WO2004112233A1 - Polymer actuator - Google Patents

Polymer actuator Download PDF

Info

Publication number
WO2004112233A1
WO2004112233A1 PCT/JP2004/008440 JP2004008440W WO2004112233A1 WO 2004112233 A1 WO2004112233 A1 WO 2004112233A1 JP 2004008440 W JP2004008440 W JP 2004008440W WO 2004112233 A1 WO2004112233 A1 WO 2004112233A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer actuator
exchange resin
actuator element
ion
coating layer
Prior art date
Application number
PCT/JP2004/008440
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Onishi
Shingo Sewa
Original Assignee
Eamex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eamex Corporation filed Critical Eamex Corporation
Publication of WO2004112233A1 publication Critical patent/WO2004112233A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/006Motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution

Definitions

  • the present invention relates to a polymer actuator element that functions as an actuator by bending and deforming an ion-exchange resin molded article, and more particularly, is suitable for fields such as medical equipment, industrial robots, and micromachines.
  • the present invention relates to a polymer activator element used for a polymer.
  • a polymer actuator an ion exchange resin molded product and a metal electrode formed in a mutually insulated state on the surface of the ion exchange resin molded product are provided.
  • a polymer actuator element that functions as an actuator by applying a potential difference between the metal electrodes to cause the ion-exchange resin molded article to bend and deform has been provided (for example, see Patent Document 1). Since such a polymer actuator element has a hollow cylindrical shape or a tubular shape in cross section, it can be used as a medical tube when used in a catheter for introducing a blood vessel, an introduction portion of an endoscope, or the like. Is preferred. When used for artificial muscles or other purposes, a metal layer should be formed on the surface of the ion-exchange resin molded product having the desired shape, such as a membrane, plate, or column, to form a polymer actuator element. Is also possible.
  • Patent Document 1 Patent No. 2961125
  • a polymer actuator element using an ion-exchange resin molded article having a cylindrical cross-section has a potential difference between the metal electrodes, so that the ion-exchange resin is accompanied by ions in the cylindrical ion-exchange resin molded article.
  • Water molecules move to the electrode, and the water content increases near the moving-side electrode, and the molded product expands by swelling.
  • the polymer actuator element bends and deforms in the cylindrical structure. Therefore, if the bending or deformation of the element continues, the local swelling state continues at a portion near the electrode inside the cylindrical structure of the ion-exchange resin molded product.
  • a polymer actuator element using an ion-exchange resin molded product having a cylindrical cross-sectional structure has a lower strength because the ion-exchange resin layer is thinner than an ion-exchange resin molded product having a solid cross-section. small.
  • the membrane-shaped polymer actuator element has a small strength because the ion exchange resin layer is thin.
  • the swelling because of the swelling, the flexibility of the ion exchange resin is small, and the resin is easily cut. Therefore, in a polymer actuator element having an electrode layer formed on an ion-exchange resin molded article, there are issues of improving the durability of the polymer actuator element, preventing deterioration of the electrode, and improving flexibility.
  • An object of the present invention is to prevent the strength of an ion-exchange resin molded product from being reduced and to prevent the electrode from deteriorating even if bending or deformation that does not impair the response of the device to bending or deformation is continued or repeated. It is intended to provide a polymer actuator element having excellent durability by suppressing the above-mentioned problem, and to maintain flexibility even when the polymer actuator element swells.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, in order to solve the above problems, an ion exchange resin molded product and a metal electrode formed on the surface of the ion exchange resin molded product And a coating layer formed of a resin having a flexibility of 200% continuously on the surface of the above-mentioned polymer actuator element. It was adopted.
  • the term “flexibility” refers to the tensile elongation at break (Ultimate Elongation%) in accordance with ASTM D412.
  • the present inventors have developed a polymer actuator element including an ion exchange resin molded product and a metal electrode formed on the surface of the ion exchange resin molded product.
  • the present inventors have also found out that the above problem can be solved by using a polymer actuator element characterized in that a coating layer is continuously formed on the surface of the polymer actuator element with an ion exchange resin.
  • the present invention has been reached. [0008] Therefore, in the polymer actuator element of the present invention, since the resin coating layer is continuously formed on the element surface, the metal electrode is covered with the resin, and the polymer actuator element may be bent or deformed.
  • the coating layer is formed, and the deterioration of the electrodes is suppressed as compared with the case of the polymer actuator element. , Durability is improved. Further, the impact resistance is improved as compared with an element having no covering layer.
  • FIG. 1 is a schematic perspective view of a cylindrical height data element according to one embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of a film-shaped height: data element according to another embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a cylindrical actuator element according to one embodiment of the polymer actuator element of the present invention.
  • reference numeral 1 denotes an ion exchange resin molded product having a cylindrical cross section.
  • Reference numeral 2 denotes a metal electrode formed on the surface of the ion-exchange resin molded product 1 in a mutually insulated state.
  • the metal complex is adsorbed on the surface of the ion-exchange resin molded article 1, the metal complex is reduced by a reducing agent, and the metal is deposited on the surface of the ion-exchange resin molded article 1.
  • the molded article 1 is composed of a metal layer formed from the surface to the inside.
  • Reference numeral 3 denotes a groove-shaped insulating band.
  • the insulating band 3 is formed by irradiating the metal layer formed on the outer surface of the cylindrical ion-exchange resin molded product with, for example, a laser beam to remove the metal layer in the irradiated portion. Therefore, the metal electrode 2 of the present embodiment is composed of a plurality of mutually electrically insulated metal electrodes 2a, 2b, 2c and 2d by a groove-shaped insulating band 3 as shown in the figure.
  • each of lead wires 4a, 4b, 4c, 4d is electrically connected to each of the metal electrodes 2a, 2b, 2c, 2d, and the ion-exchange resin molded product 1 is sandwiched therebetween.
  • the polymer actuator element is formed on the surfaces of the metal electrodes 2a, 2b, 2c, 2d and the surface of the insulating band 3 with a resin or an ion exchange resin having a flexibility of 200%. Covering layer 5 is formed continuously.
  • FIG. 2 is a schematic perspective view of a film-shaped actuator element as an embodiment of the polymer actuator element of the present invention.
  • Metal electrodes 7, 7 ' are formed on the membrane-shaped ion exchange resin molded product 6.
  • coating layers 8 and 8' are formed as resin layers continuous in a plane, respectively.
  • one ends of the lead wires 9 and 9 ′ penetrate through the coating layers 8 and 8 ′, respectively, and are electrically connected to the metal electrodes 7 and 7 ′ to sandwich the ion exchange resin molded product 5.
  • the electrodes 7 and 7' bend in the vertical direction in FIG.
  • the film-like polymer actuator element is formed by laminating an ion exchange resin molded product, a metal electrode, and a coating layer, and has no coating layer on the side surface. good.
  • a coating layer is also formed on the side surface of the polymer actuator element, that is, when the coating layer is formed on the entire surface of the polymer actuator element, the polymer actuator element has excellent durability. .
  • the polymer actuator element of the present embodiment is characterized in that the coating layer is continuously formed on the surface of the metal electrode and the surface of the insulating band.
  • the electrode is prevented from deteriorating against swelling due to water molecules occurring in the vicinity of the electrode inside the electrode, thereby improving durability. Further, the provision of the coating layer improves the flexibility of the device.
  • the coating layer is a resin that is not an ion-exchange resin
  • the polymer actuator element of the present embodiment has a coating layer of a polymer resin formed continuously on the surface of the metal electrode and the surface of the insulating band.
  • the coating layer is an ion exchange resin
  • the coating layer swells with water similarly to the element, so that the element does not lower the swelling curve.
  • a coating layer formed of a resin having a flexibility of 200% or more can be used as the coating layer.
  • a resin having a flexibility of 200% or more it is possible to improve the durability of the polymer actuator element and prevent the electrode from deteriorating without impeding the response of bending or deformation.
  • the coating layer is formed of a thermoplastic elastomer having a degree of flexibility of less than 200%, when the polymer actuator element is fixed and a voltage is applied to the electrode layer to bend or deform, the electrode layer is formed. Since it cannot follow the expansion and contraction of the electrode, the electrode layer is broken at the fixed portion of the polymer actuator element.
  • the flexibility of the coating layer greatly inhibits the curvature.
  • the coating layer of the polymer resin may be provided on the inner peripheral surface of the cylindrical structure of the ion-exchange resin molded article, or may be provided on both the inner peripheral surface and the outer peripheral surface.
  • the method for forming the coating layer is not particularly limited, and can be formed by, for example, coating.
  • the shape of the polymer actuator element is, for example, a film-like structure in which an ion exchange resin layer is sandwiched between a pair of electrode layers. You can.
  • the coating layer can cover the entire surface of the film-like polymer actuator element.
  • the composition of the resin is not particularly limited as long as the flexibility is 200% or more.
  • a flexible thermoplastic polyurethane which is preferred by an elastomer having high flexibility, may be used. Is particularly preferred because of its high adhesiveness.
  • As a flexible thermoplastic polyurethane "Asaflex 825" (200% flexibility, manufactured by Asahi Kasei Corporation) Pelesen 2363_80A (flexibility 550%), Pelecene 2363_80AE (flexibility 650%), Pelecene 2363_90A (flexibility 500%), Pelecene 2363_90AE (flexibility 550%), 'Chemical Co., Ltd.) can be used.
  • the softness may be 200% or more, but it is preferably 600% or more, preferably a softness of 500% or more. It is even better.
  • the multi-layer formed of the resin having a flexibility of 200% or more of the present invention contains a resin having a softness of 200% or more as a base resin. If not reduced by 200%, pigments, fillers and other additives can be included.
  • the coating layer can use a coating layer formed of an ion exchange resin.
  • swelling of the ion exchange resin forming the coating layer is performed by immersing the polymer actuator element having the coating layer formed of the ion exchange resin in water. Occurs. Due to this swelling, the coating layer is easily deformed, and can follow the curve or deformation of the polymer actuator element. It is possible to improve the durability of the polymer actuator element and prevent the electrode from deteriorating without peeling off the electrode.
  • the polymer actuator element in which the coating layer is formed of an ion exchange resin is a polymer actuator element having a coating layer of the resin other than the ion exchange resin because the ion exchange resin layer is permeable to water.
  • the swelling speed is preferable because sufficient swelling can be obtained from the force S without securing the strength to increase the speed.
  • a known ion exchange resin such as a perfluorosulfonic acid resin and a perfluorocarboxylic acid resin can be used.
  • the ion-exchange resin may be a different type of ion-exchange resin from the cylindrical ion-exchange resin molded product, but preferably uses the same type of ion-exchange resin.
  • the thickness of the coating layer of the polymer resin is not limited, it is preferable that the coating layer is formed to have a thickness of 320 ⁇ m, particularly 418 ⁇ m.
  • the thickness of the coating layer of the polymer resin is thinner than 1 ⁇ m, it is not always necessary to secure the strength of the polymer actuator element having a cylindrical cross section. not enough.
  • the thickness of the coating layer of the polymer resin exceeds 20 ⁇ , it is not always sufficient in terms of the quickness of response relating to the bending or deformation of the polymer actuator element.
  • the thickness of the polymer resin coating layer should be 320 ⁇ m In particular, it is preferable to form it with a thickness of 418 ⁇ m.
  • the coating layer of the polymer actuator element of the present invention is formed by a resin having a flexibility of 200% or more or an ion exchange resin as a resin component for forming the layer. I just want to.
  • an ion-exchange resin molded article having a coating layer and a metal electrode layer formed on the surface can be obtained by a known production method.
  • an ion-exchange resin membrane is immersed in an aqueous solution containing a metal complex such as a platinum complex and a gold complex to adsorb the metal complex, and the adsorbed metal complex is reduced with a reducing agent to deposit a metal.
  • a metal complex such as a platinum complex and a gold complex
  • the steps of adsorption and reduction are repeated at least six times in order to secure an amount of metal on the polymer electrolyte that can cause displacement such as bending as an actuator. Can be.
  • the set of the adsorption step and the reduction step performed after the adsorption step are performed repeatedly, and the set is repeated a plurality of times, in order to facilitate the adsorption step after the reduction step, It is preferable to perform a washing step of washing the ion exchange resin membrane on which the metal has been deposited.
  • a swelling step of swelling the ion exchange resin membrane by infiltrating a good solvent or a mixed solvent containing a good solvent is performed as a step before the adsorption step. It is preferred because it can be done.
  • the swollen polymer electrolyte has a predetermined shape, and the thickness of the polymer electrolyte in a swollen state is 110% of the thickness of the polymer electrolyte in a dry state.
  • the swelling step described above can be performed.
  • the good solvent depends on the use of the laminate finally obtained by the electroless plating method.
  • a suitable solvent type can be used depending on the composition of the polymer electrolyte employed.
  • the good solvent may be a mixture of plural kinds of good solvents.
  • As the good solvent for example, methanol, dimethyl sulfoxide, N_methylpyrrolidone, dimethylformamide, ethylene glycol, diethylene glycol, glycerin and the like can be used.
  • the polymer electrolyte is a perfluorocarboxylic acid resin or a perfluorosulfonic acid resin
  • methanol, ethanol, propanol, hexafluoro-2-propanol, diethylene glycol, and glycerin can be used.
  • the polymer electrolyte when the polymer electrolyte is a perfluorocarboxylic acid resin or a perfluorosulfonate resin, methanol or a solvent containing methanol is permeated to swell the polymer electrolyte. It is preferable that the polymer electrolyte swells to a thickness of 110% or more of the thickness of the polymer electrolyte in a dry state. This is because methanol has good workability since it swells easily and is easy to handle.
  • an electrode is formed by growing a metal layer in the inner direction of the polymer electrolyte.
  • a cross-section of the electrode layer can form a fractal structure.
  • the joined body of the polymer electrolyte having the fractal structure and the electrode layer can be largely bent.
  • the polymer is more suitable as a polymer actuator element suitably used in the fields of medical equipment, industrial robots, micromachines and the like.
  • Precipitation step The adsorbed phenanthine-phosphorus gold complex is reduced in an aqueous solution containing sodium sulfite and NaOH to form a gold electrode on the surface of the ion-exchange resin molded product.
  • the temperature of the aqueous solution is set to 6080 ° C., and while the sodium sulfite is gradually added, the phosphorus-phosphorus gold complex is reduced for 6 hours.
  • Washing step Take out the ion-exchange resin molded article with the gold electrode formed on the surface and wash it with 70 ° C water for 1 hour.
  • thermoplastic polyurethane (trade name “Pelecene 2363-80AE”, manufactured by Dow Chemical Co.) was changed to the thermoplastic polyurethane (trade name “Pelecene 2363-90A”, manufactured by Dow Chemical Co., Ltd.)
  • thermoplastic polyurethane (trade name “Pelecene 2363-90A”, manufactured by Dow Chemical Co., Ltd.)
  • Thermoplastic polyurethane (trade name “Pelecene 2363-80AE”, manufactured by Dow Chemical Co.) was converted to ion exchange resin (perfluorosulfonic acid resin, trade name “Flemion Solution FFS-1”, manufactured by Asahi Glass Co., Ltd.
  • ion exchange resin perfluorosulfonic acid resin, trade name “Flemion Solution FFS-1”, manufactured by Asahi Glass Co., Ltd.
  • the polymer actuator device of Example 3 in which a coating layer having a thickness of 7 ⁇ m was formed on the outer surface of the device was obtained. .
  • thermoplastic polyurethane (trade name “Pelecene 2363_80AE”, manufactured by Dow Chemical Co.) was changed to a styrene resin (trade name “Asaflex 825”, manufactured by Asahi Kasei Corporation).
  • a polymer actuator element of Example 4 having a polyurethane resin coating layer having a thickness of 7 ⁇ m formed on the outer surface of was obtained.
  • Adsorption step Dipping for 24 hours in an aqueous solution of phosphoric acid at a phenantine port to adsorb the phosphorous complex at a phenantine port in a molded article.
  • Precipitation step reducing the adsorbed phenantophosphorus gold complex in an aqueous solution containing sodium sulfite and NaOH to form a gold electrode on the surface of the ion-exchange resin molded product.
  • the temperature of the aqueous solution is set to 60-80 ° C, and the sodium phosphite complex is reduced for 6 hours while gradually adding sodium sulfite.
  • Washing step Take out the ion-exchange resin molded article with the gold electrode formed on the surface and wash it with 70 ° C water for 1 hour.
  • Example 1 except that a thermoplastic resin (trade name “Pelecene 2363-80AE”, manufactured by Dow Chemical Co.) was replaced by a polychlorinated vinyl resin (trade name “D2033”, flexibility: 170%, manufactured by Apco).
  • a polymer actuator element of Comparative Example 2 in which a polyvinyl chloride resin coating layer having a film thickness of 5 ⁇ was formed.
  • a platinum plate was used as an opposite electrode at each electrode end, the actuator element was held in water, and connected to a power supply via a lead, and a voltage was applied. A voltage was applied (0.1 ⁇ , ⁇ 2.0 V square wave), and the displacement was measured. The amount of displacement was fixed at a position 6 mm from one end of the actuator of Examples 14 and 14 and Comparative Examples 1 and 2, and +2.0 V was applied at a position 5 mm from the fixed part when fixed. The distance between the position in the case and the position when -2.0 V was applied was measured as the amount of displacement (bending amount).
  • 80% or more of the ⁇ -shaped fractal structure remains.
  • ⁇ : ⁇ -shaped fractal structure remains from 60% to less than 80%.
  • ⁇ -shaped fractal structural force 0% or more and less than 60% remained.
  • test pieces having a length of 10 mm and a width of lmm were prepared. Each test piece was immersed in pure water, and the time required for the ion-exchange resin used as a substrate when forming the electrode to swell by 70% was measured. The test pieces of Examples 13 and 13 and Comparative Example 2 were molded so that the ion-exchange resin at the tip and side surfaces of the polymer actuator element was exposed, Infiltrated.
  • the polymer actuator element of Example 1 which is the polymer actuator element of the present invention, was excellent in electrode deterioration and durability because the coating layer was formed of a thermoplastic polyurethane rubber having a flexibility of 200% or more. .
  • the polymer actuator element of Comparative Example 1 was not provided with the coating layer, and thus had deteriorated electrodes and poor durability.
  • the polymer actuator element of Example 2 which is the polymer actuator element of the present invention also has a covering layer formed of a thermoplastic polyurethane rubber having a flexibility of 500%.
  • the electrode was excellent in deterioration and durability.
  • Example 1 and Example 2 were displaced in comparison with the polymer actuator elements of Example 4 in which the flexibility of the coating layer was 200% because the flexibility of the coating layer was large. Is big. Therefore, the polymer actuator elements of Example 1 and Example 2 are suitable for practical use requiring a large amount of bending, such as a distal end portion of a catheter. Further, since the actuator element of Example 1 has a flexibility of 650% or more, it is superior in the amount of displacement to the actuator element of Example 2, and requires a large amount of bending such as a distal end portion of a catheter. It is particularly suitable for various uses.
  • the polymer actuator element of Example 3 which is the polymer actuator element of the present invention, had excellent electrode deterioration and durability because the coating layer was formed of an ion exchange resin.
  • the time required for the polymer actuator element of Example 3 was less than 1/6 of the time required for swelling as compared with the polymer actuator elements of Examples 1 and 2 compared to the polymer actuator elements of Examples 1 and 2. That is, since the polymer actuator element of Example 3 can be used as an actuator in an extremely short time after being immersed in water such as an electrolytic solution, it is excellent in workability as an actuator element.
  • the polymer actuator of Comparative Example 2 uses a resin having a flexibility of less than 200% as the coating layer, and thus requires a large amount of curvature such as a tip portion of a catheter where displacement is small. Was not suitable for practical use.
  • the present invention is suitable as a polymer actuator element because it has excellent durability and electrode deterioration resistance as a polymer actuator element that functions as an actuator by bending and deforming an ion exchange resin molded product.
  • it is suitable as a polymer actuator element suitably used in the fields of medical equipment, industrial robots, micromachines and the like.
  • the polymer actuator element of the present invention when the coating layer is a coating layer in which the coating layer is continuously formed by ion exchange resin, the ion exchange resin layer is in a swelling state sufficient for driving. Since the required time is short, it is suitable as a polymer actuator element driven in water, particularly as an actuator element for driving a fish model.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Micromachines (AREA)

Abstract

A polymer actuator comprising an ion exchange resin molding and, superimposed on the surface thereof, a metal electrode, wherein the surface of the polymer actuator is continuously provided with a coating layer of ion exchange resin or thermoplastic urethane rubber of 200% flexibility. Thus, there is provided a polymer actuator of excellent durability wherein not only can the strength decrease of the ion exchange resin molding be prevented but also the electrode deterioration can be inhibited even when curving or deformation of the polymer actuator is continuously or repeatedly carried out without detriment to the curving or deformation response of the polymer actuator.

