WO2004106895A1 - Fatigue tester - Google Patents

Fatigue tester Download PDF

Info

Publication number
WO2004106895A1
WO2004106895A1 PCT/JP2004/007191 JP2004007191W WO2004106895A1 WO 2004106895 A1 WO2004106895 A1 WO 2004106895A1 JP 2004007191 W JP2004007191 W JP 2004007191W WO 2004106895 A1 WO2004106895 A1 WO 2004106895A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
test piece
correction
load
amplification factor
Prior art date
Application number
PCT/JP2004/007191
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Nakamura
Hitoshi Izumiya
Takahiro Shiina
Hiroyuki Koguma
Takahiro Urai
Original Assignee
Moog Japan Ltd.
Hokkaido Technology Licensing Office Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moog Japan Ltd., Hokkaido Technology Licensing Office Co., Ltd. filed Critical Moog Japan Ltd.
Publication of WO2004106895A1 publication Critical patent/WO2004106895A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/36Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by pneumatic or hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means

Definitions

  • the present invention relates to a fatigue tester, and can be used, for example, for a hydraulic servo fatigue tester for acquiring data in a very high cycle range.
  • Fatigue accounts for more than 70-80% of the damage to mechanical structures, and countermeasures against fatigue are one of the most pressing issues for mechanical engineers.
  • a horizontal portion that is, a fatigue limit appears at a repetition rate of about 10 6 to 10 7 .
  • general machines are designed based on the fatigue limit.
  • Test equipment for such ultra-high cycle fatigue is required to have higher performance than conventional fatigue test equipment in repetition rate, load accuracy, load stability, removal of uneven load, and the like.
  • a DSP Digital Signal Processor
  • the applicant of the present application has used a DSP (Digital Signal Processor) controller to perform digital control and operate the hydraulic servo mechanism to improve load accuracy, load stability, and operability.
  • This axial load fatigue tester secures high responsiveness by increasing the natural frequency of the system by integrating the components of the main body of the tester to increase rigidity, and secures data of ultra-high cycle range. Many acquisitions have been achieved.
  • a spherical bearing (spherical bearing) is incorporated in the test piece mounting part, and self-alignment is performed when a tensile load is applied to the test piece.
  • a computer is connected to the DSP controller, and it is possible to display measured values during testing and input control parameters on the screen of this computer.
  • Patent Document 2 JP-A-2000-131203 (FIGS. 1, 7, paragraphs [0007] [0011], [002 6], [0040])
  • the load signal may not follow the target value signal when the amplification factor is set to a constant value.
  • the maximum value and the minimum value of the load signal are monitored in real time, and the optimum amplification factor correction amount and zero point correction amount are calculated based on the difference between the monitoring result and the target value signal.
  • a correction operation for disturbance that corrects the amplification factor and the zero point is performed.
  • Such proportional control is sometimes referred to as adaptive proportional control because it changes the amplification factor and the zero point every moment in response to disturbances and the like, and is described in Patent Document 1 described above. This adaptive proportional control is also performed by a fatigue tester.
  • Patent Document 2 discloses an AGC (Auto Gain) for automatically controlling an amplification factor.
  • the (Control) method is a method in which the magnitude of the amplitude of the target value signal used in the next cycle is corrected based on the amplitude of the control target output amount actually generated in a certain cycle during control execution. It is described that high-precision control cannot be performed from one cycle, and it is difficult to apply it to a low-cycle fatigue test in which the area of the hysteresis curve of the stress-strain curve of the test piece is relatively large. Therefore, as described in Patent Document 2 mentioned above, The low cycle fatigue tester described above does not control the AGC method in the first place, so it does not solve the above problems.
  • a measured value during a test (for example, a load applied to a test piece, a load applied to a test piece, or the like) is displayed on a computer screen connected to a DSP controller.
  • the maximum value, the minimum value, the value of the signal of the function generator, etc.) are displayed, but these displays are displayed as load values and voltage values, and the stress display required by the experimenter is Absent. Therefore, the experimenter had to calculate and understand the stress based on the specimen diameter.
  • control parameters could not be input as stress values, but it was necessary to calculate the load and voltage values to be controlled based on the specimen diameter and input them as control parameters.
  • An object of the present invention is to provide a fatigue tester capable of improving test accuracy.
  • the present invention provides a main body having a test piece mounting part for mounting a test piece and an actuator part for applying a load to the test piece, and a detection signal corresponding to the load applied to the test piece to feed back the actuator.
  • a control unit for performing feedback control for sending a control signal for controlling the operation of the unit to the main body.
  • the control unit includes a digital controller for performing feedback control by digital processing.
  • This digital camera controller is provided with a control signal generating means for generating a control signal corresponding to a deviation amount between a detection signal and a target value signal, and compares a waveform of the detection signal with a waveform of the target value signal.
  • an amplification factor correction Z for performing a calculation process relating to an amplification factor and a zero correction used for a control signal generation process, and a zero-point correction calculating means
  • An amplification factor correcting means for performing an amplification factor correction process based on the calculation result by the positive / zero correction calculation device; and a zero point correction device for performing a zero point correction process based on the calculation result by the amplification factor correction / zero correction device.
  • the amplification factor correction / zero correction calculation means is configured to switch the algorithm of the calculation process for the amplification factor correction stepwise according to the degree of convergence of the detection signal to the target value signal. It is characterized by that.
  • the “calculation processing for the amplification factor and the correction of the zero point” includes the processing of calculating the amount of increase or decrease with respect to the original value (the value before correction) of the amplification factor and the zero point, and the processing after the correction. It also includes the process of calculating the zero point of and the value of the amplification factor itself (corrected value itself).
  • the "configuration for switching algorithms stepwise” includes both a configuration for switching two algorithms and a configuration for switching three or more algorithms. In this case, one-way switching, which does not return to the original algorithm after switching once, And one-way traffic switching that can return to the original algorithm again after one switching.
  • switching includes, for example, the following. That is, (1) switching of the form of the mathematical expression used for the calculation process itself is included. For example, a change from a linear function to a quadratic function, a change in the exponent, a change from an addition term to a subtraction term or vice versa, a change in the number of terms, and the like. (2) Switching the values of coefficients and constants included in the formulas used in the calculation process is included. For example, a process of multiplying by 0.1% is changed to a process of multiplying by 0.05%. (3) Switching data and data groups used for calculation processing is included.
  • Switching the structure of selection processing for example, processing of IF statements, etc.
  • branch processing for example, processing of CASE statements, etc.
  • the order and position of the selection processing in the program are changed, the number of branches is increased / decreased, and the degree of layering of the selection processing and the branch processing is changed.
  • switching from an algorithm that performs a calculation process using a mathematical expression to an algorithm that performs a data selection process, or from an algorithm that performs a calculation process using a mathematical expression, to a routine having a different processing content for example, a routine using a different mathematical formula
  • Switching to an algorithm that performs selection processing of different data, a routine that uses different data, etc.
  • the amplification factor correction / zero correction calculation means compares the waveform of the detection signal with the waveform of the target value signal, and based on the comparison result, determines the amplification factor and
  • the algorithm of the calculation process related to the correction of the amplification factor is switched stepwise according to the degree of convergence of the detection signal to the target value signal.
  • the amplification factor correction Z zero point correction calculation means switches the algorithm of the calculation process for the zero correction stepwise according to the degree of convergence of the detected signal to the target value signal. It is desirable that it is.
  • the amplification factor correction Z-zero correction calculating means converts the waveform of the periodically changing detection signal and the waveform of the periodically changing target value signal into one waveform. Comparing every cycle, based on the amount of deviation of both waveforms obtained as a result of this comparison, perform calculation processing for the amplification factor and zero point correction for each waveform cycle, and switch the algorithm when performing this calculation processing It is desirable that the configuration be such that it is determined at each cycle of the waveform.
  • the algorithm can be switched at an appropriate timing, the convergence speed is increased, and the test is performed. The accuracy is further improved.
  • the control that involves the stepwise switching of the algorithm of the calculation processing relating to the correction of the amplification factor and the zero point as described above is called multi-mode adaptive proportional control (MAP). Shall be.
  • MAP multi-mode adaptive proportional control
  • Such multi-stage adaptive proportional control can be applied to other controlled devices other than the fatigue tester of the present invention. That is, the output signal (corresponding to the detection signal corresponding to the load applied to the test piece) from the controlled device (corresponding to the body of the fatigue tester) is fed back and the controlled device is controlled.
  • a digital controller that performs digital feedback control is provided.
  • a control signal generating means for generating a control signal corresponding to the deviation amount; a comparison between a waveform of the output signal and a waveform of the target value signal; and, based on the comparison result, an amplification factor and a zero point used for the control signal generation processing.
  • a gain correction / zero correction calculation method that performs calculation processing related to correction, and an amplification correction based on the calculation result by the amplification correction Z zero correction calculator
  • the amplification factor according to the degree of convergence to the target value signal
  • the algorithm of the calculation process may be switched stepwise. Further, in addition to the amplification factor, a configuration may be adopted in which the algorithm of the calculation process relating to the correction of the zero point is switched stepwise.
  • the fatigue tester includes a control unit that sends a control signal for controlling the operation of the actuator unit to the main body and a control unit that performs feedback control.
  • the control unit includes a digital controller that performs feedback control by digital processing. And an external processing device connected to the digital controller for transmitting and receiving information to and from the digital controller to perform processing other than processing related to feedback control.
  • a test condition setting screen display that accepts the test condition setting input by the experimenter by using the input input processing means, a process that displays a test-in-progress screen that monitors the test status during the test, and this test. It is characterized by comprising: a screen display during a test for performing a process of receiving an input by an experimenter performed by using a middle screen; and an input reception processing means.
  • processing related to feedback control includes, in addition to the processing of the main feedback loop, for example, the above-described calculation processing relating to the correction of the amplification factor and the zero point, and the correction processing of the amplification factor and the zero point. Is included.
  • the display processing of three screens, a standby screen, a test condition setting screen, and a test screen is performed by an external processing device provided separately from the digital controller. And an input receiving process using these screens. Therefore, these screens are switched for each situation of the test machine operation, that is, for each scene up to the test preparation stage and the actual stage.
  • the input reception processing means In addition to the standby screen display, the input reception processing means, the test condition setting screen display, the input reception processing means, and the screen display during the test. It is also possible to provide reciprocal operation forced invalidation means for forcibly invalidating operations that should or should not be performed, or input parameter auditing means for auditing whether parameters (test conditions etc.) input by the experimenter are abnormal. Providing these blocks prevents erroneous operation, which leads to further improvement in test accuracy.
  • standby screen display ⁇ input reception processing means, test condition setting screen display ⁇ input reception processing means, and screen display during test ⁇ input reception processing means are all provided in the external processing device, the digital controller is However, the processing for displaying three screens and the processing for accepting input on three screens performed by these means are not burdened. In other words, all functions of the man-machine interface between the experimenter and the test machine are realized by the external processing device, and the digital controller bears only the arithmetic processing directly related to the control performance. As a result, the processing load on the digital controller is reduced, and the speed of arithmetic processing directly related to control performance such as responsiveness, load accuracy, and convergence to disturbances is improved. The above objectives are achieved by these.
  • a test condition setting screen display / input reception processing means sets a combination of a maximum stress and a minimum stress, a combination of a maximum stress and a stress ratio, as a test condition on the test condition setting screen. It is configured to accept the input of any combination of the minimum stress and the stress ratio and the diameter of the test piece. It is desirable to have a configuration to display.
  • the tester is configured to display a graph of the stress on the screen during the test
  • the experimenter only needs to use the commonly used parameters of stress, stress ratio, and specimen diameter. The performance is improved.
  • the stress display on the screen during the test is graphed, the experimenter can intuitively grasp the test status, and the operability of the test machine is further improved. For this reason, even an experimenter who does not have knowledge of a fatigue testing machine or control can easily perform a fatigue test.
  • a program for causing a computer to function as the external processing device is also a distribution target and a transaction target even in the program itself, as described below. That is, as the external processing device described above, a program or a part thereof for causing a computer to function is, for example, a read-only memory (M ⁇ ⁇ ⁇ ) or a compact disk (CD) using a read-only memory (CD).
  • a program or a part thereof for causing a computer to function is, for example, a read-only memory (M ⁇ ⁇ ⁇ ) or a compact disk (CD) using a read-only memory (CD).
  • CD-ROM CD-ROM
  • CD_R CD recordable
  • CD-RW CD rewritable
  • DVD-ROM read-only memory
  • DVD—RAM digital 'versatile' disc
  • FD flexible disk
  • magnetic tape hard disk
  • ROM read-only memory
  • EEPROM electrically erasable and rewritable read-only memory
  • RAM random' access' memory
  • MAN park
  • WAN wide area network
  • wired network such as the Internet
  • intranet an intranet
  • extranet or a wireless communication network
  • a carrier wave it is also possible to carry on a carrier wave.
  • the program described above may be a part of another program, or may be recorded on a recording medium together with a separate program.
  • the present invention includes an actuator section for applying a load to the test piece, and a test piece mounting section for mounting the test piece in a state of being arranged in a direction along the load direction of the actuator section.
  • the grips are provided with grips for gripping both ends of the test piece, and each of these grips is formed with a test piece contact surface with which both end faces of the test piece abut.
  • the end faces on both sides of the test piece satisfy the parallelism of 0.01 and the test piece abuts on each of the grips facing each other among the faces of the component parts of the tester main body.
  • All the surfaces that play a role in defining the parallelism between the surfaces are all finished so as to satisfy the parallelism of 0.01, and each end of the test piece with the test piece attached to the test piece mounting part.
  • a gap is formed between the outer peripheral surface of each of the grips and each of the gripping portions.
  • parallellism is the parallelism in drafting science (parallelism described in the production drawing), that is, the parallelism of the plane portion with respect to the reference plane.
  • Parallellism 0.01 means that the space between two planes that are parallel to the reference plane and that have a distance of 0.01 mm is allowed.
  • the reference plane may be, for example, a surface on the opposite side of each component.
  • each surface that plays a role in defining the parallelism between the test piece abutting surfaces of the opposing gripping portions refers to a case where a plurality of test machine main body components are assembled to form a test machine main body. Next, the surfaces that will affect the relative posture of the test piece contact surfaces of each gripping portion as a result are described.
  • the gap between the fitting of the outer peripheral surface of each end of the test piece used in the actual test and each grip portion is a dummy for alignment used in the alignment work performed before the test. It is desirable that the gap be larger than the clearance between the outer peripheral surface of each end of the test piece and each gripping portion.
  • the alignment before the test is performed. After performing alignment work using the core dummy test piece, remove the core alignment dummy test piece and attach a test piece to be used in the actual test. This makes it possible to perform alignment work with high accuracy. In addition, the loose fitting described above can be easily realized. In addition, if the alignment work is performed once using the alignment dummy test piece, it is possible to perform a plurality of tests as it is, thereby reducing the labor of the experimenter.
  • FIG. 1 shows the overall configuration of a fatigue tester 10 of the present embodiment.
  • FIG. 2 is a cross-sectional view of a test piece mounting portion 20 constituting the main body 11 of the fatigue tester 10
  • FIG. 3 is an enlarged cross-sectional view of a main part of the test piece mounting portion 20.
  • 4 to 6 show examples of screens associated with the processing by the external processing device 90 constituting the control means 60 of the fatigue tester 10.
  • the fatigue tester 10 is a fatigue tester for acquiring ultra-high cycle range data.
  • a fatigue tester 10 includes a main body 11 for attaching a test piece 1 and applying a load to the test piece 1, and a control means 60 for controlling an operation for applying a load on the main body 11. It is configured with.
  • the main body 11 includes a test piece mounting section 20 for mounting the test piece 1, an actuator section 40 for applying a load to the test piece 1, and a servo valve 50 for switching a hydraulic pressure supplied to the actuator section 40. It is provided with.
  • a test piece mounting portion 20 is connected to the upper end 1 A of the test piece 1 via a plurality of components, and detects a load applied to the test piece 1, and a load sensor 21.
  • the load sensor 21 is fixed to the upper surface 23 A of the load cell holder 23 by a plurality of bolts 26.
  • the load cell 21 undergoes minute deformation by receiving a force from the test piece 1, and the strain at that time is detected by the strain gauge 22, whereby the load applied to the test piece 1 is detected.
  • the load cell holder 23 is mounted on the actuator 40 by a plurality of bolts (not shown). It is fixed to the upper surface 42A of the cylinder 42.
  • the load cell holder 23 has a configuration in which the upper and lower flange portions are connected by a plurality of (for example, two) pillar portions, and is formed of, for example, a lump of metal material.
  • the upper grip portion 24 is provided with a round bar-shaped shaft portion 27 extending upward, and a male screw 28 is cut on the upper portion of the shaft portion 27.
  • a bush 29 is sandwiched between the shaft portion 27 and the load sensor 21, and thereby the relative positioning between the upper grip portion 24 and the load cell 21 in a direction orthogonal to the load direction (vertical direction in FIG. 2).
  • the external thread 28 of the shaft 27 is engaged with a lock nut 30 by force S. By tightening the lock nut 30, the relative position of the upper grip portion 24 with respect to the load cell 21 in the load direction is adjusted. It is fixed.
  • the lower grip 25 is screwed to a piston screw 41D provided at the tip of the first piston rod 41B of the actuator 40, and is fixed to the first piston rod 41B.
  • the test piece 1 is loaded with a load due to the reciprocating motion of the piston 41 of the actuator section 40.
  • each of the grasping portions 24 and 25 for grasping the upper and lower ends 1A and 1B of the test piece 1 is, for example, a circular insertion for inserting the upper and lower ends 1A and 1B of the test piece 1.
  • the test piece fixing lids 24B and 25B are configured to hold down and fix the test piece.
  • Each test piece fixing lid 24B, 25B has a disk shape having a through hole through which the test piece 1 is inserted in the center, that is, a donut shape. It consists of a lid piece.
  • Each of the test piece fixing lids 24B and 25B may be divided into three parts instead of two parts.
  • each part is divided into 120-degree sections to form a substantially fan-shaped lid piece, and each of these lid pieces is attached to each test piece holder 24A, 25A using two bolts 33, 34, respectively.
  • Fix it That is, the test piece fixing cover 24B is fixed with a total of six bolts 33, and the test piece fixing lid 25B is fixed with a total of six bolts 34.
  • the test piece 1 in the three divisions is better than that in the two divisions.
  • test piece fixing covers 24B and 25B For materials that do not cause breakage such as the above, such as high-strength steel, for example, using two-piece test piece fixing covers 24B and 25B, Depending on the material of 1, the test piece fixing lids 24B and 25B having different numbers of divisions may be used.
  • the bottom surfaces of the insertion holes 31 and 32 formed in the test piece holders 24A and 25A are the test piece contact surfaces 31A on which the upper and lower end faces 1C and 1D of the test piece 1 are respectively contacted. , 32A.
  • the outer peripheral surfaces IE and 1F of the upper and lower ends 1A and 1B of the test piece 1 and the test piece holders 24A and 25A of the upper and lower grip portions 24 and 25 are provided.
  • the gaps 35 and 36 are formed between the inner peripheral surfaces (side surfaces) 31B and 32B of the insertion holes 31 and 32 formed in FIG.
  • the upper and lower ends 2A, 2B of the alignment test specimen used for the alignment operation performed before the test are indicated by the two-dot chain line in the figure. Except for the upper and lower ends 2A and 2B, this dummy test piece for centering is the same as the test piece 1 used in the actual test.
  • the outer diameters (diameters) Wl and W2 of the upper and lower ends 2A and 2B of the centering dummy test piece are the outer diameters of the upper and lower ends 1A and 1B of the test piece 1 used in the actual test.
  • the dimensions (diameter) are larger than Dl and D2, respectively.
  • the inner diameters (diameters) of the insertion holes 31 and 32 formed in the test piece holders 24A and 25A of the upper and lower grip portions 24 and 25 are Hl and H2
  • the upper and lower ends of the test piece 1 used in the actual test are used.
  • the gaps (H1-D1) and (H2-D2) between the outer surfaces 1E and IF of the parts 1A and 1B and the inner surfaces (side surfaces) 31B and 32B of the insertion holes 31 and 32 are for alignment.
  • each component that plays a role in defining the parallelism between the test piece contact surfaces 31A and 32A (see FIG. 3) of the upper and lower grip portions 24 and 25 is high.
  • Each component Each surface (upper surface or lower surface) is finished to satisfy the parallelism of 0.01. Further, the surface roughness of each of these surfaces is equivalent to the roughness of the polished finish. Note that the parallelism of these surfaces is the parallelism after securing a perpendicularity to the load direction (the direction in which the piston 41 advances and retreats).
  • the following surface is processed to have a parallelism of 0.01 and a roughness equivalent to a polished finish. That is, in FIG. 3, (1) the upper and lower end surfaces 1C and 1D of the test piece 1, (2) the test piece contact surfaces 31A and 32A of the upper and lower grip portions 24 and 25, and (3) the upper and lower ends of the test piece 1. Opposite surfaces 1G, 1H of parts 1A, 1B, (4) Upper and lower test specimen fixing lids 24B, 25B contacting these opposing surfaces 1G, 1H.
  • the actuator section 40 is the same as the above-described actuator section of the fatigue tester described in Patent Document 1 by the present applicant, and therefore, detailed illustration is omitted.
  • the actuator section 40 includes a piston 41 that moves forward and backward to apply a load to the test piece 1, and a cylinder 42 that is arranged around the piston 41 and guides the sliding of the piston 41.
  • the piston 41 has a head portion 41A that moves forward and backward due to a difference in front and rear oil pressure, a first piston rod 41B provided on the forward side of the head portion 41A, and a first piston rod 41B provided on the retreat side of the head portion 41A. It is configured to include a two-piston rod 41C.
  • a first pressure chamber 43 is formed on the forward side of the head 41A of the piston 41, and a second pressure chamber 44 is formed on the retreat side of the head 41A. ing .
  • the first pressure chamber 43 and the second pressure chamber 44 have a first pressure chamber Oil for applying oil pressure to the head portion 41A is supplied through the flow path 45 and the second flow path 46.
  • the servo valve 50 is similar to the servo valve of the fatigue tester described in Patent Document 1 by the present applicant, and has four ports (not shown), ie, a P port, an R port, a C1 port, and a C2 port. It has a port.
  • the P port is connected to a supply pressure pipe of a hydraulic unit (not shown), and the R port is connected to a return pipe connected to an oil tank (not shown).
  • the C1 port and the C2 port are connected to a first flow path 45 and a second flow path 46 formed in the cylinder 42 of the actuator section 40, respectively.
  • the servo valve 50 switches the oil that has entered from the P port to the C1 or C2 port according to the current signal or the voltage signal that is sent from the DSP controller 70. For example, when switching to the C1 port, the oil that has flowed out of the C1 port enters the first pressure chamber 43 through the first flow path 45 and pushes the head 41A of the piston 41 to move the piston 41 backward. Due to the backward movement of the piston 41, the oil in the second pressure chamber 44 is pushed by the head portion 41A and enters the C2 port through the second flow path 46. Then, the oil that has entered the servo valve 50 from the C2 port is guided to the R port in the servo valve 50 and finally flows to the return pipe of the hydraulic unit. The oil circulates through such a route. The same is true when switching to the C2 port, in which case the piston 41 moves forward.
  • the switching control of the servo valve 50 causes the piston 41 to move forward and backward.
  • the first piston rod 41B of the actuator section 40 is connected to the lower end 1B of the test piece 1 via the lower grip 25.
  • the lower end 1B of the test piece 1 is displaced in the longitudinal direction of the test piece 1, and as a result, a load is applied to the test piece 1. It is as follows.
  • a so-called nozzle flapper type servo valve can be suitably used, and from the viewpoint of further improving responsiveness, a so-called direct drive type servo valve may be used.
  • the former nozzle flapper type servo valve is formed by a pressure difference between a nozzle flapper and a flapper in a portion called a first stage. The latter moves the pool, and the latter direct drive type servo valve drives the spool directly by a driving element such as a voice coil or a giant magnetostrictive element / electrostrictive element.
  • control means 60 feeds back a detection signal of the strain gauge 22 corresponding to the load applied to the test piece 1 to control the operation of the actuator section 40 and sends a control signal to the servo valve 50.
  • the DSP controller 70 performs digital processing of the processing directly related to control performance, and transmits and receives information between the DSP controller 70 and the DSP controller 70.
  • An external processing device 90 that performs processing that is not directly related to control performance is provided.
  • the DSP controller 70 includes a function generator 71, a servo amplifier 72 constituting control signal generation means, a D_A converter 73, an A_D converter 74, a counter 75, and a limiter 76.
  • the DSP controller 70 also includes a peak-bottom Hornoled 77, an amplification factor correction / zero correction calculation unit 78, an amplification factor correction unit 79, and a zero correction unit 80.
  • Each component of the DSP controller 70 includes one or a plurality of central processing units (CPUs) provided inside the DSP controller 70 and one that defines the operation procedure of the CPU. Alternatively, it is realized by a plurality of control programs and various memories such as a ROM and a RAM. Further, the hardware constituting the DSP controller 70 may include, for example, a product-sum operation unit in addition to the CPU.
  • the control program is such that an execution program created and compiled by the external processing device 90 is mounted on the DSP controller 70. This control program is created by combining a program created by the external processing unit 90 with various instructions (for example, an instruction for outputting a sine waveform) provided by a DSP board built in the DSP controller 70. Generally, all parts of the control program may be created by the external processing device 90.
  • the DSP controller 70 performs the following fully digitalized feedback control.
  • a signal corresponding to the target load is generated in the function generator 71.
  • This signal is amplified at a predetermined amplification rate by the servo amplifier 72 and is converted into an analog current signal or a voltage signal through the DA converter 73.
  • the analog current signal or the voltage signal is replaced in the servo valve 50 with oil having a flow rate proportional to the magnitude of the signal, and guided to the first pressure chamber 43 or the second pressure chamber 44 of the actuator section 40. As a result, the piston 41 moves, and a load is applied to the test piece 1.
