WO2004113169A1 - Vorrichtung und verfahren zur überwachung der sauerstoffkonzentration in einem flugzeugtank - Google Patents
Vorrichtung und verfahren zur überwachung der sauerstoffkonzentration in einem flugzeugtank Download PDFInfo
- Publication number
- WO2004113169A1 WO2004113169A1 PCT/EP2004/051062 EP2004051062W WO2004113169A1 WO 2004113169 A1 WO2004113169 A1 WO 2004113169A1 EP 2004051062 W EP2004051062 W EP 2004051062W WO 2004113169 A1 WO2004113169 A1 WO 2004113169A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tank
- laser
- oxygen
- absorption
- measuring section
- Prior art date
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 239000001301 oxygen Substances 0.000 title claims abstract description 40
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 40
- 238000012544 monitoring process Methods 0.000 title claims abstract description 5
- 238000000034 method Methods 0.000 title claims description 22
- 238000010521 absorption reaction Methods 0.000 claims abstract description 36
- 239000007789 gas Substances 0.000 claims abstract description 24
- 238000001307 laser spectroscopy Methods 0.000 claims abstract description 11
- 238000005259 measurement Methods 0.000 claims description 28
- 238000001228 spectrum Methods 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 8
- 230000027734 detection of oxygen Effects 0.000 claims description 4
- 230000006641 stabilisation Effects 0.000 claims 1
- 238000011105 stabilization Methods 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000000446 fuel Substances 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000002828 fuel tank Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 238000004880 explosion Methods 0.000 description 3
- 238000001285 laser absorption spectroscopy Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000005408 paramagnetism Effects 0.000 description 1
- 238000007430 reference method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D37/00—Arrangements in connection with fuel supply for power plant
- B64D37/32—Safety measures not otherwise provided for, e.g. preventing explosive conditions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
Definitions
- the invention relates to a device and a method for detecting and monitoring the oxygen concentration in an aircraft tank using laser spectroscopy, for which an absorption measurement section is implemented in a measurement gas volume within an aircraft tank.
- the known method of laser spectroscopy monitors the ignition limits of gas mixtures in the aircraft tank, the target gas of the measurement being oxygen.
- the tanks are filled with this air until the lower ignition limit is undershot. Depending on the operating conditions, this is 11.5 to 12 vol.% Oxygen.
- the literature reference [2] is relevant in this regard.
- the oxygen concentration is used to check the effectiveness of this measure tion in the tanks.
- the difficulty with the measurement lies in the fact that there are several tanks in larger aircraft and these are each divided in order to prevent an uncontrolled fuel flow. This creates many individual gas-filled cavities that are homogeneous. Difficult to flush with inert gas. This results in the need to measure the oxygen content in several places.
- a sensor in this area should have a life expectancy of well over 10 years. A long-term stable calibration of the concentration is also necessary. The process must be able to check itself to rule out erroneous measurements.
- the operating temperature should be in the range of -55 ° C to + 85 ° C.
- the sensor needs air Withstand pressure fluctuations in the range of 250 to 1100 mbar.
- the air humidity in the measuring range is between 0 and 100% relative air humidity.
- the electrochemical cells used in the tests have some serious disadvantages for the planned application. There are, for example, limited lifetimes of approx. 2 years, which necessitates cost-intensive replacement at regular intervals. Since moisture is required for the function of the electrochemical cell, the cell can dry out quickly when operating in dry air, as is desired in an airplane. This leads to a shortening of the lifespan. In addition, operation at low temperatures is not possible because the electrolyte freezes out.
- Paramagnetic methods use a complex mechanical measuring system with a balance that is susceptible to vibrations and accelerations, such as those that occur in aircraft.
- the object of the invention is to provide a device and a method with which the formation of ignitable mixtures within an aircraft tank can be determined.
- the invention is based on the knowledge that laser absorption spectroscopy meets the requirements for a sensor for detecting oxygen in an aircraft tank as a whole.
- Laser absorption spectroscopy is used in the visible and in the infrared wavelength range.
- individual, respectively selected absorption lines of the oxygen molecules in the range between 758 and 766 nm are evaluated.
- Laser absorption spectroscopy is a known method. Lasers or laser diodes are used that emit monochrome in the static operating state. The tunability of the wavelength is exploited, for example by varying the operating temperature. In this way, a wavelength interval can be covered, which is substituted for a selected absorption line in the spectrum of the target gas, here oxygen.
- the laser light shines through a specifically positioned gas absorption path in which the oxygen is located if it exists in the tank. In the presence of oxygen, a wavelength-dependent weakening of the transmitted light will occur. The weakening always correlates with the concentration of the gas to be measured.
- a photodetector records the spectrum, which is processed in subsequent signal processing electronics and evaluated on a processor using appropriate software. Usable for evaluation Methods in laser spectroscopy are either the direct absorption measurement, a derivative method or high-frequency modulation methods such as the heterodyne method as described in references [4] and [5].
- the absorption measurement section is positioned on the tank of an aircraft in such a way that all components of the sensor connected to electrical lines are placed outside the tank or outside the tank wall. In the interior of the
- Tanks only protrude into a holder with a reflecting element at the end.
- the entire arrangement is attached in the upper region of a tank, in particular at a raised point where, for example, the tank has a bulge.
- This positioning is associated with the fact that measurements are carried out in the gas phase.
- the oxygen sensor should not be flushed with fuel or should be able to measure as quickly as possible in a gas volume in which gases accumulate within an aircraft tank.
- the transmitting and receiving elements as well as usually a temperature sensor are located outside the tank wall, a feed-through opening in the tank wall is closed with a window that is transparent to the light wavelengths used in operation, and the holder and reflector extend into the tank, so that an absorption measurement section is shown inside the tank.
- the reflector can advantageously be a retroreflector. Further advantages are achieved by means of a concave mirror.
- the ignitable mixtures are monitored by the detection of oxygen with the additional measurement of the oxygen concentration.
- a lower ignition limit of a mixture of oxygen and the possible vapors of the fuel is usually monitored by measuring the oxygen concentration. Exemplary embodiments are described below with the aid of schematic figures which do not restrict the invention.
- FIG. 1 shows an embodiment of the oxygen monitor attached to the top of an aircraft tank
- FIG. 2 shows an alternative embodiment of the oxygen monitor, which is attached in the tank wall by means of a single-hole assembly with thread and seal.
- Figure 1 shows an embodiment of a measuring probe attached in the upper part of the aircraft tank.
- the laser and photo detector are located outside the tank interior. Only the optical laser beam passes through a window 3 into the interior of the tank 1, where the oxygen absorption is to be measured in a measuring gas volume.
- This design prevents the need for additional electrical lines to be routed into the tank, which generally pose a potential explosion risk.
- a concave mirror reflects the light and focuses it on the photodetector, the photodiode 7.
- the reflector 5 can also be shown as a simply diffusely reflecting surface, although collecting optics in the beam path for processing the received signal is necessary.
- Figure 2 shows an alternative embodiment relative to Figure 1.
- the advantage of this arrangement is the simple assembly.
- the monitor is screwed into a threaded hole in the tank wall.
- the sensor is attached to the highest point of the tank, so that the probability that fuel gets into the beam path is low. As long as fuel does not permanently block the beam path, spectral measurement will be possible. Because the acquisition of a spectrum only takes a few milliseconds.
- Spectra that are partially or completely affected by fuel in the beam path of the absorption measurement section can easily differentiated from undisturbed spectra and thus filtered out for the measurement.
- the method has a high dynamic range for the optical received signal, see literature [6], fogging of the window 3 or the reflector 5 can also be tolerated within wide limits.
- the spectral measurement always provides the entire absorption line, in particular also the areas in which little or no absorption occurs, such as an area next to an absorption line, the measurement background is known and a wavelength-independent change in the transmissions of the measuring cell does not interfere with the concentration measurement ,
- the concentration of the gas is proportional to the ratio of the minimum transmission in the center of the absorption line to the transmission next to the line.
- the narrow spectral line width of the laser emission which is typically less than 1% of the half-width of the absorption line, allows the inclusion of a
- the measured spectrum can be compared directly with a calculated spectrum with knowledge of the molecular parameters such as the crossover frequency, integrated line width, pressure distribution coefficient and energy of the initial state as well as length of the absorption path, temperature and pressure.
- the only free parameter is the gas concentration. So no device parameters are included in the calculation. This makes the method a reference method and is therefore predestined for the intended application, in which the long-term stability of the concentration calibration is essential.