Description

明 細 書  Specification
高分子ァクチユエータ素子  Polymer actuator element
技術分野  Technical field
[0001] 本発明は、イオン交換樹脂成形品を湾曲および変形させることによりァクチユエ一 タとして機能する高分子ァクチユエータ素子に関し、さらに詳細には、医療機器や産 業用ロボット、マイクロマシンなどの分野に好適に用いられる高分子ァクチユエータ素 子に関する。  The present invention relates to a polymer actuator element that functions as an actuator by bending and deforming an ion-exchange resin molded article, and more particularly, is suitable for fields such as medical equipment, industrial robots, and micromachines. The present invention relates to a polymer activator element used for a polymer.
背景技術  Background art
[0002] 従来、高分子ァクチユエータとして、イオン交換樹脂成形品と、該イオン交換樹脂 成形品の表面に相互に絶縁状態で形成された金属電極とを備え、前記イオン交換 樹脂成形品の含水状態において、前記金属電極間に電位差をかけて、イオン交換 樹脂成形品に湾曲および変形を生じさせることによりァクチユエータとして機能する 高分子ァクチユエータ素子が提供されている(例えば、特許文献 1を参照のこと)。か かる高分子ァクチユエータ素子は、断面が円筒の中空状乃至チューブ状をなしてレ、 ることから、血管揷入用カテーテルや内視鏡の導入部等に使用して医療用チューブ として用いられる点で好ましい。また、人工筋肉等の他の用途に用いる場合には、膜 状、板状、柱状等の所望の形状のイオン交換樹脂成形品の表面に金属層を形成し、 高分子ァクチユエータ素子を形成することも可能である。  Conventionally, as a polymer actuator, an ion exchange resin molded product and a metal electrode formed in a mutually insulated state on the surface of the ion exchange resin molded product are provided. A polymer actuator element that functions as an actuator by applying a potential difference between the metal electrodes to cause the ion-exchange resin molded article to bend and deform has been provided (for example, see Patent Document 1). Since such a polymer actuator element has a hollow cylindrical shape or a tubular shape in cross section, it can be used as a medical tube when used in a catheter for introducing a blood vessel, an introduction portion of an endoscope, or the like. Is preferred. When used for artificial muscles or other purposes, a metal layer should be formed on the surface of the ion-exchange resin molded product having the desired shape, such as a membrane, plate, or column, to form a polymer actuator element. Is also possible.
特許文献 1 :特許第 2961125号公報  Patent Document 1: Patent No. 2961125
発明の開示  Disclosure of the invention
[0003] 断面円筒状のイオン交換樹脂成形品を用いた高分子ァクチユエータ素子は、前記 金属電極間に電位差をかけることで、その円筒状のイオン交換樹脂成形品の中で、 イオンに伴われて水分子が電極に移動して、移動側の電極近傍で含水率が増大し て成形品が膨潤することによって伸びる。その伸びに応じて、前記高分子ァクチユエ ータ素子は、前記円筒構造において湾曲および変形をする。従って、この素子の湾 曲若しくは変形が持続すると、イオン交換樹脂成形品の円筒構造内部の電極近傍の 部位で局部的な膨潤状態が継続することになる。また、この素子の湾曲若しくは変形 が繰り返されると、イオン交換樹脂成形品の円筒構造内部の電極近傍の部位で膨潤 状態と非膨潤状態が繰り返されることになる。因って、これらの現象は、経時的にみて 、イオン交換樹脂成形品の強度を低下させ、また当該イオン交換樹脂成形品の表面 に形成された電極の劣化を引き起こす。 [0003] A polymer actuator element using an ion-exchange resin molded article having a cylindrical cross-section has a potential difference between the metal electrodes, so that the ion-exchange resin is accompanied by ions in the cylindrical ion-exchange resin molded article. Water molecules move to the electrode, and the water content increases near the moving-side electrode, and the molded product expands by swelling. In response to the elongation, the polymer actuator element bends and deforms in the cylindrical structure. Therefore, if the bending or deformation of the element continues, the local swelling state continues at a portion near the electrode inside the cylindrical structure of the ion-exchange resin molded product. In addition, bending or deformation of this element Is repeated, the swelling state and the non-swelling state are repeated at a portion near the electrode inside the cylindrical structure of the ion-exchange resin molded article. Therefore, these phenomena decrease the strength of the ion-exchange resin molded product over time, and cause deterioration of the electrode formed on the surface of the ion-exchange resin molded product.
[0004] 特に、断面が円筒構造のイオン交換樹脂成形品を用いた高分子ァクチユエータ素 子は、断面中実構造のイオン交換樹脂成形品に比べてイオン交換樹脂層が薄いた めに、強度が小さい。同様に、膜状の高分子ァクチユエータ素子もイオン交換樹脂層 が薄いため、強度が小さい。また、膨潤しているためにイオン交換樹脂の柔軟度が小 さぐ切断されやすい。したがって、イオン交換樹脂成形品上に電極層が形成された 高分子ァクチユエータ素子は、高分子ァクチユエータ素子の耐久性の向上、電極の 劣化の防止及び柔軟度の向上が課題となる。  [0004] In particular, a polymer actuator element using an ion-exchange resin molded product having a cylindrical cross-sectional structure has a lower strength because the ion-exchange resin layer is thinner than an ion-exchange resin molded product having a solid cross-section. small. Similarly, the membrane-shaped polymer actuator element has a small strength because the ion exchange resin layer is thin. In addition, because of the swelling, the flexibility of the ion exchange resin is small, and the resin is easily cut. Therefore, in a polymer actuator element having an electrode layer formed on an ion-exchange resin molded article, there are issues of improving the durability of the polymer actuator element, preventing deterioration of the electrode, and improving flexibility.
[0005] 本発明の目的は、当該素子の湾曲もしくは変形の応答性を阻害することなぐ湾曲 若しくは変形が継続或いは繰り返し行われても、イオン交換樹脂成形品の強度低下 を防ぐとともに、電極の劣化を抑制して、耐久性の優れた高分子ァクチユエータ素子 を提供すること、及び該高分子ァクチユエータ素子が膨潤しても柔軟度を維持するこ とである。  [0005] An object of the present invention is to prevent the strength of an ion-exchange resin molded product from being reduced and to prevent the electrode from deteriorating even if bending or deformation that does not impair the response of the device to bending or deformation is continued or repeated. It is intended to provide a polymer actuator element having excellent durability by suppressing the above-mentioned problem, and to maintain flexibility even when the polymer actuator element swells.
[0006] 本発明者らは、上記目的を達成するため鋭意検討した結果、上記課題を解決する ために、イオン交換樹脂成形品と、該イオン交換樹脂成形品の表面に形成された金 属電極とを備えた高分子ァクチユエータ素子であって、上記高分子ァクチユエータ素 子の表面に、柔軟度が 200%である樹脂により被覆層が連続して形成されていること を特徴とする高分子ァクチユエータ素子を採用した。なお、本願において、柔軟度と は、 ASTM D412に準拠する引張破断伸び(Ultimate Elongation%)をレ、うも のである。  The present inventors have conducted intensive studies to achieve the above object, and as a result, in order to solve the above problems, an ion exchange resin molded product and a metal electrode formed on the surface of the ion exchange resin molded product And a coating layer formed of a resin having a flexibility of 200% continuously on the surface of the above-mentioned polymer actuator element. It was adopted. In the present application, the term “flexibility” refers to the tensile elongation at break (Ultimate Elongation%) in accordance with ASTM D412.
[0007] また、本発明者らは、上記課題を解決するために、イオン交換樹脂成形品と、該ィ オン交換樹脂成形品の表面に形成された金属電極とを備えた高分子ァクチユエータ 素子であって、上記高分子ァクチユエータ素子の表面に、イオン交換樹脂により被覆 層が連続して形成されていることを特徴とする高分子ァクチユエータ素子を用いるこ とにより上記課題を解決することをも見出し、本発明に至った。 [0008] 従って、本発明の高分子ァクチユエータ素子は、上記素子表面に樹脂の被覆層が 連続形成されていることから、金属電極が樹脂により被覆され、当該高分子ァクチュ エータ素子の湾曲若しくは変形にかかわる速い応答性を確保しながら、湾曲若しくは 変形が継続或いは繰り返し行われても、該被覆層が形成されてレ、なレ、高分子ァクチ ユエータ素子と比較して、電極の劣化が抑制されて、耐久性が向上する。また、該被 覆層が形成されていない素子として比較して、耐衝撃性が向上する。 [0007] In order to solve the above-mentioned problems, the present inventors have developed a polymer actuator element including an ion exchange resin molded product and a metal electrode formed on the surface of the ion exchange resin molded product. The present inventors have also found out that the above problem can be solved by using a polymer actuator element characterized in that a coating layer is continuously formed on the surface of the polymer actuator element with an ion exchange resin. The present invention has been reached. [0008] Therefore, in the polymer actuator element of the present invention, since the resin coating layer is continuously formed on the element surface, the metal electrode is covered with the resin, and the polymer actuator element may be bent or deformed. Even if the bending or deformation is continued or repeated while ensuring the fast response involved, the coating layer is formed, and the deterioration of the electrodes is suppressed as compared with the case of the polymer actuator element. , Durability is improved. Further, the impact resistance is improved as compared with an element having no covering layer.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
[0009] [図 1]図 1は、本発明の一の実施態様である円筒状高: ータ素子の概 略斜視図である。  FIG. 1 is a schematic perspective view of a cylindrical height data element according to one embodiment of the present invention.
[図 2]図 2は、本発明の他の実施態様である膜状高: ータ素子の概略 斜視図である。  FIG. 2 is a schematic perspective view of a film-shaped height: data element according to another embodiment of the present invention.
符号の説明  Explanation of reference numerals
[0010] 円筒構造のイオン交換樹脂成形クロ口  [0010] Ion-exchange resin molded black mouth with cylindrical structure
2a, 2b、 2c、 2d  2a, 2b, 2c, 2d
3  Three
4a、 4b、 4c、 4d リード線  4a, 4b, 4c, 4d lead wire
5 被覆層  5 Coating layer
6 膜状のイオン交換樹脂成形品  6 Membranous ion-exchange resin molded product
7, 7 '  7, 7 '
8, 8 '  8, 8 '
9, 9 ' リード線  9, 9 'Lead wire
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 図 1は、本発明の高分子ァクチユエータ素子の一実施態様にかかる円筒状のァク チユエータ素子の概略斜視図である。図 1において、 1は断面が円筒構造のイオン交 換樹脂成形品である。 2はイオン交換樹脂成形品 1の表面に相互に絶縁状態で形成 された金属電極である。本実施態様の金属電極 2は、イオン交換樹脂成形品 1の表 面に金属錯体を吸着させ、還元剤により該金属錯体を還元して、前記イオン交換樹 脂成形品 1の表面に金属を析出させ、これを繰り返すことによって、イオン交換樹脂 成形品 1の表面から内部へと形成する金属層にて構成している。 FIG. 1 is a schematic perspective view of a cylindrical actuator element according to one embodiment of the polymer actuator element of the present invention. In FIG. 1, reference numeral 1 denotes an ion exchange resin molded product having a cylindrical cross section. Reference numeral 2 denotes a metal electrode formed on the surface of the ion-exchange resin molded product 1 in a mutually insulated state. In the metal electrode 2 of the present embodiment, the metal complex is adsorbed on the surface of the ion-exchange resin molded article 1, the metal complex is reduced by a reducing agent, and the metal is deposited on the surface of the ion-exchange resin molded article 1. By repeating this, ion-exchange resin The molded article 1 is composed of a metal layer formed from the surface to the inside.
[0012] 3は溝形状の絶縁帯である。この絶縁帯 3は、円筒状イオン交換樹脂成形品の外 表面に形成された金属層を例えばレーザー光を照射することによって、当該照射部 分の金属層を除去して形成している。因って、本実施態様の金属電極 2は、図示の 通り、溝形状の絶縁帯 3によって複数の相互に電気的に絶縁された金属電極 2a,2b, 2c, 2dで構成されている。 [0012] Reference numeral 3 denotes a groove-shaped insulating band. The insulating band 3 is formed by irradiating the metal layer formed on the outer surface of the cylindrical ion-exchange resin molded product with, for example, a laser beam to remove the metal layer in the irradiated portion. Therefore, the metal electrode 2 of the present embodiment is composed of a plurality of mutually electrically insulated metal electrodes 2a, 2b, 2c and 2d by a groove-shaped insulating band 3 as shown in the figure.
[0013] この高分子ァクチユエータ素子は、この各金属電極 2a、 2b、 2c、 2dに、リード線 4a 、 4b、 4c、 4dの一端をそれぞれ電気的に接続し、イオン交換樹脂成形品 1を挟んで 互いに対向する電極 4aと 4c、 4bと 4dに電圧を印加することにより、 4方向に湾曲する ことができ、し力、もこの湾曲の方向を組み合わせることより、回転できるようになつてい る。 In this polymer actuator element, one end of each of lead wires 4a, 4b, 4c, 4d is electrically connected to each of the metal electrodes 2a, 2b, 2c, 2d, and the ion-exchange resin molded product 1 is sandwiched therebetween. By applying a voltage to the electrodes 4a and 4c and 4b and 4d opposed to each other, it is possible to bend in four directions, and the force can be rotated by combining the directions of this bend.
[0014] この高分子ァクチユエータ素子は、図示の通り、上記金属電極 2a、 2b、 2c、 2dの 表面と前記絶縁帯 3の表面に、柔軟度が 200%である樹脂若しくはイオン交換樹脂 により形成された被覆層 5が連続して形成されている。  As shown in the figure, the polymer actuator element is formed on the surfaces of the metal electrodes 2a, 2b, 2c, 2d and the surface of the insulating band 3 with a resin or an ion exchange resin having a flexibility of 200%. Covering layer 5 is formed continuously.
[0015] 図 2は、本発明の高分子ァクチユエータ素子の一実施態様例である膜状ァクチユエ ータ素子の概略斜視図である。膜状のイオン交換樹脂成型品 6上には、金属電極 7 、 7 'が形成されている。金属電極 7、 7 '上には、それぞれ被覆層 8、 8 'が平面的に連 続した樹脂層として形成されている。この高分子ァクチユエータ素子は、リード線 9、 9 'の一端をそれぞれ被覆層 8、 8 'を貫通して金属電極 7、 7 'に電気的に接続し、ィォ ン交換樹脂成形品 5を挟んで互いに対向する電極 7、 7 'に電圧を印加することにより 、図 2の上下方向に湾曲する。前記の膜状の高分子ァクチユエータ素子は、イオン交 換樹脂成型品、金属電極及び被覆層が積層され形成されて、側面に被覆層が形成 されていないが、側面に被覆層を形成しても良い。前記高分子ァクチユエータ素子 の側面にも被覆層を形成した場合、即ち前記高分子ァクチユエータ素子の全面に被 覆層を形成した場合には、前記高分子ァクチユエータ素子は、優れた耐久性を有す る。  FIG. 2 is a schematic perspective view of a film-shaped actuator element as an embodiment of the polymer actuator element of the present invention. Metal electrodes 7, 7 'are formed on the membrane-shaped ion exchange resin molded product 6. On the metal electrodes 7 and 7 ', coating layers 8 and 8' are formed as resin layers continuous in a plane, respectively. In this polymer actuator element, one ends of the lead wires 9 and 9 ′ penetrate through the coating layers 8 and 8 ′, respectively, and are electrically connected to the metal electrodes 7 and 7 ′ to sandwich the ion exchange resin molded product 5. By applying a voltage to the electrodes 7 and 7 'opposed to each other, the electrodes 7 and 7' bend in the vertical direction in FIG. The film-like polymer actuator element is formed by laminating an ion exchange resin molded product, a metal electrode, and a coating layer, and has no coating layer on the side surface. good. When a coating layer is also formed on the side surface of the polymer actuator element, that is, when the coating layer is formed on the entire surface of the polymer actuator element, the polymer actuator element has excellent durability. .
[0016] 従って、本実施態様の高分子ァクチユエータ素子は、上記金属電極の表面と前記 絶縁帯の表面に前記被覆層が連続形成されていることから、イオン交換樹脂成形品 の内部の電極近傍の部位にて起こる水分子による膨潤に対して、電極の劣化が抑制 されて、耐久性が向上する。また、前記被覆層を設けることで素子の柔軟度が向上す る。被覆層がイオン交換樹脂でない樹脂の場合、本実施態様の高分子ァクチユエ一 タ素子は、上記金属電極の表面と前記絶縁帯の表面に高分子樹脂の被覆層が連続 形成されていることから、例えばこれを医療機器または器具として生体内で使用する 際に、周りがたとえ電解質であっても漏電することもなぐ素子内のイオンと置換して 変位性能の劣化を起こすこともなレ、。また、素子表面において電気分解が起こり、表 面に気泡が付着することも抑制できる。被覆層がイオン交換樹脂の場合、被覆層が 素子と同様に水を含み膨潤するため、素子が膨潤しゃすぐ湾曲を低下させない。 [0016] Therefore, the polymer actuator element of the present embodiment is characterized in that the coating layer is continuously formed on the surface of the metal electrode and the surface of the insulating band. The electrode is prevented from deteriorating against swelling due to water molecules occurring in the vicinity of the electrode inside the electrode, thereby improving durability. Further, the provision of the coating layer improves the flexibility of the device. When the coating layer is a resin that is not an ion-exchange resin, the polymer actuator element of the present embodiment has a coating layer of a polymer resin formed continuously on the surface of the metal electrode and the surface of the insulating band. For example, when this is used in a living body as a medical device or instrument, even if the surroundings are electrolyte, it does not cause the leakage of electricity even if it is replaced by the ions in the element, and the displacement performance will not deteriorate. In addition, it is also possible to suppress the occurrence of electrolysis on the element surface and adhesion of bubbles to the surface. In the case where the coating layer is an ion exchange resin, the coating layer swells with water similarly to the element, so that the element does not lower the swelling curve.
[0017] 本発明において、前記被覆層は、柔軟度が 200%以上である樹脂により形成され た被覆層を用いることができる。前記被覆層の柔軟度が 200%以上である樹脂により 形成されることにより、湾曲もしくは変形の応答性を阻害することなぐ高分子ァクチュ エータ素子の耐久性の向上及び電極の劣化の防止をすることができる。前記被覆層 が柔軟度 200%未満である熱可塑性エラストマ一により形成された場合には、高分 子ァクチユエータ素子を固定して電極層に電圧を印加させて湾曲若しくは変形させ た場合に、電極層の伸縮に追随できないために高分子ァクチユエータ素子の固定部 分で電極層の破断が生じる。あるいは、前記被覆層の柔軟度が湾曲を大きく阻害す る。前記高分子樹脂の被覆層を、イオン交換樹脂成形品の円筒構造体の内周面に 設けられていてもよぐまた内周面、外周面の双方に設けられていてもよレ、。また、前 記被覆層の形成方法も格別限定されず、例えばコーティングによって形成することが できる。なお、上述では、円筒状の構造体の場合を述べたが、高分子ァクチユエータ 素子の形状は、例えば、膜状であって、イオン交換樹脂層が 1対の電極層に挟まれ る構造であってもよレ、。この膜状構造の場合において、前記被覆層は、膜状の高分 子ァクチユエータ素子の全面を覆うことができる。  In the present invention, as the coating layer, a coating layer formed of a resin having a flexibility of 200% or more can be used. By forming the coating layer from a resin having a flexibility of 200% or more, it is possible to improve the durability of the polymer actuator element and prevent the electrode from deteriorating without impeding the response of bending or deformation. Can be. When the coating layer is formed of a thermoplastic elastomer having a degree of flexibility of less than 200%, when the polymer actuator element is fixed and a voltage is applied to the electrode layer to bend or deform, the electrode layer is formed. Since it cannot follow the expansion and contraction of the electrode, the electrode layer is broken at the fixed portion of the polymer actuator element. Alternatively, the flexibility of the coating layer greatly inhibits the curvature. The coating layer of the polymer resin may be provided on the inner peripheral surface of the cylindrical structure of the ion-exchange resin molded article, or may be provided on both the inner peripheral surface and the outer peripheral surface. Further, the method for forming the coating layer is not particularly limited, and can be formed by, for example, coating. In the above description, the case of a cylindrical structure has been described, but the shape of the polymer actuator element is, for example, a film-like structure in which an ion exchange resin layer is sandwiched between a pair of electrode layers. You can. In the case of this film-like structure, the coating layer can cover the entire surface of the film-like polymer actuator element.
[0018] 前記樹脂は、柔軟度が 200%以上であれば組成が特に限定されるものではないが 、柔軟性に富んだエラストマ一が好ましぐ柔軟な熱可塑性ポリウレタンを用いること が、柔軟度が大きく密着性が良好であるために特に好ましい。柔軟な熱可塑性ポリウ レタンとしては、商品名「アサフレックス 825」(柔軟度 200%、旭化成社製)、商品 名「ペレセン 2363_80A」(柔軟度 550%)、 「ペレセン 2363_80AE」(柔軟度 65 0%)、 「ペレセン 2363_90A」(柔軟度 500%)、 「ペレセン 2363_90AE」(柔軟 度 550%)、(以上、ダウ'ケミカル社製)を用いることができる。また、前記柔軟度は、 柔軟度が 200%以上であれば良いが、被覆層による影響により湾曲の障害が小さい こと力 、柔軟度が 500%以上であることが好ましぐ 600%以上であることが更に好 ましレ、。なお、本発明の柔軟度 200%以上である樹脂により形成された被複層は、柔 軟度が 200%以上である樹脂を基体樹脂として含むものであるが、被複層の層全体 として柔軟度が 200%を低下しなければ、顔料、充填剤、及びその他の添加剤を含 むことができる。 [0018] The composition of the resin is not particularly limited as long as the flexibility is 200% or more. However, the use of a flexible thermoplastic polyurethane, which is preferred by an elastomer having high flexibility, may be used. Is particularly preferred because of its high adhesiveness. As a flexible thermoplastic polyurethane, "Asaflex 825" (200% flexibility, manufactured by Asahi Kasei Corporation) Pelesen 2363_80A (flexibility 550%), Pelecene 2363_80AE (flexibility 650%), Pelecene 2363_90A (flexibility 500%), Pelecene 2363_90AE (flexibility 550%), 'Chemical Co., Ltd.) can be used. The softness may be 200% or more, but it is preferably 600% or more, preferably a softness of 500% or more. It is even better. The multi-layer formed of the resin having a flexibility of 200% or more of the present invention contains a resin having a softness of 200% or more as a base resin. If not reduced by 200%, pigments, fillers and other additives can be included.
[0019] 本発明において、前記被覆層は、イオン交換樹脂により形成された被覆層を用い ること力 Sできる。本発明の高分子ァクチユエータ素子を水中で駆動させる場合には、 イオン交換樹脂により形成された被覆層を備えた高分子ァクチユエータ素子を水中 に浸漬させることにより、被覆層を形成するイオン交換樹脂の膨潤が生じる。この膨 潤により、前記被覆層は、変形が容易となり、高分子ァクチユエータ素子の湾曲若し くは変形に追随することができるので、湾曲もしくは変形の応答性を阻害することなく 、し力も被覆層の剥離を生じることなしに、高分子ァクチユエータ素子の耐久性の向 上及び電極の劣化の防止をすることができる。  [0019] In the present invention, the coating layer can use a coating layer formed of an ion exchange resin. When the polymer actuator element of the present invention is driven in water, swelling of the ion exchange resin forming the coating layer is performed by immersing the polymer actuator element having the coating layer formed of the ion exchange resin in water. Occurs. Due to this swelling, the coating layer is easily deformed, and can follow the curve or deformation of the polymer actuator element. It is possible to improve the durability of the polymer actuator element and prevent the electrode from deteriorating without peeling off the electrode.
[0020] また、前記被覆層をイオン交換樹脂によって形成した高分子ァクチユエータ素子は 、当該イオン交換樹脂層が水を通すため、イオン交換樹脂以外の前記樹脂の被覆 層を備えた高分子ァクチユエータ素子と比較して、膨潤速度が速ぐ強度を確保しな 力 Sら十分な膨潤が得られる点で好ましい。イオン交換樹脂としては、例えばパーフル ォロスルホン酸樹脂、パーフルォロカルボン酸樹脂など公知のイオン交換樹脂を用 レ、ること力できる。なお、イオン交換樹脂は前記円筒状のイオン交換樹脂成形品と別 種のイオン交換樹脂を用いることもできるが、同種のイオン交換樹脂を用いることが 好ましい。  [0020] Further, the polymer actuator element in which the coating layer is formed of an ion exchange resin is a polymer actuator element having a coating layer of the resin other than the ion exchange resin because the ion exchange resin layer is permeable to water. In comparison, the swelling speed is preferable because sufficient swelling can be obtained from the force S without securing the strength to increase the speed. As the ion exchange resin, a known ion exchange resin such as a perfluorosulfonic acid resin and a perfluorocarboxylic acid resin can be used. The ion-exchange resin may be a different type of ion-exchange resin from the cylindrical ion-exchange resin molded product, but preferably uses the same type of ion-exchange resin.
[0021] なお、前記高分子樹脂の被覆層の厚みも限定されないが、 3 20 x m、特に 4一 8 μ mの厚みで形成することが好ましい。前記高分子樹脂の被覆層の厚みが 1 μ mより 薄い場合は、断面円筒状の高分子ァクチユエータ素子において強度確保が必ずしも 十分でない。一方、前記高分子樹脂の被覆層の厚みが 20 μ ΐηを超える場合は、当 該高分子ァクチユエータ素子の湾曲若しくは変形にかかわる応答性の迅速性の点で 必ずしも十分でない。断面円筒状の高分子ァクチユエータ素子において、素子の湾 曲若しくは変形についての優れた応答性を確保しつつ、強度の向上を図るには、前 記高分子樹脂の被覆層の厚みを 3 20 μ m、特に 4一 8 μ mの厚みで形成すること が好適である。 Although the thickness of the coating layer of the polymer resin is not limited, it is preferable that the coating layer is formed to have a thickness of 320 × m, particularly 418 μm. When the thickness of the coating layer of the polymer resin is thinner than 1 μm, it is not always necessary to secure the strength of the polymer actuator element having a cylindrical cross section. not enough. On the other hand, when the thickness of the coating layer of the polymer resin exceeds 20 μΐη, it is not always sufficient in terms of the quickness of response relating to the bending or deformation of the polymer actuator element. In order to improve the strength of a polymer actuator element with a cylindrical cross-section while ensuring excellent responsiveness to bending or deformation of the element, the thickness of the polymer resin coating layer should be 320 μm In particular, it is preferable to form it with a thickness of 418 μm.
[0022] 本発明の高分子ァクチユエータ素子の被覆層は、層を形成するための樹脂成分と して、柔軟度が 200%以上である樹脂、またはイオン交換樹脂により被覆層が連続し て形成されていれば良い。  [0022] The coating layer of the polymer actuator element of the present invention is formed by a resin having a flexibility of 200% or more or an ion exchange resin as a resin component for forming the layer. I just want to.
[0023] 本発明の高分子ァクチユエータ素子において、被覆層が形成される、表面に金属 電極層が形成されたイオン交換樹脂成形品は、公知の製造方法により得ることがで きる。例えば、イオン交換樹脂膜を白金錯体ゃ金錯体等の金属錯体を含む水溶液 中に浸漬することにより金属錯体を吸着させ、吸着された金属錯体を還元剤で還元 させて金属を析出させる無電解メツキ法により電極の形成を行い、この吸着'還元の 工程を繰り返し行うことにより、前記金属電極層が形成されたイオン交換樹脂成形品 を得ること力 Sできる。  In the polymer actuator device of the present invention, an ion-exchange resin molded article having a coating layer and a metal electrode layer formed on the surface can be obtained by a known production method. For example, an ion-exchange resin membrane is immersed in an aqueous solution containing a metal complex such as a platinum complex and a gold complex to adsorb the metal complex, and the adsorbed metal complex is reduced with a reducing agent to deposit a metal. By forming an electrode by the method and repeating the adsorption and reduction steps, it is possible to obtain an ion exchange resin molded article having the metal electrode layer formed thereon.
[0024] 吸着 '還元の工程を繰り返しは、ァクチユエータとして屈曲等の変位をすることがで きるような金属量を高分子電解質上に確保するために、それぞれの工程が 6回以上 繰り返して行うことができる。吸着工程と該吸着工程の後に行われる還元工程を組と して、この組を複数繰り返して行う場合には、還元工程の後に、吸着工程を容易に行 うことができるようにするために、金属が析出したイオン交換樹脂膜を洗浄する洗浄 工程を行うことが好ましい。また、前記吸着工程の前工程として、良溶媒または良溶 媒を含む混合溶媒を浸透させてイオン交換樹脂膜を膨潤させる膨潤工程を行うこと 力 従来に比べてより大きな屈曲をするァクチユエータ素子が得られることから好まし レ、。前記膨潤工程は、膨潤した前記高分子電解質が所定の形状を有し、前記高分 子電解質の膨潤した状態での厚さが前記高分子電解質の乾燥した状態での厚さに 対して 110%以上である膨潤工程とすることができる。  [0024] The steps of adsorption and reduction are repeated at least six times in order to secure an amount of metal on the polymer electrolyte that can cause displacement such as bending as an actuator. Can be. When the set of the adsorption step and the reduction step performed after the adsorption step are performed repeatedly, and the set is repeated a plurality of times, in order to facilitate the adsorption step after the reduction step, It is preferable to perform a washing step of washing the ion exchange resin membrane on which the metal has been deposited. In addition, as a step before the adsorption step, a swelling step of swelling the ion exchange resin membrane by infiltrating a good solvent or a mixed solvent containing a good solvent is performed. It is preferred because it can be done. In the swelling step, the swollen polymer electrolyte has a predetermined shape, and the thickness of the polymer electrolyte in a swollen state is 110% of the thickness of the polymer electrolyte in a dry state. The swelling step described above can be performed.
[0025] 前記良溶媒は、無電解メツキ方法により最終的に得られる積層体の用途等に応じ て採用される高分子電解質の組成に応じて、適した溶媒種を用いることができる。前 記良溶媒は、複数種類の良溶媒を混合して用いても良い。前記良溶媒としては、例 えば、メタノーノレ、ジメチルスルホキシド、 N_メチルピロリドン、ジメチルホルムアミド、 エチレングリコール、ジエチレングリコール、グリセリン等を用いることができる。前記 高分子電解質力 パーフルォロカルボン酸樹脂またはパーフルォロスルホン酸樹脂 である場合には、メタノーノレ、エタノール、プロパノール、へキサフルオロー 2_プロパノ ール、ジエチレングリコール、グリセリンを用いることができる。特に、前記膨潤工程に ぉレ、て、前記高分子電解質がパーフルォロカルボン酸樹脂またはパーフルォロスル ホン酸樹脂である場合に、メタノールまたはメタノールを含む溶媒を浸透させて、膨 前記高分子電解質の膨潤した状態での厚さを前記高分子電解質の乾燥した状態で の厚さに対して 110%以上に膨潤することが好ましい。これは、メタノーノレは、膨潤が しゃすく取り扱いが容易であるので、作業性が良好であるからである。 [0025] The good solvent depends on the use of the laminate finally obtained by the electroless plating method. A suitable solvent type can be used depending on the composition of the polymer electrolyte employed. The good solvent may be a mixture of plural kinds of good solvents. As the good solvent, for example, methanol, dimethyl sulfoxide, N_methylpyrrolidone, dimethylformamide, ethylene glycol, diethylene glycol, glycerin and the like can be used. When the polymer electrolyte is a perfluorocarboxylic acid resin or a perfluorosulfonic acid resin, methanol, ethanol, propanol, hexafluoro-2-propanol, diethylene glycol, and glycerin can be used. In particular, in the swelling step, when the polymer electrolyte is a perfluorocarboxylic acid resin or a perfluorosulfonate resin, methanol or a solvent containing methanol is permeated to swell the polymer electrolyte. It is preferable that the polymer electrolyte swells to a thickness of 110% or more of the thickness of the polymer electrolyte in a dry state. This is because methanol has good workability since it swells easily and is easy to handle.
[0026] このようにして得られた高分子電解質と電極層との積層体は、高分子電解質の内 部方向に金属層が成長して電極が形成されており、高分子電解質と電極層との界面 において、電極層の断面がフラクタル状の構造を形成することができる。前記フラクタ ル構造を備えた高分子電解質と電極層の接合体は、大きな屈曲をすることができる。 また、この様な膨潤工程を用いた製造方法により得られた金属電極層とイオン交換 樹脂との積層体若しくは接合体の表面に、上述の被複層を形成することにより、大き な湾曲をすることができ、し力も電極の劣化が抑制され、耐久性が向上するので、医 療機器や産業用ロボット、マイクロマシンなどの分野に好適に用いられる高分子ァク チユエータ素子として、更に好適である。 [0026] In the thus obtained laminate of the polymer electrolyte and the electrode layer, an electrode is formed by growing a metal layer in the inner direction of the polymer electrolyte. At the interface, a cross-section of the electrode layer can form a fractal structure. The joined body of the polymer electrolyte having the fractal structure and the electrode layer can be largely bent. In addition, by forming the above-mentioned multiple layers on the surface of a laminate or a joined body of the metal electrode layer and the ion-exchange resin obtained by the production method using such a swelling process, a large curvature is formed. In addition, since the deterioration of the electrodes can be suppressed and the durability is improved, the polymer is more suitable as a polymer actuator element suitably used in the fields of medical equipment, industrial robots, micromachines and the like.
実施例  Example
[0027] (実施例 1) (Example 1)
膜厚 200 μ mの膜状フッ素樹脂系イオン交換樹脂成形品(旭硝子社製フレミオン 膜、パーフルォロカルボン酸膜、イオン交換容量 1 · 44meq/g)に、 # 800のァノレミ ナ粒子で表面粗ィ匕を行った後、下記(1)一 (3)の工程を 2サイクル繰り返して実施し 、イオン交換樹脂成形品表面へ金電極を形成させた。  Surface with 200 μm thick fluorinated ion-exchange resin molded product (Flemion membrane, Perfluorocarboxylic acid membrane, Ion exchange capacity 1,44meq / g, manufactured by Asahi Glass Co., Ltd.) and # 800 anoremina particles After roughening, the following steps (1)-(3) were repeated for two cycles to form a gold electrode on the surface of the ion-exchange resin molded product.
[0028] (1)吸着工程:フエナント口リン金塩ィ匕物水溶液に 24時間浸漬し、成形品内にフエ ナント口リン金錯体を吸着させる。 [0028] (1) Adsorption step: immersed in an aqueous solution of phosphoric acid salt for 24 hours for fining, Adsorb the Nanto-port phosphorus gold complex.
(2)析出工程:亜硫酸ナトリウムと NaOHとを含む水溶液中で、吸着したフエナント口 リン金錯体を還元して、イオン交換樹脂成形品表面に金電極を形成させる。このとき 、水溶液の温度を 60 80°Cとし、亜硫酸ナトリウムを徐々に添カ卩しながら、 6時間フ ヱナント口リン金錯体の還元を行う。  (2) Precipitation step: The adsorbed phenanthine-phosphorus gold complex is reduced in an aqueous solution containing sodium sulfite and NaOH to form a gold electrode on the surface of the ion-exchange resin molded product. At this time, the temperature of the aqueous solution is set to 6080 ° C., and while the sodium sulfite is gradually added, the phosphorus-phosphorus gold complex is reduced for 6 hours.
(3)洗浄工程:表面に金電極が形成したイオン交換樹脂成形品を取り出し、 70°C の水で 1時間洗浄する。  (3) Washing step: Take out the ion-exchange resin molded article with the gold electrode formed on the surface and wash it with 70 ° C water for 1 hour.
[0029] 次に、熱可塑性ポリウレタン(商品名「ペレセン 2363_80AE」、ダウケミカル社製) をテトラヒドロフランに溶力、した溶液に、金電極が形成された前記素子をデイツビング し、上記素子の外表面に膜厚 5 μ mのポリウレタン樹脂被覆層が形成された実施例 1 の高分子ァクチユエータ素子を得た。  [0029] Next, the element on which the gold electrode was formed was dipped in a solution obtained by dissolving thermoplastic polyurethane (trade name "Pelecene 2363_80AE", manufactured by Dow Chemical Company) in tetrahydrofuran. The polymer actuator element of Example 1 in which a polyurethane resin coating layer having a thickness of 5 μm was formed was obtained.
[0030] (実施例 2)  (Example 2)
熱可塑性ポリウレタン(商品名「ペレセン 2363-80AE」、ダウケミカル社製)を熱可 塑性ポリウレタン(商品名「ペレセン 2363-90A」、ダウケミカル社製、 )に替えた以外 は実施例 1と同様にして、上記素子の外表面に膜厚 6 μ mのポリウレタン樹脂被覆層 が形成された実施例 2の高分子ァクチユエータ素子を得た。  In the same manner as in Example 1 except that the thermoplastic polyurethane (trade name “Pelecene 2363-80AE”, manufactured by Dow Chemical Co.) was changed to the thermoplastic polyurethane (trade name “Pelecene 2363-90A”, manufactured by Dow Chemical Co., Ltd.) Thus, a polymer actuator device of Example 2 in which a 6 μm-thick polyurethane resin coating layer was formed on the outer surface of the device, was obtained.
[0031] (実施例 3) (Example 3)
熱可塑性ポリウレタン(商品名「ペレセン 2363-80AE」、ダウケミカル社製)をィォ ン交換樹脂(パーフルォロスルホン酸樹脂、商品名「フレミオン溶液 FFS— 1」、旭硝 子社製、イオン交換容量 1. lmeq/g)に替えた以外は実施例 1と同様にして、上記 素子の外表面に膜厚 7 μ mの被覆層が形成された実施例 3の高分子ァクチユエータ 素子を得た。  Thermoplastic polyurethane (trade name “Pelecene 2363-80AE”, manufactured by Dow Chemical Co.) was converted to ion exchange resin (perfluorosulfonic acid resin, trade name “Flemion Solution FFS-1”, manufactured by Asahi Glass Co., Ltd. In the same manner as in Example 1 except that the exchange capacity was changed to 1.lmeq / g), the polymer actuator device of Example 3 in which a coating layer having a thickness of 7 μm was formed on the outer surface of the device was obtained. .
[0032] (実施例 4) (Example 4)
熱可塑性ポリウレタン(商品名「ペレセン 2363_80AE」、ダウケミカル社製)をスチ レン系樹脂(商品名「アサフレックス 825」、旭化成社製)に替えた以外は、実施例 1 と同様にして、上記素子の外表面に膜厚 7 μ mのポリウレタン樹脂被覆層が形成され た実施例 4の高分子ァクチユエータ素子を得た。  The above element was manufactured in the same manner as in Example 1, except that the thermoplastic polyurethane (trade name “Pelecene 2363_80AE”, manufactured by Dow Chemical Co.) was changed to a styrene resin (trade name “Asaflex 825”, manufactured by Asahi Kasei Corporation). A polymer actuator element of Example 4 having a polyurethane resin coating layer having a thickness of 7 μm formed on the outer surface of was obtained.
[0033] (比較例 1) 膜厚 200 μ mの膜状フッ素樹脂系イオン交換樹脂成形品(旭硝子社製フレミオン 膜、パーフルォロカルボン酸膜、イオン交換容量 1 · 44meq/g)に、 # 800のァノレミ ナ粒子で表面粗ィ匕を行った後、下記(1)一 (3)の工程を 2サイクル繰り返して実施し 、イオン交換樹脂成形品表面へ金電極を形成させ、被覆層を備えていない比較例 1 の高分子ァクチユエータ素子を得た。 (Comparative Example 1) Surface with 200 μm membrane fluororesin-based ion-exchange resin molded product (Flemion membrane, Perfluorocarboxylic acid membrane, Ion-exchange capacity 1,44meq / g, manufactured by Asahi Glass Co., Ltd.) and # 800 anoremina particles After performing the rough dangling, the following steps (1) and (3) were repeated for two cycles to form a gold electrode on the surface of the ion-exchange resin molded product. A molecular actuator element was obtained.
(1)吸着工程:フエナント口リン金塩ィ匕物水溶液に 24時間浸漬し、成形品内にフエ ナント口リン金錯体を吸着させる。  (1) Adsorption step: Dipping for 24 hours in an aqueous solution of phosphoric acid at a phenantine port to adsorb the phosphorous complex at a phenantine port in a molded article.
(2)析出工程:亜硫酸ナトリウムと NaOHとを含む水溶液中で、吸着したフヱナント 口リン金錯体を還元して、イオン交換樹脂成形品表面に金電極を形成させる。このと き、水溶液の温度を 60— 80°Cとし、亜硫酸ナトリウムを徐々に添加しながら、 6時間 フエナント口リン金錯体の還元を行う。  (2) Precipitation step: reducing the adsorbed phenantophosphorus gold complex in an aqueous solution containing sodium sulfite and NaOH to form a gold electrode on the surface of the ion-exchange resin molded product. At this time, the temperature of the aqueous solution is set to 60-80 ° C, and the sodium phosphite complex is reduced for 6 hours while gradually adding sodium sulfite.
(3)洗浄工程:表面に金電極が形成したイオン交換樹脂成形品を取り出し、 70°C の水で 1時間洗浄する。  (3) Washing step: Take out the ion-exchange resin molded article with the gold electrode formed on the surface and wash it with 70 ° C water for 1 hour.
[0034] (比較例 2)  (Comparative Example 2)
熱可塑性ポリウレタン(商品名「ペレセン 2363-80AE」、ダウケミカル社製)に替え てポリ塩ィ匕ビニル樹脂(商品名「D2033」、柔軟度 170%ァプコ社製)を用いた以外 は、実施例 1と同様にして、膜厚 5 μ ΐηのポリ塩化ビエル樹脂被覆層が形成された比 較例 2の高分子ァクチユエータ素子を得た。  Example 1 except that a thermoplastic resin (trade name “Pelecene 2363-80AE”, manufactured by Dow Chemical Co.) was replaced by a polychlorinated vinyl resin (trade name “D2033”, flexibility: 170%, manufactured by Apco). In the same manner as in 1, a polymer actuator element of Comparative Example 2 in which a polyvinyl chloride resin coating layer having a film thickness of 5 μΐη was formed.
[0035] 〔評価〕 [Evaluation]
実施例 1一 4、並びに比較例 1及び 2の高分子ァクチユエータ素子について、変位量 、電極劣化度、耐久性及び膨潤時間を下記の方法でそれぞれ測定した。結果を表 1 に示す。  With respect to the polymer actuator elements of Examples 14 and 14 and Comparative Examples 1 and 2, the displacement, electrode deterioration, durability and swelling time were measured by the following methods. Table 1 shows the results.
