WO2004101146A1 - Titanium oxide thin film exhibiting high photocatalytic activity under weak ultraviolet ray - Google Patents

Titanium oxide thin film exhibiting high photocatalytic activity under weak ultraviolet ray Download PDF

Info

Publication number
WO2004101146A1
WO2004101146A1 PCT/JP2004/002395 JP2004002395W WO2004101146A1 WO 2004101146 A1 WO2004101146 A1 WO 2004101146A1 JP 2004002395 W JP2004002395 W JP 2004002395W WO 2004101146 A1 WO2004101146 A1 WO 2004101146A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
thin film
oxide thin
film
less
Prior art date
Application number
PCT/JP2004/002395
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Anpo
Takashi Kamegawa
Satoru Dohshi
Masaya Matsuoka
Original Assignee
Murakami Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakami Corporation filed Critical Murakami Corporation
Publication of WO2004101146A1 publication Critical patent/WO2004101146A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • B01J35/30
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings

Definitions

  • the present invention provides a titanium oxide thin film exhibiting a high photocatalytic activity having a water contact angle of substantially 0 ° under irradiation of weak ultraviolet light having a light amount of 1.0 iw / cm 2 or less, a method of forming the same, and the like.
  • a titanium oxide thin film exhibiting a high photocatalytic activity having a water contact angle of substantially 0 ° under irradiation of weak ultraviolet light having a light amount of 1.0 iw / cm 2 or less, a method of forming the same, and the like.
  • Titanium oxide photocatalyst material has anti-staining properties, antibacterial properties, deodorizing properties, etc., and is a material for which applied technology is expected.
  • the titanium oxide thin film has high transparency, exhibits high photocatalytic activity when irradiated with ultraviolet light, and exhibits high hydrophilic properties such that the contact angle with water is substantially 0 °.
  • an ultraviolet intensity of at least 10 wZcm 2 or more is necessary.
  • the environment in which ultraviolet light can be irradiated is limited, and there is a demand for the development of a titanium oxide photocatalyst material that can exhibit a photocatalytic function even with visible light or weak ultraviolet light included in, for example, fluorescent light.
  • Non-Patent Document 1 Korean like, Ad v. M atter. 2 00 0, 1 2, N o. 24, pi 9 2 3.
  • the composite membrane of the c- W0 3 and T i 0 2 It has been reported that a highly hydrophilic state in which the contact angle of water is substantially 0 ° can be achieved under irradiation with a faint ultraviolet light of a light intensity of 1.0 / zwZ cm 2 .
  • an object of the present invention is to provide a titanium oxide thin film having a light intensity of 1.0 / zw / cm 2.
  • the goal is to achieve a highly hydrophilic state in which the contact angle of water is substantially 0 ° under the irradiation of weak ultraviolet light. Disclosure of the invention
  • the present inventors have conducted intensive studies and found that the contact angle of water was substantially (measured) 0 ° under irradiation of weak ultraviolet light of 1.0; w Z cm 2 with the titanium oxide thin film alone. For the first time, the present inventors succeeded in achieving a high photocatalytic activity state (claim 1).
  • the titanium oxide single film having such characteristics can be produced by controlling the conditions at the time of film formation.
  • RF output 250 to 350 W
  • substrate temperature at the time of film formation room temperature to 600 ° C
  • deposition rate 0.37 nm / min-1.47 nm / min (deposition time: 1-9 hours)
  • deposition pressure 1-3 Pa It has been found that it can be produced by RF-magnet sputtering under controlled conditions (claim 2).
  • the contact angle of water is substantially 0 ° under the irradiation of the weak ultraviolet light of 1.0 iwZ cm 2 with the titanium oxide thin film alone.
  • the titanium oxide thin film alone can be used under irradiation of ultraviolet light with a light intensity of 1.0 w / cm 2 or less by controlling the film formation conditions.
  • the contact angle of water is preferably 4 ° or less (approximately 0 ° to 4 °), more preferably 3 ° or less (approximately 0 ° to 3 °), and further preferably 2 ° or less (approximately 0 ° to 2 °).
  • a titanium oxide single film having the above characteristics has an unprecedented characteristic of having a crystal particle diameter of 13 to 17 nm (claim 3).
  • the photocatalytic activation light of the titanium oxide thin film can be highly improved (the work function of metal and the rate of hydrophilization). (There is a correlation with the constant) (Claim 4).
  • a titanium oxide thin film (highly active By forming a titanium oxide thin film, it is possible to achieve a highly hydrophilic state in which the contact angle of water becomes substantially 0 ° under irradiation of a weak ultraviolet light of 1. 1.zw/cm 2. (Claim 5).
  • a light amount of 1.0 iwZ It has been found that a highly hydrophilic state in which the contact angle of water becomes substantially 0 ° can be stably and surely achieved under irradiation with a faint ultraviolet light of cm 2 (claims 6 to 8).
  • the metal or alloy having a small work function for example, aluminum (4.2 ev) or an aluminum alloy is preferable from the viewpoint of enhancing the photocatalytic property of the titanium oxide thin film, and has a work function equal to or less than that of aluminum. It has been found that it is preferable to use a metal that emits electrons in the presence of light (claim 9).
  • the present invention by forming a predetermined titanium oxide thin film (a highly active titanium oxide thin film) on a metal or an alloy having a small work function, the light amount 1.
  • the contact angle of water is preferably 4 ° or less (approximately 0 ° to 4 °), more preferably 3 ° or less (approximately 0 ° to 3 °), and further preferably 2 ° or less (approximately 0 ° to 2 °).
  • the angle is more preferably 1 ° or less (approximately 0 ° to 1 °), and further preferably substantially 0 ° (measured 0 °).
  • the titanium oxide thin film of the present invention preferably has an anatase type titanium oxide content of 70% or more. This makes it possible to obtain a high photocatalytic activity.
  • the titanium oxide thin film of the present invention preferably has a titanium oxide crystal particle diameter of 13 to 17 nm. Make the titanium oxide crystal particle size in the range of 13 to 17 nm. It is considered that this makes it possible to obtain high photocatalytic activity.
  • the titanium oxide crystal particle diameter is in the range of 13 to 17 nm” means, as can be seen from the SEM photograph of the titanium oxide thin film of the present invention described later, 80% or less of the titanium oxide crystal particles.
  • the above (preferably at least 85%, more preferably at least 90%, more preferably at least 95%) is intended to have a particle size within this range. This is not the purpose except for the case where crystal particles are included.
  • the titanium oxide preferably has an average crystal particle diameter of 13 to 17 nm, and preferably contains crystal particles having a particle diameter in this range in the above ratio.
  • the titanium oxide thin film of the present invention uniform gaps are formed between crystal grains of the titanium oxide film, and the crystal grains are independent of each other without contacting each other, and the crystal grains are joined together as they grow and further grow. It is preferable that the number of particles considered to be small is small, the surface area (specific surface area) is large, the shape of the crystal particles is an angular rock, and the uniformity of the crystal particle shape is high. It is thought that these characteristics make it possible to obtain high photocatalytic activity.
  • the material of the substrate on which the film is formed it is preferable to select and control the material of the substrate on which the film is formed and / or the surface roughness of the surface on which the substrate is formed. It is thought that these make it possible to obtain high photocatalytic activity.
  • the thickness of the titanium oxide layer is not particularly limited and may be appropriately selected depending on conditions such as a rate of hydrophilicity and a property of maintaining darkness (recovery of a contact angle). 0 nm.
  • a photocatalytic action can be exerted even under the irradiation of a weak ultraviolet light having a light amount of 1.0 iwZ cm 2 or less. Therefore, it has become possible to provide a sample that can exhibit photocatalysis even with a fluorescent lamp or visible light, as compared with a conventional composite material that can exhibit photocatalysis only with a relatively high amount of ultraviolet light.
  • the present invention it is possible to have a photocatalytic effect under irradiation of ultraviolet light having a light amount of 1.0 wZ cm 2 or less. Therefore, in the present invention, by irradiating the surface of the titanium oxide layer, which is a photocatalyst layer, with light, the photocatalyst is excited even under the irradiation of weak light having a light amount of 1.0 O / x wZ cm 2 or less, thereby preventing the dyeing. It can exhibit photocatalytic action such as antibacterial property, antibacterial property and deodorizing property.
  • the present invention can be effectively applied not only to conventional uses but also to various uses under irradiation of weak light, for example, an outer mirror and an inner mirror for a vehicle, and a mirror for a bathroom.
  • FIG. 1 is a cross-sectional view showing a sample manufactured in the example.
  • FIG. 2 is a diagram showing characteristics of a fluorescent lamp (18 W) as a light source used in the example.
  • FIG. 3 is a diagram illustrating characteristics of the light quantity measuring device used in the example.
  • FIG. 4 is a diagram showing the results of an RF output dependency test measurement of a sample using a quartz substrate as the substrate.
  • FIG. 5 is a diagram showing a measurement result of an RF output dependency test of a sample using a quartz substrate as the substrate.
  • FIG. 6 is a view showing an electron microscope (SEM) photograph of each sample in which a titanium oxide film is formed on a quartz substrate by changing the RF output.
  • SEM electron microscope
  • FIG. 7 is a diagram showing a measurement result of a film forming temperature dependence test of a sample using a quartz substrate as a substrate.
  • FIG. 8 is a view showing an electron microscope (SEM) photograph of each sample in which a titanium oxide film was formed on a quartz substrate by changing the substrate temperature during film formation.
  • Figure 9 shows for each sample by changing the deposition when the substrate temperature was deposited titanium oxide film on a quartz substrate, a 5 0 0 ⁇ ultraviolet light irradiation time of cm 2, the relationship between the contact angle of water FIG.
  • FIG. 10 is a view showing a measurement result of a film thickness dependency test of a sample using a quartz substrate as a substrate.
  • FIG. 11 is a view showing an electron microscope (SEM) photograph of each sample in which a titanium oxide film was formed on a quartz substrate by changing the film formation time and the film thickness.
  • FIG. 12 is a diagram showing a measurement result of a film forming pressure dependency test of a sample using a quartz substrate as the substrate.
  • FIG. 13 is a view showing an electron microscope (SEM) photograph of each sample in which a titanium oxide film was formed on a quartz substrate by changing the film forming pressure and the film forming time.
  • FIG. 14 is a diagram showing the measurement results of the light amount dependency test of a sample using a quartz substrate as the substrate.
  • FIG. 15 is a diagram showing the measurement results of the light intensity dependence test of a sample using a quartz substrate as the substrate.
  • FIG. 16 is a view showing the results of a measurement of a sample using a quartz base material as a base material, which was maintained in place.
  • FIG. 17 is a diagram showing an ultraviolet-visible light absorption measurement result of a sample using a quartz substrate as the substrate.
  • FIG. 18 is a diagram showing the results of X-ray diffraction measurement of a sample using a quartz substrate as the substrate.
  • FIG. 19 is a diagram showing the results of an RF output dependency test measurement of a sample using an A1 plate as a base material.
  • FIG. 20 is a diagram showing a measurement result of an RF output dependency test of a sample using an A1 plate as a base material.
  • FIG. 21 is a diagram showing a measurement result of a film forming temperature dependency test of a sample using an A1 plate as a base material.
  • FIG. 22 is a diagram showing a measurement result of a film thickness dependency test of a sample using an A1 plate as a substrate.
  • FIG. 23 is a diagram showing a measurement result of a film forming pressure dependency test of a sample using an A1 plate as a base material.
  • FIG. 24 is a view showing the measurement results of the light amount dependency test of the sample using the A1 plate as the base material.
  • FIG. 25 is a diagram showing the measurement results of a light amount dependency test of a sample using an A1 plate as a base material.
  • FIG. 26 is a diagram showing the results of a dark place maintenance test measurement of a sample using the A1 plate as the base material.
