imgf000009_0001
(式中、 Rはアルキル基、アルコキシアルキル基または置換基を有してもよいァリ 一ノレ基を示す。 ) Rがアルキル基であるものとしては、 炭素数 1 〜 8の直鎖或いは分岐のアルキ ル基が好ましく、 炭素数 1 〜 4の直鎖或いは分岐のアルキル基が特に好ましい。 例としてはメチノレ基、 ェチル基、 n —プロピル基、 イソプロピル基、 n一プチノレ 基、 イソブチノレ基、 s e c—ブチル基、 t e r t—ブチル基、 n—ペンチル基、 イソペンチル基、 ネオペンチル基、 n —へキシル基、 イソへキシル基、 s e c— へキシル基、 2—ェチルブチル基、 n —へプチル基、 イソへプチル基、 s e c— ヘプチル基、 n—ォクチル基、 2—ェチルへキシル基が挙げられる。 (In the formula, R represents an alkyl group, an alkoxyalkyl group, or an aryl group which may have a substituent.) As R is an alkyl group, a linear or branched alkyl group having 1 to 8 carbon atoms is preferable, and a linear or branched alkyl group having 1 to 4 carbon atoms is particularly preferable. Examples include methynole, ethyl, n-propyl, isopropyl, n-butynole, isobutynole, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl Group, isohexyl group, sec-hexyl group, 2-ethylbutyl group, n-heptyl group, isoheptyl group, sec-heptyl group, n-octyl group, and 2-ethylhexyl group.
Rがアルコキシアルキル基であるものとしては、 総炭素数 2〜 8のものが好ま しく、 総炭素数 2〜 4のものが特に好ましい。 例としてメ トキシメチル基、 2— メ トキシェチル基、 3—メ トキシプロピル基、 2—エトキシメチル基、 2—エト キシェチル基、 2一プロポキシェチル基、 2—ブトキシェチル基が挙げられる。  As R is an alkoxyalkyl group, those having 2 to 8 carbon atoms are preferred, and those having 2 to 4 carbon atoms are particularly preferred. Examples include a methoxymethyl group, a 2-methoxyl group, a 3-methoxypropyl group, a 2-ethoxymethyl group, a 2-ethoxyl group, a 2-propoxyl group and a 2-butoxyl group.
Rが置換基を有しても良いァリール基であるものとしては、 置換基を有しても 良いフ ニル基、 置換基を有しても良いナフチル基が挙げられるが、 置換基を有 しても良いフエニル基が好ましい。 置換基としては、 アルキル基、 アミノ基、 二 トロ基、 アルコキシ基、 水酸基、 ハロゲン原子等が挙げられ、 炭素数 1 〜 4のァ ルキル基または炭素数 1 〜 4のアルコキシ基が好ましい。  Examples of the group in which R is an aryl group which may have a substituent include a phenyl group which may have a substituent and a naphthyl group which may have a substituent. A phenyl group which may be substituted is preferred. Examples of the substituent include an alkyl group, an amino group, a nitro group, an alkoxy group, a hydroxyl group, a halogen atom, and the like, and an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms is preferable.
Rがアルキル基を有するフエエル基であるものの例としては、 2—メチルフエ ニル基、 3—メチルフエニル基、 4一メチルフエ-ル基、 2 , 3—ジメチルフエ ニル基、 2 , 4ージメチルフエニル基、 3 , 4ージメチルフエニル基、 2, 5— ジメチルフエニル基、 2 , 6—ジメチルフエニル基、 2—エルフェニル基、 3— ェチルフエ二ノレ基、 4一ェチルフエニル基、 2 , 3—ジェチルフエニル基、 2, 4ージェチルフエニル基、 3 , 4一ジェチルフェ二ノレ基、 2 , 5—ジェチルフエ 二ノレ基、 2 , 6—ジェチルフエニル基が挙げられる。  Examples of the group in which R is a phenyl group having an alkyl group include 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group, 3,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,6-dimethylphenyl group, 2-erphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2,3-ethylphenyl A 2,4-dimethylthiophenyl group, a 3,4-dimethylthiophenylene group, a 2,5-dimethylthiophenylene group, and a 2,6-getylphenyl group.
Rがアルコキシ基を有するフエニル基であるものの例としては、 2—メ トキシ フエニル基、 3—メ トキシフエ二ル基、 4ーメ トキシフエ二ル基、 2 , 3—ジメ トキシフエ二ル基、 2 , 4—ジメ トキシフエ二ル基、 3 , 4—ジメトキシフエ二 ル基、 2, 5—ジメ トキシフエ二ル基、 2, 6—ジメ トキシフエ二ル基が挙げら れる。 Examples of the group in which R is a phenyl group having an alkoxy group include a 2-methoxyphenyl group, a 3-methoxyphenyl group, a 4-methoxyphenyl group, a 2,3-dimethoxyphenyl group, and a 2,3-methoxyphenyl group. 4-dimethoxyphenyl group, 3, 4-dimethoxyphenyl And 2,5-dimethoxyphenyl group and 2,6-dimethoxyphenyl group.
有機溶媒としては、 メタノール、 エタノール、 n—プロパノール、 i s o—プ ロパノール、 n—ブタノ一ル等のアルコール類、 アセトン、 メチルェチルケトン、 メチルプロピルケトン、メチルプチルケトン等のケトン類、テトラヒドロフラン、 ジォキサン等のエーテル類、 酢酸メチル、 酢酸ェチル、 酢酸プチル等のエステル 類、 ベンゼン、 トルエン、 キシレン等の芳香族炭化水素類、 ジクロロメタン、 ト リクロロメタン、ジクロロェタン、 トリクロロエタン等のハロゲン化炭化水素類、 ジメチルホルムアルデヒド、 ジメチルァセトアミド、 ジメチルスルホキシド等の 非プロトン性極性溶媒類が挙げられるが、 メタノ一ノレ、 ェタノール、 n—プロパ ノール、 i s o—プロパノール、 n—ブタノール等のアルコール類、 アセトン、 メチルェチルケトン、メチルプロピルケトン、メチルブチルケトン等のケトン類、 酢酸メチル、 酢酸ェチル、 酢酸ブチル等のエステル類が特に好ましい。  Examples of the organic solvent include alcohols such as methanol, ethanol, n-propanol, iso-propanol, and n-butanol; ketones such as acetone, methyl ethyl ketone, methyl propyl ketone and methyl butyl ketone; tetrahydrofuran and dioxane. Ethers such as methyl acetate, ethyl acetate and butyl acetate; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as dichloromethane, trichloromethane, dichloroethane and trichloroethane; dimethylformaldehyde; Aprotic polar solvents such as dimethylacetamide and dimethylsulfoxide; alcohols such as methanol, ethanol, n-propanol, iso-propanol and n-butanol; acetone; Chiruechiruketon, methyl propyl ketone and methyl butyl ketone, methyl acetate, acetic Echiru, esters such as ethyl acetate and butyl acetate are particularly preferred.
式 (II) で表される化合物と塩酸との使用割合は、 通常前者 1モルに対し後者 を 0 . 5〜3モル程度、 好ましくは 1〜1 . 5モル程度を使用する。  The compound represented by the formula (II) and the hydrochloric acid are usually used in an amount of about 0.5 to 3 mol, preferably about 1 to 1.5 mol, of the former per 1 mol.
有機溶媒は、 具体例 (II) で表される化合物 1モル当たり通常 1〜3 0 L程度、 好ましくは 3〜 2 0 L程度使用する。  The organic solvent is generally used in an amount of about 1 to 30 L, preferably about 3 to 20 L, per 1 mol of the compound represented by the specific example (II).
上記反応は通常 1 0 0 °C以下の温度、好ましくは 1 0〜 7 0 °Cで好適に進行し、 一般に数分〜 5時間程度で完結する。  The above reaction proceeds suitably at a temperature of usually 100 ° C. or lower, preferably 10 ° C. to 70 ° C., and is generally completed in about several minutes to 5 hours.
反応後、 濾取、 洗浄することにより目的物を容易に単離することができる。 ま た、 慣用の精製手段、 例えば、 再結晶等により容易に精製することができる。 結晶単離溶剤及び/または精製溶剤としては、 上記の反応時の有機溶媒や、 汎 用の有機溶剤、 例えばメタノール、 エタノール、 n—プロパノール、 i s o—プ ロパノール、 n—ブタノール等のアルコール類、 アセトン、 メチルェチルケトン、 メチルプロピルケトン、メチルブチルケトン等のケトン類、テトラヒドロフラン、 ジォキサン等のエーテル類、 酢酸メチル、 酢酸ェチル、 酢酸プチル等のエステル 類、 ベンゼン、 トルエン、 キシレン等の芳香族炭化水素類、 ジクロロメタン、 ト リクロロメタン、ジクロロェタン、 トリクロロェタン等のハロゲン化炭化水素類、 ジメチルホルムアルデヒド、 ジメチルァセトアミ ド、 ジメチルスルホキシド等の 非プロトン性極性溶媒類を用いることができるが、 アセトン、 メチルェチルケト ン、 メチルプロピルケトン、 メチルプチルケトン等のケトン系溶剤、 酢酸メチル、 酢酸ェチル、酢酸プチル等のエステル系溶剤またはそれらの混合溶剤が好ましレ、。 溶剤の種類、 例えば、 メタノール、 エタノール、 トルエンを使用した場合、 単離 条件によっては溶媒和する場合がある。 After the reaction, the target substance can be easily isolated by filtration and washing. Further, it can be easily purified by conventional purification means, for example, recrystallization. Examples of the solvent for crystal isolation and / or purification include organic solvents used in the above reaction, and general-purpose organic solvents such as alcohols such as methanol, ethanol, n-propanol, iso-propanol and n-butanol, and acetone. Ketones such as methylethyl ketone, methylpropyl ketone and methylbutyl ketone; ethers such as tetrahydrofuran and dioxane; esters such as methyl acetate, ethyl acetate and butyl acetate Benzene, toluene, xylene, etc., aromatic hydrocarbons, dichloromethane, trichloromethane, dichloroethane, trichloroethane, etc., halogenated hydrocarbons, dimethylformaldehyde, dimethylacetamide, dimethylsulfoxide, etc., aprotic polarities Solvents can be used, but ketone solvents such as acetone, methyl ethyl ketone, methyl propyl ketone, and methyl butyl ketone, ester solvents such as methyl acetate, ethyl acetate, and butyl acetate, or a mixed solvent thereof are preferred. . When a solvent such as methanol, ethanol, or toluene is used, solvation may occur depending on isolation conditions.
なお、 前記のポリメチン系エーテル化合物 (Π)は、 例えば下式 (VII)で表される ポリメチン系化合物と、 下式 (VIII)で表されるアルカリ金属のアルコキシド塩ま たはアル力リ金属のァリールォキシド塩を有機溶媒中で反応させることにより製 造することができる。  The polymethine ether compound (Π) is, for example, a polymethine compound represented by the following formula (VII) and an alkali metal alkoxide salt or alkali metal represented by the following formula (VIII): It can be produced by reacting aryloxide salt in an organic solvent.
Figure imgf000012_0001
Figure imgf000012_0001
(式中、 Z—は酸性残基を示す。) (In the formula, Z— represents an acidic residue.)
MOR (VIII)  MOR (VIII)
(式中、 Mはアルカリ金属類を、 Rは前記と同じものを示す。)  (In the formula, M represents an alkali metal, and R represents the same as described above.)
前記式中、 Z-は酸性残基を表し、 例としては F一、 C I—、 B r―、 I—、 B r 04—、 C l 04-、 BF4一、 PF6一、 SbF6—、 CF3C〇2—、 CH3C〇2—、 C F3S〇3—、 CH3 S〇3 、 ベンゼンカルボナート、ベンゼンスルホネート、 ρ— トルエンスルホネート(以下 T s O一と略す)、ナフタレンカルボナート、 ナフタレ ンジカルボナート、 ナフタレンスルホネート、 ナフタレンジスルホネート等が挙 げられ、 特に、 C I—、 B r—、 I—、 C 1〇4一、 BF4—、 PF6一、 SbF6—、 C 8795 In the formula, Z- represents an acidic residue, F one examples, CI-, B r-, I-, B r 0 4 -, C l 0 4 -, BF 4 one, PF 6 one, SbF 6 —, CF 3 C〇 2 —, CH 3 C〇 2 —, CF 3 S〇 3 —, CH 3 S〇 3 , benzene carbonate, benzenesulfonate, ρ—toluenesulfonate (hereinafter abbreviated as T s O) , naphthalene carbonate, naphthalene Nji carbonate, naphthalene sulfonate, naphthalene sulfonate or the like elevation Gerare, in particular, CI-, B r-, I-, C 1_Rei 4 one, BF 4 -, PF 6 one, SbF 6 —, C 8795
11  11
F3C〇2—、 CF3S03—、 CH3S03—、 ベンゼンカルボナート、 ベンゼンスル ホネート、 T s O—が好ましく、 とりわけ、 C 1〇4—、 BF4—、 T s O—が好まし い。 F 3 C_〇 2 -, CF 3 S0 3 - , CH 3 S0 3 -, benzene carbonate, benzene Honeto, T s O-are preferable, especially, C 1_Rei 4 -, BF 4 -, T s O- Is preferred.
上記反応において、 Mとしては、 例えば、 ナトリゥム、 力リゥム等のアル力リ 金属が挙げられる。  In the above reaction, M includes, for example, alkali metal such as sodium and magnesium.
有機溶媒としては、 メタノール、 エタノール、 n—プロパノール、 i s o—プ ロパノール、 n—ブタノール等のアルコール類、 テトラヒドロフラン、 ジォキサ ン等のエーテル類、 酢酸メチル、 酢酸ェチル、 酢酸プチル等のエステル類、 ベン ゼン、 トルエン、 キシレン等の芳香族炭化水素類、 ジクロロメタン、 トリクロ口 メタン、 ジクロロェタン、 トリクロロェタン等のハロゲン化炭化水素類、 ジメチ ルホルムアルデヒド、 ジメチルァセトアミド、 ジメチルスルホキシド等の非プロ トン性極性溶媒が挙げられる。  Examples of the organic solvent include alcohols such as methanol, ethanol, n-propanol, iso-propanol and n-butanol, ethers such as tetrahydrofuran and dioxane, esters such as methyl acetate, ethyl acetate and butyl acetate, and benzene. , Toluene, xylene, etc., aromatic hydrocarbons, dichloromethane, trichloride methane, dichloroethane, trichloroethane, etc., halogenated hydrocarbons, dimethylformaldehyde, dimethylacetamide, dimethylsulfoxide, etc., non-protonic polar solvents Is mentioned.
一般式 (VII)で表される化合物と一般式 (VHI)で表される化合物との使用割合は、 通常前者 1モルに対し後者を;!〜 30モル程度、 好ましくは 2〜 10モル程度使 用する。  The ratio of the compound represented by the general formula (VII) to the compound represented by the general formula (VHI) is usually 1 mol of the former; About 30 mol, preferably about 2 to 10 mol is used.
有機溶媒は、一般式 (VIDで表される化合物 1モル当たり通常 2〜 30 L程度、 好ましくは 5〜 20 L程度使用する。  The organic solvent is used in an amount of usually about 2 to 30 L, preferably about 5 to 20 L per 1 mol of the compound represented by the general formula (VID).
上記反応は通常 0〜 100 °C程度、 好ましくは 10〜 70 °Cで好適に進行し、 一般に数分〜 10時間程度で完結する。  The above reaction proceeds normally at about 0 to 100 ° C, preferably at 10 to 70 ° C, and is generally completed in about several minutes to 10 hours.
反応後、濾取、洗浄することにより目的物を容易に単離することがでる。 また、 慣用の精製手段、 例えば、 再結晶、 カラム分離等により容易に精製することがで さる。  After the reaction, the target substance can be easily isolated by filtration and washing. Further, it can be easily purified by conventional purification means, for example, recrystallization, column separation and the like.
なお、 前記の一般式 (VII)で表される化合物は、 例えば特開 2000— 2265 28号公報等に記載の方法により合成することができる。  The compound represented by the general formula (VII) can be synthesized by, for example, a method described in JP-A-2000-226528.
[近赤外線吸収剤]  [Near infrared absorber]
本発明の近赤外線吸収剤は、 式( I )のポリメチン系化合物の結晶性非溶媒和物 JP2004/008795 The near-infrared absorbing agent of the present invention is a crystalline non-solvate of a polymethine compound of the formula (I) JP2004 / 008795
12  12
以外にバインダー樹脂等を含有してもよい。 In addition, a binder resin or the like may be contained.
近赤外線吸収剤としては一般式( I )のポリメチン系化合物の結晶性非溶媒和物 以外に、 本発明の目的を逸脱しない範囲で、 公知の種々の近赤外線吸収剤が併用 できる。  As the near-infrared absorbing agent, various known near-infrared absorbing agents can be used in combination with the crystalline non-solvate of the polymethine compound of the general formula (I) without departing from the object of the present invention.
併用できる近赤外線吸収剤としては、 カーボンブラック、 ァニリンブラック等 の顔料や『化学工業 (1 9 8 6年、 5月号)』 の 「近赤外吸収色素」 (P 4 5〜5 1 ) や 『9 0年代 機能性色素の開発と市場動向』 シーエムシー (1 9 9 0 ) 第 2章 2 . 3に記載されているポリメチン系色素 (シァニン色素)、 フタロシアニン 系色素、 ジチオール金属錯塩系色素、 ナフトキノン、 アントラキノン系色素、 ト リフエニルメタン (類似) 系色素、 アミ二ゥム、 ジインモ-ゥム系色素等、 また ァゾ系色素、 インドア二リン金属錯体色素、 分子間型 C T色素等の顔料、 染料系 の色素が挙げられる。  Examples of near-infrared absorbing agents that can be used in combination include pigments such as carbon black and aniline black, and “near-infrared absorbing dyes” (P45-51) of Chemical Industry (May, 1986). And “Developments and Market Trends of Functional Dyes in the 1990s” CMC (1991), Polymethine Dyes (Cyanine Dyes), Phthalocyanine Dyes, and Dithiol Metal Complex Dyes described in Chapter 2.3. , Naphthoquinone, anthraquinone dyes, triphenylmethane (similar) dyes, amidium, diimmodium dyes, etc., azo dyes, indoor dilin metal complex dyes, intermolecular CT dyes, etc. Pigments and dye-based pigments.
バインダー樹脂としては、 特に制限はないが、 例えば、 アクリル酸、 メタクリ ノレ酸、 アクリル酸エステル、 メタクリノレ酸エステル等のアクリル酸系モノマーの 単独重合体または共重合体、 メチルセルロース、 ェチノレセルロース、 セルロース アセテートのようなセルロース系ポリマー、 ポリスチレン、 塩化ビニルー醉酸ビ ニル共重合体、 ポリビニルピロリ ドン、 ポリビニルブチラール、 ポリビニルアル コールのようなビニル系ポリマー及びビュル化合物の共重合体、 ポリエステル、 ポリアミ ドのような縮合系ポリマー、 ブタジエン一スチレン共重合体のようなゴ ム系熱可塑性ポリマー、 エポキシ化合物などの光重合性化合物を重合 ·架橋させ たポリマーなどを挙げることができる。  The binder resin is not particularly limited, but may be, for example, a homopolymer or a copolymer of acrylic acid monomers such as acrylic acid, methacrylic acid, acrylates, and methacrylates, methylcellulose, ethynolecellulose, and cellulose. Cellulose-based polymers such as acetate, polystyrene, vinyl chloride-vinyl acetate copolymer, polyvinylpyrrolidone, polyvinylbutyral, vinyl-based polymers such as polyvinyl alcohol and copolymers of vinyl compounds, polyesters and polyamides Examples include a condensation polymer, a rubber thermoplastic polymer such as a butadiene-styrene copolymer, and a polymer obtained by polymerizing and crosslinking a photopolymerizable compound such as an epoxy compound.
本発明の近赤外線吸収剤を光力一ド等の光記録材料に用いる場合は、 例えばガ ラス、 プラスチック樹脂等の基板上に、 近赤外線吸収剤と有機溶剤を溶解した液 をスピンコート法等の従来から種々検討されている方法で塗布することにより作 製できる。 基板に使用できる樹脂としては、 特に制限はないが、 例えばアクリル 樹脂、 ポリエチレン樹脂、 塩化ビニール樹脂、 塩化ビニリデン樹脂、 ポリカーボ ネート樹脂等が挙げられる。 スピンコートに用いる溶剤としては、 特に制限はな いが、 例えば炭化水素類、 ハロゲン化炭化水素類、 エーテル類、 ケトン類、 アル コール類、 セロソルブ類が挙げられるが、 特にメタノ一ル、 エタノール、 プロパ ノ一ノレ等のアルコール系溶剤ゃメチノレセ口ソノレブ、 ェチルセ口ソノレブ等のセ口ソ ルプ系溶剤が好ましい。 When the near-infrared absorber of the present invention is used for optical recording materials such as optical power, for example, a liquid in which the near-infrared absorber and an organic solvent are dissolved is coated on a substrate such as glass or plastic resin by a spin coating method or the like. It can be manufactured by coating by various methods conventionally studied. The resin that can be used for the substrate is not particularly limited. For example, acrylic resin, polyethylene resin, vinyl chloride resin, vinylidene chloride resin, polycarbonate And the like. The solvent used for spin coating is not particularly limited, and examples thereof include hydrocarbons, halogenated hydrocarbons, ethers, ketones, alcohols, and cellosolves, and particularly, methanol, ethanol, Alcohol-based solvents such as propanol and so on-type solvents such as methinolace-type sonolebu and ethyl-type sonolebu are preferred.
本発明の近赤外線吸収剤を近赤外線吸収フィルター、 熱線遮断材、 農業用フィ ルムに用いる場合は、 .近赤外線吸収剤にプラスチック樹脂及び場合により有機溶 剤と混合し、 射出成形法やキャスト法等の従来から種々検討されている方法で板 状若しくはフィルム状にすることにより作製できる。 使用できる樹脂としては、 特に制限はないが、例えばァクリル樹脂、 ポリェチレン樹脂、塩ィヒビニール樹脂、 塩化ビユリデン樹脂、 ポリカーボネート樹脂等が挙げられる。 用いる溶剤として は、 特に制限はないが、 例えば炭化水素類、 ハロゲン化炭化水素類、エーテル類、 ケトン類、 アルコール類、 セロソルブ類が挙げられるが特に、 メタノール、 エタ ノール、 プロパノール等のアルコール系溶剤ゃメチルセ口ソルプ、 ェチルセ口ソ ノレブ等のセ口ソルプ系溶剤が好ましい。  When the near-infrared absorbing agent of the present invention is used for a near-infrared absorbing filter, a heat-shielding material, or an agricultural film, the near-infrared absorbing agent is mixed with a plastic resin and optionally an organic solvent, and the injection molding method or casting method It can be manufactured by forming into a plate shape or a film shape by a method which has been variously studied. The resin that can be used is not particularly limited, and examples thereof include acryl resin, polyethylene resin, vinyl chloride resin, vinylidene chloride resin, and polycarbonate resin. The solvent to be used is not particularly limited. Examples thereof include hydrocarbons, halogenated hydrocarbons, ethers, ketones, alcohols, and cellosolves. Particularly, alcohol solvents such as methanol, ethanol, and propanol are used. Solvents such as methyl soup and ethyl sonolev are preferred.
本発明の近赤外線吸収剤をレーザー熱転写記録材料、 レーザー感熱記録材料等 の記録材料に用レヽる場合は、 近赤外線吸収剤に発色成分または着色成分等を配合 して使用してもよいし、 発色成分または着色成分等を含有する層を別途設けても よい。 発色成分または着色成分としては、 昇華性染顔料や電子供与性染料前駆体 と電子受容性化合物、 重合性ポリマー等の熱によって物理的、 化学的な変化で画 像を形成するもので、従来から種々検討されているものが使用できる。 例えば、 レーザー熱転写記録材料の着色成分としては、 特に限定するものではないが、 顔 料タイプのものとして、 二酸化チタン、 カーボンブラック、 酸化亜鉛、 プルシア ンブルー、 硫ィヒカドミウム、 酸化鉄ならびに鉛、 亜鉛、 バリウム及ぴカルシウム のクロム酸塩等の無機顔料ゃァゾ系、 チォインジゴ系、 アントラキノン系、 アン トアンスロン系、 トリフェンジォキサン系、 フタロシアニン系、 キナタリ ドン系 等の有機顔料が挙げられる。 染料としては、 酸性染料、 直接染料、 分散染料、 油 溶性染料、 含金属油溶性染料等が挙げられる。 When the near-infrared absorbing agent of the present invention is used for a recording material such as a laser thermal transfer recording material and a laser thermosensitive recording material, the near-infrared absorbing agent may be used in combination with a coloring component or a coloring component. A layer containing a coloring component, a coloring component, or the like may be separately provided. The coloring or coloring components are those that form images by physical or chemical changes due to the heat of sublimable dyes and pigments, electron-donating dye precursors, electron-accepting compounds, and polymerizable polymers. Those which have been variously studied can be used. For example, the coloring component of the laser thermal transfer recording material is not particularly limited, but the pigment type is titanium dioxide, carbon black, zinc oxide, prussian blue, thicadmium sulfate, iron oxide, and lead, zinc, and barium. Inorganic pigments such as chromate of calcium, azo-based, thioindigo-based, anthraquinone-based, anthranthrone-based, trifendioxane-based, phthalocyanine-based, quinatalidone-based And other organic pigments. Examples of the dye include an acid dye, a direct dye, a disperse dye, an oil-soluble dye, and a metal-containing oil-soluble dye.
レーザー感熱記録材料の発色成分としては、 特に限定されるものではないが、 従来から感熱記録材料に用いられているものを使用できる。 電子供与性染料前駆 体としては、 すなわちエレクトロンを供与してまたは酸等のプロトンを受容して 発色する性質を有するものであって、 ラタトン、 ラタタム、 サノレトン、 スピロピ ラン、 エステル、 アミド等の部分骨格を有し、 電子受容性化合物と接触してこれ らの部分骨格が開環若くは開裂する化合物が用いられる。 例えば、 トリフエ二ノレ メタン系化合物、 フルオラン系化合物、 フエノチアジン系化合物、 インドリルフ タリ ド系化合物、 ロイコオーラミン系化合物、 ローダミンラクタム系化合物、 ト リフエニルメタン系化合物、 トリァゼン系化合物、 スピロピラン系化合物、 フル ォレン系化合物等が挙げられる。 電子受容性化合物としては、 フエノール性化合 物、 有機酸若くはその金属塩、 ォキシ安息香酸エステル等が挙げられる。 実施例  The color forming component of the laser thermosensitive recording material is not particularly limited, but those conventionally used in thermosensitive recording materials can be used. The electron-donating dye precursor has the property of developing a color by donating electrons or accepting a proton such as an acid, and has a partial skeleton such as ratatone, ratatam, sanoleton, spiropyran, ester, or amide. And a compound which has a partial skeleton ring-opened or cleaved upon contact with an electron-accepting compound. For example, triphenyl methane compounds, fluoran compounds, phenothiazine compounds, indolyl phthalide compounds, leuco auramine compounds, rhodamine lactam compounds, triphenyl methane compounds, triazene compounds, spiropyran compounds, and flupyran compounds. Or the like. Examples of the electron-accepting compound include phenolic compounds, organic acids or metal salts thereof, and oxybenzoic acid esters. Example
さらに、 本発明を実施例及び比較例によりさらに具体的に説明するが、 本発明 はこれら実施例、 比較例により限定されるものではない。  Further, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples.
[実施例 1 ] 結晶性非溶媒和型ポリメチン系化合物の合成  [Example 1] Synthesis of crystalline unsolvated polymethine compound
式 (II) で表されるポリメチン系エーテル化合物 (R = C H3) 1 5 . 0 3 gをァ セトン 1 5 0 m 1に加え、 これに攪拌下 2 5〜 3 0 °Cで濃塩酸 3 . 2 0 gを滴下 した。 同温度で 1時間攪拌後、 還流温度へ昇温し、 酢酸ェチル 5 O m lを滴下し た。 同温度で 1時間攪拌後、 1 5〜 2 0 °Cへ冷却した。 析出した結晶物を濾別、 醉酸ェチルで洗浄後、 乾燥し、 式( I )の化合物 1 4. 3 8 gを得た。 15.03 g of the polymethine ether compound represented by the formula (II) (R = CH 3 ) was added to acetone 150 ml, and concentrated hydrochloric acid was added thereto with stirring at 25 to 30 ° C. 20 g was added dropwise. After stirring at the same temperature for 1 hour, the temperature was raised to the reflux temperature, and 5 O ml of ethyl acetate was added dropwise. After stirring at the same temperature for 1 hour, the mixture was cooled to 15 to 20 ° C. The precipitated crystal was separated by filtration, washed with ethyl ethyl drone, and dried to obtain 14.38 g of the compound of the formula (I).
この化合物のメタノール及びエタノールに対する溶解度はそれぞれ 2 5 %以上 であった。 この化合物の元素分析値、 融点 (分解温度)、 吸収極大波長(; L max) 及 びグラム吸光係数( E g )は以下の通りであった。 元素分析値 (C31H34C 12N2) : MW= 505. 5 The solubility of this compound in methanol and ethanol was 25% or more, respectively. The elemental analysis value, melting point (decomposition temperature), maximum absorption wavelength (Lmax), and gram extinction coefficient (Eg) of this compound were as follows. Elemental analysis (C 31 H 34 C 1 2 N 2): MW = 505. 5
C H N  C H N
計算値 (%) 73.65 6.78 5.54  Calculated value (%) 73.65 6.78 5.54
実測値 (%) 73.01 6.81 5.48  Actual value (%) 73.01 6.81 5.48
融点 (°C) : 228〜232°C (分解)  Melting point (° C): 228-232 ° C (decomposition)
Xmax : 808 nm (ジァセトンアルコール溶液)  Xmax: 808 nm (Diaceton alcohol solution)
ε g : 5.55 X 10。 m 1 / g · cm  ε g: 5.55 X 10. m 1 / gcm
得られた化合物の粉末 X線回折図を図 1に示す。 FIG. 1 shows a powder X-ray diffraction pattern of the obtained compound.
得られた化合物の I Rスぺクトルを図 2に示す。 FIG. 2 shows the IR spectrum of the obtained compound.
得られた化合物の TG— D T A (熱重量測定一示差熱分析)図を図 3に示す。 FIG. 3 shows a TG-DTA (thermogravimetry-differential thermal analysis) diagram of the obtained compound.
得られた化合物の 20 %ェタノール溶液中での安定性 (室温下、 1013間) は良 好であり分解は認められなかった。 The stability of the obtained compound in a 20% ethanol solution (between 1013 and room temperature) was good, and no decomposition was observed.
[実施例 2 ] 近赤外線吸収剤の製造  [Example 2] Production of near-infrared absorbing agent
バインダーとしてデルぺット 8 ON (旭化成工業 (株)製:アクリル系樹脂): 10 g、 及び本発明の式( I )化合物: 0.2 gをトルエン メチルェチルケトン Zメタ ノール (1/1/0.1) 混合溶媒 90 gに溶解した液を調製し、 ワイヤーバーに て乾燥後の膜厚が約 5 mとなるよう平均厚さ 5 μ mのポリエチレンテレフタレ 一ト(PET)フィルムに塗布して試料とした。  10 g of Delpet 8 ON (acrylic resin manufactured by Asahi Kasei Kogyo Co., Ltd.) and 0.2 g of the compound of formula (I) of the present invention were used as the binder in toluene methyl ethyl ketone Z methanol (1/1/1). 0.1) Prepare a solution dissolved in 90 g of the mixed solvent, apply it to a polyethylene terephthalate (PET) film with an average thickness of 5 μm using a wire bar so that the film thickness after drying is about 5 m. A sample was used.
単—モード半導体レーザー(波長 830 nm)のレーザー光をレンズで集光し、 上記試料の表面でビーム径 l O^umとなるように配置した。 表面に到達するレー ザ一のパワーが 50〜 200 mWの範囲で変化できるように半導体レーザーを調 整し、 20 μ sのパルス幅で単一のパルスを試料に照射した。 照射を完了した試 料を光学顕微鏡で観察したところ、 表面に到達するレーザーのパワーが 5 OmW 時、 直径約 10 ; mの貫通した孔が形成されていることが確認できた。  Laser light from a single-mode semiconductor laser (wavelength: 830 nm) was condensed by a lens and arranged so as to have a beam diameter of l O ^ um on the surface of the sample. The semiconductor laser was adjusted so that the power of the laser reaching the surface could be changed in the range of 50 to 200 mW, and a single pulse was applied to the sample with a pulse width of 20 μs. Observation of the irradiated sample using an optical microscope confirmed that a through hole with a diameter of about 10 m was formed when the laser power reaching the surface was 5 OmW.
[比較例 1 ] ポリメチン系化合物の合成 (参考: DE3721850実施例 1 ) 式 (I V) で表されるインドリン系化合物 (R = CH3)8.67 g、 式 (V)で表さ れるジホルミル.系化合物 (n= 1) 4.9 2 g及び無水酢酸 1 5 gからなる混合 物を 5 0°Cへ昇温後、 同温度で 1 0時間攪拌した。 室温まで冷却した後、 1 0 g の食塩を溶解した 1 000m lの溶液を加え、 攪拌した。 析出した固形物を濾別 し、 5%食塩水 1 0 00 gを加え、 攪拌 (分散)後、 濾別、 乾燥した。 固形物とし て 1 8.2 1 gを得た。 [Comparative Example 1] Synthesis of polymethine compound (Reference: DE3721850 Example 1) 8.67 g of indoline compound represented by formula (IV) (R = CH 3 ), represented by formula (V) A mixture of 4.92 g of the diformyl.-based compound (n = 1) and 15 g of acetic anhydride was heated to 50 ° C., and then stirred at the same temperature for 10 hours. After cooling to room temperature, a 1000 ml solution of 10 g of sodium chloride was added and stirred. The precipitated solid was separated by filtration, 100 g of 5% saline was added, and the mixture was stirred (dispersed), filtered and dried. 18.21 g was obtained as a solid.
得られた固形物にアセトン 200 m 1を加え、 還流温度へ昇温後、 同温度で 2 0分攪拌した。 室温まで冷却後、析出した結晶物を濾別、 乾燥し、 8.9 5 gを得 得られた化合物の吸収極大波長(λ max)及びグラム吸光係数( ε g)は以下の通 りであった。  200 ml of acetone was added to the obtained solid, and the mixture was heated to reflux temperature and stirred at the same temperature for 20 minutes. After cooling to room temperature, the precipitated crystal was separated by filtration and dried to obtain 8.95 g. The obtained compound had the following absorption maximum wavelength (λ max) and gram extinction coefficient (ε g).
融点 (;。 C): 1 9 9〜 20 1 °C (分解)  Melting point (;. C): 199 ~ 201 ° C (decomposition)
え max : 8 0 8 nm (ジアセトンアルコール溶液)  Max: 808 nm (diacetone alcohol solution)
E g : 4.6 1 X 1 05 m 1 /g · cm E g: 4.6 1 X 1 0 5 m 1 / g · cm
得られた化合物の粉末 X線回折図を図 4に示す。 FIG. 4 shows a powder X-ray diffraction pattern of the obtained compound.
得られた化合物の T G-DT A (熱重量測定一示差熱分析)測定図を図 5に示す。 得られた化合物の 20 %ェタノール溶液中での安定性は良好でなく、 室温下、 1 0日間で約 5 %の分解が認められた。 FIG. 5 shows a TG-DTA (thermogravimetry-differential thermal analysis) measurement diagram of the obtained compound. The stability of the obtained compound in a 20% ethanol solution was not good, and about 5% of decomposition was observed in 10 days at room temperature.
[比較例 2]  [Comparative Example 2]
本発明の式( I )化合物: 0.2 gの代わりに、 比較例 1の化合物: 0.2 gを用い た以外は実施例 2と同様にして、 乾燥後の樹脂膜厚が約 5 //mとなるよう平均厚 上記試料の表面でビーム径 1 0 Aimとなるようにさ 5 μιηのポリエチレンテレフ タレート(P E T)フイノレムに塗布した試料を得た。  In the same manner as in Example 2 except that 0.2 g of the compound of the formula (I) of the present invention was used instead of 0.2 g of the compound of Comparative Example 1, the resin film thickness after drying was about 5 // m. Average thickness Thickness of 5 μιη was applied to polyethylene terephthalate (PET) finolem to obtain a sample with a beam diameter of 10 Aim on the surface of the sample.
単一モード半導体レーザー (波長 8 3 011 m) のレーザー光をレンズで集光し、 配置した。 表面に到達するレーザーのパワーが 5 0〜2 0 OmWの範囲で変化で きるように半導体レーザーを調整し、 20 μ sのパルス幅で単一のパルスを試料 に照射した。 照射を完了した試料を光学顕微鏡で観察したところ、 表面に到達す るレーザーのパワーが 10 OmWにおいても貫通した孔は形成されなかった。 Laser light from a single-mode semiconductor laser (wavelength 83011 m) was condensed by a lens and placed. The semiconductor laser was adjusted so that the power of the laser reaching the surface could be varied in the range of 50 to 20 OmW, and a single pulse was applied to the sample with a pulse width of 20 μs. When the irradiated sample is observed with an optical microscope, it reaches the surface. No penetrating hole was formed even when the laser power was 10 OmW.
[比較例 3]  [Comparative Example 3]
ポリメチン系化合物の合成 (参考:特開昭 6 2— 3646 9号公報実施例 3 ) 式(I V)で表されるインドリン系化合物 (R = CH3)8.67 g、 式 (V I)で表さ れるジァニル系化合物 (n = 1)8.64 gN酢酸力リウム 5.00 g及び無水酢酸 3 0 m 1からなる混合物を 9 5〜; L 00 °Cへ昇温後、 同温度で 1 5分攪拌した。 室 温まで冷却した後、 1 5 Om lの水を加えた。 生成した固形物を濾別し、 水で洗 浄後、 乾燥した。 Synthesis of polymethine compound (Reference: Japanese Patent Application Laid-Open No. Sho 62-34669, Example 3 ) 8.67 g of indoline compound (R = CH 3 ) represented by formula (IV), represented by formula (VI) Jianiru compounds (n = 1) 8.64 g n acetic force Centrum 5.00 g and a mixture of acetic anhydride 3 0 m 1 9 5~; After heating to L 00 ° C, and stirred for 1 5 minutes at the same temperature. After cooling to room temperature, 15 Oml of water was added. The solid formed was filtered off, washed with water and dried.
得られた固形物をメタノ一ノレ 80 m 1にて再結晶処理し、赤茶色の粉末状物 5. 02 gを得た。 得られた化合物の吸収極大波長 max)は 542 nm (ジァセトン アルコール溶液) であり、 目的の本発明化合物ではなかった。  The obtained solid was recrystallized with 80 ml of methanol to obtain 5.02 g of a red-brown powder. The absorption maximum wavelength (max) of the obtained compound was 542 nm (diacetone alcohol solution), which was not the intended compound of the present invention.
メタノール濾液をエバポレーター濃縮し、得られた濃縮物 1 2.4 gへアセトン 1 5 Om lを加え、 還流温度へ昇温後、 同温度で 20分攪拌した。 室温まで冷却 後、 析出した結晶物を濾別、 乾燥し、 4.02 gを得た。 The methanol filtrate was concentrated by an evaporator, 15 Oml of acetone was added to 12.4 g of the obtained concentrate, and the mixture was heated to reflux temperature and stirred at the same temperature for 20 minutes. After cooling to room temperature, the precipitated crystal was separated by filtration and dried to obtain 4.02 g.
max : 808 n m (ジアセトンアルコーノレ溶液)  max: 808 nm (diacetone alcoholic solution)
ε g : 4.2 1 X 105 m l / g - cm ε g: 4.2 1 X 10 5 ml / g-cm
得られた化合物が低純度であったので、 精製のため、 再結晶溶剤として、 メタ ノール以外のアルコール系溶剤としてエタノール;ケトン系溶剤としてァセトン、 メチルェチルケトン;エーテル系溶剤としてェチルエーテル、 ジィソプロピルェ 一テル;酢酸エステル系溶剤として、 酢酸メチル、 酢酸ェチル;芳香族炭化水素 系溶剤としてトルエン;ハロゲン化脂肪族炭化水素系溶剤としてジク口ロェタン 及びそれらの混合溶剤で再結晶を試みたが純度向上はなし得なかった。  Since the obtained compound was of low purity, for purification, ethanol was used as a recrystallization solvent as an alcoholic solvent other than methanol; acetone and methylethyl ketone as ketone solvents; ethyl ether and disopropyle as ether solvents. Ter; acetate ester solvent, methyl acetate, ethyl acetate; aromatic hydrocarbon solvent, toluene; halogenated aliphatic hydrocarbon solvent, dicloroethane and mixed solvents thereof, but no improvement in purity I didn't get it.
[比較例 4 ] 巿販ポリメチン系化合物  [Comparative Example 4] Polymethine compound sold
アルドリツチ総合力タログ日本版 (2003-2004) の試薬力タ口グにて 販売されている、 本発明のポリメチン系化合物の結晶性非溶媒和物と化学構造式 が同じ化合物の吸収極大波長 (: maX)、グラム吸光係数 g)及び水分は以下の通 りであった。 The maximum absorption wavelength of a compound having the same chemical structural formula as the crystalline unsolvate of the polymethine compound of the present invention, which is sold in the reagent strength tag of Aldrich's Comprehensive Strength Tag Japan (2003-2004) (: ma X ), gram extinction coefficient g) and moisture It was.
Xmax : 808 nm (ジァセトンアルコール溶液)  Xmax: 808 nm (Diaceton alcohol solution)
£ g : 4.68 X 105 m 1 /g - cm £ g: 4.68 X 10 5 m1 / g-cm
水分 : 8. 8% (カールフィッシャー水分測定器にて測定)  Moisture: 8.8% (measured with Karl Fischer moisture meter)
得られた化合物の 20 %ェタノール溶液中での安定性は良好でなく、 室温下、 1The stability of the obtained compound in a 20% ethanol solution was not good.
0日間で約 5 %の分解が認められた。 産業上の利用可能性 About 5% degradation was observed in 0 days. Industrial applicability
本発明の結晶性非溶媒和型ポリメチン系化合物は、 グラム吸光係数が高く、 溶 液中での安定性が高いため取り扱いが容易で汎用半導体レーザーに対して高い感 度を有する。 また、 アルコール系溶剤に対する溶解性が高いため、 レーザー光を 利用した記録材料分野、 製版材料分野において極めて有用である。  The crystalline non-solvated polymethine compound of the present invention has a high gram extinction coefficient and a high stability in a solution, is easy to handle, and has high sensitivity to a general-purpose semiconductor laser. In addition, since it has high solubility in alcoholic solvents, it is extremely useful in the field of recording materials and plate making materials using laser light.

Claims

請 求 の 範 囲 The scope of the claims
1. 下記式 (I) で表される結晶性非溶媒和型ポリメチン系化合物。 1. A crystalline unsolvated polymethine compound represented by the following formula (I).
Figure imgf000021_0001
2. 融点 (分解温度) が 220°C以上である請求項 1の結晶性非溶媒和型ポリメ チン系化合物。
Figure imgf000021_0001
2. The crystalline unsolvated polymethine compound according to claim 1, having a melting point (decomposition temperature) of 220 ° C or more.
3. TG-DTA (熱重量測定一示差熱分析) 測定図において、 150°C以下で の T G減量値が 3 %以下である請求項 1または 2の結晶性非溶媒和型ポリメチ ン系化合物。  3. The crystalline unsolvated polymethine compound according to claim 1 or 2, wherein a TG weight loss value at 150 ° C or less is 3% or less in a TG-DTA (thermogravimetry-differential thermal analysis) measurement diagram.
4. 実質的に溶媒和されていない請求項 1〜 3いずれかの結晶性非溶媒和型ポリ メチン系化合物。 4. The crystalline unsolvated polymethine compound according to any one of claims 1 to 3, which is not substantially solvated.
5. Cu— Kcx線による粉末 X線回折法における回折角 (20 ±0.2° ) 1 1.  5. Diffraction angle in powder X-ray diffraction using Cu-Kcx ray (20 ± 0.2 °) 1 1.
8° 、 13.0° 、 18.7° 、 19.4° 、 21.2° に特徴的なピークを示す粉 末 X線回折図により特徴づけられる請求項 1〜 4いずれかの結晶性非溶媒和型 ポリメチン系化合物。  The crystalline unsolvated polymethine compound according to any one of claims 1 to 4, characterized by a powder X-ray diffraction pattern showing characteristic peaks at 8 °, 13.0 °, 18.7 °, 19.4 °, and 21.2 °.
6.下記式 (Π)で表されるポリメチン系エーテル化合物と塩酸とを反応させること を特徴とする請求項 1〜 5いずれかの結晶性非溶媒和型ポリメチン系化合物の 製造方法。 6. The method for producing a crystalline non-solvated polymethine compound according to any one of claims 1 to 5, wherein a polymethine ether compound represented by the following formula (II) is reacted with hydrochloric acid.
Figure imgf000022_0001
Figure imgf000022_0001
(式中、 Rはアルキル基、 アルコキシアルキル基、 または置換基を有してもよい ァリール基を示す。) (In the formula, R represents an alkyl group, an alkoxyalkyl group, or an aryl group which may have a substituent.)
7 . 請求項 1〜 5いずれかの結 性非溶媒和型ポリメチン系化合物を含有してな る近赤外線吸収剤。  7. A near-infrared absorbing agent comprising the non-solvable polymethine compound according to any one of claims 1 to 5.
PCT/JP2004/008795 2003-06-18 2004-06-16 Crystalline nonsolvated polymethine compound WO2004113453A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005507266A JPWO2004113453A1 (en) 2003-06-18 2004-06-16 Crystalline non-solvated polymethine compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-173811 2003-06-18
JP2003173811 2003-06-18

Publications (1)

Publication Number Publication Date
WO2004113453A1 true WO2004113453A1 (en) 2004-12-29

Family

ID=33534735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008795 WO2004113453A1 (en) 2003-06-18 2004-06-16 Crystalline nonsolvated polymethine compound

Country Status (2)

Country Link
JP (1) JPWO2004113453A1 (en)
WO (1) WO2004113453A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637520A1 (en) * 2003-06-25 2006-03-22 Yamamoto Chemicals, Inc. Polymethine ethers
WO2006064731A1 (en) * 2004-12-15 2006-06-22 Yamamoto Chemicals, Inc. Nonsolvated crystals of polymethine compound, process for production thereof and use of the crystals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250187A (en) * 1985-08-29 1987-03-04 Nippon Kayaku Co Ltd Improvement of color fastness to light

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250187A (en) * 1985-08-29 1987-03-04 Nippon Kayaku Co Ltd Improvement of color fastness to light

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637520A1 (en) * 2003-06-25 2006-03-22 Yamamoto Chemicals, Inc. Polymethine ethers
JPWO2005000814A1 (en) * 2003-06-25 2006-08-03 山本化成株式会社 Polymethine ether compounds
EP1637520A4 (en) * 2003-06-25 2010-06-30 Yamamoto Chemicals Inc Polymethine ethers
JP4658805B2 (en) * 2003-06-25 2011-03-23 山本化成株式会社 Polymethine ether compounds
WO2006064731A1 (en) * 2004-12-15 2006-06-22 Yamamoto Chemicals, Inc. Nonsolvated crystals of polymethine compound, process for production thereof and use of the crystals

Also Published As

Publication number Publication date
JPWO2004113453A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
Keil et al. Synthesis and characterization of 1, 3-bis-(2-dialkylamino-5-thienyl)-substituted squaraines—a novel class of intensively coloured panchromatic dyes
US6342335B1 (en) Polymethine compounds, method of producing same, and use thereof
JP4436481B2 (en) Phthalocyanine compound, method for producing the same, and near-infrared absorber containing the same
JP4790631B2 (en) Non-solvated crystal of polymethine compound, production method and use thereof
US20050142489A1 (en) Squarylium dyes as light-absorbing compound in the information layer of optical data carriers
WO2004113453A1 (en) Crystalline nonsolvated polymethine compound
US7485404B2 (en) Nonsolvate-form crystal of polymethine compound and process for producing the same
JP4033516B2 (en) Benzenedithiol copper complex light stabilizer, optical recording medium containing the stabilizer, ink composition, and resin composition
EP1369862B1 (en) Polymethine compound and near-infrared absorbing material comprising same
WO2005000814A1 (en) Polymethine ethers
JP4331516B2 (en) Polymethine compound and near infrared absorber using the same
JP5941844B2 (en) Near-infrared absorbing cyanine dyes and their applications
US5973140A (en) Phthalocyanine compound, its intermediate, process for producing the compound, and use thereof
JP4422231B2 (en) Phthalocyanine compound and near-infrared absorber using the same
JP4500750B2 (en) Organic dyes using pyrazolone derivatives
JP4524010B2 (en) Anthraquinone compound and colored resin molding composition using the same
USRE39105E1 (en) Polymethine compounds, method of producing same, and use thereof
JPH01249860A (en) Indoaniline compound and heat transfer sheet using said compound
KR100756068B1 (en) Novel squaraine compounds as near infrared absorbing blue dyes
JP5190650B2 (en) Benzotriazole derivative compounds
EP0387360B1 (en) Cyanine compounds
JPH10140022A (en) Polymethine compound, its production and near infrared absorbing material containing the compound
JPH04244892A (en) Indorenin compound and optical recording medium containing above compound
JPH08198872A (en) Metal complex compound and optical recording medium using same
JP2007084686A (en) Organic pigment using 4- benzylidene hydantoin derivative

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005507266

Country of ref document: JP

122 Ep: pct application non-entry in european phase