  • the load applied to the test piece 1 is converted into an analog voltage signal or a current signal in proportion to the load by the load cell 21 and the strain gauge 22, and further converted into a digital signal through the AD converter 74. Is done. Then, a deviation value between the target value signal from the function generator 71 and this load signal is calculated, and this value is sent to the servo amplifier 72 again. The deviation finally converges by such a feedback loop, and a load corresponding to the target value signal is applied to the test piece 1.
  • the load signal may not follow the target value signal when the gain is set to a constant value.
  • a correction operation for disturbance is performed by the peak bottom hold 77, the amplification factor correction / zero correction calculation unit 78, the amplification factor correction unit 79, and the zero correction unit 80. That is, the peak value and the minimum value of the load signal are monitored in real time by the peak bottom hold 77, and the amplification factor correction / zero correction calculation means 78 determines the optimum amplification factor based on the deviation between the monitoring result and the target value signal. A correction amount and a zero-point correction amount are calculated. Then, based on this calculation result, the signal of the function generator 71 is corrected by the zero point correction means 80, and the amplification factor of the servo amplifier 72 is corrected by the amplification factor correction means 79.
  • the fatigue tester 10 is stopped by the limiter 76.
  • the number of repetitions required for the fatigue test is counted by the counter 75.
  • the function generator 71 performs a process of generating a target value r (k).
  • the target value r (k) is a sign waveform and is represented by the following equation (1).
  • r (k) ⁇ ⁇ 8 ⁇ (2 ⁇ X (F X k / F)) + OFF ⁇ ⁇ ⁇ (1)
  • A is the sine wave amplitude (amplitude) of the attained target load
  • F is the value of the fatigue test.
  • the repetition frequency (frequency) F is the operating frequency (sampling frequency) of the A / D converter 74 of the DSP controller 70
  • OFF is the zero point, that is, the sine wave average value (offset) of the target load.
  • This determination process is performed by the processing means 90A of the external processing device 90, and the result of the determination is delivered to the function generator 71, and is used for the processing in the function generator 71. For example, suppose that the mouthpiece 21 is calibrated to output 10 V at 100 kgf (9.81 kN).
  • this waveform is a sine waveform having an amplitude of 450 kgf (4.41 kN) above and below 550 kgf (5.39 kN).
  • the setting input based on the stress value is received on the test condition setting screen 200 in FIG. 5 by the test condition setting screen display 'input reception processing means 92' of the external processing device 90 as described later.
  • the experimenter does not need to perform the conversion work from the stress value to the load value.
  • the external processing device 90 converts the stress value to the load value, calculates the target load amplitude and zero point, determines the load, and converts the voltage value to the voltage value. Performs all conversion processing automatically.
  • the repetition frequency F of the fatigue test is input by the experimenter using a test condition setting screen 200 in FIG. 5 described later.
  • the servo amplifier 72 performs a process of generating a control signal to be sent to the servo valve 50.
  • G is an amplification rate, that is, a proportional gain (gain).
  • the peak bottom hold 77 measures the maximum value and the minimum value of each cycle of the waveform of the actually measured load value detected by the strain meter 22, and performs a process of storing and storing the maximum value and the minimum value.
  • the amplification factor correction / zero correction calculation means 78 compares the waveform of the target value signal with the waveform (feedback waveform) of the detection signal of the strain meter 22, and based on the comparison result, calculates the amplification factor (gain). And a calculation process for correcting the zero point (offset). This is a process for performing adaptive proportional control.
  • the comparison between the target value signal waveform and the feedback waveform includes comparing the amplitude of the target value signal waveform with the amplitude of the feedback waveform, and comparing the zero point (offset) of the target value signal waveform with the zero point (offset) of the feedback waveform. This is a comparison.
  • the amplitude and offset of the waveform of the target value signal are values calculated and determined by the external processing device 90 when the test conditions are first set on the test condition setting screen 200 in FIG. 5 as described above.
  • the amplitude and offset of the feedback waveform are calculated by the amplification factor correction / zero correction calculation means 78 based on the maximum value and the minimum value measured by the peak bottom hold 77. It should be noted that the comparison processing of these waveforms and the calculation processing relating to the correction based on the comparison result are basically performed for each cycle of the waveform, but may be performed for a plurality of cycles.
  • the amplification factor correction / zero correction calculation means 78 outputs a response signal (a detection signal of the strain meter 22).
  • the processing for switching the algorithm of the calculation processing relating to the correction of the amplification factor (gain) and the zero point (offset) is performed stepwise.
  • This is a process for performing multi-stage adaptive proportional control. In principle, the process of determining whether or not to switch is performed for each cycle of the waveform, but may be performed for a plurality of cycles.
  • a specific example of the process of switching the algorithm stepwise includes the following two-stage switching process.
  • the number of switching stages, the content of the algorithm, the switching determination method, and the like are as follows. It is not limited.
  • the following algorithm A and algorithm B are used.
  • the amplitude of the measured load is A
  • the proportional gain at that time is G.
  • G (A / A) XG. This value of G and the current ratio
  • i indicates the i-th sampling data, and corresponds to each cycle. Therefore, the value of i changes at a longer time interval than k in Equation (1) and Equation (3).
  • Gtp is a parameter (gain tuning parameter) used to smooth the change in proportional gain. As the value of gtp, for example, an experience value of 0.02 or the like can be used, but the value is not limited to this.
  • the above method is Algorithm A.
  • AGC In normal adaptive proportional control, AGC is performed using only algorithm A described above. However, when the measured load value converges to the target value to some extent, the value of gtp XAG becomes extremely small, and the convergence peaks out, making it difficult to converge the error to a value smaller than, for example, 1%.
  • the AGC algorithm is changed from the above algorithm A to the following algorithm B when the actually measured load value converges to a target value to some extent after the start of the test.
  • the amount of increase or decrease is not limited to the above-mentioned 0.0002, but may be another value, or the increase and decrease amounts may be different values.
  • the timing of switching from algorithm A to algorithm B is the first time gtp X A G ⁇ 0.0006 is satisfied during control by algorithm A. Therefore, in each cycle, gtp X A G ⁇ 0.0006 is satisfied, and the repulsive force is cut off by half IJ.
  • the numerical value of 0.0006 is a value obtained empirically through experiments, but the criterion value is not limited to this.
  • the error can be converged to ⁇ 0.1% or less by the multi-stage adaptive proportional control that switches from algorithm A to algorithm B as described above.
  • the value of gtp in the algorithm A is dynamically changed while monitoring the degree of convergence, or a switching criterion value (boundary value of gtp XAG) which is only 0 ⁇ 0006 in the above example.
  • a multi-stage adaptive proportional control that switches over three or more stages by changing the amount of increase / decrease in algorithm B, etc.
  • the rated output refers to the larger of the absolute value of the maximum value of the target load and the absolute value of the minimum value of the target load.
  • the flow of processing for determining the offset correction amount is the same for both algorithms C and D, and the only difference is the numerical value of the adjustment amount.
  • the algorithm is regarded as different, and the “algorithm” is defined.
  • the values of each adjustment amount of 0.15% and 0.006% of the rated output are forces S, which are empirically obtained by experiments, and are not limited to these values.
  • the error value of 1.5% of the rated output which serves as a criterion value for switching between the algorithms C and D, is not limited to this, and other values may be used.
  • the amplification factor correction / zero correction calculation means 78 always keeps the automatic offset control (A ⁇ C: Auto offset control) valid even when the AGC is invalidated. That is, during the test, the load average value always or substantially coincides with the target value.
  • the experimenter uses the “AGC enable” button 360 on the screen 300 during the test shown in FIG. Effect can be selected.
  • the average value is adjusted once before the test, so that the error of the average value can be kept small immediately after the start of the test. Therefore, the offset adjustment amount actually used may be almost the value of algorithm D.
  • the amplification factor correction means 79 and the zero point correction means 80 store the calculation results obtained by the amplification factor correction / zero point correction calculation means 78 in a memory, and perform amplification factor and zero point correction processing based on the calculation results. Each one is to do. Since the processing by the amplification factor correction Z zero point correction calculation means 78 is performed for each cycle of the waveform, the contents of the correction processing by the amplification factor correction means 79 and the zero point correction means 80 are updated for each waveform cycle.
  • the counter 75 performs a process of counting the number of repetitions necessary for a fatigue test and a process of a counter limit.
  • Counter limit is a function that stops the test when the number of test repetitions reaches a specified value.
  • the specified value is a value that the experimenter has input in the input section 233 of the number of repetition of the discontinuation on the test condition setting screen 200 in FIG.
  • the limiter 76 performs each processing of a maximum limiter, a minimum limiter, a gain oscillation prevention limiter, and a test piece breakage detection mechanism.
  • the maximum limiter is the maximum force detected by the peak bottom hold 77
  • the minimum limiter is the minimum value detected by the peak bottom hold 77 This function stops the test operation when the value falls below the previously set value, and prevents the abnormal load from being repeated.
  • the value set in advance before the test is a value calculated based on the value entered by the experimenter in the input section 231 of the allowable excessive error on the test condition setting screen 200 in FIG.
  • the gain oscillation prevention limiter has a function of preventing the output from increasing without limit by auto tuning and making the test unstable.
  • the experimenter applies a limiter based on the value entered in the input section 232 for the maximum allowable gain on the test condition setting screen 200 in FIG.
  • the test piece fracture detection mechanism detects the fracture of the test piece 1 by sensing a sudden change in the response load waveform, and stops the fatigue test at the moment when the test piece 1 breaks, thereby detecting the fracture of the test piece. And a function to protect the fatigue tester 10 itself.
  • the external processing device 90 is configured by a computer, and has various functions not directly related to control performance. It is provided with processing means 90A for performing seed processing, input means 96 such as a keyboard and a mouse, and display means 97 such as a liquid crystal display and a CRT display. Further, for example, an output unit such as a printer or a plotter may be appropriately provided.
  • the processing means 90A includes a standby screen display, an input reception processing means 91, a test condition setting screen display, an input reception processing means 92, a screen display during the test, an input reception processing means 93, and a reciprocal operation forced invalidation. Means 94 and input parameter auditing means 95.
  • the standby screen display 'input reception processing means 91 is a processing for displaying the standby screen 100 of Fig. 4 used when operating the actuator unit 40 in a state other than the test, and the standby screen 100 This is a process for receiving an operation input to the actuator section 40 by the experimenter performed by using.
  • Display of test condition setting screen ⁇ Input reception processing means 92 is a process of displaying test condition setting screen 200 of FIG. 5 for setting test conditions, and an experimenter performing using this test condition setting screen 200. The processing for accepting the input of the setting of the test condition according to. If the experimenter inputs necessary values on the test condition setting screen 200 of FIG. 5 and instructs the decision, the input test conditions are displayed on the test condition setting screen display ' The parameters are automatically converted into parameters that can be interpreted by the control program of 70 and transferred to the DSP controller 70.
  • the screen display during test 'input reception processing means 93 is a process for displaying the screen 300 during the test shown in Fig. 6 for monitoring the test status during the test, and the input performed by the experimenter using the screen 300 during the test. This is a process for accepting the request.
  • the input reception processing means 93 communicates with the control program of the DSP controller 70 and investigates the cause. Perform the process of reporting.
  • the reciprocal operation forcibly invalidating means 94 performs a process of forcibly invalidating an operation that should not be performed or an operation that should not be performed while a certain operation is being performed. For example, during the test, the parameters of the test conditions cannot be changed.
  • the input parameter auditing means 95 performs a process of monitoring whether a parameter (test condition or the like) input by an experimenter is abnormal. For example, monitor for inconsistent parameter inputs on the test condition setting screen 200 in FIG. [0116]
  • the means 91-95 included in the processing means 90A are provided inside a computer main body (including not only personal computers but also higher-order models) constituting the external processing device 90. This is realized by a central processing unit (CPU) and one or more programs that define the operation procedure of the CPU.
  • CPU central processing unit
  • a fatigue test for acquiring ultra-high cycle range data is performed using the fatigue tester 10 as follows.
  • the experimenter performs the centering operation of the main body 11 of the fatigue testing machine 10 using the dummy test piece for centering.
  • a dummy test piece for alignment is mounted on the grip portion 25 on the lower side (the piston 41 side).
  • the horizontal position of the load cell 21 is adjusted so that the upper end 2A of the dummy test piece for centering fits into the insertion hole 31 formed in the test piece holder 24A of the grip portion 24 on the upper side (the load cell 21 side). Adjust the position.
  • the load cell 21 is fixed by the bonoleto 26, and the lock nut 30 is tightened. Finally, the dummy specimen for alignment is removed.
  • the above alignment work can be performed in about a few minutes, and the work time is remarkably reduced as compared with the case where the strain gauge is pasted on the test piece and the alignment work is conventionally performed. it can. After this alignment work, no matter how many times the test piece 1 for the fatigue test is attached at random, the test piece 1 will not receive any restraining force from the side. Therefore, unlike the conventional case, this alignment work does not need to be performed for each fatigue test.
  • the experimenter After performing the alignment operation using the alignment dummy test piece as described above, the experimenter attached a test piece to the test piece mounting portion 20 of the main body 11 of the fatigue tester 10 in order to perform a fatigue test. Attach strip 1. At this time, the experimenter uses the standby screen 100 of FIG. 4 displayed on the screen of the display means 97 by the input screen processing means 91 to display the standby screen of the external processing device 90 and displays the test piece 1 Operate the piston 41 necessary for installation work.
  • the standby screen 100 includes a feedback value display section 110 and a test condition table.
  • Display unit 120, piston control unit 130, "communication end” button 140, "test condition setting” button 150, "to test console” button 160, and "numeric offset input” button 170 are provided. .
  • the feedback value display section 110 is provided with a display section 111 of a load obtained from a detection signal of the strain gauge 22, and a display section 112 of a load stress obtained by converting the load into a test piece diameter. I have.
  • the conversion process to the stress value is performed by the standby screen display 'input reception processing means 91.
  • the test condition display section 120 is provided with display sections 121 124 for the maximum absolute stress, the test stress ratio, the test piece diameter, and the test frequency. These display values are the values entered by the experimenter on the test condition setting screen 200 in FIG. 5 by clicking the “test condition setting” button 150.
  • the piston control unit 130 includes an up button 131 for moving the piston 41 forward (up), a down button 132 for moving the piston 41 backward (down), and a neutral button 133 for moving the piston 41 to the center position.
  • the advance amount display section 134 that displays the advance amount (up amount) of the piston 41 with a bar
  • the reverse amount display section 135 that displays the retreat amount (down amount) of the piston 41 with a bar
  • the adjustment amount of the zero point of the servo valve 50 There are provided a valve zero adjustment input section 136 for inputting, and a “Set” button 137 for actually setting the value input on the valve zero adjustment input section 136. Since the zero point of the servo valve 50 is normally shifted to the safe side, the zero point adjustment is performed to correct this in advance and perform precise control.
  • the "communication end” button 140 is a button for terminating communication with the DSP controller 70
  • the "test condition setting” button 150 is a button for moving to the test condition setting screen 200 in FIG.
  • the “To test console” button 160 is a button for moving to the in-test screen 300 in FIG. 6, and the “Numerical value input” button 170 is used to forcibly set the zero point (offset) at the time of adjustment, such as before starting the test. ) Is a button used to set a certain value.
  • the experimenter also sets test conditions before the test.
  • the experimenter clicks the “test condition setting” button 150 on the standby screen 100 of FIG.
  • the test condition setting screen display / input reception processing means 92 displays the test condition setting screen 200 of FIG.
  • a test condition setting screen 200 is used to set main conditions among the test conditions.
  • a "cancel” button 240 for taking human power and a "set condition” button 250 for actually setting the conditions manually input in each of the settings 220 and 230 are provided.
  • the main condition setting section 210 is provided with input sections 211 214 for a maximum absolute stress, a test stress ratio, a test piece diameter, and a test frequency, and is used to input a check when performing a compression-compression test.
  • a compression / compression test selection check input unit 215 is provided.
  • the values of the maximum absolute stress, test stress ratio, and specimen diameter entered here are determined by the sine wave amplitude A and the average sine wave (zero) OFF of the target load in Equation (1) above.
  • This calculation determination processing is performed by the test condition setting screen display 'input reception processing means 92.
  • the value of the test frequency input here is set as the value of F in the above-mentioned equation (1).
  • the altitude condition setting section 220 is provided with input sections 221-223 for load cell conversion constant, vacuum bias, and default gain.
  • the load cell conversion constant indicates the relationship between the load applied to the load cell 21 and the output voltage of the strain gauge 22, and is input according to the calibration result of the load cell 21. It is used for load-voltage conversion in various processes such as sine wave amplitude A of target load and sine wave average value (zero) OFF calculation determination process.
  • the default gain sets the initial value of the amplification factor (gain).
  • the limiter setting section 230 is provided with input sections 231-233 for the permissible excessive error, the permissible maximum gain, and the number of repetition of discontinuation. These input values are used for various limit processes performed by the limiter 76 and the counter 75.
  • a test condition display section 310 for displaying test conditions is displayed on a screen 300 during the test.
  • a test status numerical display unit 320 for numerically displaying the test status and a test status graph display unit 330 for displaying the stress based on the actually measured load as a test status in a graph display are provided.
  • the test condition display section 310 is provided with display sections 311 314 for the maximum absolute stress, the test stress ratio, the test piece diameter, and the test frequency. These display values are the values entered by the experimenter on the test condition setting screen 200 in FIG.
  • the test status numerical display section 320 includes a count display section 321 for displaying the count value of the counter 75, a gain display section 322 for displaying the current gain, and a percentage of the rated input of the servo valve 50.
  • the test error displayed here is (actual load amplitude-target load amplitude) / target load amplitude X 100 (%).
  • the test status graph display section 330 displays a stress waveform (a waveform in which the horizontal axis represents time and the vertical axis represents stress) calculated from the actual load.
  • the conversion process from the load value to the stress value at this time is performed by the screen display / input reception processing means 93 during the test.
  • test status numerical display section 320 and the test status graph display section 330 are periodically updated by the screen display under test / input reception processing means 93.
  • an "automatic offset adjustment” button 340 for automatically adjusting the offset for automatically adjusting the offset
  • a "test stop” button 350 for stopping the test for stopping the test
  • an "AGC enable” button 360 for enabling the AGC are provided.
  • “Automatic offset adjustment” button 340 is a button for automatically bringing the load statically to the offset value before the test starts.
  • the multi-stage adaptive proportional control is not enabled, and only the proportional control is performed.
  • the values of the amplification factor (gain) and the zero point (offset) are constant, and even if the actual load deviates from the target load due to external factors, it will be appropriate. Accordingly, the operation of correcting the amplification factor and the value of the zero point is not performed.
  • the amplification factor correction / zero correction calculation means 78 performs amplification processing in accordance with the degree of convergence of the actual load signal (the detection signal of the strain gauge 22) to the target value signal when performing the calculation processing relating to the amplification factor and zero correction. Since the algorithm of the calculation process related to the correction of the gain is switched stepwise, when the detection signal converges to the target value signal to some extent, the algorithm related to the correction of the amplification factor is switched so that the target value of the detection signal is The degree of convergence to a signal can be increased. Therefore, the test accuracy can be improved.
  • the amplification factor correction / zero correction calculation means 78 has a configuration in which not only the amplification factor but also the algorithm of the calculation process relating to the correction of the zero is switched stepwise according to the degree of convergence of the detection signal to the target value signal. Therefore, the degree of convergence of the detection signal to the target value signal can be further increased, and the test accuracy can be further improved.
  • the amplification factor correction / zero correction calculation means 78 is configured to determine whether to switch the algorithm for each cycle of the waveform, the algorithm can be switched at an appropriate timing. . For this reason, the speed of convergence can be improved, and the test accuracy can be further improved.
  • the multi-stage adaptive proportional control uses ⁇ 0%. . Can be converged within 1%.
  • the fatigue tester 10 includes the DSP controller 70 and the external processing device 90 as the control means 60
  • the DSP controller 70 includes arithmetic processing (target value signal) directly related to control performance. And the load signal, amplification factor correction, zero point correction, peak bottom hold, and calculation of amplification factor and zero point correction for multi-stage adaptive proportional control).
  • arithmetic processing that is not directly related to control performance (calculation processing that converts the voltage fed back to load, numerical display of stress' Draft display of stress ⁇ Bar display of piston travel distance ⁇ Arrow display of piston operation button , Etc., which can be used by humans to make the display easy to handle.
  • a program for arithmetic processing directly related to control performance The functions that are not directly related to the functions can be completely separated from the programs for arithmetic processing, and the hardware that executes each of these programs can be separated.
  • the processing load on the DSP controller 70 can be reduced, so that the processing speed of arithmetic processing directly related to control performance such as responsiveness, load accuracy, and convergence to disturbance can be improved.
  • the test accuracy can be improved.
  • the external processing device 90 includes a standby screen display and input reception processing means 91, a test condition setting screen display and input reception processing means 92, and a test screen display and input reception processing means 93. Therefore, in each stage of the test and preparation, the experimenter refers to one of the three screens: the standby screen 100 in FIG. 4, the test condition setting screen 200 in FIG. 5, and the test screen 300 in FIG. At the same time, it is possible to confirm only the display of the information required in each scene, and to perform only the input work required in each scene. Therefore, the experimenter only needs to perform the minimum necessary operations in each stage of the test and its preparation, so that there is no need to perform extra operations or refer to extra information to think about extra things. Operability can be improved. Since the operability can be improved, the occurrence of erroneous recognition or erroneous operation can be avoided or suppressed, and the test accuracy can be improved.
  • the waiting button display 131 and the descending button 132 are displayed as arrows in the piston control section 130 of the waiting screen 100 in FIG. Since the bar 134 and the retreat amount display section 135 are displayed as bars, the experimenter can intuitively operate the piston 41. In addition, erroneous operations can be avoided or suppressed. Further, since the feedback value display section 110 is provided and the stress is displayed, the experimenter can easily confirm the load state of the current load.
  • test condition setting screen display 'input reception processing means 92 can receive the input of the maximum absolute stress, the stress ratio, and the test piece diameter on the test condition setting screen 200 in Fig. 5. For this reason, the experimenter can use only the commonly used parameter of the stress 'stress ratio' specimen diameter, which can improve the operability of the fatigue testing machine 10 and improve the fatigue testing machine and control. Even an experimenter without knowledge can easily perform a fatigue test.
  • the external processing device 90 includes the reciprocal operation forced invalidation means 94, erroneous operation can be prevented.
  • the external processing device 90 includes the input parameter monitoring means 95, the safety of the test can be improved.
  • Alignment work is performed using a dummy alignment test specimen having ends 2A, 2B that are larger than ends 1A, 1B of test piece 1 used in the actual test. In addition to being able to perform with high accuracy, the loose fitting described above can be easily realized. In addition, if the alignment work is performed once using the alignment dummy test piece, a plurality of tests can be performed as it is, so that the labor of the experimenter can be reduced.
  • the bias stress ⁇ ⁇ at a load stress of ⁇ 400 MPa was 3.2.3.9 MPa.
  • the ratio of ⁇ is 0.8-2.3% with respect to the applied stress. This value does not affect the fatigue test result at all.
  • the ratio of ⁇ to the applied stress of 400 MPa is 3.5-7.4%. . Therefore, in the fatigue tester 10 of the present embodiment, it was found that the eccentric load was significantly reduced, and the effect of the present invention was remarkably shown.
  • the present invention is not limited to the above-described embodiment, and includes modifications and the like within a range that can achieve the object of the present invention.
  • the amplification factor correction / zero correction calculation means 78 has a configuration in which, for both the amplification factor and the zero, the algorithm of the calculation process relating to the correction is stepwise switched.
  • a configuration may be adopted in which the algorithm is switched stepwise only for the amplification factor.
  • the test accuracy can be further improved.
  • the waveform of the detected signal and the waveform of the target value signal are compared by the amplification factor correction / zero correction calculation means, and the amplification factor and the zero value are calculated based on the comparison result.
  • the algorithm of the calculation process related to the correction of the amplification factor is switched stepwise according to the degree of convergence of the detection signal to the target value signal.
  • the display processing of the three screens of the standby screen, the test condition setting screen, and the test screen, and the use of these screens are performed by an external processing device provided separately from the digital controller. Since the input processing is performed, the operability can be improved, the operation burden on the experimenter can be reduced, and the occurrence of erroneous recognition or erroneous operation can be avoided or suppressed, and the test accuracy can be improved. There is an effect that can be.
  • the parallelism of each surface of the test piece and the component parts of the test machine main body is improved.
  • the fitting between the end portion of the test piece and the grip portion is loosened, it is possible to suppress the occurrence of an eccentric load and to improve the test accuracy.
  • FIG. 1 is an overall configuration diagram of a fatigue tester according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a test piece mounting portion constituting a main body of the fatigue tester of the embodiment.
  • FIG. 3 is an enlarged cross-sectional view of a main part of a test piece mounting portion of the embodiment.
  • FIG. 4 is a view showing an example of a standby screen associated with processing by an external processing device constituting control means of the fatigue tester of the embodiment.
  • FIG. 5 is an exemplary diagram of a test condition setting screen associated with processing by an external processing device constituting control means of the fatigue tester of the embodiment.
  • FIG. 6 is a view showing an example of a screen during a test associated with processing by an external processing device constituting a control means of the fatigue tester of the embodiment.