  • FIG. 28 is a diagram showing the amount of hydrophilic constant of each sample in which a titanium oxide film was formed on the A1 substrate and the QZ substrate under the same conditions.
  • FIG. 29 is a diagram showing electron microscope (SEM) photographs of each sample in which a titanium oxide film was formed on the A1 substrate and the QZ substrate under the same conditions.
  • SEM electron microscope
  • a fluorescent lamp (18 W) having the characteristics shown in FIG. 2 (vertical axis: intensity, horizontal axis: wavelength (nm)) was used as a light source. As is evident from Fig. 2, the amount of ultraviolet light in this light source is very small and its intensity is extremely low.
  • the light intensity was measured by mounting UD-36 to UVR-2 manufactured by TOP COM. As shown in Fig. 3 (vertical axis: relative sensitivity, horizontal axis: wavelength (nm)), UD-36 can measure light in the wavelength range of 310 to 400 nm. The amount of light was adjusted by adjusting the distance between the substrate and the light source.
  • a titanium oxide sintered body was used as an evening get.
  • the RF output was set to 250 W (1 Pa, 600 hours, 4.5 hours), 300 W (l Pa, 600 ° C).
  • the titanium oxide layer was formed on a quartz substrate under each RF output condition of, 3.0 hours) and 350 W (1 Pa, 60 O, 2.75 hours).
  • W a low water contact angle and a high hydrophilization rate constant were obtained. Therefore, it can be seen that in the present invention, it is preferable to set the RF output to about 300 W. It is also found that by controlling the film forming conditions and the like, a titanium oxide film exhibiting a high photocatalytic activity with a water contact angle of 5 ° or less can be formed.
  • the crystal grains are independent of each other without contact, the surface area (specific surface area) is large, and the shape of the crystal grains is angular. It can be seen that it is rocky.
  • Example 1 the film formation rate was 0.37 nm / min to 1.47 nm
  • the substrate temperature during film formation was set to (a) room temperature (RT), (b) 200 ° C, and (c) 400 °. C, (d) Electron microscope (SEM) photographs (X100K, 5.K) of each sample in which a titanium oxide film was formed on a quartz substrate by RF magnet sputtering by changing the temperature to 600 ° C.
  • the substrate temperature during film formation was set to (a) room temperature (RT), (b) 200 ° C, and (c) 400 ° C. (D) 600.
  • RT room temperature
  • D 600.
  • each sample on which a titanium oxide film was formed on a quartz substrate by RF magnet sputtering by means of RF magnet sputtering was irradiated with 500 / xwZcm 2 of ultraviolet light (light source: SHL-10
  • FIG. 9 shows the contact angle of water (°)
  • the horizontal axis shows the irradiation time (unit: minute) of 500 / iwZcm 2 ultraviolet light. From FIG. 9, it can be seen that the higher the film formation temperature, the shorter the time required for the water contact angle to become 5 ° or less.
  • Example 2 the film formation rate was 0.37 nmZmin to l.47 nmZm
  • the film thickness is 200 nm (1.0 Pa, 3 hours, 600 W, 300 W), 400 nm (1.0 Pa, 6 hours, 6001 :, 300 W)
  • a titanium oxide layer was formed on a quartz substrate under various film thickness conditions (deposition time conditions) of 700 nm (1.0 Pa, 9 hours, 600 ° C., 300 W). It can be seen that the higher the film thickness, the higher the hydrophilicity.
  • Titanium oxide deposited under the condition of 700 nm (1.0 Pa, 9 hours, 600 ° C, 300 W) was irradiated with ultraviolet light with a light intensity of 1.0 tw / cm 2 or less. Below, for the first time, it was confirmed that after 72 hours, it exhibited a high degree of hydrophilicity with a water contact angle of substantially 0 °. It is also found that a titanium oxide film exhibiting a high photocatalytic activity with a water contact angle of 5 ° or less can be formed by controlling the film forming conditions and the like.
  • Example 3 the film formation rate was 0.37 nmZmin: 1.47 nmZmin.
  • the film forming pressure and film forming time are (a) l Pa, 3 hours (300 w, 6 ⁇ 0), (b) 2 Pa, 6 hours (300 w, 600 ⁇ ), (c ) 3 Pa, 9 hours (300 w, 600 ° C) with RF magnet sputtering.
  • the titanium oxide film of l to 2Pa has a large crystal grain size, and more uniform gaps between the crystal particles than in Figs. 11 (a) to (c). Are formed, the crystal grain shape is highly uniform, and there are few particles that are considered to have joined together with the growth of the crystal grains and to have grown further.
  • Example 4 the film formation rate was 0.37 nmZmin to l.47 nm / min.
  • FIG 1 4 (a) it is understood that capable of expressing (b) as shown in, 1. O ⁇ contact angle of water in weak light quantity of WZcm 2 becomes 5 ° or less advanced photocatalytic activity.
  • the vertical axis in Fig. 14 (a) shows the contact angle of water (°), and the horizontal axis shows the irradiation time (unit: time) of each amount of ultraviolet light.
  • the irradiation angle of water at 500 cm 2 was substantially 0 ° immediately after irradiation with UV light, and 20 wZcm
  • the contact angle of water becomes substantially 0 ° in the time after irradiation
  • the contact angle of water becomes substantially 0 in 24 hours after irradiation. °, it turns out.
  • the vertical axis in FIG. 15 shows the contact angle (°) of water, and the horizontal axis shows the irradiation time (unit: time) of the ultraviolet light of each light amount.
  • the film formation time was changed to (a) 3 hours, (b) 6 hours, and (c) 9 hours, and by RF magnet sputtering.
  • a titanium oxide film with a thickness of (a) 200 nm, (b) 400 nm, and (c) 700 nm was formed on a quartz substrate, and a UV light of 1.0 iwZc m 2 or less was formed.
  • the cells were stored in a dark place, and the relationship between the contact angle of water and time was examined. The results are shown in FIG. From Fig.
  • the vertical axis is the contact angle of water (°), and the horizontal axis is the elapsed time from the end of UV light irradiation (unit: days)]
  • the recovery of the contact angle is slow as the film thickness increases. It turns out that the dark place maintenance is high.
  • a sample was prepared by forming a titanium oxide film on a quartz substrate by RF magnet sputtering under the respective film forming conditions of 0 Pa, 9 hours, 600 ° C., and 300 W.
  • the film thicknesses were (a) 200 nm, (b) 400 nm, and (c) 700 nm, respectively.
  • Figure 17 shows the results of ultraviolet-visible light absorption measurement of these samples. As shown in Fig.
  • each sample had an anatase content of 70% or more and a particle size of 13 nm to 17 ⁇ m.
  • the crystallinity and orientation of each sample were very good.
  • samples were produced in the same manner as in the above examples except that the substrate was A1 plate (commercially available aluminum plate; manufactured by Nicola Corporation: 0131461 aluminum plate), and photocatalytic properties were obtained. And examined the relationship.
  • FIG. 19 (a) indicates the contact angle of water (°), and the horizontal axis indicates the irradiation time (unit: time) of 1.0 iw / cm 2 ultraviolet light (Fig. 20 (a) described later). The same applies to FIG. 23 (a)).
  • FIG. 19 (b) shows the hydrophilization rate constant (the same applies to FIGS. 20 (b) to 23 (b) described later).
  • the sample formed with the RF power of 300 W showed very good photocatalysis.
  • the photocatalytically active light of the titanium oxide thin film can be improved to a high degree, and the contact angle of water is substantially reduced under the irradiation of weak UV light with a light intensity of 1.0 / wZ cm 2. It has been found that a high degree of hydrophilicity of 0 ° can be achieved.
  • the RF output was set to 250W (lPa, 600 ° C, 4.5 hours), 300W (lPa, 60h). 0, 3.0 hours) and 350 W (lPa, 600 ° C., 2.75 hours) under a RF output condition, a titanium oxide layer was formed on an aluminum substrate.
  • a RF power of 300 W a low water contact angle and a high hydrophilization rate constant were obtained. Therefore, in the present invention, the RF output is set to about 300 W is preferable.
  • the photocatalytically active light of the titanium oxide thin film can be improved to a high degree, and the contact angle of water is 5 ° under the irradiation of a faint ultraviolet light of 1.0 z ⁇ wZcm 2 .
  • the contact angle of water is 5 ° under the irradiation of a faint ultraviolet light of 1.0 z ⁇ wZcm 2 .
  • Example 9 the film formation rate was 0.37 nm / min to l.47 nmZmin.
  • the photocatalytically active light of the titanium oxide thin film can be improved to a high degree, and the contact angle of water is 5 ° or less under the weak ultraviolet light of 1.0 / iwZcm 2 , In particular, it has been found that a highly hydrophilic state of substantially 0 ° can be stably and surely achieved.
  • the contact angle of water is 5 ° or less (approximately 0 ° to 5 °) under irradiation of ultraviolet light with a light intensity of 1.OiwZcm 2 or less.
  • Example 10 the deposition rate was 0.37 nm / min to 1.47 nm / min.
  • the film thickness is 200 nm (1. OP a, 3 hours, 600 ° C, 300 W), 400 nm (1. OP a , 6 hours, 600 ° C, 300 W), 700 nm (1 OPa, 9 hours, 600, 300 W)
  • the layer was formed on an aluminum substrate, It turns out that it shows high hydrophilicity.
  • a titanium oxide thin film can be improved photocatalytic activity light with high degree of light intensity 1.
  • 0 / iw / cm 2 water contact angle of substantially under irradiation of weak ultraviolet light that It has been found that a high degree of hydrophilicity of 0 ° can be achieved stably and reliably.
  • iwZc m 2 or less of ultraviolet light water contact angle of 5 ° or less (approximately 0 ° ⁇ 5 °), 4 ° or less (approximately 0 ° to 4 °), 3 ° or less (approximately 0 ° to 3 °), 2 ° or less (approximately 0 ° to 2 °), 1 ° or less (approximately 0 ° to 1 °), substantial It has been found that a state showing a high photocatalytic activity of 0 ° (0 ° in measurement) can be achieved.
  • Example 11 the film formation rate was 0.37 nm / min to .47 nm / mi ⁇ .
  • the deposition pressure l Pa 300 W, 600 ° C, 3 hours
  • 2 Pa 300 W, 600 ° C
  • 3 Pa 300 W, 600 ° C., 3 hours
  • the photocatalytic activation light of titanium thin film can be improved to a high degree, and a highly hydrophilic state in which the contact angle of water becomes substantially 0 ° under the irradiation of a faint ultraviolet light of 1.0 wZ cm 2 is stably and reliably achieved. Have achieved what they can achieve.
  • the contact angle of water is 5 ° or less (approximately 0 ° to 5 °) and 4 ° under irradiation of ultraviolet light with a light amount of 1.0 cm 2 or less. Less than (approximately 0 ° to 4 °), less than 3 ° (approximately 0 ° to 3 °), less than 2 ° (approximately 0 ° to 2 °), less than 1 ° (approximately 0 ° to: 1 °), substantially It has been found that a state showing a high photocatalytic activity of 0 ° (0 ° on measurement) can be achieved.
  • Example 12 the film formation rate was 0.37 nm / min to 1.47 nm / min.
  • the vertical axis indicates the contact angle of water (°), and the horizontal axis indicates the irradiation time (unit: time) of the ultraviolet light of each light amount.
  • FIG. 27 shows the results. From Fig. 27 [The vertical axis indicates the contact angle of water (°) and the horizontal axis indicates the irradiation time of ultraviolet light (unit: hours)], the sample with the titanium oxide film formed on the A1 substrate is virtually zero. It can be seen that a high degree of photocatalytic activity can be expressed and the time required for the water contact angle to become 5 ° or less is short (that is, the hydrophilization constant is large). Figure 28 shows the hydration constants of these samples.
  • FIGS. 29 (a) and (b) Electron microscope (SEM) photographs (X100K, 5.OK) of each of these samples are shown in Figs. 29 (a) and (b). From FIGS. 29 (a) and (b), in the sample in which the titanium oxide film was formed on the A1 substrate, uniform gaps were formed between the crystal particles of the titanium oxide film, and the crystal particles were in contact with each other. It is preferable because they are independent from each other, have a large surface area (specific surface area), and have a crystal particle shape of angular rock. As described above, the present invention has the following excellent effects.
  • a titanium oxide thin film alone achieves a high level of photocatalytic activity in which the contact angle of water becomes substantially 0 ° under irradiation of a faint ultraviolet light of 1.0 ⁇ wZ cm 2.
  • Successful (Claim 1).
  • the titanium oxide thin film alone exhibits a high photocatalytic activity with a water contact angle of 5 ° or less (approximately 0 ° to 5 °) under irradiation of ultraviolet light of 1.O ⁇ iwcm 2 or less. The state can be achieved (Claim 1).
  • the titanium oxide single film having such characteristics can be produced by controlling the conditions at the time of film formation (claim 2), and has an unprecedented characteristic that the crystal particle diameter is 13 to 17 nm. (Claim 3).
  • a titanium oxide thin film (highly active By forming a titanium oxide thin film, a high level of photocatalytic activity with a contact angle of water of 5 ° or less to substantially 0 ° is achieved under irradiation with a faint UV light of 1.0 ⁇ wcm 2 It is possible (claim 5).
  • the light amount is 1.0 ⁇ . It is possible to stably and surely achieve a high photocatalytic activity state in which the contact angle of water is 5 ° or less to substantially 0 ° under irradiation of a weak ultraviolet light of wZcm 2 (claims 6 to 8).

