WO2004100906A2 - Compositions de soins personnels contenant un elastomere de silicone - Google Patents

Compositions de soins personnels contenant un elastomere de silicone Download PDF

Info

Publication number
WO2004100906A2
WO2004100906A2 PCT/US2004/014434 US2004014434W WO2004100906A2 WO 2004100906 A2 WO2004100906 A2 WO 2004100906A2 US 2004014434 W US2004014434 W US 2004014434W WO 2004100906 A2 WO2004100906 A2 WO 2004100906A2
Authority
WO
WIPO (PCT)
Prior art keywords
composition
oil phase
skin
silicone elastomer
dispersed oil
Prior art date
Application number
PCT/US2004/014434
Other languages
English (en)
Other versions
WO2004100906A3 (fr
Inventor
Mannie Lee Clapp
Rebecca Ann Taylor
Brian Dale Barford
Jorge Max Sunkel
Karl Shiqing Wei
Cheyne Pohlman Thomas
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to BRPI0410128-6A priority Critical patent/BRPI0410128A/pt
Priority to AU2004238310A priority patent/AU2004238310A1/en
Priority to MXPA05011947A priority patent/MXPA05011947A/es
Priority to CA002524306A priority patent/CA2524306A1/fr
Priority to EP04751700A priority patent/EP1622578A2/fr
Priority to JP2006501308A priority patent/JP2006525232A/ja
Publication of WO2004100906A2 publication Critical patent/WO2004100906A2/fr
Publication of WO2004100906A3 publication Critical patent/WO2004100906A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • A61K8/894Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone modified by a polyoxyalkylene group, e.g. cetyl dimethicone copolyol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/58Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing atoms other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur or phosphorus
    • A61K8/585Organosilicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/895Polysiloxanes containing silicon bound to unsaturated aliphatic groups, e.g. vinyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations

Definitions

  • the present invention relates to the field of personal care compositions for improving skin feel of keratinous surfaces. More specifically, rinsable personal care compositions are provided that provide excellent skin moisturization and conditioning.
  • compositions are well known and widely used. These compositions have long been employed to cleanse and moisturize skin, deliver actives, hide imperfections and to reduce the oiliness/shine associated with sebum
  • Skin conditioning compositions that provide moisturizing benefits are known. Many of these compositions are aqueous systems comprising an emulsified conditioning oil or other similar material stabilized with surfactant. Typically, skin moisturizing compositions are in the form of lotions meant to be applied to the skin after bathing and throughout the day if reapplication is necessary.
  • Skin is made up of several layers of cells, which coat and protect the keratin and collagen fibrous proteins that form the skeleton of its structure.
  • the outermost of these layers referred to as the stratum corneum, is known to be composed of 25nm protein bundles surrounded by 8nm thick layers.
  • Anionic surfactants and organic solvents typically penetrate the stratum corneum membrane and, by delipidization (i.e. removal of the lipids from the stratum corneum), destroy its integrity. This destruction of the skin surface topography leads to a rough feel and may eventually permit the surfactant or solvent to interact with the keratin, creating irritation.
  • compositions which will effectively deposit moisturizers and /or other skin benefit agents in the shower and/or bath and thereby assist the stratum corneum in maintaining its barrier and water-retention functions at optimum performance in spite of deleterious interactions which the skin may encounter in washing, work, and recreation. Desirable properties of such skin care compositions are to provide good skin feel.
  • rinsable personal care compositions that contain silicone elastomers and a dispersion oil phase will effectively co-deposit oils, elastomers and /or other skin benefit agents such in the shower and/or bath and provide softer skin feel across all skin types and at the same time assist the stratum corneum in maintaining its barrier and water-retention functions at optimum performance in spite of deleterious interactions which the skin may encounter in washing, work, and recreation and at the same time.
  • Several publications have also disclosed the use of personal care compositions that contain silicone elastomers. See, e.g. US 6,183,766. This publication teaches the use of silicone elastomers in combination with a lipid. However, the use of silicone elastomers is taught to degrease a lipid containing hand sanitizer product.
  • the present invention provides personal care compositions, which may further comprise skin benefit agents. These compositions provide improved skin appearance, aesthetics and skin feel during and/or after application, and are especially useful in providing improved deposition or effectiveness of skin conditioning agents to the desired area of the skin.
  • the present invention relates to a personal care composition
  • a personal care composition comprising, a dispersed oil phase, a silicone elastomer and an aqueous phase.
  • silicone elastomers dispersed in a structured oil allows for co- depositing of oil and elastomer on the skin from rinsable compositions.
  • the dispersion phase of oils prevents the silicone elastomer from aggregation in an aqueous environment.
  • the dispersed oil phase also serves as a carrier for these materials, which normally do not have a favorable deposition profile, and allows for appreciable deposition of these materials on skin.
  • These compositions are rinsable and at the same time deposit oil and silicone elastomer onto all keratinous surfaces while providing improved skin feel.
  • compositions of the present invention can comprise, consist essentially of, or consist of, the essential as well as optional ingredients and components described herein.
  • Consisting essentially of means that the composition or component may include additional ingredients, but only if the additional ingredients do not materially alter the basic and novel characteristics of the claimed compositions or methods.
  • topical application means to apply or spread the compositions of the present invention onto the surface of the skin.
  • compositions or components thereof so described are suitable for use in contact with human skin without undue toxicity, incompatibility, instability, allergic response, and the like.
  • gel-network means an emulsifying system comprised of fatty alcohol and a hydrophilic surfactant.
  • safe and effective amount means an amount of a compound, component, or composition sufficient to significantly induce a positive benefit, preferably a positive skin appearance or feel benefit, including independently the benefits disclosed herein, but low enough to avoid serious side effects, i.e., to provide a reasonable benefit to risk ratio, within the scope of sound medical judgment.
  • Active and other ingredients useful herein may be categorized or described herein by their cosmetic and/or therapeutic benefit or their postulated mode of action. However, it is to be understood that the active and other ingredients useful herein can in some instances provide more than one cosmetic and/or therapeutic benefit or operate via more than one mode of action. Therefore, classifications herein are made for the sake of convenience and are not intended to limit an ingredient to the particularly stated application or applications listed.
  • compositions of the invention are useful for topical application and for providing an essentially immediate (i.e., acute) skin feel following rinse off of the composition to on the keratinous surface. Without intending to be limited by theory, it is believed that this acute skin feel improvement results at least in part from therapeutic coverage or masking of skin imperfections by the deposition of oil and silicone elastomers.
  • compositions of the present invention are useful for regulating skin condition, including regulating visible and/or tactile discontinuities in skin, including but not limited to visible and/or tactile discontinuities in skin texture and/or color, more especially discontinuities associated with skin aging.
  • Such discontinuities may be induced or caused by internal and/or external factors.
  • Extrinsic factors include ultraviolet radiation (e.g., from sun exposure), environmental pollution, wind, heat, low humidity, harsh surfactants, abrasives, and the like.
  • Intrinsic factors include chronological aging and other biochemical changes from within the skin.
  • the dispersed oil phase comprises a skin compatible oil.
  • the dispersed phase will have negligible solubility in the external phase and will be present as discrete particles in the composition.
  • the dispersed oil phase preferably comprises no more than about 80 weight percent of the composition, more preferably no more than about 70 weight percent, still more preferably no more than about 60 weight percent, and still more preferably no more than about 50 weight percent of the dispersed oil phase.
  • the dispersed oil phase preferably comprises at least about 1 weight percent, more preferably at least about 5 weight percent, even more preferably at least about 7 weight percent, and still more preferably at least lOweight percent of the composition.
  • the shear index is a measure of how shear thinning the materials are as described in the method described herein.
