JPH0932718A - Actuator element - Google Patents

Actuator element

Info

Publication number
JPH0932718A
JPH0932718A JP7182457A JP18245795A JPH0932718A JP H0932718 A JPH0932718 A JP H0932718A JP 7182457 A JP7182457 A JP 7182457A JP 18245795 A JP18245795 A JP 18245795A JP H0932718 A JPH0932718 A JP H0932718A
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
actuator element
resin layer
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7182457A
Other languages
Japanese (ja)
Inventor
Yoshihiko Abe
吉彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP7182457A priority Critical patent/JPH0932718A/en
Publication of JPH0932718A publication Critical patent/JPH0932718A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an actuator element with big curved and bent deformation by making the cation of a cation exchange film to a lithium ion by immersing to a solution including a lithium ion. SOLUTION: Platinum electrode bodies 12a, 12b are joined to both surfaces of fluorine system cation exchange resin film 11 having a sulfon radical by a chemical plating (non-electrolysis plating) method which is an adsorption reduction growth method. Continuously, after immersing to a solution including a lithium ion and making the cation in a cation exchange resin film 11 to the lithium ion, it is washed until becoming neutral by a pure water sufficiently. Thereby, an actuator element 1 consisting of the cation exchange resin film 11 having a sulfon radical and platinum electrode bodies 12a, 12b arranged to a facing position through the cation exchange resin film 11 and in which the cation in the cation exchange resin film 11 is the lithium ion is produced. Then, the actuator element 1 with big curved and bent deformation can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、イオン交換膜と、
この膜両面に接合した電極とからなり、含水状態のイオ
ン交換膜に電位差をかけることにより湾曲、屈曲変形す
るアクチュエータ素子に関する。
TECHNICAL FIELD The present invention relates to an ion exchange membrane,
The present invention relates to an actuator element that is composed of electrodes bonded to both surfaces of the membrane and that is curved and bent by applying a potential difference to the ion exchange membrane in a water-containing state.

【0002】[0002]

【従来の技術】イオン交換膜と、この膜両面に接合した
電極とからなり、含水状態のイオン交換膜に電位差をか
けて湾曲、屈曲変形を生ぜしめることを特徴とし、構造
が単純で小型化が容易であり、応答も速く、小電力で作
動し、かつ柔軟であるようなアクチュエータ素子が提案
されている(特公平7−4075)。この公報の実施例
に記載されているスルホン基を有する陽イオン交換膜ナ
フィオン(登録商標、デュポン社製)と、その膜両面に
化学めっき法で接合された白金である電極体よりなるア
クチュエータ素子は、イオン交換膜に電位差をかけると
瞬時に湾曲、屈曲変形し、その先端(自由端側)は陽極
方向に瞬時に移動するものである(精密制御用ニューア
クチュエータ便覧 日本工業技術振興協会固体アクチュ
エータ研究会編 フジ・テクノシステム 第19節 2
15−219頁)(マイクロマシンの基礎技術の研究
その1 平成6年3月 財団法人マイクロマシンセンタ
ー)。
2. Description of the Related Art An ion exchange membrane and electrodes bonded to both sides of the membrane are characterized in that an ion exchange membrane in a water-containing state is subjected to a potential difference to cause bending and bending deformation. An actuator element that is easy to operate, has a quick response, operates with a small electric power, and is flexible has been proposed (Japanese Patent Publication No. 7-4075). An actuator element composed of a cation exchange membrane Nafion (registered trademark, manufactured by DuPont) having a sulfone group and an electrode body made of platinum bonded to both sides of the membrane by chemical plating is described in the examples of this publication. When an electric potential difference is applied to the ion-exchange membrane, the ion-exchange membrane is instantaneously bent or bent, and its tip (free end side) is instantly moved toward the anode (Handbook of New Actuator for Precision Control, Japan Society of Industrial Technology Promotion, Solid Actuator Research). Meeting Fuji Techno System Section 19 2
15-219) (Research on basic technology of micromachines)
Part 1 March 1994 Micromachine Center).

【0003】これらのアクチュエータ素子に用いられる
陽イオン交換膜はいずれも、純水中においてはHイオ
ン、食塩水中においてはNaイオンである。そして、陽
イオン交換膜中の陽イオンがHイオン以外であるアク
チュエータ素子の純水中における変位について示されて
いる例はない。
All of the cation exchange membranes used in these actuator elements are H + ions in pure water and Na + ions in saline. And, there is no example showing the displacement in pure water of the actuator element in which the cations in the cation exchange membrane are other than H + ions.