Abstract

A titanium oxide thin film capable of exhibiting such a high photocatalytic activity that under irradiation with weak ultraviolet rays such as those of 1.0 μw/cm2 light intensity, the thin film independently realizes a contact angle with water of 5° or less (especially substantially 0°). The titanium oxide thin film characterized by exhibiting such a high photocatalytic activity that under irradiation with ultraviolet rays of 1.0 μw/cm2 or less light intensity, the thin film independently (titanium oxide thin film layer (2) independently) realizes a contact angle with water of 5° or less (especially substantially 0°) can be obtained by, for example, controlling film forming conditions and crystal grain diameter.

Description

明 細 書 微弱紫外光下で高度な光触媒活性を示す酸化チタン薄膜 技術分野  Description Titanium oxide thin film with high photocatalytic activity under weak UV light
本発明は、 光量 1. 0 iw/ cm2以下の微弱紫外光の照射下で、 水め接触角 が実質的に 0 ° となる高度な光触媒活性を示す酸化チタン薄膜、 及びその形成方 法等に関する。 背景技術 The present invention provides a titanium oxide thin film exhibiting a high photocatalytic activity having a water contact angle of substantially 0 ° under irradiation of weak ultraviolet light having a light amount of 1.0 iw / cm 2 or less, a method of forming the same, and the like. About. Background art
酸化チタン光触媒材料は、 防染性、 抗菌性、 脱臭性等を有することから、 その 応用技術が期待されている材料である。 また、 酸化チタン薄膜は、 透明度が高く 、 紫外光を照射した際に高い光触媒活性を示すとともに、 水の接触角が実質的に 0 ° となる高度な親水性特性を示す。  Titanium oxide photocatalyst material has anti-staining properties, antibacterial properties, deodorizing properties, etc., and is a material for which applied technology is expected. In addition, the titanium oxide thin film has high transparency, exhibits high photocatalytic activity when irradiated with ultraviolet light, and exhibits high hydrophilic properties such that the contact angle with water is substantially 0 °.
しかしながら、 このような水の接触角が実質的に 0 ° となる高度な親水性特性 を発現するためには少なくとも光量 1 0 wZcm2以上の紫外線強度が必要と なるが、 このような比較的強い紫外光を照射可能な環境は限定されており、 可視 線や例えば蛍光灯の光に含まれる微弱な紫外光でも光触媒機能を発揮できる酸化 チ夕ン光触媒材料の開発に対する要望がある。 However, in order to exhibit such a high hydrophilic property that the contact angle of water becomes substantially 0 °, an ultraviolet intensity of at least 10 wZcm 2 or more is necessary. The environment in which ultraviolet light can be irradiated is limited, and there is a demand for the development of a titanium oxide photocatalyst material that can exhibit a photocatalytic function even with visible light or weak ultraviolet light included in, for example, fluorescent light.
非特許文献 1 (橋本和仁等、 Ad v. M a t t e r . 2 00 0, 1 2, N o. 24, p i 9 2 3. ) には、 c— W03と T i 02との複合膜で光量 1. 0 /zwZ c m2という微弱な紫外光の照射下で、 水の接触角が実質的に 0 ° となる高度な親 水性状態を達成できることが報告されている。 Non-Patent Document 1 (Kazuhito Hashimoto like, Ad v. M atter. 2 00 0, 1 2, N o. 24, pi 9 2 3.) , the composite membrane of the c- W0 3 and T i 0 2 It has been reported that a highly hydrophilic state in which the contact angle of water is substantially 0 ° can be achieved under irradiation with a faint ultraviolet light of a light intensity of 1.0 / zwZ cm 2 .
しかしながら、 複合膜を用いると光触媒層の形成が複雑となり、 また材料が高 価となるという課題を有している。 また、 光量 1. 0 wZcm2という微弱な 紫外光の照射下で水の接触角が実質的に 0 ° となる高度な親水性を達成できるこ とは c—W03と T i 02との複合膜では報告されているが、 酸化チタン薄膜単独 では報告されていない。 However, the use of the composite film complicates the formation of the photocatalyst layer and has the problem that the material is expensive. Also, water under irradiation with light intensity 1. 0 wZcm 2 that weak ultraviolet light contact angle substantially 0 ° what can be done by achieving a high degree of hydrophilicity to be the c-W0 3 and T i 0 2 Although reported for composite films, it was not reported for titanium oxide thin films alone.
従って、 本発明の課題は、 酸化チタン薄膜単独で光量 1. 0 /zw/cm2とい う微弱な紫外光の照射下で水の接触角が実質的に 0 ° となる高度な親水性状態を 達成することである。 発明の開示 Therefore, an object of the present invention is to provide a titanium oxide thin film having a light intensity of 1.0 / zw / cm 2. The goal is to achieve a highly hydrophilic state in which the contact angle of water is substantially 0 ° under the irradiation of weak ultraviolet light. Disclosure of the invention
本発明者らは、 鋭意研究を重ねた結果、 酸化チタン薄膜単独で光量 1. 0 ; w Z cm2という微弱な紫外光の照射下で水の接触角が実質的に (測定上) 0 ° と なる高度な光触媒活性状態を達成することに初めて成功した (請求項 1 ) 。 このような特徴を有する酸化チタン単独膜は、 成膜時の条件を制御することに よって作製でき、 例えば、 RF出力 : 2 5 0〜3 5 0W、 成膜時基板温度:室温 〜 6 0 0 °C、 成膜速度: 0. 3 7 nm/m i n〜 1. 47 nm/m i n (成膜時 間: 1〜9時間) 、 及び成膜圧力 : 1〜 3 P aの成膜条件で成膜条件を制御して RF—マグネットスパッタリングにより作製できることを見い出した (請求項 2 ) 。 このように、 本発明では、 成膜条件等を制御することによって、 酸化チタ ン薄膜単独で光量 1. 0 iwZ cm2という微弱な紫外光の照射下で水の接触角 が実質的に 0 ° となる高度な親水性状態を達成することができるのであるが、 当 然、 成膜条件等を制御することによって、 酸化チタン薄膜単独で光量 1. 0 w /cm2以下の紫外光の照射下で、 水の接触角が 5 ° 以下 (略 0 ° 〜 5 ° ) とな る高度な光触媒活性を示す状態を達成することもできる (請求項 1 ) 。 水の接触 角は、 4° 以下 (略 0 ° 〜4° ) が好ましく、 3 ° 以下 (略 0 ° 〜3 ° ) が更に 好ましく、 2 ° 以下 (略 0 ° 〜2 ° ) が更に好ましく、 1 ° 以下 (略 0 ° ~ 1 ° ) が更に好ましく、 実質的に 0 ° (測定上 0 ° ) とすることが更に好ましい。 また、 上記のような特徴を有する酸化チタン単独膜は、 結晶粒子径が 1 3〜 1 7 nmであるという従来にない特徴を有していることを見い出した (請求項 3) 本発明者らは、 さらに鋭意研究を重ねた結果、 仕事関数の小さい金属または合 金上に酸化チタン薄膜を形成することによって、 酸化チタン薄膜の光触媒活性光 を高度に向上できること (金属の仕事関数と親水化速度定数とは相関関係がある こと) を見い出した (請求項 4) 。 The present inventors have conducted intensive studies and found that the contact angle of water was substantially (measured) 0 ° under irradiation of weak ultraviolet light of 1.0; w Z cm 2 with the titanium oxide thin film alone. For the first time, the present inventors succeeded in achieving a high photocatalytic activity state (claim 1). The titanium oxide single film having such characteristics can be produced by controlling the conditions at the time of film formation. For example, RF output: 250 to 350 W, substrate temperature at the time of film formation: room temperature to 600 ° C, deposition rate: 0.37 nm / min-1.47 nm / min (deposition time: 1-9 hours) and deposition pressure: 1-3 Pa It has been found that it can be produced by RF-magnet sputtering under controlled conditions (claim 2). As described above, in the present invention, by controlling the film formation conditions and the like, the contact angle of water is substantially 0 ° under the irradiation of the weak ultraviolet light of 1.0 iwZ cm 2 with the titanium oxide thin film alone. However, by controlling the film formation conditions, the titanium oxide thin film alone can be used under irradiation of ultraviolet light with a light intensity of 1.0 w / cm 2 or less by controlling the film formation conditions. Thus, it is possible to achieve a state showing a high photocatalytic activity in which the contact angle of water is 5 ° or less (approximately 0 ° to 5 °) (claim 1). The contact angle of water is preferably 4 ° or less (approximately 0 ° to 4 °), more preferably 3 ° or less (approximately 0 ° to 3 °), and further preferably 2 ° or less (approximately 0 ° to 2 °). It is more preferably 1 ° or less (approximately 0 ° to 1 °), and further preferably substantially 0 ° (measured 0 °). In addition, the inventors have found that a titanium oxide single film having the above characteristics has an unprecedented characteristic of having a crystal particle diameter of 13 to 17 nm (claim 3). As a result of further intensive research, it was found that by forming a titanium oxide thin film on a metal or alloy with a small work function, the photocatalytic activation light of the titanium oxide thin film can be highly improved (the work function of metal and the rate of hydrophilization). (There is a correlation with the constant) (Claim 4).
更に、 仕事関数の小さい金属または合金上に所定の酸化チタン薄膜 (高活性の 酸化チタン薄膜) を形成することによって、 光量 1. Ο zw/cm2という微弱 な紫外光の照射下で水の接触角が実質的に 0 ° となる高度な親水性状態を達成可 能であることを見い出した (請求項 5) 。 Furthermore, a titanium oxide thin film (highly active By forming a titanium oxide thin film, it is possible to achieve a highly hydrophilic state in which the contact angle of water becomes substantially 0 ° under irradiation of a weak ultraviolet light of 1. 1.zw/cm 2. (Claim 5).
更に、 仕事関数の小さい金属または合金上に所定の高活性の酸化チタン薄膜、 即ち、 上記請求項 1〜 3の特徴を有する酸化チタン薄膜、 を形成することによつ て、 光量 1. 0 iwZ c m2という微弱な紫外光の照射下で水の接触角が実質的 に 0 ° となる高度な親水性状態を安定的且つ確実に達成できることを見い出した (請求項 6〜 8) 。 Further, by forming a predetermined highly active titanium oxide thin film on a metal or alloy having a small work function, that is, a titanium oxide thin film having the features of claims 1 to 3, a light amount of 1.0 iwZ It has been found that a highly hydrophilic state in which the contact angle of water becomes substantially 0 ° can be stably and surely achieved under irradiation with a faint ultraviolet light of cm 2 (claims 6 to 8).
そして、 前記仕事関数の小さい金属または合金としては、 酸化チタン薄膜の光 触媒性を高める観点から、 例えばアルミニウム (4. 2 e v) またはアルミニゥ ム合金が好ましく、 アルミニウムと同等またはそれ以下の仕事関数を有する金属 であって、 光の存在下で電子を放出する金属を使用することが好ましいことを見 い出した (請求項 9) 。  As the metal or alloy having a small work function, for example, aluminum (4.2 ev) or an aluminum alloy is preferable from the viewpoint of enhancing the photocatalytic property of the titanium oxide thin film, and has a work function equal to or less than that of aluminum. It has been found that it is preferable to use a metal that emits electrons in the presence of light (claim 9).
上述したように、 本発明では、 仕事関数の小さい金属または合金上に所定の酸 化チタン薄膜 (高活性の酸化チタン薄膜) を形成すること等によって、 光量 1. As described above, in the present invention, by forming a predetermined titanium oxide thin film (a highly active titanium oxide thin film) on a metal or an alloy having a small work function, the light amount 1.
0; awZc m2という微弱な紫外光の照射下で水の接触角が実質的に 0 ° となる 高度な親水性状態を達成することができるのであるが、 当然、 仕事関数の小さい 金属等の選択や酸化チタン薄膜の成膜条件等を制御することによって、 光量 1.0; It is possible to achieve a highly hydrophilic state in which the contact angle of water becomes substantially 0 ° under the irradiation of the weak ultraviolet light of awZc m 2 , but of course, for metals with a small work function, etc. By controlling the selection and the conditions for forming the titanium oxide thin film, etc., the amount of light 1.
0 iwZcm2以下の紫外光の照射下で、 水の接触角が 5 ° 以下 (略 0 ° 〜 5 ° ) となる高度な光触媒活性を示す状態を達成することもできる (請求項 5、 6 ) 。 水の接触角は、 4° 以下 (略 0 ° ~4° ) が好ましく、 3 ° 以下 (略 0 ° 〜 3 ° ) が更に好ましく、 2 ° 以下 (略 0 ° 〜2 ° ) が更に好ましく、 1 ° 以下 (略 0 ° ~ 1 ° ) が更に好ましく、 実質的に 0 ° (測定上 0 ° ) とすることが更に好 ましい。 Under irradiation of ultraviolet light of 0 iwZcm 2 or less, a state showing a high photocatalytic activity with a water contact angle of 5 ° or less (approximately 0 ° to 5 °) can be achieved (claims 5 and 6). . The contact angle of water is preferably 4 ° or less (approximately 0 ° to 4 °), more preferably 3 ° or less (approximately 0 ° to 3 °), and further preferably 2 ° or less (approximately 0 ° to 2 °). The angle is more preferably 1 ° or less (approximately 0 ° to 1 °), and further preferably substantially 0 ° (measured 0 °).
本発明における酸化チタン薄膜は、 アナターゼ型酸化チタンの含有量が 7 0 % 以上であることが好ましい。 これにより高い光触媒活性を得ることが可能となる 本発明における酸化チタン薄膜は、 酸化チタンの結晶粒子径が 1 3〜 1 7 n mであることが好ましい。 酸化チタンの結晶粒子径が 1 3 ~ 1 7 nmの範囲とす ることによって高い光触媒活性を得ることが可能となると考えられる。 ここで言 う 「酸化チタンの結晶粒子径が 1 3〜 1 7 n mの範囲」 とは、 後述する本発明の 酸化チタン薄膜の S E M写真から判るように、 酸化チタンの結晶粒子の 8 0 %以 上 (好ましくは 8 5 %以上、 さらに好ましくは 9 0 %以上、 より好ましくは 9 5 %以上) がこの範囲内の粒径である場合を意図する趣旨であって、 この範囲外の 粒径の結晶粒子を含む場合を除く趣旨ではない。 本発明の酸化チタン薄膜では、 酸化チタンの平均結晶粒子径が 1 3〜 1 7 n mであることが好ましく、 この範囲 内の粒径の結晶粒子を前記割合で含むことが好ましい。 The titanium oxide thin film of the present invention preferably has an anatase type titanium oxide content of 70% or more. This makes it possible to obtain a high photocatalytic activity. The titanium oxide thin film of the present invention preferably has a titanium oxide crystal particle diameter of 13 to 17 nm. Make the titanium oxide crystal particle size in the range of 13 to 17 nm. It is considered that this makes it possible to obtain high photocatalytic activity. As used herein, “the titanium oxide crystal particle diameter is in the range of 13 to 17 nm” means, as can be seen from the SEM photograph of the titanium oxide thin film of the present invention described later, 80% or less of the titanium oxide crystal particles. The above (preferably at least 85%, more preferably at least 90%, more preferably at least 95%) is intended to have a particle size within this range. This is not the purpose except for the case where crystal particles are included. In the titanium oxide thin film of the present invention, the titanium oxide preferably has an average crystal particle diameter of 13 to 17 nm, and preferably contains crystal particles having a particle diameter in this range in the above ratio.