Abstract

There is provided a fatigue tester having an improved accuracy. The fatigue tester (10) includes: a main body (11) having a test piece mounting section (20) and an actuator (40); and control means (60) for performing feedback control for feeding back a detection signal in accordance with a load applied to a test piece (1). In the fatigue tester (10), amplification ratio correction/zero-point correction calculation means (78) compares a waveform of a detected signal to a waveform of a target signal and performs calculations of the amplification ratio and the zero-point correction according to the comparison result. In this calculation, according to the convergence degree of the detected signal to the target value signal, the algorithm of calculation concerning the amplification ratio correction is stepwise switched. Moreover, in addition to the amplification ratio, the algorithm of calculation concerning the zero-point correction may also be switched stepwise.

Description

明 細 書  Specification
疲労試験機  Fatigue testing machine
技術分野  Technical field
[0001] 本発明は、疲労試験機に係り、例えば、超高サイクル域データ取得用の油圧サー ボ疲労試験機等に利用できる。  The present invention relates to a fatigue tester, and can be used, for example, for a hydraulic servo fatigue tester for acquiring data in a very high cycle range.
背景技術  Background art
[0002] 機械構造物の破損の 7— 8割以上は疲労が原因とされており、疲労に対する対策 は機械技術者にとって最も切実な課題の一つである。一般に、鉄鋼材料の S— N曲 線には 106— 107程度の繰返し数で水平部、すなわち疲労限度が現れる。そして、航 空機や原子力機器等の一定期間での修理や部品交換が前提となる場合を除き、一 般の機械では疲労限度を基準とした設計が行われている。 [0002] Fatigue accounts for more than 70-80% of the damage to mechanical structures, and countermeasures against fatigue are one of the most pressing issues for mechanical engineers. Generally, in the SN curve of a steel material, a horizontal portion, that is, a fatigue limit appears at a repetition rate of about 10 6 to 10 7 . Unless it is assumed that repairs and parts replacement for airplanes and nuclear equipment over a certain period of time, general machines are designed based on the fatigue limit.
[0003] しかし、近年、高強度鋼や表面硬化鋼等において、 107— 108以上の長寿命域でも S— N曲線に水平部が現れず、疲労限度が認められない現象が報告されるようになつ てきた。この現象は超高サイクル疲労、あるいは超長寿命疲労と呼ばれ、現在、その 機構解明を目指して活発な研究がなされている。 [0003] However, in recent years, there has been reported a phenomenon in which a horizontal portion does not appear in the SN curve even in a long life region of 10 7 to 10 8 or more, and a fatigue limit is not recognized in high-strength steel and surface hardened steel. It has become so. This phenomenon is called ultra-high cycle fatigue or ultra-long life fatigue, and active research is currently being conducted to elucidate its mechanism.
[0004] このような超高サイクル疲労を対象とする試験機には、繰返し速度、荷重精度、荷 重安定性、偏荷重の除去等において、従来の疲労試験機に比べ、高い性能が要求 される。そこで、本願出願人により、 DSP (Digital Signal Processor)コントローラを用 レ、たデジタル制御を行って油圧サーボ機構を操作することにより、荷重精度、荷重安 定性、操作性を高めた軸荷重疲労試験機が開発されている(特許文献 1参照)。この 軸荷重疲労試験機では、試験機本体構成部品の一体化を進めて高剛性化を図り、 系の固有振動数を高くすることで、高応答性を確保し、超高サイクル域のデータの多 数取得を実現している。また、試験片取付部に球状ベアリング (球面軸受)が組み込 まれ、試験片に引張荷重が負荷される際に自動調芯が行われるようになつている。さ らに、 DSPコントローラには、コンピュータが接続され、このコンピュータの画面上で、 試験中の実測値の表示や制御パラメータの入力を行うことができるようになつている。  [0004] Test equipment for such ultra-high cycle fatigue is required to have higher performance than conventional fatigue test equipment in repetition rate, load accuracy, load stability, removal of uneven load, and the like. You. Accordingly, the applicant of the present application has used a DSP (Digital Signal Processor) controller to perform digital control and operate the hydraulic servo mechanism to improve load accuracy, load stability, and operability. Has been developed (see Patent Document 1). This axial load fatigue tester secures high responsiveness by increasing the natural frequency of the system by integrating the components of the main body of the tester to increase rigidity, and secures data of ultra-high cycle range. Many acquisitions have been achieved. In addition, a spherical bearing (spherical bearing) is incorporated in the test piece mounting part, and self-alignment is performed when a tensile load is applied to the test piece. In addition, a computer is connected to the DSP controller, and it is possible to display measured values during testing and input control parameters on the screen of this computer.
[0005] この他に、デジタル制御を行う油圧式の疲労試験機としては、例えば、制御対象出 力量の値が複数の所定レベルの各々に達する都度に、データサンプリングを行うよう にした低サイクル疲労試験機等がある(特許文献 2等参照)。この低サイクル疲労試 験機では、制御対象出力量の反復変化の一周期当たりのデータポイントの個数を、 その反復変化の周期の長短に影響されることなぐ適正個数に近づけることができる 特許文献 1 :特開 2002— 243606号公報(図 1、図 3、段落 [0061] [0063]、 [006 8]、 [0074] [0076] ) [0005] In addition, as a hydraulic fatigue tester that performs digital control, for example, a control target output There is a low-cycle fatigue tester or the like in which data sampling is performed every time the value of the force reaches each of a plurality of predetermined levels (see Patent Document 2 and the like). In this low-cycle fatigue tester, the number of data points per cycle of the repetitive change of the controlled object output amount can be made closer to an appropriate number without being affected by the length of the cycle of the repetitive change. : JP 2002-243606 A (FIGS. 1 and 3, paragraphs [0061] [0063], [006 8], [0074] [0076])
特許文献 2 :特開 2000— 131203号公報(図 1、図 7、段落 [0007] [0011]、 [002 6]、 [0040] )  Patent Document 2: JP-A-2000-131203 (FIGS. 1, 7, paragraphs [0007] [0011], [002 6], [0040])
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems the invention is trying to solve
[0006] ところで、疲労試験機は、様々な外乱の影響を受けるため、増幅率を一定値とする と荷重信号が目標値信号に追従しない場合がある。このような場合には、荷重信号 の最大値および最小値をリアルタイムでモニタし、このモニタ結果と目標値信号との ずれ量から最適な増幅率補正量および零点補正量を計算し、この計算結果に基づ き、増幅率および零点を補正するという外乱に対する修正動作が行われる。このよう な比例制御は、外乱等があってもそれに適応して増幅率および零点を時々刻々と変 化させることから、適応比例制御と呼ばれることがあり、前述した特許文献 1に記載さ れた疲労試験機でも、この適応比例制御が行われてレ、る。 [0006] Incidentally, since the fatigue tester is affected by various disturbances, the load signal may not follow the target value signal when the amplification factor is set to a constant value. In such a case, the maximum value and the minimum value of the load signal are monitored in real time, and the optimum amplification factor correction amount and zero point correction amount are calculated based on the difference between the monitoring result and the target value signal. Based on the above, a correction operation for disturbance that corrects the amplification factor and the zero point is performed. Such proportional control is sometimes referred to as adaptive proportional control because it changes the amplification factor and the zero point every moment in response to disturbances and the like, and is described in Patent Document 1 described above. This adaptive proportional control is also performed by a fatigue tester.
[0007] しかし、このような適応比例制御を行った場合でも、荷重信号が目標値信号にある 程度収束すると、それ以上収束しなくなる場合があるため、この問題を解消し、より一 層収束の度合いを高めて試験精度を向上させることが望まれる。  [0007] However, even when such adaptive proportional control is performed, if the load signal converges to the target value signal to some extent, the load signal may not converge any more. It is desired to improve the test accuracy by increasing the degree.
[0008] また、前述した特許文献 2には、増幅率の自動的な制御を行う AGC (Auto Gain [0008] Further, Patent Document 2 mentioned above discloses an AGC (Auto Gain) for automatically controlling an amplification factor.
Control)方式は、制御の実行中に、あるサイクルで実際に発生した制御対象出力量 の振幅に基づき、その次のサイクルに用いる目標値信号の振幅の大きさを修正する 方式であるため、最初の 1サイクルから高精度な制御を行うことはできないので、試験 片の応力-ひずみ曲線のヒステリシスカーブの面積が比較的大きい低サイクル疲労 試験への適用は困難である旨が記載されている。従って、前述した特許文献 2に記 載された低サイクル疲労試験機は、そもそも AGC方式の制御を行っていないので、 上記のような問題を解消するものではなレ、。 The (Control) method is a method in which the magnitude of the amplitude of the target value signal used in the next cycle is corrected based on the amplitude of the control target output amount actually generated in a certain cycle during control execution. It is described that high-precision control cannot be performed from one cycle, and it is difficult to apply it to a low-cycle fatigue test in which the area of the hysteresis curve of the stress-strain curve of the test piece is relatively large. Therefore, as described in Patent Document 2 mentioned above, The low cycle fatigue tester described above does not control the AGC method in the first place, so it does not solve the above problems.
[0009] さらに、前述した特許文献 1に記載された疲労試験機では、 DSPコントローラに接 続されたコンピュータの画面上で、試験中の実測値 (例えば、試験片に負荷されてい る荷重や、その最大値、最小値、関数発生器の信号の値等)の表示が行われている が、これらの表示は、荷重値や電圧値としての表示であり、実験者が必要とする応力 表示ではない。従って、実験者は、試験片直径をもとに、計算を行って応力を把握し なければならなかった。また、制御パラメータの入力も、応力値で入力することはでき ず、試験片直径をもとに、制御すべき荷重や電圧の値を計算して制御パラメータとし て入力する必要があった。さらに、誤認識や誤入力があれば、試験精度向上の妨げ にもなる。このため、試験機の操作性や使い勝手を向上させ、実験者の操作の手間 や判断の手間を軽減し、より確実に試験精度の向上を図ることができる環境を作り出 すことが望まれる。 [0009] Furthermore, in the fatigue tester described in Patent Document 1 described above, a measured value during a test (for example, a load applied to a test piece, a load applied to a test piece, or the like) is displayed on a computer screen connected to a DSP controller. The maximum value, the minimum value, the value of the signal of the function generator, etc.) are displayed, but these displays are displayed as load values and voltage values, and the stress display required by the experimenter is Absent. Therefore, the experimenter had to calculate and understand the stress based on the specimen diameter. In addition, control parameters could not be input as stress values, but it was necessary to calculate the load and voltage values to be controlled based on the specimen diameter and input them as control parameters. Furthermore, erroneous recognition or erroneous input hinders improvement of test accuracy. For this reason, it is desirable to create an environment in which the operability and usability of the tester are improved, the labor of the experimenter and the labor of judgment are reduced, and the test accuracy can be more reliably improved.
[0010] ところで、超高サイクル疲労研究にぉレ、て対象となる高強度材料の疲労破壊は、低 [0010] By the way, in research on ultra-high cycle fatigue, the fatigue fracture of high-strength materials of interest is low.
•中強度材料の疲労破壊に比べ、表面傷や表面に存在する介在物の応力集中に敏 感である。もし、試験片に偏荷重が作用すると、本来なら内部破壊するものでも表面 破壊を生じることがある。このような場合、試験結果の信頼性が著しく低下するおそれ があるので、試験片の芯合わせに細心の注意が必要であり、また、これを回避すべく 調芯作業の簡略化(ァライメントフリー)を図るのであれば、超高サイクル疲労研究に 用レ、る試験機および試験片には偏荷重を防止する機構等が求められる。そこで、前 述した特許文献 1に記載された疲労試験機では、試験片取付部に球状ベアリングを 組み込み、試験片に引張荷重が負荷される際に自動調芯が行われるようにすること で、ァライメントフリーを実現している。 • It is more sensitive to surface flaws and stress concentration of inclusions present on the surface than fatigue fracture of medium strength materials. If an unbalanced load is applied to the test piece, even if it originally breaks internally, it may cause surface destruction. In such a case, the reliability of the test results may be significantly reduced. Therefore, it is necessary to pay close attention to the alignment of the test pieces, and to avoid this, simplify the alignment work (alignment free). ), A tester and a test piece for ultra-high cycle fatigue research require a mechanism to prevent uneven load. Therefore, in the fatigue tester described in Patent Document 1 described above, a spherical bearing is incorporated in the test piece mounting portion so that self-alignment is performed when a tensile load is applied to the test piece. Alignment free.
[0011] しかし、このように球状ベアリングを組み込んだ場合には、試験条件が、引張荷重 のみが負荷される疲労試験(引張 -引張疲労試験)に限られ、圧縮負荷を伴う疲労試 験を行うことができない。疲労研究では応力比 (最小応力 Z最大応力)がー 1となる引 張一圧縮疲労試験が基本データとなるため、超高サイクル疲労研究に用いる軸荷重 疲労試験機は、ァライメントフリー機能を有し、かつ、引張一圧縮荷重の負荷が可能 である機構を備えていることが求められる。一方、このような機構が無い場合に高精 度のデータを得るためには、偏荷重防止のために、試験片にひずみゲージを貼って 調芯作業を行う必要がある。しかし、この調芯作業は、一回の試験毎に行う必要があ り、膨大な時間と労力を費やす。このため、ァライメントフリーを実現しつつ偏荷重防 止を図ることで、試験精度を向上させることが望まれる。 However, when a spherical bearing is incorporated as described above, the test conditions are limited to a fatigue test in which only a tensile load is applied (tensile-tensile fatigue test), and a fatigue test involving a compressive load is performed. I can't. In fatigue research, the tensile-compression fatigue test with a stress ratio (minimum stress Z maximum stress) of -1 is the basic data, so the axial load fatigue tester used for ultra-high cycle fatigue research has an alignment-free function. And can apply tension-compression load Is required. On the other hand, in order to obtain high-precision data without such a mechanism, it is necessary to attach a strain gauge to the test piece and perform alignment work to prevent uneven load. However, this alignment work needs to be performed for each test, which consumes a great deal of time and effort. Therefore, it is desired to improve the test accuracy by preventing alignment loads while realizing alignment-free.
[0012] 本発明の目的は、試験精度を向上させることができる疲労試験機を提供するところ にある。 An object of the present invention is to provide a fatigue tester capable of improving test accuracy.
課題を解決するための手段  Means for solving the problem
[0013] 本発明は、試験片を取り付ける試験片取付部および試験片に荷重を負荷するァク チュエータ部を有する本体と、試験片に負荷される荷重に応じた検出信号をフィード バックしてァクチユエータ部の動作を制御するための制御信号を本体に送るフィード バック制御を行う制御手段とを備えた疲労試験機にぉレ、て、制御手段は、フィードバ ック制御をデジタル処理で行うデジタルコントローラを備えて構成され、このデジタノレ コントローラは、検出信号と目標値信号との偏差量に応じた制御信号を発生する制 御信号発生手段と、検出信号の波形と目標値信号の波形とを比較してこの比較結果 に基づき制御信号の発生処理に用レ、られる増幅率および零点の補正に関する計算 処理を行う増幅率補正 Z零点補正計算手段と、この増幅率補正/零点補正計算手 段による計算結果に基づき増幅率の補正処理を行う増幅率補正手段と、増幅率補 正/零点補正計算手段による計算結果に基づき零点の補正処理を行う零点補正手 段とを含んで構成され、増幅率補正/零点補正計算手段は、検出信号の目標値信 号への収束度に応じて増幅率の補正に関する計算処理のアルゴリズムを段階的に 切り替える構成とされてレ、ることを特徴とするものである。 [0013] The present invention provides a main body having a test piece mounting part for mounting a test piece and an actuator part for applying a load to the test piece, and a detection signal corresponding to the load applied to the test piece to feed back the actuator. And a control unit for performing feedback control for sending a control signal for controlling the operation of the unit to the main body.The control unit includes a digital controller for performing feedback control by digital processing. This digital camera controller is provided with a control signal generating means for generating a control signal corresponding to a deviation amount between a detection signal and a target value signal, and compares a waveform of the detection signal with a waveform of the target value signal. Based on the comparison result, an amplification factor correction Z for performing a calculation process relating to an amplification factor and a zero correction used for a control signal generation process, and a zero-point correction calculating means, An amplification factor correcting means for performing an amplification factor correction process based on the calculation result by the positive / zero correction calculation device; and a zero point correction device for performing a zero point correction process based on the calculation result by the amplification factor correction / zero correction device. The amplification factor correction / zero correction calculation means is configured to switch the algorithm of the calculation process for the amplification factor correction stepwise according to the degree of convergence of the detection signal to the target value signal. It is characterized by that.
[0014] ここで、「増幅率および零点の補正に関する計算処理」には、増幅率や零点の元の 値 (補正前の値)に対して増減する分の量を計算する処理、および補正後の零点や 増幅率の値そのもの(修正値そのもの)を計算する処理のいずれも含まれる。  Here, the “calculation processing for the amplification factor and the correction of the zero point” includes the processing of calculating the amount of increase or decrease with respect to the original value (the value before correction) of the amplification factor and the zero point, and the processing after the correction. It also includes the process of calculating the zero point of and the value of the amplification factor itself (corrected value itself).
[0015] また、「アルゴリズムを段階的に切り替える構成」には、 2つのアルゴリズムを切り替え る構成、および 3つ以上のアルゴリズムを切り替える構成のいずれも含まれる。この際 の切替は、一回切り替えたら元のアルゴリズムに戻ることはない一方通行の切替、お よび一回切り替えても再び元のアルゴリズムに戻ることがあり得る相互方向通行の切 替のいずれも含まれる。 [0015] The "configuration for switching algorithms stepwise" includes both a configuration for switching two algorithms and a configuration for switching three or more algorithms. In this case, one-way switching, which does not return to the original algorithm after switching once, And one-way traffic switching that can return to the original algorithm again after one switching.
[0016] さらに、「アルゴリズム」を「切り替える」ことには、例えば、以下のようなことが含まれる 。すなわち、(1)計算処理に使用される数式の形態そのものを切り替えることが含ま れる。例えば、 1次関数から 2次関数への変更、べき乗数の変更、加算項から減算項 への変更またはその逆の変更、項数の変更等である。 (2)計算処理に使用される数 式に含まれる係数や定数の値を切り替えることが含まれる。例えば、 0. 1 %を乗じて レ、た処理を、 0. 05%を乗じる処理に変更する等である。 (3)計算処理に使用される データやデータ群を切り替えることが含まれる。 (4)選択処理 (例えば IF文等の処理) や分岐処理 (例えば CASE文等の処理)の構造を切り替えることが含まれる。例えば 、プログラム内における選択処理の順序や位置の変更、分岐数の増減、選択処理や 分岐処理の重層度合いの変更等である。 (5)全く異種のアルゴリズムへ切り替えるこ とが含まれる。例えば、数式を用いた計算処理を行うアルゴリズムから、データの選択 処理を行うアルゴリズムへの切替、あるいは数式を用いた計算処理を行うアルゴリズ ムから、異なる処理内容のルーチン(例えば、異なる数式を用いるルーチン、異なる データを用レ、るルーチン等)の選択処理を行うアルゴリズムへの切替等である。  Further, “switching” the “algorithm” includes, for example, the following. That is, (1) switching of the form of the mathematical expression used for the calculation process itself is included. For example, a change from a linear function to a quadratic function, a change in the exponent, a change from an addition term to a subtraction term or vice versa, a change in the number of terms, and the like. (2) Switching the values of coefficients and constants included in the formulas used in the calculation process is included. For example, a process of multiplying by 0.1% is changed to a process of multiplying by 0.05%. (3) Switching data and data groups used for calculation processing is included. (4) Switching the structure of selection processing (for example, processing of IF statements, etc.) and branch processing (for example, processing of CASE statements, etc.) are included. For example, the order and position of the selection processing in the program are changed, the number of branches is increased / decreased, and the degree of layering of the selection processing and the branch processing is changed. (5) This involves switching to a completely different algorithm. For example, switching from an algorithm that performs a calculation process using a mathematical expression to an algorithm that performs a data selection process, or from an algorithm that performs a calculation process using a mathematical expression, to a routine having a different processing content (for example, a routine using a different mathematical formula) Switching to an algorithm that performs selection processing of different data, a routine that uses different data, etc.).
[0017] このような本発明の疲労試験機においては、増幅率補正/零点補正計算手段によ り、検出信号の波形と目標値信号の波形とを比較してこの比較結果に基づき増幅率 および零点の補正に関する計算処理を行う際に、検出信号の目標値信号への収束 度に応じ、増幅率の補正に関する計算処理のアルゴリズムを段階的に切り替える。  In such a fatigue tester of the present invention, the amplification factor correction / zero correction calculation means compares the waveform of the detection signal with the waveform of the target value signal, and based on the comparison result, determines the amplification factor and When performing the calculation process related to the correction of the zero point, the algorithm of the calculation process related to the correction of the amplification factor is switched stepwise according to the degree of convergence of the detection signal to the target value signal.
[0018] このため、検出信号が目標値信号にある程度収束したときに、増幅率の補正に関 するアルゴリズムを切り替えることにより、収束が頭打ちになる状態を回避し、検出信 号の目標値信号への収束度を高めることが可能となる。従って、試験精度の向上が 図られ、これにより前記目的が達成される。  [0018] For this reason, when the detection signal converges to the target value signal to some extent, by switching the algorithm related to the correction of the amplification factor, it is possible to avoid the state where the convergence reaches a plateau, and to switch the detection signal to the target value signal. Can be increased. Therefore, the test accuracy is improved, and the object is achieved.
[0019] また、前述した疲労試験機において、増幅率補正 Z零点補正計算手段は、検出信 号の目標値信号への収束度に応じて零点の補正に関する計算処理のアルゴリズム を段階的に切り替える構成とされていることが望ましい。 Further, in the fatigue tester described above, the amplification factor correction Z zero point correction calculation means switches the algorithm of the calculation process for the zero correction stepwise according to the degree of convergence of the detected signal to the target value signal. It is desirable that it is.
[0020] このように零点の補正に関する計算処理のアルゴリズムを段階的に切り替える構成 とした場合には、増幅率のみならず、零点の補正に関する計算処理についても、ァ ルゴリズムが切り替えられるので、検出信号の目標値信号への収束度をより一層高め 、試験精度をより一層向上させることが可能となる。 [0020] A configuration in which the algorithm of the calculation process relating to the correction of the zero point is switched stepwise as described above In this case, the algorithm can be switched not only for the amplification factor but also for the calculation processing for the correction of the zero point, so that the degree of convergence of the detection signal to the target value signal is further increased, and the test accuracy is further improved. It becomes possible.
[0021] さらに、以上に述べた疲労試験機において、増幅率補正 Z零点補正計算手段は、 周期的に変化する検出信号の波形と、周期的に変化する目標値信号の波形とを波 形一周期毎に比較し、この比較結果として得られた双方の波形のずれ量に基づき増 幅率および零点の補正に関する計算処理を波形一周期毎に行うとともに、この計算 処理を行う際にアルゴリズムを切り替えるか否かを波形一周期毎に判断する構成とさ れていることが望ましい。  [0021] Further, in the fatigue tester described above, the amplification factor correction Z-zero correction calculating means converts the waveform of the periodically changing detection signal and the waveform of the periodically changing target value signal into one waveform. Comparing every cycle, based on the amount of deviation of both waveforms obtained as a result of this comparison, perform calculation processing for the amplification factor and zero point correction for each waveform cycle, and switch the algorithm when performing this calculation processing It is desirable that the configuration be such that it is determined at each cycle of the waveform.
[0022] このようにアルゴリズムを切り替えるか否かの判断を波形一周期毎に行う構成とした 場合には、適切なタイミングでアルゴリズムの切替を行うことが可能となり、収束の速 度が上がり、試験精度のより一層の向上が図られる。  [0022] In the case where the determination as to whether or not to switch the algorithm is made in each cycle of the waveform, the algorithm can be switched at an appropriate timing, the convergence speed is increased, and the test is performed. The accuracy is further improved.
[0023] なお、本願明細書では、以上に述べた増幅率や零点の補正に関する計算処理の アルゴリズムを段階的に切り替える処理を伴う制御を、多段適応比例制御(MAP: Multimode Adaptive Proportional Control)と呼ぶものとする。このような多段適応比 例制御は、本発明の疲労試験機だけではなぐ他の制御対象装置にも適用すること ができる。すなわち、制御対象装置 (疲労試験機の本体に相当するもの。)からの出 力信号 (試験片に負荷される荷重に応じた検出信号に相当するもの。)をフィードバ ックして制御対象装置を制御するための制御信号を制御対象装置に送るフィードバ ック制御を行うシステムを実現するにあたり、フィードバック制御をデジタル処理で行う デジタルコントローラを設け、このデジタルコントローラを、出力信号と目標値信号との 偏差量に応じた制御信号を発生する制御信号発生手段と、出力信号の波形と目標 値信号の波形とを比較してこの比較結果に基づき制御信号の発生処理に用いられ る増幅率および零点の補正に関する計算処理を行う増幅率補正/零点補正計算手 段と、この増幅率補正 Z零点補正計算手段による計算結果に基づき増幅率の補正 処理を行う増幅率補正手段と、増幅率補正/零点補正計算手段による計算結果に 基づき零点の補正処理を行う零点補正手段とを含む構成とし、増幅率補正 Z零点補 正計算手段を、出力信号の目標値信号への収束度に応じて増幅率の補正に関する 計算処理のアルゴリズムを段階的に切り替える構成としてもよい。また、増幅率に加 え、零点の補正に関する計算処理のアルゴリズムを段階的に切り替える構成としても よい。 In the specification of the present application, the control that involves the stepwise switching of the algorithm of the calculation processing relating to the correction of the amplification factor and the zero point as described above is called multi-mode adaptive proportional control (MAP). Shall be. Such multi-stage adaptive proportional control can be applied to other controlled devices other than the fatigue tester of the present invention. That is, the output signal (corresponding to the detection signal corresponding to the load applied to the test piece) from the controlled device (corresponding to the body of the fatigue tester) is fed back and the controlled device is controlled. In order to realize a feedback control system that sends a control signal to control a device to be controlled, a digital controller that performs digital feedback control is provided. A control signal generating means for generating a control signal corresponding to the deviation amount; a comparison between a waveform of the output signal and a waveform of the target value signal; and, based on the comparison result, an amplification factor and a zero point used for the control signal generation processing. A gain correction / zero correction calculation method that performs calculation processing related to correction, and an amplification correction based on the calculation result by the amplification correction Z zero correction calculator A gain correction means for performing processing, and a zero point correction means for performing zero point correction processing based on a calculation result by the gain correction / zero point correction calculation means. The amplification factor according to the degree of convergence to the target value signal The algorithm of the calculation process may be switched stepwise. Further, in addition to the amplification factor, a configuration may be adopted in which the algorithm of the calculation process relating to the correction of the zero point is switched stepwise.
[0024] そして、本発明は、試験片を取り付ける試験片取付部および試験片に荷重を負荷 するァクチユエ一タ部を有する本体と、試験片に負荷される荷重に応じた検出信号を フィードバックしてァクチユエータ部の動作を制御するための制御信号を本体に送る フィードバック制御を行う制御手段とを備えた疲労試験機にぉレ、て、制御手段は、フ イードバック制御をデジタル処理で行うデジタルコントローラと、このデジタルコント口 ーラに接続されてデジタルコントローラとの間で情報の送受信を行うことによりフィード バック制御に関する処理以外の処理を行う外部処理装置とを備えて構成され、外部 処理装置は、試験中以外の状態でァクチユエ一タ部を動作させる場合に使用する待 機中画面を表示する処理およびこの待機中画面を用いて行われる実験者によるァク チユエータ部に対する操作入力を受け付ける処理を行う待機中画面表示 ·入力受付 処理手段と、試験条件を設定するための試験条件設定画面を表示する処理および この試験条件設定画面を用いて行われる実験者による試験条件の設定入力を受け 付ける処理を行う試験条件設定画面表示 ·入力受付処理手段と、試験中に試験状 況をモニタする試験中画面を表示する処理およびこの試験中画面を用いて行われる 実験者による入力を受け付ける処理を行う試験中画面表示 ·入力受付処理手段とを 備えたことを特徴とするものである。  Then, the present invention feeds back a detection signal according to a load applied to the test piece, and a main body having a test piece mounting portion for mounting the test piece and an actuator unit for applying a load to the test piece. The fatigue tester includes a control unit that sends a control signal for controlling the operation of the actuator unit to the main body and a control unit that performs feedback control.The control unit includes a digital controller that performs feedback control by digital processing. And an external processing device connected to the digital controller for transmitting and receiving information to and from the digital controller to perform processing other than processing related to feedback control. The process of displaying the standby screen used when operating the actuator unit in a state other than medium, and using this standby screen Display of a standby screen for receiving the operation input to the actuator section by the experimenter performed by the user.Process for displaying the input reception processing means, the test condition setting screen for setting the test conditions, and this test condition setting screen. A test condition setting screen display that accepts the test condition setting input by the experimenter by using the input input processing means, a process that displays a test-in-progress screen that monitors the test status during the test, and this test. It is characterized by comprising: a screen display during a test for performing a process of receiving an input by an experimenter performed by using a middle screen; and an input reception processing means.
[0025] ここで、「フィードバック制御に関する処理」には、フィードバックのメインループの処 理の他に、例えば、前述した増幅率および零点の補正に関する計算処理、並びに増 幅率および零点の補正処理等が含まれる。  Here, “processing related to feedback control” includes, in addition to the processing of the main feedback loop, for example, the above-described calculation processing relating to the correction of the amplification factor and the zero point, and the correction processing of the amplification factor and the zero point. Is included.
[0026] このような本発明の疲労試験機においては、デジタルコントローラとは別途に設けら れた外部処理装置により、待機中画面、試験条件設定画面、試験中画面の 3つの画 面の表示処理およびこれらの画面を用いた入力の受付処理を行う。従って、試験機 操作の各状況毎に、つまり試験の準備段階力 本番段階に至るまでの各場面毎に、 これらの画面が切り替わる。  [0026] In such a fatigue tester of the present invention, the display processing of three screens, a standby screen, a test condition setting screen, and a test screen, is performed by an external processing device provided separately from the digital controller. And an input receiving process using these screens. Therefore, these screens are switched for each situation of the test machine operation, that is, for each scene up to the test preparation stage and the actual stage.
[0027] このため、実験者は、試験およびその準備の各場面において、 3つの画面のいず れかを参照しながら、各場面で必要となる情報の表示のみを確認し、また、各場面で 必要となる入力作業のみを行う。従って、実験者は、試験およびその準備の各場面 で必要最低限の操作を行えばよくなり、余分な操作を行ったり、余分な情報を参照し て余分な事を考える余地を排除することが可能となるので、操作性の向上が図られる 。そして、操作性の向上が図られることから、誤認識や誤操作等の発生も回避または 抑制されるので、試験精度の向上にも繋がる。 [0027] For this reason, in each scene of the test and its preparation, the experimenter has to use any of the three screens. While referring to these, check only the display of information required in each scene, and perform only the input work required in each scene. Therefore, the experimenter only needs to perform the minimum necessary operations in each stage of the test and its preparation, and eliminates the need to perform extra operations or refer to extra information and think about extra things. As a result, operability is improved. Since the operability is improved, the occurrence of erroneous recognition or erroneous operation is avoided or suppressed, which leads to an improvement in test accuracy.
[0028] なお、待機中画面表示 ·入力受付処理手段、試験条件設定画面表示 ·入力受付処 理手段、および試験中画面表示 ·入力受付処理手段に加え、ある操作を実行中に、 行ってはならない操作または行うべきでない操作を強制的に無効にする相反操作強 制無効手段、あるいは実験者により入力されるパラメータ (試験条件等)が異常か否 かを監査する入力パラメータ監査手段を設けてもよぐこれらを設けることで、誤操作 が防止されるので、試験精度のより一層の向上に繋がる。  [0028] In addition to the standby screen display, the input reception processing means, the test condition setting screen display, the input reception processing means, and the screen display during the test. It is also possible to provide reciprocal operation forced invalidation means for forcibly invalidating operations that should or should not be performed, or input parameter auditing means for auditing whether parameters (test conditions etc.) input by the experimenter are abnormal. Providing these blocks prevents erroneous operation, which leads to further improvement in test accuracy.
[0029] また、待機中画面表示 ·入力受付処理手段、試験条件設定画面表示 ·入力受付処 理手段、および試験中画面表示 ·入力受付処理手段は、全て外部処理装置に設け られ、デジタルコントローラは、これらの手段により行われる 3つの画面の表示処理や 3つの画面での入力受付処理を負担しない。すなわち、実験者と試験機との間のマ ンマシンインターフェースの機能は、全て外部処理装置により実現し、デジタルコント ローラは、制御性能に直接関係する演算処理のみを負担する。このため、デジタルコ ントローラの処理負担が軽減され、応答性や荷重精度、外乱に対する収束性等の制 御性能に直接関係する演算処理の速度が向上するので、この点でも試験精度の向 上が図られ、これらにより前記目的が達成される。  [0029] In addition, standby screen display · input reception processing means, test condition setting screen display · input reception processing means, and screen display during test · input reception processing means are all provided in the external processing device, the digital controller is However, the processing for displaying three screens and the processing for accepting input on three screens performed by these means are not burdened. In other words, all functions of the man-machine interface between the experimenter and the test machine are realized by the external processing device, and the digital controller bears only the arithmetic processing directly related to the control performance. As a result, the processing load on the digital controller is reduced, and the speed of arithmetic processing directly related to control performance such as responsiveness, load accuracy, and convergence to disturbances is improved. The above objectives are achieved by these.
[0030] また、前述した疲労試験機において、試験条件設定画面表示 ·入力受付処理手段 は、試験条件設定画面で試験条件として、最大応力および最小応力の組合せ、最 大応力および応力比の組合せ、最小応力および応力比の組合せのうちのいずれか の組合せ、並びに試験片直径の入力を受け付ける構成とされ、試験中画面表示'入 力受付処理手段は、試験中画面で試験状況として、応力のグラフ表示を行う構成と されていることが望ましい。  [0030] In the fatigue tester described above, a test condition setting screen display / input reception processing means sets a combination of a maximum stress and a minimum stress, a combination of a maximum stress and a stress ratio, as a test condition on the test condition setting screen. It is configured to accept the input of any combination of the minimum stress and the stress ratio and the diameter of the test piece. It is desirable to have a configuration to display.
[0031] このように試験条件設定画面での応力'応力比'試験片直径による入力受付、およ び試験中画面での応力のグラフ表示を行う構成とした場合には、実験者は、応力 ·応 力比 ·試験片直径という普段使用するパラメータのみを使用すればよくなるので、試 験機の操作性が向上する。また、試験中画面での応力表示がグラフ化されているの で、実験者は、直感的に試験状況を把握することが可能となり、試験機の操作性がよ り一層向上する。このため、疲労試験機や制御の知識がない実験者でも容易に疲労 試験を行うことが可能とる。 [0031] Thus, the input of the stress “stress ratio” based on the test piece diameter on the test condition setting screen and When the tester is configured to display a graph of the stress on the screen during the test, the experimenter only needs to use the commonly used parameters of stress, stress ratio, and specimen diameter. The performance is improved. In addition, since the stress display on the screen during the test is graphed, the experimenter can intuitively grasp the test status, and the operability of the test machine is further improved. For this reason, even an experimenter who does not have knowledge of a fatigue testing machine or control can easily perform a fatigue test.
[0032] なお、以上に述べた外部処理装置として、コンピュータを機能させるためのプロダラ ムは、以下に示すように、プログラムそれ自体でも流通対象や取引対象となる。すな わち、以上に述べた外部処理装置として、コンピュータを機能させるためのプログラム またはその一部は、例えば、光磁気ディスク(M〇)、コンパクトディスク(CD)を利用し た読出し専用メモリ(CD—ROM)、 CDレコーダブル(CD_R)、 CDリライタブル(CD -RW)、デジタル 'バーサタイル 'ディスク(DVD)を利用した読出し専用メモリ(DVD -ROM)、 DVDを利用したランダム'アクセス'メモリ(DVD— RAM)、フレキシブル ディスク(FD)、磁気テープ、ハードディスク、読出し専用メモリ(ROM)、電気的消去 および書換可能な読出し専用メモリ(EEPROM)、フラッシュ 'メモリ、ランダム'ァクセ ス 'メモリ(RAM)等の記録媒体に記録して保存や流通等させることが可能であるとと もに、例えば、ローカル'エリア'ネットワーク(LAN)、メトロポリタン'エリア'ネットヮー ク(MAN)、ワイド 'エリア.ネットワーク(WAN)、インターネット、イントラネット、ェクス トラネット等の有線ネットワーク、あるいは無線通信ネットワーク、さらにはこれらの組合 せ等の伝送媒体を用いて伝送することが可能であり、また、搬送波に載せて搬送す ることも可能である。さらに、以上に述べたプログラムは、他のプログラムの一部分で あってもよく、あるいは別個のプログラムと共に記録媒体に記録されていてもよい。  As described above, a program for causing a computer to function as the external processing device is also a distribution target and a transaction target even in the program itself, as described below. That is, as the external processing device described above, a program or a part thereof for causing a computer to function is, for example, a read-only memory (M メ モ リ) or a compact disk (CD) using a read-only memory (CD). CD-ROM), CD recordable (CD_R), CD rewritable (CD-RW), read-only memory (DVD-ROM) using digital 'versatile' disc (DVD), random 'access' memory using DVD ( DVD—RAM), flexible disk (FD), magnetic tape, hard disk, read-only memory (ROM), electrically erasable and rewritable read-only memory (EEPROM), flash 'memory, random' access' memory (RAM) It is possible to record and store and distribute on a recording medium such as a local area network (LAN), metropolitan area network, etc. It can be transmitted using a transmission medium such as a park (MAN), a wide area network (WAN), a wired network such as the Internet, an intranet, an extranet, or a wireless communication network, or a combination of these. It is also possible to carry on a carrier wave. Further, the program described above may be a part of another program, or may be recorded on a recording medium together with a separate program.
[0033] また、本発明は、試験片に荷重を負荷するァクチユエータ部と、このァクチユエータ 部による荷重方向に沿う方向に配置される状態で試験片を取り付ける試験片取付部 とを備え、試験片取付部には、試験片の両側の端部をそれぞれ掴む掴み部が設けら れ、これらの各掴み部には、試験片の両側の端面がそれぞれ当接される試験片当接 面が形成されている疲労試験機において、試験片の両側の端面は、平行度 0. 01を 満たし、かつ、試験機本体構成部品の各面のうち、対向する各掴み部の試験片当接 面同士の平行度を規定する役割を果たす各面も、全て平行度 0. 01を満たす状態で 仕上げられているとともに、試験片を試験片取付部に取り付けた状態で、試験片の 各端部の外周面と各掴み部との間に隙間が形成される構成とされていることを特徴と するものである。 [0033] Further, the present invention includes an actuator section for applying a load to the test piece, and a test piece mounting section for mounting the test piece in a state of being arranged in a direction along the load direction of the actuator section. The grips are provided with grips for gripping both ends of the test piece, and each of these grips is formed with a test piece contact surface with which both end faces of the test piece abut. In a fatigue tester, the end faces on both sides of the test piece satisfy the parallelism of 0.01 and the test piece abuts on each of the grips facing each other among the faces of the component parts of the tester main body. All the surfaces that play a role in defining the parallelism between the surfaces are all finished so as to satisfy the parallelism of 0.01, and each end of the test piece with the test piece attached to the test piece mounting part. A gap is formed between the outer peripheral surface of each of the grips and each of the gripping portions.
[0034] ここで、「平行度」とは、製図学上の平行度 (製作図面に記載する平行度)であり、平 面部分の基準平面に対する平行度である。 「平行度 0. 01」は、基準平面にそれぞれ 平行で 0. 01mmの間隔を持つ二つの平面の間の空間を許容域にするという意味で ある。基準平面は、例えば、各部品の反対側の面等とすればよい。  Here, the “parallelism” is the parallelism in drafting science (parallelism described in the production drawing), that is, the parallelism of the plane portion with respect to the reference plane. “Parallelism 0.01” means that the space between two planes that are parallel to the reference plane and that have a distance of 0.01 mm is allowed. The reference plane may be, for example, a surface on the opposite side of each component.
[0035] また、「対向する各掴み部の試験片当接面同士の平行度を規定する役割を果たす 各面」とは、複数の試験機本体構成部品を組み立てて試験機本体を構成するときに 、結果的に、各掴み部の試験片当接面同士の相対姿勢に影響を及ぼすことになる 面をレヽつ。  Further, “each surface that plays a role in defining the parallelism between the test piece abutting surfaces of the opposing gripping portions” refers to a case where a plurality of test machine main body components are assembled to form a test machine main body. Next, the surfaces that will affect the relative posture of the test piece contact surfaces of each gripping portion as a result are described.
[0036] このように試験片および試験機本体構成部品の各面の平行度を向上させ、かつ、 試験片の端部と掴み部とのはめ合いを緩めにした場合には、平行度を向上させたこ とから、偏荷重の発生が抑えられ、また、緩めのはめ合いであることから、試験片に側 面 (試験片の端部の外周面)からの拘束力が加わらないようになり、偏荷重の発生を 抑えることが可能となる。このため、試験精度の向上が図られる。さらに、通常、はめ 合いを緩くすると、疲労試験中に試験片の横ずれが懸念される力 試験片および試 験機本体構成部品の各面の平行度を向上させてレ、るので、試験片には横ずれを生 じさせる力が加わらない。  [0036] In this way, when the parallelism of each surface of the test piece and the components of the testing machine main body is improved, and when the fitting between the end portion of the test piece and the grip portion is loosened, the parallelism is improved. Because of this, the occurrence of unbalanced load is suppressed, and since the loose fit is applied, the restraining force from the side surface (outer peripheral surface of the end of the test piece) is not applied to the test piece. It is possible to suppress the occurrence of eccentric loads. Therefore, the test accuracy is improved. In addition, loosening the fit usually improves the parallelism of each surface of the test specimen and the components of the test machine main body, which may cause lateral displacement of the test specimen during the fatigue test. Does not apply any force that causes lateral displacement.
[0037] さらに、前述した疲労試験機において、試験本番で用いる試験片の各端部の外周 面と各掴み部とのはめ合いの隙間は、試験前に行う調芯作業で用いる調芯用ダミー 試験片の各端部の外周面と各掴み部とのはめ合いの隙間よりも大きいことが望まし レ、。  Further, in the above-described fatigue testing machine, the gap between the fitting of the outer peripheral surface of each end of the test piece used in the actual test and each grip portion is a dummy for alignment used in the alignment work performed before the test. It is desirable that the gap be larger than the clearance between the outer peripheral surface of each end of the test piece and each gripping portion.
[0038] このように試験本番で用レ、る試験片よりも大きい端部を有する調芯用ダミー試験片 を用いて調芯作業を行うことができる構成とした場合には、試験前に調芯用ダミー試 験片を用いて調芯作業を行った後に、調芯用ダミー試験片を取り除き、試験本番で 用レ、る試験片を取り付ける。これにより、調芯作業を精度よく行うことが可能になること に加え、前述した緩めのはめ合いも容易に実現可能となる。また、調芯用ダミー試験 片による調芯作業を一回行えば、そのままの状態で複数の試験を行うことが可能で あり、実験者の作業の手間が軽減される。 [0038] In the case where the alignment can be performed using the dummy alignment test specimen having a larger end than the test specimen used in the actual test, the alignment before the test is performed. After performing alignment work using the core dummy test piece, remove the core alignment dummy test piece and attach a test piece to be used in the actual test. This makes it possible to perform alignment work with high accuracy. In addition, the loose fitting described above can be easily realized. In addition, if the alignment work is performed once using the alignment dummy test piece, it is possible to perform a plurality of tests as it is, thereby reducing the labor of the experimenter.
本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施の形 態の記載から明らかになるであろう。  Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0039] 以下に本発明の一実施形態を図面に基づいて説明する。図 1には、本実施形態の 疲労試験機 10の全体構成が示されている。また、図 2は、疲労試験機 10の本体 11 を構成する試験片取付部 20の断面図であり、図 3は、試験片取付部 20の要部の拡 大断面図である。さらに、図 4一図 6には、疲労試験機 10の制御手段 60を構成する 外部処理装置 90による処理に伴う画面例が示されている。この疲労試験機 10は、超 高サイクル域データを取得するための疲労試験機である。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the overall configuration of a fatigue tester 10 of the present embodiment. FIG. 2 is a cross-sectional view of a test piece mounting portion 20 constituting the main body 11 of the fatigue tester 10, and FIG. 3 is an enlarged cross-sectional view of a main part of the test piece mounting portion 20. 4 to 6 show examples of screens associated with the processing by the external processing device 90 constituting the control means 60 of the fatigue tester 10. The fatigue tester 10 is a fatigue tester for acquiring ultra-high cycle range data.
[0040] 図 1において、疲労試験機 10は、試験片 1を取り付けてこの試験片 1に荷重を負荷 する本体 11と、この本体 11における荷重の負荷のための動作を制御する制御手段 60とを備えて構成されている。  In FIG. 1, a fatigue tester 10 includes a main body 11 for attaching a test piece 1 and applying a load to the test piece 1, and a control means 60 for controlling an operation for applying a load on the main body 11. It is configured with.
[0041] 本体 11は、試験片 1を取り付ける試験片取付部 20と、試験片 1に荷重を負荷する ァクチユエータ部 40と、このァクチユエータ部 40に供給する油圧の切換操作を行うサ ーボバルブ 50とを備えて構成されている。  The main body 11 includes a test piece mounting section 20 for mounting the test piece 1, an actuator section 40 for applying a load to the test piece 1, and a servo valve 50 for switching a hydraulic pressure supplied to the actuator section 40. It is provided with.
[0042] 図 2において、試験片取付部 20は、試験片 1の上側の端部 1Aに複数の部品を介 して接続されて試験片 1にかかる負荷を検出するロードセル 21と、このロードセノレ 21 のひずみを検出するひずみ計 22と、ロードセル 21を保持するロードセルホルダ 23と 、試験片 1の上側の端部 1Aを掴む上側(ロードセル 21側)の掴み部 24と、試験片 1 の下側の端部 1Bを掴む下側(ピストン 41側)の掴み部 25とを含み構成されている。  In FIG. 2, a test piece mounting portion 20 is connected to the upper end 1 A of the test piece 1 via a plurality of components, and detects a load applied to the test piece 1, and a load sensor 21. , A load cell holder 23 for holding the load cell 21, an upper (load cell 21 side) gripper 24 for gripping the upper end 1A of the test piece 1, and a lower side of the test piece 1 A lower (piston 41 side) grip portion 25 for gripping the end portion 1B.
[0043] ロードセノレ 21は、複数本のボルト 26によりロードセルホルダ 23の上面 23Aに固定 されている。ロードセル 21は、試験片 1から力を受けて微小変形し、そのときの歪み がひずみ計 22により検出され、これにより試験片 1にかかる負荷が検出されるように なっている。  The load sensor 21 is fixed to the upper surface 23 A of the load cell holder 23 by a plurality of bolts 26. The load cell 21 undergoes minute deformation by receiving a force from the test piece 1, and the strain at that time is detected by the strain gauge 22, whereby the load applied to the test piece 1 is detected.
[0044] ロードセルホルダ 23は、図示されない複数本のボルトによりァクチユエータ部 40の シリンダ 42の上面 42Aに固定されている。このロードセルホルダ 23は、上下のフラン ジ部を複数本 (例えば 2本)の支柱部により連結した構成を有し、例えば一塊の金属 材料により形成されている。 [0044] The load cell holder 23 is mounted on the actuator 40 by a plurality of bolts (not shown). It is fixed to the upper surface 42A of the cylinder 42. The load cell holder 23 has a configuration in which the upper and lower flange portions are connected by a plurality of (for example, two) pillar portions, and is formed of, for example, a lump of metal material.
[0045] 上側の掴み部 24には、上方に向かって延びる丸棒状の軸部 27が設けられ、この 軸部 27の上部には、雄ねじ 28が切られている。軸部 27とロードセノレ 21との間には、 ブッシュ 29が挟み込まれ、これにより荷重方向(図 2中の上下方向)と直交する方向 についての上側の掴み部 24とロードセル 21との相対的な位置決めが行われている 。また、軸部 27の雄ねじ 28には、ロックナット 30力 S螺合され、このロックナット 30を締 め込むことにより、荷重方向についての上側の掴み部 24のロードセル 21に対する相 対的な位置が固定されるようになっている。  [0045] The upper grip portion 24 is provided with a round bar-shaped shaft portion 27 extending upward, and a male screw 28 is cut on the upper portion of the shaft portion 27. A bush 29 is sandwiched between the shaft portion 27 and the load sensor 21, and thereby the relative positioning between the upper grip portion 24 and the load cell 21 in a direction orthogonal to the load direction (vertical direction in FIG. 2). Has been done. The external thread 28 of the shaft 27 is engaged with a lock nut 30 by force S. By tightening the lock nut 30, the relative position of the upper grip portion 24 with respect to the load cell 21 in the load direction is adjusted. It is fixed.
[0046] 下側の掴み部 25は、ァクチユエータ部 40の第一ピストンロッド 41Bの先端に設けら れたピストン用ねじ 41Dに螺合されて第一ピストンロッド 41Bに固定されている。これ により試験片 1に対し、ァクチユエータ部 40のピストン 41の進退運動による荷重が負 荷されるようになっている。  The lower grip 25 is screwed to a piston screw 41D provided at the tip of the first piston rod 41B of the actuator 40, and is fixed to the first piston rod 41B. As a result, the test piece 1 is loaded with a load due to the reciprocating motion of the piston 41 of the actuator section 40.
[0047] 図 2および図 3において、試験片 1の上下の端部 1A, 1Bを掴む各掴み部 24, 25 は、試験片 1の上下の端部 1A, 1Bを挿入する例えば円形状の挿入穴 31, 32が形 成された試験片ホルダ 24A, 25Aと、複数本のボルト 33, 34の締め込みにより各挿 入穴 31 , 32に挿入された試験片 1の上下の端部 1A, 1Bを押さえ付けて固定する試 験片固定蓋 24B, 25Bとを備えて構成されている。各試験片固定蓋 24B, 25Bは、 中央に試験片 1を挿通する貫通孔を備えた円盤形状、すなわちドーナツ形状を有し 、例えば、それぞれ二分割され、互いに線対称に配置される略半円形の蓋片により 構成されている。  In FIGS. 2 and 3, each of the grasping portions 24 and 25 for grasping the upper and lower ends 1A and 1B of the test piece 1 is, for example, a circular insertion for inserting the upper and lower ends 1A and 1B of the test piece 1. Specimen holders 24A and 25A with holes 31 and 32 formed, and upper and lower ends 1A and 1B of specimen 1 inserted into insertion holes 31 and 32 by tightening multiple bolts 33 and 34 The test piece fixing lids 24B and 25B are configured to hold down and fix the test piece. Each test piece fixing lid 24B, 25B has a disk shape having a through hole through which the test piece 1 is inserted in the center, that is, a donut shape. It consists of a lid piece.
[0048] また、各試験片固定蓋 24B, 25Bは、それぞれ二分割ではなぐそれぞれ三分割 等としてもよい。例えば、三分割とする場合には、 120度ずつに分割して略扇形の蓋 片とし、これらの各々の蓋片をそれぞれ 2本のボルト 33, 34を用いて各試験片ホルダ 24A, 25Aに固定する。つまり、試験片固定蓋 24Bを合計 6本のボルト 33で固定し、 試験片固定蓋 25Bを合計 6本のボルト 34で固定する。これにより、同じ合計 6本のボ ルト 33, 34で固定するにしても、二分割の場合に比べて三分割の方が、試験片 1の 各端部 1A, IBへの荷重の力かり方が均等になる。従って、試験片 1にとつては、二 分割の試験片固定蓋 24B, 25Bよりも、三分割の試験片固定蓋 24B, 25Bを使用し た方が、無理のない負荷が可能となる。但し、二分割の方が、取付けが容易であると レ、う利点もある。このため、例えば長寿命域で試験片 1の上下の端部 1A, IBと各試 験片固定蓋 24B, 25Bとの接触部から疲労破壊してしまう可能性のある材料につい ては、三分割の試験片固定蓋 24B, 25Bを使用し、例えば高強度鋼等のように上記 のような破壊が生じない材料については、二分割の試験片固定蓋 24B, 25Bを使用 する等により、試験片 1の材料に応じ、分割数の異なる試験片固定蓋 24B, 25Bを使 用するようにしてもよい。 [0048] Each of the test piece fixing lids 24B and 25B may be divided into three parts instead of two parts. For example, in the case of dividing into three parts, each part is divided into 120-degree sections to form a substantially fan-shaped lid piece, and each of these lid pieces is attached to each test piece holder 24A, 25A using two bolts 33, 34, respectively. Fix it. That is, the test piece fixing cover 24B is fixed with a total of six bolts 33, and the test piece fixing lid 25B is fixed with a total of six bolts 34. As a result, even if the bolts are fixed with the same total of six bolts 33 and 34, the test piece 1 in the three divisions is better than that in the two divisions. The load applied to each end 1A, IB becomes even. Therefore, for the test piece 1, a more reasonable load can be achieved by using the three-piece test piece fixing lids 24B and 25B than by the two-piece test piece fixing lids 24B and 25B. However, there is an advantage that the two-parting is easier to install. For this reason, for example, a material that may break due to fatigue from the contact between the upper and lower ends 1A and IB of the test specimen 1 and the test specimen fixing lids 24B and 25B in the long life region is divided into three parts. For materials that do not cause breakage such as the above, such as high-strength steel, for example, using two-piece test piece fixing covers 24B and 25B, Depending on the material of 1, the test piece fixing lids 24B and 25B having different numbers of divisions may be used.
[0049] 図 3において、試験片ホルダ 24A, 25Aに形成された揷入穴 31, 32の底面は、試 験片 1の上下の端面 1C, 1Dがそれぞれ当接される試験片当接面 31A, 32Aとなつ ている。また、試験片 1を試験片取付部 20に取り付けた状態では、試験片 1の上下の 端部 1A, 1Bの外周面 IE, 1Fと、上下の掴み部 24, 25の試験片ホルダ 24A, 25A に形成された挿入穴 31, 32の内周面(側面) 31B, 32Bとの間に、隙間 35, 36がそ れぞれ形成されるようになってレ、る。  In FIG. 3, the bottom surfaces of the insertion holes 31 and 32 formed in the test piece holders 24A and 25A are the test piece contact surfaces 31A on which the upper and lower end faces 1C and 1D of the test piece 1 are respectively contacted. , 32A. When the test piece 1 is mounted on the test piece mounting part 20, the outer peripheral surfaces IE and 1F of the upper and lower ends 1A and 1B of the test piece 1 and the test piece holders 24A and 25A of the upper and lower grip portions 24 and 25 are provided. The gaps 35 and 36 are formed between the inner peripheral surfaces (side surfaces) 31B and 32B of the insertion holes 31 and 32 formed in FIG.
[0050] また、図 3において、試験前に行う調芯作業で用いる調芯用ダミー試験片の上下の 端部 2A, 2B力 図中二点鎖線で示されている。この調芯用ダミー試験片は、上下の 端部 2A, 2B以外の部分については、試験本番で用いる試験片 1と同じである。そし て、調芯用ダミー試験片の上下の端部 2A, 2Bの外径寸法(直径) Wl, W2は、試験 本番で用レ、る試験片 1の上下の端部 1A, 1Bの外径寸法(直径) Dl, D2よりも、それ ぞれ大きくなつている。従って、上下の掴み部 24, 25の試験片ホルダ 24A, 25Aに 形成された揷入穴 31 , 32の内径寸法(直径)を Hl, H2とすると、試験本番で用いる 試験片 1の上下の端部 1A, 1Bの外周面 1E, IFと、揷入穴 31, 32の内周面(側面) 31B, 32Bとのはめ合いの隙間(H1—D1) , (H2—D2)は、調芯用ダミー試験片の 上下の端部 2A, 2Bの外周面 2E, 2Fと、揷入穴 31 , 32の内周面(側面) 31B, 32B とのはめ合いの隙間(HI— Wl) , (H2— W2)よりも、それぞれ大きくなつている。  In FIG. 3, the upper and lower ends 2A, 2B of the alignment test specimen used for the alignment operation performed before the test are indicated by the two-dot chain line in the figure. Except for the upper and lower ends 2A and 2B, this dummy test piece for centering is the same as the test piece 1 used in the actual test. The outer diameters (diameters) Wl and W2 of the upper and lower ends 2A and 2B of the centering dummy test piece are the outer diameters of the upper and lower ends 1A and 1B of the test piece 1 used in the actual test. The dimensions (diameter) are larger than Dl and D2, respectively. Therefore, assuming that the inner diameters (diameters) of the insertion holes 31 and 32 formed in the test piece holders 24A and 25A of the upper and lower grip portions 24 and 25 are Hl and H2, the upper and lower ends of the test piece 1 used in the actual test are used. The gaps (H1-D1) and (H2-D2) between the outer surfaces 1E and IF of the parts 1A and 1B and the inner surfaces (side surfaces) 31B and 32B of the insertion holes 31 and 32 are for alignment. The gaps (HI—Wl), (H2—) between the outer peripheral surfaces 2E, 2F of the upper and lower ends 2A, 2B of the dummy specimen and the inner peripheral surfaces (side surfaces) 31B, 32B of the insertion holes 31, 32. Each is larger than W2).
[0051] さらに、上下の掴み部 24, 25の試験片当接面 31A, 32A (図 3参照)同士の平行 度を規定する役割を果たす各構成部品(図 2参照)の加工精度は高ぐ各構成部品 の各面(上面または下面)は、平行度 0. 01を満たす仕上げとなっている。また、これ らの各面の表面粗さは、研磨仕上げ相当の粗さとなつている。なお、これらの各面の 平行度は、荷重方向(ピストン 41の進退方向)に対する直角度を確保したうえでの平 行度である。 Furthermore, the processing accuracy of each component (see FIG. 2) that plays a role in defining the parallelism between the test piece contact surfaces 31A and 32A (see FIG. 3) of the upper and lower grip portions 24 and 25 is high. Each component Each surface (upper surface or lower surface) is finished to satisfy the parallelism of 0.01. Further, the surface roughness of each of these surfaces is equivalent to the roughness of the polished finish. Note that the parallelism of these surfaces is the parallelism after securing a perpendicularity to the load direction (the direction in which the piston 41 advances and retreats).
[0052] 具体的には、次の面について、平行度 0. 01および研磨仕上げ相当の粗さとなる 加工が行われている。すなわち、図 3において、(1)試験片 1の上下の端面 1C, 1D 、(2)上下の掴み部 24, 25の試験片当接面 31A, 32A、(3)試験片 1の上下の端部 1A, 1Bの対向面 1G, 1H、(4)これらの対向面 1G, 1Hに当接する上下の試験片固 定蓋 24B, 25Bの裏側底面 24C, 25C, (5)上下の掴み部 24, 25の試験片ホノレダ 2 4A, 25Aの表面 24D, 25D、 (6)これらの表面 24D, 25Dに接合される上下の試験 片固定蓋 24B, 25Bの裏側接合面 24E, 25Eについて、上記の条件を満たす高精 度な加工が行われている。  Specifically, the following surface is processed to have a parallelism of 0.01 and a roughness equivalent to a polished finish. That is, in FIG. 3, (1) the upper and lower end surfaces 1C and 1D of the test piece 1, (2) the test piece contact surfaces 31A and 32A of the upper and lower grip portions 24 and 25, and (3) the upper and lower ends of the test piece 1. Opposite surfaces 1G, 1H of parts 1A, 1B, (4) Upper and lower test specimen fixing lids 24B, 25B contacting these opposing surfaces 1G, 1H. Bottom bottom surfaces 24C, 25C, (5) Upper and lower grips 24, The surface 24D, 25D of 25 specimens Honoreda 24A, 25A, and (6) the above conditions were applied to the upper and lower joint surfaces 24E, 25E of the upper and lower specimen fixing lids 24B, 25B joined to these surfaces 24D, 25D. High-precision processing that satisfies is performed.
[0053] また、図 2において、(7)ァクチユエータ部 40のシリンダ 42の上面 42A、 (8)ロード セルホルダ 23の下面 23B、(9)ロードセルホルダ 23の上面 23A、(10)ロードセル 2 1の下面 21A、 (11)ロックナット 30の下面 30A、(12)ブッシュ 29の上面 29A、 (13) ブッシュ 29の下面 29B、(14)上側の掴み部 24の上面 24F、 (15)下側の掴み部 25 の下面 25F、(16)第一ピストンロッド 41Bの上端面 41Eについて、上記の条件を満 たす高精度な加工が行われてレ、る。  In FIG. 2, (7) the upper surface 42 A of the cylinder 42 of the actuator section 40, (8) the lower surface 23 B of the load cell holder 23, (9) the upper surface 23 A of the load cell holder 23, and (10) the lower surface of the load cell 21. 21A, (11) Lower surface 30A of lock nut 30, (12) Upper surface 29A of bush 29, (13) Lower surface 29B of bush 29, (14) Upper surface 24F of upper grip 24, (15) Lower grip The lower surface 25F of 25, and (16) the upper end surface 41E of the first piston rod 41B is subjected to high-precision processing that satisfies the above conditions.
[0054] ァクチユエータ部 40は、前述した本願出願人による特許文献 1に記載の疲労試験 機のァクチユエータ部と同様のものであるため、詳細な図示による説明は省略する。 図 1において、ァクチユエータ部 40は、試験片 1に荷重を負荷するための進退運動 を行うピストン 41と、このピストン 41の周囲に配置されてピストン 41の摺動を案内する シリンダ 42とを備えている。そして、ピストン 41は、前後の油圧差により進退運動を行 うヘッド部 41Aと、このヘッド部 41Aの前進側に設けられた第一ピストンロッド 41Bと、 ヘッド部 41Aの後退側に設けられた第二ピストンロッド 41Cとを含み構成されている。  [0054] The actuator section 40 is the same as the above-described actuator section of the fatigue tester described in Patent Document 1 by the present applicant, and therefore, detailed illustration is omitted. In FIG. 1, the actuator section 40 includes a piston 41 that moves forward and backward to apply a load to the test piece 1, and a cylinder 42 that is arranged around the piston 41 and guides the sliding of the piston 41. I have. The piston 41 has a head portion 41A that moves forward and backward due to a difference in front and rear oil pressure, a first piston rod 41B provided on the forward side of the head portion 41A, and a first piston rod 41B provided on the retreat side of the head portion 41A. It is configured to include a two-piston rod 41C.
[0055] シリンダ 42の内部の円柱状の空間には、ピストン 41のヘッド部 41Aの前進側に第 一圧力室 43が形成され、ヘッド部 41 Aの後退側に第二圧力室 44が形成されている 。これらの第一圧力室 43および第二圧力室 44には、シリンダ 42に形成された第一 流路 45および第二流路 46を通してヘッド部 41Aに油圧をかけるための油が供給さ れるようになっている。 [0055] In a cylindrical space inside the cylinder 42, a first pressure chamber 43 is formed on the forward side of the head 41A of the piston 41, and a second pressure chamber 44 is formed on the retreat side of the head 41A. ing . The first pressure chamber 43 and the second pressure chamber 44 have a first pressure chamber Oil for applying oil pressure to the head portion 41A is supplied through the flow path 45 and the second flow path 46.
[0056] サーボバルブ 50は、前述した本願出願人による特許文献 1に記載の疲労試験機 のサーボバルブと同様のものであり、図示されない四つのポート、すなわち Pポート、 Rポート、 C1ポート、 C2ポートを備えている。このうち、 Pポートは、図示されない油圧 ユニットの供給圧配管に接続され、 Rポートは、図示されないオイルタンクに繋がる戻 り配管に接続されている。また、 C1ポート、 C2ポートは、ァクチユエータ部 40のシリン ダ 42に形成された第一流路 45、第二流路 46にそれぞれ接続されている。  The servo valve 50 is similar to the servo valve of the fatigue tester described in Patent Document 1 by the present applicant, and has four ports (not shown), ie, a P port, an R port, a C1 port, and a C2 port. It has a port. The P port is connected to a supply pressure pipe of a hydraulic unit (not shown), and the R port is connected to a return pipe connected to an oil tank (not shown). The C1 port and the C2 port are connected to a first flow path 45 and a second flow path 46 formed in the cylinder 42 of the actuator section 40, respectively.
[0057] サーボバルブ 50は、 DSPコントローラ 70力 送られてくる電流信号または電圧信 号により、 Pポートから入ってきた油を C1または C2ポートに切り換えて流すようになつ ている。例えば、 C1ポートに切り換えたときには、 C1ポートから出た油は、第一流路 45を通って第一圧力室 43に入り、ピストン 41のヘッド部 41Aを押してピストン 41を後 退移動させる。このピストン 41の後退移動により、第二圧力室 44内の油は、ヘッド部 41Aに押されて第二流路 46を通って C2ポートに入る。そして、 C2ポートからサーボ バルブ 50内に入った油は、サーボバルブ 50の中で Rポートに導かれ、最終的に油 圧ユニットの戻り配管に流される。このような経路を経て、油は循環するようになって いる。また、 C2ポートに切り換えたときも、同様であり、このときには、ピストン 41は前 進移動する。  [0057] The servo valve 50 switches the oil that has entered from the P port to the C1 or C2 port according to the current signal or the voltage signal that is sent from the DSP controller 70. For example, when switching to the C1 port, the oil that has flowed out of the C1 port enters the first pressure chamber 43 through the first flow path 45 and pushes the head 41A of the piston 41 to move the piston 41 backward. Due to the backward movement of the piston 41, the oil in the second pressure chamber 44 is pushed by the head portion 41A and enters the C2 port through the second flow path 46. Then, the oil that has entered the servo valve 50 from the C2 port is guided to the R port in the servo valve 50 and finally flows to the return pipe of the hydraulic unit. The oil circulates through such a route. The same is true when switching to the C2 port, in which case the piston 41 moves forward.
[0058] 従って、サーボバルブ 50の切換制御により、ピストン 41は進退運動を行うようにな つている。この際、図 2に示すように、ァクチユエータ部 40の第一ピストンロッド 41Bは 、下側の掴み部 25を介して試験片 1の下側の端部 1Bに接続されている。このため、 ピストン 41の進退運動に伴って、試験片 1の下側の端部 1 Bには試験片 1の長手方 向についての変位が与えられ、その結果、試験片 1に荷重がかけられるようになって いる。  [0058] Accordingly, the switching control of the servo valve 50 causes the piston 41 to move forward and backward. At this time, as shown in FIG. 2, the first piston rod 41B of the actuator section 40 is connected to the lower end 1B of the test piece 1 via the lower grip 25. For this reason, with the reciprocating movement of the piston 41, the lower end 1B of the test piece 1 is displaced in the longitudinal direction of the test piece 1, and as a result, a load is applied to the test piece 1. It is as follows.
[0059] サーボバルブ 50としては、例えば、いわゆるノズルフラッパ型サーボバルブを好適 に用いることができ、さらに応答性を向上させるという観点から、いわゆるダイレクトド ライブ型サーボバルブを用いてもよレ、。ここで、前者のノズノレフラッパ型サーボバルブ とは、ファーストステージと称される部分の中のノズノレとフラッパとの間の圧力差でス プールを動かすものであり、後者のダイレクトドライブ型サーボバルブとは、スプール を直接に、ボイスコイルあるいは超磁歪素子ゃ電歪素子等の駆動素子で駆動するも のである。 [0059] As the servo valve 50, for example, a so-called nozzle flapper type servo valve can be suitably used, and from the viewpoint of further improving responsiveness, a so-called direct drive type servo valve may be used. Here, the former nozzle flapper type servo valve is formed by a pressure difference between a nozzle flapper and a flapper in a portion called a first stage. The latter moves the pool, and the latter direct drive type servo valve drives the spool directly by a driving element such as a voice coil or a giant magnetostrictive element / electrostrictive element.
[0060] 図 1において、制御手段 60は、試験片 1に負荷される荷重に応じたひずみ計 22の 検出信号をフィードバックしてァクチユエータ部 40の動作を制御するための制御信 号をサーボバルブ 50に送るフィードバック制御を行うものであり、制御性能に直接関 係する処理をデジタル処理で行う DSPコントローラ 70と、この DSPコントローラ 70に 接続されて DSPコントローラ 70との間で情報の送受信を行うことにより制御性能に直 接関係しない処理を行う外部処理装置 90とを備えて構成されている。  In FIG. 1, the control means 60 feeds back a detection signal of the strain gauge 22 corresponding to the load applied to the test piece 1 to control the operation of the actuator section 40 and sends a control signal to the servo valve 50. The DSP controller 70 performs digital processing of the processing directly related to control performance, and transmits and receives information between the DSP controller 70 and the DSP controller 70. An external processing device 90 that performs processing that is not directly related to control performance is provided.
[0061] 図 1において、 DSPコントローラ 70は、関数発生器 71と、制御信号発生手段を構 成するサーボ増幅器 72と、 D_Aコンバータ 73と、 A_Dコンバータ 74と、カウンタ 75 と、リミッタ 76とを備えてレヽる。また、 DSPコントローラ 70は、ピークボトムホーノレド 77と 、増幅率補正/零点補正計算手段 78と、増幅率補正手段 79と、零点補正手段 80と を備えている。  In FIG. 1, the DSP controller 70 includes a function generator 71, a servo amplifier 72 constituting control signal generation means, a D_A converter 73, an A_D converter 74, a counter 75, and a limiter 76. Reply The DSP controller 70 also includes a peak-bottom Hornoled 77, an amplification factor correction / zero correction calculation unit 78, an amplification factor correction unit 79, and a zero correction unit 80.
[0062] なお、上記の DSPコントローラ 70の各構成要素は、 DSPコントローラ 70の内部に 設けられた一つまたは複数の中央演算処理装置(CPU)、およびこの CPUの動作手 順を規定する一つまたは複数の制御プログラム、並びに ROMや RAM等の各種メモ リにより実現される。また、 DSPコントローラ 70を構成するハードウェアとしては、 CPU の他に、例えば積和演算器等が含まれていてもよい。制御プログラムは、外部処理 装置 90により作成されてコンパイルされた実行プログラムを、 DSPコントローラ 70に 搭載したものである。この制御プログラムは、外部処理装置 90により作成されたプロ グラムと、 DSPコントローラ 70に内蔵された DSPボードで用意されている種々の命令 (例えば、サイン波形を出力する命令等)とを組み合わせて作成されるのが一般的で あるが、制御プログラムの全ての部分を外部処理装置 90により作成してもよい。  [0062] Each component of the DSP controller 70 includes one or a plurality of central processing units (CPUs) provided inside the DSP controller 70 and one that defines the operation procedure of the CPU. Alternatively, it is realized by a plurality of control programs and various memories such as a ROM and a RAM. Further, the hardware constituting the DSP controller 70 may include, for example, a product-sum operation unit in addition to the CPU. The control program is such that an execution program created and compiled by the external processing device 90 is mounted on the DSP controller 70. This control program is created by combining a program created by the external processing unit 90 with various instructions (for example, an instruction for outputting a sine waveform) provided by a DSP board built in the DSP controller 70. Generally, all parts of the control program may be created by the external processing device 90.
[0063] そして、 DSPコントローラ 70では、次のようなフルデジタル化されたフィードバック制 御が行われる。制御の概要から説明すると、先ず、関数発生器 71において目標荷重 に相当する信号が作られる。この信号は、サーボ増幅器 72により所定の増幅率で増 幅され、 D— Aコンバータ 73を通じてアナログ電流信号または電圧信号に変換される 。このアナログ電流信号または電圧信号は、サーボバルブ 50において、この信号の 大きさに比例した流量の油に置き換えられ、ァクチユエータ部 40の第一圧力室 43ま たは第二圧力室 44に導かれる。この結果、ピストン 41が移動し、試験片 1に荷重が 負荷される。 The DSP controller 70 performs the following fully digitalized feedback control. Explaining from the outline of the control, first, a signal corresponding to the target load is generated in the function generator 71. This signal is amplified at a predetermined amplification rate by the servo amplifier 72 and is converted into an analog current signal or a voltage signal through the DA converter 73. . The analog current signal or the voltage signal is replaced in the servo valve 50 with oil having a flow rate proportional to the magnitude of the signal, and guided to the first pressure chamber 43 or the second pressure chamber 44 of the actuator section 40. As a result, the piston 41 moves, and a load is applied to the test piece 1.
[0064] 次に、試験片 1に負荷された荷重は、ロードセル 21およびひずみ計 22により荷重 に比例したアナログ電圧信号または電流信号に変換され、さらに、 A— Dコンバータ 7 4を通じてデジタル信号に変換される。そして、関数発生器 71からの目標値信号とこ の荷重信号との偏差値が計算され、この値が再びサーボ増幅器 72に送られる。この ようなフィードバックループによって最終的に偏差が収束し、試験片 1に目標値信号 に相当する荷重が負荷される。  Next, the load applied to the test piece 1 is converted into an analog voltage signal or a current signal in proportion to the load by the load cell 21 and the strain gauge 22, and further converted into a digital signal through the AD converter 74. Is done. Then, a deviation value between the target value signal from the function generator 71 and this load signal is calculated, and this value is sent to the servo amplifier 72 again. The deviation finally converges by such a feedback loop, and a load corresponding to the target value signal is applied to the test piece 1.
[0065] 一方、疲労試験機 10は、システム全体として様々な外乱の影響を受けるため、増 幅率を一定値とすると荷重信号が目標値信号に追従しない場合がある。このような場 合には、ピークボトムホールド 77、増幅率補正/零点補正計算手段 78、増幅率補正 手段 79、零点補正手段 80により、外乱に対する修正動作が行われる。すなわち、ピ ークボトムホールド 77により荷重信号の最大値および最小値がリアルタイムでモニタ され、増幅率補正/零点補正計算手段 78により、このモニタ結果と目標値信号との ずれ量から最適な増幅率補正量および零点補正量が計算される。そして、この計算 結果に基づき、零点補正手段 80により、関数発生器 71の信号が補正されるとともに 、増幅率補正手段 79により、サーボ増幅器 72の増幅率が修正される。  On the other hand, since the fatigue tester 10 is affected by various disturbances as a whole system, the load signal may not follow the target value signal when the gain is set to a constant value. In such a case, a correction operation for disturbance is performed by the peak bottom hold 77, the amplification factor correction / zero correction calculation unit 78, the amplification factor correction unit 79, and the zero correction unit 80. That is, the peak value and the minimum value of the load signal are monitored in real time by the peak bottom hold 77, and the amplification factor correction / zero correction calculation means 78 determines the optimum amplification factor based on the deviation between the monitoring result and the target value signal. A correction amount and a zero-point correction amount are calculated. Then, based on this calculation result, the signal of the function generator 71 is corrected by the zero point correction means 80, and the amplification factor of the servo amplifier 72 is corrected by the amplification factor correction means 79.
[0066] また、試験片 1の破断時、あるいは、非常事態の発生時等、荷重信号が予め設定さ れた範囲を逸脱した場合には、リミッタ 76により疲労試験機 10が停止される。なお、 カウンタ 75により、疲労試験に必要な繰返し数が計数される。  Further, when the load signal deviates from a preset range, such as when the test piece 1 is broken or when an emergency occurs, the fatigue tester 10 is stopped by the limiter 76. The number of repetitions required for the fatigue test is counted by the counter 75.
[0067] 続いて、制御の詳細、すなわち DSPコントローラ 70の各構成要素の処理内容の詳 細を説明する。  Next, the details of the control, that is, the details of the processing of each component of the DSP controller 70 will be described.
[0068] 関数発生器 71は、 目標値 r (k)の発生処理を行うものである。 目標値 r (k)は、サイ ン波形であり、次の式(1)で示される。  [0068] The function generator 71 performs a process of generating a target value r (k). The target value r (k) is a sign waveform and is represented by the following equation (1).
[0069] r (k) =Α Χ 8ϊη (2 π X (F X k/F ) ) + OFF · · · (1) [0069] r (k) = Α Χ 8ϊη (2 π X (F X k / F)) + OFF · · · (1)
[0070] ここで、 Aは、到達目標荷重のサイン波振幅(amplitude)であり、 Fは、疲労試験の 繰返し周波数(frequency)であり、 Fは、 DSPコントローラ 70の A— Dコンバータ 74の 動作周波数(sampling frequency)であり、 OFFは、零点すなわち目標荷重のサイン 波平均値 (offset)である。 kは、離散化した時間のうちのある一つの時刻を意味する 値であり、例えば、サンプリング周波数 Fを 50Hzとすると、 1秒間に 50回分の時刻デ ータを測定することができ、このとき、 k= lのデータは、 50個のデータのうち 1番目の 時刻データを表す。 [0070] Here, A is the sine wave amplitude (amplitude) of the attained target load, and F is the value of the fatigue test. The repetition frequency (frequency), F is the operating frequency (sampling frequency) of the A / D converter 74 of the DSP controller 70, and OFF is the zero point, that is, the sine wave average value (offset) of the target load. k is a value indicating a certain time in the discretized time.For example, if the sampling frequency F is 50 Hz, 50 times of time data can be measured per second. , K = l data represent the first time data of the 50 data.
[0071] また、到達目標荷重のサイン波振幅 Aおよび零点 OFFは、後述する図 5の試験条  Further, the sine wave amplitude A and the zero point OFF of the attained target load are shown in FIG.
t t  t t
件設定画面 200を用いて実験者により入力される最大応力および応力比から決定さ れる。この決定処理は、外部処理装置 90の処理手段 90Aにより行われ、その決定結 果が関数発生器 71に引き渡され、関数発生器 71での処理に用レ、られる。例えば、口 ードセノレ 21を lOOOkgf (9. 81kN)で 10V出力するように較正したとする。このとき、 試験片 1に最大ィ直 1000kgf (9. 81kN)、最 /J、値 100kgf (0. 98kN)のサイン波形 の繰返し荷重を加えたい場合には、 目標荷重の振幅は(1000-100) /2=450kgf (4. 41kN)となり、 目標荷重のサイン波平均値は(1000+ 100) /2 = 550kgf (5. 39kN)となる。換言すれば、この波形は、 550kgf (5. 39kN)を中心として上下に 45 0kgf (4. 41kN)の振幅を持つサイン波形となる。このとき、 lkgf (9. 81N)は 0. 01 Vに対応するので、上記の目標荷重を目標電圧信号に変換すれば、振幅 A =450 X 0. 01 =4. 5V、零点 OFF = 550 X 0. 01 = 5. 5Vとなる。なお、疲労試験機 10 では、後述する如ぐ外部処理装置 90の試験条件設定画面表示'入力受付処理手 段 92により、図 5の試験条件設定画面 200上で応力値による設定入力を受け付ける ので、実験者は、応力値から荷重値への換算作業を行う必要はなぐ外部処理装置 90が、応力値から荷重値への換算処理、 目標荷重の振幅および零点の算出決定処 理、電圧値への変換処理を全て自動的に行う。  It is determined from the maximum stress and stress ratio input by the experimenter using the case setting screen 200. This determination process is performed by the processing means 90A of the external processing device 90, and the result of the determination is delivered to the function generator 71, and is used for the processing in the function generator 71. For example, suppose that the mouthpiece 21 is calibrated to output 10 V at 100 kgf (9.81 kN). At this time, if you want to apply a repetitive sine waveform load of 1000kgf (9.81kN), maximum / J, and a value of 100kgf (0.98kN) to test piece 1, the amplitude of the target load is (1000-100 ) / 2 = 450kgf (4.41kN), and the average sine wave of the target load is (1000 + 100) / 2 = 550kgf (5.39kN). In other words, this waveform is a sine waveform having an amplitude of 450 kgf (4.41 kN) above and below 550 kgf (5.39 kN). At this time, lkgf (9.81N) corresponds to 0.01 V, so if the above target load is converted to a target voltage signal, the amplitude A = 450 X 0.01 = 4.5 V, zero point OFF = 550 X 0.01 = 5.5V. In the fatigue testing machine 10, the setting input based on the stress value is received on the test condition setting screen 200 in FIG. 5 by the test condition setting screen display 'input reception processing means 92' of the external processing device 90 as described later. The experimenter does not need to perform the conversion work from the stress value to the load value.The external processing device 90 converts the stress value to the load value, calculates the target load amplitude and zero point, determines the load, and converts the voltage value to the voltage value. Performs all conversion processing automatically.
[0072] さらに、疲労試験の繰返し周波数 Fは、後述する図 5の試験条件設定画面 200を用 いて実験者により入力される。  Further, the repetition frequency F of the fatigue test is input by the experimenter using a test condition setting screen 200 in FIG. 5 described later.
[0073] サーボ増幅器 72は、サーボバルブ 50に送る制御信号を発生させる処理を行うもの である。 DSPコントローラ 70による制御は、比例制御であり、サーボバルブ 50に制御 信号として送る比例制御の操作量 u (k)は、次の式(2)で示される。 [0074] u (k) =G X e (k) (2) [0073] The servo amplifier 72 performs a process of generating a control signal to be sent to the servo valve 50. The control by the DSP controller 70 is proportional control, and the manipulated variable u (k) of the proportional control sent to the servo valve 50 as a control signal is expressed by the following equation (2). [0074] u (k) = GX e (k) (2)
[0075] ここで、 Gは、増幅率すなわち比例ゲイン (gain)である。 e (k)は、 目標値 r (k)と応答 値(ひずみ計 22で検出される荷重値) X (k)との偏差量であり、 e (k) =r (k)一 x (k)で 表される。  Here, G is an amplification rate, that is, a proportional gain (gain). e (k) is the deviation between the target value r (k) and the response value (the load value detected by the strain gauge 22) X (k), and e (k) = r (k)-x (k ).
[0076] 従って、偏差量 e (k)の算出処理およびその偏差量 e (k)に基づくサーボ増幅器 72 による処理を合わせて考えると、最終的に、サーボバルブ 50に送る制御信号の値は 、上記の式(2)に式(1)を代入し、次の式(3)のようになる。  Therefore, considering the calculation processing of the deviation e (k) and the processing by the servo amplifier 72 based on the deviation e (k), the value of the control signal finally sent to the servo valve 50 becomes The following equation (3) is obtained by substituting equation (1) into equation (2).
[0077] u (k)  [0077] u (k)
=G X (r (k) -x (k) )  = G X (r (k) -x (k))
=G X (A X sin (2 X (F X k/F ) ) + OFF -x (k) )  = G X (A X sin (2 X (F X k / F)) + OFF -x (k))
(3)  (3)
[0078] ピークボトムホールド 77は、ひずみ計 22で検出される実測荷重値の波形について の各周期の最大値および最小値を測定し、それを記憶保持する処理を行うものであ る。  [0078] The peak bottom hold 77 measures the maximum value and the minimum value of each cycle of the waveform of the actually measured load value detected by the strain meter 22, and performs a process of storing and storing the maximum value and the minimum value.
[0079] 増幅率補正/零点補正計算手段 78は、 目標値信号の波形と、ひずみ計 22の検 出信号の波形 (フィードバック波形)とを比較し、この比較結果に基づき増幅率 (ゲイ ン)および零点(オフセット)の補正に関する計算処理を行うものである。これは、適応 比例制御を行うための処理である。 目標値信号の波形とフィードバック波形との比較 とは、 目標値信号の波形の振幅とフィードバック波形の振幅との比較、および目標値 信号の波形の零点(オフセット)とフィードバック波形の零点(オフセット)との比較であ る。ここで、 目標値信号の波形の振幅およびオフセットは、前述した如ぐ図 5の試験 条件設定画面 200で最初に試験条件を設定するときに外部処理装置 90により算出 決定された値である。一方、フィードバック波形の振幅およびオフセットは、ピークボト ムホールド 77により測定された最大値および最小値に基づき、増幅率補正/零点補 正計算手段 78により算出される。なお、これらの波形の比較処理および比較結果に 基づく補正に関する計算処理は、波形一周期毎に行うのが原則であるが、複数周期 毎に行うようにしてもよい。  The amplification factor correction / zero correction calculation means 78 compares the waveform of the target value signal with the waveform (feedback waveform) of the detection signal of the strain meter 22, and based on the comparison result, calculates the amplification factor (gain). And a calculation process for correcting the zero point (offset). This is a process for performing adaptive proportional control. The comparison between the target value signal waveform and the feedback waveform includes comparing the amplitude of the target value signal waveform with the amplitude of the feedback waveform, and comparing the zero point (offset) of the target value signal waveform with the zero point (offset) of the feedback waveform. This is a comparison. Here, the amplitude and offset of the waveform of the target value signal are values calculated and determined by the external processing device 90 when the test conditions are first set on the test condition setting screen 200 in FIG. 5 as described above. On the other hand, the amplitude and offset of the feedback waveform are calculated by the amplification factor correction / zero correction calculation means 78 based on the maximum value and the minimum value measured by the peak bottom hold 77. It should be noted that the comparison processing of these waveforms and the calculation processing relating to the correction based on the comparison result are basically performed for each cycle of the waveform, but may be performed for a plurality of cycles.
[0080] また、増幅率補正/零点補正計算手段 78は、応答信号 (ひずみ計 22の検出信号 )の目標値信号への収束度に応じ、増幅率 (ゲイン)および零点(オフセット)の補正 に関する計算処理のアルゴリズムを段階的に切り替える処理を行う。これは、多段適 応比例制御を行うための処理である。なお、切り替えるか否かの判断処理は、波形一 周期毎に行うのが原則であるが、複数周期毎に行うようにしてもよい。 Further, the amplification factor correction / zero correction calculation means 78 outputs a response signal (a detection signal of the strain meter 22). According to the degree of convergence to the target value signal in step ()), the processing for switching the algorithm of the calculation processing relating to the correction of the amplification factor (gain) and the zero point (offset) is performed stepwise. This is a process for performing multi-stage adaptive proportional control. In principle, the process of determining whether or not to switch is performed for each cycle of the waveform, but may be performed for a plurality of cycles.
[0081] アルゴリズムを段階的に切り替える処理の具体例として、以下のような 2段階の切替 処理を挙げることができるが、切替の段階数、アルゴリズムの内容、切替判断方法等 は、以下の例に限定されるものではない。  [0081] A specific example of the process of switching the algorithm stepwise includes the following two-stage switching process. The number of switching stages, the content of the algorithm, the switching determination method, and the like are as follows. It is not limited.
[0082] 例えば、増幅率(ゲイン)につレ、ては、次のようなアルゴリズム Aとアルゴリズム BとをFor example, regarding the amplification factor (gain), the following algorithm A and algorithm B are used.
、下記の条件に基づき自動的に切り替えることができる。 , Can be automatically switched based on the following conditions.
[0083] <ァノレゴリズム A> [0083] <Anoregorism A>
疲労試験中のある時刻に、実測荷重の振幅が Aで、そのときの比例ゲインが Gで あるとする。ここで、到達目標荷重の振幅を Aとすると、これを達成するための比例ゲ  At a certain time during the fatigue test, the amplitude of the measured load is A, and the proportional gain at that time is G. Here, assuming that the amplitude of the attained target load is A, the proportional gain to achieve this is
t  t
イン予測値 Gは、 G = (A/A ) XGと考えること力 Sできる。この Gの値と、現在の比  The in-predicted value G can be thought of as G = (A / A) XG. This value of G and the current ratio
t t t c c t  t t t c c t
例ゲイン Gとの差を AGとすると、 AGは、次の式 (4)で与えられる。  Assuming that the difference from the gain G is AG, AG is given by the following equation (4).
[0084] AG = G— G =((A/A)_1) XG (4) [0084] AG = G— G = ((A / A) _1) XG (4)
[0085] 通常の適応比例制御における増幅率の補正に関する計算処理 (AGC: Auto Gain Control)では、上記の式(4)の AGを基本にして、次の式(5)で示されるアルゴリズム で最適ゲインを求める計算を行っている。  [0085] In the calculation processing (AGC: Auto Gain Control) for the amplification factor correction in the normal adaptive proportional control, based on the AG of the above equation (4), the algorithm shown in the following equation (5) is optimal. The calculation for gain is performed.
[0086] G (i+1)  [0086] G (i + 1)
c  c
=G (i) +gtpx AG  = G (i) + gtpx AG
=G (i)+gtpX ((A A)-l) XG (i) ·'·(5)  = G (i) + gtpX ((A A) -l) XG (i) '' (5)
[0087] ここで、 iは、 i番目のサンプリングデータであることを示し、各周期に対応する。従つ て、 iの値は、前記式(1)一式(3)における kよりも長い時間間隔で変わる。また、 gtp は、比例ゲインの変化を滑らかにするために用いるパラメータ(ゲインチューニングパ ラメータ)である。この gtpの値としては、例えば、経験値として 0.02等を用いることが できるが、これに限定されるものではなレ、。以上の方法が、アルゴリズム Aである。 Here, i indicates the i-th sampling data, and corresponds to each cycle. Therefore, the value of i changes at a longer time interval than k in Equation (1) and Equation (3). Gtp is a parameter (gain tuning parameter) used to smooth the change in proportional gain. As the value of gtp, for example, an experience value of 0.02 or the like can be used, but the value is not limited to this. The above method is Algorithm A.
[0088] くァノレゴリズム B> [0088] Kwanoregorism B>
通常の適応比例制御では、上記のアルゴリズム Aのみで AGCを行っている。しかし 、実測荷重値が目標値にある程度収束すると、 gtp X A Gの値が極端に小さくなるた め、収束が頭打ちになり、誤差を例えば 1%よりもさらに小さな値に収束させることが 困難となる。 In normal adaptive proportional control, AGC is performed using only algorithm A described above. However However, when the measured load value converges to the target value to some extent, the value of gtp XAG becomes extremely small, and the convergence peaks out, making it difficult to converge the error to a value smaller than, for example, 1%.
[0089] そこで、多段適応比例制御では、試験開始後、実測荷重値が目標値にある程度収 束した時点で、 AGCのアルゴリズムを、上記のアルゴリズム Aから下記のアルゴリズム Bに変更する。  Therefore, in the multi-stage adaptive proportional control, the AGC algorithm is changed from the above algorithm A to the following algorithm B when the actually measured load value converges to a target value to some extent after the start of the test.
[0090] (1) A < Aの場合には、比例ゲインを 0. 0002増カロさせる。  (1) When A <A, the proportional gain is increased by 0.0002 calories.
C t  C t
(2) A >Aの場合には、比例ゲインを 0. 0002減少させる。  (2) If A> A, decrease the proportional gain by 0.0002.
c t  c t
(3) A =Aの場合には、比例ゲインをそのままとする。  (3) When A = A, the proportional gain is left as it is.
c t  c t
[0091] なお、このようなアルゴリズム Bにおいて、増減量は上記の 0. 0002に限定されず、 他の値としてもよぐまた、増加量と減少量とを異なる値としてもよい。  [0091] In the algorithm B, the amount of increase or decrease is not limited to the above-mentioned 0.0002, but may be another value, or the increase and decrease amounts may be different values.
[0092] アルゴリズム Aからアルゴリズム Bへの切替のタイミングは、アルゴリズム Aによる制 御を行っている際に、初めて gtp X A G< 0. 0006を満たした時点である。従って、 各周期毎に gtp X A G< 0. 0006を満たしてレヽる力否力を半 IJ断する。なお、 0. 0006 という数値は、実験により経験的に得られた値であるが、判断基準値は、これに限定 されるものではない。  [0092] The timing of switching from algorithm A to algorithm B is the first time gtp X A G <0.0006 is satisfied during control by algorithm A. Therefore, in each cycle, gtp X A G <0.0006 is satisfied, and the repulsive force is cut off by half IJ. The numerical value of 0.0006 is a value obtained empirically through experiments, but the criterion value is not limited to this.
[0093] 以上のようなアルゴリズム Aからアルゴリズム Bへの切り替えを行う多段適応比例制 御により、誤差を ± 0. 1 %以下にまで収束させることができる。なお、アルゴリズム A における gtpの値を、収束の度合いを監視しながら、動的に変更させたり、あるいは 上記の例では 0· 0006のみとなっている切替の判断基準値(gtp X A Gの境界値)を 複数設け、アルゴリズム Bにおける増減量を変更する等により、 3段階以上の切替え を行う多段適応比例制御としてもよレ、。  The error can be converged to ± 0.1% or less by the multi-stage adaptive proportional control that switches from algorithm A to algorithm B as described above. Note that the value of gtp in the algorithm A is dynamically changed while monitoring the degree of convergence, or a switching criterion value (boundary value of gtp XAG) which is only 0 · 0006 in the above example. A multi-stage adaptive proportional control that switches over three or more stages by changing the amount of increase / decrease in algorithm B, etc.
[0094] また、零点(オフセット)については、次のようなアルゴリズム Cとアルゴリズム Dとを、 下記の条件に基づき自動的に切り替えることができる。  [0094] For the zero point (offset), the following algorithm C and algorithm D can be automatically switched based on the following conditions.
[0095] くァノレゴリズム C >  [0095] Kwanoregorism C>
誤差が定格出力の 1. 5%よりも大きいときに、次のアルゴリズム Cを用いる。  When the error is greater than 1.5% of the rated output, use the following algorithm C.
[0096] (1)現在の荷重平均値が目標荷重平均値よりも大きい場合には、オフセットの値を 小さくする。調整量は、定格出力の 0. 15%である。 (2)現在の荷重平均値が目標荷重平均値よりも小さい場合には、オフセットの値を 大きくする。調整量は、定格出力の 0· 15%である。 [0096] (1) If the current load average value is larger than the target load average value, decrease the offset value. The amount of adjustment is 0.15% of the rated output. (2) If the current load average value is smaller than the target load average value, increase the offset value. The adjustment amount is 0.15% of the rated output.
(3)現在の荷重平均値が目標荷重平均値と同じ場合には、オフセットをそのままと する。  (3) If the current average load value is the same as the target average load value, leave the offset as it is.
[0097] くァノレゴリズム D >  [0097] Cyanoregorism D>
誤差が定格出力の 1. 5%以下のときに、次のアルゴリズム Dを用いる。  When the error is less than 1.5% of the rated output, the following algorithm D is used.
[0098] (1)現在の荷重平均値が目標荷重平均値よりも大きい場合には、オフセットの値を 小さくする。調整量は、定格出力の 0. 006%である。 [0098] (1) If the current load average value is larger than the target load average value, reduce the offset value. The adjustment amount is 0.006% of the rated output.
(2)現在の荷重平均値が目標荷重平均値よりも小さい場合には、オフセットの値を 大きくする。調整量は、定格出力の 0. 006%である。  (2) If the current load average value is smaller than the target load average value, increase the offset value. The adjustment amount is 0.006% of the rated output.
(3)現在の荷重平均値が目標荷重平均値と同じ場合には、オフセットをそのままと する。  (3) If the current average load value is the same as the target average load value, leave the offset as it is.
[0099] ここで、定格出力とは、 目標荷重の最大値の絶対値と、 目標荷重の最小値の絶対 値とのうち、大きい方の値を指す。  [0099] Here, the rated output refers to the larger of the absolute value of the maximum value of the target load and the absolute value of the minimum value of the target load.
[0100] 従って、アルゴリズム C, Dのいずれについても、オフセットの補正量を決定する処 理の流れは、同じであり、調整量の数値が異なるだけである。前述したように、本発明 では、このように使用データの相違のみの場合も、アルゴリズムが相違するものと捉え 、 「アルゴリズム」を定義している。なお、定格出力の 0· 15%、 0. 006%という各調整 量の値は、実験により経験的に求めたものである力 S、この数値に限定されるものでは なレ、。また、アルゴリズム C, Dの切替の判断基準値となる定格出力の 1. 5%という誤 差の値も、これに限定されるものではなぐ他の値を用いてもよい。  [0100] Therefore, the flow of processing for determining the offset correction amount is the same for both algorithms C and D, and the only difference is the numerical value of the adjustment amount. As described above, in the present invention, even when there is only a difference between the used data, the algorithm is regarded as different, and the “algorithm” is defined. Note that the values of each adjustment amount of 0.15% and 0.006% of the rated output are forces S, which are empirically obtained by experiments, and are not limited to these values. Also, the error value of 1.5% of the rated output, which serves as a criterion value for switching between the algorithms C and D, is not limited to this, and other values may be used.
[0101] なお、上記の例で、定格出力の 1. 5%となっている切替の判断基準値 (誤差の境 界値)を複数設け、調整量も別の数値を追加して用意することにより、 3段階以上の 切替えを行う多段適応比例制御としてもよレ、。  [0101] Note that, in the above example, a plurality of switching reference values (error boundary values) that are 1.5% of the rated output should be provided, and another adjustment value should be prepared. Thus, multi-stage adaptive proportional control that performs switching in three or more stages is possible.
[0102] また、増幅率補正/零点補正計算手段 78は、 AGCが無効にされているときでも、 自動オフセットコントロール (A〇C : Auto offset control)を常時有効としている。つまり 、試験中、荷重平均値は常に目標値に一致または略一致していることになる。実験 者は、図 6の試験中画面 300で「AGC有効」ボタン 360を用いて、 AGCの有効'無 効の選択を行うことができる。なお、本実施形態の疲労試験機 10では、試験前に、一 度平均値の調整を行うため、試験開始直後から平均値の誤差を小さい値にとどめる こと力 Sできる。従って、実際に使用されるオフセット調整量は、殆どアルゴリズム Dの値 となってもよレ、。 [0102] Further, the amplification factor correction / zero correction calculation means 78 always keeps the automatic offset control (A〇C: Auto offset control) valid even when the AGC is invalidated. That is, during the test, the load average value always or substantially coincides with the target value. The experimenter uses the “AGC enable” button 360 on the screen 300 during the test shown in FIG. Effect can be selected. In the fatigue tester 10 of the present embodiment, the average value is adjusted once before the test, so that the error of the average value can be kept small immediately after the start of the test. Therefore, the offset adjustment amount actually used may be almost the value of algorithm D.
[0103] 増幅率補正手段 79および零点補正手段 80は、増幅率補正/零点補正計算手段 78による計算結果をメモリに記憶しておき、この計算結果に基づき、増幅率および零 点の補正処理をそれぞれ行うものである。増幅率補正 Z零点補正計算手段 78によ る処理が波形一周期毎に行われるので、増幅率補正手段 79および零点補正手段 8 0による補正処理の内容は、波形一周期毎に更新される。  [0103] The amplification factor correction means 79 and the zero point correction means 80 store the calculation results obtained by the amplification factor correction / zero point correction calculation means 78 in a memory, and perform amplification factor and zero point correction processing based on the calculation results. Each one is to do. Since the processing by the amplification factor correction Z zero point correction calculation means 78 is performed for each cycle of the waveform, the contents of the correction processing by the amplification factor correction means 79 and the zero point correction means 80 are updated for each waveform cycle.
[0104] カウンタ 75は、疲労試験に必要な繰返し数の計数処理を行うとともに、カウンタリミ ットの処理を行うものである。カウンタリミットは、試験繰返し数が規定の値に達した時 点で試験を停止する機能である。規定の値とは、実験者が、図 5の試験条件設定画 面 200の打切り繰返し数の入力部 233で入力した値である。  The counter 75 performs a process of counting the number of repetitions necessary for a fatigue test and a process of a counter limit. Counter limit is a function that stops the test when the number of test repetitions reaches a specified value. The specified value is a value that the experimenter has input in the input section 233 of the number of repetition of the discontinuation on the test condition setting screen 200 in FIG.
[0105] リミッタ 76は、最大リミッタ、最小リミッタ、ゲイン発振防止リミッタ、試験片破断検出 機構の各処理を行うものである。  [0105] The limiter 76 performs each processing of a maximum limiter, a minimum limiter, a gain oscillation prevention limiter, and a test piece breakage detection mechanism.
[0106] 最大リミッタは、ピークボトムホールド 77で検出した最大値力 試験前に予め設定し た値を上回ったときに、一方、最小リミッタは、ピークボトムホールド 77で検出した最 小値が、試験前に予め設定した値を下回ったときに、それぞれ試験動作を停止し、 異常な荷重負荷が繰り返されることを防止する機能である。試験前に予め設定した 値とは、実験者が、図 5の試験条件設定画面 200の許容過大誤差の入力部 231で 入力した値に基づき算出された値である。  [0106] The maximum limiter is the maximum force detected by the peak bottom hold 77 When the value exceeds a preset value before the test, the minimum limiter is the minimum value detected by the peak bottom hold 77 This function stops the test operation when the value falls below the previously set value, and prevents the abnormal load from being repeated. The value set in advance before the test is a value calculated based on the value entered by the experimenter in the input section 231 of the allowable excessive error on the test condition setting screen 200 in FIG.
[0107] ゲイン発振防止リミッタは、オートチューニングにより、無制限に出力が増大し、試験 が不安定となることを防止する機能である。実験者が、図 5の試験条件設定画面 200 の許容最大ゲインの入力部 232で入力した値によりリミッタをかける。  [0107] The gain oscillation prevention limiter has a function of preventing the output from increasing without limit by auto tuning and making the test unstable. The experimenter applies a limiter based on the value entered in the input section 232 for the maximum allowable gain on the test condition setting screen 200 in FIG.
[0108] 試験片破断検出機構は、応答荷重波形の急激な変化を感知することにより試験片 1の破断を検出し、試験片 1が破断した瞬間に疲労試験を停止することで試験片破 面と疲労試験機 10そのものを保護する機能である。  [0108] The test piece fracture detection mechanism detects the fracture of the test piece 1 by sensing a sudden change in the response load waveform, and stops the fatigue test at the moment when the test piece 1 breaks, thereby detecting the fracture of the test piece. And a function to protect the fatigue tester 10 itself.
[0109] 外部処理装置 90は、コンピュータにより構成され、制御性能に直接関係しない各 種処理を行う処理手段 90Aと、例えばキーボードやマウス等の入力手段 96と、例え ば液晶ディスプレイや CRTディスプレイ等の表示手段 97とを備えて構成されている。 また、例えばプリンタやプロッタ等の出力手段を適宜設けてもよい。 [0109] The external processing device 90 is configured by a computer, and has various functions not directly related to control performance. It is provided with processing means 90A for performing seed processing, input means 96 such as a keyboard and a mouse, and display means 97 such as a liquid crystal display and a CRT display. Further, for example, an output unit such as a printer or a plotter may be appropriately provided.
[0110] 処理手段 90Aは、待機中画面表示 ·入力受付処理手段 91と、試験条件設定画面 表示 ·入力受付処理手段 92と、試験中画面表示 ·入力受付処理手段 93と、相反操 作強制無効手段 94と、入力パラメータ監査手段 95とを含み構成されている。  [0110] The processing means 90A includes a standby screen display, an input reception processing means 91, a test condition setting screen display, an input reception processing means 92, a screen display during the test, an input reception processing means 93, and a reciprocal operation forced invalidation. Means 94 and input parameter auditing means 95.
[0111] 待機中画面表示'入力受付処理手段 91は、試験中以外の状態でァクチユエータ 部 40を動作させる場合に使用する図 4の待機中画面 100を表示する処理、およびこ の待機中画面 100を用いて行われる実験者によるァクチユエータ部 40に対する操作 入力を受け付ける処理を行うものである。  [0111] The standby screen display 'input reception processing means 91 is a processing for displaying the standby screen 100 of Fig. 4 used when operating the actuator unit 40 in a state other than the test, and the standby screen 100 This is a process for receiving an operation input to the actuator section 40 by the experimenter performed by using.
[0112] 試験条件設定画面表示 ·入力受付処理手段 92は、試験条件を設定するための図 5の試験条件設定画面 200を表示する処理、およびこの試験条件設定画面 200を用 いて行われる実験者による試験条件の設定入力を受け付ける処理を行うものである 。実験者が、図 5の試験条件設定画面 200で必要な数値を入力して決定を指示すれ ば、入力された試験条件は、この試験条件設定画面表示'入力受付処理手段 92に より、 DSPコントローラ 70の制御プログラムが解釈できるパラメータに自動変換され、 DSPコントローラ 70に転送される。  [0112] Display of test condition setting screen · Input reception processing means 92 is a process of displaying test condition setting screen 200 of FIG. 5 for setting test conditions, and an experimenter performing using this test condition setting screen 200. The processing for accepting the input of the setting of the test condition according to. If the experimenter inputs necessary values on the test condition setting screen 200 of FIG. 5 and instructs the decision, the input test conditions are displayed on the test condition setting screen display ' The parameters are automatically converted into parameters that can be interpreted by the control program of 70 and transferred to the DSP controller 70.
[0113] 試験中画面表示'入力受付処理手段 93は、試験中に試験状況をモニタする図 6の 試験中画面 300を表示する処理、およびこの試験中画面 300を用いて行われる実 験者による入力を受け付ける処理を行うものである。また、試験中画面表示'入力受 付処理手段 93は、試験中に異常が発生し、試験が停止した場合には、 DSPコント口 ーラ 70の制御プログラムと通信を行って原因を調査し、レポートする処理を行う。  [0113] The screen display during test 'input reception processing means 93 is a process for displaying the screen 300 during the test shown in Fig. 6 for monitoring the test status during the test, and the input performed by the experimenter using the screen 300 during the test. This is a process for accepting the request. In addition, when an error occurs during the test and the test is stopped, the input reception processing means 93 communicates with the control program of the DSP controller 70 and investigates the cause. Perform the process of reporting.
[0114] 相反操作強制無効手段 94は、ある操作を実行中に、行ってはならない操作または 行うべきでない操作を強制的に無効にする処理を行うものである。例えば、試験中に は、試験条件のパラメータを変更することができないようになつている。  [0114] The reciprocal operation forcibly invalidating means 94 performs a process of forcibly invalidating an operation that should not be performed or an operation that should not be performed while a certain operation is being performed. For example, during the test, the parameters of the test conditions cannot be changed.
[0115] 入力パラメータ監査手段 95は、実験者により入力されるパラメータ (試験条件等)が 異常か否かを監查する処理を行うものである。例えば、図 5の試験条件設定画面 20 0での矛盾したパラメータ入力を監視する。 [0116] そして、処理手段 90Aに含まれる各手段 91一 95は、外部処理装置 90を構成する コンピュータ本体(パーソナル 'コンピュータのみならず、その上位機種のものも含む 。)の内部に設けられた中央演算処理装置(CPU)、およびこの CPUの動作手順を 規定する一つまたは複数のプログラムにより実現される。 [0115] The input parameter auditing means 95 performs a process of monitoring whether a parameter (test condition or the like) input by an experimenter is abnormal. For example, monitor for inconsistent parameter inputs on the test condition setting screen 200 in FIG. [0116] The means 91-95 included in the processing means 90A are provided inside a computer main body (including not only personal computers but also higher-order models) constituting the external processing device 90. This is realized by a central processing unit (CPU) and one or more programs that define the operation procedure of the CPU.
[0117] このような本実施形態においては、以下のようにして疲労試験機 10を用いて超高 サイクル域データを取得するための疲労試験が行われる。  In the present embodiment as described above, a fatigue test for acquiring ultra-high cycle range data is performed using the fatigue tester 10 as follows.
[0118] 先ず、実験者は、疲労試験を行う前に、調芯用ダミー試験片を用いて疲労試験機 1 0の本体 11の調芯作業を行う。図 2および図 3において、調芯作業では、先ず最初に 、調芯用ダミー試験片を下側 (ピストン 41側)の掴み部 25に装着する。この際には、 試験片ホルダ 25Aに形成された揷入穴 32に、調芯用ダミー試験片の下側の端部 2 Bを揷入し、ボルト 34を締め込んで試験片固定蓋 25Bにより調芯用ダミー試験片の 下側の端部 2Bを押さえ付けて固定する。  First, before performing the fatigue test, the experimenter performs the centering operation of the main body 11 of the fatigue testing machine 10 using the dummy test piece for centering. In FIGS. 2 and 3, in the alignment operation, first, a dummy test piece for alignment is mounted on the grip portion 25 on the lower side (the piston 41 side). In this case, insert the lower end 2B of the alignment test piece into the insertion hole 32 formed in the test piece holder 25A, tighten the bolt 34, and use the test piece fixing lid 25B. Press down and fix the lower end 2B of the alignment test specimen.
[0119] 次に、上側(ロードセル 21側)の掴み部 24の試験片ホルダ 24Aに形成された挿入 穴 31に、調芯用ダミー試験片の上側の端部 2Aが入るようにロードセル 21の水平位 置を調整する。  [0119] Next, the horizontal position of the load cell 21 is adjusted so that the upper end 2A of the dummy test piece for centering fits into the insertion hole 31 formed in the test piece holder 24A of the grip portion 24 on the upper side (the load cell 21 side). Adjust the position.
[0120] 続いて、ロードセル 21の水平位置を調整後に、ボノレト 26によりロードセル 21を固定 し、ロックナット 30を締める。最後に、調芯用ダミー試験片を取り外す。  Subsequently, after adjusting the horizontal position of the load cell 21, the load cell 21 is fixed by the bonoleto 26, and the lock nut 30 is tightened. Finally, the dummy specimen for alignment is removed.
[0121] 以上の調芯作業は、数分程度で行うことが可能であり、従来のように試験片にひず みゲージを貼って調芯作業を行う場合に比べ、作業時間が格段に短縮できる。この 調芯作業の後は、疲労試験用の試験片 1を無作為に何回取り付けたとしても、試験 片 1には、側面からの拘束力が加わることはなレ、。従って、この調芯作業は、従来の 場合と異なり、疲労試験毎に行う必要はない。  [0121] The above alignment work can be performed in about a few minutes, and the work time is remarkably reduced as compared with the case where the strain gauge is pasted on the test piece and the alignment work is conventionally performed. it can. After this alignment work, no matter how many times the test piece 1 for the fatigue test is attached at random, the test piece 1 will not receive any restraining force from the side. Therefore, unlike the conventional case, this alignment work does not need to be performed for each fatigue test.
[0122] 実験者は、上記の如く調芯用ダミー試験片を用いて調芯作業を行った後に、疲労 試験を行うために、疲労試験機 10の本体 11の試験片取付部 20に、試験片 1を取り 付ける。この際、実験者は、外部処理装置 90の待機中画面表示'入力受付処理手 段 91により表示手段 97の画面上に表示された図 4の待機中画面 100を用いて、試 験片 1の取付作業に必要なピストン 41の操作を行う。  [0122] After performing the alignment operation using the alignment dummy test piece as described above, the experimenter attached a test piece to the test piece mounting portion 20 of the main body 11 of the fatigue tester 10 in order to perform a fatigue test. Attach strip 1. At this time, the experimenter uses the standby screen 100 of FIG. 4 displayed on the screen of the display means 97 by the input screen processing means 91 to display the standby screen of the external processing device 90 and displays the test piece 1 Operate the piston 41 necessary for installation work.
[0123] 図 4において、待機中画面 100には、フィードバック値表示部 110と、試験条件表 示部 120と、ピストンコントロール部 130と、「通信終了」ボタン 140と、「試験条件設定 」ボタン 150と、「試験コンソールへ」ボタン 160と、「数値オフセット入力」ボタン 170と が設けられている。 In FIG. 4, the standby screen 100 includes a feedback value display section 110 and a test condition table. Display unit 120, piston control unit 130, "communication end" button 140, "test condition setting" button 150, "to test console" button 160, and "numeric offset input" button 170 are provided. .
[0124] フィードバック値表示部 110には、ひずみ計 22の検出信号から得られる負荷荷重 の表示部 111と、負荷荷重を試験片直径を用いて換算した負荷応力の表示部 112と が設けられている。応力値への換算処理は、待機中画面表示'入力受付処理手段 9 1により行われる。  [0124] The feedback value display section 110 is provided with a display section 111 of a load obtained from a detection signal of the strain gauge 22, and a display section 112 of a load stress obtained by converting the load into a test piece diameter. I have. The conversion process to the stress value is performed by the standby screen display 'input reception processing means 91.
[0125] 試験条件表示部 120には、最大絶対応力、試験応力比、試験片直径、試験周波 数の各表示部 121 124が設けられている。これらの表示値は、実験者が「試験条 件設定」ボタン 150をクリックして図 5の試験条件設定画面 200で入力した値である。  [0125] The test condition display section 120 is provided with display sections 121 124 for the maximum absolute stress, the test stress ratio, the test piece diameter, and the test frequency. These display values are the values entered by the experimenter on the test condition setting screen 200 in FIG. 5 by clicking the “test condition setting” button 150.
[0126] ピストンコントロール部 130には、ピストン 41を前進移動(上昇)させる上昇ボタン 13 1と、ピストン 41を後退移動(下降)させる下降ボタン 132と、ピストン 41を中央位置に するニュートラルボタン 133と、ピストン 41の前進量 (上昇量)をバー表示する前進量 表示部 134と、ピストン 41の後退量(下降量)をバー表示する後退量表示部 135と、 サーボバルブ 50の零点の調整量を入力するバルブ零調入力部 136と、バルブ零調 入力部 136で入力した値を実際に設定する「Set」ボタン 137とが設けられている。な お、サーボバルブ 50の零点は、通常、安全サイドにずらしてあるので、これを予め補 正して精密な制御を行うために零点調整を行う。  [0126] The piston control unit 130 includes an up button 131 for moving the piston 41 forward (up), a down button 132 for moving the piston 41 backward (down), and a neutral button 133 for moving the piston 41 to the center position. , The advance amount display section 134 that displays the advance amount (up amount) of the piston 41 with a bar, the reverse amount display section 135 that displays the retreat amount (down amount) of the piston 41 with a bar, and the adjustment amount of the zero point of the servo valve 50. There are provided a valve zero adjustment input section 136 for inputting, and a “Set” button 137 for actually setting the value input on the valve zero adjustment input section 136. Since the zero point of the servo valve 50 is normally shifted to the safe side, the zero point adjustment is performed to correct this in advance and perform precise control.
[0127] 「通信終了」ボタン 140は、 DSPコントローラ 70との通信を終了させるボタンであり、 「試験条件設定」ボタン 150は、図 5の試験条件設定画面 200へ移動するためのボタ ンであり、「試験コンソールへ」ボタン 160は、図 6の試験中画面 300へ移動するため のボタンであり、「数値オフセット入力」ボタン 170は、試験開始前等の調整時に、強 制的に零点(オフセット)をある値に定める場合に使用するボタンである。  [0127] The "communication end" button 140 is a button for terminating communication with the DSP controller 70, and the "test condition setting" button 150 is a button for moving to the test condition setting screen 200 in FIG. The “To test console” button 160 is a button for moving to the in-test screen 300 in FIG. 6, and the “Numerical value input” button 170 is used to forcibly set the zero point (offset) at the time of adjustment, such as before starting the test. ) Is a button used to set a certain value.
[0128] 実験者は、試験前に試験条件の設定も行う。この際には、実験者は、図 4の待機中 画面 100で「試験条件設定」ボタン 150をクリックする。すると、外部処理装置 90の表 示手段 97の画面上には、試験条件設定画面表示 ·入力受付処理手段 92により、図 5の試験条件設定画面 200が表示される。 [0128] The experimenter also sets test conditions before the test. In this case, the experimenter clicks the “test condition setting” button 150 on the standby screen 100 of FIG. Then, on the screen of the display means 97 of the external processing device 90, the test condition setting screen display / input reception processing means 92 displays the test condition setting screen 200 of FIG.
[0129] 図 5において、試験条件設定画面 200には、試験条件のうちの主要条件を設定す る主要条件設定部 210と、試験条件のうちの高度な条件の設定を行う高度条件設定 部 220と、各種のリミッタの値を設定するリミッタ設定部 230と、各設定部 210, 220, 230での人力を取り肖す「キャンセノレ」ボタン 240と、各設定咅 220, 230で人 力した条件を実際に設定する「条件を設定」ボタン 250とが設けられている。 In FIG. 5, a test condition setting screen 200 is used to set main conditions among the test conditions. The main condition setting section 210 for setting advanced conditions of the test conditions, the advanced condition setting section 220 for setting advanced conditions, the limiter setting section 230 for setting various limiter values, and the setting sections 210, 220, 230 A "cancel" button 240 for taking human power and a "set condition" button 250 for actually setting the conditions manually input in each of the settings 220 and 230 are provided.
[0130] 主要条件設定部 210には、最大絶対応力、試験応力比、試験片直径、試験周波 数の各入力部 211 214が設けられるとともに、圧縮一圧縮試験を行う場合にチエツ クを入れるための圧縮一圧縮試験選択チェック入力部 215が設けられている。ここで 入力した最大絶対応力、試験応力比、および試験片直径の各値は、前述した式(1) 中の到達目標荷重のサイン波振幅 Aおよびサイン波平均値 (零点) OFFの算出決 [0130] The main condition setting section 210 is provided with input sections 211 214 for a maximum absolute stress, a test stress ratio, a test piece diameter, and a test frequency, and is used to input a check when performing a compression-compression test. A compression / compression test selection check input unit 215 is provided. The values of the maximum absolute stress, test stress ratio, and specimen diameter entered here are determined by the sine wave amplitude A and the average sine wave (zero) OFF of the target load in Equation (1) above.
t t  t t
定処理に用いられる。この算出決定処理は、試験条件設定画面表示'入力受付処理 手段 92により行われる。また、ここで入力した試験周波数の値は、前述した式(1)中 の Fの値として設定される。  Used for fixed processing. This calculation determination processing is performed by the test condition setting screen display 'input reception processing means 92. The value of the test frequency input here is set as the value of F in the above-mentioned equation (1).
[0131] 高度条件設定部 220には、ロードセル変換定数、真空バイアス、デフォルトゲイン の各入力部 221— 223が設けられている。ロードセル変換定数は、ロードセル 21に 負荷される荷重と、ひずみ計 22の出力電圧との関係を示し、ロードセル 21の較正結 果に応じて入力するものであり、前述した式(1)中の到達目標荷重のサイン波振幅 A およびサイン波平均値 (零点) OFFの算出決定処理等の各種処理における荷重一 電圧換算処理に用いられる。また、デフォルトゲインは、増幅率 (ゲイン)の初期値を 設定するものである。 [0131] The altitude condition setting section 220 is provided with input sections 221-223 for load cell conversion constant, vacuum bias, and default gain. The load cell conversion constant indicates the relationship between the load applied to the load cell 21 and the output voltage of the strain gauge 22, and is input according to the calibration result of the load cell 21. It is used for load-voltage conversion in various processes such as sine wave amplitude A of target load and sine wave average value (zero) OFF calculation determination process. The default gain sets the initial value of the amplification factor (gain).
[0132] リミッタ設定部 230には、許容過大誤差、許容最大ゲイン、打切り繰返し数の各入 力部 231— 233が設けられている。これらの入力値は、リミッタ 76およびカウンタ 75 により行われる各種のリミットの処理に用いられる。  [0132] The limiter setting section 230 is provided with input sections 231-233 for the permissible excessive error, the permissible maximum gain, and the number of repetition of discontinuation. These input values are used for various limit processes performed by the limiter 76 and the counter 75.
[0133] 実験者が、各設定部 210, 220, 230での入力を終えて「条件を設定」ボタン 250を クリックすると、入力した条件が設定され、図 4の待機中画面 100に戻る。そして、実 験者は、試験を開始する際には、この画面 100で「試験コンソールへ」ボタン 160をク リックする。すると、外部処理装置 90の表示手段 97の画面上には、試験中画面表示 •入力受付処理手段 93により、図 6の試験中画面 300が表示される。  When the experimenter finishes the input in each of the setting sections 210, 220 and 230 and clicks the “set condition” button 250, the input condition is set and the screen returns to the standby screen 100 of FIG. Then, when starting the test, the experimenter clicks the “To test console” button 160 on this screen 100. Then, a screen during test is displayed on the screen of the display means 97 of the external processing device 90. The screen 300 during test is displayed by the input reception processing means 93 in FIG.
[0134] 図 6において、試験中画面 300には、試験条件を表示する試験条件表示部 310と 、試験状況を数値表示する試験状況数値表示部 320と、試験状況として実測荷重に 基づく応力表示をグラフ表示で行う試験状況グラフ表示部 330とが設けられている。 In FIG. 6, a test condition display section 310 for displaying test conditions is displayed on a screen 300 during the test. A test status numerical display unit 320 for numerically displaying the test status and a test status graph display unit 330 for displaying the stress based on the actually measured load as a test status in a graph display are provided.
[0135] 試験条件表示部 310には、最大絶対応力、試験応力比、試験片直径、試験周波 数の各表示部 311 314が設けられている。これらの表示値は、実験者が図 5の試 験条件設定画面 200で入力した値である。  The test condition display section 310 is provided with display sections 311 314 for the maximum absolute stress, the test stress ratio, the test piece diameter, and the test frequency. These display values are the values entered by the experimenter on the test condition setting screen 200 in FIG.
[0136] 試験状況数値表示部 320には、カウンタ 75の計数値を表示するカウント表示部 32 1と、現在のゲインを表示するゲイン表示部 322と、サーボバルブ 50の定格入力のう ち何%まで使用してレ、るか (最大流量に対して何%の流量となってレ、る力 とレ、う出力 レベルを表示する出力 LV表示部 323と、試験誤差表示部 324とが設けられている。 ここで表示する試験誤差とは、(実荷重振幅 -目標荷重振幅) /目標荷重振幅 X 10 0 (%)のことをいう。  [0136] The test status numerical display section 320 includes a count display section 321 for displaying the count value of the counter 75, a gain display section 322 for displaying the current gain, and a percentage of the rated input of the servo valve 50. The output LV display section 323, which displays the flow rate at what percentage of the maximum flow rate, and the output level, and the test error display section 324 are provided. The test error displayed here is (actual load amplitude-target load amplitude) / target load amplitude X 100 (%).
[0137] 試験状況グラフ表示部 330には、実荷重から算出した応力の波形 (横軸を時間とし 、縦軸を応力とした波形)が表示される。この際の荷重値から応力値への換算処理は 、試験中画面表示 ·入力受付処理手段 93により行われる。  [0137] The test status graph display section 330 displays a stress waveform (a waveform in which the horizontal axis represents time and the vertical axis represents stress) calculated from the actual load. The conversion process from the load value to the stress value at this time is performed by the screen display / input reception processing means 93 during the test.
[0138] これらの試験状況数値表示部 320および試験状況グラフ表示部 330の表示内容 は、試験中画面表示 ·入力受付処理手段 93により、定期的に更新される。  The display contents of the test status numerical display section 320 and the test status graph display section 330 are periodically updated by the screen display under test / input reception processing means 93.
[0139] また、試験中画面 300には、オフセットを自動調整する「オフセット自動調整」ボタン 340と、試験を停止する「試験停止」ボタン 350と、 AGCを有効にする「AGC有効」ボ タン 360と、カウンタ 75の計数値をリセットする「カウンタリセット」ボタン 370と、除荷を 行う「除荷」ボタン 380と、図 4の待機中画面 100に移動するための「メインコンソール へ」ボタン 390とが設けられてレ、る。  [0139] Also, on the screen during test 300, an "automatic offset adjustment" button 340 for automatically adjusting the offset, a "test stop" button 350 for stopping the test, and an "AGC enable" button 360 for enabling the AGC are provided. A "Reset counter" button 370 for resetting the count value of the counter 75, a "Unload" button 380 for unloading, and a "Go to main console" button 390 for moving to the standby screen 100 in FIG. Is provided.
[0140] なお、実際に試験を行う場合には、 目標荷重のオフセットの値まで静的にオフセット を調整し、その後、それに加算してサイン波形を重畳させる。 「オフセット自動調整」 ボタン 340は、試験開始前に荷重を静的にそのオフセット値まで自動的にもっていく ためのボタンである。  [0140] When the test is actually performed, the offset is statically adjusted to the offset value of the target load, and then the sum is added to superimpose the sine waveform. “Automatic offset adjustment” button 340 is a button for automatically bringing the load statically to the offset value before the test starts.
[0141] また、「AGC有効」ボタン 360をクリックしないと、多段適応比例制御が有効になら ず、単なる比例制御となる。この場合には、増幅率 (ゲイン)や零点(オフセット)の値 は一定値となり、実荷重が外的要因によって目標荷重からずれたとしても、それに適 応して増幅率や零点の値の修正動作は行われない。 [0141] If the "AGC enable" button 360 is not clicked, the multi-stage adaptive proportional control is not enabled, and only the proportional control is performed. In this case, the values of the amplification factor (gain) and the zero point (offset) are constant, and even if the actual load deviates from the target load due to external factors, it will be appropriate. Accordingly, the operation of correcting the amplification factor and the value of the zero point is not performed.
[0142] このような本実施形態によれば、次のような効果がある。すなわち、増幅率補正/ 零点補正計算手段 78は、増幅率および零点の補正に関する計算処理を行う際に、 実荷重信号 (ひずみ計 22の検出信号)の目標値信号への収束度に応じ、増幅率の 補正に関する計算処理のアルゴリズムを段階的に切り替える構成とされているので、 検出信号が目標値信号にある程度収束したときに、増幅率の補正に関するアルゴリ ズムを切り替えることにより、検出信号の目標値信号への収束度を高めることができる 。従って、試験精度の向上を図ることができる。  According to the present embodiment, the following effects can be obtained. That is, the amplification factor correction / zero correction calculation means 78 performs amplification processing in accordance with the degree of convergence of the actual load signal (the detection signal of the strain gauge 22) to the target value signal when performing the calculation processing relating to the amplification factor and zero correction. Since the algorithm of the calculation process related to the correction of the gain is switched stepwise, when the detection signal converges to the target value signal to some extent, the algorithm related to the correction of the amplification factor is switched so that the target value of the detection signal is The degree of convergence to a signal can be increased. Therefore, the test accuracy can be improved.
[0143] また、増幅率補正/零点補正計算手段 78は、検出信号の目標値信号への収束度 に応じ、増幅率のみならず、零点の補正に関する計算処理のアルゴリズムを段階的 に切り替える構成とされているので、検出信号の目標値信号への収束度をより一層 高めることができ、試験精度をより一層向上させることができる。  Further, the amplification factor correction / zero correction calculation means 78 has a configuration in which not only the amplification factor but also the algorithm of the calculation process relating to the correction of the zero is switched stepwise according to the degree of convergence of the detection signal to the target value signal. Therefore, the degree of convergence of the detection signal to the target value signal can be further increased, and the test accuracy can be further improved.
[0144] さらに、増幅率補正/零点補正計算手段 78は、アルゴリズムを切り替えるか否かの 判断を波形一周期毎に行う構成とされているので、適切なタイミングでアルゴリズムの 切替を行うことができる。このため、収束の速度を向上させることができ、試験精度を より一層向上させることができる。  Further, since the amplification factor correction / zero correction calculation means 78 is configured to determine whether to switch the algorithm for each cycle of the waveform, the algorithm can be switched at an appropriate timing. . For this reason, the speed of convergence can be improved, and the test accuracy can be further improved.
[0145] 具体的には、従来の適応比例制御で、 目標値信号と検出信号との誤差の収束度 が例えば ± 1 %程度であったとすると、本実施形態の多段適応比例制御では、 ± 0. 1 %以内に収束させることができる。  [0145] Specifically, assuming that the convergence of the error between the target value signal and the detection signal is, for example, about ± 1% in the conventional adaptive proportional control, the multi-stage adaptive proportional control according to the present embodiment uses ± 0%. . Can be converged within 1%.
[0146] そして、疲労試験機 10は、制御手段 60として、 DSPコントローラ 70と外部処理装 置 90とを備えているので、 DSPコントローラ 70には、制御性能に直接関係する演算 処理(目標値信号と荷重信号との比較、増幅率補正、零点補正、ピークボトムホール ド、多段適応比例制御を行うための増幅率や零点の補正に関する計算等の処理)の みを負担させ、一方、外部処理装置 90には、制御性能に直接関係しない演算処理 ( フィードバックされた電圧を荷重に換算する演算処理、応力の数値表示'応力のダラ フ表示 ·ピストン移動量のバー表示 ·ピストン操作用ボタンの矢印表示等のように人間 が見て扱いやすい表示にするためのインターフェースに係る演算処理)を負担させる こと力 Sできる。つまり、制御性能に直接関係する演算処理用のプログラムと、制御性 能に直接関係しなレ、演算処理用のプログラムとを完全に分離し、これらの各プロダラ ムを実行するハードウェアを分離することができる。 [0146] Since the fatigue tester 10 includes the DSP controller 70 and the external processing device 90 as the control means 60, the DSP controller 70 includes arithmetic processing (target value signal) directly related to control performance. And the load signal, amplification factor correction, zero point correction, peak bottom hold, and calculation of amplification factor and zero point correction for multi-stage adaptive proportional control). For 90, arithmetic processing that is not directly related to control performance (calculation processing that converts the voltage fed back to load, numerical display of stress' Draft display of stress ・ Bar display of piston travel distance ・ Arrow display of piston operation button , Etc., which can be used by humans to make the display easy to handle. In other words, a program for arithmetic processing directly related to control performance The functions that are not directly related to the functions can be completely separated from the programs for arithmetic processing, and the hardware that executes each of these programs can be separated.
[0147] このため、 DSPコントローラ 70の処理負担を軽減できるので、応答性や荷重精度、 外乱に対する収束性等の制御性能に直接関係する演算処理についての処理速度 を向上させることができ、この点でも試験精度の向上を図ることができる。  [0147] For this reason, the processing load on the DSP controller 70 can be reduced, so that the processing speed of arithmetic processing directly related to control performance such as responsiveness, load accuracy, and convergence to disturbance can be improved. However, the test accuracy can be improved.
[0148] また、外部処理装置 90は、待機中画面表示 ·入力受付処理手段 91、試験条件設 定画面表示 ·入力受付処理手段 92、および試験中画面表示 ·入力受付処理手段 93 を備えているので、実験者は、試験およびその準備の各場面において、図 4の待機 中画面 100、図 5の試験条件設定画面 200、図 6の試験中画面 300の 3つの画面の うちのいずれかを参照しながら、各場面で必要となる情報の表示のみを確認し、また 、各場面で必要となる入力作業のみを行うことができる。従って、実験者は、試験およ びその準備の各場面で必要最低限の操作を行えばよくなるので、余分な操作を行つ たり、余分な情報を参照して余分な事を考える余地を排除することができ、操作性の 向上を図ることができる。そして、操作性の向上を図ることができるため、誤認識や誤 操作等の発生も回避または抑制することができ、試験精度の向上にも繋がる。  The external processing device 90 includes a standby screen display and input reception processing means 91, a test condition setting screen display and input reception processing means 92, and a test screen display and input reception processing means 93. Therefore, in each stage of the test and preparation, the experimenter refers to one of the three screens: the standby screen 100 in FIG. 4, the test condition setting screen 200 in FIG. 5, and the test screen 300 in FIG. At the same time, it is possible to confirm only the display of the information required in each scene, and to perform only the input work required in each scene. Therefore, the experimenter only needs to perform the minimum necessary operations in each stage of the test and its preparation, so that there is no need to perform extra operations or refer to extra information to think about extra things. Operability can be improved. Since the operability can be improved, the occurrence of erroneous recognition or erroneous operation can be avoided or suppressed, and the test accuracy can be improved.
[0149] そして、待機中画面表示'入力受付処理手段 91により、図 4の待機中画面 100のピ ストンコントロール部 130において、上昇ボタン 131および下降ボタン 132が矢印表 示とされ、前進量表示部 134および後退量表示部 135がバー表示とされているので 、実験者は、ピストン 41の操作を直感的に行うことができる。また、これにより誤操作 等も回避または抑制することができる。さらに、フィードバック値表示部 110が設けら れ、応力表示が行われるので、実験者は、現在の荷重の負荷状態を容易に確認す ること力 Sできる。 [0149] Then, the waiting button display 131 and the descending button 132 are displayed as arrows in the piston control section 130 of the waiting screen 100 in FIG. Since the bar 134 and the retreat amount display section 135 are displayed as bars, the experimenter can intuitively operate the piston 41. In addition, erroneous operations can be avoided or suppressed. Further, since the feedback value display section 110 is provided and the stress is displayed, the experimenter can easily confirm the load state of the current load.
[0150] また、試験条件設定画面表示'入力受付処理手段 92により、図 5の試験条件設定 画面 200で、最大絶対応力、応力比、および試験片直径の入力を受け付けることが できる。このため、実験者は、応力'応力比'試験片直径という普段使用するパラメ一 タのみを使用すればよくなるので、疲労試験機 10の操作性を向上させることができ、 疲労試験機や制御の知識がない実験者でも容易に疲労試験を行うことができる。  [0150] Further, the test condition setting screen display 'input reception processing means 92 can receive the input of the maximum absolute stress, the stress ratio, and the test piece diameter on the test condition setting screen 200 in Fig. 5. For this reason, the experimenter can use only the commonly used parameter of the stress 'stress ratio' specimen diameter, which can improve the operability of the fatigue testing machine 10 and improve the fatigue testing machine and control. Even an experimenter without knowledge can easily perform a fatigue test.
[0151] さらに、試験中画面表示'入力受付処理手段 93により、図 6の試験中画面 300の試 験状況グラフ表示部 330において、応力のグラフ表示が行われるので、実験者は、 現在の試験状況を容易かつ直感的に把握することができる。また、実験者は、各ボタ ン 340— 390を押していくだけで、設定した条件での疲労試験を適切に行うことがで きる。 [0151] Further, the display of the screen during test 300 shown in FIG. Since the stress is graphically displayed in the test status graph display section 330, the experimenter can easily and intuitively grasp the current test status. In addition, the experimenter can properly perform the fatigue test under the set conditions simply by pressing the buttons 340 to 390.
[0152] そして、外部処理装置 90は、相反操作強制無効手段 94を備えているので、誤操 作を防止できる。  [0152] Since the external processing device 90 includes the reciprocal operation forced invalidation means 94, erroneous operation can be prevented.
[0153] また、外部処理装置 90は、入力パラメータ監查手段 95を備えてレ、るので、試験の 安全性を高めることができる。  Further, since the external processing device 90 includes the input parameter monitoring means 95, the safety of the test can be improved.
[0154] さらに、疲労試験機 10では、試験片 1および本体 1 1の各構成部品の各面の平行 度を向上させたので、偏荷重の発生を抑えることができる。また、これと併せ、試験片 1の端部 1A, 1 Bと上下の掴み部 24, 25とのはめ合いを緩めにしたので(図 3参照)、 試験片 1に側面 (試験片 1の端部 1A, 1Bの外周面 1E, IF)からの拘束力が加わら ないようにすることができ、偏荷重の発生を抑えることができる。このため、試験精度 を向上させることができる。そして、通常、はめ合いを緩くすると、疲労試験中に試験 片 1の横ずれが懸念される力 試験片 1および本体 1 1の各構成部品の各面の平行 度を向上させているので、試験片 1に横ずれを生じさせる力が加わることを回避でき る。  [0154] Furthermore, in the fatigue tester 10, since the parallelism of each surface of each component of the test piece 1 and the main body 11 is improved, it is possible to suppress the occurrence of an uneven load. At the same time, the fitting between the ends 1A and 1B of the test piece 1 and the upper and lower grips 24 and 25 was loosened (see Fig. 3). It is possible to prevent the restraining force from being applied from the outer peripheral surfaces 1E, IF) of the portions 1A, 1B, thereby suppressing the occurrence of uneven loads. Therefore, test accuracy can be improved. Normally, loosening the fit improves the parallelism of each surface of each component of the test piece 1 and the main body 11 because of the possibility of lateral displacement of the test piece 1 during the fatigue test. 1 can be prevented from being applied with a force that causes lateral displacement.
[0155] そして、試験本番で用いる試験片 1の端部 1A, 1Bよりも大きい端部 2A, 2Bを有す る調芯用ダミー試験片を用いて調芯作業を行うので、調芯作業を精度よく行うことが できることに加え、前述した緩めのはめ合いも容易に実現できる。また、調芯用ダミー 試験片による調芯作業を一回行えば、そのままの状態で複数の試験を行うことができ るので、実験者の作業の手間を軽減できる。  [0155] Alignment work is performed using a dummy alignment test specimen having ends 2A, 2B that are larger than ends 1A, 1B of test piece 1 used in the actual test. In addition to being able to perform with high accuracy, the loose fitting described above can be easily realized. In addition, if the alignment work is performed once using the alignment dummy test piece, a plurality of tests can be performed as it is, so that the labor of the experimenter can be reduced.
[0156] なお、本発明の効果を確かめるために、次のような手順で偏応力 Δ σの測定実験 を行った。先ず、調芯用ダミー試験片を用いて疲労試験機 10の調芯作業を行う。次 に、試験片中央部の外周を 3分割した位置に合計 3枚のひずみゲージを貼った試験 片 1を試験片取付部 20に取り付ける。この際、ひずみゲージの値は参考にしない。 続いて、試験片 1に ± 400MPaの静的応力を負荷する。最後に、ひずみゲージの値 から偏応力 Δ σを算出する。そして、以上の測定を数回行った。 [0157] 上記の測定結果は、次のようになった。負荷応力 ±400MPaのときの偏応力 Δ σ は、 3. 2-3. 9MPaであった。 Δ σの割合は、負荷応力に対して 0· 8— 2· 3%であ る。この値は、疲労試験結果には全く影響しない値である。また、前述した特許文献 1 に記載された本願出願人による疲労試験機 (球状ベアリングを備えた疲労試験機) では、負荷応力 400MPaに対する Δ σの割合は、 3. 5-7. 4%である。従って、本 実施形態の疲労試験機 10では、偏荷重を大幅に軽減できたことがわかり、これにより 本発明の効果が顕著に示された。 [0156] In order to confirm the effects of the present invention, an experiment for measuring the partial stress Δσ was performed in the following procedure. First, the alignment of the fatigue tester 10 is performed using the dummy test piece for alignment. Next, test piece 1 with a total of three strain gauges affixed to the test piece mounting part 20 at the position where the outer periphery of the test piece center is divided into three parts. At this time, the value of the strain gauge is not referred to. Subsequently, a static stress of ± 400 MPa is applied to the test piece 1. Finally, the partial stress Δσ is calculated from the value of the strain gauge. Then, the above measurement was performed several times. [0157] The above measurement results were as follows. The bias stress Δ σ at a load stress of ± 400 MPa was 3.2.3.9 MPa. The ratio of Δσ is 0.8-2.3% with respect to the applied stress. This value does not affect the fatigue test result at all. Also, in the fatigue tester (fatigue tester equipped with a spherical bearing) by the present applicant described in Patent Document 1 described above, the ratio of Δσ to the applied stress of 400 MPa is 3.5-7.4%. . Therefore, in the fatigue tester 10 of the present embodiment, it was found that the eccentric load was significantly reduced, and the effect of the present invention was remarkably shown.
[0158] なお、本発明は前記実施形態に限定されるものではなぐ本発明の目的を達成で きる範囲内での変形等は本発明に含まれるものである。  [0158] The present invention is not limited to the above-described embodiment, and includes modifications and the like within a range that can achieve the object of the present invention.
[0159] すなわち、前記実施形態では、増幅率補正 Ζ零点補正計算手段 78は、増幅率お よび零点のいずれについても、それらの補正に関する計算処理のアルゴリズムを段 階的に切り替える構成とされていた力 本発明では、増幅率についてだけアルゴリズ ムを段階的に切り替える構成としてもよい。但し、前記実施形態のように増幅率およ び零点の双方についてアルゴリズムを段階的に切り替える構成としておけば、試験精 度をより一層向上することができる。  That is, in the above-described embodiment, the amplification factor correction / zero correction calculation means 78 has a configuration in which, for both the amplification factor and the zero, the algorithm of the calculation process relating to the correction is stepwise switched. In the present invention, a configuration may be adopted in which the algorithm is switched stepwise only for the amplification factor. However, if the algorithm is switched stepwise for both the amplification factor and the zero point as in the above embodiment, the test accuracy can be further improved.
[0160] 以上に述べたように本発明によれば、増幅率補正/零点補正計算手段により、検 出信号の波形と目標値信号の波形とを比較してこの比較結果に基づき増幅率およ び零点の補正に関する計算処理を行う際に、検出信号の目標値信号への収束度に 応じ、増幅率の補正に関する計算処理のアルゴリズムを段階的に切り替えるので、検 出信号が目標値信号にある程度収束したときに、増幅率の補正に関するァルゴリズ ムを切り替えることにより、検出信号の目標値信号への収束度を高めることができ、試 験精度の向上を図ることができるという効果がある。  As described above, according to the present invention, the waveform of the detected signal and the waveform of the target value signal are compared by the amplification factor correction / zero correction calculation means, and the amplification factor and the zero value are calculated based on the comparison result. When performing the calculation process related to the correction of the zero point, the algorithm of the calculation process related to the correction of the amplification factor is switched stepwise according to the degree of convergence of the detection signal to the target value signal. When the convergence is achieved, by switching the algorithm relating to the correction of the amplification factor, the degree of convergence of the detection signal to the target value signal can be increased, and the test accuracy can be improved.
[0161] また、本発明によれば、デジタルコントローラとは別途に設けられた外部処理装置 により、待機中画面、試験条件設定画面、試験中画面の 3つの画面の表示処理およ びこれらの画面を用いた入力の受付処理を行うので、操作性の向上を図ることができ 、実験者の操作負担を軽減して誤認識や誤操作等の発生を回避または抑制し、試 験精度の向上を図ることができるという効果がある。  [0161] Further, according to the present invention, the display processing of the three screens of the standby screen, the test condition setting screen, and the test screen, and the use of these screens are performed by an external processing device provided separately from the digital controller. Since the input processing is performed, the operability can be improved, the operation burden on the experimenter can be reduced, and the occurrence of erroneous recognition or erroneous operation can be avoided or suppressed, and the test accuracy can be improved. There is an effect that can be.
[0162] さらに、本発明によれば、試験片および試験機本体構成部品の各面の平行度を向 上させ、かつ、試験片の端部と掴み部とのはめ合いを緩めにしたので、偏荷重の発 生を抑えることができ、試験精度の向上を図ることができるという効果がある。 Further, according to the present invention, the parallelism of each surface of the test piece and the component parts of the test machine main body is improved. In addition, since the fitting between the end portion of the test piece and the grip portion is loosened, it is possible to suppress the occurrence of an eccentric load and to improve the test accuracy.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
[図 1]本発明の一実施形態の疲労試験機の全体構成図である。 FIG. 1 is an overall configuration diagram of a fatigue tester according to one embodiment of the present invention.
[図 2]前記実施形態の疲労試験機の本体を構成する試験片取付部の断面図である。  FIG. 2 is a cross-sectional view of a test piece mounting portion constituting a main body of the fatigue tester of the embodiment.
[図 3]前記実施形態の試験片取付部の要部の拡大断面図である。 FIG. 3 is an enlarged cross-sectional view of a main part of a test piece mounting portion of the embodiment.
[図 4]前記実施形態の疲労試験機の制御手段を構成する外部処理装置による処理 に伴う待機中画面の例示図である。 FIG. 4 is a view showing an example of a standby screen associated with processing by an external processing device constituting control means of the fatigue tester of the embodiment.
[図 5]前記実施形態の疲労試験機の制御手段を構成する外部処理装置による処理 に伴う試験条件設定画面の例示図である。  FIG. 5 is an exemplary diagram of a test condition setting screen associated with processing by an external processing device constituting control means of the fatigue tester of the embodiment.
[図 6]前記実施形態の疲労試験機の制御手段を構成する外部処理装置による処理 に伴う試験中画面の例示図である。  FIG. 6 is a view showing an example of a screen during a test associated with processing by an external processing device constituting a control means of the fatigue tester of the embodiment.

Claims

請求の範囲 The scope of the claims
[1] 試験片を取り付ける試験片取付部および前記試験片に荷重を負荷するァクチユエ 一タ部を有する本体と、前記試験片に負荷される荷重に応じた検出信号をフィードバ ックして前記ァクチユエータ部の動作を制御するための制御信号を前記本体に送る フィードバック制御を行う制御手段とを備えた疲労試験機において、  [1] A main body having a test piece mounting part for mounting a test piece and an actuator unit for applying a load to the test piece, and a detection signal corresponding to the load applied to the test piece is fed back to the actuator. Sending a control signal to control the operation of the unit to the main body feedback control means comprising a control means for performing,
前記制御手段は、前記フィードバック制御をデジタル処理で行うデジタルコントロー ラを備えて構成され、  The control means includes a digital controller that performs the feedback control by digital processing,
このデジタルコントローラは、  This digital controller
前記検出信号と目標値信号との偏差量に応じた前記制御信号を発生する制御信 号発生手段と、  Control signal generating means for generating the control signal according to the deviation between the detection signal and the target value signal;
前記検出信号の波形と前記目標値信号の波形とを比較してこの比較結果に基づき 前記制御信号の発生処理に用いられる増幅率および零点の補正に関する計算処理 を行う増幅率補正/零点補正計算手段と、  An amplification factor correction / zero correction calculation means for comparing the waveform of the detection signal with the waveform of the target value signal and performing a calculation process relating to an amplification factor and a zero correction used in the generation processing of the control signal based on the comparison result. When,
この増幅率補正/零点補正計算手段による計算結果に基づき前記増幅率の補正 処理を行う増幅率補正手段と、  Amplification factor correction means for performing the amplification factor correction processing based on the calculation result by the amplification factor correction / zero point correction calculation means;
前記増幅率補正/零点補正計算手段による計算結果に基づき前記零点の補正処 理を行う零点補正手段とを含んで構成され、  Zero point correction means for performing the zero point correction processing based on the calculation result by the amplification factor correction / zero point correction calculation means,
前記増幅率補正/零点補正計算手段は、前記検出信号の前記目標値信号への 収束度に応じて前記増幅率の補正に関する計算処理のアルゴリズムを段階的に切り 替える構成とされている  The amplification factor correction / zero-point correction calculation means is configured to switch an algorithm of a calculation process relating to the correction of the amplification factor in a stepwise manner according to the degree of convergence of the detection signal to the target value signal.
ことを特徴とする疲労試験機。  A fatigue test machine characterized by the following.
[2] 請求項 1に記載の疲労試験機において、  [2] The fatigue tester according to claim 1,
前記増幅率補正/零点補正計算手段は、前記検出信号の前記目標値信号への 収束度に応じて前記零点の補正に関する計算処理のアルゴリズムを段階的に切り替 える構成とされている  The amplification factor correction / zero correction calculation means is configured to switch the algorithm of the calculation process for the correction of the zero in a stepwise manner according to the degree of convergence of the detection signal to the target value signal.
ことを特徴とする疲労試験機。  A fatigue test machine characterized by the following.
[3] 請求項 1または 2に記載の疲労試験機において、 [3] The fatigue tester according to claim 1 or 2,
前記増幅率補正/零点補正計算手段は、周期的に変化する前記検出信号の波 形と、周期的に変化する前記目標値信号の波形とを波形一周期毎に比較し、この比 較結果として得られた双方の波形のずれ量に基づき前記増幅率および前記零点の 補正に関する計算処理を波形一周期毎に行うとともに、この計算処理を行う際に前 記アルゴリズムを切り替えるか否かを波形一周期毎に判断する構成とされていること を特徴とする疲労試験機。 The amplification factor correction / zero point correction calculation means is configured to generate a periodically changing wave of the detection signal. The shape and the waveform of the target value signal, which changes periodically, are compared for each period of the waveform, and a calculation relating to the correction of the amplification factor and the zero point is performed based on the amount of deviation between both waveforms obtained as a result of the comparison. A fatigue tester characterized in that processing is performed for each cycle of a waveform, and whether or not to switch the algorithm is determined for each cycle of the waveform when performing this calculation.
[4] 試験片を取り付ける試験片取付部および前記試験片に荷重を負荷するァクチユエ 一タ部を有する本体と、前記試験片に負荷される荷重に応じた検出信号をフィードバ ックして前記ァクチユエータ部の動作を制御するための制御信号を前記本体に送る フィードバック制御を行う制御手段とを備えた疲労試験機において、 [4] A main body having a test piece mounting part for mounting a test piece and an actuator unit for applying a load to the test piece, and a detection signal corresponding to the load applied to the test piece is fed back to the actuator. Sending a control signal to control the operation of the unit to the main body feedback control means comprising:
前記制御手段は、  The control means,
前記フィードバック制御をデジタル処理で行うデジタルコントローラと、  A digital controller that performs the feedback control by digital processing;
このデジタルコントローラに接続されてデジタルコントローラとの間で情報の送受信 を行うことにより前記フィードバック制御に関する処理以外の処理を行う外部処理装 置とを備えて構成され、  An external processing device that is connected to the digital controller and transmits and receives information to and from the digital controller to perform processing other than the processing related to the feedback control,
前記外部処理装置は、  The external processing device,
試験中以外の状態で前記ァクチユエ一タ部を動作させる場合に使用する待機中画 面を表示する処理およびこの待機中画面を用いて行われる実験者による前記ァクチ ユエータ部に対する操作入力を受け付ける処理を行う待機中画面表示'入力受付処 理手段と、  A process of displaying a standby screen used when operating the actuator unit in a state other than during the test, and a process of receiving an operation input to the actuator unit by an experimenter performed using the standby screen are performed. 'Waiting screen display' input reception processing means,
試験条件を設定するための試験条件設定画面を表示する処理およびこの試験条 件設定画面を用いて行われる前記実験者による前記試験条件の設定入力を受け付 ける処理を行う試験条件設定画面表示 ·入力受付処理手段と、  Displaying a test condition setting screen for setting test conditions and displaying a test condition setting screen for performing a process of receiving the test condition setting input by the experimenter performed using the test condition setting screen. Input reception processing means,
試験中に試験状況をモニタする試験中画面を表示する処理およびこの試験中画 面を用いて行われる前記実験者による入力を受け付ける処理を行う試験中画面表示 •入力受付処理手段と  During the test, a process for displaying a screen during the test that monitors the test status, and a process for receiving the input by the experimenter performed using the screen during the test, a screen display during the test.
を備えたことを特徴とする疲労試験機。  A fatigue tester characterized by comprising:
[5] 請求項 4に記載の疲労試験機において、 [5] The fatigue tester according to claim 4,
前記試験条件設定画面表示 ·入力受付処理手段は、前記試験条件設定画面で前 記試験条件として、最大応力および最小応力の組合せ、最大応力および応力比の 組合せ、最小応力および応力比の組合せのうちのいずれかの組合せ、並びに試験 片直径の入力を受け付ける構成とされ、前記試験中画面表示'入力受付処理手段 は、前記試験中画面で前記試験状況として、応力のグラフ表示を行う構成とされてい る The test condition setting screen display The test condition is configured to receive any combination of a combination of a maximum stress and a minimum stress, a combination of a maximum stress and a stress ratio, a combination of a minimum stress and a stress ratio, and an input of a specimen diameter. The middle screen display 'input reception processing means is configured to display a graph of stress as the test status on the screen during test.
ことを特徴とする疲労試験機。  A fatigue test machine characterized by the following.
[6] 試験片に荷重を負荷するァクチユエータ部と、このァクチユエータ部による荷重方 向に沿う方向に配置される状態で前記試験片を取り付ける試験片取付部とを備え、 前記試験片取付部には、前記試験片の両側の端部をそれぞれ掴む掴み部が設けら れ、これらの各掴み部には、前記試験片の両側の端面がそれぞれ当接される試験片 当接面が形成されている疲労試験機において、  [6] An actuator part for applying a load to the test piece, and a test piece mounting part for mounting the test piece in a state of being arranged in a direction along the load direction by the actuator part, wherein the test piece mounting part A grip portion for gripping both ends of the test piece is provided, and each of these grip portions is formed with a test piece contact surface with which both end surfaces of the test piece abut. In a fatigue testing machine,
前記試験片の両側の端面は、平行度 0. 01を満たし、かつ、試験機本体構成部品 の各面のうち、対向する前記各掴み部の試験片当接面同士の平行度を規定する役 割を果たす各面も、全て平行度 0. 01を満たす状態で仕上げられているとともに、 前記試験片を前記試験片取付部に取り付けた状態で、前記試験片の各端部の外 周面と前記各掴み部との間に隙間が形成される構成とされている  The end face on both sides of the test piece satisfies the parallelism of 0.01 and plays a role in defining the parallelism between the test piece contact surfaces of the opposing gripping portions among the surfaces of the test machine main body component. All the surfaces that fulfill the cracks are also finished in a state that satisfies the parallelism of 0.01, and the outer peripheral surface of each end of the test piece is attached with the test piece attached to the test piece mounting part. A gap is formed between each of the grip portions.
ことを特徴とする疲労試験機。  A fatigue test machine characterized by the following.
[7] 請求項 6に記載の疲労試験機において、 [7] The fatigue tester according to claim 6, wherein
試験本番で用いる前記試験片の各端部の外周面と前記各掴み部とのはめ合いの 隙間は、試験前に行う調芯作業で用いる調芯用ダミー試験片の各端部の外周面と 前記各掴み部とのはめ合いの隙間よりも大きいことを特徴とする疲労試験機。  The gap between the outer peripheral surface of each end of the test piece used in the test production and the fitting of each gripping part is the same as the outer peripheral surface of each end of the dummy test piece for alignment used in the alignment work performed before the test. A fatigue tester characterized in that the gap is larger than the clearance of the fitting with each of the grip portions.
PCT/JP2004/007191 2003-05-27 2004-05-26 Fatigue tester WO2004106895A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-149131 2003-05-27
JP2003149131A JP4172544B2 (en) 2003-05-27 2003-05-27 Fatigue testing machine

Publications (1)

Publication Number Publication Date
WO2004106895A1 true WO2004106895A1 (en) 2004-12-09

Family

ID=33487142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007191 WO2004106895A1 (en) 2003-05-27 2004-05-26 Fatigue tester

Country Status (2)

Country Link
JP (1) JP4172544B2 (en)
WO (1) WO2004106895A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676851A (en) * 2013-11-26 2014-03-26 西安交通大学 Double electric control device of electrohydraulic servo fatigue tester
CN112595454A (en) * 2020-12-28 2021-04-02 贵州航天计量测试技术研究所 Standard dynamometer for fatigue testing machine and dynamic force calibration system
CN113607580A (en) * 2021-08-10 2021-11-05 江苏徐工工程机械研究院有限公司 Metal component fatigue test method and residual life prediction method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710569B2 (en) * 2005-11-30 2011-06-29 株式会社島津製作所 testing machine
JP5146401B2 (en) * 2009-05-18 2013-02-20 株式会社島津製作所 Material testing machine
JP5353805B2 (en) * 2010-04-20 2013-11-27 株式会社島津製作所 testing machine
JP6039918B2 (en) * 2012-05-22 2016-12-07 株式会社鷺宮製作所 Test apparatus and test apparatus control method
JP6011076B2 (en) * 2012-07-04 2016-10-19 株式会社島津製作所 Fatigue testing machine and driving waveform correction method
JP6784649B2 (en) * 2017-07-06 2020-11-11 エスペック株式会社 Environmental test equipment
JP6948448B2 (en) * 2017-07-06 2021-10-13 エスペック株式会社 Environmental test equipment
JP2022076153A (en) * 2020-11-09 2022-05-19 株式会社島津製作所 Material testing machine and controller for material testing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131203A (en) * 1998-10-21 2000-05-12 Saginomiya Seisakusho Inc Method of data sampling and control device having deta sampling function
JP2002243606A (en) * 2001-02-19 2002-08-28 Hokkaido Technology Licence Office Co Ltd Fatigue tester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131203A (en) * 1998-10-21 2000-05-12 Saginomiya Seisakusho Inc Method of data sampling and control device having deta sampling function
JP2002243606A (en) * 2001-02-19 2002-08-28 Hokkaido Technology Licence Office Co Ltd Fatigue tester

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IZUMIYA H. ET AL.: "Choko cycle-yo kogata digital servo hiro shikenki no kaihatsu", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS HOKKAIDO SHIBU, no. 012-1, 25 September 2001 (2001-09-25), pages 16 - 17, XP002986894 *
IZUMIYA H. ET AL.: "Kooto kogata digital servo hiro shikenki no kaihatsu", PROCEEDINGS OF SYMPOSIUM ON FATIGUE, THE SOCIETY OF MATERIALS SCIENCE, 6 December 2002 (2002-12-06), pages 153 - 156, XP002986893 *
NAKAMURA T. ET AL.: "Kooto kogata digital servo hiro shikenki no kaihatsu", THE SOCIETY OF MATERIAL SCIENCE, vol. 52, no. 11, 15 November 2003 (2003-11-15), pages 1280 - 1284, XP002986895 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676851A (en) * 2013-11-26 2014-03-26 西安交通大学 Double electric control device of electrohydraulic servo fatigue tester
CN112595454A (en) * 2020-12-28 2021-04-02 贵州航天计量测试技术研究所 Standard dynamometer for fatigue testing machine and dynamic force calibration system
CN112595454B (en) * 2020-12-28 2022-08-23 贵州航天计量测试技术研究所 Dynamic and static force calibration system of horizontal fatigue testing machine
CN113607580A (en) * 2021-08-10 2021-11-05 江苏徐工工程机械研究院有限公司 Metal component fatigue test method and residual life prediction method
CN113607580B (en) * 2021-08-10 2023-09-05 江苏徐工工程机械研究院有限公司 Fatigue test method and residual life prediction method for metal component

Also Published As

Publication number Publication date
JP2004354081A (en) 2004-12-16
JP4172544B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
WO2004106895A1 (en) Fatigue tester
MORROW¹ et al. Cycle-dependent stress relaxation
JP5435135B2 (en) Material testing machine
US7536237B2 (en) Sensor-based measurement of tool forces and machining process model parameters
US6313427B1 (en) Welding gun and methods conducted using the same
US7206657B2 (en) Real-time measurement of tool forces and machining process model parameters
Xu et al. Effect of vibratory weld conditioning on the residual stresses and distortion in multipass girth-butt welded pipes
US20040174130A1 (en) Numerical control unit
US20070169563A1 (en) Multiple testing system and testing method
JP3230840B2 (en) Corrosion environment sensor and corrosion environment control device
KR102641050B1 (en) Seal construction management method, seal construction management device, seal construction management program, seal construction management system
CN105300671B (en) A kind of precision bolt connects moment of torsion pretightning force mapping relations measurement apparatus
WO2008049796A1 (en) Process and device for measuring and controlling structural deflections of a pressing-bending machine
CN108362591A (en) Hardness test meter and hardness measuring method
FR2567644A1 (en) METHOD AND DEVICE FOR MEASURING LOW STRENGTHS AND SMALL MOVEMENTS IN A MATERIAL TEST MACHINE OR OTHER LOAD APPLICATION DEVICE
KR20040072551A (en) the in-process performance diagnosis for hydraulic servo valves
JP2007218809A (en) Material testing machine
CN109682690B (en) Intelligent loading system for hanging basket simulation
JP2008164463A (en) Tester
JP2005172589A (en) Method and machine for testing material
JP2002243606A (en) Fatigue tester
Müller et al. An adaptive and automated bolt tensioning system for the pitch bearing assembly of wind turbines
KR19990023516A (en) Material testing machine
EP1468257B1 (en) Force measuring cell
Armentia et al. Fatigue performance of prosthetic screws used in dental implant restorations: Rolled versus cut threads

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase