WO2004100564A1 - 立体画像の表示方法及び装置 - Google Patents

立体画像の表示方法及び装置 Download PDF

Info

Publication number
WO2004100564A1
WO2004100564A1 PCT/JP2003/005708 JP0305708W WO2004100564A1 WO 2004100564 A1 WO2004100564 A1 WO 2004100564A1 JP 0305708 W JP0305708 W JP 0305708W WO 2004100564 A1 WO2004100564 A1 WO 2004100564A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
area
interest
stereoscopic image
focused
Prior art date
Application number
PCT/JP2003/005708
Other languages
English (en)
French (fr)
Inventor
Seijiro Tomita
Original Assignee
Seijiro Tomita
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seijiro Tomita filed Critical Seijiro Tomita
Priority to AU2003234904A priority Critical patent/AU2003234904A1/en
Priority to PCT/JP2003/005708 priority patent/WO2004100564A1/ja
Priority to US10/555,655 priority patent/US20070008404A1/en
Priority to JP2004571556A priority patent/JPWO2004100564A1/ja
Publication of WO2004100564A1 publication Critical patent/WO2004100564A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues

Definitions

  • the present invention relates to a method and an apparatus for displaying a three-dimensional image, and more particularly to a method and an apparatus for displaying a three-dimensional image in which a specific region of interest is determined and a region outside the region is positively blurred.
  • three-dimensional image information is obtained by imaging an object (subject) using a plurality of imaging means, for example, a camera, and this is displayed as a real image according to human visual characteristics.
  • the binocular parallax method is the binocular parallax method.
  • two cameras are set to the base line length of the naked eye (for example, 72 mm), and each value is set in consideration of the visual field convergence angle range for imaging.
  • an appropriate parallax (lateral displacement of the image) is given according to the distance and the shape from the object recognized by the observer.
  • the two cameras 1 and 2 photograph the subjects A and B in the background C
  • the obtained images 41 and 42 are observed.
  • the image of the background C which is the background of the subject A to be focused on, may be recognized in front of the subjects A and B.
  • the present invention has been made in view of the above situation, and a purpose thereof is to display a natural three-dimensional image in which a region other than a focused region is less noticeable than a focused region in a three-dimensional image. It is an object of the present invention to provide a stereoscopic image display method and apparatus capable of performing such a method.
  • an object to be focused is determined and a region of interest to be clearly displayed is determined.
  • This is a method for displaying a stereoscopic image, characterized by performing a blurring process on an area other than the area.
  • a region other than the region of interest in which the object to be focused is present is subjected to a blurring process, and a viewer cannot obtain a clear image of this region. Is done.
  • a region ahead of the cross point is set as a region of interest, and a region behind the cross point is blurred. It is characterized by
  • a region in front of a cross point where an object to be focused is located is defined as a region of interest, and a blurring process is performed in an unfocused region where a background or the like where no object to be focused exists is displayed. Since the viewer cannot obtain a clear image of this area, the area of interest is clearly displayed in three dimensions.
  • the region of interest is a peripheral region of the focal region, It is characterized in that the area is subjected to a shading process.
  • a part of a peripheral area of a focused area where an object to be focused is set as a focused area, and a blur processing is performed on a non-focused area where a background or the like where no focused object is present is displayed.
  • the viewer cannot obtain a clear image of this region, and the region of interest is clearly displayed in three dimensions.
  • an object to be focused is extracted, a periphery of the object is set as a region of interest, and a blurring process is performed on other regions. It is characterized by the following.
  • the periphery of an object to be focused is set as a region of interest, and a blurring process is performed in a region where a background or the like where there is no other object to be focused is displayed. Since no image can be obtained, the region of interest is clearly displayed in three dimensions.
  • a distance of each pixel constituting the image to an object to be photographed is calculated to determine a region of interest. Things.
  • an object to be focused can be specified by calculating a distance to each pixel of a captured image. In this way, the blur area can be defined.
  • the degree of blur of the blur processing is increased as the distance from the region of interest increases. It is a feature.
  • the change from the region of interest to the blur region becomes natural, and the viewer can obtain a natural stereoscopic image.
  • the captured image information is temporarily stored in an image memory, and the stored image is stored.
  • Each process is performed based on the information.
  • the present invention described in claim 8 is a method of displaying two images and displaying a three-dimensional body image. And a blurring means for performing a blurring process on an area other than the three-dimensional region.
  • the region of interest having the object to be focused on is specified by the region focusing unit, and the other regions are subjected to the polish processing by the blur processing unit. No image can be obtained, and the focused area is clearly displayed in 3D.
  • the region notifying unit sets a region ahead of the cross point as a focused region
  • the blur processing unit includes a region behind the cross point. It is characterized by performing a shading process in the region of.
  • the area focusing means sets the area in front of the cross point where the object to be focused normally has the focused area, and the blur processing means displays the background or the like where there is no other object to be focused.
  • the blurring process is performed on the out-of-focus area, and the viewer cannot obtain a clear image of this area, so that the focused area is clearly displayed in three dimensions.
  • the region-of-interest means includes: setting the region of interest to be a peripheral region of the in-focus region; It is characterized in that the region is subjected to a shading process.
  • the area focusing means normally takes a part of the peripheral area of the focusing area where the object to be focused is located as the focused area, and the blur processing means determines the background or the like where no other objects to be focused exist.
  • the displayed out-of-focus area is blurred, and the viewer cannot obtain a clear image of this area, so that the focused area is clearly displayed in three dimensions.
  • the present invention described in claim 11 is characterized in that the area focusing means extracts an object to be focused on and sets the periphery of the object as a focused area, and the blur processing means performs blur processing on other areas.
  • the area focusing means sets the area around the object to be focused as the focused area
  • the blur processing means performs blur processing on the area where the background or the like where there is no other object to be focused is displayed. Since the viewer cannot obtain a clear image of this region, the region of interest is clearly displayed in three dimensions.
  • the present invention described in claim 12 is the stereoscopic image display device according to claim 8, wherein the area attaching means calculates a distance of each pixel constituting the image to an object to be photographed. This is to determine the region of interest.
  • the region-of-interest means can specify the object of interest by calculating the distance to each pixel of the captured image. Thereby, the blur area can be determined.
  • the degree of blur increases as the distance from the region of interest increases. It is characterized by according to the present invention, in the polish processing means, the change from the region of interest to the blur region becomes natural, and the viewer can obtain a natural stereoscopic image.
  • the captured image information is stored in an image memory and stored. It is characterized in that each process is performed based on image information.
  • FIG. 1 is a block diagram illustrating a configuration of a stereoscopic image signal conversion device according to the present invention.
  • FIG. 2 is a flowchart showing the operation of the stereoscopic image signal conversion device shown in FIG.
  • FIG. 3 is a diagram showing a region of interest and a blurred region in an image.
  • FIG. 4 is an explanatory diagram showing a blurring process on an image.
  • FIG. 5 is a block diagram illustrating an example of a stereoscopic image signal conversion device according to the present invention.
  • FIG. 6 is a diagram for explaining a state of a photographed object.
  • FIG. 7 is a diagram illustrating an example of a region of interest and a poker region.
  • FIG. 8 is a diagram showing another example of a region of interest and a blurred region.
  • FIG. 9 is a diagram illustrating another example of the region of interest and the blurred region.
  • FIG. 10 is a diagram showing a stereoscopic image photographing apparatus to which the present invention is applied.
  • FIG. 1 to 11 show an example of a stereoscopic image signal conversion method and apparatus according to the present invention.
  • FIG. 1 is a block diagram showing the configuration of the stereoscopic image signal conversion device according to the present invention
  • FIG. 2 is a flowchart showing the operation of the stereoscopic image signal conversion device shown in FIG. 1
  • FIG. 3 is a region of interest and a blur region in an image.
  • FIG. 4 is an explanatory diagram showing a blurring process in an image
  • FIG. 5 is a block diagram showing an example of a stereoscopic image signal conversion device according to the present invention
  • FIG. 6 is a diagram explaining a state of a photographed object.
  • FIG. 7 is a diagram showing an example of a region of interest and a blurred region
  • FIG. 8 is a diagram showing another example of the region of interest and a blurred region
  • FIG. 9 is a diagram showing another example of a region of interest and a blurred region
  • FIG. 0 is a diagram showing a stereoscopic image photographing apparatus to which the present invention is applied.
  • the three-dimensional image signal conversion device basically includes an area focusing unit 10 connected to the right camera 1 and the left camera 2, a blur processing unit 20, It is composed of
  • the area focusing means 10 clearly displays an object (subject) to be focused on when displaying two images taken by the two cameras 1 and 2 to display a three-dimensional body image. A region of interest to be displayed is determined.
  • the blur processing means 20 performs a blur process on a region other than the region of interest.
  • the processing flow of the stereoscopic image signal conversion device is as shown in FIGS. 2, 3, and 4. That is, shooting is performed by the left and right two cameras 1 and 2 (S 1), and then the area focus unit 10 determines a focus area 30 to be clearly displayed in each image 40 obtained by this shooting. Yes (S 2). As a result, a region to be blurred (blur region 50) other than the region of interest is determined (S3). Then, the blur processing means 20 performs the blur processing of the blur area.
  • This blur processing is performed by applying a well-known blur filter 90, for example, a Sobel filter, a Laplacian filter, or a Gaussian filter to each pixel in the blur area 50 as shown in FIG.
  • a well-known blur filter 90 for example, a Sobel filter, a Laplacian filter, or a Gaussian filter
  • the degree of the poker can be determined by changing the filter size coefficient or the like by software.
  • the two cameras 1 and 2 are arranged at a distance d and their optical axes intersect at a cross point (C P) as shown in FIG.
  • the area focusing means 10 includes a photographing target identifying means 11 for identifying a photographing target, a distance measuring means 12 for measuring a distance to an object to be focused on, a size of the focused area, and the like. And a blur state setting means 14 for setting the type, degree, etc. of the blur.
  • the region of interest can be specified using various methods.
  • the first method is a method of determining a region of interest based on crosspoint (CP) information.
  • this is a region of interest 70 near the cross point (C P) in the field of view 60 and a blur region 80 farther than the cross point (C P).
  • this is a method of determining a region of interest based on the same or opposite phase of the obtained image.
  • This is in-phase (when the object is on the same side with respect to the center line passing through the cross point in the image (Fig. 6 (1))), as shown in Figs. ) Is defined as the region of interest, and the opposite phase (the case where the object is on the opposite side to the center line passing through the cross point in the image (Fig. 6 (2)): the same applies hereinafter) is defined as the blurred region Is equivalent to
  • the distance F to the object of interest A that is, the position 70 where the cameras 1 and 2 have focused on each other is defined as the area of interest 70, and the areas before and after the area of interest are blurred areas 80 and 80. It is assumed that.
  • the distance L to the target object A and the deviation ⁇ y from the axis O can be calculated by the following method. That is,
  • Equation 3 ⁇ z and Ay may be obtained from Equation 2 (Equations 2 and 3).
  • t an is the angle of view of the camera and is a constant, and can be obtained in advance by calculation and measurement.
  • the following numerical value 756 is the number of elements from the center of the CCD image sensor to the left and right edges, and this value changes the number of elements of the image sensor and the starting point of calculation (for example, changing the starting point to the left end) Can be changed as appropriate.
  • XR and XL are image shifts
  • Z is a crosspoint
  • a y is the amount of deviation from the center in this example.
  • ⁇ ' x L ⁇ tan ⁇ ⁇ tan A + 756 ⁇ sin 2 ⁇ -756
  • the table can store in advance a correction amount of aberration for the optical element, and this value can be appropriately changed according to a correction amount of a lens or the like to be used.
  • the distance F to the target object A that is, the front side of the position 70 where the cameras 1 and 2 are focused is set as the target area 70, and the rear side of the target area 70 is the blur area 8. It is assumed to be 0.
  • region of interest can be determined without being limited to the above method. That is, the above methods can be combined.
  • the area of interest can be accurately determined by calculating the distance to each pixel constituting the stereoscopic image by calculation from two pieces of image information.
  • the captured image information can be temporarily stored in an image memory, and each processing can be performed based on the stored image information. In this case, there is no need to set a region of interest or perform a blurring process in real time, and high-speed processing can be performed. No action required.
  • the area other than the area of interest is displayed blurred, so that the viewer concentrates on the image of the area to be viewed and observes and appreciates. Can also be negative for the eyes and brains of the viewer It can reduce the physical fatigue associated with viewing stereoscopic images.
  • a target area to be clearly displayed with an object to be focused on is determined, and a blur processing is performed on an area other than this area.
  • This is a stereoscopic image display method characterized by performing the following.
  • a region other than the region of interest where the object to be focused is located is subjected to a softening process, and a viewer cannot obtain a clear image of this region. 3D display.
  • a region ahead of the cross point is set as the region of interest, and the region behind the cross point is blurred. It is characterized by the following.
  • a region in front of a cross point where an object to be focused is located is set as a region of interest, and a blurring process is performed in a non-focusing region where a background or the like where no object to be focused is present is displayed. Since the viewer cannot obtain a clear image of this area, the area of interest is clearly displayed in three dimensions.
  • the region of interest is set as a peripheral region of the focal region, and the other region is subjected to blur processing. It is assumed that.
  • a part of the peripheral area of the focused area where the object to be focused is usually set as the focused area, and the defocusing area where the background or the like where there is no object to be focused is displayed is displayed. Since the viewer cannot obtain a clear image of this region, the region of interest is clearly displayed in three dimensions.
  • the present invention described in claim 4 provides a three-dimensional image table according to claim 1.
  • the present invention is characterized in that an object to be focused on is extracted, a periphery of the object is set as a region of interest, and a blurring process is performed on other regions.
  • the periphery of an object to be focused is set as a region of interest, and a region where a background or the like where there is no other object to be focused is displayed is blurred, and a viewer can obtain a clear image of this region. Since the image cannot be obtained, the focused area is clearly displayed in three dimensions.
  • a distance of each pixel constituting the image to an object to be photographed is calculated to determine a region of interest. It is characterized by the following.
  • an object to be focused can be specified by calculating a distance to each pixel of a captured image. In this way, the blur area can be defined.
  • the degree of blurring is increased as the distance from the region of interest increases. It is characterized by
  • the change from the region of interest to the blur region becomes natural, and the viewer can obtain a natural stereoscopic image.
  • the captured image information is temporarily stored in an image memory, and the stored image is stored. Each process is performed based on the information.
  • each process since each process may be performed later on the division stored in the memory, it is not necessary to set the focused area or perform the blurring processing in real time, and high-speed processing is not required.
  • the present invention described in claim 8 is a method of displaying two images and displaying a three-dimensional body image.
  • a three-dimensional image display device comprising: a shading means for performing shading on an area other than the area.
  • a region of interest having an object to be focused on is identified by the region focusing means, and a blurring process is performed on the other areas by the blur processing means. Cannot be obtained, and the focused area is clearly displayed in three dimensions.
  • the stereoscopic image display device region attention means according to claim 8, wherein the area in front of the cross point is taken as the attention area, and the poker processing means is the cross point. It is characterized in that the back area is subjected to a shading process.
  • the area focus means normally sets the area ahead of the cross point where the object to be focused is located as the focus area, and the blur processing means displays the background or the like where no other focus object exists. Blurring is performed on the out-of-focus area, and the viewer cannot obtain a clear image of this area, so that the focused area is clearly displayed in three dimensions.
  • the region-of-interest means includes: setting the region of interest to be a peripheral region of the in-focus region; It is characterized in that the region is subjected to a shading process.
  • the area focusing means normally takes a part of the peripheral area of the focusing area where the object to be focused is located as the focused area, and the blur processing means determines the background or the like where no other objects to be focused exist.
  • the displayed out-of-focus area is blurred, and the viewer cannot obtain a clear image of this area, so that the focused area is clearly displayed in three dimensions.
  • the present invention described in claim 11 is the stereoscopic image display device according to claim 8, wherein the region-of-interest means extracts an object to be focused on, sets the periphery of the object as a region of interest, and the blur processing means It is characterized in that blurring is performed in other areas.
  • the area focusing means sets the area around the object to be focused as the focused area
  • the blur processing means performs blur processing on an area where a background or the like where there is no other object to be focused is displayed. The viewer is clear about this area Since a special image cannot be obtained, the region of interest is clearly displayed in three dimensions.
  • the present invention described in claim 12 is the stereoscopic image display device according to claim 8, wherein the area attaching means calculates a distance of each pixel constituting the image to an object to be photographed. This is to determine the region of interest.
  • the area focusing means can specify the object to be focused by calculating the distance to each pixel of the captured image. Thereby, the blur area can be determined.
  • the present invention described in claim 13 is the stereoscopic image display device according to any one of claims 8 to 12, wherein the blur processing means increases the degree of blur as the distance from the region of interest increases. It is characterized by
  • the change from the region of interest to the blur region becomes natural, and the viewer can obtain a natural stereoscopic image.
  • the captured image information is stored in an image memory and stored. It is characterized in that each process is performed based on image information.
  • each processing in the area focusing means and the blur processing means may be performed later for the division stored in the memory, it is not necessary to set the focused area and perform the blur processing in real time. No special processing is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Image Processing (AREA)

Abstract

立体画像において、着目された領域以外の領域が着目された領域より目立たない自然な立体画像を表示することができる立体画像の表示方法及び装置を提供するため、2つの画像を表示して立体画像を表示するに際し、着目すべき物体があり明瞭に表示すべき着目領域を定め、この領域以外の領域についてボカシ加工を行なうものである。

Description

明 細 書
立体画像の表示方法及び装置 技術分野
この発明は、 立体画像の表示方法及び装置に係り、 特に、 特定の着目 領域を決め、 この領域から外れた領域について積極的にボカシをかける 立体画像の表示方法及び装置に関する。 背景技術
従来、 複数の撮像手段、 例えばカメラを用いて物体 (被写体) を 撮像することにより立体的な映像情報を得て、 これを人間の視覚的 特性に合わせて実像表示することが行われている。
その一つと して両眼視差方式が挙げられる。 両眼視差方式は、 2 台のカメラ配置を肉眼の基線長 (例えば 7 2 m m ) に設定し、 また 肉眼の視野輻輳角範囲を考慮して各値を設定して撮像する。
そして、 これらの画像を表示する際、 観察者に認識される物体と の距離、形状に応じた適切な視差(像の横ずれ) を与えて表示する。
このため、 撮影時のカメ ラの撮影位置と、 観測者の視点位置の変 化に応じて表示画像を変更する必要がある。
そして、 撮影同一のコンテンッを画面サイズの異なる表示装置で 再生するとき、 両側の視差が交叉し、 後方の景色が前方の着目領域 より視差が大きい上逆相になるため、 目立ってしまい、 着目すべき 個所が見にく くなると言う問題があった。 このよ うな現象は肉眼で も同様に生じているはずであるが、 生理的作用により、 着目 してい る物体以外の個所は自然にぼけてしまっているのである。 しかし、 S CCD力メラなどでは、焦点を合わせた個所より後方について全面的に ピントが合ってしまうため、 上述した理由により立体視しにくい状 態になってしまうのである。
即ち、 図 1 0に示すように、 2台のカメラ 1 , 2で背景 C中の被 写体 A, Bを撮影した場合において、 得られた画像 4 1, 4 2を.観 察した場合、 着目すべき被写体 Aの背景となる背景 Cの画像が被写 体 A, Bより手前に認識されてしまうこととなる場合がある。
この発明は、 かかる現状に鑑み創案されたものであって、 その目 的とするところは、 立体画像において、 着目された領域以外の領域 が着目された領域より 目立たない自然な立体画像を表示することが できる立体画像の表示方法及び装置を提供しよう とするものである。
発明の開示
上記目的を達成するため、 請求の範囲 1に記載の本発明は、 2つの画 像を表示して立体像を表示するに際し、 着目すべき物体があり明瞭に表 示すべき着目領域を定め、 この領域以外の領域についてボカシ加工を行 なうことを特徴とする立体画像の表示方法である。
本発明によれば、 着目すべき物体がある着目領域以外の領域は、 ボカ シ加工がおこなわれ、 観者はこの領域について明瞭な画像を得ることが できないため、 着目した領域が明確に立体表示される。
請求の範囲 2に記載の本発明は、 請求の範囲 1に記載の立体画像の表 示方法において、 クロスポイントより前方の領域を着目領域とし、 クロ スポイントより後方の領域にボカシ加工を行なうことを特徴とするも のである。
本発明によれば、 通常着目すべき物体があるクロスボイントより前方 の領域を着目領域とし、 それ以外の着目すべき物体が存在しない背景等 が表示される非合焦点の領域にボカシ加工がおこなわれ、 観者はこの領 域について明瞭な画像を得ることができないため、 着目した領域が明確 に立体表示される。
請求の範囲 3に記載の本発明は、 請求の範囲 1に記載の立体画像の表 示方法において、 着目領域を合焦点領域の周辺領域とし、 それ以外の領 域にボカシ加工を行なうことを特徴とするものである。
本発明によれば、 通常着目すべき物体がある合焦点領域の周辺領域の 部分を着目領域とし、 それ以外の着目すべき物体が存在しない背景等が 表示される非合焦点の領域にボカシ加工がおこなわれ、 観者はこの領域 について明瞭な画像を得ることができず、 着目した領域が明確に立体表 示される。
請求の範囲 4に記載の本発明は、 請求の範囲 1に記載の立体画像の表 示方法において、 着目すべき物体を抽出しその物体周辺を着目領域とし、 それ以外の領域にボカシ加工を行なうことを特徴とするものである。 本発明によれば、 着目すべき物体の周辺を着目領域とし、, それ以外の 着目すべき物体が存在しない背景等が表示される領域にボカシ加工が おこなわれ、 観者はこの領域について明瞭な画像を得ることができない ため、 着目した領域が明確に立体表示される。
請求の範囲 5に記載の本発明は、 請求の範囲 1に記載の立体画像の表 示方法において、 画像を構成する各画素の撮影している物体までの距離 を計算して着目領域を確定するものである。
本発明によれば、 撮影した画像の各画素までの距離を計算することに より、 着目すべき物体を特定することができる。 これにより、 ボカシ領 域を定めることができる。
請求の範囲 6に記載の本発明は、 請求の範囲 1乃至請求の範囲 5のい ずれかに記載の立体画像の表示方法において、 ボカシ処理のボカシ程度 を、 着目領域から離れるに従って大きくすることを特徴とするものであ る。
本発明によれば、 着目領域からボカシ領域への変化が自然なものとな り、 観者は自然な立体画像を得ることができる。
請求の範囲 7に記載の本発明は、 請求の範囲 1乃至請求の範囲 5のい ずれかに記載の立体画像の表示方法において、 撮影した画像情報をいつ たん画像メモリに格納し、 格納した画像情報に基づいて各処理を行なう ものである。 本発明によれば、 各処理は一旦メモリに格納された除法について後か ら行なえばよいから、 着目領域の設定やボカシ処理をリアルタイムで行 なう必要がなくなり、 高速な処理が要求されない。
請求の範囲 8に記載の本発明は、 2つの画像を表示して立体体像を表 示するに際し、 着目すべき物体があり明瞭に表示すべき着目領域を定め る領域着目手段と、 この領域以外の領域についてボカシ加工を行なうボ カシ加工手段と、 を備えたことを特徴とする立体画像の表示装置である。 本発明によれば、 領域着目手段により着目すべき物体がある着目領域 が特定され、 それ以外の領域はボ力シ処理手段でポ力シ加工がおこなわ れるため、 観者はこの領域について明瞭な画像を得ることができず、 着 目した領域が明確に立体表示される。
請求の範囲 9に記載の本発明は、 請求の範囲 8に記載の立体画像の表 示装置における領域着目手段は、 クロスポイントより前方の領域を着目 領域とし、 ボカシ処理手段は、 クロスポイントより後方の領域にボカシ 加工を行なうことを特徴とする。
本発明によれば、 領域着目手段は、 通常着目すべき物体があるクロス ポイントより前方の領域を着目領域とし、 ボカシ処理手段は、 それ'以外 の着目すべき物体が存在しない背景等が表示される非合焦点の領域に ボカシ加工を行い、 観者はこの領域について明瞭な画像を得ることがで きないため、 着目した領域が明確に立体表示される。
請求の範囲 1 0に記載の本発明は、 請求の範囲 8に記載の立体画像の 表示装置において、 領域着目手段は、 着目領域を合焦点領域の周辺領域 とし、 ボカシ処理手段は、 それ以外の領域にボカシ加工を行なうことを 特徴とするものである。
本発明によれば、 領域着目手段は通常着目すべき物体がある合焦点領 域の周辺領域の部分を着目領域とし、 ボカシ処理手段は、 それ以外の着 目すべき物体が存在しない背景等が表示される非合焦点の領域にボカ シ加工をおこない、 観者はこの領域について明瞭な画像を得ることがで きないため、 着目した領域が明確に立体表示される。 請求の範囲 1 1に記載の本発明は、 領域着目手段は、 着目すべき物体 を抽出しその物体周辺を着目領域とし、 ボカシ処理手段は、 それ以外の 領域にボカシ加工を行なうことを特徴とする請求の範囲 8記載の立体 画像の表示装置。
本発明によれば、 領域着目手段は、 着目すべき物体の周辺を着目領域 とし、 ボカシ処理手段は、 それ以外の着目すべき物体が存在 ない背景 等が表示される領域にボカシ加工を行い、 観者はこの領域について明瞭 な画像を得ることができないため、 着目した領域が明確に立体表示され る。
請求の範囲 1 2に記載の本発明は、 請求の範囲 8に記載の立体画像の 表示装置において、 領域着手段は、 画像を構成する各画素の撮影してい る物体までの距離を計算して着目領域を確定するものである。 本発明に よれば、 領域着目手段は、 撮影した画像の各画素までの距離を計算する ことにより、 着目すべき物体を特定することができる。 これにより、 ボ カシ領域を定めることができる。
請求の範囲 1 3に記載の本発明は、 請求の範囲 8乃至請求の範囲 1 2 のいずれかに記載の立体画像の表示装置において、 ポカシ処理手段はボ カシの程度を着目領域から離れるに従って大きくすることを特徴とす るものである。 本発明によれば、 ポカシ処理手段は、 着目領域からボカ シ領域への変化が自然なものとなり、 観者は自然な立体画像を得ること ができる。
請求の範囲 1 4に記載の本発明は、 請求の範囲 8乃至請求の範囲 1 3 のいずれかに記載の立体画像の表示装置において、 撮影した画像情報を ー且画像メモリに格納し、 格納した画像情報に基づいて各処理を行なう ことを特徴とするものである。
本発明によれば、 領域着目手段及びボカシ処理手段での各処理は一旦 メモリに格納された除法について後から行なえばよいから、 着目領域の 設定やボカシ処理をリアルタイムで行なう必要がなくなり、 高速な処理 が要求されない。 図面の簡単な説明
図 1は、 本発明に係る立体画像信号変換装置の構成を示すプロック 図である。
図 2は、 図 1に示した立体画像信号変換装置の作動を示すフローチ ヤートである。
図 3は、 画像における着目領域とボカシ領域とを示す図である。 図 4は、 画像におけるボカシ加工を示す説明図である。
図 5は、 本発明に係る立体画像信号変換装置の例を示すプロック図 である。
図 6は、 撮影された物体の状態を説明する図である。
図 7は、 着目領域と、 ポカシ領域の例を示す図である。
図 8は、 着目領域と、 ボカシ領域の他の例を示す図である。
図 9は、 着目領域と、 ボカシ領域の他の例を示す図である。
図 1 0は、 本発明が適用される立体画像撮影装置を示す図である。
発明を実施するための最良の形態
以下、 本発明に係る立体画像信号変換方法及び装置を実施するための 形態について説明する。
図 1乃至図 1 1は、 本発明に係る立体画像信号変換方法及び装置の一 例を示すものである。
図 1は本発明に係る立体画像信号変換装置の構成を示すプロック図、 図 2は図 1に示した立体画像信号変換装置の作動を示すフローチヤ一 ト、 図 3は画像における着目領域とボカシ領域とを示す図、 図 4は画像 におけるボカシ加工を示す説明図、 図 5は本発明に係る立体画像信号変 換装置の例を示すプロック図、 図 6は撮影された物体の状態を説明する 図、 図 7は着目領域とボカシ領域の例を示す図、 図 8は着目領域とボカ シ領域の他の例を示す図、 図 9は着目領域とボカシ領域の他の例を示す 図、 図 1 0は本発明が適用される立体画像撮影装置を示す図である。 本例では、 立体画像信号変換装置は、 基本的には、 右側カメラ 1、 左 側カメラ 2に接続された領域着目手段 1 0と、 ボカシ処理手段 2 0と、 から構成されている。
そして、 本例において領域着目手段 1 0は、 上記 2台のカメラ 1, 2 で撮影した 2つの画像を表示して立体体像を表示するに際し、 着目すベ き物体 (被写体) があり明瞭に表示すべき着目領域を定める。
また、 上記ボカシ処理手段 2 0は、 上記着目領域以外の領域について ボカシ加工を行なう。
本例に係る立体画像信号変換装置の処理の流れは図 2、 図 3、 図 4に 示す通りである。 即ち、 左右 2台のカメラ 1 , 2で撮影を行い (S 1 )、 次に領域着目手段 1 0はこの撮影で得られた各画像 4 0中に明瞭に表 示する着目領域 3 0を決定する (S 2 )。 これにより着目領域以外のぼ かすべき領域 (ボカシ領域 5 0 ) が決定される (S 3 )。 そしてボカシ 処理手段 2 0がボカシ領域のボカシ加工を行なう。
このボカシ加工は、 図 4に示すように、 ボカシ領域 5 0の各画素につ いて公知のボカシフィルタ 9 0、 例えば、 ソーベルフィルタ、 ラプラシ アンフィルタ、 ガウシアンフィルタを適用することにより行われる。 こ の際、 ボカシの程度を着目領域から離れるに従って大きくするようにす れば、 着目領域 3 0からボカシ領域 5 0への変化が自然なものとなり、 観者は自然な立体画像を得ることができる。 これらのポカシの程度はフ ィルタの大きさ係数などをソフトウェア的に変更することにより行な うことができる。
次に、 本例に係る領域着目手段 1 0における着目領域について説明す る。
本例では 2台のカメラ 1 , 2は、図 1 0に示すように、距離 dを離し、 クロスポイント (C P ) でそれぞれの光軸が交わるように配置されてい る。
また、 領域着目手段 1 0は、 図 5に示すように、 撮影対象を特定する 撮影対象特定手段 1 1、 着目すべき物体までの距離を測定する距離測定 手段 1 2、 着目領域の大きさなどを指定する着目領域指定手段 1 3、 ボ カシの種類、 程度などを設定するボカシ状態設定手段 1 4からなる。 このような構成の立体画像信号変換装置において、 着目領域の特定は さまざまな手法を用いて決定できる。
まず、 第 1の方法は、 クロスポイント (C P ) 情報に基づいて着目領 域を決定する手法である。 これは、 図 7に示すように、 視界 6 0中のク ロスポイント (C P ) より手前側を着目領域 7 0とし、 クロスポイント (C P) より遠方をボカシ領域 8 0とするものである。 即ち、 得られた 画像の位相の同逆により着目領域を決定する手法であるともいえる。 こ れは、 図 6及ぴ図 1 0に示すように、 同相(画像中クロスポイントを通 る中央線に対して物体が同じ側にある場合を言う (図 6 ( 1 )) :以下同 じ)である部分を着目領域とし、 逆相(画像中クロスボイントを通る中央 線に対して物体が逆の側にある場合を言う (図 6 ( 2 )) : 以下同じ)を ボカシ領域とするものと同等となる。
第 2の方法は、 着目物体 Aまでの距離 F、 即ち、 カメラ 1 , 2がフォ 一カスをあわせた位置 7 0を着目領域 7 0とし、 着目領域の前後をボカ シ領域 8 0 , 8 0とするものである。 このとき、 着目物体 Aまでの距離 L及び軸 Oからのずれ量 Δ yは以下の手法で計算することができる。 即ち、
左カメラにおいては、 以下の式が成立する。
y LP/{( A y / c o s Θ L)+ C( Δ z - Δ y t a η Θ L) s i n θ ϋ }= f / { ( z c/c o s Θ L)一 〔(A z — A y t a n 0 L) s i n 0 L〕} (式 1 ) ここで f は撮像手段の'レンズの焦点距離を表している。
右カメラの式でも同様の式が成り立つ。
そして、
Θ L= Θ R= Θ としてカメラを固定すると式 1は以下のように簡単となる。 y LP/{( A y/ c o s θ )+〔(Δ ζ—厶 y t a n 0 ) s i n θ ] }= f /{( z c / c o s Θ )- C(A z - A y t a n 6 ) s i n 0 ] } (式 2 ) 図 4より三角形 f 、 y! p、 O yと三角形 f P Qは相似であるので、 Y LP/ 'Α' = ί / 'Β' となる。
ここで 'Α, = 'c, + 'd, 'B, = 'e' 一 'f
として分け、 'c' £d' 'e' Ύ を導き出すと、
cc' = (厶 yZ c o s Θ )
'd' =(Δ ζ— A y t a n 0)/ s i n Θ
Figure imgf000011_0001
'f =(Δ ζ—厶 y t a n 0) * c o s Θ
になる。
'c, 〜 'f を 'Α' =il 'Β' に代入すると、
y LPZKA y/ c o s θ )+[(Δ z— Δ y t a n Θ ) s n θ ]}= f /{(z c/ c o s Θ )— 〔(A z _ A y t a n 0)c o s Θ ] } (式 3) この 2式 (式 2及ぴ式 3)から Δ z、 A yを求めれば良い。
ここで t a n Aはカメラの画角で定数であるので、 計算及ぴ定測であ らかじめ求めておく ことができる。 また、 以下の数値 7 5 6は C CD撮 像素子の中央から左右の端縁までの素子数であり、 この値は、 撮像素子 の素子数及び計算の起端点を変更 (例えば起端点を左端にする等) する ことにより適宜変更できる。
また、 'R' は、 ,
〔(Δ ζ+厶 y t a η θ ) s i η θ— y/ c o s Θ )] / [{ z c o s Θ 一 〔(厶 z+厶 y t a n 0)/ c o s 0〕 }t a nA〕 =+x R/756
£L' は、
C(A z -A y t a n 0)s i n 0+ (厶 / c o s Θ )〕 / [{ z / c o s Θ - [(A z— A y t a n ^Zc o s a nA;) =+xL/756 となる。
'R'
756(Δ z+厶 y t a n 0) s i n 0— 〔(756 · 厶 y )Z c o s Θ〕 = 〔(+ z · x R · t a 11 A)/ C O S Θ 3 一 { 〔XR (厶 z+A y t a n Θ ) t a n A] / c o s Θ }
756 · t a n Θ · s i n Θ—(756/ c o s 9)+ [(xR- t a n 6 - t a <3
II
<3 + o o
Figure imgf000012_0001
)〕9 vSL Φ + βX d— z + ' R ' XL( z— Δ z )〕 / 'P' } 一 £Q' 'Ρ' Δ z + ' R ' 'P' XR . z - ' R ' 'Ρ' x R - 厶 z =— 'Q' 'O, · 厶 z + '0, ' R ' L · z - '0' 'R, xL . A z
(― 'Q' 'P, 一 ' R ' 'Ρ' · R+ 'Ο' 'R, XL+ 'Q' 'O, )厶 z =+ '0' ' R ' X L - z - ' R ' 'P, x R · z =( '0' ' R ' X L_ ' R ' 'P' R) z
'S' 二 'Q' 'P' - ' R , 'P, - x R+ Ό' ' R ' x L+ 'Q' 'O,
Ό' 二 Ό' ' R ' XL— ' R ' 'P' XR
ここで、
XR、 XLは画像のズレ量
Zはクロスポィント
求めるのは Δ zである。
'Ε' は下式で求められる。
756(厶 z+A y t a n 0) s i n 0— [(756 - A y)/ c o s 6〕 =〔(z - R · t a n A)/ c o s θ ) 一 ( L XR (厶 z+厶 y t a n 0) t a nA〕 / c o s Θ }
756 · Α ζ+ 〔(χιι· t a nA)/ c o s〕 ' 厶 z= 〔(z · x R · t a n A) / c o s Θ ] 一 〔(XR . 厶 y t a n 0 · t a n A)/ c o s Θ ] 一 756 · 厶 y ' t a n 0 - s i n 0 + 〔(756 · Δ y )/ c o s Θ ]
{(756 * c o s 0+XR ' t a n A)/ c o s θ}Δ z=(z · x R · t a n A- X R ' A y ' t a n 6 ' t a n A— 756 · Δ y · s i n2 Θ +756 · 厶 yヽ / c o s Θ 'L' は下式で求められる。
756(Δ ζ —厶 y t a n 0 ) s i η θ +〔(756 · A y)/ c o s 9 ] = [(z - x L · t a n A)/ c o s Θ ] _{ 〔X L (厶 z -A y t a n 0 ) t a n A〕 / c o s Θ }
756 · Α Ζ + 〔(Χ · t a n A)/ c o s θ ] · Δ ζ = [(z · x L * t a n A)/ c o s 0〕 + 〔(X L' A y t a n 0 · t a n A)/ c o s 0〕 一756 · A y - t a ii e - s i n 0 - [(756 · 厶 y)Z c o s Θ〕
{(756 ' c o s e + X L ' t a n A)Z c o s 0}厶 z =(z · x L · t a n A+ X L- A y - t a n 0 - t a n A— 756 · A^y · s i n 2 Θ +756 - A y)
Z c o s Θ 基本式より A yも計算する。 なお A yは、 本例ではセンターからの ズレ量である。
、ζ · R · t a n A" X R * A y ' t a η θ · t a n A-756 * A y - s
1 n26 +756 · Δ y )/ 〔(756 - c o s 0 )+(x R - t a n A)〕 = ( z · xL ·' t a n A + X L ' A y - t a n 0 - t a n A+756 · Δ y · s i n 2 Θ _ 756 - Δ y )/ [(756 · c o s Θ )+( x L · t a n A)]
〔 z · x R · t a n A+(— R ' t a n Θ · t a n A— 756 s i n
2 Θ +756)厶 y〕 / 'L' = 〔 z . X L ' t a n A+(xL · t a n Θ · t a n A+756 - s i n 20 -756) Δ y ] / 'Μ'
' L' =(z · x R · t a n A - X R ' 厶 y , t a n Θ · t a n A— 756 · 厶 y ♦ s i η2θ +756 · Δ y )/ [(756 · c o s Θ )+(xR · t a n A)〕
'M, = (z · L * t a n A+ xL · A y - t a n Θ · t a n A+756 · A y - s i η2θ -756 - Δ γ)/ [(756 · c ο s θ )+( χ L · t a η Α)〕 'Ν' = - R · t a n θ · t a n A— 756 s i η2 θ +756
Ό' =xL · t a n Θ · t a n A+756 · s i n2 Θ -756
' Q' = z · x R · t a n A
R = z ' L ' t a n A
'M, 'Q' + 'Μ' 'Ν' Δ y = 'L' £R' + 'L' 'Ο' Δ y { 'Μ' 'Ν' - 'L, Ό' }Δ y =( 'L, 'R, - 'Μ, 'Q, ) 厶 y= 'S' / 'T,
これにより、 左右の撮像素子の画像から、 物点までの距離 L及び左右 方向のずれ量 Δ yが求められる。 '
本例では、 この結果をテーブルに予め格納しておくことにより、 画像 取得時から瞬時に L及び Δ yの値を出力することができる。
また、 テーブルには予め光学素子に関する収差の補正量を格納してお くことが'でき、 この値は使用するレンズ等の補正量に合わせて適宜変更 できる。
次に、 第 3の方法は、 着目物体 Aまでの距離 F、 即ちカメラ 1, 2が フォーカスをあわせた位置 7 0の前側を着目領域 7 0とし、 着目領域 7 0の後側をボカシ領域 8 0とするものである。
また、 上記方法に限らず着目領域を定めることができる。 即ち、 上記 手法を組み合わせることができる。
さらに、 2つの画像情報から計算により、 立体画像を構成する各画素 までの距離を求めることにより正確に着目領域を決定することができ る。
また、 撮影した画像情報を一旦画像メモリに格納し、 格納した画像情 報に基づいて各処理を行なうことができ、 この場合、 着目領域の設定や ボカシ処理をリアルタイムで行なう必要がなくなり、 高速な処理が要求 されない。
以上説明したように、 本例に係る立体画像信号変換装置によれば、 着 目した領域以外はぼけて表示されるため、 観者は 目すべき領域の映像 に集中して観察鑑賞をおこなうことができ、 また、 観者の目や頭脳の負 担をへらし、 立体画像鑑賞に伴う肉体的疲労を軽減できる。
そして、 これらの処理は、 立体画像表示の実用化にきわめて有用であ り、 立体画像放送、 立体画像処理ソフ トへの適用が有効である。
産業上の利用可能性
請求の範囲 1に記載の本発明は、 2つの画像を表示して立体像を表示 するに際し、 着目すべき物体があり明瞭に表示すべき着目領域を定め、 この領域以外の領域についてボカシ加工を行なうことを特徴とする立 体画像の表示方法である。
本発明によれば、 着目すべき物体がある着目領域以外の領域はボ力シ 加工がおこなわれ、 観者はこの領域について明瞭な画像を得ることがで きないため、 着目した領域が明確に立体表示される。
請求の範囲 2に記載の本発明は、 請求の範囲 1に記載の立体画像の表 示方法において、 クロスポイントより前方の領域を着目領域をとし、 ク ロスポイントより後方の領域にボカシ加工を行なうことを特徴とする ものである。
本発明によれば、 通常着目すべき物体があるクロスボイントより前方 の領域を着目領域とし、 それ以外の着目すべき物体が存在しない背景等 が表示される非合焦点の領域にボカシ加工がおこなわれ、 観者はこの領 域について明瞭な画像を得ることができないため、 着目した領域が明確 に立体表示される。
請求の範囲 3に記載の本発明は、 請求の範囲 1に記載の立体画像の表 示方法において、 着目領域を合焦点領域の周辺領域とし、 それ以外の領 域にボカシ加工を行なうことを特徴とするものである。
本発明によれば、 通常着目すべき物体がある合焦点領域の周辺領域の 部分を着目領域とし、 それ以外の着目すべき物体が存在しない背景等が 表示される非合焦点の領域にボ力シ加ェがおこなわれ、 観者はこの領域 について明瞭な画像を得ることができないため、 着目した領域が明確に 立体表示される。
請求の範囲 4に記載の本発明は、 請求の範囲 1に記載の立体画像の表 示方法において、 着目すべき物体を抽出しその物体周辺を着目領域とし、 それ以外の領域にボカシ加工を行なうことを特徴とするものである。 本発明によれば、 着目すべき物体の周辺を着目領域とし、 それ以外の 着目すべき物体が存在しない背景等が表示される領域にボカシ加工が おこなわれ、 観者はこの領域について明瞭な画像を得ることができない ため、 着目した領域が明確に立体表示される。
請求の範囲 5に記載の本発明は、 請求の範囲 1に記載の立体画像の表 示方法において、 画像を構成する各画素の撮影している物体までの距離 を計算して着目領域を確定することを特徴とするものである。
本発明によれば、 撮影した画像の各画素までの距離を計算することに より、 着目すべき物体を特定することができる。 これにより、 ボカシ領 域を定めることができる。
請求の範囲 6に記載の本発明は、 請求の範囲 1乃至請求の範囲 5のい ずれかに記載の立体画像の表示方法において、 ボカシ処理のポ力シ程度 は着目領域から離れるに従って大きくすることを特徴とするものであ る。
本発明によれば、 着目領域からボカシ領域への変化が自然なものとな り、 観者は自然な立体画像を得ることができる。
請求の範囲 7に記載の本発明は、 請求の範囲 1乃至請求の範囲 5のい ずれかに記載の立体画像の表示方法において、 撮影した画像情報をいつ たん画像メモリに格納し、 格納した画像情報に基づいて各処理を行なう ものである。
本発明によれば、 各処理はー且メモリに格納された除法について後か ら行なえばよいから、 着目領域の設定やボカシ処理をリアルタイムで行 なう必要がなくなり、 高速な処理が要求されない。
請求の範囲 8に記載の本発明は、 2つの画像を表示して立体体像を表 示するに際し、 着目すべき物体があり明瞭に表示すべき着目領域を定め る領域着目手段と、 この領域以外の領域についてボカシ加工を行なうポ カシ加工手段とを備えたことを特徴とする立体画像の表示装置である。 本発明によれば、 領域着目手段により着目すべき物体がある着目領域 画特定され、 それ以外の領域はボカシ処理手段でボ力シ加ェがおこなわ れるため、 観者はこの領域について明瞭な画像を得ることができず、 着 目した領域が明確に立体表示される。
請求の範囲 9に記載の本発明は、 請求の範囲 8に記載の立体画像の表 示装置領域着目手段は、 クロスポイントより前方の領域を着目領域をと し、 ポカシ処理手段は、 クロスポイントより後方の領域にボカシ加工を 行なうことを特徴とするものである。
本発明によれば、 領域着目手段は、 通常着目すべき物体があるクロス ポイントより前方の領域を着目領域とし、 ボカシ処理手段は、 それ以外 の着目すべき物体が存在しない背景等が表示される非合焦点の領域に ボカシ加工を行い、 観者はこの領域について明瞭な画像を得ることがで きないため、 着目した領域が明確に立体表示される。
請求の範囲 1 0に記載の本発明は、 請求の範囲 8に記載の立体画像の 表示装置において、 領域着目手段は、 着目領域を合焦点領域の周辺領域 とし、 ボカシ処理手段は、 それ以外の領域にボカシ加工を行なうことを 特徴とするものである。
本発明によれば、 領域着目手段は通常着目すべき物体がある合焦点領 域の周辺領域の部分を着目領域とし、 ボカシ処理手段は、 それ以外の着 目すべき物体が存在しない背景等が表示される非合焦点の領域にボカ シ加工をおこない、 観者はこの領域について明瞭な画像を得ることがで きないため、 着目した領域が明確に立体表示される。
請求の範囲 1 1に記載の本発明は、 請求の範囲 8に記載の立体画像の 表示装置において、 領域着目手段は、 着目すべき物体を抽出しその物体 周辺を着目領域とし、 ボカシ処理手段は、 それ以外の領域にボカシ加工 を行なうことを特徴とするものである。
本発明によれば、 領域着目手段は、 着目すべき物体の周辺を着目領域 とし、 ボカシ処理手段は、 それ以外の着目すべき物体が存在しない背景 等が表示される領域にボカシ加工を行い、 観者はこの領域について明瞭 な画像を得ることができないため、 着目した領域が明確に立体表示され る。
請求の範囲 1 2に記載の本発明は、 請求の範囲 8に記載の立体画像の 表示装置において、 領域着手段は、 画像を構成する各画素の撮影してい る物体までの距離を計算して着目領域を確定するものである。
本発明によれば、 領域着目手段は、 撮影した画像の各画素までの距離 を計算することにより、 着目すべき物体を特定することができる。 これ により、 ボカシ領域を定めることができる。
請求の範囲 1 3に記載の本発明は、 請求の範囲 8乃至請求の範囲 1 2 のいずれかに記載の立体画像の表示装置において、 ボカシ処理手段は、 ボカシの程度を着目領域から離れるに従って大きくすることを特徴と するものである。
本発明によれば、 ボカシ処理手段は、 着目領域からボカシ領域への変 化が自然なものとなり、 観者は自然な立体画像を得ることができる。 請求の範囲 1 4に記載の本発明は、 請求の範囲 8乃至請求の範囲 1 3 のいずれかに記載の立体画像の表示装置において、 撮影した画像情報を ー且画像メモリに格納し、 格納した画像情報に基づいて各処理を行なう ことを特徴とするものである。
本発明によれば、 領域着目手段及びボカシ処理手段での各処理はー且 メモリに格納された除法について後から行なえばよいから、 着目領域の 設定やボカシ処理をリアルタイムで行なう必要がなくなり、 高速な処理 が要求されない。

Claims

請求の範囲
2つの画像を表示して立体像を表示するに際し、 着目すべき物体 があり明瞭に表示すべき着目領域を定め、 この領域以外の領域に ついてボカシ加工を行なうことを特徴とする立体画像の表示方法。 クロスポイント (C P ) より,前方の領域を着目領域をとし、 ク ロスポイントより後方の領域にボカシ加工を行なうことを特徴と する請求の範囲 1記載の立体画像の表示方法。
着目領域を合焦点領域の周辺領域とし、 それ以外の領域にボカ シ加工を行なうことを特徴とする請求の範囲 1に記載の立体画像 の表示方法。
着目すべき物体を抽出しその物体周辺を着目領域とし、 それ以 外の領域にボカシ加工を行なうことを特徴とする請求の範囲 1に 記載の立体画像の表示方法。
画像を構成する各画素の撮影している物体までの距離を計算し て着目領域を確定する請求の範囲 1 に記載の立体画像の表示方法。 ボカシ処理のボカシ程度は着目領域から離れるに従って大きく することを特徴とする請求の範囲 1乃至請求の範囲 5に記載の立 体画像の表示方法。
撮影した画像情報をいつたん画像メモリ に格納し、 格納した画 像情報に基づいて各処理を行なう請求の範囲 1乃至請求の範囲 6 のいずれかに記載の立体画像の表示方法。
2つの画像を表示して立体体像を表示するに際し、 着目すべき 物体があり明瞭に表示すべき着目領域を定める領域着目手段と、 この領域以外の領域についてボカシ加工を行なうボカシ加工手段 とを備えたことを特徴とする立体画像の表示装置。
領域着目手段は、 クロスポイントより前方の領域を着目領域を とし、 ボカシ処理手段は、 クロスポイントより後方の領域にボカ シ加工を行なうことを特徴とする請求の範囲 8に記載の立体画像 の表示装置。 領域着目手段は、 着目領域を合焦点領域の周辺領域とし、 ボカ シ処理手段は、 それ以外の領域にボカシ加工を行なうことを特徴 とする請求の範囲 8に記載の立体画像の表示装置。.
領域着目手段は、着目すべき物体を抽出しその物体周辺を着目 領域とし、 ボカシ処理手段ほ、 それ以外の領域にボカシ加工を行 なうことを特徴とする請求の範囲 8に記載の立体画像の表示装置 領域着手段は、画像を構成する各画素の撮影している物体まで の距離を計算して着目領域を確定する請求の範囲 8に記載の立体 画像の表示装置。
ポ力シ処理手段は、 ボカシの程度を着目領域から離れるに従つ て大きくすることを特徴とする請求の範囲乃至請求の範囲 1 2の いずれかに記載の立体画像の表示装置。
撮影した画像情報をいつたん画像メモリに格納し、格納した画 像情報に基づいて各処理を行なう請求の範囲 8乃至請求の範囲 1 3のいずれかに記載の立体画像の表示装置。
PCT/JP2003/005708 2003-05-07 2003-05-07 立体画像の表示方法及び装置 WO2004100564A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003234904A AU2003234904A1 (en) 2003-05-07 2003-05-07 Method and system for displaying stereoscopic image
PCT/JP2003/005708 WO2004100564A1 (ja) 2003-05-07 2003-05-07 立体画像の表示方法及び装置
US10/555,655 US20070008404A1 (en) 2003-05-07 2003-05-07 Method and system for displaying stereoscopic image
JP2004571556A JPWO2004100564A1 (ja) 2003-05-07 2003-05-07 立体画像の表示方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/005708 WO2004100564A1 (ja) 2003-05-07 2003-05-07 立体画像の表示方法及び装置

Publications (1)

Publication Number Publication Date
WO2004100564A1 true WO2004100564A1 (ja) 2004-11-18

Family

ID=33428583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005708 WO2004100564A1 (ja) 2003-05-07 2003-05-07 立体画像の表示方法及び装置

Country Status (4)

Country Link
US (1) US20070008404A1 (ja)
JP (1) JPWO2004100564A1 (ja)
AU (1) AU2003234904A1 (ja)
WO (1) WO2004100564A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487982B2 (en) * 2007-06-07 2013-07-16 Reald Inc. Stereoplexing for film and video applications
JP5701140B2 (ja) * 2011-04-21 2015-04-15 キヤノン株式会社 立体内視鏡装置
JP2014147630A (ja) * 2013-02-04 2014-08-21 Canon Inc 立体内視鏡装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133339A (ja) * 1992-10-21 1994-05-13 Kanji Murakami 立体撮像支援装置
JPH10239634A (ja) * 1997-02-27 1998-09-11 Minolta Co Ltd 立体映像表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172632A (en) * 1976-01-21 1979-10-30 Holmes Lawrence Jr Method and apparatus producing three-dimensional shadow images
US5274405A (en) * 1987-11-17 1993-12-28 Concept Vision Systems, Inc. Wide angle viewing system
JP4698831B2 (ja) * 1997-12-05 2011-06-08 ダイナミック ディジタル デプス リサーチ プロプライエタリー リミテッド 画像変換および符号化技術
US20040108971A1 (en) * 1998-04-09 2004-06-10 Digilens, Inc. Method of and apparatus for viewing an image

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133339A (ja) * 1992-10-21 1994-05-13 Kanji Murakami 立体撮像支援装置
JPH10239634A (ja) * 1997-02-27 1998-09-11 Minolta Co Ltd 立体映像表示装置

Also Published As

Publication number Publication date
JPWO2004100564A1 (ja) 2006-07-13
US20070008404A1 (en) 2007-01-11
AU2003234904A1 (en) 2004-11-26

Similar Documents

Publication Publication Date Title
TWI532009B (zh) 產生淺景深影像的方法及裝置
US8405708B2 (en) Blur enhancement of stereoscopic images
JP5426785B2 (ja) 画像処理装置および画像処理方法
WO2006062325A1 (en) Apparatus for correcting image distortion of stereo-camera and method thereof
JP2011064894A (ja) 立体画像表示装置
JP2000354257A (ja) 画像処理装置、画像処理方法、およびプログラム提供媒体
JP2011248693A (ja) 画像処理装置、画像処理方法および画像処理プログラムならびに撮像装置
CN102903090A (zh) 全景立体图像合成方法、装置、系统和浏览装置
US20140139644A1 (en) Image capturing apparatus, method of controlling the same and program
JP2010057619A (ja) 立体画像撮影表示システム
WO2012001970A1 (ja) 画像処理装置および方法並びにプログラム
JP5214547B2 (ja) 画像表示装置および方法並びにプログラム
TW201216204A (en) Method for combining dual-lens images into mono-lens image
JP2006208407A (ja) 立体画像観察用顕微鏡システム
US20120242791A1 (en) 3-d video processing device and 3-d video processing method
JP2016225811A (ja) 画像処理装置、画像処理方法およびプログラム
KR102068048B1 (ko) 3차원 영상 제공 시스템 및 방법
JP2014140593A5 (ja) 立体撮像装置
WO2004100564A1 (ja) 立体画像の表示方法及び装置
CN106101685B (zh) 一种信息处理方法、穿戴式电子设备、处理装置及系统
KR101614121B1 (ko) 집적 영상 표시 방법 및 장치
WO2011086898A1 (ja) 3d画像撮影装置及びその制御方法
JP2013074397A (ja) 画像処理システム、画像処理方法および画像処理プログラム
EP2553526A1 (en) Aperture for increasing the parallax in a single lens three dimensional camera
CN105472234B (zh) 一种照片显示方法及装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007008404

Country of ref document: US

Ref document number: 10555655

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004571556

Country of ref document: JP

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10555655

Country of ref document: US