本発明における酸化チタン薄膜は、 酸化チタン膜の結晶粒子間に均一な隙間が 形成されており、 結晶粒子同士が接触せずに独立していること、 結晶粒子同士が 成長に伴い接合しさらに成長したと見られる粒子が少ないこと、 表面積 (比表面 積) が大きいこと、 結晶粒子の形状が角張った岩石状であること、 結晶粒子形状 の均一性が高いこと、 が好ましい。 これらの特性によって高い光触媒活性を得る ことが可能となると考えられる。  In the titanium oxide thin film of the present invention, uniform gaps are formed between crystal grains of the titanium oxide film, and the crystal grains are independent of each other without contacting each other, and the crystal grains are joined together as they grow and further grow. It is preferable that the number of particles considered to be small is small, the surface area (specific surface area) is large, the shape of the crystal particles is an angular rock, and the uniformity of the crystal particle shape is high. It is thought that these characteristics make it possible to obtain high photocatalytic activity.
本発明における酸化チタン薄膜は、 成膜する基材の材料及び/又は基材成膜面 の表面粗さを選択、 制御することが好ましい。 これらによって高い光触媒活性を 得ることが可能となると考えられる。  In the titanium oxide thin film of the present invention, it is preferable to select and control the material of the substrate on which the film is formed and / or the surface roughness of the surface on which the substrate is formed. It is thought that these make it possible to obtain high photocatalytic activity.
また、 酸化チタン層の膜厚は、 特に限定されるものではなく、 親水化速度、 暗 所維持性 (接触角の回復) 等の条件によって適宜選択されるが、 一般には 2 0 0 ~ 7 0 0 n mである。  The thickness of the titanium oxide layer is not particularly limited and may be appropriately selected depending on conditions such as a rate of hydrophilicity and a property of maintaining darkness (recovery of a contact angle). 0 nm.
本発明では、 光量 1 . 0 i wZ c m 2以下という微弱な紫外光の照射下でも光 触媒作用を発現させることが可能となる。 従って、 比較的高い光量の紫外光でし か光触媒作用が発現できない従来の複合材料と比較して、 蛍光灯、 可視光でも光 触媒作用を発現可能な試料を提供することが可能となった。 According to the present invention, a photocatalytic action can be exerted even under the irradiation of a weak ultraviolet light having a light amount of 1.0 iwZ cm 2 or less. Therefore, it has become possible to provide a sample that can exhibit photocatalysis even with a fluorescent lamp or visible light, as compared with a conventional composite material that can exhibit photocatalysis only with a relatively high amount of ultraviolet light.
このように本発明では、 光量 1 . 0 wZ c m 2以下の紫外光の照射下で光触 媒作用を有することが可能である。 従って、 本発明では、 光触媒層である酸化チ タン層の表面に光を照射することによって、 特に光量 1 . O /x wZ c m 2以下の 微弱な光の照射下でも光触媒が励起して防染性、 抗菌性、 脱臭性等の光触媒作用 を示すことが可能となる。 従って、 従来の用途はもとより、 微弱な光の照射下での各種用途、 例えば車両 用アウターミラーやインナーミラー、 浴室用の鏡等に有効に適用可能である。 図面の簡単な説明 As described above, in the present invention, it is possible to have a photocatalytic effect under irradiation of ultraviolet light having a light amount of 1.0 wZ cm 2 or less. Therefore, in the present invention, by irradiating the surface of the titanium oxide layer, which is a photocatalyst layer, with light, the photocatalyst is excited even under the irradiation of weak light having a light amount of 1.0 O / x wZ cm 2 or less, thereby preventing the dyeing. It can exhibit photocatalytic action such as antibacterial property, antibacterial property and deodorizing property. Therefore, the present invention can be effectively applied not only to conventional uses but also to various uses under irradiation of weak light, for example, an outer mirror and an inner mirror for a vehicle, and a mirror for a bathroom. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例で作製した試料を示す断面図である。  FIG. 1 is a cross-sectional view showing a sample manufactured in the example.
図 2は、 実施例で使用した光源としての蛍光灯 (1 8 W) の特性を示す図であ る。  FIG. 2 is a diagram showing characteristics of a fluorescent lamp (18 W) as a light source used in the example.
図 3は、 実施例で使用した光量測定装置の特性を示す図である。  FIG. 3 is a diagram illustrating characteristics of the light quantity measuring device used in the example.
図 4は、 基材として石英基材を用いた試料の R F出力依存性試験測定結果を示 す図である。  FIG. 4 is a diagram showing the results of an RF output dependency test measurement of a sample using a quartz substrate as the substrate.
図 5は、 基材として石英基材を用いた試料の R F出力依存性試験測定結果を示 す図である。  FIG. 5 is a diagram showing a measurement result of an RF output dependency test of a sample using a quartz substrate as the substrate.
図 6は、 R F出力を変化させて石英基板上に酸化チタン膜を成膜した各試料の 電子顕微鏡 (S E M ) 写真を示す図である。  FIG. 6 is a view showing an electron microscope (SEM) photograph of each sample in which a titanium oxide film is formed on a quartz substrate by changing the RF output.
図 7は、 基材として石英基材を用いた試料の成膜温度依存性試験測定結果を示 す図である。  FIG. 7 is a diagram showing a measurement result of a film forming temperature dependence test of a sample using a quartz substrate as a substrate.
図 8は、 成膜時基板温度を変化させて石英基板上に酸化チタン膜を成膜した各 試料の電子顕微鏡 (S E M ) 写真を示す図である。  FIG. 8 is a view showing an electron microscope (SEM) photograph of each sample in which a titanium oxide film was formed on a quartz substrate by changing the substrate temperature during film formation.
図 9は、 成膜時基板温度を変化させて石英基板上に酸化チタン膜を成膜した各 試料について、 5 0 0 ^ c m 2の紫外光照射時間と、 水の接触角との関係を示 す図である。 Figure 9 shows for each sample by changing the deposition when the substrate temperature was deposited titanium oxide film on a quartz substrate, a 5 0 0 ^ ultraviolet light irradiation time of cm 2, the relationship between the contact angle of water FIG.
図 1 0は、 基材として石英基材を用いた試料の膜厚依存性試験測定結果を示す 図である。  FIG. 10 is a view showing a measurement result of a film thickness dependency test of a sample using a quartz substrate as a substrate.
図 1 1は、 成膜時間 ·膜厚を変化させて石英基板上に酸化チタン膜を成膜した 各試料の電子顕微鏡 (S E M ) 写真を示す図である。  FIG. 11 is a view showing an electron microscope (SEM) photograph of each sample in which a titanium oxide film was formed on a quartz substrate by changing the film formation time and the film thickness.
図 1 2は、 基材として石英基材を用いた試料の成膜圧力依存性試験測定結果を 示す図である。  FIG. 12 is a diagram showing a measurement result of a film forming pressure dependency test of a sample using a quartz substrate as the substrate.
図 1 3は、 成膜圧力及び成膜時間を変化させて石英基板上に酸化チタン膜を成 膜した各試料の電子顕微鏡 (S E M ) 写真を示す図である。 図 1 4は、 基材として石英基材を用いた試料の光量依存性試験測定結果を示す 図である。 FIG. 13 is a view showing an electron microscope (SEM) photograph of each sample in which a titanium oxide film was formed on a quartz substrate by changing the film forming pressure and the film forming time. FIG. 14 is a diagram showing the measurement results of the light amount dependency test of a sample using a quartz substrate as the substrate.
図 1 5は、 基材として石英基材を用いた試料の光量依存性試験測定結果を示す 図である。  FIG. 15 is a diagram showing the measurement results of the light intensity dependence test of a sample using a quartz substrate as the substrate.
図 1 6は、 基材として石英基材を用いた試料の喑所維持性試験測定結果を示す 図である。  FIG. 16 is a view showing the results of a measurement of a sample using a quartz base material as a base material, which was maintained in place.
図 1 7は、 基材として石英基材を用いた試料の紫外光一可視光吸収測定結果を 示す図である。  FIG. 17 is a diagram showing an ultraviolet-visible light absorption measurement result of a sample using a quartz substrate as the substrate.
. 図 1 8は、 基材として石英基材を用いた試料の X線回折収測定結果を示す図で ある。  FIG. 18 is a diagram showing the results of X-ray diffraction measurement of a sample using a quartz substrate as the substrate.
図 1 9は、 基材として A 1板を用いた試料の R F出力依存性試験測定結果を示 す図である。  FIG. 19 is a diagram showing the results of an RF output dependency test measurement of a sample using an A1 plate as a base material.
図 2 0は、 基材として A 1板を用いた試料の R F出力依存性試験測定結果を示 す図である。  FIG. 20 is a diagram showing a measurement result of an RF output dependency test of a sample using an A1 plate as a base material.
図 2 1は、 基材として A 1板を用いた試料の成膜温度依存性試験測定結果を示 す図である。  FIG. 21 is a diagram showing a measurement result of a film forming temperature dependency test of a sample using an A1 plate as a base material.
図 2 2は、 基材として A 1板を用いた試料の膜厚依存性試験測定結果を示す図 である。  FIG. 22 is a diagram showing a measurement result of a film thickness dependency test of a sample using an A1 plate as a substrate.
図 2 3は、 基材として A 1板を用いた試料の成膜圧力依存性試験測定結果を示 す図である。  FIG. 23 is a diagram showing a measurement result of a film forming pressure dependency test of a sample using an A1 plate as a base material.
図 2 4は、 基材として A 1板を用いた試料の光量依存性試験測定結果を示す図 である。  FIG. 24 is a view showing the measurement results of the light amount dependency test of the sample using the A1 plate as the base material.
図 2 5は、 基材として A 1板を用いた試料の光量依存性試験測定結果を示す図 である。  FIG. 25 is a diagram showing the measurement results of a light amount dependency test of a sample using an A1 plate as a base material.
図 2 6は、 基材として A 1板を用いた試料の暗所維持性試験測定結果を示す図 である。  FIG. 26 is a diagram showing the results of a dark place maintenance test measurement of a sample using the A1 plate as the base material.
図 2 7は、 A 1基板と Q Z基板上に同じ条件下で酸化チタン膜を成膜した試料 について、 光量 1 . 0 c m 2の紫外光の照射下で、 水の接触角の変化を調べ た結果を示す図である。 図 2 8は、 A 1基板と QZ基板上に同じ条件下で酸化チタン膜を成膜した各試 料の親水化定数光量を示す図である。 2 7, for samples deposited titanium oxide film under the same conditions in A 1 substrate and the QZ substrate, the light quantity 1. 0 cm 2 in the irradiation of a ultraviolet light, investigating changes in the contact angle of water It is a figure showing a result. FIG. 28 is a diagram showing the amount of hydrophilic constant of each sample in which a titanium oxide film was formed on the A1 substrate and the QZ substrate under the same conditions.
図 2 9は、 A 1基板と Q Z基板上に同じ条件下で酸化チタン膜を成膜した各試 料の電子顕微鏡 (S EM) 写真を示す図である。 発明を実施するための最良の形態  FIG. 29 is a diagram showing electron microscope (SEM) photographs of each sample in which a titanium oxide film was formed on the A1 substrate and the QZ substrate under the same conditions. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により詳細に説明する。 しかしながら、 本発明はこれら の実施例に限定されるものではない。  Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to these examples.
以下の実施例においては、 図 1に示す通り、 基材 1と酸化チタン層 2とから構 成される試料を作製した。  In the following Examples, as shown in FIG. 1, a sample composed of a substrate 1 and a titanium oxide layer 2 was produced.
以下の実施例において、 光源として図 2 (縦軸:強度、 横軸:波長 (nm) ) に示す特性を有する蛍光灯 (1 8W) を使用した。 図 2から明らかな通り、 この 光源における紫外光は微量なものであり、 強度も極めて小さい。  In the following examples, a fluorescent lamp (18 W) having the characteristics shown in FIG. 2 (vertical axis: intensity, horizontal axis: wavelength (nm)) was used as a light source. As is evident from Fig. 2, the amount of ultraviolet light in this light source is very small and its intensity is extremely low.
また、 光量の測定は、 TOP COM社製 UVR— 2に UD— 3 6を装着して行 なった。 UD— 3 6は図 3 (縦軸:相対感度、 横軸:波長 (nm) ) に示すよう に波長 3 1 0〜40 0 nmの範囲の光を測定できる。 なお、 光量は基板と光源と の距離を調節して行った。  The light intensity was measured by mounting UD-36 to UVR-2 manufactured by TOP COM. As shown in Fig. 3 (vertical axis: relative sensitivity, horizontal axis: wavelength (nm)), UD-36 can measure light in the wavelength range of 310 to 400 nm. The amount of light was adjusted by adjusting the distance between the substrate and the light source.
以下の実施例においては、 酸化チタン焼結体を夕一ゲットとして用いた。  In the following examples, a titanium oxide sintered body was used as an evening get.
[実施例 1 ]  [Example 1]
(R F出力依存性試験)  (RF output dependency test)
RFマグネットスパッタリングにおける RF出力依存性を調べるために (a) l P a、 6 0 0 °C、 1 0 0 W、 9時間、 (b) l P a、 6 0 0 、 2 0 0 W、 4 . 5時間、 (c) l P a、 6 0 0 °C、 3 0 0 W、 3. 0時間、 (d) l P a、 6 0 0°C、 40 0W、 2. 2 5時間の各成膜条件で R Fマグネットスパッタリング により石英基板上に酸化チタン膜を成膜して各試料を作製した。 これらの試料の RF出力依存性試験結果を図 4 (a) 、 (b) に示す。 図 4 (a) の縦軸は水の 接触角 (° ) 、 横軸は 1. 0 μ wZc m2の紫外光の照射時間 (単位:時間) を 示す (後述する図 5 (a) 、 図 7 (a) 、 図 1 0 (a) 、 図 1 2 (a) において も同様である) 。 図 4 (b) には親水化速度定数を示した (後述する図 5 (b) 、 図 7 (b) 、 図 1 0 (b) 、 図 1 2 (b ) 、 図 1 4 (b) においても同様であ る) 。 図 4 (a) 、 (b) に示す通り、 3 0 0 Wの R F出力で成膜した試料が非 常に良好な光触媒作用を示した。 また、 成膜条件等を制御することによって、 水 の接触角が 50 以下となる高度な光触媒活性を発現する酸化チタン膜を形成でき ることが判る。 なお、 RF出力を高くすると (例えば 40 0 Wとすると) 、 形成 される酸化チタンがルチル型となる可能性があるので単純には比較できない点に 注意が必要である。 To investigate RF output dependency in RF magnet sputtering (a) l Pa, 600 ° C, 100 W, 9 hours, (b) l Pa, 600, 200 W, 4 5 hours, (c) l Pa, 600 ° C, 300 W, 3.0 hours, (d) l Pa, 600 ° C, 400 W, 2.25 hours Each sample was prepared by forming a titanium oxide film on a quartz substrate by RF magnet sputtering under film forming conditions. Figures 4 (a) and 4 (b) show the RF output dependence test results of these samples. FIGS. 4 (a) longitudinal axis and the contact angle of water (°), the horizontal axis is 1. 0 μ wZc m 2 of UV irradiation time: shows the (unit time) (FIG. 5 to be described later (a), FIG. 7 (a), FIG. 10 (a), and FIG. 12 (a).) Figure 4 (b) shows the rate constant for hydrophilization (see Figure 5 (b) The same applies to FIG. 7 (b), FIG. 10 (b), FIG. 12 (b), and FIG. 14 (b). As shown in Figs. 4 (a) and (b), the sample formed with the RF output of 300 W showed very good photocatalysis. It is also found that a titanium oxide film exhibiting a high photocatalytic activity with a water contact angle of 50 or less can be formed by controlling the film forming conditions and the like. It should be noted that when the RF output is increased (for example, 400 W), the titanium oxide formed may be of rutile type, and thus cannot be simply compared.