  • the materials are Newtonian, and while they may be viscous, they will generally not possess sufficient structure to entrap silicone elastomer gels and elastomer particles. Therefore it is preferred that the skin compatible oil be shear thinning either by virtue of its composition or the stmcturants that may be added.
  • the shear index of the dispersed oil phase will be less than about 0.9, more preferably less than about 0.75, even more preferably less than about 0.6, even more preferably less than about 0.45, and still more preferably less than about 0.3.
  • a skin compatible oil is defined here, as an oil that is liquid or semi-solid at the temperature at which bathing is carried out that is deemed safe for use in cosmetics being either inert to the skin or actually beneficial.
  • the most useful skin compatible oils for the present invention include ester oils, hydrocarbon oils, and silicone oils.
  • Ester oils have at least one ester group in the molecule.
  • One type of common ester oil useful in the present invention are the fatty acid mono and polyesters such as cetyl octanoate, octyl isonanoanate, myristyl lactate, cetyl lactate, isopropyl myristate, myristyl myristate, isopropyl palmitate, isopropyl adipate, butyl stearate, decyl oleate, cholesterol isostearate, glycerol monostearate, glycerol distearate, glycerol tristearate, alkyl lactate, alkyl citrate and alkyl tartrate; sucrose ester and polyesters, sorbitol ester, and the like.
  • a second type of useful ester oil is predominantly comprised of triglycerides and modified triglycerides.
  • triglycerides include vegetable oils such as jojoba, soybean, canola, sunflower, safflower, rice bran, avocado, almond, olive, sesame, persic, castor, coconut, and mink oils.
  • Synthetic triglycerides can also be employed provided they are liquid at room temperature.
  • Modified triglycerides include materials such as ethoxylated and maleated triglyceride derivatives provided they are liquids.
  • Proprietary ester blends such as those sold by Finetex as Finsolv are also suitable, as is ethylhexanoic acid glyceride.
  • a third type of ester oil is liquid polyester formed from the reaction of a dicarboxylic acid and a diol.
  • polyesters suitable for the present invention is the polyesters marketed by ExxonMobil under the trade name PURESYN ESTER.RTM.
  • a second class of skin compatible oils suitable for the present invention is liquid and semi-solid hydrocarbons.
  • These include linear and branched oils such as liquid paraffin, squalene, squalane, mineral oil, low viscosity synthetic hydrocarbons such as polyalphaolefm sold by ExxonMobil under the trade name of PURESYN PAO and polybutene under the trade name PANALANE or INDOPOL.
  • Light (low viscosity) highly branched hydrocarbon oils are also suitable.
  • Petrolatum is a unique hydrocarbon material and a useful component of the present invention. Its semi-solid nature can be controlled both in production and by the formulator through blending with other oils. Since it is only partially comprised of a liquid fraction at room temperature, it is more properly regarded as either the "structured oil phase" when present by itself or alternatively as the “structurant” when admixed with other skin compatible oils.
  • a third class of useful skin compatible oils is silicone based. They include linear and cyclic polydimethyl siloxane, organo functional silicones (alkyl and alkyl aryl), and amino silicones.
  • the dispersed oil phase will have some structure - i.e. it is not completely fluid. This can be accomplished through the use of structurants as is commonly done by those skilled in the art, or by the use of oils which are naturally structured, such as petrolatum.
  • the structure serves to entrap the silicone elastomer in the dispersed oil phase droplet.
  • at least a portion of the silicone elastomer is entrapped in the dispersed oil phase after processing as observed via light microscopy.
  • Silicone elastomers are deformable, flexible cross-linked organopolysiloxane materials that are useful in the present invention and are illustrated in U.S. Pat. No. 5,654,362, herein incorporated by reference in its entirety.
  • silicone elastomers are present in two forms: A silicone elastomer gel, in which the elastomer is combined with a compatible solvent, resulting in a homogeneous gel, and the dry elastomer polymer, which is usually supplied as a powder.
  • the silicone elastomer When present in the claimed compositions, regardless of form (gelled or powder), the silicone elastomer preferably comprises no more than about 40 weight percent, more preferably no more than about 20 weight percent, and still more preferably no more than about 10 weight percent. When present, the silicone elastomer preferably comprises at least 0.5 weight percent.
  • Such elastomers can be used alone or with volatile or nonvolatile solvents.
  • suitable solvents include, but are not limited to, volatile and non-volatile silicones, volatile and non-volatile alcohols, volatile and non-volatile esters, volatile and non-volatile hydrocarbons, and mixtures thereof.
  • Preferred elastomer gels for use herein are elastomer/solvent blends having an elastomer to solvent ratio of from about 1:100 to about 1:1, more preferably from about 1:50 to about 1:5.
  • the silicone elastomer gel has a viscosity of no more than 7,500,000 centipoise, more preferably no more than 500, 000 centipoise.
  • the silicone elastomer blend has a viscosity of at least than 1,000 centipoise, more preferably at least 10,000 centipoise.
  • the elastomer (prior to its addition to the skin compatible oil) is essentially 'dry'
  • the elastomers are by definition crosslinked, the degree of which can be vary depending on the elastic properties of the polymer that are desired.
  • Cross-linking materials may be hydrophilic (ethylene oxide and propylene oxide, for example), hydrophobic (dimethicone, vinyl dimethicone, alkyl, etc.) or combinations thereof.
  • silicone elastomer gels examples include DC9040 (cyclomethicone and dimethicone crosspolymer blend), DC9010 and DC 9011 (Dow Corning.); (SFE 839 cyclomethicone and dimethicone/vinyldimethicone cross polymer blend ,GE); (Gransil GCM (octamethylcyclotetrasiloxane and polysilicone-11 blend ), KSG-21, KSG-210, KSG-310, KSG- 320, KSG-330 and KSG-340, KSG-41, KSG-42, KSG-43, USG-103 all made by Shin-Etsu and varying in crosslinking agent and in solvent composition; and mixtures thereof.
  • DC9040 cyclomethicone and dimethicone crosspolymer blend
  • DC9010 and DC 9011 DC 9011
  • Nonlimiting examples of silicone elastomer powders useful in the present invention are the KSP 100 and 200 series and the KMP series from Shin Etsu and DC9506 from Dow Corning and Toray.
  • the silicone elastomer gels or powders preferably comprises no more than about 60 weight percent, more preferably no more than about 40 weight percent, and more preferably no more than about 20 weight percent.
  • the silicone elastomer preferably comprises at least 0.5 weight percent, more preferably at least 1 weight percent, and more preferably at least 2 weight percent.
  • the silicone elastomers are processed with the skin compatible oil in order to result in the entrapment of the elastomer by the skin compatible oil.
  • the silicone elastomer when the silicone elastomer is in the form of a silicone elastomer gel, there are two possible outcomes - the elastomer gel may be compatible with the skin compatible oil and a new gel would be formed, or the elastomer gel will not be compatible with the skin compatible oil and the elastomer would exist in separate domains within the dispersed skin compatible oil phase.
  • a similar situation can occur when using a silicone elastomer powder, the powder may be compatible with the skin compatible oil and some gelling may occur, or the powder may be incompatible with the skin compatible oil and no gelling may occur.
  • Preferred herein are the situations where the elastomer gel or elastomer powder is not compatible with the skin compatible oil and discrete domains of elastomer gel or elastomer powder are present within the dispersed oil phase.
  • VSP Vaughn Solubility Parameter
  • the solvent phase of the silicone elastomer gel has an absolute difference of at least 0.5 VSP units from the skin compatible oil, more preferably at least 0.8 VSP units, and even more preferably at least 1.2 VSP units.
  • Preferred elastomer gels or powders for use herein are elastomer/skin compatible oil mixtures having an elastomer to skin compatible oil ratio of from about 1:100 to about 1:1, more preferably from about 1:50 to about 1:2, still more preferably from about 1:25 to about 1:3.
  • the continuous aqueous phase of the present invention typically comprises from no more than about 90 weight percent of a fluid, preferably no more than 80%, even more preferably no more than about 70 weight percent, still more preferably no more than about 60 weight percent.
  • the continuous aqueous phase of the present invention typically comprises at least 10 weight percent of a fluid, preferably at least 20 weight percent, even more preferably at least 30 weight percent, still more preferably at least 40 weight percent of a fluid.
  • the term "fluid” as used herein means water, mono- and polyhydric alcohols (glycerin, propylene glycol, ethanol, isopropanol, sorbitol, etc.), or any material which is water miscible.
  • a “continuous" phase is also described by those skilled in the art as an “external” phase.
  • Optional Ingredients glycerin, propylene glycol, ethanol, isopropanol, sorbitol, etc.
  • compositions of the present invention may contain one or more additional skin care components.
  • additional components should be suitable for application to keratinous tissue, that is, when incorporated into the composition they are suitable for use in contact with human keratinous tissue without undue toxicity, incompatibility, instability, allergic response, and the like within the scope of sound medical judgment.
  • CTFA Cosmetic Ingredient Handbook, Second Edition (1992) describes a wide variety of nonlimiting cosmetic and pharmaceutical ingredients commonly used in the personal care industry, which are suitable for use in the compositions of the present invention.
  • the additional components useful herein can be categorized by the benefit they provide or by their postulated mode of action. However, it is to be understood that the additional components useful herein can in some instances provide more than one benefit or operate via more than one mode of action. Therefore, classifications herein are made for the sake of convenience and are not intended to limit the active to that particular application or applications listed. Stmcturants
  • the present invention may optionally comprise an oil structurant.
  • the structurant can provide the dispersed phase with the correct rheological properties. This can aid in providing effective deposition and retention to the skin, the structured oil or oil phase should have a viscosity in the range of 100 to about 200,000 poise measured at 1 Sec-1, preferably 200 to about 100,000 poise, and most preferably 200 to about 50,000 poise as determined using the lipid rheology method described below.
  • the amount of structurant required to produce this viscosity will vary depending on the oil and the structurant, but in general, the structurant will preferably be less than 75 weight percent of the dispersed oil phase, more preferably less than 50 weight percent, and still more preferably less than 35 weight percent of the dispersed oil phase.
  • the structurant can be either an organic or inorganic structurant.
  • organic thickeners suitable for the invention are solid fatty acid esters, natural or modified fats, fatty acid, fatty amine, fatty alcohol, natural and synthetic waxes, and petrolatum, and the block copolymers sold under the name KRATON by Shell.
  • Inorganic structuring agents include hydrophobically modified silica or hydrophobically modified clay.
  • Nonlimiting examples of inorganic structurants are BENTONE 27V, BENTONE 38V or BENTONE GEL MIO V from Rheox; and CAB-O-SIL TS720 or CAB-O-SIL M5 from Cabot Corporation.
  • Structurants meeting the above requirements with the selected skin compatible oil can form 3 -dimensional network to build up the viscosity of the selected oils. It has been found that such structured oil phases, i.e., built with the 3-dimensional network, are extremely desirable for use as wet-skin treatment compositions used in bathing. These structured oils can deposit and be retained very effectively on wet skin and retained after rinsing and drying to provide long-lasting after wash skin benefit without causing a too oily/greasy wet and dry feel. It is believed that the highly desirable in-use and after-use properties of such structured oils are due to their shear thinning rheological properties and the weak structure of the network.
  • the 3-dimensional network structured oil can stick and retain well on the skin during application of the skin conditioner. After being deposited on the skin, the network yields easily during rubbing due to the weak structuring of the crystal network and its lower high-shear viscosity.
  • the composition preferably contains no more than about 50 weight percent of a surfactant, more preferably no more than about 30 weight percent, still more preferably no more than about 15 weight percent, and even more preferably no more than about 5 weight percent of a surfactant.
  • the composition preferably contains at least about 5 weight percent of a surfactant, more preferably at least about 3 weight percent, still more preferably at least about 1 weight percent, and even more preferably at least about 0.1 weight percent of a surfactant.
  • the personal care compositions preferably produces a Total Lather Volume of at least 300 ml, more preferably greater than 600ml as described in the Lathering Volume Test.
  • the personal care compositions preferably produces a Flash Lather Volume of at least 100 ml, preferably greater than 200ml, more preferably greater than 300ml as described in the Lathering Volume Test.
  • the personal care compositions preferably produces a Flash Lather Volume of at least 100 ml, preferably greater than 200ml, more preferably greater than 300ml as described in the Lathering Volume Test.
  • Preferable surfactants include those selected from the group consisting of anionic surfactants, nonionic surfactants, amphoteric surfactants, non-lathering surfactants, emulsifiers and mixtures thereof.
  • anionic surfactants include those selected from the group consisting of anionic surfactants, nonionic surfactants, amphoteric surfactants, non-lathering surfactants, emulsifiers and mixtures thereof.
  • Non-limiting examples of surfactants useful in the compositions of the present invention are disclosed in U.S. Pat. No. 6,280,757, to McAtee et al., issued Aug. 28, 2001.
  • Anionic Surfactants are disclosed in U.S. Pat. No. 6,280,757, to McAtee et al., issued Aug. 28, 2001.
  • Non-limiting examples of anionic surfactants useful in the compositions of the present invention are disclosed in McCutcheon's, Detergents and Emulsifiers, North American edition (1986), published by allured Publishing Corporation; McCutcheon's, Functional Materials, North American Edition (1992); and U.S. Pat. No. 3,929,678, to Laughlin et al., issued Dec. 30, 1975.
  • anionic surfactants include those selected from the group consisting of sarcosinates, sulfates, isethionates, taurates, phosphates, lactylates, glutamates, and mixtures thereof.
  • anionic surfactants include those selected from the group consisting of sarcosinates, sulfates, isethionates, taurates, phosphates, lactylates, glutamates, and mixtures thereof.
  • the alkoyl isethionates are preferred, and amongst the sulfates, the alkyl and alkyl ether sulfates are preferred.
  • fatty acid soaps i.e., alkali metal salts, e.g., sodium or potassium salts
  • fatty acid soaps typically having from a fatty acid having about 8 to about 24 carbon atoms, preferably from about 10 to about 20 carbon atoms.
  • These fatty acids used in making the soaps can be obtained from natural sources such as, for instance, plant or animal-derived glycerides (e.g., palm oil, coconut oil, soybean oil, castor oil, tallow, lard, etc.)
  • the fatty acids can also be synthetically prepared. Soaps and their preparation are described in detail in U.S. Pat. No. 4,557,853.
  • anionic materials include phosphates such as monoalkyl, dialkyl, and trialkylphosphate salts.
  • preferred anionic lathering surfactants useful herein include those selected from the group consisting of sodium lauryl sulfate, ammonium lauryl sulfate, ammonium laureth sulfate, sodium laureth sulfate, sodium trideceth sulfate, ammonium cetyl sulfate, sodium cetyl sulfate, ammonium cocoyl isethionate, sodium lauroyl isethionate, sodium lauroyl lactylate, triethanolamine lauroyl lactylate, sodium caproyl lactylate, sodium lauroyl sarcosinate, sodium myristoyl sarcosinate, sodium cocoyl sarcosinate, sodium lauroyl methyl taurate, sodium cocoyl methyl taurate, sodium lauroyl glutamate, sodium myristoyl glutamate,
  • ammonium lauryl sulfate ammonium laureth sulfate, sodium lauroyl sarcosinate, sodium cocoyl sarcosinate, sodium myristoyl sarcosinate, sodium lauroyl lactylate, and triethanolamine lauroyl lactylate.
  • Non-limiting examples of nonionic surfactants for use in the compositions of the present invention are disclosed in McCutcheon's, Detergents and Emulsifiers, North American edition (1986), published by allured Publishing Corporation; and McCutcheon's, Functional Materials, North American Edition (1992).
  • Nonionic surfactants useful herein include those selected from the group consisting of alkyl glucosides, alkyl polyglucosides, polyhydroxy fatty acid amides, alkoxylated fatty acid esters, sucrose esters, amine oxides, and mixtures thereof.
  • Non-limiting examples of preferred nonionic surfactants for use herein are those selected form the group consisting of C 8 -C ⁇ glucose amides, C 8 -C ⁇ alkyl polyglucosides, sucrose cocoate, sucrose laurate, lauramine oxide, cocoamine oxide and mixtures thereof.
  • amphoteric surfactant is also intended to encompass zwitterionic surfactants, which are well known to formulators skilled in the art as a subset of amphoteric surfactants.
  • zwitterionic surfactants which are well known to formulators skilled in the art as a subset of amphoteric surfactants.
  • amphoteric lathering surfactants can be used in the compositions of the present invention.
  • Particularly useful are those which are broadly described as derivatives of aliphatic secondary and tertiary amines, preferably wherein the nitrogen is in a cationic state, in which the aliphatic radicals can be straight or branched chain and wherein one of the radicals contains an ionizable water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • an ionizable water solubilizing group e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • amphoteric surfactants useful in the compositions of the present invention are disclosed in McCutcheon's, Detergents and Emulsifiers, North American edition (1986), published by allured Publishing Corporation; and McCutcheon's, Functional Materials, North American Edition (1992).
  • Non-limiting examples zwitterionic surfactants are those selected from the group consisting of betaines, sultaines, hydroxysultaines, alkyliminoacetates, imninodialkanoates, aminoalkanoates, and mixtures thereof.
  • Preferred surfactants for use herein are the following, wherein the anionic surfactant is selected from the group consisting of ammonium lauroyl sarcosinate, sodium trideceth sulfate, sodium lauroyl sarcosinate, ammonium laureth sulfate, sodium laureth sulfate, ammonium lauryl sulfate, sodium lauryl sulfate, ammonium cocoyl isethionate, sodium cocoyl isethionate, sodium lauroyl isetlionate, sodium cetyl sulfate, sodium lauroyl lactylate, triethanolamine lauroyl lactylate, and mixtures thereof, wherein the non-ionic surfactant is selected from the group consisting of lauramine oxide, cocoamine oxide, decyl polyglucose, lauryl polyglucose, sucrose cocoate, Ci2- 14 glucosamides, sucrose laurate, and mixtures thereof; and where
  • composition of the present invention can comprise a sufficient amount of one or more non-lathering surfactants to emulsify the dispersed phase to yield an appropriate particle size and good application properties on wet skin.
  • Nonlimiting examples of these non-lathering compositions are: polyethylene glycol 20 sorbitan monolaurate (Polysorbate 20), polyethylene glycol 5 soya sterol, Steareth-20, Ceteareth- 20, PPG-2 methyl glucose ether distearate, Ceteth-10, Polysorbate 80, cetyl phosphate, potassium cetyl phosphate, diethanolamine cetyl phosphate, Polysorbate 60, glyceryl stearate, PEG- 100 stearate, polyoxyethylene 20 sorbitan trioleate (Polysorbate 85), sorbitan monolaurate, polyoxyethylene 4 lauryl ether sodium stearate, polyglyceryl-4 isostearate, hexyl laurate, steareth- 20, ceteareth-20, PPG-2 methyl glucose ether distearate, ceteth-10, diethanolamine cetyl phosphate, glyceryl stearate, PEG- 100 stearate, and mixtures thereof
  • PROLIPID 141 glyceryl stearate, behenyl alcohol, palmitic acid, stearic acid, lecithin, lauryl alcohol, myristyl alcohol and cetyl alcohol
  • 151 Glyceryl stearate, cetearyl alcohol, stearic acid, 1-propanamium, 3-amino-N-(2-(hydroxyethyl)-N-N- Dimethyl,N-C(16-18) Acyl Derivatives, Chlorides
  • POLAWAX NF Emulsifying wax NF
  • INCROQUAT BEHENYL TMS behentrimonium sulfate and cetearyl alcohol
  • EMULLIUM DELTA cetyl alcohol, glyceryl stearate, peg-75 stearate, ceteth-20 and steareth-20
  • compositions of the present invention may further include one or more thickening/aqueous phase stability agents.
  • the composition preferably comprises no more than about 10 weight percent, more preferably no more than about 8 weight percent, and still more preferably no more than about 7 weight percent of the personal care composition.
  • the thickening/aqueous phase stability agent preferably comprises at least about 0.01 weight percent, more preferably at least about 0.05 weight percent, and still more preferably at least about 0.1 weight percent of the personal care composition.
  • a better method of describing the Stability Agent is to say that it must build viscosity in the product.
  • the stability agent produces a viscosity in this test of at least 1000 cps, more preferably at least 1500 cps, and still more preferably at least 2000 cps.
  • Nonlimiting examples of thickening agents useful herein include carboxylic acid polymers such as the carbomers (such as those commercially available under the tradename
  • Other suitable carboxylic acid polymeric agents include copolymers of C 19.30 alkyl acrylates with one or more monomers of acrylic acid, methacrylic acid, or one of their short chain (i.e., C ⁇ _4 alcohol) esters, wherein the crosslinking agent is an allyl ether of sucrose or pentaerytritol. These copolymers are known as acrylates/C !0-3 o alkyl acrylate crosspolymers and are commercially available as
  • CARBOPOL® 1342 CARBOPOL® 1382, PEMULEN TR-1, and PEMULEN TR-2, from B.F. Goodrich.
  • thickening agents include crosslinked polyacrylate polymers including both cationic and nonionic polymers.
  • thickening agents include the polyacrylamide polymers, especially nonionic polyacrylamide polymers including substituted branched or unbranched polymers. More preferred among these polyacrylamide polymers is the nonionic polymer given the CTFA designation polyacrylamide and isoparaffin and laureth-7, available under the Tradename SEPIGEL 305 from Seppic Corporation (Fairfield, NJ).
  • Other polyacrylamide polymers useful herein include multi-block copolymers of acrylamides and substituted acrylamides with acrylic acids and substituted acrylic acids. Commercially available examples of these multi-block copolymers include HYP AN SR150H, SS500V, SS500W, SSSA100H, from Lipo Chemicals, Inc., (Patterson, NJ).
  • Nonlimiting classes of thickening agents useful herein is the polysaccharides.
  • polysaccharide gelling agents include those selected from cellulose, and cellulose derivatives.
  • alkyl hydroxyalkyl cellulose ethers Preferred among the alkyl hydroxyalkyl cellulose ethers is the material given the CTFA designation cetyl hydroxyethylcellulose, which is the ether of cetyl alcohol and hydroxyethylcellulose, sold under the tradename NATROSEL® CS PLUS from Aqualon Corporation (Wilmington, DE).
  • Other useful polysaccharides include scleroglucans which are a linear chain of (1-3) linked glucose units with a (1-6) linked glucose every three units, a commercially available example of which is CLEAROGELTM CS11 from Michel Mercier Products Inc. (Mountainside, NJ).
  • Nonlimiting classes of thickening agents useful herein are the gums.
  • Nonlimiting examples of gums useful herein include hectorite, hydrated silica, xantham gum, and mixtures thereof.
  • modified starches are the modified starches.
  • Acrylate modified starches such as WATERLOCK® from Grain Processing Corporation may be used.
  • Hydroxypropyl starch phosphate tradename STRUCTURE XL from National Starch is another example of a useful modified starch, and other useful examples include ARISTOFLEX HMB (Ammonium Acrylodimethyltaruate/Beheneth-25 Methacrylate Crosspolymer) from Clariant.
  • ARISTOFLEX HMB Ammonium Acrylodimethyltaruate/Beheneth-25 Methacrylate Crosspolymer
  • the present invention may also contain organic cationic deposition polymer Concentrations of the cationic deposition polymer preferably range from about 0.025% to about 3%, more preferably from about 0.05% to about 2%, even more preferably from about 0.1% to about 1%, by weight of the personal care composition.
  • Suitable cationic deposition polymers for use in the present invention contain cationic nitrogen-containing moieties such as quaternary ammonium or cationic protonated amino moieties.
  • the cationic protonated amines can be primary, secondary, or tertiary amines (preferably secondary or tertiary), depending upon the particular species and the selected pH of the personal cleansing composition.
  • the average molecular weight of the cationic deposition polymer is between about 5,000 to about 10 million, preferably at least about 100,000, more preferably at least about 200,000, but preferably not more than about 2 million, more preferably not more than about 1.5 million.
  • the polymers also have a cationic charge density ranging from about 0.2 meq/gm to about 5 meq/gm, preferably at least about 0.4 meq/gm, more preferably at least about 0.6 meq/gm., at the pH of intended use of the personal cleansing composition, which pH will generally range from about pH 4 to about pH 9, preferably between about pH 5 and about pH 8.
  • Nonlimiting examples of cationic deposition polymers for use in the personal care composition include polysaccharide polymers, such as cationic cellulose derivatives.
  • Preferred cationic cellulose polymers are the salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 10 which are available from Amerchol Corp. (Edison, N.J., USA) in their Polymer KG, JR and LR series of polymers with the most preferred being KG-30M.
  • Suitable cationic deposition polymers include cationic guar gum derivatives, such as guar hydroxypropyltrimonium chloride, specific examples of which include the Jaguar series (preferably Jaguar C-17) commercially available from Rhodia Inc., and N-Hance polymer series commercially available from Aqualon.
  • cationic guar gum derivatives such as guar hydroxypropyltrimonium chloride, specific examples of which include the Jaguar series (preferably Jaguar C-17) commercially available from Rhodia Inc., and N-Hance polymer series commercially available from Aqualon.
  • Suitable cationic deposition polymers include synthetic cationic polymers.
  • the cationic polymers suitable for use in the cleansing composition herein are water soluble or dispersible, non crosslinked, cationic polymers having a cationic charge density of from about 4 meq/gm to about 7 meq/gm, preferably from about 4 meq/gm to about 6 meq/gm, more preferably from about 4.2 meq/gm to about 5.5 meq/gm.
  • the select polymers also must have an average molecular weight of from about 1,000 to about 1 million, preferably from about 10,000 to about 500,000, more preferably from about 75,000 to about 250,000.
  • the concentration of the cationic polymerin the personal care composition ranges from about 0.025% to about 5%, preferably from about 0.1% to about 3%, more preferably from about 0.2% to about 1%, by weight of the composition.
  • a non limiting example of a commercially available synthetic cationic polymer for use in the cleansing compositions is polymethyacrylamidopropyl trimonium chloride, available under the trade name POLYCARE 133, from Rhodia, Cranberry, N.J., U.S.A. Shiny Particles
  • Nonlimiting examples of the interference pigments useful herein include those supplied by Persperse, Inc. under the trade name PRESTIGE ® , FLONAC ® ; supplied by EMD Chemicals, Inc. under the trade name TIMIRON ® , COLORONA ® , DICHRONA ® and XIRONA ® ; and supplied by Engelhard Co. under the trade name FLAMENCO ® , TIMICA ® DUOCHROME ® .
  • a second class of interference pigment is based on cholesteric liquid crystal, e.g. HELICONE ® HC supplied by KOBO products.
  • HELICONE ® HC is composed of transparent platelets of polyacrylates with a helical superstructure. As part of this structure, cigar-shaped liquid crystal molecules are fixed into layers of parallel rows. Each layer has a slightly different molecular orientation and the distance between two layers with the same molecular orientation defines as the "pitch", which determines the color.
  • This type pigment is hydrophobic. Therefore, they can be used without surface treatment.
  • optional ingredients include benefit agents that are selected from the group consisting of vitamins and derivatives thereof (e.g., ascorbic acid, vitamin E, tocopheryl acetate, and the like); sunscreens; thickening agents (e.g., polyol alkoxy ester, available as Crothix from Croda); preservatives for maintaining the anti microbial integrity of the cleansing compositions; anti-acne medicaments (resorcinol, salicylic acid, and the like); antioxidants; skin soothing and healing agents such as aloe vera extract, allantoin and the like; chelators and sequestrants; and agents suitable for aesthetic purposes such as fragrances, essential oils, skin sensates, pigments, pearlescent agents (e.g., mica and titanium dioxide), lakes, colorings, and the like (e.g., clove oil, menthol, camphor, eucalyptus oil, and eugenol) and antibacterial agents and mixtures thereof.
  • benefit agents that are selected from the group consisting of vitamins and derivative
  • Adhesive materials such as cross-linked silicone resin-dimethicone blends, as well as acrylate based adhesives and other commonly used film-forming materials such as the modified PVP polymers sold under the tradename GANEX from ISP may also be used in the present invention.
  • Lipid rheology is measured on a TA Instruments AR2000 stress-controlled rheometer with a Peltier temperature controlled sample stage or an equivalent.
  • a parallel plate geometry is used with a 40mm plate and a 1mm gap.
  • the lower plate is heated to 85°C and the melted lipid and structurant (if present) is added onto the lower plate and allowed to equilibrate.
  • the upper plate is then lowered to the 1mm gap while ensuring the lipid fills the gap fully, [spinning the top plate and adding more lipid to promote wicking], and the sample is cooled quickly to 25°C and equilibrated at 25°C for 5 minutes.
  • Viscosity is then measured using a stress-ramp procedure common on these types of machines using a logarithmic stress ramp from 20 to 2000Pa at a rate of 60 seconds per decade [2 minute ramp test], with 20 measurements points per decade.
  • the starting and ending stress is sufficient to induce flow and reach a shear rate of at least 10 sec-1.
  • Viscosity is recorded and the data fitted to a power law model using Equation 1. Only points between 0.001 sec-1 and 40 seconds- 1 are to be used in the power law fit.
  • the viscosity at 1.0 sec-1 is calculated from Equation 1. One should carefully watch the sample during the test so that when the material is ejected from under the plate, the method is stopped.
  • Lather volume of a liquid personal cleansing composition is measured using a graduated cylinder and a tumbling apparatus.
  • a 1,000 ml graduated cylinder is chosen which is marked in 10 ml increments and has a height of 14.5 inches at the 1,000 ml mark from the inside of its base (for example, Pyrex No. 2982).
  • Distilled water 100 grams at 23°C is added to the graduated cylinder.
  • the cylinder is clamped in a rotating device, which clamps the cylinder with an axis of rotation that transects the center of the graduated cylinder.
  • One gram of the total personal cleansing composition (0.5g of the cleansing phase and 0.5g of the benefit phase) is added into the graduated cylinder and the cylinder is capped.
  • the cylinder is rotated at a rate of 10 revolutions in about 20 seconds, and stopped in a vertical position to complete the first rotation sequence.
  • a timer is set to allow 30 seconds for the lather thus generated to drain. After 30 seconds of such drainage, the first lather volume is measured to the nearest 10 ml mark by recording the lather height in ml up from the base (including any water that has drained to the bottom on top of which the lather is floating).
  • the first lather volume the lowest height at which it is possible to see halfway across the graduated cylinder. If the lather is so coarse that a single or only a few foam cells ("bubbles") reach across the entire cylinder, the height at which at least 10 foam cells are required to fill the space is the first lather volume, also in ml up from the base. Foam cells larger than one inch in any dimension, no matter where they occur, are designated as unfilled air instead of lather.
  • Foam that collects on the top of the graduated cylinder but does not drain is also incorporated in the measurement if the foam on the top is in its own continuous layer, by adding the ml of foam collected there using a ruler to measure thickness of the layer, to the ml of foam measured up from the base.
  • the maximum foam height is 1,000 ml (even if the total foam height exceeds the 1,000 ml mark on the graduated cylinder).
  • a second rotation sequence is commenced which is identical in speed and duration to the first rotation sequence.
  • the second lather volume is recorded in the same manner as the first, after the same 30 seconds of drainage time.
  • a third sequence is completed and the third lather volume is measured in the same manner, with the same pause between each for drainage and taking the measurement.
  • compositions according to the present invention perform significantly better in this test than similar compositions in conventional emulsion form.
  • the personal care composition of Example 1-9 can be prepared by conventional formulation and mixing techniques.
  • aqueous phase composition by first dispersing the hydroxypropyl phosphate in water. Add and heat the emulsifying wax to 160F. Next, place the mixing vessel in a water bath to cool to under 100F. Add fragrance
  • lipid phase by first premixing if multiple lipids are present. Then, add the elastomers and the lipid to the premix at 160F. Then, mill the elastomer phase and the lipid phase under high shear using a Silverson L4R High Shear Mixer or equivalent until the dispersion is smooth and no large agglomerates of elastomer are present. Then, quickly add the still fluid lipid/Elastomer phase to the aqueous phase ( ⁇ 80F) with increased agitation. Add preservatives and agitate until product is smooth.
  • the composition described above can be prepared by conventional formulation and mixing techniques.
  • the cleansing phase composition is prepared by first adding citric acid into water at a 1:3 ratio to form a citric acid premix.
  • the following ingredients are then added into the main mixing vessel in the following sequence: water, Miracare SLB-354, sodium chloride, and preservatives. Start agitation of the main mixing vessel.
  • disperse polymer N-Hance 3196
  • Disperse PEG 90M Polyox WSR 301
  • the lipid phase is prepared by adding petrolatum into a mixing vessel. Heat the vessel to 190°F. Then add mineral oil with agitation. The Elastomer is milled into the lipids at 160F and then allow the vessel to cool down with slow agitation.
  • the cleansing and lipid phases are density matched to within 0.05 g/cm 3 . Both phases are packaged into a single container using conventional toothpaste-tube filler equipment.
  • the sample stage spins the bottle during filling process to create a striped appearance.
  • the stripe size is about 6 mm in width and 100 mm in length.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention concerne une composition de soins personnels contenant une phase huileuse dispersée, un élastomère de silicone et une phase aqueuse. Lesdites compositions sont rinçables et permettent en même temps le dépôt d'huile et d'élastomère de silicone sur toutes les surfaces kératineuses tout en assurant une sensation cutanée améliorée. En outre, la présente invention concerne un procédé d'utilisation d'une composition de soins personnels de rinçage qui contient un gel élastomère, une phase de dispersion et une phase aqueuse.
PCT/US2004/014434 2003-05-08 2004-05-10 Compositions de soins personnels contenant un elastomere de silicone WO2004100906A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0410128-6A BRPI0410128A (pt) 2003-05-08 2004-05-10 composições para cuidados pessoais contendo um elastÈmero de silicone
AU2004238310A AU2004238310A1 (en) 2003-05-08 2004-05-10 Personal care compositions containing a silicone elastomer and a dispersed oil phase
MXPA05011947A MXPA05011947A (es) 2003-05-08 2004-05-10 Composiciones para el cuidado personal que comprenden un elastomero de silicona.
CA002524306A CA2524306A1 (fr) 2003-05-08 2004-05-10 Compositions de soins personnels contenant un elastomere de silicone
EP04751700A EP1622578A2 (fr) 2003-05-08 2004-05-10 Compositions de soins personnels contenant un elastomere de silicone et une phase huileuse dispersee
JP2006501308A JP2006525232A (ja) 2003-05-08 2004-05-10 シリコーンエラストマーを含有するパーソナルケア組成物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US46874803P 2003-05-08 2003-05-08
US60/468,748 2003-05-08
US46955403P 2003-05-09 2003-05-09
US60/469,554 2003-05-09
US51604003P 2003-10-31 2003-10-31
US60/516,040 2003-10-31

Publications (2)

Publication Number Publication Date
WO2004100906A2 true WO2004100906A2 (fr) 2004-11-25
WO2004100906A3 WO2004100906A3 (fr) 2005-01-27

Family

ID=33458750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/014434 WO2004100906A2 (fr) 2003-05-08 2004-05-10 Compositions de soins personnels contenant un elastomere de silicone

Country Status (6)

Country Link
EP (1) EP1622578A2 (fr)
KR (1) KR20060009904A (fr)
AU (1) AU2004238310A1 (fr)
CA (1) CA2524306A1 (fr)
MX (1) MXPA05011947A (fr)
WO (1) WO2004100906A2 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013020A1 (fr) * 2004-08-04 2006-02-09 Unilever Plc Composition detergente amelioree comprenant des agents benefiques
GB2420076A (en) * 2004-10-15 2006-05-17 Boots Co Plc Skincare composition
WO2006110271A1 (fr) * 2005-04-07 2006-10-19 Dow Corning Corporation Emulsions eau dans silicone contenant des elastomeres
FR2903306A1 (fr) * 2006-07-07 2008-01-11 Oreal Composition cosmetique comprenant un elastomere
EP1877025A1 (fr) * 2005-04-23 2008-01-16 ELC Management LLC Compositions cosmetiques contenant une dispersion aqueuse d'elastomeres de silicone et leurs methodes d'utilisation
WO2009042732A1 (fr) * 2007-09-26 2009-04-02 Dow Corning Corporation Compositions cosmétiques contenant des mélanges pour gel organique à base de silicone hydrophobe
WO2009042832A3 (fr) * 2007-09-26 2009-07-16 Dow Corning Compositions de soin personnel contenant des gels organiques siliconés provenant d'élastomères de silicone réticulés à base polyalkyloxylène
CN101247855B (zh) * 2005-06-21 2011-11-02 陶氏康宁东丽株式会社 含有改性的有机基聚硅氧烷的化妆品
US20140328885A1 (en) * 2013-05-06 2014-11-06 IneSalus Corp. Sheet for cutaneous application containing vitamin e or an ester thereof
EP1570833B1 (fr) 2004-03-05 2016-08-31 Kao Germany GmbH Composition de traitement capillaire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102003278B1 (ko) 2019-03-18 2019-07-24 에이앤에이치 인터내셔널 코스메틱스 일시적 피부 주름가림용 실리콘탄성분말을 포함하는 화장료 조성물 및 이의 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917870A1 (fr) * 1997-11-21 1999-05-26 Unilever Plc Elastomères de silicone reticulé dans les compositions cosmétiques d'émulsions aqueuses
US6183766B1 (en) * 1999-02-12 2001-02-06 The Procter & Gamble Company Skin sanitizing compositions
EP1097695A1 (fr) * 1999-11-08 2001-05-09 L'oreal Composition contenant un suspension aqueuse de particules d'un organopolysiloxane élastomère, et ses utilisations cosmétiques
WO2002003934A2 (fr) * 2000-07-10 2002-01-17 The Procter & Gamble Company Compositions demaquillantes resistant au transfert
US20020022040A1 (en) * 2000-07-10 2002-02-21 The Proctor & Gamble Company Methods of enhancing delivery of oil-soluble skin care actives
WO2003053396A1 (fr) * 2001-12-20 2003-07-03 Coty B.V. Gel transparent antitranspirant
US20030190336A1 (en) * 2002-03-18 2003-10-09 Adams Christine Helga Personal care compositions comprising solid particles enterapped in a gel network
EP1360955A2 (fr) * 2002-05-10 2003-11-12 Henkel Kommanditgesellschaft auf Aktien Composition cosmétique avec un élastomère silicone et un latex de polymère épaississant
EP1416016A1 (fr) * 2002-11-01 2004-05-06 Shin-Etsu Chemical Co., Ltd. Composition pulverulente, dispersion de ladite composition dans de l'huile et preparation cosmetique contenant d'un silicone modifié de polyglycerine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917870A1 (fr) * 1997-11-21 1999-05-26 Unilever Plc Elastomères de silicone reticulé dans les compositions cosmétiques d'émulsions aqueuses
US6183766B1 (en) * 1999-02-12 2001-02-06 The Procter & Gamble Company Skin sanitizing compositions
EP1097695A1 (fr) * 1999-11-08 2001-05-09 L'oreal Composition contenant un suspension aqueuse de particules d'un organopolysiloxane élastomère, et ses utilisations cosmétiques
WO2002003934A2 (fr) * 2000-07-10 2002-01-17 The Procter & Gamble Company Compositions demaquillantes resistant au transfert
US20020022040A1 (en) * 2000-07-10 2002-02-21 The Proctor & Gamble Company Methods of enhancing delivery of oil-soluble skin care actives
WO2003053396A1 (fr) * 2001-12-20 2003-07-03 Coty B.V. Gel transparent antitranspirant
US20030190336A1 (en) * 2002-03-18 2003-10-09 Adams Christine Helga Personal care compositions comprising solid particles enterapped in a gel network
EP1360955A2 (fr) * 2002-05-10 2003-11-12 Henkel Kommanditgesellschaft auf Aktien Composition cosmétique avec un élastomère silicone et un latex de polymère épaississant
EP1416016A1 (fr) * 2002-11-01 2004-05-06 Shin-Etsu Chemical Co., Ltd. Composition pulverulente, dispersion de ladite composition dans de l'huile et preparation cosmetique contenant d'un silicone modifié de polyglycerine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1622578A2 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1570833B1 (fr) 2004-03-05 2016-08-31 Kao Germany GmbH Composition de traitement capillaire
US7476394B2 (en) 2004-08-04 2009-01-13 Conopco, Inc. Detergent composition with benefit agents
WO2006013020A1 (fr) * 2004-08-04 2006-02-09 Unilever Plc Composition detergente amelioree comprenant des agents benefiques
GB2420076A (en) * 2004-10-15 2006-05-17 Boots Co Plc Skincare composition
GB2420076B (en) * 2004-10-15 2010-05-19 Boots Co Plc Skincare composition
WO2006110271A1 (fr) * 2005-04-07 2006-10-19 Dow Corning Corporation Emulsions eau dans silicone contenant des elastomeres
JP4912392B2 (ja) * 2005-04-23 2012-04-11 イーエルシー マネージメント エルエルシー シリコーン・エラストマーの水分散液を含む化粧品組成物およびその使用方法
EP1877025A1 (fr) * 2005-04-23 2008-01-16 ELC Management LLC Compositions cosmetiques contenant une dispersion aqueuse d'elastomeres de silicone et leurs methodes d'utilisation
JP2008538765A (ja) * 2005-04-23 2008-11-06 イーエルシー マネージメント エルエルシー シリコーン・エラストマーの水分散液を含む化粧品組成物およびその使用方法
EP1877025A4 (fr) * 2005-04-23 2014-12-24 Elc Man Llc Compositions cosmetiques contenant une dispersion aqueuse d'elastomeres de silicone et leurs methodes d'utilisation
US8357360B2 (en) 2005-04-23 2013-01-22 E-L Management Corp. Cosmetic compositions containing an aqueous dispersion of silicone elastomers and methods of use
CN101247855B (zh) * 2005-06-21 2011-11-02 陶氏康宁东丽株式会社 含有改性的有机基聚硅氧烷的化妆品
FR2903306A1 (fr) * 2006-07-07 2008-01-11 Oreal Composition cosmetique comprenant un elastomere
WO2009042832A3 (fr) * 2007-09-26 2009-07-16 Dow Corning Compositions de soin personnel contenant des gels organiques siliconés provenant d'élastomères de silicone réticulés à base polyalkyloxylène
WO2009042732A1 (fr) * 2007-09-26 2009-04-02 Dow Corning Corporation Compositions cosmétiques contenant des mélanges pour gel organique à base de silicone hydrophobe
KR101521315B1 (ko) * 2007-09-26 2015-05-18 다우 코닝 코포레이션 폴리알킬옥실렌 가교결합된 실리콘 탄성중합체에서 나온 실리콘-유기 겔을 함유하는 개인 관리 조성물
EP3093001A1 (fr) * 2007-09-26 2016-11-16 Dow Corning Corporation Compositions de soin personnel contenant des gels organiques d'élastomères de silicone réticulés à base de polyalkyloxylène
US20140328885A1 (en) * 2013-05-06 2014-11-06 IneSalus Corp. Sheet for cutaneous application containing vitamin e or an ester thereof
US9408827B2 (en) * 2013-05-06 2016-08-09 Bio.Lo.Ga S.R.L. Sheet for cutaneous application containing vitamin E or an ester thereof
AU2014264976B2 (en) * 2013-05-06 2017-02-02 Hulka S.R.L. Sheet for cutaneous application containing vitamin E or an ester thereof

Also Published As

Publication number Publication date
KR20060009904A (ko) 2006-02-01
CA2524306A1 (fr) 2004-11-25
EP1622578A2 (fr) 2006-02-08
MXPA05011947A (es) 2006-02-02
WO2004100906A3 (fr) 2005-01-27
AU2004238310A1 (en) 2004-11-25

Similar Documents

Publication Publication Date Title
EP1633443B1 (fr) Compositions de produits d'hygiene corporelle contenant des pigments a interference hydrophobiquement modifies
EP1633442B1 (fr) Procede pour deposer des particules luisantes sur des surfaces keratiniques a partir de compositions rin ables
US20040223992A1 (en) Wet skin treatment compositions comprising gel-networks
EP1853354B1 (fr) Compositions de rinçage ou de nettoyage de la peau
US6407044B2 (en) Aerosol personal cleansing emulsion compositions which contain low vapor pressure propellants
US20060078524A1 (en) Multi phase personal care composition comprising a conditioning phase and an oil continuous benefit phase
US20040223993A1 (en) Personal care compositions that deposit shiny particles
EP1744816A1 (fr) Compositions de soins personnels deposant des agents benefiques hydrophiles
US20040234478A1 (en) Personal care compositions containing a silicone elastomer
EP1763333A2 (fr) Compositions pour soins personnels deposant des agents favorisant l'autobronzage
WO2004100906A2 (fr) Compositions de soins personnels contenant un elastomere de silicone
JP2006525232A (ja) シリコーンエラストマーを含有するパーソナルケア組成物
EP3154504B1 (fr) Compositions et méthodes permettant d'améliorer l'application topique d'un produit cosmétique coloré
CN100408022C (zh) 包含硅氧烷弹性体及分散油相的个人护理组合物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004751700

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2524306

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/011947

Country of ref document: MX

Ref document number: 12005501993

Country of ref document: PH

Ref document number: 1020057021093

Country of ref document: KR

Ref document number: 2004238310

Country of ref document: AU

Ref document number: 2004812222X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006501308

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2004238310

Country of ref document: AU

Date of ref document: 20040510

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004238310

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020057021093

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004751700

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0410128

Country of ref document: BR