【0004】[0004]

【発明が解決しようとする課題】従って本発明の目的
は、陽イオン交換膜の陽イオンをリチウムイオンにする
ことにより、湾曲、屈曲変形が大きいアクチュエータ素
子を提供することにある。
SUMMARY OF THE INVENTION It is, therefore, an object of the present invention to provide an actuator element having large bending and bending deformation by converting lithium ions into cations of a cation exchange membrane.

【0005】[0005]

【課題を解決するための手段】本発明者らが鋭意研究を
重ねた結果、本発明は以下によって達成される。
As a result of intensive studies by the present inventors, the present invention is achieved by the following.

【0006】本発明は、含水状態のスルホン基を有する
陽イオン交換樹脂層と、該陽イオン交換樹脂層を介して
配置された複数の電極体とからなり、該電極体間に電位
差をかけることにより変形するアクチュエータ素子であ
って、該陽イオン交換樹脂層中の陽イオンがリチウムイ
オンであるアクチュエータ素子である。
The present invention comprises a cation exchange resin layer having a sulfone group in a water-containing state and a plurality of electrode bodies arranged via the cation exchange resin layer, and applying a potential difference between the electrode bodies. Is an actuator element that is deformed by, and the cations in the cation exchange resin layer are lithium ions.

【0007】また、水不透過性の材料で前記アクチュエ
ータ素子を覆うことにより、前記陽イオン交換樹脂層中
に他のイオンが侵入しないようにしたアクチュエータ素
子である。
Further, the actuator element is formed by covering the actuator element with a water-impermeable material to prevent other ions from entering the cation exchange resin layer.

【0008】陽イオン交換樹脂層としては、ポリスチレ
ンスルホン酸樹脂層やスルホン基を有するフッ素系陽イ
オン交換樹脂層等が挙げられるが、アクチュエータの変
形性能の点から、スルホン基を有するフッ素系陽イオン
交換樹脂層であることが好ましい。
Examples of the cation exchange resin layer include a polystyrene sulfonic acid resin layer and a fluorinated cation exchange resin layer having a sulfone group. From the viewpoint of the deformability of the actuator, the fluorinated cation having a sulfone group is used. It is preferably an exchange resin layer.

【0009】陽イオン交換樹脂層中の陽イオンがリチウ
ムイオンであるとは、スルホン基がスルホン酸リチウム
型であることであり、塩化リチウム水溶液、水酸化リチ
ウム水溶液等のリチウムイオンを含有する水溶液に浸漬
することで、容易に陽イオン交換樹脂層中の陽イオンは
リチウムイオンとなる。
The fact that the cation in the cation exchange resin layer is a lithium ion means that the sulfone group is of a lithium sulfonate type, and it can be used in an aqueous solution containing lithium ions such as an aqueous solution of lithium chloride and an aqueous solution of lithium hydroxide. By immersing, the cations in the cation exchange resin layer easily become lithium ions.

【0010】陽イオン交換樹脂層の含水状態とは、イオ
ン交換樹脂層が少しでも水を含んだ状態であることを意
味する。つまり水雰囲気下、例えば水中及び湿度の高い
大気中にあるアクチュエータ素子のイオン交換樹脂層は
含水状態であるといえる。また変形性能の点より水とし
ては、電解質を含まない、いわゆる純水(イオン交換
水)であることが好ましい。
The water-containing state of the cation exchange resin layer means that the ion exchange resin layer contains a little water. That is, it can be said that the ion exchange resin layer of the actuator element in a water atmosphere, for example, in water or in a high-humidity atmosphere is in a water-containing state. From the viewpoint of deformability, the water is preferably so-called pure water (ion-exchanged water) containing no electrolyte.

【0011】電極体としては、導電性かつ耐食性を有す
る物質を使用することができる。そのうえX線不透過性
を有する物質が好ましい。例えば、白金、ルテニウム、
イリジウム、又はパラジウム等の貴金属、ポリアニリ
ン、ポリチオフェン、又はポリピロール等の導電性高分
子及び黒鉛等が挙げられる。好ましくは貴金属であり、
特に好ましくは白金である。
As the electrode body, a material having conductivity and corrosion resistance can be used. Moreover, substances that are radiopaque are preferred. For example, platinum, ruthenium,
Examples include noble metals such as iridium and palladium, conductive polymers such as polyaniline, polythiophene, and polypyrrole, and graphite. Preferably a noble metal,
Particularly preferred is platinum.