[0036] [表 1] 実 a議 比較例 [Table 1] Actual a discussion Comparative example
1 2 3 4 1 2  1 2 3 4 1 2
パーフルォ  Perfluo
被 熱可塑性ゥ 熱可塑性ゥ スチレン系 ポリ塩化ビ 樹脂種 ロカルポン  Thermoplastic ゥ Thermoplastic ゥ Styrenic Polyvinyl chloride Resin type Locarpon
覆 レ夕ンゴム レ夕ンゴム 樹脂 ニル樹脂 酸樹脂  Resin rubber Resin rubber Resin Nyl resin Acid resin
 Layer
柔軟度(%) 650 500 - 200 - 170 変位量 (mm) 6 4 8 3 9 1 電極劣化度 © ◎ ◎ 〇 X o 耐久性 (days) 7 8 7 7 2 7 膨潤時間 (m i n ) 30 30 5 30 2 30 [0037] (変位量) Flexibility (%) 650 500 -200 -170 Displacement (mm) 6 4 8 3 9 1 Deterioration of electrode © ◎ ◎ 〇 X o Durability (days) 7 8 7 7 2 7 Swelling time (min) 30 30 5 30 2 30 [0037] (Displacement)
実施例 1一 4並びに比較例 1及び 2のァクチユエータ素子について、それぞれの電極 端部に、白金プレートを対向電極とし、ァクチユエータ素子を水中に保持し、リードを 介して電源と接続して、電圧を印加し (0. 1Ηζ、 ± 2. 0Vの方形波)、変位量を測定 した。なお、変位量は、実施例 1一 4並びに比較例 1及び 2のァクチユエータの一端か ら 6mmの位置で固定し、固定した際の固定部位から 5mmの位置について、 + 2. 0 Vを印加した場合の該位置と— 2. 0Vを印加した場合の該位置との距離を変位量 (湾 曲量)として測定した。  With respect to the actuator elements of Examples 14 and 14 and Comparative Examples 1 and 2, a platinum plate was used as an opposite electrode at each electrode end, the actuator element was held in water, and connected to a power supply via a lead, and a voltage was applied. A voltage was applied (0.1Ηζ, ± 2.0 V square wave), and the displacement was measured. The amount of displacement was fixed at a position 6 mm from one end of the actuator of Examples 14 and 14 and Comparative Examples 1 and 2, and +2.0 V was applied at a position 5 mm from the fixed part when fixed. The distance between the position in the case and the position when -2.0 V was applied was measured as the amount of displacement (bending amount).
[0038] (電極劣化度) (Degree of electrode deterioration)
実施例 1一 4及び比較例 1及び 2の高分子ァクチユエータ素子のそれぞれについて 、上記の変位量の測定条件で、 100時間電圧を印加した後に、断面観察することで 電極の劣化を確認し、下記基準により電極劣化度を評価した。  For each of the polymer actuator elements of Examples 14 and 14 and Comparative Examples 1 and 2, a voltage was applied for 100 hours under the above measurement conditions of the amount of displacement, and then deterioration of the electrodes was confirmed by observing the cross section. The electrode deterioration degree was evaluated based on a standard.
(評価基準)  (Evaluation criteria)
◎:榭状のフラクタル構造が 80%以上残ってレ、る。  榭: 80% or more of the 榭 -shaped fractal structure remains.
〇:榭状のフラクタル構造が 60%以上から 80%未満残っている。  〇: 榭 -shaped fractal structure remains from 60% to less than 80%.
△:榭状のフラクタル構造力 0%以上から 60%未満残っている。  △: △ -shaped fractal structural force 0% or more and less than 60% remained.
X:榭状のフラクタル構造力 0%未満残ってレ、る。  X: 榭 -shaped fractal structural force Less than 0% remains.
[0039] (耐久性) [0039] (Durability)
実施例 1一 4並びに比較例 1及び 2の高分子ァクチユエータ素子のそれぞれについ て、上記の変位量の測定条件で、電圧を印加し、 24時間毎に変位の有無を確認し て、変位が持続する期間 (日)を確認した。  For each of the polymer actuator elements of Examples 14 and 14 and Comparative Examples 1 and 2, a voltage was applied under the above-described measurement conditions of the amount of displacement, and the presence or absence of the displacement was checked every 24 hours, and the displacement was maintained. I confirmed the period (days) to do.
[0040] (膨潤時間) [0040] (Swelling time)
実施例 1一 4並びに比較例 1及び 2の高分子ァクチユエータ素子のそれぞれについ て、長さ 10mm、幅 lmmの試験片を作成した。各試験片を純水中に浸漬し、電極を 形成する際の基材として用いたイオン交換樹脂が 70%膨潤するまでの時間を測定し た。なお、実施例 1一 3及び比較例 2の試験片については、高分子ァクチユエータ素 子の先端及び側面のイオン交換樹脂が露出する状態となるように成形して、純水中 に浸清した。 For each of the polymer actuator elements of Examples 14 and 14 and Comparative Examples 1 and 2, test pieces having a length of 10 mm and a width of lmm were prepared. Each test piece was immersed in pure water, and the time required for the ion-exchange resin used as a substrate when forming the electrode to swell by 70% was measured. The test pieces of Examples 13 and 13 and Comparative Example 2 were molded so that the ion-exchange resin at the tip and side surfaces of the polymer actuator element was exposed, Infiltrated.
[0041] (結果)  [0041] (Result)
本発明の高分子ァクチユエータ素子である実施例 1の高分子ァクチユエータ素子 は、柔軟度 200%以上である熱可塑性ポリウレタンゴムにより被覆層が形成されてい るので、電極の劣化及び耐久性に優れていた。これに対し、比較例 1の高分子ァクチ ユエータ素子は、被覆層を備えていないために、電極の劣化及び耐久性が不良であ つた。  The polymer actuator element of Example 1, which is the polymer actuator element of the present invention, was excellent in electrode deterioration and durability because the coating layer was formed of a thermoplastic polyurethane rubber having a flexibility of 200% or more. . On the other hand, the polymer actuator element of Comparative Example 1 was not provided with the coating layer, and thus had deteriorated electrodes and poor durability.
[0042] 本発明の高分子ァクチユエータ素子である実施例 2の高分子ァクチユエータ素子 についても、柔軟度 500%である熱可塑性ポリウレタンゴムにより被覆層が形成され ているので、実施例 1と同様に、電極の劣化及び耐久性に優れていた。  [0042] The polymer actuator element of Example 2 which is the polymer actuator element of the present invention also has a covering layer formed of a thermoplastic polyurethane rubber having a flexibility of 500%. The electrode was excellent in deterioration and durability.
[0043] 実施例 1及び実施例 2の高分子ァクチユエータ素子は、被覆層の柔軟度が大きい ために、被覆層の柔軟度が 200%である実施例 4の高分子ァクチユエータ素子に比 ベて変位が大きい。そのため、実施例 1及び実施例 2の高分子ァクチユエータ素子は 、カテーテルの先端部分などの大きな湾曲量を必要とする実用的な用途として、好 適である。また、実施例 1のァクチユエータ素子は、柔軟度が 650%以上であるので 、実施例 2のァクチユエータ素子よりも変位量に優れており、カテーテルの先端部分 などの大きな湾曲量を必要とする実用的な用途として、特に好適である。  [0043] The polymer actuator elements of Example 1 and Example 2 were displaced in comparison with the polymer actuator elements of Example 4 in which the flexibility of the coating layer was 200% because the flexibility of the coating layer was large. Is big. Therefore, the polymer actuator elements of Example 1 and Example 2 are suitable for practical use requiring a large amount of bending, such as a distal end portion of a catheter. Further, since the actuator element of Example 1 has a flexibility of 650% or more, it is superior in the amount of displacement to the actuator element of Example 2, and requires a large amount of bending such as a distal end portion of a catheter. It is particularly suitable for various uses.
[0044] 本発明の高分子ァクチユエータ素子である実施例 3の高分子ァクチユエータ素子 は、被覆層がイオン交換樹脂で形成されているので、電極の劣化及び耐久性に優れ ていた。また、実施例 3の高分子ァクチユエータ素子は S彭潤に必要な時間が実施例 1 及び 2の高分子ァクチユエータ素子に比べて膨潤に必要な時間が 1/6以下であつ た。つまり、実施例 3の高分子ァクチユエータ素子は、電解液等の水中に浸漬してか ら極めて短時間でァクチユエータとして使用可能な状態になるので、ァクチユエータ 素子として、作業性に優れている。  [0044] The polymer actuator element of Example 3, which is the polymer actuator element of the present invention, had excellent electrode deterioration and durability because the coating layer was formed of an ion exchange resin. The time required for the polymer actuator element of Example 3 was less than 1/6 of the time required for swelling as compared with the polymer actuator elements of Examples 1 and 2 compared to the polymer actuator elements of Examples 1 and 2. That is, since the polymer actuator element of Example 3 can be used as an actuator in an extremely short time after being immersed in water such as an electrolytic solution, it is excellent in workability as an actuator element.
[0045] また、比較例 2の高分子ァクチユエータは、被覆層として、柔軟度が 200%未満の 樹脂を用いているために、変位量が少なぐカテーテルの先端部分などの大きな湾 曲量を必要とする実用的な用途として、不適であった。  [0045] In addition, the polymer actuator of Comparative Example 2 uses a resin having a flexibility of less than 200% as the coating layer, and thus requires a large amount of curvature such as a tip portion of a catheter where displacement is small. Was not suitable for practical use.
産業上の利用可能性 本発明は、イオン交換樹脂成形品を湾曲および変形させることによりァクチユエ一 タとして機能する高分子ァクチユエータ素子として、耐久性及び電極の耐劣化性に 優れているので、高分子ァクチユエータ素子として好適であり、特に、医療機器や産 業用ロボット、マイクロマシンなどの分野に好適に用いられる高分子ァクチユエータ素 子として好適である。特に、本発明の高分子ァクチユエータ素子について、被覆層が イオン交換樹脂により被覆層が連続して形成されている被覆層である場合には、ィォ ン交換樹脂層が駆動に十分な膨潤状態となるまでに必要な時間が短時間であるた めに、水中で駆動する高分子ァクチユエータ素子、特に魚模型の駆動源としてのァク チユエータ素子として好適である。 Industrial applicability INDUSTRIAL APPLICABILITY The present invention is suitable as a polymer actuator element because it has excellent durability and electrode deterioration resistance as a polymer actuator element that functions as an actuator by bending and deforming an ion exchange resin molded product. In particular, it is suitable as a polymer actuator element suitably used in the fields of medical equipment, industrial robots, micromachines and the like. In particular, in the case of the polymer actuator element of the present invention, when the coating layer is a coating layer in which the coating layer is continuously formed by ion exchange resin, the ion exchange resin layer is in a swelling state sufficient for driving. Since the required time is short, it is suitable as a polymer actuator element driven in water, particularly as an actuator element for driving a fish model.

Claims

請求の範囲 The scope of the claims
[1] イオン交換樹脂成形品と、該イオン交換樹脂成形品の表面に形成された金属電極 層とを備えた高分子ァクチユエータ素子であって、  [1] A polymer actuator element comprising an ion-exchange resin molded product and a metal electrode layer formed on a surface of the ion-exchange resin molded product,
前記高分子ァクチユエータ素子の表面に、柔軟度が 200%以上である樹脂により 被覆層が連続して形成されていることを特徴とする高分子ァクチユエータ素子。  A polymer actuator element, wherein a coating layer is continuously formed on the surface of the polymer actuator element with a resin having a flexibility of 200% or more.
[2] ァクチユエータ素子の形状が膜状または円筒状である請求項 1の高分子ァクチユエ ータ素子。 [2] The polymer actuator device according to claim 1, wherein the shape of the actuator device is a film shape or a cylindrical shape.
[3] イオン交換樹脂成形品と、該イオン交換樹脂成形品の表面に形成された金属電極 層とを備えた高分子ァクチユエータ素子であって、  [3] A polymer actuator element comprising an ion-exchange resin molded article and a metal electrode layer formed on a surface of the ion-exchange resin molded article,
上記高分子ァクチユエータ素子の表面に、イオン交換樹脂により被覆層が連続して 形成されていることを特徴とする高分子ァクチユエータ素子。  A polymer actuator element, wherein a coating layer is continuously formed of an ion exchange resin on a surface of the polymer actuator element.
[4] ァクチユエータ素子の形状が膜状または円筒状である請求項 3の高分子ァクチユエ ータ素子。 [4] The polymer actuator device according to claim 3, wherein the shape of the actuator device is a film shape or a cylindrical shape.
[5] 柔軟度が 200%以上である樹脂が熱可塑性ポリウレタンである請求項 1または 2に記 載の高分子ァクチユエータ素子。  [5] The polymer actuator element according to claim 1 or 2, wherein the resin having a flexibility of 200% or more is a thermoplastic polyurethane.
PCT/JP2004/008440 2003-06-17 2004-06-16 Polymer actuator WO2004112233A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-172505 2003-06-17
JP2003172505 2003-06-17

Publications (1)

Publication Number Publication Date
WO2004112233A1 true WO2004112233A1 (en) 2004-12-23

Family

ID=33549476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008440 WO2004112233A1 (en) 2003-06-17 2004-06-16 Polymer actuator

Country Status (1)

Country Link
WO (1) WO2004112233A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535093A (en) * 2006-04-25 2009-10-01 ボストン サイエンティフィック リミテッド Embedded electroactive polymer structure for use in medical devices
EP2463090A4 (en) * 2009-08-07 2015-11-18 Eamex Corp Electrically conductive polymer composite structure, process for production of electrically conductive polymer composite structure, and actuator element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266636A (en) * 1995-04-03 1996-10-15 Terumo Corp Guide wire
JPH08280186A (en) * 1995-04-04 1996-10-22 Terumo Corp Actuator and guide wire
JPH0932718A (en) * 1995-07-19 1997-02-04 Terumo Corp Actuator element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266636A (en) * 1995-04-03 1996-10-15 Terumo Corp Guide wire
JPH08280186A (en) * 1995-04-04 1996-10-22 Terumo Corp Actuator and guide wire
JPH0932718A (en) * 1995-07-19 1997-02-04 Terumo Corp Actuator element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535093A (en) * 2006-04-25 2009-10-01 ボストン サイエンティフィック リミテッド Embedded electroactive polymer structure for use in medical devices
EP2463090A4 (en) * 2009-08-07 2015-11-18 Eamex Corp Electrically conductive polymer composite structure, process for production of electrically conductive polymer composite structure, and actuator element

Similar Documents

Publication Publication Date Title
Li et al. PEDOT: PSS/grafted-PDMS electrodes for fully organic and intrinsically stretchable skin-like electronics
Oguro et al. Polymer electrolyte actuator with gold electrodes
Ding et al. Biologically derived soft conducting hydrogels using heparin-doped polymer networks
US9147825B2 (en) Methods of fabricating multi-degree of freedom shaped electroactive polymer actuators/sensors for catheters
US20040242709A1 (en) Polymeric actuator
EP2053679B1 (en) Reinforced electrolyte membrane for fuel cell, production method thereof, membrane electrode assembly for fuel cell, and solid polymer fuel cell comprising the same
Wu et al. High-adhesion stretchable electrode via cross-linking intensified electroless deposition on a biomimetic elastomeric micropore film
EP1833156A2 (en) Complex material
Rong et al. Superior, environmentally tolerant, flexible, and adhesive poly (ionic liquid) gel as a multifaceted underwater sensor
CN106029370A (en) Insert molded article, device using said insert molded article, and method for producing insert molded article
Park et al. Electromechanical performance and other characteristics of IPMCs fabricated with various commercially available ion exchange membranes
WO2004047916A1 (en) Iontophoresis apparatus
JP3030361B2 (en) Polymer electrolyte ammonium derivative
CN104060311A (en) Method for functionally modifying surface of conductive substrate
Flamini et al. Electrodeposition study of polypyrrole-heparin and polypyrrole-salicylate coatings on Nitinol
JP2961125B2 (en) Method for manufacturing polymer actuator
JP2005033991A (en) Polymer actuator element
Huang et al. Wet-adhesive multifunctional hydrogel with anti-swelling and a skin-seamless interface for underwater electrophysiological monitoring and communication
JP3646166B2 (en) Method for manufacturing actuator element
Wang et al. Active tube-shaped actuator with embedded square rod-shaped ionic polymer-metal composites for robotic-assisted manipulation
Shen et al. Cellulose gel mechanoreceptors–principles, applications and prospects
CN203588723U (en) Silica gel cable used for medical surgical equipment
WO2004112233A1 (en) Polymer actuator
Lee et al. Multiday operable ionic polymer-metal composites prepared using a stacking method for practical actuator applications
WO2008029839A1 (en) Method for filling polymer actuator with electrolytic solution, method for controlling the elastic modulus of polymer actuator, and process for production of polymer actuator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO FORM 1205A DATED 16.03.06)

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP