WO2004113412A2 - Polymer - Google Patents

Polymer Download PDF

Info

Publication number
WO2004113412A2
WO2004113412A2 PCT/EP2004/006721 EP2004006721W WO2004113412A2 WO 2004113412 A2 WO2004113412 A2 WO 2004113412A2 EP 2004006721 W EP2004006721 W EP 2004006721W WO 2004113412 A2 WO2004113412 A2 WO 2004113412A2
Authority
WO
WIPO (PCT)
Prior art keywords
oligomer
polymer
formula
optionally substituted
monomer
Prior art date
Application number
PCT/EP2004/006721
Other languages
French (fr)
Other versions
WO2004113412A3 (en
Inventor
Paul Wallace
Thomas Pounds
Richard O'dell
Carl Towns
Mary Mckiernan
Original Assignee
Covion Organic Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covion Organic Semiconductors Gmbh filed Critical Covion Organic Semiconductors Gmbh
Priority to EP04740151A priority Critical patent/EP1639027B1/en
Priority to JP2006516017A priority patent/JP5198767B2/en
Priority to DE602004020343T priority patent/DE602004020343D1/en
Priority to KR1020057024580A priority patent/KR101115860B1/en
Priority to US10/560,861 priority patent/US7754841B2/en
Publication of WO2004113412A2 publication Critical patent/WO2004113412A2/en
Publication of WO2004113412A3 publication Critical patent/WO2004113412A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • C07C25/22Polycyclic aromatic halogenated hydrocarbons with condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • C07C17/12Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms in the ring of aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/109Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing other specific dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/52Ortho- or ortho- and peri-condensed systems containing five condensed rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • OLED organic light emitting device
  • photovoltaic photovoltaic
  • organic electroluminescent device In an organic electroluminescent device, electrons and holes are injected into a layer of electroluminescent semiconducting material where they combine to generate excitons that undergo radiative decay. Holes are injected from the anode into the highest occupied molecular orbital (HOMO) of the electroluminescent material; electrons are injected from the cathode into the lowest unoccupied molecular orbital (LUMO) of the electroluminescent material.
  • the organic light- emissive material is a polymer, namely poly(p-phenylenevinylene) ("PPV"). This class of device is commonly known as a polymer light emitting device (PLED).
  • PLED polymer light emitting device
  • the organic light-emissive material is of the class known as small molecule materials, such as (8-hydroxyquinoline) aluminium (“Alq 3 ").
  • poly(trans- indenofluorenes) have a lower conductivity than corresponding polyfluorenes.
  • R 1 , R 2 , R 3 and R 4 may modify the properties of the repeat unit, and therefore the polymer, such as its solubility, electron affinity or glass transition temperature (Tg). Therefore, it is preferred that each R 1 , R 2 , R 3 and R 4 is independently selected from the group consisting of optionally substituted alkyl, alkoxy, aryl, or heteroaryl. More preferably, at least one of R , R 2 , R 3 and R 4 is optionally substituted phenyl or optionally substituted C ⁇ -20 alkyl.
  • biphenyl or terphenyl as Tg increasing substituents, in particular unsubstituted phenyl, phenyl substituted with alkyl or alkoxy to improve solubility and phenyl substituted with fluorine, fluoroalkyl, perfluoroalkyl to increase electron affinity; and optionally substituted, electron deficient heteroaryls in particular pyridine, pyrimidine and triazine, each of which may be unsubstituted or substituted with substituents listed as for phenyl above.
  • R 1 , R 2 , R 3 and R 4 is different from at least one other of R 1 , R 2 , R 3 and R 4 .
  • R 1 and R 2 are both optionally substituted alkyl and R 3 and R 4 are both optionally substituted aryl.
  • R 1 and R 3 are both optionally substituted alkyl and R 2 and R 4 are both optionally substituted aryl.
  • R 7 and R 8 represents a substituent, and R 7 and R 8 together may form a ring.
  • R 7 and R 8 are both substituents and are the same or different.
  • Preferred substituents R 7 and R 8 are optionally substituted alkyl, alkoxy, aryl, or heteroaryl; particularly preferred substituents R 7 and R 8 are as described above with reference to R ⁇ R 2 , R 3 and R 4 .
  • the first repeat unit is linked through the 2- and 9-positions as shown below (because this maximises conjugation through the repeat unit).
  • the polymer according to the invention may be a homopolymer or a co-polymer. Where the polymer is a co-polymer wide range of properties may be accessed by appropriate selection of co-repeat unit or co-repeat units. Therefore, the oligomer or polymer preferably comprises a second repeat unit.
  • the second repeat unit comprises an aryl group that is directly conjugated to the first repeat unit. More preferably, the second repeat unit is selected from optionally substituted aryl, heteroaryl and triarylamine repeat units.
  • the invention provides an optionally substituted .monomer of formula (Im):
  • R 1 , R 2 , R 3 and R 4 which may be the same or different, are independently selected from hydrogen or a substituent and two or more of R 1 , R 2 , R 3 and R 4 may be linked to form a ring; and each P represents a polymerisable group.
  • each P preferably represents a leaving group capable of participating in a polycondensation mediated by a metal of variable oxidation state.
  • the polycondensation is mediated by a metal insertion.
  • each P is independently selected from halogen; a moiety of formula -O-SO 2 -Z wherein Z is selected from the group consisting of optionally substituted alkyl and aryl; or a reactive boron group selected from a boronic acid, a boronic ester or a borane.
  • Preferred halogens are bromine, chlorine and iodine, more preferably bromine.
  • the invention provides a process for preparing an oligomer or polymer comprising the step of oligomerising or polymerising a monomer according to the second aspect of the invention.
  • each P is independently a halogen or a moiety of formula -O-SO 2 -Z, wherein Z is selected from the group consisting of optionally substituted alkyl and aryl, and the monomer of formula (Im) is oligomerised or polymerised in the presence of a nickel complex catalyst.
  • the monomer of formula (Im) is oligomerised or polymerised with a second aromatic monomer in the presence of a palladium complex catalyst and a base and
  • each P is the same or different and comprises a reactive boronic group and the second monomer comprises two reactive groups independently selected from halogen and a moiety of formula -O-SO 2 -Z, or
  • each P independently comprises a halogen or a moiety of formula -O-SO 2 -Z and the second monomer comprises two reactive boron groups which are the same or different.
  • one P is a reactive boron group and the other P is a halogen or a moiety of formula -O-SO 2 -Z.
  • the invention provides an optical device comprising an oligomer or polymer according to the first aspect of the invention.
  • the oligomer or polymer is located between a first electrode for injection of charge carriers of a first type and a second electrode for injection of charge carriers of a second type.
  • the oligomers or polymers according to the invention may be used in a switching device.
  • the invention provides a switching device comprising an oligomer or polymer according to the first aspect of the invention.
  • this aspect of the invention provides a field effect transistor comprising an insulator having a first side and a second side; a gate electrode located on the first side of the insulator; an oligomer or polymer according to the first aspect of the invention located on the second side of the insulator; and a drain electrode and a source electrode located on the oligomer or polymer.
  • the invention provides an integrated circuit comprising a field effect transistor according to the fifth aspect of the invention.
  • the invention provides A method of forming an optionally substituted compound of formula (I):
  • Suitable leaving groups include halide, -OR, -SR, -OSO 2 R and -NR 2 wherein each R independently represents hydrogen or optionally substituted alkyl or aryl.
  • each LG is hydroxy.
  • the elimination is performed in the presence of an acid.
  • the acid is polyphosphoric acid.
  • the method comprises the further step of providing a polymerisable group P on each of the outer phenyl rings of the compound of formula (I) or (Ip).
  • Oligomers and polymers according to the invention may be used as solution processable, electron transporting, hole transporting and / or emissive materials in organic light emitting devices.
  • the invention is described hereinafter with reference to polymers, however it will be appreciated that features described herein may apply equally to oligomers.
  • the polymers may be prepared by Suzuki polymerisation as described in, for example, WO 00/53656 or WO 03/048225 and Yamamoto polymerisation as described in, for example, T. Yamamoto, "Electrically Conducting And Thermally Stable ⁇ -Conjugated Polyarylenes Prepared by Organometallic Processes", Progress in Polymer Science 1993, 17, 1153-1205 or WO 04/022626.
  • Yamamoto polymerisation a monomer having two reactive halide groups P is used in the synthesis of a linear polymer by Yamamoto polymerisation.
  • at least one reactive group P is a reactive boron group.
  • Suzuki polymerisation employs a Pd(0) complex or a Pd(ll) salt.
  • Pd(0) complexes are preferred, in particular Pd(0) complexes bearing at least one phosphine ligand such as Pd(Ph 3 P) 4 .
  • Suzuki polymerisation is performed in the presence of a base, for example sodium carbonate or an organic base such as tetraethylammonium carbonate.
  • Yamamoto polymerisation employs a Ni(0) complex, for example bis(1 ,5- cyclooctadienyl)nickel(O).
  • Suzuki polymerisation may be used to prepare regioregular, block and random copolymers.
  • homopolymers or random copolymers may be prepared when one reactive group P is a halogen and the other reactive group P is a reactive boron group.
  • block or regioregular, in particular AB, copolymers may be prepared when both reactive groups of a first monomer are boron and both reactive groups of a second monomer are halide.
  • the monomer according to the invention may be polymerised alone to form a homopolymer or in the presence of one or more co-monomers to form a co-polymer.
  • co-repeat units derived from such co-monomers are outlined below; it will be appreciated that each of these co-repeat units may be derived from a comonomer comprising two polymerisable groups independently selected from halogen (preferably chlorine, bromine or iodine, more preferably bromine), a boronic acid group, a boronic ester group and a borane group.
  • leaving groups such as tosylate, mesylate and triflate may also be used.
  • one class of co-repeat units is arylene repeat units, in particular: 1 ,4-phenylene repeat units as disclosed in J. Appl. Phys. 1996, 79, 934; fluorene repeat units as disclosed in EP 0842208, trans-indenofluorene repeat units as disclosed in, for example, Macromolecules 2000, 33(6), 2016-2020 and spirobifluorene repeat units as disclosed in, for example EP 0707020. Each of these repeat units is optionally substituted.
  • substituents include solubilising groups such as C- ⁇ -20 alkyl or alkoxy; electron withdrawing groups such as fluorine, nitro or cyano; and substituents for increasing glass transition temperature (Tg) of the polymer such as bulky groups, e.g. tert-butyl.
  • a further class of preferred co-repeat units are repeat units comprising one or two amino groups in the repeat unit backbone such as co-repeat units comprising triarylamine groups, in particular repeat units of formulae 1-6:
  • X and Y may be the same or different and are substituent groups.
  • A, B, C and D may be the same or different and are substituent groups. It is preferred that one or more of X, Y, A, B, C and D is independently selected from the group consisting of alkyl, aryl, perfluoroalkyl, thioalkyl, cyano, alkoxy, heteroaryl, alkylaryl and arylalkyl groups.
  • One or more of X, Y, A, B, C and D also may be hydrogen.
  • one or more of X, Y, A, B, C and D is independently an unsubstituted, isobutyl group, an n-alkyl, an n-alkoxy or a trifluoromethyl group because they are suitable for helping to select the HOMO level and/or for improving solubility of the polymer.
  • a yet further class of co-repeat units include heteroaryl repeat units such as optionally substituted 2,5-thienyl, pyridyl, diazine, triazine, azole, diazole, triazole, oxazole or oxadiazole; or optionally substituted units of formulae 7-19:
  • R 5 and R 6 are the same or different and are each independently a substituent group.
  • one or more of R 5 or R 6 may be selected from hydrogen, alkyl, aryl, perfluoroalkyl, thioalkyl, cyano, alkoxy, heteroaryl, alkylaryl, or arylalkyl. These groups are preferred for the same reasons as discussed in relation to X, Y, A, B, C and D above.
  • R 5 and R 6 are the same.
  • polymers according to the invention possess at least one of hole transporting, electron transporting and emissive properties. Where the polymer has more than one of these properties, different properties may be provided by different segments of a block co-polymer, in particular segments of the polymer backbone as described in WO 00/55927 or pendant groups as described in WO 02/26859. Alternatively, if the polymer of the invention has only one or two of the properties of hole transport, electron transport and emission, it may be blended with one or more further polymers having the remaining required property or properties as described in WO 99/48160.
  • Polymers according to the invention may be used as active materials in any of the aforementioned optical devices, in particular electroluminescent devices and photovoltaic devices (i.e. photodetectors or photocells).
  • Such optical devices comprise a substrate carrying the polymer located between a positive charge carrying electrode and a negative charge carrying electrode.
  • the polymer may be deposited from solution by any one of a range of techniques including in particular techniques such as spin-coating, dip-coating, inkjet printing as disclosed in EP 0880303, laser transfer as described in EP 0851714, flexographic printing, screen printing and doctor blade coating.
  • Optical devices tend to be sensitive to moisture and oxygen. Accordingly, the substrate of the device preferably has good barrier properties for prevention of ingress of moisture and oxygen into the device.
  • the substrate is commonly glass, however alternative substrates may be used, in particular where flexibility of the device is desirable.
  • the substrate may comprise a plastic as in US 6268695 which discloses a substrate of alternating plastic and barrier layers or a laminate of thin glass and plastic as disclosed in EP 0949850.
  • organic hole injection material examples include PEDT / PSS as disclosed in EP 0901176 and EP 0947123, or polyaniline as disclosed in US 5723873 and US 5798170.
  • the cathode is selected in order that electrons are efficiently injected into the device and as such may comprise a single conductive material such as a layer of aluminium. Alternatively, it may comprise a plurality of metals, for example a bilayer of calcium and aluminium as disclosed in WO 98/10621 , or a thin layer of dielectric material such as lithium fluoride to assist electron injection as disclosed in, for example, WO 00/48258.
  • the device is preferably encapsulated with an encapsulant to prevent ingress of moisture and oxygen.
  • Suitable encapsulants include a sheet of glass, films having suitable barrier properties such as alternating stacks of polymer and dielectric as disclosed in, for example, WO 01/81649 or an airtight container as disclosed in, for example, WO 01/19142.
  • At least one of the electrodes is semi-transparent in order that light may be absorbed (in the case of a photoresponsive device) or emitted (in the case of a PLED).
  • the anode is transparent, it typically comprises indium tin oxide. Examples of transparent cathodes are disclosed in, for example, GB 2348316.
  • the polymer of the invention is used in a switching device such as a field effect transistor, it will be appreciated that all of the electrodes may be opaque.
  • the PLED may be a passive matrix or active matrix device.
  • a monomer according to the invention was prepared in accordance with the scheme set out below:
  • Route B: R " may or may not be equivalent
  • Polymers according to the invention were prepared in accordance with the method set forth in WO 00/53656 by polymerisation of the monomers shown below.
  • Boronic esters were derived from Monomer 1 in accordance with the method set forth in WO 00/53656.
  • the electroluminescent layer was formed over the layer of PEDT/PSS by spin coating from xyiene solution comprising polymer 5 according to the invention.
  • a bilayer cathode of calcium / aluminium was deposited over the electroluminescent layer and the device was encapsulated using an airtight metal enclosure containing a desiccant available from Saes Getters SpA.
  • Burn-in refers to an initial fall in luminance when the device is driven followed by a more gradual decay in luminance.
  • polymer 5 according to the invention provides the best performance across the range of parameters measured. For most parameters, polymer 5 is superior to the comparative polymers; for the remaining parameters, there is no instance where the performance of polymer 5 is significantly poorer than any of the comparative polymers.

Abstract

The present invention relates to new semiconductive oligomers and polymers, a process for their manufacture and their use in thin film electronic and optical devices, such as organic light emitting diodes (OLED) and photovoltaic devices, e.g. solar cells and photodetectors.

Description

Polymer
Field of the Invention
This invention relates to semiconductive oligomers and polymers, their synthesis and use in thin film electronic and optical devices.
Background of the Invention
Semiconducting organic materials are attracting a great deal of interest due to their processability and the broad spectrum of optical and electronic properties that may be selected according to the structure of the organic material.
One application of such materials is in switching devices, in particular as organic field effect transistors as described in, for example, Adv. Mater. 1998 10(5), 365-377.
Another application is in opto-electrical devices using a semiconducting organic material for light emission (an organic light emitting device or "OLED") or as the active component of a photocell or photodetector (a "photovoltaic" device). The basic structure of these devices is a semiconducting organic layer sandwiched between a cathode for injecting or accepting negative charge carriers (electrons) and an anode for injecting or accepting positive charge carriers (holes) into the organic layer.
In an organic electroluminescent device, electrons and holes are injected into a layer of electroluminescent semiconducting material where they combine to generate excitons that undergo radiative decay. Holes are injected from the anode into the highest occupied molecular orbital (HOMO) of the electroluminescent material; electrons are injected from the cathode into the lowest unoccupied molecular orbital (LUMO) of the electroluminescent material. In WO 90/13148 the organic light- emissive material is a polymer, namely poly(p-phenylenevinylene) ("PPV"). This class of device is commonly known as a polymer light emitting device (PLED). In US 4,539,507 the organic light-emissive material is of the class known as small molecule materials, such as (8-hydroxyquinoline) aluminium ("Alq3").
One alternative to PPVs are 2,7-linked polyfluorenes as disclosed in EP 0842208 which have attracted attention because of their advantage of solution processability, such as suitability for inkjet printing. Furthermore, fluorene monomers with appropriate leaving groups are amenable to Suzuki or Yamamoto polymerisation. Suzuki polymerisation in particular affords a great deal of control over the regioregularity and therefore the properties of the polymer. Fluorene repeat units may therefore be used as a "building block" in creating co-polymers with a wide range of charge transporting and / or emissive properties.
However, there are a number of disadvantages associated with polyfluorenes which have led to a search for alternative electron transporting and light emitting units. These disadvantages include the tendency of polyfluorenes to aggregate and the fact that when blue light emission occurs from fluorene based polymers the emission does not occur in the region of the electromagnetic spectrum in which the human eye is most sensitive.
One alternative to fluorene repeat units are trans-indenofluorene repeat units (illustrated below) as disclosed in, for example, Macromolecules 2000, 33(6), 2016- 2020 and Advanced Materials, 2001 , 13, 1096-1099.
Polymers comprising the tetraoctyl trans-indenofluorene unit are described as having
Figure imgf000003_0001
a bathochromically shifted emission wavelength which leads to a blue emission colour matched to the sensitivity of the human eye. However, poly(trans- indenofluorenes) have a lower conductivity than corresponding polyfluorenes.
It is therefore an object of the invention to provide a repeat unit that possesses the advantages of trans-indenofluorene over fluorene without suffering from loss of conduction.
Summary of the invention
The present inventors have surprisingly found that oligomers or polymers comprising cis-indenofluorene repeat units have comparable or better conduction than corresponding oligomers or polymers comprising fluorene repeat units. Furthermore, the present inventors have surprisingly found that oligomers or polymers comprising cis-indenofluorene repeat units are blue-shifted relative to the corresponding oligomers or polymers comprising trans-indenofluorene repeat units.
Accordingly, in a first aspect the invention provides an oligomer or polymer comprising an optionally substituted first repeat unit of formula (Ir):
Figure imgf000003_0002
(Ir) wherein R1, R2, R3 and R4, which may be the same or different, are independently selected from hydrogen or a substituent and two or more of R1, R2, R3 and R4 may be linked to form a ring.
Without wishing to be bound by any theory, it is believed that locating groups R1, R2, R3 and R4 on the same side of the repeat unit backbone enables close packing of oligomers or polymers containing the backbone, leading to improved conductivity, as compared to trans-indenofluorene repeat units which have two substituent groups on one side of the repeat unit and two substituent groups on the opposite side of the backbone. Furthermore, the present inventors have found that there is a small twist within the repeat unit of formula (Ir) which is believed to be due to steric interactions between groups R and R2 and groups R3 and R4. This twist, which is not present in the corresponding trans-indenofluorene repeat unit, renders the cis-indenofluorene unit of formula (Ir) less prone to aggregation than a corresponding trans- indenofluorene unit. Finally, this twist also blue-shifts the colour of emission of oligomers or polymers comprising the repeat unit of formula (I) as compared to oligomers or polymers comprising repeat units of trans-indenofluorenes.
Certain substituents R1, R2, R3 and R4 may modify the properties of the repeat unit, and therefore the polymer, such as its solubility, electron affinity or glass transition temperature (Tg). Therefore, it is preferred that each R1, R2, R3 and R4 is independently selected from the group consisting of optionally substituted alkyl, alkoxy, aryl, or heteroaryl. More preferably, at least one of R , R2, R3 and R4 is optionally substituted phenyl or optionally substituted Cι-20 alkyl.
Particularly preferred substituents are Cι-2o alkyl or alkoxy, in particular branched alkyl or n-alkyl, such as n-octyl, as solubilising substituents; optionally substituted phenyl or oligophenyl (e.g. biphenyl or terphenyl) as Tg increasing substituents, in particular unsubstituted phenyl, phenyl substituted with alkyl or alkoxy to improve solubility and phenyl substituted with fluorine, fluoroalkyl, perfluoroalkyl to increase electron affinity; and optionally substituted, electron deficient heteroaryls in particular pyridine, pyrimidine and triazine, each of which may be unsubstituted or substituted with substituents listed as for phenyl above.
Asymmetry within the polymer may be desirable in order to minimise the possibility of aggregation. Therefore, it is preferred that at least one of R1, R2, R3 and R4 is different from at least one other of R1, R2, R3 and R4. In one particularly preferred embodiment, R1 and R2 are both optionally substituted alkyl and R3 and R4 are both optionally substituted aryl. In another particularly preferred embodiment, R1 and R3 are both optionally substituted alkyl and R2 and R4 are both optionally substituted aryl.
Appropriate selection of the four substituents R1, R2, R3 and R4 enables greater control over the properties of the oligomer or polymer as compared to corresponding fluorenes wherein there are only two such substitution positions. Further modification of the properties of the repeat unit of the invention may be achieved by substitution of one or more of the phenyl groups of the repeat unit of formula (Ir). Preferably, such substitution takes the form of a repeat unit of formula (II):
(II)
Figure imgf000004_0001
wherein at least one of R7 and R8 represents a substituent, and R7 and R8 together may form a ring.
In one preferred embodiment, R7 and R8 are both substituents and are the same or different. Preferred substituents R7 and R8 are optionally substituted alkyl, alkoxy, aryl, or heteroaryl; particularly preferred substituents R7 and R8 are as described above with reference to R\ R2, R3 and R4.
Preferably, the first repeat unit is linked through the 2- and 9-positions as shown below (because this maximises conjugation through the repeat unit).
Figure imgf000005_0001
The polymer according to the invention may be a homopolymer or a co-polymer. Where the polymer is a co-polymer wide range of properties may be accessed by appropriate selection of co-repeat unit or co-repeat units. Therefore, the oligomer or polymer preferably comprises a second repeat unit. Preferably, the second repeat unit comprises an aryl group that is directly conjugated to the first repeat unit. More preferably, the second repeat unit is selected from optionally substituted aryl, heteroaryl and triarylamine repeat units.
In a second aspect, the invention provides an optionally substituted .monomer of formula (Im):
Figure imgf000005_0002
(Im) wherein R1, R2, R3 and R4, which may be the same or different, are independently selected from hydrogen or a substituent and two or more of R1, R2, R3 and R4 may be linked to form a ring; and each P represents a polymerisable group.
Advantageous polymerisation techniques include Suzuki and Yamamoto polymerisations which operate via a "metal insertion" wherein the metal atom of a metal complex catalyst is inserted between an aryl group and a leaving group of a monomer. Therefore, each P preferably represents a leaving group capable of participating in a polycondensation mediated by a metal of variable oxidation state.
Preferably, the polycondensation is mediated by a metal insertion.
Preferably, each P is independently selected from halogen; a moiety of formula -O-SO2-Z wherein Z is selected from the group consisting of optionally substituted alkyl and aryl; or a reactive boron group selected from a boronic acid, a boronic ester or a borane. Preferred halogens are bromine, chlorine and iodine, more preferably bromine.
In a third aspect, the invention provides a process for preparing an oligomer or polymer comprising the step of oligomerising or polymerising a monomer according to the second aspect of the invention.
In a first preferred embodiment of the third aspect, each P is independently a halogen or a moiety of formula -O-SO2-Z, wherein Z is selected from the group consisting of optionally substituted alkyl and aryl, and the monomer of formula (Im) is oligomerised or polymerised in the presence of a nickel complex catalyst.
In a second preferred embodiment of the third aspect, the monomer of formula (Im) is oligomerised or polymerised with a second aromatic monomer in the presence of a palladium complex catalyst and a base and
(a) each P is the same or different and comprises a reactive boronic group and the second monomer comprises two reactive groups independently selected from halogen and a moiety of formula -O-SO2-Z, or
(b) each P independently comprises a halogen or a moiety of formula -O-SO2-Z and the second monomer comprises two reactive boron groups which are the same or different.
In a third preferred embodiment of the third aspect, one P is a reactive boron group and the other P is a halogen or a moiety of formula -O-SO2-Z.
In a fourth aspect, the invention provides an optical device comprising an oligomer or polymer according to the first aspect of the invention. Preferably, the oligomer or polymer is located between a first electrode for injection of charge carriers of a first type and a second electrode for injection of charge carriers of a second type.
In addition to their applicability in optical devices such as OLEDs or photovoltaic devices, the oligomers or polymers according to the invention may be used in a switching device. Accordingly, in a fifth aspect the invention provides a switching device comprising an oligomer or polymer according to the first aspect of the invention. In a preferred embodiment, this aspect of the invention provides a field effect transistor comprising an insulator having a first side and a second side; a gate electrode located on the first side of the insulator; an oligomer or polymer according to the first aspect of the invention located on the second side of the insulator; and a drain electrode and a source electrode located on the oligomer or polymer.
In a sixth aspect, the invention provides an integrated circuit comprising a field effect transistor according to the fifth aspect of the invention.
In a seventh aspect, the invention provides A method of forming an optionally substituted compound of formula (I):
Figure imgf000007_0001
(l) comprising the step of eliminating LG-H from an optionally substituted compound of formula (Ip):
Figure imgf000007_0002
(IP) wherein each LG is the same or different and represents a leaving group.
Suitable leaving groups include halide, -OR, -SR, -OSO2R and -NR2 wherein each R independently represents hydrogen or optionally substituted alkyl or aryl. Preferably, each LG is hydroxy.
Preferably, the elimination is performed in the presence of an acid.
Preferably, the acid is polyphosphoric acid.
Preferably, the method comprises the further step of providing a polymerisable group P on each of the outer phenyl rings of the compound of formula (I) or (Ip).
Detailed Description of the Invention
Oligomers and polymers according to the invention may be used as solution processable, electron transporting, hole transporting and / or emissive materials in organic light emitting devices. The invention is described hereinafter with reference to polymers, however it will be appreciated that features described herein may apply equally to oligomers.
The polymers may be prepared by Suzuki polymerisation as described in, for example, WO 00/53656 or WO 03/048225 and Yamamoto polymerisation as described in, for example, T. Yamamoto, "Electrically Conducting And Thermally Stable π-Conjugated Polyarylenes Prepared by Organometallic Processes", Progress in Polymer Science 1993, 17, 1153-1205 or WO 04/022626. For example, in the synthesis of a linear polymer by Yamamoto polymerisation, a monomer having two reactive halide groups P is used. Similarly, according to the method of Suzuki polymerisation, at least one reactive group P is a reactive boron group.
Suzuki polymerisation employs a Pd(0) complex or a Pd(ll) salt. Pd(0) complexes are preferred, in particular Pd(0) complexes bearing at least one phosphine ligand such as Pd(Ph3P)4. Suzuki polymerisation is performed in the presence of a base, for example sodium carbonate or an organic base such as tetraethylammonium carbonate. Yamamoto polymerisation employs a Ni(0) complex, for example bis(1 ,5- cyclooctadienyl)nickel(O).
Suzuki polymerisation may be used to prepare regioregular, block and random copolymers. In particular, homopolymers or random copolymers may be prepared when one reactive group P is a halogen and the other reactive group P is a reactive boron group. Alternatively, block or regioregular, in particular AB, copolymers may be prepared when both reactive groups of a first monomer are boron and both reactive groups of a second monomer are halide.
The monomer according to the invention may be polymerised alone to form a homopolymer or in the presence of one or more co-monomers to form a co-polymer. Possible co-repeat units derived from such co-monomers are outlined below; it will be appreciated that each of these co-repeat units may be derived from a comonomer comprising two polymerisable groups independently selected from halogen (preferably chlorine, bromine or iodine, more preferably bromine), a boronic acid group, a boronic ester group and a borane group.
As alternatives to halogens as described above, leaving groups such as tosylate, mesylate and triflate may also be used.
Where the polymer according to the invention is a co-polymer, one class of co-repeat units is arylene repeat units, in particular: 1 ,4-phenylene repeat units as disclosed in J. Appl. Phys. 1996, 79, 934; fluorene repeat units as disclosed in EP 0842208, trans-indenofluorene repeat units as disclosed in, for example, Macromolecules 2000, 33(6), 2016-2020 and spirobifluorene repeat units as disclosed in, for example EP 0707020. Each of these repeat units is optionally substituted. Examples of substituents include solubilising groups such as C-ι-20 alkyl or alkoxy; electron withdrawing groups such as fluorine, nitro or cyano; and substituents for increasing glass transition temperature (Tg) of the polymer such as bulky groups, e.g. tert-butyl.
A further class of preferred co-repeat units are repeat units comprising one or two amino groups in the repeat unit backbone such as co-repeat units comprising triarylamine groups, in particular repeat units of formulae 1-6:
Figure imgf000009_0001
Figure imgf000009_0002
X and Y may be the same or different and are substituent groups. A, B, C and D may be the same or different and are substituent groups. It is preferred that one or more of X, Y, A, B, C and D is independently selected from the group consisting of alkyl, aryl, perfluoroalkyl, thioalkyl, cyano, alkoxy, heteroaryl, alkylaryl and arylalkyl groups. One or more of X, Y, A, B, C and D also may be hydrogen. It is preferred that one or more of X, Y, A, B, C and D is independently an unsubstituted, isobutyl group, an n-alkyl, an n-alkoxy or a trifluoromethyl group because they are suitable for helping to select the HOMO level and/or for improving solubility of the polymer.
Use of trifluoromethyl groups in repeat units of this type is disclosed in WO 01/66618.
A yet further class of co-repeat units include heteroaryl repeat units such as optionally substituted 2,5-thienyl, pyridyl, diazine, triazine, azole, diazole, triazole, oxazole or oxadiazole; or optionally substituted units of formulae 7-19:
Figure imgf000009_0003
Figure imgf000010_0001
Figure imgf000010_0002
10 11
Figure imgf000010_0003
12 13
Figure imgf000010_0004
14 15
Figure imgf000010_0005
16 17
Figure imgf000011_0001
18
Figure imgf000011_0002
19 wherein R5 and R6 are the same or different and are each independently a substituent group. Preferably, one or more of R5 or R6 may be selected from hydrogen, alkyl, aryl, perfluoroalkyl, thioalkyl, cyano, alkoxy, heteroaryl, alkylaryl, or arylalkyl. These groups are preferred for the same reasons as discussed in relation to X, Y, A, B, C and D above. Preferably, for practical reasons, R5 and R6 are the same.
When used in an OLED, polymers according to the invention possess at least one of hole transporting, electron transporting and emissive properties. Where the polymer has more than one of these properties, different properties may be provided by different segments of a block co-polymer, in particular segments of the polymer backbone as described in WO 00/55927 or pendant groups as described in WO 02/26859. Alternatively, if the polymer of the invention has only one or two of the properties of hole transport, electron transport and emission, it may be blended with one or more further polymers having the remaining required property or properties as described in WO 99/48160.
Polymers according to the invention may be used as active materials in any of the aforementioned optical devices, in particular electroluminescent devices and photovoltaic devices (i.e. photodetectors or photocells). Such optical devices comprise a substrate carrying the polymer located between a positive charge carrying electrode and a negative charge carrying electrode. In forming these devices, the polymer may be deposited from solution by any one of a range of techniques including in particular techniques such as spin-coating, dip-coating, inkjet printing as disclosed in EP 0880303, laser transfer as described in EP 0851714, flexographic printing, screen printing and doctor blade coating. Optical devices tend to be sensitive to moisture and oxygen. Accordingly, the substrate of the device preferably has good barrier properties for prevention of ingress of moisture and oxygen into the device. The substrate is commonly glass, however alternative substrates may be used, in particular where flexibility of the device is desirable. For example, the substrate may comprise a plastic as in US 6268695 which discloses a substrate of alternating plastic and barrier layers or a laminate of thin glass and plastic as disclosed in EP 0949850.
Although not essential, the presence of a layer of organic hole injection material over the anode is desirable as it assists hole injection from the anode into the layer or layers of semiconducting polymer. Examples of organic hole injection materials include PEDT / PSS as disclosed in EP 0901176 and EP 0947123, or polyaniline as disclosed in US 5723873 and US 5798170.
The cathode is selected in order that electrons are efficiently injected into the device and as such may comprise a single conductive material such as a layer of aluminium. Alternatively, it may comprise a plurality of metals, for example a bilayer of calcium and aluminium as disclosed in WO 98/10621 , or a thin layer of dielectric material such as lithium fluoride to assist electron injection as disclosed in, for example, WO 00/48258.
The device is preferably encapsulated with an encapsulant to prevent ingress of moisture and oxygen. Suitable encapsulants include a sheet of glass, films having suitable barrier properties such as alternating stacks of polymer and dielectric as disclosed in, for example, WO 01/81649 or an airtight container as disclosed in, for example, WO 01/19142.
In a practical optoelectronic device, at least one of the electrodes is semi-transparent in order that light may be absorbed (in the case of a photoresponsive device) or emitted (in the case of a PLED). Where the anode is transparent, it typically comprises indium tin oxide. Examples of transparent cathodes are disclosed in, for example, GB 2348316. Where the polymer of the invention is used in a switching device such as a field effect transistor, it will be appreciated that all of the electrodes may be opaque.
The PLED may be a passive matrix or active matrix device.
Examples Monomer Example
A monomer according to the invention was prepared in accordance with the scheme set out below:
Figure imgf000013_0001
5% w/v Pd/C, ■ ■ toluene reflux 4.5h
Figure imgf000013_0002
Figure imgf000013_0003
Monomer 1
Synthesis of Diene, St1.
Figure imgf000013_0004
1 ,4-Diphenyl-1 ,3-butadiene (500g, 2.42 moles) and dimethylacetylenedicarboxylate (378g, 2.66 moles) were charged to a 2L vessel. Toluene (750ml) was added and the mixture heated to reflux (oil bath temperature 145°C, diene dissolved > 90°C). The reaction was refluxed for 20 h (overnight) before being cooled to room temperature. Evaporation of the toluene afforded a yellow/brown solid, which was recrystallised from 2-propanol to give 780g, 92.5% yield of the desired product as a white solid. GC-MS gave a single peak m/z 348, HPLC 99.3%;1H NMR 3.54 (6H, s, 2 x CH3), 4.47 (2H, s), 5.77 (2H, S), 7.24-7.34 (10H, m).
Synthesis of Terphenyl Cis-dimethylester, St2.
Figure imgf000014_0001
To a toluene (100ml) solution of the diene (stage 1 product, 10g, 28.7 mmol) was added palladium 10wt.% on activated carbon (1.5g, 10% wt). The reaction was refluxed (oil bath 130°C) for 20 h (overnight). The reaction was cooled slightly (80°C) and diluted with toluene (100ml) before hot filtering through a pad of celite filter agent. The filter cake was washed with a further 500ml hot toluene to remove all of the product. Cooling of the filtrate crystallised the desired product as a white solid 7.75g, 78%. GC-MS >95%, m/z 346 ; 1H NMR 3.62 (6H, s, 2 x CH3), 7.36-7.45 (10H, m), 7.52 (2H, s).
Synthesis of Terphenyl Cis diol, St3, St3B.
Figure imgf000014_0002
A solution of diester (10g, 17.56 mmol) in dichloromethane (130 mL) was added dropwise over 1 hour into a solution of diisobutyl aluminiumhydride (1 M in hexane). After 2 h of stirring at room temperature the reaction was quenched, pouring the reaction mixture into a saturated solution of ammonium chloride. The desired product was extracted into dichloromethane (20mL MeOH added). The organic layer was dried (MgSO4) and evaporated under vacuum affording 6.45 g (77% yield) of desired product. GC-MS confirmed 90% conversion to the diol and 10% of starting material remaining. 1H NMR 2.925 (2H, OH), 4.78 (4H, s, CH2OH), 7.34-7.46 (12H).
Synthesis of Cis indenofluorene, St5.
Figure imgf000014_0003
The white dibenzylic alcohol (2.65g, 9.1 mmol) was added to polyphosphoric acid (12g) and heated to 180°C. Once at temperature the PPA became liquid and the white powder turned yellow. The reaction mixture was cooled to room temperature and then treated with a 10% solution of NaOH. 2.213g (95% yield) of cis indenofluorene precipitated out as a grey/white solid; GC-MS indicated 98% of desired material and 2% of mono cyclised (St3B); H NMR 3.95 (4H, S, CH2x2), 7.31 (2H, t, J 7.2), 7.39 ( 2H, 7.2), 7.59 (2H, d, J 8.0), 7.82 (2H, s), 7.83 (2H, d, J 7.2); 13C NMR 35.738, 118.954, 120.167, 125.374, 126.746, 127.089, 139.593, 141.057, 142.307, 143.306.
Synthesis of St5.
Figure imgf000015_0001
To a cooled (-78°C) solution of cis indenofluorene (2 g, 7.9 mmol) in THF (120 mL) was added BuLi (2.5M, 17.38 mmol). After addition was complete, the reaction mixture was left to stir at -78°C for a further 2 h and then left to warm to room temperature. The reaction mixture was then re-cooled to -78°C and octyl bromide (3.26 mL, 18.96 mmol) added. The reaction mixture was allowed to room temperature over night and the whole lithiation and alkylation process repeated. The reaction was poured onto a mixture of petroleum ether-Et2O and washed with H2O. The organic layer was isolated, dried (MgSO ) and the excess octyl bromide/octane removed using Kugel distillation (40°C, 10"2 mbar). GC-MS indicated 81% dialkyl and 15% trialkylated product. The isolated mixed product (1.34g) was put through the lithiation-alkylation procedure again. To afford the desired tetra-alkylated product the whole experimental procedure was repeated using a further 5.2 equivalents of BuLi and 6 equivalent of octyl bromide. 1.069g of desired material was isolated and used crude in the next stage. 1H NMR 0.4-1.4 (30H), 2.2 (2H, td, J 4.4, 12.8), 2.4 (2H, td, J 4.4, 12.8), 7.26-7.33 (6H, m), 7.70 (2H, d, J 7.6), 7.74 (2H, s); 13C NMR 14.29, 22.84, 24.30, 29.68, 29.82, 30.32, 32.05, 40.88, 58.24, 119.05, 119.130, 121.78, 126.79, 127.24, 141.16, 142.30, 146.49, 150.98.
Synthesis of Monomer 1
Figure imgf000015_0002
To a 0 °C solution of St5 (1.069g), iodine (catalytic) in CH2CI2 (25 mL) was added a solution of Na2CO3 (0.387 g) in H2O (6 mL). After stirring for 5 minutes, bromine (183 μL) was added dropwise. The reaction mixture was left to stir overnight. The reaction was treated with a 10% sodium thiosulphate solution (20 mL). The organic layer was removed, washed with water (2 x 20 mL). The organic layer was separated from the aqueous, dried (MgSO4) and evaporated under vacuum. Column chromatography elute hexane gave 450mg of mono and di brominated product; confirmed by GC-MS. This mixture was subjected again to bromination. Indenofluorene repeat units carrying substituents on the central phenyl ring of the repeat unit were prepared in accordance with the following scheme:
Figure imgf000016_0001
e02C C02Me
Dibal-H
Figure imgf000016_0002
Figure imgf000016_0003
Polyphosphoric acid Heat
Figure imgf000016_0004
In addition to providing substituents on the central ring, the central ring of the monomer may comprise a fused ring, as illustrated below wherein the central ring is a benzothiadiazole. The first step may be performed by Suzuki coupling of the starting dibromo compound with two equivalents of a phenyl boronic ester.
Figure imgf000016_0005
Figure imgf000016_0006
Finally, cis-indenofluorene monomers carrying different substituents R1-R4 were prepared in accordance with the following scheme. As shown in the scheme, asymmetric substitution at the 11 and 12 positions was accomplished by forming an amide as described in Weinreb, Tetrahedron Letters 22(39), 3815-3818, 1981; reacting the amide with one equivalent of a first alkyl, aryl or heteroaryl lithium to form a ketone; and reacting the ketone with one equivalent of a second alkyl, aryl or heteroaryl lithium that is different from the first alkyl, aryl or heteroaryl lithium.
Figure imgf000017_0001
5% /v Pd/C, toluene reflux 4.5h
Figure imgf000017_0002
Alkyl Li aryl Li
Route B or heteroaryl Li
-100- -78°C
Figure imgf000017_0003
Figure imgf000017_0004
Route A: R ,1-4 are equivalent
Route B: R " may or may not be equivalent
Polymer Examples
Polymers according to the invention were prepared in accordance with the method set forth in WO 00/53656 by polymerisation of the monomers shown below. Boronic esters were derived from Monomer 1 in accordance with the method set forth in WO 00/53656.
Figure imgf000017_0005
Figure imgf000017_0006
Polymer 2
Figure imgf000018_0001
Figure imgf000018_0002
Polymer 3
Figure imgf000018_0003
Polymer 5
Figure imgf000019_0001
co -3- For the purpose of comparison, polymers were prepared as per polymer 5 above except that the following trans-indenofluorene monomers were used in place of the cis-indenofluorene repeat unit according to the invention:
Polymer 6:
Figure imgf000020_0002
Figure imgf000020_0001
Figure imgf000020_0003
Device Example
Onto indium tin oxide supported on a glass substrate (available from Applied Films, Colorado, USA) was deposited a film of poly(ethylene dioxythiophene) (PEDT / PSS), available from Bayer ® as Baytron P ®, by spin coating. The electroluminescent layer was formed over the layer of PEDT/PSS by spin coating from xyiene solution comprising polymer 5 according to the invention. A bilayer cathode of calcium / aluminium was deposited over the electroluminescent layer and the device was encapsulated using an airtight metal enclosure containing a desiccant available from Saes Getters SpA.
For the purpose of comparison, identical devices were prepared except that comparative polymers 6, 7, 8 and 9 were used in place of polymer 5. Device performance for the devices prepared from these materials is summarised in Table 1 below. Table 1
Figure imgf000021_0001
2 Colour shift measured at half-life and taking into account the lateral CIEx and CIEy shift from the starting colours, measured as the square root of:
(CIEx colour shift)2 + (CIEy colour shift)2
3 Change in drive voltage during the half life of the device.
4 Burn-in refers to an initial fall in luminance when the device is driven followed by a more gradual decay in luminance.
As can be seen from Table 1 , polymer 5 according to the invention provides the best performance across the range of parameters measured. For most parameters, polymer 5 is superior to the comparative polymers; for the remaining parameters, there is no instance where the performance of polymer 5 is significantly poorer than any of the comparative polymers.
Although the present invention has been described in terms of specific exemplary embodiments, it will be appreciated that various modifications, alterations and / or combinations of features disclosed herein will be apparent to those skilled in the art without departing from the spirit and scope of the invention as set forth in the following claims.

Claims

Claims
1. An oligomer or polymer comprising an optionally substituted first repeat unit of formula (Ir):
Figure imgf000022_0001
(Ir) wherein R\ R2, R3 and R4, which may be the same or different, are independently selected from hydrogen or a substituent and two or more of R1, R2, R3 and R4 may be linked to form a ring.
2. An oligomer or polymer according to claim 1 wherein each R1, R2, R3 and R4 is independently selected from the group consisting of optionally substituted alkyl, alkoxy, aryl, or heteroaryl.
3. An oligomer or polymer according to claim 1 or 2 wherein at least one of R\ R2, R3 and R4 is optionally substituted phenyl or optionally substituted C1-20 alkyl.
4. An oligomer or polymer according to claim 3 wherein at least one R1, R2, R3 and R4 is different from at least one other of R\ R2, R3 and R4.
5. An oligomer or polymer according to any preceding claim wherein the first repeat unit is linked through the 2- and 9-positions.
6. An oligomer or polymer according to any preceding claim wherein the oligomer or polymer comprises a second repeat unit.
7. An oligomer or polymer according to claim 6 wherein the second repeat unit is selected from optionally substituted aryl, heteroaryl and triarylamine repeat units.
8. An optionally substituted monomer of formula (Im):
Figure imgf000022_0002
(Im) wherein R1, R2, R3 and R4, which may be the same or different, are independently selected from hydrogen or a substituent and two or more of R1, R2, R3 and R4 may be linked to form a ring; and each P represents a polymerisable group.
9. A monomer according to claim 8 wherein each P represents a leaving group capable of participating in a polycondensation mediated by a metal of variable oxidation state.
10. A monomer according to claim 9 wherein each P is independently selected from halogen; a moiety of formula -O-SO2-Z wherein Z is selected from the group consisting of optionally substituted alkyl and aryl; or a reactive boron group selected from a boronic acid, a boronic ester or a borane.
11. A process for preparing an oligomer or polymer comprising the step of oligomerising or polymerising a monomer according to any one of claims 8- 10.
12. A process for preparing an oligomer or polymer according to claim 11 as dependent on claim 10 wherein each P is independently a halogen or a moiety of formula -O-SO2-Z, and the monomer of formula (Im) is oligomerised or polymerised in the presence of a nickel complex catalyst.
13. A process for preparing a polymer according to claim 11 as dependent on claim 10 wherein the monomer of formula (Im) is oligomerised or polymerised with a second aromatic monomer in the presence of a palladium complex catalyst and a base and a. each P is the same or different and comprises a reactive boronic group and the second monomer comprises two reactive groups independently selected from halogen and a moiety of formula -O-SO2-Z, or b. each P independently comprises a halogen or a moiety of formula -O-SO2-Z and the second monomer comprises two reactive boron groups which are the same or different
14. A process for preparing an oligomer or polymer according to claim 11 as dependent on claim 10 wherein one P is a reactive boron group and the other P is a halogen or a moiety of formula -O-SO2-Z.
15. An optical device comprising an oligomer or polymer according to any one of claims 1-7.
16. An optical device according to claim 15 wherein the oligomer or polymer is located between a first electrode for injection of charge carriers of a first type and a second electrode for injection of charge carriers of a second type.
17. A switching device comprising an oligomer or polymer according to any one of claims 1-7
18. A field effect transistor comprising an insulator having a first side and a second side; a gate electrode located on the first side of the insulator; an oligomer or polymer according to any one of claims 1 -7 located on the second side of the insulator; and a drain electrode and a source electrode located on the oligomer or polymer.
19. An integrated circuit comprising a field effect transistor according to claim 18.
20. A method of forming an optionally substituted compound of formula (I):
Figure imgf000024_0001
(I) comprising the step of eliminating LG-H from an optionally substituted compound of formula (Ip):
Figure imgf000024_0002
P) wherein each LG is the same or different and represents a leaving group.
21. A method according to claim 20 wherein each LG is hydroxy.
22. A method according to claim 20 or 21 wherein the elimination is performed in the presence of an acid.
23. A method according to claim 21 wherein the acid is polyphosphoric acid.
24. A method according to any one of claims 20-23 comprising the further step of providing a polymerisable group P on each of the outer phenyl rings of the compound of formula (I) or (Ip).
PCT/EP2004/006721 2003-06-23 2004-06-22 Polymer WO2004113412A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04740151A EP1639027B1 (en) 2003-06-23 2004-06-22 Polymers
JP2006516017A JP5198767B2 (en) 2003-06-23 2004-06-22 polymer
DE602004020343T DE602004020343D1 (en) 2003-06-23 2004-06-22 POLYMERS
KR1020057024580A KR101115860B1 (en) 2003-06-23 2004-06-22 Polymer
US10/560,861 US7754841B2 (en) 2003-06-23 2004-06-22 Polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20030014042 EP1491568A1 (en) 2003-06-23 2003-06-23 Semiconductive Polymers
EP03014042.0 2003-06-23

Publications (2)

Publication Number Publication Date
WO2004113412A2 true WO2004113412A2 (en) 2004-12-29
WO2004113412A3 WO2004113412A3 (en) 2005-04-21

Family

ID=33395845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/006721 WO2004113412A2 (en) 2003-06-23 2004-06-22 Polymer

Country Status (7)

Country Link
US (1) US7754841B2 (en)
EP (2) EP1491568A1 (en)
JP (1) JP5198767B2 (en)
KR (1) KR101115860B1 (en)
CN (1) CN1768090A (en)
DE (1) DE602004020343D1 (en)
WO (1) WO2004113412A2 (en)

Cited By (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022845A1 (en) 2005-08-26 2007-03-01 Merck Patent Gmbh Novel materials for organic electroluminescent devices
WO2007085377A2 (en) 2006-01-26 2007-08-02 Merck Patent Gmbh Electroluminescent materials and their use
DE102007024850A1 (en) 2007-05-29 2008-12-04 Merck Patent Gmbh New materials for organic electroluminescent devices
JP2009519910A (en) * 2005-12-17 2009-05-21 メルク パテント ゲーエムベーハー Indenofluorene replacement method
DE112007000699T5 (en) 2006-05-12 2009-06-04 Merck Patent Gmbh Indenofluorene polymer-based organic semiconductor materials
DE102008015526A1 (en) 2008-03-25 2009-10-01 Merck Patent Gmbh metal complexes
DE102008017591A1 (en) 2008-04-07 2009-10-08 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008018670A1 (en) 2008-04-14 2009-10-15 Merck Patent Gmbh New materials for organic electroluminescent devices
JP2009542735A (en) * 2006-07-11 2009-12-03 メルク パテント ゲーエムベーハー Novel materials for organic electroluminescent devices
DE102008027005A1 (en) 2008-06-05 2009-12-10 Merck Patent Gmbh Organic electronic device containing metal complexes
JP2009544772A (en) * 2006-07-21 2009-12-17 メルク パテント ゲーエムベーハー Copolymer of indenofluorene and thiophene
DE102008033943A1 (en) 2008-07-18 2010-01-21 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008050841A1 (en) 2008-10-08 2010-04-15 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008054141A1 (en) 2008-10-31 2010-05-06 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008056688A1 (en) 2008-11-11 2010-05-12 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102008057051A1 (en) 2008-11-13 2010-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102008057050A1 (en) 2008-11-13 2010-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009005288A1 (en) 2009-01-20 2010-07-22 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009005289A1 (en) 2009-01-20 2010-07-22 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2010083869A2 (en) 2009-01-23 2010-07-29 Merck Patent Gmbh Materials for organic electroluminescence devices
DE102009009277A1 (en) 2009-02-17 2010-08-19 Merck Patent Gmbh Organic electronic device
DE102009010714A1 (en) 2009-02-27 2010-09-02 Merck Patent Gmbh Crosslinkable and crosslinked polymers, process for their preparation and their use
WO2010099852A1 (en) 2009-03-02 2010-09-10 Merck Patent Gmbh Metal complexes having azaborol ligands and electronic device having the same
WO2010102709A1 (en) 2009-03-13 2010-09-16 Merck Patent Gmbh Materials for organic electroluminescence devices
US7816531B2 (en) 2004-07-16 2010-10-19 Merck Patent Gmbh Metal complexes
EP2248869A2 (en) 2005-09-12 2010-11-10 Merck Patent GmbH Compounds for organic electronic devices
WO2010149259A2 (en) 2009-06-22 2010-12-29 Merck Patent Gmbh Conducting formulation
DE102009031021A1 (en) 2009-06-30 2011-01-05 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009034194A1 (en) 2009-07-22 2011-01-27 Merck Patent Gmbh Materials for electronic devices
WO2011012212A1 (en) 2009-07-27 2011-02-03 Merck Patent Gmbh Novel materials for organic electroluminescent devices
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
DE102009042693A1 (en) 2009-09-23 2011-03-24 Merck Patent Gmbh Materials for electronic devices
DE102009048791A1 (en) 2009-10-08 2011-04-14 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009053191A1 (en) 2009-11-06 2011-05-12 Merck Patent Gmbh Materials for electronic devices
DE102009052428A1 (en) 2009-11-10 2011-05-12 Merck Patent Gmbh Connection for electronic devices
DE102009033371A1 (en) 2009-07-16 2011-05-12 Merck Patent Gmbh Materials for electronic devices
DE102009053382A1 (en) 2009-11-14 2011-05-19 Merck Patent Gmbh Materials for electronic devices
DE102009053644A1 (en) 2009-11-17 2011-05-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2011060867A1 (en) 2009-11-18 2011-05-26 Merck Patent Gmbh Nitrogen-containing condensed heterocyclic compounds for oleds
WO2011076324A1 (en) 2009-12-23 2011-06-30 Merck Patent Gmbh Compositions comprising organic semiconducting compounds
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
DE102010004803A1 (en) 2010-01-16 2011-07-21 Merck Patent GmbH, 64293 Materials for organic electroluminescent devices
WO2011088877A1 (en) 2010-01-25 2011-07-28 Merck Patent Gmbh Compounds for electronic devices
US8003227B2 (en) 2003-11-27 2011-08-23 Merck Patent Gmbh Organic electroluminescent element
DE102010009193A1 (en) 2010-02-24 2011-08-25 Merck Patent GmbH, 64293 Fluorine-fluorine associates
DE102010009903A1 (en) 2010-03-02 2011-09-08 Merck Patent Gmbh Connections for electronic devices
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
DE102010012738A1 (en) 2010-03-25 2011-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2011116857A1 (en) 2010-03-23 2011-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010014933A1 (en) 2010-04-14 2011-10-20 Merck Patent Gmbh Materials for electronic devices
WO2011128035A1 (en) 2010-04-12 2011-10-20 Merck Patent Gmbh Composition and method for preparation of organic electronic devices
WO2011137951A1 (en) 2010-05-04 2011-11-10 Merck Patent Gmbh Organic electroluminescence devices
WO2011147521A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Down conversion
WO2011147523A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Formulation and method for preparation of organic electronic devices
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
DE102009022858A1 (en) 2009-05-27 2011-12-15 Merck Patent Gmbh Organic electroluminescent devices
DE102010024542A1 (en) 2010-06-22 2011-12-22 Merck Patent Gmbh Materials for electronic devices
DE102010024335A1 (en) 2010-06-18 2011-12-22 Merck Patent Gmbh Connections for electronic devices
DE102010024897A1 (en) 2010-06-24 2011-12-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2012016630A1 (en) 2010-08-05 2012-02-09 Merck Patent Gmbh Materials for electronic devices
WO2012048780A1 (en) 2010-10-15 2012-04-19 Merck Patent Gmbh Compounds for electronic devices
DE102010048608A1 (en) 2010-10-15 2012-04-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2012095143A1 (en) 2011-01-13 2012-07-19 Merck Patent Gmbh Compounds for organic electroluminescent devices
DE102012000064A1 (en) 2011-01-21 2012-07-26 Merck Patent Gmbh New heterocyclic compound excluding 9,10-dioxa-4b-aza-9a-phospha-indeno(1,2-a)indene and 9,10-dioxa-4b-aza-indeno(1,2-a)indene, useful e.g. as matrix material for fluorescent or phosphorescent emitters of electronic devices
EP2482159A2 (en) 2011-01-28 2012-08-01 Honeywell International, Inc. Methods and reconfigurable systems to optimize the performance of a condition based health maintenance system
DE102011010841A1 (en) 2011-02-10 2012-08-16 Merck Patent Gmbh (1,3) -dioxane-5-one compounds
WO2012110182A1 (en) 2011-02-17 2012-08-23 Merck Patent Gmbh Compounds for electronic devices
WO2012139692A1 (en) 2011-04-13 2012-10-18 Merck Patent Gmbh Materials for electronic devices
WO2012139693A1 (en) 2011-04-13 2012-10-18 Merck Patent Gmbh Compounds for electronic devices
WO2012143079A1 (en) 2011-04-18 2012-10-26 Merck Patent Gmbh Compounds for electronic devices
WO2012149999A1 (en) 2011-05-05 2012-11-08 Merck Patent Gmbh Compounds for electronic devices
WO2012150001A1 (en) 2011-05-05 2012-11-08 Merck Patent Gmbh Compounds for electronic devices
US8329316B2 (en) * 2006-03-10 2012-12-11 Lg Chem, Ltd. Tetraphenylnaphalene derivatives and organic light emitting diode using the same
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
WO2013017189A1 (en) 2011-07-29 2013-02-07 Merck Patent Gmbh Compounds for electronic devices
WO2013017192A1 (en) 2011-08-03 2013-02-07 Merck Patent Gmbh Materials for electronic devices
DE102011116165A1 (en) 2011-10-14 2013-04-18 Merck Patent Gmbh Benzodioxepin-3-one compounds
WO2013060418A1 (en) 2011-10-27 2013-05-02 Merck Patent Gmbh Materials for electronic devices
WO2013083216A1 (en) 2011-11-17 2013-06-13 Merck Patent Gmbh Spiro dihydroacridine derivatives and the use thereof as materials for organic electroluminescence devices
DE102011121022A1 (en) 2011-12-13 2013-06-13 Merck Patent Gmbh Organic sensitizers for up-conversion
WO2013087142A1 (en) 2011-12-12 2013-06-20 Merck Patent Gmbh Compounds for electronic devices
DE102012022880A1 (en) 2011-12-22 2013-06-27 Merck Patent Gmbh Electronic device e.g. organic integrated circuits, organic field-effect transistors, organic thin-film transistors, organic light emitting transistors, comprises an organic layer comprising substituted heteroaryl compounds
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
WO2013124029A2 (en) 2012-02-22 2013-08-29 Merck Patent Gmbh Polymers containing dibenzocycloheptene structural units
WO2013139431A1 (en) 2012-03-23 2013-09-26 Merck Patent Gmbh 9,9'-spirobixanthene derivatives for electroluminescent devices
DE102012011335A1 (en) 2012-06-06 2013-12-12 Merck Patent Gmbh Connections for Organic Electronic Devices
WO2014000860A1 (en) 2012-06-29 2014-01-03 Merck Patent Gmbh Polymers containing 2,7-pyrene structure units
WO2014008982A1 (en) 2012-07-13 2014-01-16 Merck Patent Gmbh Metal complexes
WO2014015935A2 (en) 2012-07-23 2014-01-30 Merck Patent Gmbh Compounds and organic electronic devices
WO2014015938A1 (en) 2012-07-23 2014-01-30 Merck Patent Gmbh Derivatives of 2-diarylaminofluorene and organic electronic compounds containing them
WO2014015937A1 (en) 2012-07-23 2014-01-30 Merck Patent Gmbh Compounds and organic electroluminescent devices
WO2014023377A2 (en) 2012-08-07 2014-02-13 Merck Patent Gmbh Metal complexes
US8679644B2 (en) 2004-04-26 2014-03-25 Merck Patent Gmbh Electroluminescent polymers containing planar arylamine units, the preparation and use thereof
WO2014044347A1 (en) 2012-09-20 2014-03-27 Merck Patent Gmbh Metal complexes
WO2014056573A2 (en) 2012-10-12 2014-04-17 Merck Patent Gmbh Emitter and hosts with aromatic units
WO2014082705A1 (en) 2012-11-30 2014-06-05 Merck Patent Gmbh Electronic device
WO2014106524A2 (en) 2013-01-03 2014-07-10 Merck Patent Gmbh Materials for electronic devices
WO2014106522A1 (en) 2013-01-03 2014-07-10 Merck Patent Gmbh Materials for electronic devices
US8865321B2 (en) 2008-11-11 2014-10-21 Merck Patent Gmbh Organic electroluminescent devices
WO2015014427A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electro-optical device and the use thereof
WO2015014429A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electroluminescence device
US9017577B2 (en) 2008-08-18 2015-04-28 Merck Patent Gmbh Indacenodithiophene and indacenodiselenophene polymers and their use as organic semiconductors
WO2015086108A1 (en) 2013-12-12 2015-06-18 Merck Patent Gmbh Materials for electronic devices
WO2015090504A2 (en) 2013-12-19 2015-06-25 Merck Patent Gmbh Heterocyclic spiro compounds
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
WO2016074755A1 (en) 2014-11-11 2016-05-19 Merck Patent Gmbh Materials for organic electroluminescent devices
US9349960B2 (en) 2009-05-29 2016-05-24 Merck Patent Gmbh Compounds and polymers which contain substituted indenofluorene derivatives as structural unit, process for the preparation thereof, and the use thereof as electronic devices and mixtures and solutions
WO2016107663A1 (en) 2014-12-30 2016-07-07 Merck Patent Gmbh Formulations and electronic devices
WO2016119992A1 (en) 2015-01-30 2016-08-04 Merck Patent Gmbh Materials for electronic devices
WO2016124304A1 (en) 2015-02-03 2016-08-11 Merck Patent Gmbh Metal complexes
WO2016155866A1 (en) 2015-03-30 2016-10-06 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
WO2016198144A1 (en) 2015-06-10 2016-12-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2016198141A1 (en) 2015-06-12 2016-12-15 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for oled formulations
WO2017012694A1 (en) 2015-07-23 2017-01-26 Merck Patent Gmbh Phenyl derivatives substituted with at least two electron acceptors and at least two electron donors for use in organic electronic devices
WO2017012687A1 (en) 2015-07-22 2017-01-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017016630A1 (en) 2015-07-30 2017-02-02 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017028940A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017036573A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Compounds for electronic devices
WO2017036572A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
WO2017097391A1 (en) 2015-12-10 2017-06-15 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
WO2017102052A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a solid solvent
WO2017133829A1 (en) 2016-02-05 2017-08-10 Merck Patent Gmbh Materials for electronic devices
WO2017140404A1 (en) 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
WO2017157983A1 (en) 2016-03-17 2017-09-21 Merck Patent Gmbh Compounds with spirobifluorene-structures
WO2017178311A1 (en) 2016-04-11 2017-10-19 Merck Patent Gmbh Heterocyclic compounds comprising dibenzofuran and/or dibenzothiophene structures
WO2017207596A1 (en) 2016-06-03 2017-12-07 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018001928A1 (en) 2016-06-28 2018-01-04 Merck Patent Gmbh Formulation of an organic functional material
WO2018001990A1 (en) 2016-06-30 2018-01-04 Merck Patent Gmbh Method for the separation of enantiomeric mixtures from metal complexes
WO2018007421A1 (en) 2016-07-08 2018-01-11 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018011186A1 (en) 2016-07-14 2018-01-18 Merck Patent Gmbh Metal complexes
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018050584A1 (en) 2016-09-14 2018-03-22 Merck Patent Gmbh Compounds with spirobifluorene-structures
WO2018050583A1 (en) 2016-09-14 2018-03-22 Merck Patent Gmbh Compounds with carbazole structures
WO2018060307A1 (en) 2016-09-30 2018-04-05 Merck Patent Gmbh Compounds with diazadibenzofurane or diazadibenzothiophene structures
WO2018060218A1 (en) 2016-09-30 2018-04-05 Merck Patent Gmbh Carbazoles with diazadibenzofurane or diazadibenzothiophene structures
WO2018069167A1 (en) 2016-10-10 2018-04-19 Merck Patent Gmbh Electronic device
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018077660A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018083053A1 (en) 2016-11-02 2018-05-11 Merck Patent Gmbh Materials for electronic devices
WO2018087020A1 (en) 2016-11-08 2018-05-17 Merck Patent Gmbh Compounds for electronic devices
WO2018087346A1 (en) 2016-11-14 2018-05-17 Merck Patent Gmbh Compounds with an acceptor and a donor group
WO2018095888A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused 2,8-diaminoindeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018095839A1 (en) 2016-11-22 2018-05-31 Merck Patent Gmbh Bridged triarylamines for electronic devices
WO2018095940A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused indeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018095381A1 (en) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 Printing ink composition, preparation method therefor, and uses thereof
WO2018099846A1 (en) 2016-11-30 2018-06-07 Merck Patent Gmbh Compounds having valerolactam structures
WO2018104195A1 (en) 2016-12-05 2018-06-14 Merck Patent Gmbh Nitrogen-containing heterocycles for use in oleds
WO2018104202A1 (en) 2016-12-06 2018-06-14 Merck Patent Gmbh Preparation process for an electronic device
WO2018108760A1 (en) 2016-12-13 2018-06-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018114883A1 (en) 2016-12-22 2018-06-28 Merck Patent Gmbh Mixtures comprising at least two organofunctional compounds
EP3345984A1 (en) 2013-12-06 2018-07-11 Merck Patent GmbH Connections and organic electronic devices
WO2018134392A1 (en) 2017-01-23 2018-07-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018138318A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2018138039A1 (en) 2017-01-25 2018-08-02 Merck Patent Gmbh Carbazole derivatives
WO2018138319A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic electroluminescence (el) element
WO2018141706A1 (en) 2017-02-02 2018-08-09 Merck Patent Gmbh Materials for electronic devices
WO2018157981A1 (en) 2017-03-02 2018-09-07 Merck Patent Gmbh Materials for organic electronic devices
WO2018166932A1 (en) 2017-03-13 2018-09-20 Merck Patent Gmbh Compounds with arylamine structures
EP3378857A1 (en) 2012-11-12 2018-09-26 Merck Patent GmbH Materials for electronic devices
WO2018189050A1 (en) 2017-04-10 2018-10-18 Merck Patent Gmbh Formulation of an organic functional material
WO2018197447A1 (en) 2017-04-25 2018-11-01 Merck Patent Gmbh Compounds for electronic devices
WO2018202603A1 (en) 2017-05-03 2018-11-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018215318A1 (en) 2017-05-22 2018-11-29 Merck Patent Gmbh Hexacyclic heteroaromatic compounds for electronic devices
WO2018234346A1 (en) 2017-06-23 2018-12-27 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019002190A1 (en) 2017-06-28 2019-01-03 Merck Patent Gmbh Materials for electronic devices
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
WO2019020654A1 (en) 2017-07-28 2019-01-31 Merck Patent Gmbh Spirobifluorene derivatives for use in electronic devices
WO2019048443A1 (en) 2017-09-08 2019-03-14 Merck Patent Gmbh Materials for electronic devices
WO2019101719A1 (en) 2017-11-23 2019-05-31 Merck Patent Gmbh Materials for electronic devices
US10323180B2 (en) 2014-12-04 2019-06-18 Guangzhou Chinaray Optoelectronic Materials Ltd. Deuterated organic compound, mixture and composition containing said compound, and organic electronic device
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
WO2019115577A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Substituted aromatic amines for use in organic electroluminescent devices
WO2019121458A1 (en) 2017-12-19 2019-06-27 Merck Patent Gmbh Heterocyclic compound for use in electronic devices
WO2019121483A1 (en) 2017-12-20 2019-06-27 Merck Patent Gmbh Heteroaromatic compounds
US10364316B2 (en) 2015-01-13 2019-07-30 Guangzhou Chinaray Optoelectronics Materials Ltd. Conjugated polymer containing ethynyl crosslinking group, mixture, formulation, organic electronic device containing the same and application therof
WO2019162483A1 (en) 2018-02-26 2019-08-29 Merck Patent Gmbh Formulation of an organic functional material
WO2019175149A1 (en) 2018-03-16 2019-09-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019238782A1 (en) 2018-06-15 2019-12-19 Merck Patent Gmbh Formulation of an organic functional material
US10573827B2 (en) 2014-12-11 2020-02-25 Guangzhou Chinaray Optoelectronics Materials Ltd. Organic metal complex, and polymer, mixture, composition and organic electronic device containing same and use thereof
WO2020064666A1 (en) 2018-09-27 2020-04-02 Merck Patent Gmbh Compounds that can be used in an organic electronic device as active compounds
WO2020064662A2 (en) 2018-09-27 2020-04-02 Merck Patent Gmbh Method for producing sterically hindered, nitrogen-containing heteroaromatic compounds
WO2020094539A1 (en) 2018-11-05 2020-05-14 Merck Patent Gmbh Compounds that can be used in an organic electronic device
WO2020094538A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2020099349A1 (en) 2018-11-14 2020-05-22 Merck Patent Gmbh Compounds that can be used for producing an organic electronic device
WO2021078831A1 (en) 2019-10-25 2021-04-29 Merck Patent Gmbh Compounds that can be used in an organic electronic device
WO2021078710A1 (en) 2019-10-22 2021-04-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021122740A1 (en) 2019-12-19 2021-06-24 Merck Patent Gmbh Polycyclic compounds for organic electroluminescent devices
WO2021122538A1 (en) 2019-12-18 2021-06-24 Merck Patent Gmbh Aromatic compounds for organic electroluminescent devices
WO2021151922A1 (en) 2020-01-29 2021-08-05 Merck Patent Gmbh Benzimidazole derivatives
WO2021170522A1 (en) 2020-02-25 2021-09-02 Merck Patent Gmbh Use of heterocyclic compounds in an organic electronic device
WO2021175706A1 (en) 2020-03-02 2021-09-10 Merck Patent Gmbh Use of sulfone compounds in an organic electronic device
WO2021185712A1 (en) 2020-03-17 2021-09-23 Merck Patent Gmbh Heteroaromatic compounds for organic electroluminescent devices
WO2021185829A1 (en) 2020-03-17 2021-09-23 Merck Patent Gmbh Heterocyclic compounds for organic electroluminescent devices
WO2021191183A1 (en) 2020-03-26 2021-09-30 Merck Patent Gmbh Cyclic compounds for organic electroluminescent devices
WO2021204646A1 (en) 2020-04-06 2021-10-14 Merck Patent Gmbh Polycyclic compounds for organic electroluminescent devices
WO2021213918A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Formulation of an organic functional material
WO2021213917A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Emulsions comprising organic functional materials
EP3904361A2 (en) 2013-10-02 2021-11-03 Merck Patent GmbH Boron containing compounds
WO2021254984A1 (en) 2020-06-18 2021-12-23 Merck Patent Gmbh Indenoazanaphthalenes
WO2022002771A1 (en) 2020-06-29 2022-01-06 Merck Patent Gmbh Heterocyclic compounds for organic electroluminescent devices
WO2022002772A1 (en) 2020-06-29 2022-01-06 Merck Patent Gmbh Heteroaromatic compounds for organic electroluminescent devices
WO2022069422A1 (en) 2020-09-30 2022-04-07 Merck Patent Gmbh Compounds for structuring functional layers of organic electroluminescent devices
WO2022069421A1 (en) 2020-09-30 2022-04-07 Merck Patent Gmbh Compounds that can be used for structuring functional layers of organic electroluminescent devices
WO2022079068A1 (en) 2020-10-16 2022-04-21 Merck Patent Gmbh Heterocyclic compounds for organic electroluminescent devices
WO2022079067A1 (en) 2020-10-16 2022-04-21 Merck Patent Gmbh Compounds comprising heteroatoms for organic electroluminescent devices
WO2022122607A1 (en) 2020-12-08 2022-06-16 Merck Patent Gmbh An ink system and a method for inkjet printing
WO2022129113A1 (en) 2020-12-18 2022-06-23 Merck Patent Gmbh Nitrogenous heteroaromatic compounds for organic electroluminescent devices
WO2022129114A1 (en) 2020-12-18 2022-06-23 Merck Patent Gmbh Nitrogenous compounds for organic electroluminescent devices
WO2022129116A1 (en) 2020-12-18 2022-06-23 Merck Patent Gmbh Indolo[3.2.1-jk]carbazole-6-carbonitrile derivatives as blue fluorescent emitters for use in oleds
WO2022223675A1 (en) 2021-04-23 2022-10-27 Merck Patent Gmbh Formulation of an organic functional material
WO2022229234A1 (en) 2021-04-30 2022-11-03 Merck Patent Gmbh Nitrogenous heterocyclic compounds for organic electroluminescent devices
US11555128B2 (en) 2015-11-12 2023-01-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing composition, electronic device comprising same and preparation method for functional material thin film
WO2023012084A1 (en) 2021-08-02 2023-02-09 Merck Patent Gmbh A printing method by combining inks
WO2023041454A1 (en) 2021-09-14 2023-03-23 Merck Patent Gmbh Boronic heterocyclic compounds for organic electroluminescent devices
WO2023057327A1 (en) 2021-10-05 2023-04-13 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2023072799A1 (en) 2021-10-27 2023-05-04 Merck Patent Gmbh Boronic and nitrogenous heterocyclic compounds for organic electroluminescent devices
WO2023099543A1 (en) 2021-11-30 2023-06-08 Merck Patent Gmbh Compounds having fluorene structures
EP4236652A2 (en) 2015-07-29 2023-08-30 Merck Patent GmbH Materials for organic electroluminescent devices
WO2023161167A1 (en) 2022-02-23 2023-08-31 Merck Patent Gmbh Nitrogenous heterocycles for organic electroluminescent devices
WO2023161168A1 (en) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatic hetreocycles for organic electroluminescent devices
WO2023213837A1 (en) 2022-05-06 2023-11-09 Merck Patent Gmbh Cyclic compounds for organic electroluminescent devices
WO2023237458A1 (en) 2022-06-07 2023-12-14 Merck Patent Gmbh Method of printing a functional layer of an electronic device by combining inks
WO2023247345A1 (en) 2022-06-20 2023-12-28 Merck Patent Gmbh Heterocycles for photoelectric devices
WO2023247338A1 (en) 2022-06-20 2023-12-28 Merck Patent Gmbh Organic heterocycles for photoelectric devices
WO2024061942A1 (en) 2022-09-22 2024-03-28 Merck Patent Gmbh Nitrogen-containing compounds for organic electroluminescent devices
WO2024061948A1 (en) 2022-09-22 2024-03-28 Merck Patent Gmbh Nitrogen-containing hetreocycles for organic electroluminescent devices

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200530373A (en) * 2003-12-12 2005-09-16 Sumitomo Chemical Co Polymer and light-emitting element using said polymer
JP4792738B2 (en) * 2003-12-12 2011-10-12 住友化学株式会社 Polymer compound and polymer light emitting device using the same
JP4904752B2 (en) * 2004-11-24 2012-03-28 住友化学株式会社 Polymer compound and polymer light emitting device using the same
US8334058B2 (en) 2005-04-14 2012-12-18 Merck Patent Gmbh Compounds for organic electronic devices
KR100828173B1 (en) * 2005-11-22 2008-05-08 (주)그라쎌 Organic Electroluminescent Compounds and Display Device using The Same
KR101089477B1 (en) * 2006-09-05 2011-12-07 쇼와 덴코 가부시키가이샤 Organic electroluminescence element and use thereof
JP5315998B2 (en) * 2007-07-27 2013-10-16 東レ株式会社 Light emitting device material and light emitting device
DE102008045663A1 (en) 2008-09-03 2010-03-04 Merck Patent Gmbh Fluorine-bridged associates for opto-electronic applications
DE102008056391B4 (en) * 2008-09-26 2021-04-01 Osram Oled Gmbh Organic electronic component and process for its manufacture
DE102009030848A1 (en) * 2009-06-26 2011-02-03 Merck Patent Gmbh Polymers comprising structural units which have alkylalkoxy groups, blends containing these polymers and optoelectronic devices containing these polymers and blends
US20120232238A1 (en) * 2009-08-03 2012-09-13 The Johns Hopkins University Ladder-type oligo-p-phenylene-containing copolymers with high open-circuit voltages and ambient photovoltaic activity
US8691931B2 (en) * 2009-09-04 2014-04-08 Plextronics, Inc. Organic electronic devices and polymers, including photovoltaic cells and diketone-based and diketopyrrolopyrrole-based polymers
DE102010033080A1 (en) 2010-08-02 2012-02-02 Merck Patent Gmbh Polymers with structural units that have electron transport properties
US20120049168A1 (en) 2010-08-31 2012-03-01 Universal Display Corporation Cross-Linked Charge Transport Layer Containing an Additive Compound
JP6370800B2 (en) * 2012-11-23 2018-08-08 メルク パテント ゲーエムベーハー Materials for electronic devices
WO2018009861A1 (en) 2016-07-08 2018-01-11 Biolegend Substituted polyfluorene compounds
EP3658648B1 (en) * 2017-07-28 2021-10-27 BioLegend, Inc. Conjugated polymers and methods of use
WO2019215059A1 (en) 2018-05-09 2019-11-14 Merck Patent Gmbh Semiconducting nanoparticle
WO2019224134A1 (en) 2018-05-23 2019-11-28 Merck Patent Gmbh Semiconducting nanoparticle
WO2019224182A1 (en) 2018-05-24 2019-11-28 Merck Patent Gmbh Formulation comprising particles, a polymer and an organic solvent
WO2020078843A1 (en) 2018-10-15 2020-04-23 Merck Patent Gmbh Nanoparticle
WO2020099284A1 (en) 2018-11-14 2020-05-22 Merck Patent Gmbh Nanoparticle
WO2020127188A1 (en) 2018-12-20 2020-06-25 Merck Patent Gmbh Surface modified semiconducting light emitting nanoparticles and process for preparing such
WO2020156969A1 (en) 2019-01-29 2020-08-06 Merck Patent Gmbh Composition
US11220628B2 (en) 2019-02-20 2022-01-11 Aat Bioquest, Inc. Condensed polycyclic conjugated polymers and their use for biological detection
KR20220002482A (en) 2019-04-26 2022-01-06 메르크 파텐트 게엠베하 nanoparticles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022026A1 (en) * 1998-10-10 2000-04-20 Celanese Ventures Gmbh Conjugated polymers containing special fluorene structural elements with improved properties
WO2000053656A1 (en) * 1999-03-05 2000-09-14 Cambridge Display Technology Limited Polymer preparation

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH582115A5 (en) * 1973-04-10 1976-11-30 Dokunikhin Nikolai Stepanovich Anthanthrene derivs used in dyes and pigments - prepd. by cyclisation of dinaphthyl cpds.
US4539507A (en) * 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
US5723873A (en) * 1994-03-03 1998-03-03 Yang; Yang Bilayer composite electrodes for diodes
DE4436773A1 (en) 1994-10-14 1996-04-18 Hoechst Ag Conjugated polymers with spirocenters and their use as electroluminescent materials
EP0842208B2 (en) 1995-07-28 2009-08-19 Sumitomo Chemical Company, Limited 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers
US5798170A (en) * 1996-02-29 1998-08-25 Uniax Corporation Long operating life for polymer light-emitting diodes
JP3724589B2 (en) 1996-07-29 2005-12-07 ケンブリッジ ディスプレイ テクノロジー リミテッド Electroluminescence element
JP3786969B2 (en) 1996-09-04 2006-06-21 ケンブリッジ ディスプレイ テクノロジー リミテッド Organic light-emitting device with improved cathode
JP3899566B2 (en) 1996-11-25 2007-03-28 セイコーエプソン株式会社 Manufacturing method of organic EL display device
KR100195175B1 (en) 1996-12-23 1999-06-15 손욱 Electroluminescence element and its manufacturing method
GB9718393D0 (en) 1997-08-29 1997-11-05 Cambridge Display Tech Ltd Electroluminescent Device
US5777070A (en) * 1997-10-23 1998-07-07 The Dow Chemical Company Process for preparing conjugated polymers
KR100697861B1 (en) 1998-03-13 2007-03-22 캠브리지 디스플레이 테크놀로지 리미티드 Electroluminescent devices
GB9805476D0 (en) 1998-03-13 1998-05-13 Cambridge Display Tech Ltd Electroluminescent devices
GB2335884A (en) 1998-04-02 1999-10-06 Cambridge Display Tech Ltd Flexible substrates for electronic or optoelectronic devices
GB9903251D0 (en) 1999-02-12 1999-04-07 Cambridge Display Tech Ltd Opto-electric devices
GB2348316A (en) 1999-03-26 2000-09-27 Cambridge Display Tech Ltd Organic opto-electronic device
KR20020066321A (en) 1999-09-03 2002-08-14 듀폰 디스플레이즈, 인크. Encapsulation of organic electronic devices
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
GB0005842D0 (en) 2000-03-10 2000-05-03 Cambridge Display Tech Ltd Copoymer
EP1322692B1 (en) 2000-09-26 2006-12-13 Cambridge Display Technology Limited Polymer and uses thereof
JP4220253B2 (en) * 2001-05-18 2009-02-04 ケンブリッジ・ユニバーシティ・テクニカル・サービシズ・リミテッド Electroluminescence device
DE10159946A1 (en) * 2001-12-06 2003-06-18 Covion Organic Semiconductors Process for the production of aryl-aryl coupled compounds
DE10241814A1 (en) 2002-09-06 2004-03-25 Covion Organic Semiconductors Gmbh Process for the preparation of aryl-aryl coupled compounds
GB0226010D0 (en) * 2002-11-08 2002-12-18 Cambridge Display Tech Ltd Polymers for use in organic electroluminescent devices
DE10304819A1 (en) * 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazole-containing conjugated polymers and blends, their preparation and use
GB0306414D0 (en) * 2003-03-20 2003-04-23 Cambridge Display Tech Ltd Polymers,their preparations and uses
GB0309355D0 (en) * 2003-04-24 2003-06-04 Univ Cambridge Tech Organic electronic devices incorporating semiconducting polymer
WO2004100282A2 (en) * 2003-05-12 2004-11-18 Cambridge University Technical Services Limited Manufacture of a polymer device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022026A1 (en) * 1998-10-10 2000-04-20 Celanese Ventures Gmbh Conjugated polymers containing special fluorene structural elements with improved properties
WO2000053656A1 (en) * 1999-03-05 2000-09-14 Cambridge Display Technology Limited Polymer preparation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HARVEY R G ET AL: "NEW SYNTHETIC APPROACH TO POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR CARCINOGENIC OXIDEZED METABOLITES" JOURNAL OF ORGANIC CHEMISTRY, vol. 65, no. 13, 2000, pages 3952-3960, XP002271036 *
MÜLLEN K ET AL: "BRIDGING THE GAP BETWEEN POLYFLUORENE AND LADDER-POLY-p-PHENYLENE: SYNTHESIS AND CHRACTERIZATION OF POLY-2,8-INDENOFLUORENE" MACROMOLECULES, vol. 33, 2000, pages 2016-2020, XP002271037 cited in the application *
PLUMMER B F ET AL: "STUDY OF GEOMETRY EFFECTS ON HEAVY ATOM PERTUBATION OF THE ELECTRONIC PROPERTIES OF DERIVATIVES OF THE NONALTERNANT POLYCYCLIC AROMATIC HYDROCARBONS FLUORANTHENE AND ACENAPHTHOL[1,2-k]FLUORANTHENE" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 115, 1993, pages 11542-11551, XP002271035 *

Cited By (310)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003227B2 (en) 2003-11-27 2011-08-23 Merck Patent Gmbh Organic electroluminescent element
US8679644B2 (en) 2004-04-26 2014-03-25 Merck Patent Gmbh Electroluminescent polymers containing planar arylamine units, the preparation and use thereof
US7816531B2 (en) 2004-07-16 2010-10-19 Merck Patent Gmbh Metal complexes
WO2007022845A1 (en) 2005-08-26 2007-03-01 Merck Patent Gmbh Novel materials for organic electroluminescent devices
EP3211058A1 (en) 2005-08-26 2017-08-30 Merck Patent GmbH New materials for organic electroluminescent devices
EP2248869A2 (en) 2005-09-12 2010-11-10 Merck Patent GmbH Compounds for organic electronic devices
JP2009519910A (en) * 2005-12-17 2009-05-21 メルク パテント ゲーエムベーハー Indenofluorene replacement method
KR101312117B1 (en) * 2005-12-17 2013-09-26 메르크 파텐트 게엠베하 Method for substituting indenofluorenes
WO2007085377A2 (en) 2006-01-26 2007-08-02 Merck Patent Gmbh Electroluminescent materials and their use
US8329316B2 (en) * 2006-03-10 2012-12-11 Lg Chem, Ltd. Tetraphenylnaphalene derivatives and organic light emitting diode using the same
DE112007000699T5 (en) 2006-05-12 2009-06-04 Merck Patent Gmbh Indenofluorene polymer-based organic semiconductor materials
JP2009542735A (en) * 2006-07-11 2009-12-03 メルク パテント ゲーエムベーハー Novel materials for organic electroluminescent devices
JP2009544772A (en) * 2006-07-21 2009-12-17 メルク パテント ゲーエムベーハー Copolymer of indenofluorene and thiophene
KR101412831B1 (en) * 2006-07-21 2014-07-09 메르크 파텐트 게엠베하 Copolymers of indenofluorene and thiophene
DE102007024850A1 (en) 2007-05-29 2008-12-04 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008015526A1 (en) 2008-03-25 2009-10-01 Merck Patent Gmbh metal complexes
DE102008017591A1 (en) 2008-04-07 2009-10-08 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008018670A1 (en) 2008-04-14 2009-10-15 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008027005A1 (en) 2008-06-05 2009-12-10 Merck Patent Gmbh Organic electronic device containing metal complexes
US10538698B2 (en) 2008-06-05 2020-01-21 Merck Patent Gmbh Electronic device comprising metal complexes
US9481826B2 (en) 2008-06-05 2016-11-01 Merck Patent Gmbh Electronic device comprising metal complexes
DE102008033943A1 (en) 2008-07-18 2010-01-21 Merck Patent Gmbh New materials for organic electroluminescent devices
US9017577B2 (en) 2008-08-18 2015-04-28 Merck Patent Gmbh Indacenodithiophene and indacenodiselenophene polymers and their use as organic semiconductors
US8637168B2 (en) 2008-10-08 2014-01-28 Merck Patent Gmbh Materials for organic electroluminescence devices
DE102008050841B4 (en) 2008-10-08 2019-08-01 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008050841A1 (en) 2008-10-08 2010-04-15 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008054141A1 (en) 2008-10-31 2010-05-06 Merck Patent Gmbh New materials for organic electroluminescent devices
US8865321B2 (en) 2008-11-11 2014-10-21 Merck Patent Gmbh Organic electroluminescent devices
DE102008056688A1 (en) 2008-11-11 2010-05-12 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102008057051A1 (en) 2008-11-13 2010-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102008057050A1 (en) 2008-11-13 2010-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
US8597798B2 (en) 2008-11-13 2013-12-03 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2010083873A1 (en) 2009-01-20 2010-07-29 Merck Patent Gmbh Materials for organic electroluminescence devices
DE102009005288A1 (en) 2009-01-20 2010-07-22 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009005289B4 (en) 2009-01-20 2023-06-22 Merck Patent Gmbh Materials for organic electroluminescent devices, methods for their production and electronic devices containing them
US9475792B2 (en) 2009-01-20 2016-10-25 Merck Patent Gmbh Materials for organic electroluminescence devices
WO2010083872A2 (en) 2009-01-20 2010-07-29 Merck Patent Gmbh Materials for organic electroluminescence devices
DE102009005289A1 (en) 2009-01-20 2010-07-22 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2010083869A2 (en) 2009-01-23 2010-07-29 Merck Patent Gmbh Materials for organic electroluminescence devices
US9006503B2 (en) 2009-01-23 2015-04-14 Merck Patent Gmbh Organic electroluminescence devices containing substituted benzo[C]phenanthrenes
DE102009005746A1 (en) 2009-01-23 2010-07-29 Merck Patent Gmbh Materials for organic electroluminescent devices
US8710284B2 (en) 2009-01-23 2014-04-29 Merck Patent Gmbh Materials for organic electroluminescent devices containing substituted 10-benzo[c]phenanthrenes
DE102009009277A1 (en) 2009-02-17 2010-08-19 Merck Patent Gmbh Organic electronic device
WO2010094378A1 (en) 2009-02-17 2010-08-26 Merck Patent Gmbh Organic electronic device
DE102009009277B4 (en) 2009-02-17 2023-12-07 Merck Patent Gmbh Organic electronic device, process for its production and use of compounds
US9066410B2 (en) 2009-02-17 2015-06-23 Merck Patent Gmbh Organic electronic device
US9315617B2 (en) 2009-02-27 2016-04-19 Merck Patent Gmbh Crosslinkable and crosslinked polymers, method for the production thereof, and use thereof
DE102009010714A1 (en) 2009-02-27 2010-09-02 Merck Patent Gmbh Crosslinkable and crosslinked polymers, process for their preparation and their use
WO2010097156A1 (en) 2009-02-27 2010-09-02 Merck Patent Gmbh Cross-linkable and cross-linked polymers, method for the production thereof, and use thereof
WO2010099852A1 (en) 2009-03-02 2010-09-10 Merck Patent Gmbh Metal complexes having azaborol ligands and electronic device having the same
US9074128B2 (en) 2009-03-02 2015-07-07 Merck Patent Gmbh Metal complexes having azaborol ligands and electronic device having the same
DE102009011223A1 (en) 2009-03-02 2010-09-23 Merck Patent Gmbh metal complexes
US9085579B2 (en) 2009-03-13 2015-07-21 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2010102709A1 (en) 2009-03-13 2010-09-16 Merck Patent Gmbh Materials for organic electroluminescence devices
DE102009013041A1 (en) 2009-03-13 2010-09-16 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009022858A1 (en) 2009-05-27 2011-12-15 Merck Patent Gmbh Organic electroluminescent devices
US9349960B2 (en) 2009-05-29 2016-05-24 Merck Patent Gmbh Compounds and polymers which contain substituted indenofluorene derivatives as structural unit, process for the preparation thereof, and the use thereof as electronic devices and mixtures and solutions
WO2010149259A2 (en) 2009-06-22 2010-12-29 Merck Patent Gmbh Conducting formulation
WO2011000455A1 (en) 2009-06-30 2011-01-06 Merck Patent Gmbh Materials for organic electroluminescence devices
DE102009031021A1 (en) 2009-06-30 2011-01-05 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009033371A1 (en) 2009-07-16 2011-05-12 Merck Patent Gmbh Materials for electronic devices
DE102009034194A1 (en) 2009-07-22 2011-01-27 Merck Patent Gmbh Materials for electronic devices
WO2011009522A2 (en) 2009-07-22 2011-01-27 Merck Patent Gmbh Materials for electronic devices
US10125214B2 (en) 2009-07-22 2018-11-13 Merck Patent Gmbh Materials for electronic devices
DE102009034625A1 (en) 2009-07-27 2011-02-03 Merck Patent Gmbh New materials for organic electroluminescent devices
WO2011012212A1 (en) 2009-07-27 2011-02-03 Merck Patent Gmbh Novel materials for organic electroluminescent devices
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
WO2011035836A1 (en) 2009-09-23 2011-03-31 Merck Patent Gmbh Materials for electronic devices
DE102009042693A1 (en) 2009-09-23 2011-03-24 Merck Patent Gmbh Materials for electronic devices
DE102009048791A1 (en) 2009-10-08 2011-04-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2011042107A2 (en) 2009-10-08 2011-04-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2011054442A2 (en) 2009-11-06 2011-05-12 Merck Patent Gmbh Materials for electronic devices
DE102009053191A1 (en) 2009-11-06 2011-05-12 Merck Patent Gmbh Materials for electronic devices
WO2011057701A1 (en) 2009-11-10 2011-05-19 Merck Patent Gmbh Organic compounds for electroluminescent devices
DE102009052428A1 (en) 2009-11-10 2011-05-12 Merck Patent Gmbh Connection for electronic devices
DE102009053382A1 (en) 2009-11-14 2011-05-19 Merck Patent Gmbh Materials for electronic devices
WO2011057706A2 (en) 2009-11-14 2011-05-19 Merck Patent Gmbh Materials for electronic devices
DE102009053644A1 (en) 2009-11-17 2011-05-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2011060859A1 (en) 2009-11-17 2011-05-26 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009053644B4 (en) 2009-11-17 2019-07-04 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2011060867A1 (en) 2009-11-18 2011-05-26 Merck Patent Gmbh Nitrogen-containing condensed heterocyclic compounds for oleds
DE102009053836A1 (en) 2009-11-18 2011-05-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
WO2011076324A1 (en) 2009-12-23 2011-06-30 Merck Patent Gmbh Compositions comprising organic semiconducting compounds
WO2011085781A1 (en) 2010-01-16 2011-07-21 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010004803A1 (en) 2010-01-16 2011-07-21 Merck Patent GmbH, 64293 Materials for organic electroluminescent devices
WO2011088877A1 (en) 2010-01-25 2011-07-28 Merck Patent Gmbh Compounds for electronic devices
DE102010005697A1 (en) 2010-01-25 2011-07-28 Merck Patent GmbH, 64293 Connections for electronic devices
DE102010009193A1 (en) 2010-02-24 2011-08-25 Merck Patent GmbH, 64293 Fluorine-fluorine associates
WO2011103953A1 (en) 2010-02-24 2011-09-01 Merck Patent Gmbh Fluorine-fluorine associates
DE102010009903A1 (en) 2010-03-02 2011-09-08 Merck Patent Gmbh Connections for electronic devices
WO2011107186A2 (en) 2010-03-02 2011-09-09 Merck Patent Gmbh Compounds for electronic devices
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011116857A1 (en) 2010-03-23 2011-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010012738A1 (en) 2010-03-25 2011-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2011116865A1 (en) 2010-03-25 2011-09-29 Merck Patent Gmbh Materials for organic electroluminescence devices
WO2011128035A1 (en) 2010-04-12 2011-10-20 Merck Patent Gmbh Composition and method for preparation of organic electronic devices
WO2011128017A1 (en) 2010-04-14 2011-10-20 Merck Patent Gmbh Bridged triarylamines and -phosphines as materials for electronic devices
DE102010014933A1 (en) 2010-04-14 2011-10-20 Merck Patent Gmbh Materials for electronic devices
WO2011137951A1 (en) 2010-05-04 2011-11-10 Merck Patent Gmbh Organic electroluminescence devices
DE102010019306A1 (en) 2010-05-04 2011-11-10 Merck Patent Gmbh Organic electroluminescent devices
WO2011147521A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Down conversion
WO2011147523A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Formulation and method for preparation of organic electronic devices
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
EP3309236A1 (en) 2010-05-27 2018-04-18 Merck Patent GmbH Compositions comprising quantum dots
WO2011157346A1 (en) 2010-06-18 2011-12-22 Merck Patent Gmbh Compounds for electronic devices
DE102010024335A1 (en) 2010-06-18 2011-12-22 Merck Patent Gmbh Connections for electronic devices
DE102010024542A1 (en) 2010-06-22 2011-12-22 Merck Patent Gmbh Materials for electronic devices
WO2011160757A1 (en) 2010-06-22 2011-12-29 Merck Patent Gmbh Materials for electronic devices
WO2011160758A1 (en) 2010-06-24 2011-12-29 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010024897A1 (en) 2010-06-24 2011-12-29 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010033548A1 (en) 2010-08-05 2012-02-09 Merck Patent Gmbh Materials for electronic devices
WO2012016630A1 (en) 2010-08-05 2012-02-09 Merck Patent Gmbh Materials for electronic devices
WO2012048780A1 (en) 2010-10-15 2012-04-19 Merck Patent Gmbh Compounds for electronic devices
DE102010048607A1 (en) 2010-10-15 2012-04-19 Merck Patent Gmbh Connections for electronic devices
WO2012048781A1 (en) 2010-10-15 2012-04-19 Merck Patent Gmbh Triphenylene-based materials for organic electroluminescent devices
DE102010048608A1 (en) 2010-10-15 2012-04-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2012095143A1 (en) 2011-01-13 2012-07-19 Merck Patent Gmbh Compounds for organic electroluminescent devices
DE102012000064A1 (en) 2011-01-21 2012-07-26 Merck Patent Gmbh New heterocyclic compound excluding 9,10-dioxa-4b-aza-9a-phospha-indeno(1,2-a)indene and 9,10-dioxa-4b-aza-indeno(1,2-a)indene, useful e.g. as matrix material for fluorescent or phosphorescent emitters of electronic devices
EP2482159A2 (en) 2011-01-28 2012-08-01 Honeywell International, Inc. Methods and reconfigurable systems to optimize the performance of a condition based health maintenance system
DE102011010841A1 (en) 2011-02-10 2012-08-16 Merck Patent Gmbh (1,3) -dioxane-5-one compounds
WO2012107158A1 (en) 2011-02-10 2012-08-16 Merck Patent Gmbh 1,3-dioxan-5-one compounds
WO2012110182A1 (en) 2011-02-17 2012-08-23 Merck Patent Gmbh Compounds for electronic devices
DE102011011539A1 (en) 2011-02-17 2012-08-23 Merck Patent Gmbh Connections for electronic devices
WO2012139692A1 (en) 2011-04-13 2012-10-18 Merck Patent Gmbh Materials for electronic devices
WO2012139693A1 (en) 2011-04-13 2012-10-18 Merck Patent Gmbh Compounds for electronic devices
WO2012143079A1 (en) 2011-04-18 2012-10-26 Merck Patent Gmbh Compounds for electronic devices
WO2012150001A1 (en) 2011-05-05 2012-11-08 Merck Patent Gmbh Compounds for electronic devices
WO2012149999A1 (en) 2011-05-05 2012-11-08 Merck Patent Gmbh Compounds for electronic devices
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
WO2013017189A1 (en) 2011-07-29 2013-02-07 Merck Patent Gmbh Compounds for electronic devices
WO2013017192A1 (en) 2011-08-03 2013-02-07 Merck Patent Gmbh Materials for electronic devices
EP3439065A1 (en) 2011-08-03 2019-02-06 Merck Patent GmbH Materials for electronic devices
DE102011116165A1 (en) 2011-10-14 2013-04-18 Merck Patent Gmbh Benzodioxepin-3-one compounds
WO2013060418A1 (en) 2011-10-27 2013-05-02 Merck Patent Gmbh Materials for electronic devices
WO2013083216A1 (en) 2011-11-17 2013-06-13 Merck Patent Gmbh Spiro dihydroacridine derivatives and the use thereof as materials for organic electroluminescence devices
WO2013087142A1 (en) 2011-12-12 2013-06-20 Merck Patent Gmbh Compounds for electronic devices
WO2013087162A1 (en) 2011-12-13 2013-06-20 Merck Patent Gmbh Organic sensitizers for up-conversion
DE102011121022A1 (en) 2011-12-13 2013-06-13 Merck Patent Gmbh Organic sensitizers for up-conversion
DE102012022880A1 (en) 2011-12-22 2013-06-27 Merck Patent Gmbh Electronic device e.g. organic integrated circuits, organic field-effect transistors, organic thin-film transistors, organic light emitting transistors, comprises an organic layer comprising substituted heteroaryl compounds
EP3101088A1 (en) 2012-02-14 2016-12-07 Merck Patent GmbH Materials for organic electroluminescent devices
EP3235892A1 (en) 2012-02-14 2017-10-25 Merck Patent GmbH Materials for organic electroluminescent devices
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
WO2013124029A2 (en) 2012-02-22 2013-08-29 Merck Patent Gmbh Polymers containing dibenzocycloheptene structural units
WO2013139431A1 (en) 2012-03-23 2013-09-26 Merck Patent Gmbh 9,9'-spirobixanthene derivatives for electroluminescent devices
DE102012011335A1 (en) 2012-06-06 2013-12-12 Merck Patent Gmbh Connections for Organic Electronic Devices
WO2013182263A1 (en) 2012-06-06 2013-12-12 Merck Patent Gmbh Phenanthrene compounds for organic electronic devices
WO2014000860A1 (en) 2012-06-29 2014-01-03 Merck Patent Gmbh Polymers containing 2,7-pyrene structure units
WO2014008982A1 (en) 2012-07-13 2014-01-16 Merck Patent Gmbh Metal complexes
EP3424907A2 (en) 2012-07-23 2019-01-09 Merck Patent GmbH Connections and organic electronic devices
WO2014015937A1 (en) 2012-07-23 2014-01-30 Merck Patent Gmbh Compounds and organic electroluminescent devices
DE202013012401U1 (en) 2012-07-23 2016-10-12 Merck Patent Gmbh Connections and Organic Electronic Devices
WO2014015938A1 (en) 2012-07-23 2014-01-30 Merck Patent Gmbh Derivatives of 2-diarylaminofluorene and organic electronic compounds containing them
WO2014015935A2 (en) 2012-07-23 2014-01-30 Merck Patent Gmbh Compounds and organic electronic devices
EP3424936A1 (en) 2012-08-07 2019-01-09 Merck Patent GmbH Metal complexes
WO2014023377A2 (en) 2012-08-07 2014-02-13 Merck Patent Gmbh Metal complexes
WO2014044347A1 (en) 2012-09-20 2014-03-27 Merck Patent Gmbh Metal complexes
WO2014056573A2 (en) 2012-10-12 2014-04-17 Merck Patent Gmbh Emitter and hosts with aromatic units
US10056548B2 (en) 2012-10-12 2018-08-21 Merck Patent Gmbh Emitter and hosts with aromatic units
EP3378857A1 (en) 2012-11-12 2018-09-26 Merck Patent GmbH Materials for electronic devices
WO2014082705A1 (en) 2012-11-30 2014-06-05 Merck Patent Gmbh Electronic device
WO2014106524A2 (en) 2013-01-03 2014-07-10 Merck Patent Gmbh Materials for electronic devices
WO2014106522A1 (en) 2013-01-03 2014-07-10 Merck Patent Gmbh Materials for electronic devices
WO2015014429A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electroluminescence device
WO2015014427A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electro-optical device and the use thereof
EP3904361A2 (en) 2013-10-02 2021-11-03 Merck Patent GmbH Boron containing compounds
EP3693437A1 (en) 2013-12-06 2020-08-12 Merck Patent GmbH Compounds and organic electronic devices
EP3345984A1 (en) 2013-12-06 2018-07-11 Merck Patent GmbH Connections and organic electronic devices
WO2015086108A1 (en) 2013-12-12 2015-06-18 Merck Patent Gmbh Materials for electronic devices
WO2015090504A2 (en) 2013-12-19 2015-06-25 Merck Patent Gmbh Heterocyclic spiro compounds
EP3708634A1 (en) 2013-12-19 2020-09-16 Merck Patent GmbH Heterocyclic spiro compounds
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
WO2016074755A1 (en) 2014-11-11 2016-05-19 Merck Patent Gmbh Materials for organic electroluminescent devices
US10323180B2 (en) 2014-12-04 2019-06-18 Guangzhou Chinaray Optoelectronic Materials Ltd. Deuterated organic compound, mixture and composition containing said compound, and organic electronic device
US10573827B2 (en) 2014-12-11 2020-02-25 Guangzhou Chinaray Optoelectronics Materials Ltd. Organic metal complex, and polymer, mixture, composition and organic electronic device containing same and use thereof
WO2016107663A1 (en) 2014-12-30 2016-07-07 Merck Patent Gmbh Formulations and electronic devices
US10364316B2 (en) 2015-01-13 2019-07-30 Guangzhou Chinaray Optoelectronics Materials Ltd. Conjugated polymer containing ethynyl crosslinking group, mixture, formulation, organic electronic device containing the same and application therof
WO2016119992A1 (en) 2015-01-30 2016-08-04 Merck Patent Gmbh Materials for electronic devices
WO2016124304A1 (en) 2015-02-03 2016-08-11 Merck Patent Gmbh Metal complexes
WO2016155866A1 (en) 2015-03-30 2016-10-06 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
WO2016198144A1 (en) 2015-06-10 2016-12-15 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3581633A1 (en) 2015-06-12 2019-12-18 Merck Patent GmbH Esters containing non-aromatic cycles as solvents for oled formulations
WO2016198141A1 (en) 2015-06-12 2016-12-15 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for oled formulations
WO2017012687A1 (en) 2015-07-22 2017-01-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017012694A1 (en) 2015-07-23 2017-01-26 Merck Patent Gmbh Phenyl derivatives substituted with at least two electron acceptors and at least two electron donors for use in organic electronic devices
EP4236652A2 (en) 2015-07-29 2023-08-30 Merck Patent GmbH Materials for organic electroluminescent devices
EP4301110A2 (en) 2015-07-30 2024-01-03 Merck Patent GmbH Materials for organic electroluminescent devices
WO2017016630A1 (en) 2015-07-30 2017-02-02 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017028940A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017036572A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
WO2017036573A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Compounds for electronic devices
US11555128B2 (en) 2015-11-12 2023-01-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing composition, electronic device comprising same and preparation method for functional material thin film
WO2017097391A1 (en) 2015-12-10 2017-06-15 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
EP4084109A1 (en) 2015-12-15 2022-11-02 Merck Patent GmbH Esters containing aromatic groups as solvents for organic electronic formulations
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
WO2017102052A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a solid solvent
WO2017133829A1 (en) 2016-02-05 2017-08-10 Merck Patent Gmbh Materials for electronic devices
WO2017140404A1 (en) 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
WO2017157783A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Receptacle comprising a formulation containing at least one organic semiconductor
WO2017157983A1 (en) 2016-03-17 2017-09-21 Merck Patent Gmbh Compounds with spirobifluorene-structures
WO2017178311A1 (en) 2016-04-11 2017-10-19 Merck Patent Gmbh Heterocyclic compounds comprising dibenzofuran and/or dibenzothiophene structures
EP3978477A2 (en) 2016-06-03 2022-04-06 Merck Patent GmbH Materials for organic electroluminescent devices
WO2017207596A1 (en) 2016-06-03 2017-12-07 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018001928A1 (en) 2016-06-28 2018-01-04 Merck Patent Gmbh Formulation of an organic functional material
WO2018001990A1 (en) 2016-06-30 2018-01-04 Merck Patent Gmbh Method for the separation of enantiomeric mixtures from metal complexes
WO2018007421A1 (en) 2016-07-08 2018-01-11 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3792235A1 (en) 2016-07-08 2021-03-17 Merck Patent GmbH Materials for organic electroluminescent devices
WO2018011186A1 (en) 2016-07-14 2018-01-18 Merck Patent Gmbh Metal complexes
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018050584A1 (en) 2016-09-14 2018-03-22 Merck Patent Gmbh Compounds with spirobifluorene-structures
WO2018050583A1 (en) 2016-09-14 2018-03-22 Merck Patent Gmbh Compounds with carbazole structures
WO2018060218A1 (en) 2016-09-30 2018-04-05 Merck Patent Gmbh Carbazoles with diazadibenzofurane or diazadibenzothiophene structures
WO2018060307A1 (en) 2016-09-30 2018-04-05 Merck Patent Gmbh Compounds with diazadibenzofurane or diazadibenzothiophene structures
EP4113643A1 (en) 2016-10-10 2023-01-04 Merck Patent GmbH Electronic device
WO2018069167A1 (en) 2016-10-10 2018-04-19 Merck Patent Gmbh Electronic device
EP4255151A2 (en) 2016-10-10 2023-10-04 Merck Patent GmbH Spiro[fluorene-9,9'-(thio)xanthene] compounds
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018077660A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018083053A1 (en) 2016-11-02 2018-05-11 Merck Patent Gmbh Materials for electronic devices
WO2018087020A1 (en) 2016-11-08 2018-05-17 Merck Patent Gmbh Compounds for electronic devices
EP4271163A2 (en) 2016-11-14 2023-11-01 Merck Patent GmbH Compounds with an acceptor and a donor group
WO2018087346A1 (en) 2016-11-14 2018-05-17 Merck Patent Gmbh Compounds with an acceptor and a donor group
WO2018095839A1 (en) 2016-11-22 2018-05-31 Merck Patent Gmbh Bridged triarylamines for electronic devices
WO2018095381A1 (en) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 Printing ink composition, preparation method therefor, and uses thereof
US11248138B2 (en) 2016-11-23 2022-02-15 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing ink formulations, preparation methods and uses thereof
WO2018095940A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused indeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018095888A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused 2,8-diaminoindeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018099846A1 (en) 2016-11-30 2018-06-07 Merck Patent Gmbh Compounds having valerolactam structures
WO2018104195A1 (en) 2016-12-05 2018-06-14 Merck Patent Gmbh Nitrogen-containing heterocycles for use in oleds
EP3978491A1 (en) 2016-12-05 2022-04-06 Merck Patent GmbH Nitrogen-containing heterocycles for use in oleds
WO2018104202A1 (en) 2016-12-06 2018-06-14 Merck Patent Gmbh Preparation process for an electronic device
WO2018108760A1 (en) 2016-12-13 2018-06-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018114883A1 (en) 2016-12-22 2018-06-28 Merck Patent Gmbh Mixtures comprising at least two organofunctional compounds
WO2018134392A1 (en) 2017-01-23 2018-07-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018138039A1 (en) 2017-01-25 2018-08-02 Merck Patent Gmbh Carbazole derivatives
WO2018138319A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic electroluminescence (el) element
WO2018138318A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2018141706A1 (en) 2017-02-02 2018-08-09 Merck Patent Gmbh Materials for electronic devices
WO2018157981A1 (en) 2017-03-02 2018-09-07 Merck Patent Gmbh Materials for organic electronic devices
WO2018166932A1 (en) 2017-03-13 2018-09-20 Merck Patent Gmbh Compounds with arylamine structures
WO2018189050A1 (en) 2017-04-10 2018-10-18 Merck Patent Gmbh Formulation of an organic functional material
WO2018197447A1 (en) 2017-04-25 2018-11-01 Merck Patent Gmbh Compounds for electronic devices
WO2018202603A1 (en) 2017-05-03 2018-11-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018215318A1 (en) 2017-05-22 2018-11-29 Merck Patent Gmbh Hexacyclic heteroaromatic compounds for electronic devices
WO2018234346A1 (en) 2017-06-23 2018-12-27 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019002190A1 (en) 2017-06-28 2019-01-03 Merck Patent Gmbh Materials for electronic devices
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
WO2019020654A1 (en) 2017-07-28 2019-01-31 Merck Patent Gmbh Spirobifluorene derivatives for use in electronic devices
WO2019048443A1 (en) 2017-09-08 2019-03-14 Merck Patent Gmbh Materials for electronic devices
WO2019101719A1 (en) 2017-11-23 2019-05-31 Merck Patent Gmbh Materials for electronic devices
EP4242286A2 (en) 2017-11-23 2023-09-13 Merck Patent GmbH Materials for electronic devices
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
WO2019115577A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Substituted aromatic amines for use in organic electroluminescent devices
WO2019121458A1 (en) 2017-12-19 2019-06-27 Merck Patent Gmbh Heterocyclic compound for use in electronic devices
WO2019121483A1 (en) 2017-12-20 2019-06-27 Merck Patent Gmbh Heteroaromatic compounds
WO2019162483A1 (en) 2018-02-26 2019-08-29 Merck Patent Gmbh Formulation of an organic functional material
WO2019175149A1 (en) 2018-03-16 2019-09-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019238782A1 (en) 2018-06-15 2019-12-19 Merck Patent Gmbh Formulation of an organic functional material
WO2020064662A2 (en) 2018-09-27 2020-04-02 Merck Patent Gmbh Method for producing sterically hindered, nitrogen-containing heteroaromatic compounds
EP4190880A1 (en) 2018-09-27 2023-06-07 Merck Patent GmbH Compounds usable as active compounds in an organic electronic device
WO2020064666A1 (en) 2018-09-27 2020-04-02 Merck Patent Gmbh Compounds that can be used in an organic electronic device as active compounds
WO2020094539A1 (en) 2018-11-05 2020-05-14 Merck Patent Gmbh Compounds that can be used in an organic electronic device
WO2020094538A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2020099349A1 (en) 2018-11-14 2020-05-22 Merck Patent Gmbh Compounds that can be used for producing an organic electronic device
WO2021078710A1 (en) 2019-10-22 2021-04-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021078831A1 (en) 2019-10-25 2021-04-29 Merck Patent Gmbh Compounds that can be used in an organic electronic device
WO2021122538A1 (en) 2019-12-18 2021-06-24 Merck Patent Gmbh Aromatic compounds for organic electroluminescent devices
WO2021122740A1 (en) 2019-12-19 2021-06-24 Merck Patent Gmbh Polycyclic compounds for organic electroluminescent devices
WO2021151922A1 (en) 2020-01-29 2021-08-05 Merck Patent Gmbh Benzimidazole derivatives
WO2021170522A1 (en) 2020-02-25 2021-09-02 Merck Patent Gmbh Use of heterocyclic compounds in an organic electronic device
WO2021175706A1 (en) 2020-03-02 2021-09-10 Merck Patent Gmbh Use of sulfone compounds in an organic electronic device
WO2021185829A1 (en) 2020-03-17 2021-09-23 Merck Patent Gmbh Heterocyclic compounds for organic electroluminescent devices
WO2021185712A1 (en) 2020-03-17 2021-09-23 Merck Patent Gmbh Heteroaromatic compounds for organic electroluminescent devices
WO2021191183A1 (en) 2020-03-26 2021-09-30 Merck Patent Gmbh Cyclic compounds for organic electroluminescent devices
WO2021204646A1 (en) 2020-04-06 2021-10-14 Merck Patent Gmbh Polycyclic compounds for organic electroluminescent devices
WO2021213918A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Formulation of an organic functional material
WO2021213917A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Emulsions comprising organic functional materials
WO2021254984A1 (en) 2020-06-18 2021-12-23 Merck Patent Gmbh Indenoazanaphthalenes
WO2022002771A1 (en) 2020-06-29 2022-01-06 Merck Patent Gmbh Heterocyclic compounds for organic electroluminescent devices
WO2022002772A1 (en) 2020-06-29 2022-01-06 Merck Patent Gmbh Heteroaromatic compounds for organic electroluminescent devices
WO2022069422A1 (en) 2020-09-30 2022-04-07 Merck Patent Gmbh Compounds for structuring functional layers of organic electroluminescent devices
WO2022069421A1 (en) 2020-09-30 2022-04-07 Merck Patent Gmbh Compounds that can be used for structuring functional layers of organic electroluminescent devices
WO2022079068A1 (en) 2020-10-16 2022-04-21 Merck Patent Gmbh Heterocyclic compounds for organic electroluminescent devices
WO2022079067A1 (en) 2020-10-16 2022-04-21 Merck Patent Gmbh Compounds comprising heteroatoms for organic electroluminescent devices
WO2022122607A1 (en) 2020-12-08 2022-06-16 Merck Patent Gmbh An ink system and a method for inkjet printing
WO2022129116A1 (en) 2020-12-18 2022-06-23 Merck Patent Gmbh Indolo[3.2.1-jk]carbazole-6-carbonitrile derivatives as blue fluorescent emitters for use in oleds
WO2022129114A1 (en) 2020-12-18 2022-06-23 Merck Patent Gmbh Nitrogenous compounds for organic electroluminescent devices
WO2022129113A1 (en) 2020-12-18 2022-06-23 Merck Patent Gmbh Nitrogenous heteroaromatic compounds for organic electroluminescent devices
WO2022223675A1 (en) 2021-04-23 2022-10-27 Merck Patent Gmbh Formulation of an organic functional material
WO2022229234A1 (en) 2021-04-30 2022-11-03 Merck Patent Gmbh Nitrogenous heterocyclic compounds for organic electroluminescent devices
WO2023012084A1 (en) 2021-08-02 2023-02-09 Merck Patent Gmbh A printing method by combining inks
WO2023041454A1 (en) 2021-09-14 2023-03-23 Merck Patent Gmbh Boronic heterocyclic compounds for organic electroluminescent devices
WO2023057327A1 (en) 2021-10-05 2023-04-13 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2023072799A1 (en) 2021-10-27 2023-05-04 Merck Patent Gmbh Boronic and nitrogenous heterocyclic compounds for organic electroluminescent devices
WO2023099543A1 (en) 2021-11-30 2023-06-08 Merck Patent Gmbh Compounds having fluorene structures
WO2023161167A1 (en) 2022-02-23 2023-08-31 Merck Patent Gmbh Nitrogenous heterocycles for organic electroluminescent devices
WO2023161168A1 (en) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatic hetreocycles for organic electroluminescent devices
WO2023213837A1 (en) 2022-05-06 2023-11-09 Merck Patent Gmbh Cyclic compounds for organic electroluminescent devices
WO2023237458A1 (en) 2022-06-07 2023-12-14 Merck Patent Gmbh Method of printing a functional layer of an electronic device by combining inks
WO2023247345A1 (en) 2022-06-20 2023-12-28 Merck Patent Gmbh Heterocycles for photoelectric devices
WO2023247338A1 (en) 2022-06-20 2023-12-28 Merck Patent Gmbh Organic heterocycles for photoelectric devices
WO2024061942A1 (en) 2022-09-22 2024-03-28 Merck Patent Gmbh Nitrogen-containing compounds for organic electroluminescent devices
WO2024061948A1 (en) 2022-09-22 2024-03-28 Merck Patent Gmbh Nitrogen-containing hetreocycles for organic electroluminescent devices

Also Published As

Publication number Publication date
JP5198767B2 (en) 2013-05-15
KR20060028700A (en) 2006-03-31
JP2008530254A (en) 2008-08-07
KR101115860B1 (en) 2012-02-21
WO2004113412A3 (en) 2005-04-21
CN1768090A (en) 2006-05-03
DE602004020343D1 (en) 2009-05-14
EP1639027A2 (en) 2006-03-29
EP1491568A1 (en) 2004-12-29
US7754841B2 (en) 2010-07-13
EP1639027B1 (en) 2009-04-01
US20060149016A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
EP1639027B1 (en) Polymers
JP5301157B2 (en) Polymers used in organic electroluminescent devices
TWI625344B (en) Polymers, monomers and methods of forming polymers
KR101213014B1 (en) oligomers and polymers
JP4435690B2 (en) Aryl-substituted polyindenofluorenes for use in organic electroluminescent devices
KR102388075B1 (en) Hole transporting compounds and compositions
GB2508410A (en) Polymer and organic electronic device
JP4885717B2 (en) Oligomers and polymers containing triphenylphosphine units
KR20170029563A (en) Hole transporting cyclobutene compound
TW201329131A (en) Polymer, light emitting device, and method
TWI653256B (en) Polymers and organic electronic devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048086666

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006516017

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057024580

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004740151

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006149016

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10560861

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004740151

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057024580

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10560861

Country of ref document: US