【0012】電極体とイオン交換樹脂層との接合方法と
しては、化学めっき法(無電解めっき法)、電気めっき
法、イオン蒸着薄膜形成法、スパッタリング法、真空蒸
着法、イオン注入法、塗布法、圧着法及び溶接法等の高
分子材料表面へ接合可能な公知の方法が利用できる。好
ましくは、湿式条件下でめっきが可能であり、イオン交
換樹脂層との密着度が高い電極体が接合可能な化学めっ
き法(無電解めっき法)であり、特に好ましくは、化学
めっき法の中の吸着還元成長法(ソーダと塩素・198
6年8号 15−29頁)である。
As a method of joining the electrode body and the ion exchange resin layer, a chemical plating method (electroless plating method), an electroplating method, an ion vapor deposition thin film forming method, a sputtering method, a vacuum vapor deposition method, an ion implantation method, a coating method. Known methods such as a pressure bonding method, a welding method, and the like, which can be bonded to the surface of a polymer material, can be used. Preferred is a chemical plating method (electroless plating method) capable of plating under wet conditions and capable of joining an electrode body having a high degree of adhesion with an ion exchange resin layer, and particularly preferred is a chemical plating method. Adsorption reduction growth method (soda and chlorine. 198
No. 6, pp. 15-29).

【0013】接合されている電極体は、陽イオン交換樹
脂層を介して対向する位置に配置され、少なくとも一組
以上であれば良い。
The bonded electrode bodies may be arranged at positions facing each other through the cation exchange resin layer, and at least one set may be provided.

【0014】アクチュエータ素子が再現性ある安定した
変形性能を発現させるために、アクチュエータ素子へ給
電するための電気供給部の好適な形態は、本発明者らが
提案しているもの(特願平7−76716)が挙げられ
る。具体的には、電極体の少なくとも一部分と、電源か
らのリード線等の導電体が、レーザー溶接法、超音波溶
接法、高周波溶接法等により固定されていることが好ま
しい。あるいは導電性接着剤等の導電性材料を介して接
着固定、または、ろう接法により固定されていることが
好ましい。
In order for the actuator element to exhibit reproducible and stable deformation performance, a suitable form of the electricity supply section for supplying power to the actuator element has been proposed by the present inventors (Japanese Patent Application No. 7-83242). -76716). Specifically, it is preferable that at least a part of the electrode body and a conductor such as a lead wire from a power source are fixed by a laser welding method, an ultrasonic welding method, a high frequency welding method, or the like. Alternatively, it is preferably fixed by adhesion or a brazing method through a conductive material such as a conductive adhesive.

【0015】電源は、直流又は交流電源のいずれも使用
することが可能である。
As the power source, either a DC power source or an AC power source can be used.

【0016】陽イオン交換樹脂層中に他のイオンが侵入
しないようにするとは、陽イオン交換樹脂中のリチウム
イオンが外液中の他の陽イオンと交換されるのを防ぐと
いうことである。具体的な方法としては、水不透過性の
材料でアクチュエータ素子を被覆するという方法が挙げ
られる。
Preventing other ions from entering the cation exchange resin layer means preventing the lithium ions in the cation exchange resin from being exchanged with other cations in the external liquid. As a specific method, there is a method of coating the actuator element with a water-impermeable material.

【0017】被覆層はアクチュエータ素子の変形性能の
点より、柔軟で薄い方が好ましい。また、水不透過性の
材料としては、例えばポリエチレン、ポリプロピレン、
ポリ塩化ビニル、ポリエステル、ポリアミド、ポリエー
テルアミド、ポリウレタン、フッ素樹脂、シリコーンゴ
ム等が挙げられる。
The covering layer is preferably flexible and thin from the viewpoint of the deformation performance of the actuator element. Further, as the water-impermeable material, for example, polyethylene, polypropylene,
Examples thereof include polyvinyl chloride, polyester, polyamide, polyetheramide, polyurethane, fluororesin and silicone rubber.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。スルホン基を有するフッ素系陽イオン交換樹脂膜
11の両面に、吸着還元成長法である化学めっき(無電
解めっき)法により白金電極体12a、12bを接合す
る。続いてリチウムイオンを含む水溶液に浸漬させ、陽
イオン交換樹脂中の陽イオンをリチウムイオンにした
後、純水で中性になるまで十分に洗浄する。以上より、
スルホン基を有する陽イオン交換樹脂層11と、陽イオ
ン交換樹脂層を介して対向する位置に配置された電極体
12a、12bよりなり、陽イオン交換樹脂層中の陽イ
オンがリチウムイオンであるアクチュエータ素子1を作
製する。こうして湾曲、屈曲変形の大きいアクチュエー
タ素子を得ることができる。また、シリコーン等の材料
でアクチュエータ素子を被覆することにより、他の陽イ
オン(リチウムイオン以外)が存在する溶液中でもその
侵入を防ぎ、陽イオン交換樹脂層中のリチウムイオンを
保持し、湾曲、屈曲変形の性能を安定化することができ
る。
Embodiments of the present invention will be described below. Platinum electrode bodies 12a and 12b are bonded to both surfaces of the fluorine-based cation exchange resin film 11 having a sulfone group by a chemical plating (electroless plating) method which is an adsorption reduction growth method. Subsequently, the resultant is immersed in an aqueous solution containing lithium ions to change the cations in the cation exchange resin into lithium ions, and then sufficiently washed with pure water until neutral. From the above,
An actuator comprising a cation exchange resin layer 11 having a sulfone group and electrode bodies 12a and 12b arranged at positions facing each other with the cation exchange resin layer interposed therebetween, and the cations in the cation exchange resin layer are lithium ions. The element 1 is manufactured. In this way, it is possible to obtain an actuator element having large bending and bending deformation. In addition, by coating the actuator element with a material such as silicone, it prevents its entry even in a solution containing other cations (other than lithium ions), retains lithium ions in the cation exchange resin layer, and bends and bends. The deformation performance can be stabilized.

【0019】[0019]

【実施例】以下、本発明を実施例、比較例に基づき詳細
に説明する。また、本発明のアクチュエータ素子の湾
曲、屈曲に関する変位測定については以下の方法に従っ
た。
EXAMPLES The present invention will be described in detail below based on examples and comparative examples. Further, the following method was used for displacement measurement relating to bending and bending of the actuator element of the present invention.

【0020】(アクチュエータ素子の変位測定法)幅1
mm、長さ15mmの短冊形状のアクチュエータ素子の
片端3mmを給電体である白金ブロックで挟み、37℃
の純水中に釣り下げて保持し、ポテンシオスタット20
00(東方技研社製)とファンクション・ジェネレータ
(任意関数発生装置)FG−02(東方技研社製)を用
いて、周波数0.1Hzの±1V方形波電圧を印加し
て、素子を湾曲、屈曲変形させる。素子の固定端から1
0mmの位置の陽極方向への変位をレーザー反射式変位
計LC2100(キーエンス社製)で測定し、印加電
圧、電流と変位をデジタルオシロスコープDL2240
(横河電機社製)で同時にモニターする。
(Method for measuring displacement of actuator element) Width 1
mm, 15 mm long strip-shaped actuator element sandwiching 3 mm on one end with a platinum block that is a power supply, 37 ° C
Hold it down in pure water with a potentiostat 20
00 (manufactured by Toho Giken Co., Ltd.) and a function generator (arbitrary function generator) FG-02 (manufactured by Toho Giken Co., Ltd.) are applied to apply a ± 1 V square wave voltage with a frequency of 0.1 Hz to bend or bend the element. Transform it. 1 from the fixed end of the element
The displacement of the 0 mm position in the direction of the anode was measured by a laser reflection displacement meter LC2100 (manufactured by Keyence Corporation), and the applied voltage, current and displacement were measured using a digital oscilloscope DL2240.
(Made by Yokogawa Electric Corporation) monitor at the same time.

【0021】(実施例1)スルホン基を有するフッ素系
陽イオン交換樹脂膜ナフィオン117(登録商標、デュ
ポン社製)11の両面に、吸着還元成長法である化学め
っき(無電解めっき)法により、3mg/cmの白金
電極体12a、12bを接合した。電極体の一部分と、
電源13からの直径0.1mmの白金ワイヤである導電
体14a、14bとを、銀フィラーを含む導電性エポキ
シ接着剤(エイブルボンド967−1、日本エイブルス
ティック社製)である導電性材料を介して接着固定(電
気供給部15a、15b)した。続いて1Nの塩化リチ
ウム水溶液に室温で15時間浸漬させた後、純水で中性
になるまで十分に洗浄した。以上より、スルホン基を有
する陽イオン交換樹脂層11と、陽イオン交換樹脂層を
介して対向する位置に配置された電極体12a、12b
よりなり、陽イオン交換樹脂層中の陽イオンがリチウム
イオンであるアクチュエータ素子1を作製した。前記の
変位測定方法に従い、変位を測定したところ±1.94
mmであった。
(Example 1) A fluorine-based cation-exchange resin membrane Nafion 117 (registered trademark, manufactured by DuPont) 11 having a sulfone group was formed on both surfaces by a chemical plating (electroless plating) method, which is an adsorption reduction growth method. 3 mg / cm 2 of platinum electrode bodies 12a and 12b were joined. A part of the electrode body,
The conductors 14a and 14b, which are platinum wires having a diameter of 0.1 mm, from the power source 13 are connected via a conductive material which is a conductive epoxy adhesive containing silver filler (Able Bond 967-1, manufactured by Japan Able Stick Co., Ltd.). And adhesively fixed (electric supply units 15a and 15b). Then, it was immersed in a 1N lithium chloride aqueous solution at room temperature for 15 hours, and then thoroughly washed with pure water until it became neutral. As described above, the cation-exchange resin layer 11 having a sulfone group and the electrode bodies 12a and 12b arranged at positions facing each other with the cation-exchange resin layer in between.
Then, the actuator element 1 in which the cations in the cation exchange resin layer are lithium ions was produced. When the displacement was measured according to the above displacement measuring method, it was ± 1.94.
mm.

【0022】(実施例2)実施例1で作製したアクチュ
エータ素子1を、水不透過性の接着性シリコーンTSE
382−C(東芝シリコーン社製)の薄膜16で被覆
し、アクチュエータ素子2を作製した。但し、陽イオン
交換樹脂層は、純水で含水状態に保持した。飽和食塩水
中において、前記の変位測定方法に従い、変位を測定し
たところ±1.78mmであった。
(Embodiment 2) The actuator element 1 manufactured in Embodiment 1 is prepared by using the water-impermeable adhesive silicone TSE.
The actuator element 2 was manufactured by coating with a thin film 16 of 382-C (manufactured by Toshiba Silicone Co., Ltd.). However, the cation exchange resin layer was kept in a water-containing state with pure water. When the displacement was measured in saturated saline in accordance with the displacement measuring method described above, it was ± 1.78 mm.

【0023】陽イオン交換樹脂層中の陽イオンを定量す
るため、アクチュエータ素子を純水中で洗浄し、60℃
で15時間真空乾燥し、白金るつぼを用いて灰化した。
次いで、るつぼに6N塩酸を加え、灰分を溶解させ、放
冷後、塩酸で定溶した。これを、ICP発光分光分析装
置SPS1200VR(セイコー電子工業社製)を用い
てアクチュエータ素子の陽イオン交換樹脂層中のLiを
定量したところ、陽イオン交換樹脂層中の陽イオンがリ
チウムイオンのまま変化していないことを確認した。
In order to quantify the cations in the cation exchange resin layer, the actuator element is washed in pure water and then at 60 ° C.
Vacuum dried for 15 hours and ashed with a platinum crucible.
Next, 6N hydrochloric acid was added to the crucible to dissolve the ash content, and after allowing to cool, the solution was dissolved with hydrochloric acid. When the amount of Li in the cation exchange resin layer of the actuator element was quantified using an ICP emission spectroscopy analyzer SPS1200VR (manufactured by Seiko Denshi Kogyo Co., Ltd.), the cations in the cation exchange resin layer remained lithium ions. I confirmed that I did not.

【0024】(比較例1)実施例1と同様に陽イオン交
換樹脂膜11の両面に白金電極体12a、12bを接合
した。次いで、1Nの塩酸中に浸漬して、陽イオン交換
樹脂層中の陽イオンを水素イオンにした。前記の変位測
定方法に従い、変位を測定したところ±0.34mmで
あった。
(Comparative Example 1) In the same manner as in Example 1, platinum electrode bodies 12a and 12b were bonded to both surfaces of the cation exchange resin membrane 11. Then, it was immersed in 1N hydrochloric acid to convert the cations in the cation exchange resin layer into hydrogen ions. When the displacement was measured according to the above displacement measuring method, it was ± 0.34 mm.