- the parameters of the laser diode that go into the measurement are the curvature of the laser characteristic and the correlation between the laser current and the emission wavelength.
- the curvature of the laser characteristic is assumed to be parabolic. An on The change in curvature is taken into account in the evaluation and therefore does not influence the measurement result.
- the change in the correlation between laser current and emission wavelength can be recalibrated at any time by measuring the oxygen spectrum at different temperatures.
- oxygen absorption can always be identified without any doubt. This enables the system to check itself. As long as the absorption is measured, it is ensured that the laser wavelength is correct and that the complete evaluation electronics and software work correctly. If no oxygen is expected in the measuring cell, a reference path can be created by beam splitting, in which a reference cell with oxygen is attached. A photo detector in the reference branch then records the spectrum. The evaluation is carried out as in the present case. No moving parts are required. This means that there is no mechanical wear and tear and no influence from vibrations and accelerations.
- the process of laser spectroscopy for the detection of oxygen fulfills the requirements for use on egg aircraft tank. Certain features stand out.
- the feature of self-checking is very important, so that it can be determined automatically at any time whether the current measurement is correct or not. This is based on the fact that a predetermined so-called signature, that is to say an absorption spectrum of the oxygen line, must be present at all times and has sufficient features for unambiguous identification of the measurement gas spectrum.
- FIG. 1 shows in detail a tank 1 that has been partially broken open and is surrounded by a tank wall 2.
- the parts of the absorption measurement section placed within the tank volume, the reflector 5 and a holder (not shown) can be clearly separated from the components of the absorption measurement section positioned outside the tank volume, which have an electrical power supply.
- the window 3 becomes part of the tank wall 2.
- Sensor electronics 4, which is also externally attached and is also insulated from the tank, is connected to the absorption measuring section via electrical connections 9.
- prepared measurement signals can be transmitted to the outside.
- the sufficient length 11 of the absorption measurement section is approximately 2 ⁇ 5 cm, taking into account the double passage of the light beams.
- FIG. 2 shows an alternative embodiment of the oxygen monitor with a design that enables the sensor to be installed perpendicular to the tank wall 2.
- the transmitter is guided perpendicular to the tank wall 2 through it and clamped or screwed in.
- the reflector 5 together with the electrically connected components of the laser diode 6, the photodiode 7 and the temperature sensor 8, represents the absorption measurement path, the window 3 representing a dividing line between the internal and external components.
- the window 3 is in turn a replacement for the tank wall 2.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04741756A EP1633627A1 (de) | 2003-06-16 | 2004-06-08 | Vorrichtung und verfahren zur berwachung der sauerstoffkonzentration in einem flugzeugtank |
US10/559,261 US7456969B2 (en) | 2003-06-16 | 2004-06-08 | Device and method for monitoring the oxygen concentration in an aircraft tank |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10327060.4 | 2003-06-16 | ||
DE10327060 | 2003-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004113169A1 true WO2004113169A1 (de) | 2004-12-29 |
Family
ID=33520621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/051062 WO2004113169A1 (de) | 2003-06-16 | 2004-06-08 | Vorrichtung und verfahren zur überwachung der sauerstoffkonzentration in einem flugzeugtank |
Country Status (3)
Country | Link |
---|---|
US (1) | US7456969B2 (de) |
EP (1) | EP1633627A1 (de) |
WO (1) | WO2004113169A1 (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1816464A1 (de) * | 2006-02-01 | 2007-08-08 | Siemens Aktiengesellschaft | Anordnung zur Konzentrationsessung für Abgaskomponenten im Abgasbereich einer Feuerungsanlage |
WO2010081585A1 (de) * | 2009-01-13 | 2010-07-22 | Robert Bosch Gmbh | Messvorrichtung, anordnung und verfahren zur messung eines gehaltes an mindestens einer komponente in einem flüssigen kraftstoff |
CN101680833B (zh) * | 2007-05-24 | 2013-03-27 | 佐勒技术公司 | 执行吸收光谱法的方法和用于吸收光谱法的设备 |
DE102012005058A1 (de) | 2012-03-15 | 2013-09-19 | Eads Deutschland Gmbh | Vorrichtung zur Überwachung der Sauerstoffkonzentration in einem Flugzeugtank |
US10180393B2 (en) | 2016-04-20 | 2019-01-15 | Cascade Technologies Holdings Limited | Sample cell |
WO2020027675A1 (pt) | 2018-07-30 | 2020-02-06 | Instituto Superior Técnico | Sensores de oxigénio luminescentes não-metálicos para tanques de combustível de aeronaves |
US10724945B2 (en) | 2016-04-19 | 2020-07-28 | Cascade Technologies Holdings Limited | Laser detection system and method |
US11519855B2 (en) | 2017-01-19 | 2022-12-06 | Emerson Process Management Limited | Close-coupled analyser |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7132661B2 (en) | 2000-08-28 | 2006-11-07 | Spectrasensors, Inc. | System and method for detecting water vapor within natural gas |
US7679059B2 (en) * | 2006-04-19 | 2010-03-16 | Spectrasensors, Inc. | Measuring water vapor in hydrocarbons |
US7511802B2 (en) | 2006-05-26 | 2009-03-31 | Spectrasensors, Inc. | Measuring trace components of complex gases using gas chromatography/absorption spectrometry |
JP4915781B2 (ja) * | 2006-07-05 | 2012-04-11 | 株式会社小松製作所 | 作業機械の燃料性状検出装置 |
US7508521B2 (en) * | 2007-03-14 | 2009-03-24 | Spectrasensors, Inc. | Pressure-invariant trace gas detection |
PL2140246T3 (pl) * | 2007-04-11 | 2017-01-31 | Spectrasensors, Inc. | Wykrywanie reaktywnego gazu przy złożonym tle |
US8081313B2 (en) * | 2007-05-24 | 2011-12-20 | Airbus Operations Limited | Method and apparatus for monitoring gas concentration in a fluid |
US8086387B2 (en) * | 2008-06-18 | 2011-12-27 | The Boeing Company | System and method of fuel system optimization |
GB0813715D0 (en) * | 2008-07-28 | 2008-09-03 | Airbus Uk Ltd | A monitor and a method for measuring oxygen concentration |
JP5137740B2 (ja) * | 2008-08-08 | 2013-02-06 | 日立造船株式会社 | 袋状容器内における酸素濃度の非破壊検査装置 |
EP2762857B1 (de) * | 2012-12-19 | 2018-05-02 | General Electric Company | Verfahren und Vorrichtung zur Analyse von aufgelöstem Gas |
EP3208603B1 (de) * | 2013-05-27 | 2019-10-02 | GasPorOx AB | System und verfahren zur bestimmung einer konzentration eines gases in einem behälter |
US20150063408A1 (en) * | 2013-09-04 | 2015-03-05 | Decagon Devices, Inc. | Gaseous concentration measurement apparatus |
GB2528113A (en) * | 2014-07-10 | 2016-01-13 | Airbus Operations Ltd | Aircraft fuel system |
US9874655B2 (en) * | 2014-10-31 | 2018-01-23 | Schlumberger Technology Corporation | Fluid analyzer using absorption spectroscopy |
US10643008B2 (en) | 2014-11-11 | 2020-05-05 | Spectrasensors, Inc. | Target analyte detection and quantification in sample gases with complex background compositions |
US9921150B2 (en) | 2016-02-04 | 2018-03-20 | Simmonds Precision Products, Inc. | Imaging system for fuel tank analysis |
US10424076B2 (en) | 2016-02-04 | 2019-09-24 | Simmonds Precision Products, Inc. | Imaging system for fuel tank analysis |
US10326980B2 (en) | 2016-02-04 | 2019-06-18 | Simmonds Precision Products, Inc. | Imaging system for fuel tank analysis |
FR3054795B1 (fr) * | 2016-08-03 | 2018-07-20 | Zodiac Aerotechnics | Procede et systeme d'inertage d'un reservoir de carburant |
PT109877A (pt) * | 2017-01-26 | 2018-07-26 | Inst Superior Tecnico | Método ótico para a medição da concentração de oxigénio em sistemas de combustível. |
CN107748194A (zh) * | 2017-09-08 | 2018-03-02 | 中国飞行试验研究院 | 基于电化学原理的飞机燃油箱氧浓度机载测试系统及方法 |
US10739257B2 (en) * | 2018-10-02 | 2020-08-11 | Axetris Ag | Method and system for the relative referencing of a target gas in an optical measuring system for laser spectroscopy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5047639A (en) * | 1989-12-22 | 1991-09-10 | Wong Jacob Y | Concentration detector |
EP0874233A2 (de) * | 1997-04-23 | 1998-10-28 | Siemens Aktiengesellschaft | Verfahren zur selektiven Detektion von Gasen und Gassensor zu dessen Durchführung |
EP0984267A1 (de) * | 1998-08-31 | 2000-03-08 | John Tulip | Gasdetektor mit Referenzzelle |
US6136267A (en) * | 1998-05-26 | 2000-10-24 | Bergman Consulting Engineers | Fuel ignition arrester system and method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4934816A (en) * | 1988-05-18 | 1990-06-19 | Southwest Sciences, Incorporated | Laser absorption detection enhancing apparatus and method |
US5317156A (en) * | 1992-01-29 | 1994-05-31 | Sri International | Diagnostic tests using near-infrared laser absorption spectroscopy |
US5625189A (en) * | 1993-04-16 | 1997-04-29 | Bruce W. McCaul | Gas spectroscopy |
US5572031A (en) * | 1994-11-23 | 1996-11-05 | Sri International | Pressure- and temperature-compensating oxygen sensor |
US5650845A (en) * | 1995-05-18 | 1997-07-22 | Aerodyne Research | Optical oxygen concentration monitor |
US5963336A (en) * | 1995-10-10 | 1999-10-05 | American Air Liquide Inc. | Chamber effluent monitoring system and semiconductor processing system comprising absorption spectroscopy measurement system, and methods of use |
GB0303639D0 (en) * | 2003-02-18 | 2003-03-19 | Rolls Royce Plc | A method and apparatus for determining the mass flow through an engine |
-
2004
- 2004-06-08 EP EP04741756A patent/EP1633627A1/de not_active Ceased
- 2004-06-08 US US10/559,261 patent/US7456969B2/en not_active Expired - Fee Related
- 2004-06-08 WO PCT/EP2004/051062 patent/WO2004113169A1/de active Search and Examination
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5047639A (en) * | 1989-12-22 | 1991-09-10 | Wong Jacob Y | Concentration detector |
EP0874233A2 (de) * | 1997-04-23 | 1998-10-28 | Siemens Aktiengesellschaft | Verfahren zur selektiven Detektion von Gasen und Gassensor zu dessen Durchführung |
US6136267A (en) * | 1998-05-26 | 2000-10-24 | Bergman Consulting Engineers | Fuel ignition arrester system and method |
EP0984267A1 (de) * | 1998-08-31 | 2000-03-08 | John Tulip | Gasdetektor mit Referenzzelle |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1816464A1 (de) * | 2006-02-01 | 2007-08-08 | Siemens Aktiengesellschaft | Anordnung zur Konzentrationsessung für Abgaskomponenten im Abgasbereich einer Feuerungsanlage |
DE102006004605A1 (de) * | 2006-02-01 | 2007-08-09 | Siemens Ag | Anordnung zur Konzentrationsessung für Abgaskomponenten im Abgasbereich einer Feuerungsanlage |
DE102006004605B4 (de) * | 2006-02-01 | 2008-10-02 | Siemens Ag | Anordnung zur Konzentrationsmessung für Abgaskomponenten im Abgasbereich einer Feuerungsanlage |
CN101680833B (zh) * | 2007-05-24 | 2013-03-27 | 佐勒技术公司 | 执行吸收光谱法的方法和用于吸收光谱法的设备 |
WO2010081585A1 (de) * | 2009-01-13 | 2010-07-22 | Robert Bosch Gmbh | Messvorrichtung, anordnung und verfahren zur messung eines gehaltes an mindestens einer komponente in einem flüssigen kraftstoff |
DE102012005058A1 (de) | 2012-03-15 | 2013-09-19 | Eads Deutschland Gmbh | Vorrichtung zur Überwachung der Sauerstoffkonzentration in einem Flugzeugtank |
WO2013135232A1 (de) | 2012-03-15 | 2013-09-19 | Eads Deutschland Gmbh | Vorrichtung zur überwachung der sauerstoffkonzentration in einem flugzeug |
DE102012005058B4 (de) * | 2012-03-15 | 2014-08-07 | Eads Deutschland Gmbh | Vorrichtung zur Überwachung der Sauerstoffkonzentration in einem Flugzeugtank |
US10724945B2 (en) | 2016-04-19 | 2020-07-28 | Cascade Technologies Holdings Limited | Laser detection system and method |
US10180393B2 (en) | 2016-04-20 | 2019-01-15 | Cascade Technologies Holdings Limited | Sample cell |
US11519855B2 (en) | 2017-01-19 | 2022-12-06 | Emerson Process Management Limited | Close-coupled analyser |
WO2020027675A1 (pt) | 2018-07-30 | 2020-02-06 | Instituto Superior Técnico | Sensores de oxigénio luminescentes não-metálicos para tanques de combustível de aeronaves |
Also Published As
Publication number | Publication date |
---|---|
US7456969B2 (en) | 2008-11-25 |
EP1633627A1 (de) | 2006-03-15 |
US20060163483A1 (en) | 2006-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1633627A1 (de) | Vorrichtung und verfahren zur berwachung der sauerstoffkonzentration in einem flugzeugtank | |
EP2307876B1 (de) | Verfahren zur laserspektroskopischen detektion von gasen | |
DE69811098T2 (de) | Optische gasdetektion | |
EP2240760B1 (de) | Nichtdispersiver infrarot-gasanalysator | |
DE102012100794B3 (de) | Vorrichtung und Verfahren zum Erfassen von Kontaminationen in einem Hydrauliksystem | |
DE102007010805B3 (de) | Verfahren und Vorrichtung zur Bestimmung der Harnstoffkonzerntration in einer Lösung | |
EP0658264A1 (de) | Mittel zur rauchsimulation für streulichtrauchmelder, verfahren zum abgleich von deren rauchempfindlichkeit und verwendung des mittels | |
EP1183520A2 (de) | Gassensoranordnung | |
DE102004011731A1 (de) | Robuste Palladium-basierte Wasserstoffsensoren | |
EP1183523A1 (de) | Analysegerät | |
DE19900129A1 (de) | Gasqualitätsbestimmung | |
EP1764609B1 (de) | Gasmessgerät | |
EP2482057B1 (de) | Gasanalysator zur Messung des Quecksilbergehalts eines Gases und dessen Kalibrierungsverfahren | |
DE102014104043B4 (de) | Multireflexionszellenanordnung | |
EP3623799A2 (de) | Vorrichtung und verfahren zur messung der räumlichen verteilung der konzentration von verbindungen und deren mischungen in einer flüssigkeit und/oder zur bestimmung des flüssigkeitspegels | |
DE102005045538B3 (de) | Vorrichtung und Verfahren zur Bestimmung des Brechungsindex eines Fluids | |
DE3116344A1 (de) | Verfahren zum erhoehen der messgenauigkeit eines gasanalysators | |
EP1062498B1 (de) | Optischer sensor | |
DE102004028023B4 (de) | Sensoreinheit zur Erfassung eines Fluids, insbesondere zur Erfassung von Erdgas, Kohlenwasserstoffen, Kohlendioxid oder dgl. in Umgebungsluft | |
EP3816609B1 (de) | Vorrichtung und verfahren zur ferndetektion eines zielgases | |
DE4138242C2 (de) | Vorrichtung zur gasanalytischen Brandkontrolle | |
DE102004042483B4 (de) | Vorrichtung und Verfahren zur Bestimmung des Sauerstoffpartialdrucks in Brennstofftanks, insbesondere von Luft- und Raumfahrzeugen, sowie Verwendung der Vorrichtung | |
DE19731241C2 (de) | Vorrichtung und Verfahren zur Bestimmung von Fluidkomponenten und Verfahren zur Herstellung der Vorrichtung | |
DE19932354A1 (de) | Verfahren und Vorrichtung zum Fernnachweis von Kohlenwasserstoffen im untergrund- oder bodennahen Bereich der Atmosphäre | |
EP1463929A1 (de) | Verfahren und anordnung zur fremdgaserkennung in optischen abbildungs- und/oder strahlführungssystemen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004741756 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006163483 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10559261 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2004741756 Country of ref document: EP |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWP | Wipo information: published in national office |
Ref document number: 10559261 Country of ref document: US |