次に、 図 5 (a) 、 ( b ) に示す通り、 RF出力を 2 50W ( l P a、 6 0 0 で、 4. 5時間) 、 3 0 0W (l P a、 6 0 0 °C、 3. 0時間) , 3 5 0 W (1 P a、 6 0 O , 2. 7 5時間) の各 R F出力条件で酸化チタン層を石英基板上 に成膜したところ、 特に R F出力 30 0 Wにおいて低い水の接触角及び高い親水 化速度定数が得られた。 従って、 本発明においては R F出力を約 3 0 0 W付近と することが好ましいことが判る。 また、 成膜条件等を制御することによって、 水 の接触角が 5 ° 以下となる高度な光触媒活性を発現する酸化チタン膜を形成でき ることが判る。  Next, as shown in Fig. 5 (a) and (b), the RF output was set to 250 W (1 Pa, 600 hours, 4.5 hours), 300 W (l Pa, 600 ° C). The titanium oxide layer was formed on a quartz substrate under each RF output condition of, 3.0 hours) and 350 W (1 Pa, 60 O, 2.75 hours). At W, a low water contact angle and a high hydrophilization rate constant were obtained. Therefore, it can be seen that in the present invention, it is preferable to set the RF output to about 300 W. It is also found that by controlling the film forming conditions and the like, a titanium oxide film exhibiting a high photocatalytic activity with a water contact angle of 5 ° or less can be formed.
l P a、 3時間、 6 0 0 の同じ条件下で、 RF出力を (a) 1 0 0W、 (b ) 2 0 0W、 ( c ) 3 0 0 W、 と変化させて R Fマグネットスパッタリングによ り石英基板上に酸化チタン膜を成膜した各試料の電子顕微鏡 (S EM) 写真 (X 1 0 0 K、 5. O K) を図 6 ( a ) 〜 (c) に示す。 図 6 (a) 〜 (c) から、 R F出力を変化させても平均結晶粒径にあまり違いは見られないが、 R F出力 3 l Under the same conditions of Pa, 3 hours and 600, the RF output was changed to (a) 100 W, (b) 200 W, and (c) 300 W, and RF magnet sputtering was performed. Figures 6 (a) to 6 (c) show electron microscope (SEM) photographs (X100K, 5.OK) of each sample in which a titanium oxide film was formed on a quartz substrate. From Fig. 6 (a) to (c), even if the RF output is changed, there is not much difference in the average crystal grain size.
0 0Wの酸化チタン膜は結晶粒子間に均一な隙間が形成されており、 結晶粒子同 士が接触せずに独立していること、 表面積 (比表面積) が大きいこと、 結晶粒子 の形状が角張った岩石状であること、 が判る。 In the 0 W titanium oxide film, uniform gaps are formed between the crystal grains, the crystal grains are independent of each other without contact, the surface area (specific surface area) is large, and the shape of the crystal grains is angular. It can be seen that it is rocky.
尚、 実施例 1おいては、 成膜速度は 0. 3 7 nm/m i n〜 l . 47 nmZm In Example 1, the film formation rate was 0.37 nm / min to 1.47 nm
1 nとした。 1 n.
[実施例 2]  [Example 2]
(成膜温度依存性試験)  (Deposition test of film deposition temperature)
図 7 (a) 、 (b) に示す通り、 室温 (RT) (3時間、 1. 0 P a、 3 0 0 W) 、 2 0 0で ( 3時間、 1. 0 P a、 3 0 0 W) 、 40 0で (3時間、 1. 0 P a、 30 0 W) 、 6 0 0 °C (3時間、 1. 0 P a、 3 0 0 W) の各成膜時基板 温度条件で酸化チタン層を石英基板上に成膜したところ、 成膜温度が高い程、 親 水性が高くなる傾向となることが判る。 また、 成膜条件等を制御することによつ て、 水の接触角が 5 ° 以下となる高度な光触媒活性を発現する酸化チタン膜を形 成できることが判る。 As shown in Figures 7 (a) and (b), room temperature (RT) (3 hours, 1.0 Pa, 300 W), 200 (3 hours, 1.0 Pa, 300 Pa) W), at 400 (3 hours, 1.0 When the titanium oxide layer was formed on a quartz substrate under the substrate temperature conditions of each of (Pa, 300 W) and 600 ° C (3 hours, 1.0 Pa, 300 W), It can be seen that the higher the film formation temperature, the higher the hydrophilicity tends to be. It is also found that by controlling the film forming conditions and the like, a titanium oxide film exhibiting a high photocatalytic activity with a water contact angle of 5 ° or less can be formed.
上記と同様に、 l P a、 3B寺間、 3 0 0Wの同じ条件下で、 成膜時基板温度を (a) 室温 (RT) 、 (b) 2 00 °C、 (c) 40 0°C、 (d) 6 0 0 °Cと、 変 化させて R Fマグネットスパッタリングにより石英基板上に酸化チタン膜を成膜 した各試料の電子顕微鏡 (S EM) 写真 (X 1 0 0 K、 5. O K) を図 8 (a) 〜 (d)  In the same manner as above, under the same conditions of lPa, 3B, and 300W, the substrate temperature during film formation was set to (a) room temperature (RT), (b) 200 ° C, and (c) 400 °. C, (d) Electron microscope (SEM) photographs (X100K, 5.K) of each sample in which a titanium oxide film was formed on a quartz substrate by RF magnet sputtering by changing the temperature to 600 ° C. Fig. 8 (a) to (d)
に示す。 図 8 (a) ~ (d) から、 2 0 0〜6 0 0 °Cの酸化チタン膜は結晶粒子 間に均一な隙間が形成されており、 結晶粒子同士が接触せずに独立していること 、 表面積 (比表面積) が大きいこと、 から好ましいこと、 特に 6 0 0 °Cの酸化チ タン膜は結晶粒子の形状が角張った岩石状であること、 から好ましいこと、 が判 る。 Shown in From Figures 8 (a) to 8 (d), uniform gaps are formed between crystal grains in the titanium oxide film at 200 to 600 ° C, and the crystal grains are independent without contacting each other. This indicates that the surface area (specific surface area) is large, which is preferable, and that the titanium oxide film at 600 ° C. is particularly preferable because the crystal grains are in the form of a rock having an angular shape.
上記と同様に、 l P a、 3時間、 3 0 0Wの同じ条件下で、 成膜時基板温度を (a) 室温 (RT) 、 (b) 2 00 °C、 (c) 40 0°C、 (d) 6 0 0。Cと、 変 化させて R Fマグネットスパッタリングにより石英基板上に酸化チタン膜を成膜 した各試料について、 5 0 0 /xwZcm2の紫外光を照射 (光源: SHL— 1 0In the same manner as above, under the same conditions of lPa, 3 hours, and 300W, the substrate temperature during film formation was set to (a) room temperature (RT), (b) 200 ° C, and (c) 400 ° C. (D) 600. C and each sample on which a titanium oxide film was formed on a quartz substrate by RF magnet sputtering by means of RF magnet sputtering, was irradiated with 500 / xwZcm 2 of ultraviolet light (light source: SHL-10
0 UV) し、 水の接触角が 5 ° 以下となるまでの時間を調べた結果を図 9に示す 。 図 9の縦軸は水の接触角 (° ) 、 横軸は 5 0 0 /iwZcm2の紫外光の照射時 間 (単位:分) を示す。 図 9から、 成膜温度が高い程、 水の接触角が 5 ° 以下と なるまでの時間が短くなる傾向があることが判る。 0 UV), and the result of examining the time until the contact angle of water becomes 5 ° or less is shown in FIG. The vertical axis in FIG. 9 shows the contact angle of water (°), and the horizontal axis shows the irradiation time (unit: minute) of 500 / iwZcm 2 ultraviolet light. From FIG. 9, it can be seen that the higher the film formation temperature, the shorter the time required for the water contact angle to become 5 ° or less.
尚、 実施例 2おいては、 成膜速度は 0. 3 7 nmZm i n〜 l . 47 nmZm Incidentally, in Example 2, the film formation rate was 0.37 nmZmin to l.47 nmZm
1 nとした。 1 n.
[実施例 3]  [Example 3]
(膜厚依存性試験)  (Thickness dependence test)
図 1 0 (a) 、 (b) に示す通り、 膜厚 2 00 nm ( 1. 0 P a、 3時間、 6 0 0で、 3 0 0 W) 、 40 0 nm ( 1. 0 P a、 6時間、 6 0 01:、 3 0 0 W) 、 7 0 0 nm ( 1. 0 P a、 9時間、 6 0 0 °C、 3 0 0 W) の各膜厚条件 (成膜 時間条件) で酸化チタン層を石英基板上に成膜したところ、 膜厚が厚い程、 高い 親水性を示すことが判る。 As shown in Figures 10 (a) and (b), the film thickness is 200 nm (1.0 Pa, 3 hours, 600 W, 300 W), 400 nm (1.0 Pa, 6 hours, 6001 :, 300 W) A titanium oxide layer was formed on a quartz substrate under various film thickness conditions (deposition time conditions) of 700 nm (1.0 Pa, 9 hours, 600 ° C., 300 W). It can be seen that the higher the film thickness, the higher the hydrophilicity.
また、 7 0 0 nm ( l . 0 P a、 9時間、 6 00 °C、 3 0 0 W) の条件で成膜 した酸化チタンは、 光量 1. 0 tw/cm2以下の紫外光の照射下で、 7 2時間 経過後に、 水の接触角が実質的に 0 ° となる高度な親水性特性を示すことが初め て確認された。 また、 成膜条件等を制御することによって、 水の接触角が 5 ° 以 下となる高度な光触媒活性を発現する酸化チタン膜を形成できることが判る。 上記と同様に、 l P a、 3時間、 6 0 0 °Cの同じ条件下で、 成膜時間を (a) 3時間、 (b) 6時間、 (c) 9時間と、 変化させて R Fマグネットスパッタリ ングにより石英基板上にそれぞれ膜厚 (a) 2 0 0 nm, (b) 40 0 nm、 ( c ) 7 0 0 nmの酸化チタン膜を成膜した各試料の電子顕微鏡 (S EM) 写真 ( X 1 0 0 K、 5. O K) を図 1 1 (a) ~ (c) に示す。 図 1 1 (a) 〜 ( c ) から、 40 0〜 7 0 0 nmの酸化チタン膜は結晶粒径が大きく、 しかも結晶粒子 間に均一な隙間が形成されており、 結晶粒子同士が接触せずに独立していること 、 表面積 (比表面積) が大きいこと、 結晶粒子の形状が角張った岩石状であるこ と、 から好ましいこと、 が判る。 Titanium oxide deposited under the condition of 700 nm (1.0 Pa, 9 hours, 600 ° C, 300 W) was irradiated with ultraviolet light with a light intensity of 1.0 tw / cm 2 or less. Below, for the first time, it was confirmed that after 72 hours, it exhibited a high degree of hydrophilicity with a water contact angle of substantially 0 °. It is also found that a titanium oxide film exhibiting a high photocatalytic activity with a water contact angle of 5 ° or less can be formed by controlling the film forming conditions and the like. Similarly to the above, under the same conditions of lPa, 3 hours, and 600 ° C, changing the deposition time to (a) 3 hours, (b) 6 hours, (c) 9 hours, and changing the RF An electron microscope (SEM) of each sample in which a titanium oxide film with a thickness of (a) 200 nm, (b) 400 nm, and (c) 700 nm was formed on a quartz substrate by magnet sputtering. ) The photographs (X100K, 5.OK) are shown in Figs. 11 (a) to (c). From Figs. 11 (a) to 11 (c), the titanium oxide film of 400 to 700 nm has a large crystal grain size, and uniform gaps are formed between the crystal grains. It is clear that they are independent from each other, that they have a large surface area (specific surface area), and that the crystal grains are in the form of angular rocks.
尚、 実施例 3おいては、 成膜速度は 0. 3 7 nmZm i n〜: 1. 47 nmZm i nとし 7こ。  In Example 3, the film formation rate was 0.37 nmZmin: 1.47 nmZmin.
[実施例 4]  [Example 4]
(成膜圧力依存性試験)  (Deposition dependency test)
図 1 2 (a) 、 (b) に示す通り、 成膜圧力 1 P a ( 3 0 0 w、 6 0 0で、 3 時間) 、 2 P a (3 0 0 w、 6 0 0 °C、 3時間) 、 3 P a (3 00 w、 6 0 0 °C 、 3時間) の各成膜圧力条件で酸化チタン層を石英基板上に成膜したところ、 こ れらの条件で各々水の接触角が 50 以下となる高度な光触媒活性を発現する酸化 チタン膜を形成できることが判る。 As shown in Figs. 12 (a) and (b), the film forming pressure 1 Pa (300 w, 600 hours, 3 hours), 2 Pa (300 w, 600 ° C, When a titanium oxide layer was formed on a quartz substrate under each of the film forming pressure conditions of 3 hours) and 3 Pa (300 w, 600 ° C., 3 hours), water was formed under these conditions. It can be seen that a titanium oxide film exhibiting a high photocatalytic activity with a contact angle of 50 or less can be formed.
成膜圧力及び成膜時間を (a) l P a、 3時間 ( 3 0 0 w、 6Ό 0 ) 、 (b ) 2 P a、 6時間 (3 0 0 w、 6 0 0 ^) 、 (c) 3 P a、 9時間 ( 3 0 0 w、 6 0 0 °C ) と、 変化させて R Fマグネットスパッタリングにより石英基板上にそ れぞれ膜厚 (a) 2 0 0 nm、 (b) 4 0 0 nm、 ( c ) 7 0 0 nmの酸化チタ ン膜を成膜した各試料の電子顕微鏡 (S EM) 写真 (X 1 0 0 K、 5. O K) を 図 1 3 ( a ) ~ ( c ) に示す。 図 1 3 (a) 〜 ( c ) から、 l〜 2 P aの酸化チ タン膜は結晶粒径が大きく、 しかも図 1 1 ( a) 〜 ( c ) と比べ、 結晶粒子間に 均一な隙間が形成されており、 結晶粒子形状の均一性が高く、 結晶粒子同士が成 長に伴い接合しさらに成長したと見られる粒子が少ないこと、 から好ましいこと 、 が判る。 The film forming pressure and film forming time are (a) l Pa, 3 hours (300 w, 6Ό0), (b) 2 Pa, 6 hours (300 w, 600 ^), (c ) 3 Pa, 9 hours (300 w, 600 ° C) with RF magnet sputtering. Electron microscope (SEM) photographs (X1 to X1) of each sample on which a titanium oxide film of (a) 200 nm, (b) 400 nm, and (c) 700 nm was formed, respectively. 0 0 K, 5. OK) are shown in Figs. 13 (a) to (c). As shown in Figs. 13 (a) to (c), the titanium oxide film of l to 2Pa has a large crystal grain size, and more uniform gaps between the crystal particles than in Figs. 11 (a) to (c). Are formed, the crystal grain shape is highly uniform, and there are few particles that are considered to have joined together with the growth of the crystal grains and to have grown further.
尚、 実施例 4おいては、 成膜速度は 0. 3 7 nmZm i n〜 l . 4 7 nm/m i nとした。  In Example 4, the film formation rate was 0.37 nmZmin to l.47 nm / min.
[実施例 5 ]  [Example 5]
(光量依存性)  (Light intensity dependence)
実施例 3で作製した試料について、 光量依存性を調べるために光量 (a) 1. In order to examine the light intensity dependence of the sample prepared in Example 3, the light intensity (a) 1.
0 w/ c m2, (b) 2. 0 pi w/ c m2, ( c ) 1 0. 0 zw/c m2で石英 基板上に酸化チタン層が形成された試料の光量依存性を調べた。 結果を図 1 4 ( a) 、 (b) に示す。 図 1 4 ( a) 、 (b) に示す通り、 1. O ^wZcm2の 微弱な光量でも水の接触角が 5 ° 以下となる高度な光触媒活性を発現できること が判る。 At 0 w / cm 2 , (b) 2.0 pi w / cm 2 , and (c) 10.0 zw / cm 2 , the light quantity dependence of a sample having a titanium oxide layer formed on a quartz substrate was examined. The results are shown in FIGS. 14 (a) and (b). FIG 1 4 (a), it is understood that capable of expressing (b) as shown in, 1. O ^ contact angle of water in weak light quantity of WZcm 2 becomes 5 ° or less advanced photocatalytic activity.