【0025】(比較例2)実施例1と同様に陽イオン交
換樹脂膜11の両面に白金電極体12a、12bを接合
した。次いで、1Nの塩化ナトリウム水溶液に浸漬し
て、陽イオン交換樹脂層中の陽イオンをナトリウムイオ
ンにした。前記の変位測定方法に従い、変位を測定した
ところ±1.2mmであった。
(Comparative Example 2) As in Example 1, platinum electrode bodies 12a and 12b were bonded to both surfaces of the cation exchange resin membrane 11. Then, it was immersed in a 1N sodium chloride aqueous solution to convert the cations in the cation exchange resin layer into sodium ions. When the displacement was measured according to the above displacement measuring method, it was ± 1.2 mm.

【0026】(比較例3)実施例1と同様に陽イオン交
換樹脂膜11の両面に白金電極体12a、12bを接合
した。次いで、1Nの塩化カリウム水溶液に浸漬して、
陽イオン交換樹脂層中の陽イオンをカリウムイオンにし
た。前記の変位測定方法に従い、変位を測定したところ
±0.86mmであった。
(Comparative Example 3) As in Example 1, platinum electrode bodies 12a and 12b were bonded to both surfaces of the cation exchange resin membrane 11. Then, soak in a 1N potassium chloride aqueous solution,
The cations in the cation exchange resin layer were changed to potassium ions. When the displacement was measured according to the above displacement measuring method, it was ± 0.86 mm.

【0027】(比較例5)実施例1と同様に陽イオン交
換樹脂膜11の両面に白金電極体12a、12bを接合
した。次いで、1Nの塩化セシウム水溶液に浸漬して、
陽イオン交換樹脂層中の陽イオンをセシウムイオンにし
た。前記の変位測定方法に従い、変位を測定したところ
±0.90mmであった。
(Comparative Example 5) As in Example 1, platinum electrode bodies 12a and 12b were bonded to both surfaces of the cation exchange resin membrane 11. Then, by immersing in 1N cesium chloride aqueous solution,
The cations in the cation exchange resin layer were changed to cesium ions. When the displacement was measured according to the above displacement measuring method, it was ± 0.90 mm.

【0028】(比較例7)実施例1と同様に陽イオン交
換樹脂膜11の両面に白金電極体12a、12bを接合
した。次いで、28%のアンモニア水に浸漬して、陽イ
オン交換樹脂層中の陽イオンをアンモニウムイオンにし
た。前記の変位測定方法に従い、変位を測定したところ
±0.91mmであった。
(Comparative Example 7) In the same manner as in Example 1, platinum electrode bodies 12a and 12b were bonded to both surfaces of the cation exchange resin membrane 11. Then, it was immersed in 28% ammonia water to convert the cations in the cation exchange resin layer into ammonium ions. When the displacement was measured according to the above displacement measuring method, it was ± 0.91 mm.

【0029】(比較例4)実施例1と同様に陽イオン交
換樹脂膜11の両面に白金電極体12a、12bを接合
した。次いで、1Nの塩化カルシウム水溶液に浸漬し
て、陽イオン交換樹脂層中の陽イオンをカルシウムイオ
ンにした。前記の変位測定方法に従い、変位を測定した
ところ±1.09mmであった。
(Comparative Example 4) As in Example 1, platinum electrode bodies 12a and 12b were bonded to both surfaces of the cation exchange resin membrane 11. Then, it was immersed in a 1N aqueous solution of calcium chloride to convert the cations in the cation exchange resin layer into calcium ions. When the displacement was measured according to the above displacement measuring method, it was ± 1.09 mm.

【0030】(比較例6)実施例1と同様に陽イオン交
換樹脂膜11の両面に白金電極体12a、12bを接合
した。次いで、1Nの塩化バリウム水溶液に浸漬して、
陽イオン交換樹脂層中の陽イオンをバリウムイオンにし
た。前記の変位測定方法に従い、変位を測定したところ
±0.73mmであった。
(Comparative Example 6) In the same manner as in Example 1, platinum electrode bodies 12a and 12b were bonded to both surfaces of the cation exchange resin membrane 11. Then, immerse in a 1N barium chloride aqueous solution,
The cations in the cation exchange resin layer were barium ions. When the displacement was measured according to the above displacement measuring method, it was ± 0.73 mm.

【0031】[0031]

【発明の効果】以上説明したように、陽イオン交換膜の
陽イオンをリチウムイオンにすることにより、湾曲、屈
曲変形の最も大きいアクチュエータ素子を得ることがで
きる。
As described above, by using lithium ions as the cations of the cation exchange membrane, it is possible to obtain an actuator element having the largest bending and bending deformation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるアクチュエータ素子1の斜視
図。
FIG. 1 is a perspective view of an actuator element 1 according to the present invention.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B断面図。3 is a sectional view taken along line BB of FIG.

【図4】本発明に係わるアクチュエータ素子2の斜視
図。
FIG. 4 is a perspective view of an actuator element 2 according to the present invention.

【図5】図4のC−C断面図。5 is a sectional view taken along line CC of FIG.

【図6】図4のD−D断面図。FIG. 6 is a sectional view taken along line DD of FIG. 4;

【符号の説明】[Explanation of symbols]

1 アクチュエータ素子 2 アクチュエータ素子 11 陽イオン交換樹脂層 12a、12b 電極体 13 電源 14a、14b 導電体 15a、15b 電気供給部 16 薄膜 DESCRIPTION OF SYMBOLS 1 Actuator element 2 Actuator element 11 Cation exchange resin layer 12a, 12b Electrode body 13 Power supply 14a, 14b Conductor 15a, 15b Electric supply part 16 Thin film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 含水状態のスルホン基を有する陽イオン
交換樹脂層と、該陽イオン交換樹脂層を介して配置され
た複数の電極体とからなり、該電極体間に電位差をかけ
ることにより変形するアクチュエータ素子であって、該
陽イオン交換樹脂層中の陽イオンがリチウムイオンであ
ることを特徴とするアクチュエータ素子。
1. A cation-exchange resin layer having a hydrous sulfone group, and a plurality of electrode bodies arranged with the cation-exchange resin layer interposed therebetween, and deformed by applying a potential difference between the electrode bodies. An actuator element, wherein the cations in the cation exchange resin layer are lithium ions.
【請求項2】 前記陽イオン交換樹脂層中に他のイオン
が侵入しないようにしたことを特徴とする請求項1に記
載のアクチュエータ素子。
2. The actuator element according to claim 1, wherein other ions are prevented from entering the cation exchange resin layer.
【請求項3】 水不透過性の材料で前記アクチュエータ
素子を覆ったことを特徴とする請求項1に記載のアクチ
ュエータ素子。
3. The actuator element according to claim 1, wherein the actuator element is covered with a water-impermeable material.
JP7182457A 1995-07-19 1995-07-19 Actuator element Pending JPH0932718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7182457A JPH0932718A (en) 1995-07-19 1995-07-19 Actuator element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7182457A JPH0932718A (en) 1995-07-19 1995-07-19 Actuator element

Publications (1)

Publication Number Publication Date
JPH0932718A true JPH0932718A (en) 1997-02-04

Family

ID=16118611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7182457A Pending JPH0932718A (en) 1995-07-19 1995-07-19 Actuator element

Country Status (1)

Country Link
JP (1) JPH0932718A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924846A2 (en) * 1997-12-15 1999-06-23 Agency Of Industrial Science And Technology, Ministry Of International Trade And Industry Process for producing an actuator element and microdevice
WO2004098040A1 (en) * 2003-04-25 2004-11-11 Eamex Corporation Curve driver and microdevice
JP2004350495A (en) * 2003-04-25 2004-12-09 Eamex Co Bending driving device and micro device
WO2004112233A1 (en) * 2003-06-17 2004-12-23 Eamex Corporation Polymer actuator
WO2005008875A1 (en) * 2003-07-23 2005-01-27 Eamex Corporation Method for manufacturing actuator device
JP2005033991A (en) * 2003-06-17 2005-02-03 Eamex Co Polymer actuator element
JP2005057994A (en) * 2003-07-23 2005-03-03 Eamex Co Method for manufacturing actuator element, and actuator element
US6881307B2 (en) 2001-10-26 2005-04-19 Minolta Co., Ltd. Image creating apparatus and image recording apparatus
WO2005053145A1 (en) * 2003-11-28 2005-06-09 Eamex Corporation Driving element
WO2008007526A1 (en) * 2006-07-14 2008-01-17 Eamex Corporation Wiring connection structure in polymer actuator or polymer sensor
WO2013021903A1 (en) * 2011-08-11 2013-02-14 ソニー株式会社 Driving unit, lens module and image pick-up device
CN104122642A (en) * 2013-04-26 2014-10-29 索尼公司 Polymer device, method of manufacturing the same, camera module, and imaging unit

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924846A3 (en) * 1997-12-15 1999-11-17 Agency Of Industrial Science And Technology, Ministry Of International Trade And Industry Process for producing an actuator element and microdevice
EP0924846A2 (en) * 1997-12-15 1999-06-23 Agency Of Industrial Science And Technology, Ministry Of International Trade And Industry Process for producing an actuator element and microdevice
US6881307B2 (en) 2001-10-26 2005-04-19 Minolta Co., Ltd. Image creating apparatus and image recording apparatus
WO2004098040A1 (en) * 2003-04-25 2004-11-11 Eamex Corporation Curve driver and microdevice
JP2004350495A (en) * 2003-04-25 2004-12-09 Eamex Co Bending driving device and micro device
JP4593160B2 (en) * 2003-04-25 2010-12-08 イーメックス株式会社 Bending drive device and micro device
WO2004112233A1 (en) * 2003-06-17 2004-12-23 Eamex Corporation Polymer actuator
JP2005033991A (en) * 2003-06-17 2005-02-03 Eamex Co Polymer actuator element
JP2005057994A (en) * 2003-07-23 2005-03-03 Eamex Co Method for manufacturing actuator element, and actuator element
WO2005008875A1 (en) * 2003-07-23 2005-01-27 Eamex Corporation Method for manufacturing actuator device
WO2005053145A1 (en) * 2003-11-28 2005-06-09 Eamex Corporation Driving element
WO2008007526A1 (en) * 2006-07-14 2008-01-17 Eamex Corporation Wiring connection structure in polymer actuator or polymer sensor
WO2013021903A1 (en) * 2011-08-11 2013-02-14 ソニー株式会社 Driving unit, lens module and image pick-up device
JP2013037315A (en) * 2011-08-11 2013-02-21 Sony Corp Driving unit, lens module and image pick-up device
US9590169B2 (en) 2011-08-11 2017-03-07 Dexterials Corporation Drive device, lens module, and image pickup unit
CN104122642A (en) * 2013-04-26 2014-10-29 索尼公司 Polymer device, method of manufacturing the same, camera module, and imaging unit
JP2014215530A (en) * 2013-04-26 2014-11-17 ソニー株式会社 Polymer device, method of manufacturing the same, camera module, and imaging unit

Similar Documents

Publication Publication Date Title
Oguro et al. Polymer electrolyte actuator with gold electrodes
JP4802680B2 (en) Actuator
US5268082A (en) Actuator element
JP2768869B2 (en) Actuator element
JP5098245B2 (en) Actuator and manufacturing method thereof
JPH0932718A (en) Actuator element
US7169822B2 (en) Polymeric actuator
JP2007244103A (en) Composite material
JP4821487B2 (en) Actuator device and driving method thereof
US20040025639A1 (en) Novel electrically active ionic polymer metal composites and novel methods of manufacturing them
JPH0810336A (en) Medical tube
Onishi et al. Bending response of polymer electrolyte actuator
JP3646166B2 (en) Method for manufacturing actuator element
JPH11235064A (en) Manufacture of macromolecular actuator
Tamagawa et al. Influence of metal plating treatment on the electric response of Nafion
JPH0979129A (en) Actuator element
CN108007950B (en) Method for dynamically repairing metal electrode in IPMC driving process
JP2894378B2 (en) Electrochemical element and method of manufacturing the same
Wang et al. Effects of Cu 2+ counter ions on the actuation performance of flexible ionic polymer metal composite actuators
JP2005033991A (en) Polymer actuator element
JP2006081374A (en) Air drive polymer actuator element
Noh et al. Development of large-surface Nafion-metal composite actuator and its electrochemical characterization
JPH08275564A (en) Actuator element
Onishi et al. Biomimetic microactuators based on polymer electrolyte/gold composite driven by low voltage
Bennett et al. Manufacture of Ionic Polymer Actuators Using Non-Precious Metal Electrodes