尚、 図 1 4 ( a) の縦軸は水の接触角 (° ) 、 横軸は各光量の紫外光の照射時 間 (単位:時間) を示す。  The vertical axis in Fig. 14 (a) shows the contact angle of water (°), and the horizontal axis shows the irradiation time (unit: time) of each amount of ultraviolet light.
1. 0 P a、 6 0 0で、 3 0 0 W、 3時間の同じ条件下で、 R Fマグネットス パッタリングにより石英基板上に酸化チタン膜を成膜した各試料について、 光量 ( a) 1. 0 (iw/ c m (b) 1 0. 0 w/ c m2, ( c ) 2 0. 0 w/ c m2、 (d) 5 0 0 twZ cm2の紫外光を照射して、 光量依存性を調べた。 結 果を図 1 5に示す。 図 1 5から、 5 0 0 c m2の紫外光照射では照射後直 ちに水の接触角が実質的に 0 ° になり、 2 0 wZc m2の紫外光照射では照射 後 時間で水の接触角が実質的に 0 ° になり、 1 0 ^ w/c m2の紫外光照射 では照射後 2 4時間で水の接触角が実質的に 0 ° になる、 ことが判る。 Under the same conditions of 1.0 Pa, 600 W, 3 000 W, and 3 hours, the amount of light (a) was 1 for each sample in which a titanium oxide film was formed on a quartz substrate by RF magnet sputtering. 0 (iw / cm (b) 1 0.0 w / cm 2 , (c) 2 0.0 w / cm 2 , (d) 500 twZ cm 2 The results are shown in Fig. 15. From Fig. 15, it was found that the irradiation angle of water at 500 cm 2 was substantially 0 ° immediately after irradiation with UV light, and 20 wZcm In the case of UV light irradiation ( 2) , the contact angle of water becomes substantially 0 ° in the time after irradiation, and in the case of UV irradiation of 10 ^ w / cm 2 , the contact angle of water becomes substantially 0 in 24 hours after irradiation. °, it turns out.
尚、 図 1 5の縦軸は水の接触角 (° ) 、 横軸は各光量の紫外光の照射時間 (単 位:時間) を示す。 [実施例 6 ] The vertical axis in FIG. 15 shows the contact angle (°) of water, and the horizontal axis shows the irradiation time (unit: time) of the ultraviolet light of each light amount. [Example 6]
(暗所維持性)  (Maintain darkness)
l P a、 6 0 0で、 3 0 0 W、 の同じ条件下で、 成膜時間を (a) 3時間、 ( b) 6時間、 (c) 9時間と、 変化させて RFマグネットスパッタリングにより 石英基板上にそれぞれ膜厚 (a) 2 0 0 nm、 (b) 40 0 nm、 (c) 7 0 0 nmの酸化チタン膜を成膜し、 光量 1. 0 iwZc m2以下の紫外光の照射下で 7 2時間経過させた後に、 暗所にて保存して水の接触角と時間との関係を調べた 。 結果を図 1 6に示す。 図 1 6 [縦軸は水の接触角 (° ) 、 横軸は紫外光の照射 終了からの経過時間 (単位: 日) ] から、 膜厚が厚くなるのに従って接触角の回 復が遅く、 暗所維持性が高いことが判る。 Under the same conditions of l Pa, 600 W, and 300 W, the film formation time was changed to (a) 3 hours, (b) 6 hours, and (c) 9 hours, and by RF magnet sputtering. A titanium oxide film with a thickness of (a) 200 nm, (b) 400 nm, and (c) 700 nm was formed on a quartz substrate, and a UV light of 1.0 iwZc m 2 or less was formed. After elapse of 72 hours under irradiation, the cells were stored in a dark place, and the relationship between the contact angle of water and time was examined. The results are shown in FIG. From Fig. 16 [The vertical axis is the contact angle of water (°), and the horizontal axis is the elapsed time from the end of UV light irradiation (unit: days)], the recovery of the contact angle is slow as the film thickness increases. It turns out that the dark place maintenance is high.
[実施例 7]  [Example 7]
(紫外光-可視光吸収測定)  (Ultraviolet light-visible light absorption measurement)
(a) 1. 0 P a、 3時間、 6 0 0 °C、 3 0 0 W、 (b) 1. 0 P a、 6時間 、 6 0 0 t、 3 0 0 W、 (c) 1. 0 P a、 9時間、 6 0 0 °C、 3 0 0 Wの各成 膜条件で R Fマグネットスパッタリングにより石英基板上に酸化チタン膜を成膜 して試料を作製した。 各々膜厚は、 (a) 20 0 nm, (b) 40 0 nm, (c ) 7 00 nmであった。 これらの試料の紫外光一可視光吸収測定結果を図 1 7に 示す。 図 1 7 (縦軸:透過率 ( a . u. ) 、 横軸: 波長 ( n m) ) より、 これら の試料の膜厚が異なるので干渉縞の出現の仕方や吸収端の位置も若干異なってい たが、 これらの酸化チタン層は全て紫外光応答型 (紫外光反応型) であることが 判る。  (a) 1.0 Pa, 3 hours, 600 ° C, 300 W, (b) 1.0 Pa, 6 hours, 600 t, 300 W, (c) 1. A sample was prepared by forming a titanium oxide film on a quartz substrate by RF magnet sputtering under the respective film forming conditions of 0 Pa, 9 hours, 600 ° C., and 300 W. The film thicknesses were (a) 200 nm, (b) 400 nm, and (c) 700 nm, respectively. Figure 17 shows the results of ultraviolet-visible light absorption measurement of these samples. As shown in Fig. 17 (vertical axis: transmittance (a.u.), horizontal axis: wavelength (nm)), since the thickness of these samples is different, the appearance of interference fringes and the position of the absorption edge are also slightly different. However, it can be seen that all of these titanium oxide layers are of an ultraviolet light responsive type (ultraviolet light responsive type).
[実施例 8]  [Example 8]
(X線回折)  (X-ray diffraction)
(a) l P a、 6 0 0 °C、 3 0 0 W、 3時間、 (b) l P a、 6 0 0。C、 40 0W、 2. 2 5時間の各成膜条件で RFマグネットスパッタリングにより石英基 板上に酸化チタン膜を成膜して試料を作製した。 これらの試料の X線回折 (XR D測定) を行なった。 結果を図 1 8に示す。  (a) l Pa, 600 ° C., 300 W, 3 hours, (b) l Pa, 600. A sample was prepared by forming a titanium oxide film on a quartz substrate by RF magnet sputtering under the conditions of C, 400 W, and 2.25 hours. X-ray diffraction (XRD measurement) of these samples was performed. The results are shown in FIG.
図 1 8 (縦軸:強度 (c p s ) 、 横軸: 20 (° ) ) より下記の式に従って、 アナターゼ含有量 (%) 及び粒径を求めた。 アナ夕ーゼ含有量 (%) = 1 0 0 / [ 1 + 1. 2 6 5 ( I r / I a) ] From FIG. 18 (vertical axis: strength (cps), horizontal axis: 20 (°)), anatase content (% ) and particle size were determined according to the following equations. Anasose content (%) = 100 / [1 + 1.265 (Ir / Ia)]
D [粒径 (A) ]
Figure imgf000014_0001
c o s θ
D [Particle size (A)]
Figure imgf000014_0001
cos θ
(K= 0. 9、 λ = 1. 540 5 6、 β (半値幅) ( r e d) )  (K = 0.9, λ = 1.540 56, β (half width) (red))
その結果、 各試料のアナタ一ス含有量は 7 0 %以上で粒径は 1 3 nm〜 1 7 η mとなった。 また、 各試料の結晶性、 配向性は極めて良好であった。  As a result, each sample had an anatase content of 70% or more and a particle size of 13 nm to 17 ηm. The crystallinity and orientation of each sample were very good.
以下の実施例では、 基材を A 1板 (市販のアルミニウム板;株式会社ニコラ製 : 0 1 346 1アルミニウム板) とした以外は上記実施例と同様の方法で試料を 製造して、 光触媒特性との関係を調べた。  In the following examples, samples were produced in the same manner as in the above examples except that the substrate was A1 plate (commercially available aluminum plate; manufactured by Nicola Corporation: 0131461 aluminum plate), and photocatalytic properties were obtained. And examined the relationship.
[実施例 9]  [Example 9]
(RF出力依存性試験)  (RF output dependency test)
RFマグネットスパッタリングにおける R F出力依存性を調べるために (a) l P a、 6 0 0で、 1 0 0 W、 9時間、 (b) l P a、 6 0 0 °C、 2 0 0 W、 6 時間、 (c) l P a、 6 0 0で、 3 00 W、 3時間、 (d) l P a、 6 0 0。C、 40 0W、 2. 2 5時間の成膜条件で RFマグネットスパッタリングによりアル ミニゥム基板上に酸化チタン膜を成膜して試料を作製した。 これらの試料の R F 出力依存性試験結果を図 1 9 (a) 、 (b) に示す。 図 1 9 (a) の縦軸は水の 接触角 (° ) 、 横軸は 1. 0 iw/cm2の紫外光の照射時間 (単位:時間) を 示す (後述する図 2 0 (a) 〜図 2 3 (a) においても同様である) 。 図 1 9 ( b) には親水化速度定数を示した (後述する図 2 0 (b) 〜図 2 3 (b) におい ても同様である) 。 図 1 9 (a) 、 (b) に示す通り、 3 0 0Wの RF出力で成 膜した試料が非常に良好な光触媒作用を示した。 また、 石英基板上に形成する場 合に比べ、 酸化チタン薄膜の光触媒活性光を高度に向上でき、 光量 1. 0 / wZ cm2という微弱な紫外光の照射下で水の接触角が実質的に 0 ° となる高度な親 水性状態を達成できることを見い出した。 To examine the RF output dependency in RF magnet sputtering, (a) lPa, 600 W, 100 W, 9 hours, (b) lPa, 600 ° C, 200 W, 6 hours, (c) lPa, 600, 300 W, 3 hours, (d) lPa, 600. A sample was prepared by forming a titanium oxide film on an aluminum substrate by RF magnet sputtering under the conditions of C, 400 W, and 2.25 hours. Figures 19 (a) and (b) show the RF output dependence test results of these samples. The vertical axis in Fig. 19 (a) indicates the contact angle of water (°), and the horizontal axis indicates the irradiation time (unit: time) of 1.0 iw / cm 2 ultraviolet light (Fig. 20 (a) described later). The same applies to FIG. 23 (a)). FIG. 19 (b) shows the hydrophilization rate constant (the same applies to FIGS. 20 (b) to 23 (b) described later). As shown in Fig. 19 (a) and (b), the sample formed with the RF power of 300 W showed very good photocatalysis. Also, compared to the case of forming on a quartz substrate, the photocatalytically active light of the titanium oxide thin film can be improved to a high degree, and the contact angle of water is substantially reduced under the irradiation of weak UV light with a light intensity of 1.0 / wZ cm 2. It has been found that a high degree of hydrophilicity of 0 ° can be achieved.
次に、 図 2 0 (a) 、 (b) に示す通り、 RF出力を 2 5 0W ( l P a、 6 0 0 °C、 4. 5時間) 、 3 0 0W (l P a、 6 0 0で、 3. 0時間) , 3 5 0 W ( l P a、 6 0 0 °C、 2. 7 5時間) の R F出力条件で酸化チタン層をアルミニゥ ム基板上に成膜したところ、 特に RF出力 3 0 0 Wにおいて低い水の接触角及び 高い親水化速度定数が得られた。 従って、 本発明においては R F出力を約 3 0 0 Wとすることが好ましい。 また、 石英基板上に形成する場合に比べ、 酸化チタン 薄膜の光触媒活性光を高度に向上でき、 光量 1. 0 z^wZcm2という微弱な紫 外光の照射下で水の接触角が 5 ° 以下、 特に実質的に 0 ° となる高度な親水性状 態を安定的且つ確実に達成できることを見い出した。 Next, as shown in Figs. 20 (a) and (b), the RF output was set to 250W (lPa, 600 ° C, 4.5 hours), 300W (lPa, 60h). 0, 3.0 hours) and 350 W (lPa, 600 ° C., 2.75 hours) under a RF output condition, a titanium oxide layer was formed on an aluminum substrate. At a RF power of 300 W, a low water contact angle and a high hydrophilization rate constant were obtained. Therefore, in the present invention, the RF output is set to about 300 W is preferable. Also, compared to the case of forming on a quartz substrate, the photocatalytically active light of the titanium oxide thin film can be improved to a high degree, and the contact angle of water is 5 ° under the irradiation of a faint ultraviolet light of 1.0 z ^ wZcm 2 . In the following, it has been found that a highly hydrophilic state, particularly at substantially 0 °, can be stably and surely achieved.
尚、 実施例 9おいては、 成膜速度は 0. 3 7 nm/m i n〜 l . 47 nmZm i nとした。  In Example 9, the film formation rate was 0.37 nm / min to l.47 nmZmin.
[実施例 1 0]  [Example 10]
(成膜温度依存性試験)  (Deposition test of film deposition temperature)
図 2 1 (a) 、 (b) に示す通り、 室温 (RT) (3時間、 1. 0 P a、 3 0 0 W) 、 2 0 0 °C (3時間、 1. 0 P a、 3 0 0 W) 、 40 0 °C (3時間、 1. 0 P a、 3 0 0 W) 、 6 0 0 °C (3時間、 1. 0 P a、 3 0 0 W) の温度条件で 酸化チタン層をアルミニウム基板上に成膜したところ、 成膜温度が高い程、 親水 性が高くなる傾向となることが判る。 また、 石英基板上に形成する場合に比べ、 酸化チタン薄膜の光触媒活性光を高度に向上でき、 光量 1. 0 /iwZcm2という 微弱な紫外光の照射下で水の接触角が 5 ° 以下、 特に実質的に 0 ° となる高度な 親水性状態を安定的且つ確実に達成できることを見い出した。 同時に、 酸化チタ ン薄膜の成膜条件等を制御することによって、 光量 1. O iwZcm2以下の紫 外光の照射下で、 水の接触角が 5 ° 以下 (略 0 ° ~ 5 ° ) 、 4° 以下 (略 0 ° 〜 4° ) 、 3 ° 以下 (略 0 ° 〜3 ° ) 、 2 ° 以下 (略 0 ° 〜2 ° ;) 、 1 ° 以下 (略 0 ° 〜 1 ° ) 、 実質的に 0 ° (測定上 0 ° ) となる高度な光触媒活性を示す状態 をそれぞれ達成することができることを見い出した。 As shown in Fig. 21 (a) and (b), room temperature (RT) (3 hours, 1.0 Pa, 300 W), 200 ° C (3 hours, 1.0 Pa, 3 Oxidation at 400 ° C (3 hours, 1.0 Pa, 300 W), 600 ° C (3 hours, 1.0 Pa, 300 W) When a titanium layer was formed on an aluminum substrate, it was found that the higher the film formation temperature, the higher the hydrophilicity. Also, compared to the case of forming on a quartz substrate, the photocatalytically active light of the titanium oxide thin film can be improved to a high degree, and the contact angle of water is 5 ° or less under the weak ultraviolet light of 1.0 / iwZcm 2 , In particular, it has been found that a highly hydrophilic state of substantially 0 ° can be stably and surely achieved. At the same time, by controlling the deposition conditions of the titanium oxide thin film, the contact angle of water is 5 ° or less (approximately 0 ° to 5 °) under irradiation of ultraviolet light with a light intensity of 1.OiwZcm 2 or less. 4 ° or less (approximately 0 ° to 4 °), 3 ° or less (approximately 0 ° to 3 °), 2 ° or less (approximately 0 ° to 2 °;), 1 ° or less (approximately 0 ° to 1 °), real It has been found that a state showing a high photocatalytic activity of 0 ° (measured 0 °) can be achieved.
尚、 実施例 1 0おいては、 成膜速度は 0. 3 7 nm/m i n ~ 1. 47 nm/ m i nとした。  In Example 10, the deposition rate was 0.37 nm / min to 1.47 nm / min.
[実施例 1 1]  [Example 11]
(膜厚依存性試験)  (Thickness dependence test)
図 2 2 (a;) 、 (b) に示す通り、 膜厚 2 0 0 nm ( 1. O P a、 3時間、 6 0 0°C、 3 0 0 W) 、 40 0 n m ( 1. O P a、 6時間、 6 0 0 °C、 3 0 0 W) 、 7 0 0 nm ( 1. O P a、 9時間、 6 0 0 、 3 0 0 W) の温度条件 (処理時 間条件) で酸化チタン層をアルミニウム基板上に成膜したところ、 膜厚が厚い程 、 高い親水性を示すことが判る。 As shown in Fig. 22 (a;) and (b), the film thickness is 200 nm (1. OP a, 3 hours, 600 ° C, 300 W), 400 nm (1. OP a , 6 hours, 600 ° C, 300 W), 700 nm (1 OPa, 9 hours, 600, 300 W) When the layer was formed on an aluminum substrate, It turns out that it shows high hydrophilicity.
また、 石英基板上に形成する場合に比べ、 酸化チタン薄膜の光触媒活性光を高 度に向上でき、 光量 1. 0 /iw/ c m2という微弱な紫外光の照射下で水の接触 角が実質的に 0 ° となる高度な親水性状態を安定的且つ確実に達成できることを 見い出した。 同時に、 酸化チタン薄膜の成膜条件等を制御することによって、 光 量 1. 0 iwZc m2以下の紫外光の照射下で、 水の接触角が 5 ° 以下 (略 0 ° ~ 5 ° ) 、 4 ° 以下 (略 0 ° 〜 4 ° ) 、 3 ° 以下 (略 0 ° 〜 3 ° ) 、 2 ° 以下 ( 略 0 ° 〜2 ° ) 、 1 ° 以下 (略 0 ° 〜 1 ° ) 、 実質的に 0° (測定上 0 ° ) とな る高度な光触媒活性を示す状態をそれぞれ達成することができることを見い出し た。 Moreover, compared with the case of forming the quartz substrate, a titanium oxide thin film can be improved photocatalytic activity light with high degree of light intensity 1. 0 / iw / cm 2 water contact angle of substantially under irradiation of weak ultraviolet light that It has been found that a high degree of hydrophilicity of 0 ° can be achieved stably and reliably. At the same time, by controlling the deposition conditions of the titanium oxide thin film, under irradiation light quantity 1. 0 iwZc m 2 or less of ultraviolet light, water contact angle of 5 ° or less (approximately 0 ° ~ 5 °), 4 ° or less (approximately 0 ° to 4 °), 3 ° or less (approximately 0 ° to 3 °), 2 ° or less (approximately 0 ° to 2 °), 1 ° or less (approximately 0 ° to 1 °), substantial It has been found that a state showing a high photocatalytic activity of 0 ° (0 ° in measurement) can be achieved.
尚、 実施例 1 1おいては、 成膜速度は 0. 3 7 nm/m i n〜; . 47 nm/ m i ηとした。  In Example 11, the film formation rate was 0.37 nm / min to .47 nm / mi η.
[実施例 1 2]  [Example 12]
(成膜圧力依存性試験)  (Deposition dependency test)
図 2 3 (a) 、 (b) に示す通り、 成膜圧力 l P a (30 0 W、 6 0 0 °C、 3 時間) 、 2 P a (3 0 0 W、 6 0 0 °C、 3時間) 、 3 P a (3 0 0 W、 6 0 0 °C 、 3時間) の圧力条件で酸化チタン層をアルミニウム基板上に成膜したところ、 石英基板上に形成する場合に比べ、 酸化チタン薄膜の光触媒活性光を高度に向上 でき、 光量 1. 0 wZ c m2という微弱な紫外光の照射下で水の接触角が実質 的に 0 ° となる高度な親水性状態を安定的且つ確実に達成できることを見い出し た。 同時に、 酸化チタン薄膜の成膜条件等を制御することによって、 光量 1. 0 cm2以下の紫外光の照射下で、 水の接触角が 5 ° 以下 (略 0 ° 〜5 ° ) 、 4° 以下 (略 0 ° 〜4° ) 、 3 ° 以下 (略 0 ° 〜3 ° ) 、 2 ° 以下 (略 0 ° 〜 2 ° ) 、 1 ° 以下 (略 0 ° 〜: 1 ° ) 、 実質的に 0 ° (測定上 0 ° ) となる高度な 光触媒活性を示す状態をそれぞれ達成することができることを見い出した。 As shown in Fig. 23 (a) and (b), the deposition pressure l Pa (300 W, 600 ° C, 3 hours), 2 Pa (300 W, 600 ° C, When a titanium oxide layer was formed on an aluminum substrate under the pressure conditions of 3 hours) and 3 Pa (300 W, 600 ° C., 3 hours), the oxidation was higher than when a titanium oxide layer was formed on a quartz substrate. The photocatalytic activation light of titanium thin film can be improved to a high degree, and a highly hydrophilic state in which the contact angle of water becomes substantially 0 ° under the irradiation of a faint ultraviolet light of 1.0 wZ cm 2 is stably and reliably achieved. Have achieved what they can achieve. At the same time, by controlling the film formation conditions of the titanium oxide thin film, the contact angle of water is 5 ° or less (approximately 0 ° to 5 °) and 4 ° under irradiation of ultraviolet light with a light amount of 1.0 cm 2 or less. Less than (approximately 0 ° to 4 °), less than 3 ° (approximately 0 ° to 3 °), less than 2 ° (approximately 0 ° to 2 °), less than 1 ° (approximately 0 ° to: 1 °), substantially It has been found that a state showing a high photocatalytic activity of 0 ° (0 ° on measurement) can be achieved.
尚、 実施例 1 2おいては、 成膜速度は 0. 3 7 nm/m i n~ 1. 47 nm/ m i nとした。  In Example 12, the film formation rate was 0.37 nm / min to 1.47 nm / min.
[実施例 1 3]  [Example 13]
(光量依存性) 実施例 1 1で作製した試料について、 光量依存性を調べるために光量 (a) 1 . 0 n w/ m ( b ) 2. 0 w/ c m2, ( c ) 1 0. 0 zwZc m2でァ ルミニゥム基板上に酸化チタン層が形成された試料の光量依存性を調べた。 結果 を図 24に示す。 図 24 (縦軸は水の接触角 (° ) 、 横軸は各光量の紫外光の照 射時間 (単位:時間) ) に示す通り、 1. 0 wZ c m2の微弱な光量でも本発 明の試料は水の接触角が 5 ° 以下、 特に実質的に 0 ° となるとなる高度な光触媒 活性を発現できることが判る。 (Light intensity dependence) The sample prepared in Example 1 1, the amount of light (a) 1 to investigate the quantity of light dependent. 0 nw / m (b) 2. 0 w / cm 2, (c) 1 0. 0 zwZc m 2 Da The light quantity dependence of a sample having a titanium oxide layer formed on a luminium substrate was examined. The results are shown in FIG. As shown in Fig. 24 (the vertical axis is the contact angle of water (°), and the horizontal axis is the irradiation time (unit: time) of ultraviolet light of each light amount), the present invention was achieved even with a weak light amount of 1.0 wZ cm 2. It can be seen that the sample can exhibit a high degree of photocatalytic activity with a water contact angle of 5 ° or less, particularly substantially 0 °.
1. 0 P a、 6 0 0 °C、 3 0 0 W、 3時間の同じ条件下で、 R Fマグネッ トス パッタリングによりアルミニウム基板上に酸化チタン膜を成膜した各試料につい て、 光量 (a) 1. 0 a w/ c (b) 1 0. 0 ^w/ cm2, ( c ) 2 0. 0 UL W/ cm2, (d) 5 0 0 ^w/cm2の紫外光を照射して、 光量依存性を調 ぺた。 結果を図 2 5に示す。 図 2 5から、 500 c m2の紫外光照射では 照射後直ちに水の接触角が実質的に 0 ° になり、 2 0 w/c m2の紫外光照射 では照射後 1 8時間で水の接触角が実質的に 0 ° になり、 l O ^wZcm2の紫 外光照射では照射後 24時間で水の接触角が実質的に 0 ° になり、 1. O /zwZ c m2の紫外光照射では照射後 48時間で水の接触角が実質的に 0 ° になる、 こ とが判る。 Under the same conditions of 1.0 Pa, 600 ° C, 300 W, and 3 hours, for each sample in which a titanium oxide film was formed on an aluminum substrate by RF magnetron sputtering, the light intensity (a ) 1.0 aw / c (b) 10.0 ^ w / cm 2 , (c) 20.0 UL W / cm 2 , (d) 500 0 ^ w / cm 2 The light intensity dependence was investigated. The results are shown in FIG. From Figure 2 5, 500 cm 2 of ultraviolet irradiation will immediately contact angle of water substantially 0 ° after irradiation, 2 0 w / cm contact angle of water in the second ultraviolet light irradiation 1 8 h after irradiation in Becomes substantially 0 °, and the contact angle of water becomes substantially 0 ° in 24 hours after irradiation under the irradiation of l O ^ wZcm 2 , and 1.O / zwZ cm 2 under the irradiation of ultraviolet light It can be seen that the contact angle of water becomes substantially 0 ° 48 hours after irradiation.
尚、 図 2 5の縦軸は水の接触角 (° ) 、 横軸は各光量の紫外光の照射時間 (単 位:時間) を示す。  In FIG. 25, the vertical axis indicates the contact angle of water (°), and the horizontal axis indicates the irradiation time (unit: time) of the ultraviolet light of each light amount.
[実施例 1 4]  [Example 14]
(暗所維持性)  (Maintain darkness)
l P a、 6 0 0 °C、 3 0 0 W、 の同じ条件下で、 成膜時間を (a) 3時間、 ( b) 6時間、 (c) 9時間と、 変化させて R Fマグネットスパッタリングにより アルミニウム基板上にそれぞれ膜厚 (a) 2 0 0 nm、 (b) 40 0 nm、 ( c ) 7 0 0 nmの酸化チタン膜を成膜し、 光量 1. 0 c m 2以下の紫外光の 照射下で 7 2時間経過させた後に、 暗所にて保存して水の接触角と時間との関係 を調べた。 結果を図 2 6に示す。 図 2 6 [縦軸は水の接触角 (° ) 、 横軸は紫外 光の照射終了からの経過時間 (単位: 日) ] から、 膜厚が厚くなるのに従って接 触角の回復が遅く、 暗所維持性が高いことが判る。 [実施例 1 5 ] Under the same conditions of l Pa, 600 ° C, and 300 W, RF magnet sputtering by changing the deposition time to (a) 3 hours, (b) 6 hours, and (c) 9 hours the film thickness on an aluminum substrate, respectively (a) 2 0 0 nm, (b) 40 0 nm, (c) 7 0 0 forming a titanium oxide film of nm, the light quantity 1. 0 cm 2 or less of ultraviolet light After 72 hours under irradiation, they were stored in a dark place and examined for the relationship between water contact angle and time. The results are shown in FIG. Fig. 26 [The vertical axis indicates the contact angle of water (°), and the horizontal axis indicates the elapsed time from the end of UV light irradiation (unit: days)]. It turns out that maintainability is high. [Example 15]
(A 1基板と Q Z基板との比較)  (Comparison between A1 board and QZ board)
l P a、 6 0 0 °C、 3 0 0 W、 3時間の同じ条件下で、 (a) Q Z基板、 (b ) A l基板、 上に R Fマグネットスパッタリングにより酸化チタン膜を成膜した 試料を作成した。  l P a, 600 ° C, 300 W, 3 hours Under the same conditions, (a) QZ substrate, (b) Al substrate, a sample with a titanium oxide film formed by RF magnet sputtering It was created.
光量 1. 0 ^ w/ c m2の紫外光の照射下で、 水の接触角の変化を調べた。 結 果を図 2 7に示す。 図 2 7 [縦軸は水の接触角 (° ) 、 横軸は紫外光の照射時間 (単位:時間) ] から、 A 1基板上に酸化チタン膜を成膜した試料は、 実質的に 0 ° となるとなる高度な光触媒活性を発現でき、 また水の接触角が 5 ° 以下とな るまでの時間が短い (即ち親水化定数が大きい) ことが判る。 これらの試料の親 水化定数を図 2 8に示す。 The change of the contact angle of water was examined under irradiation of ultraviolet light with a light amount of 1.0 ^ w / cm 2 . Figure 27 shows the results. From Fig. 27 [The vertical axis indicates the contact angle of water (°) and the horizontal axis indicates the irradiation time of ultraviolet light (unit: hours)], the sample with the titanium oxide film formed on the A1 substrate is virtually zero. It can be seen that a high degree of photocatalytic activity can be expressed and the time required for the water contact angle to become 5 ° or less is short (that is, the hydrophilization constant is large). Figure 28 shows the hydration constants of these samples.
これらの各試料の電子顕微鏡 (S EM) 写真 (X 1 0 0 K、 5. O K) を図 2 9 ( a) 、 (b) に示す。 図 2 9 (a) 、 (b) から、 A 1基板上に酸化チタン 膜を成膜した試料は、 酸化チタン膜の結晶粒子間に均一な隙間が形成されており 、 結晶粒子同士が接触せずに独立していること、 表面積 (比表面積) が大きいこ と、 結晶粒子の形状が角張った岩石状であること、 から好ましいこと、 が判る。 以上説明した通り、 本発明は次の優れた効果を奏する。  Electron microscope (SEM) photographs (X100K, 5.OK) of each of these samples are shown in Figs. 29 (a) and (b). From FIGS. 29 (a) and (b), in the sample in which the titanium oxide film was formed on the A1 substrate, uniform gaps were formed between the crystal particles of the titanium oxide film, and the crystal particles were in contact with each other. It is preferable because they are independent from each other, have a large surface area (specific surface area), and have a crystal particle shape of angular rock. As described above, the present invention has the following excellent effects.
( 1 ) 酸化チタン薄膜単独で光量 1. 0 ^wZ cm2という微弱な紫外光の照射 下で水の接触角が実質的に 0 ° となる高度な光触媒活性状態を達成することに初 めて成功した (請求項 1 ) 。 本発明では、 酸化チタン薄膜単独で光量 1. O ^i w c m2以下の紫外光の照射下で、 水の接触角が 5 ° 以下 (略 0 ° 〜 5 ° ) とな る高度な光触媒活性を示す状態を達成することができる (請求項 1 ) 。 (1) For the first time, a titanium oxide thin film alone achieves a high level of photocatalytic activity in which the contact angle of water becomes substantially 0 ° under irradiation of a faint ultraviolet light of 1.0 ^ wZ cm 2. Successful (Claim 1). In the present invention, the titanium oxide thin film alone exhibits a high photocatalytic activity with a water contact angle of 5 ° or less (approximately 0 ° to 5 °) under irradiation of ultraviolet light of 1.O ^ iwcm 2 or less. The state can be achieved (Claim 1).
このような特徴を有する酸化チタン単独膜は、 成膜時の条件を制御することに よって作製でき (請求項 2 ) 、 結晶粒子径が 1 3 ~ 1 7 nmであるという従来に ない特徴を有している (請求項 3) 。  The titanium oxide single film having such characteristics can be produced by controlling the conditions at the time of film formation (claim 2), and has an unprecedented characteristic that the crystal particle diameter is 13 to 17 nm. (Claim 3).
( 2 ) 仕事関数の小さい金属または合金上に酸化チタン薄膜を形成することによ つて、 酸化チタン薄膜の光触媒活性光を高度に向上できる (請求項 4) 。  (2) By forming a titanium oxide thin film on a metal or alloy having a small work function, the photocatalytically active light of the titanium oxide thin film can be improved to a high degree (claim 4).
更に、 仕事関数の小さい金属または合金上に所定の酸化チタン薄膜 (高活性の 酸化チタン薄膜) を形成することによって、 光量 1. 0 β w c m2という微弱 な紫外光の照射下で水の接触角が 5 ° 以下〜実質的に 0 ° となる高度な光触媒活 性状態を達成可能である (請求項 5) 。 Furthermore, a titanium oxide thin film (highly active By forming a titanium oxide thin film, a high level of photocatalytic activity with a contact angle of water of 5 ° or less to substantially 0 ° is achieved under irradiation with a faint UV light of 1.0 β wcm 2 It is possible (claim 5).
更に、 仕事関数の小さい金属または合金上に所定の高活性の酸化チタン薄膜、 即ち、 上記請求項 1〜 3の特徴を有する酸化チタン薄膜、 を形成することによつ て、 光量 1. 0 ^wZcm2という微弱な紫外光の照射下で水の接触角が 5 ° 以 下〜実質的に 0 ° となる高度な光触媒活性状態を安定的且つ確実に達成できる ( 請求項 6〜 8 ) 。 Further, by forming a titanium oxide thin film having a predetermined high activity on a metal or alloy having a small work function, that is, a titanium oxide thin film having the features of claims 1 to 3, the light amount is 1.0 ^. It is possible to stably and surely achieve a high photocatalytic activity state in which the contact angle of water is 5 ° or less to substantially 0 ° under irradiation of a weak ultraviolet light of wZcm 2 (claims 6 to 8).
(3 ) 本発明では、 光量 1. 0 zw cm2以下という微弱な紫外光の照射下で も光触媒作用を発現させることが可能となる。 従って、 比較的高い光量の紫外光 でしか光触媒作用が発現できない従来の複合材料と比較して、 蛍光灯、 可視光で も光触媒作用を発現可能な試料を提供することが可能となった。 (3) According to the present invention, it is possible to exert a photocatalytic action even under irradiation of a weak ultraviolet light having a light amount of 1.0 zw cm 2 or less. Therefore, it has become possible to provide a sample that can exhibit a photocatalytic action even with a fluorescent lamp or visible light, as compared with a conventional composite material that can exhibit a photocatalytic action only with a relatively high amount of ultraviolet light.

Claims

:求の範囲 : Scope of request
1. 酸化チタン薄膜単独で、 光量 1. 0 wZc m2以下の紫外 1. Ultraviolet light of less than 1.0 wZc m 2 with titanium oxide thin film alone
光の照射下で、 水の接触角が 5 ° 以下となる高度な光触媒活性を示すことを特徴 とする酸化チタン薄膜。 A titanium oxide thin film characterized by exhibiting a high photocatalytic activity under water irradiation with a water contact angle of 5 ° or less.
2. 前記酸化チタン薄膜が、 RF出力 : 2 50〜 3 5 0 W、 成膜時基板温度:室 温〜 6 0 0 °C、 成膜速度: 0. 3 7 nm/m i n〜; 1. 47 nm/m i n、 及び 成膜圧力 : 1 ~3 P aの成膜条件で成膜条件を制御して RF—マグネットスパッ 夕リングにより形成されたものであることを特徴とする請求項 1に記載の酸化チ 夕ン薄膜。  2. The titanium oxide thin film has an RF output of 250 to 350 W, a substrate temperature at the time of film formation: room temperature to 600 ° C., and a film formation rate of 0.37 nm / min; 2. The film is formed by RF-magnet sputtering while controlling the film forming conditions under a film forming condition of nm / min and a film forming pressure of 1 to 3 Pa. Oxidation thin film.
3. 前記酸化チタン薄膜の結晶粒子径が 1 3〜 1 7 nmであることを特徴とする 請求項 1又は 2に記載の酸化チタン薄膜。  3. The titanium oxide thin film according to claim 1, wherein a crystal particle diameter of the titanium oxide thin film is 13 to 17 nm.
4. 仕事関数の小さい金属または合金上に酸化チタン薄膜を形成することによつ て、 前記酸化チタン薄膜の光触媒活性を高度に向上させたことを特徴とする酸化 チタン薄膜。  4. A titanium oxide thin film characterized in that the photocatalytic activity of the titanium oxide thin film is highly improved by forming the titanium oxide thin film on a metal or alloy having a small work function.
5. 仕事関数の小さい金属または合金上に所定の高活性酸化チタン薄膜を形成す ることによって、 光量 1. 0 ^wZ cm2という微弱な紫外光の照射下で水の接触 角が 5 ° 以下となる高度な光触媒活性を示すことを特徴とする酸化チタン薄膜。5. By forming a predetermined highly active titanium oxide thin film on a metal or alloy with a small work function, the contact angle of water is 5 ° or less under the weak UV light of 1.0 ^ wZ cm 2 A titanium oxide thin film characterized by exhibiting high photocatalytic activity.
6. 前記所定の高活性酸化チタン薄膜が、 請求項.1に記載した、 酸化チタン薄膜 単独で、 光量 1. 0 wZc m2以下の紫外光の照射下で、 水の接触角が 5 ° 以下 となる高度な光触媒活性を示すものであり、 これにより、 安定的且つ確実に光量 1. 0 wZcm2という微弱な紫外光の照射下で水の接触角が 5 ° 以下となる高 度な光触媒活性状態を示すことを特徴とする請求項 5に記載の酸化チタン薄膜。6. The predetermined highly active titanium oxide thin film according to claim 1, wherein the titanium oxide thin film alone has a water contact angle of 5 ° or less under irradiation of ultraviolet light with a light intensity of 1.0 wZc m 2 or less. become and shows a high degree of photocatalytic activity, thereby, stable and reliable light intensity 1. 0 wZcm contact angle of water under irradiation of weak ultraviolet light that 2 becomes 5 ° or less high degree of photocatalytic activity 6. The titanium oxide thin film according to claim 5, wherein the titanium oxide thin film shows a state.
7. 前記酸化チタン薄膜が、 RF出力 : 2 5 0〜 3 5 0 W、 成膜時基板温度:室 温〜 6 0 0 °C、 成膜速度: 0. 3 7 nm/m i n ~ 1. 47 nm/m i n、 及び 成膜圧力 : 1〜 3 P aの成膜条件で成膜条件を制御して R F—マグネッ トスパッ 夕リングにより形成されたものであることを特徴とする請求項 6に記載の酸化チ タン薄膜。 7. The titanium oxide thin film has an RF output of 250 to 350 W, a substrate temperature during film formation: room temperature to 600 ° C., and a film formation speed of 0.37 nm / min to 1.47. 7. The film is formed by RF-magnet sputtering while controlling the film forming conditions under a film forming condition of nm / min and a film forming pressure of 1 to 3 Pa. Titanium oxide thin film.
8. 前記酸化チタン薄膜の結晶粒子径が 1 3〜 1 7 nmであることを特徴とする 請求項 6又は 7に記載の酸化チタン薄膜。 8. The crystal particle diameter of the titanium oxide thin film is 13 to 17 nm The titanium oxide thin film according to claim 6.
9 . 前記仕事関数の小さい金属または合金がアルミニウムまたはその合金である ことを特徴とする請求項 4〜 8のいずれかに記載の酸化チタン薄膜。  9. The titanium oxide thin film according to any one of claims 4 to 8, wherein the metal or alloy having a low work function is aluminum or an alloy thereof.
PCT/JP2004/002395 2003-05-16 2004-02-27 Titanium oxide thin film exhibiting high photocatalytic activity under weak ultraviolet ray WO2004101146A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-138977 2003-05-16
JP2003138977A JP2004339021A (en) 2003-05-16 2003-05-16 Titanium oxide thin film having high photocatalytic activity under feeble ultraviolet irradiation

Publications (1)

Publication Number Publication Date
WO2004101146A1 true WO2004101146A1 (en) 2004-11-25

Family

ID=33447318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002395 WO2004101146A1 (en) 2003-05-16 2004-02-27 Titanium oxide thin film exhibiting high photocatalytic activity under weak ultraviolet ray

Country Status (2)

Country Link
JP (1) JP2004339021A (en)
WO (1) WO2004101146A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070104922A1 (en) * 2005-11-08 2007-05-10 Lei Zhai Superhydrophilic coatings
JP2007253148A (en) * 2006-02-24 2007-10-04 Osaka Prefecture Univ Photocatalyst, method for manufacturing photocatalyst, method for electrolyzing water, method for producing hydrogen, electrolyzer, and hydrogen produing device
JP2009066497A (en) * 2007-09-12 2009-04-02 Bridgestone Corp Photocatalyst thin film of titanium oxide and its production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345320A (en) * 1999-06-02 2000-12-12 Toyota Central Res & Dev Lab Inc Thin film structural body and its production
JP2002285036A (en) * 2001-03-23 2002-10-03 Seiichi Rengakuji Photocatalyst supported aluminum material and its manufacturing method
EP1304366A1 (en) * 1995-03-20 2003-04-23 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and a method of making thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1304366A1 (en) * 1995-03-20 2003-04-23 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and a method of making thereof
JP2000345320A (en) * 1999-06-02 2000-12-12 Toyota Central Res & Dev Lab Inc Thin film structural body and its production
JP2002285036A (en) * 2001-03-23 2002-10-03 Seiichi Rengakuji Photocatalyst supported aluminum material and its manufacturing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DOHSHI SATORU ET AL.: "Magnetron sputter-ho de kakushu kibanjo ni sakusei shita sanka titanuim hakumaku no hikari yuki choshinsuika tokusei", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 83, no. 1, 3 March 2003 (2003-03-03), pages 19, XP002982775 *
KAMEGAWA TAKASHI: "RF magnetron sputter-ho de sakusei shita nisanka titanium hakumaku no bijaku shigaisen shoshaka ni okeru hikari yuki choshinsuisei", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 83, no. 1, 3 March 2003 (2003-03-03), pages 19, XP002982774 *
TAKEUCHI MASATO: "Magunetron sputter-seimakuho no yoru kashi hikari otogata sanka titanium hakumaku hikari shokubai no sosei to sono hannosei", vol. 43, no. 6, 10 September 2001 (2001-09-10), pages 502 - 504, XP002982776 *

Also Published As

Publication number Publication date
JP2004339021A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
Jeurgens et al. Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium
Singh et al. Room temperature growth of nanocrystalline anatase TiO2 thin films by dc magnetron sputtering
Thielsch et al. Quantum-size effects of PbS nanocrystallites in evaporated composite films
Eufinger et al. Effect of microstructure and crystallinity on the photocatalytic activity of TiO2 thin films deposited by dc magnetron sputtering
Chi et al. Control of hydrophobic surface and wetting states in ultra-flat ZnO films by GLAD method
Ryu et al. Effect of calcination on the structural and optical properties of M/TiO2 thin films by RF magnetron co-sputtering
JP4261353B2 (en) Photocatalyst body, photocatalyst body manufacturing method, and photocatalyst body manufacturing apparatus
Majidi et al. Wettability of graphene oxide/zinc oxide nanocomposite on aluminum surface switching by UV irradiation and low temperature annealing
Stefanov et al. Quantitative relation between photocatalytic activity and degree of< 001> orientation for anatase TiO 2 thin films
Jang et al. Titanium oxide films on Si (100) deposited by electron-beam evaporation at 250° C
Zhou et al. Plasma‐controlled nanocrystallinity and phase composition of TiO2: A smart way to enhance biomimetic response
Fominski et al. Pulsed laser deposition of antifriction thin-film MoSex coatings at the different vacuum conditions
Zhou et al. Low temperature deposition of nanocrystalline TiO2 films: enhancement of nanocrystal formation by energetic particle bombardment
Pat et al. Investigation of the surface, morphological and optical properties of boron–doped ZnO thin films deposited by thermionic vacuum arc technique
WO2004101146A1 (en) Titanium oxide thin film exhibiting high photocatalytic activity under weak ultraviolet ray
Hossain et al. Influence of direct current power on the photocatalytic activity of facing target sputtered TiO2 thin films
Sabbah Amorphous titanium dioxide ultra-thin films for self-cleaning surfaces
Islam et al. Effect of deposition time on nanostructure ZnO thin films synthesized by modified thermal evaporation technique
Kudryavtseva et al. Study of coatings based on titanium oxides and oxynitrides using a set of methods
Lin et al. Fabricating TiO 2 photocatalysts by rf reactive magnetron sputtering at varied oxygen partial pressures
Shukla et al. Structural properties and wettability of TiO2 nanorods
Noguchi et al. Relationship between the photocatalytic characteristics and the oxygen partial pressure of TiO2 thin films prepared by a DC reactive sputtering method
US20120172196A1 (en) Photocatalytic multilayer metal compound thin film and method for producing same
JP2007224370A (en) MANUFACTURING METHOD OF TiO2 SPUTTER COATING FILM
Humphreys et al. Low cycles pulsed chemical vapor deposition of polycrystalline anatase TiO2

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase