WO2004099617A1 - Refrigerant compressor - Google Patents

Refrigerant compressor Download PDF

Info

Publication number
WO2004099617A1
WO2004099617A1 PCT/JP2004/006578 JP2004006578W WO2004099617A1 WO 2004099617 A1 WO2004099617 A1 WO 2004099617A1 JP 2004006578 W JP2004006578 W JP 2004006578W WO 2004099617 A1 WO2004099617 A1 WO 2004099617A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
valve
cylinder
valves
refrigerant compressor
Prior art date
Application number
PCT/JP2004/006578
Other languages
French (fr)
Japanese (ja)
Inventor
Masanori Kobayashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/522,514 priority Critical patent/US20060039808A1/en
Priority to EP04732026A priority patent/EP1541868A4/en
Publication of WO2004099617A1 publication Critical patent/WO2004099617A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0088Pulsation and noise damping means using mechanical tuned resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1066Valve plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1073Adaptations or arrangements of distribution members the members being reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible

Definitions

  • the present invention relates to an improvement in the efficiency of a hermetic compressor used for a freezing and refrigeration apparatus.
  • hermetic compressors used in freezers and the like have been strongly desired.
  • Conventional hermetic compressors improve the compression efficiency by, for example, increasing the suction efficiency by using two suction holes in the valve unit in the compression section.
  • Such a compressor is disclosed in, for example, Japanese Patent Application Laid-Open No. 3-175174.
  • an example of a conventional hermetic compressor will be described with reference to the drawings.
  • FIG. 6 is a sectional view of a conventional refrigerant compressor
  • FIG. 7 is an exploded perspective view of a valve of the conventional refrigerant compressor.
  • An outlet 52A which is one end of a suction pipe 52, is connected to the closed vessel 51, and the other end of the suction pipe 52 is connected to a low-pressure side pipe (not shown) of the refrigeration cycle.
  • the motor 53 is composed of a stator 54 and a rotor 55, and drives the compression unit 56.
  • Refrigeration oil 57 is stored at the bottom of the sealed container 51.
  • the coil spring 58 elastically supports the module 53 and the compression section 56.
  • the compression section 56 includes a cylinder head 61, a cylinder block 62, a valve plate 64, a suction reed valve 67, a piston 68, a connecting rod 70, and a suction muffler 3.
  • the cylinder head 61 forms a suction space 61A and a discharge space 61B.
  • the cylinder block 62 has a cylinder 63.
  • the valve plate 64 has two suction holes 65 and two discharge holes 66.
  • the suction reed valve (hereinafter, valve) 67 has a deformed portion 67A.
  • the connecting rod 70 is connected to the eccentric part 69 A of the crank shaft 69.
  • the suction muffler 30 is connected to the suction space 61A via the communication pipe 30A and the suction hole of the valve plate 64. Communicates with 65 and draws refrigerant gas from the inlet 30B.
  • the compression section 56 is driven by the motor 53, and the piston 68 reciprocates in the cylinder 63.
  • the low-temperature and low-pressure refrigerant gas returned from the external refrigeration cycle (not shown) is first drawn into the closed vessel 51 from the suction pipe 52.
  • the refrigerant gas is further sucked from the inlet 30B of the suction muffler 30 and passes through the suction hole 65 through the communication pipe 3OA.
  • the coolant gas is guided to the cylinder 63 by opening the valve 67.
  • valve 67 is closed, and the refrigerant gas is compressed to a high temperature and high pressure, passes through the discharge port 66, passes through a discharge pipe (not shown), and is guided to an external refrigeration cycle (not shown) for refrigeration.
  • valve 67 is designed to have a natural frequency that opens and closes in a timely manner in accordance with the low-speed operation frequency, so the compressor has low suction loss and can operate with high volumetric efficiency. .
  • the timing of the opening / closing operation determined by the natural frequency of the valve 67 will be shifted. At this time, even if the pressure in the cylinder 63 exceeds the pressure in the suction space 61A of the cylinder head 61, the valve 67 does not complete the closing operation. As a result, the refrigerant gas flows backward due to the delay in closing and the volume efficiency is reduced, and the refrigeration capacity and refrigeration efficiency are reduced.
  • a refrigerant compressor according to the present invention includes a piston, a cylinder, and a valve plate.
  • the valve plate is provided at the open end of the cylinder. It has a number of suction holes.
  • the refrigerant compressor according to the present invention further has a plurality of suction lead valves provided between the open end of the cylinder and the valve plate to open and close the plurality of suction holes, respectively. At least one of the suction reed valves has a different natural frequency than the other reed valves. With this configuration, even if the operating frequency changes, a delay in closing the suction reed valve and a decrease in the amount of deflection are prevented.
  • FIG. 1 is a sectional view of a refrigerant compressor according to an embodiment of the present invention.
  • FIG. 2 is a front view of a suction reed valve in the refrigerant compressor of FIG.
  • FIG. 3 is a cross-sectional view of a cylinder head of the refrigerant compressor of FIG. 1.
  • FIG. 4 is a cylinder pressure and a reed valve deflection during one stroke in a low-speed operation of the refrigerant compressor according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing the pressure in the cylinder and the amount of deflection of the reed valve during one stroke in the high-speed operation of the refrigerant compressor in the embodiment of the present invention.
  • FIG. 6 is a sectional view of a conventional refrigerant compressor.
  • FIG. 7 is an exploded perspective view of a valve of the refrigerant compressor of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a cross-sectional view of a refrigerant compressor according to an embodiment of the present invention.
  • FIG. 2 is a front view of the suction reed valve.
  • Fig. 3 is a sectional view of the cylinder head.
  • An outlet 2A which is one end of a suction pipe 2, is connected to the closed vessel 1, and the other end of the suction pipe 2 is connected to a low-pressure side pipe (not shown) of the refrigeration cycle.
  • the motor 3 includes a stator 4 and a rotor 5 and drives a compression unit 6.
  • the refrigerating machine oil 7 is stored at the bottom of the closed container 1.
  • the coil spring 8 elastically supports the motor 3 and the compression section 6.
  • the compression unit 6 includes a cylinder head 101, a cylinder block 12 and It is composed of a valve plate 110, a suction reed valve (hereinafter, a valve) 120A, 120B, a piston 18, a connecting rod 20, and a suction muffler 130.
  • the cylinder head 101 forms a suction space 101A and a discharge space 101B.
  • the cylinder block 12 has a cylinder 13.
  • the connecting rod 20 is connected to the eccentric part 19 A of the crankshaft 19.
  • the suction muffler 130 communicates with the suction space 110 A through the pipe 13 OA, and communicates with the suction holes 1 12 A and 1 12 B of the valve plate 110, and the inlet section 130 B More refrigerant gas is sucked.
  • the valve plate 110 has suction holes 112A and 112B and a discharge hole (not shown).
  • Suction holes 1 1 2 A, 1 1 2 B are openings 1 1 4 from cylinder 13 opening 1 1 4 A, 1 1 4 B to cylinder head 1 0 1 side of valve plate 1 1 10 Inclines to C, 114D in the direction in which the distance between them decreases.
  • Valves 120A and 120B have deformed portions 122A and 122B having different lengths, respectively. Since the deformed part 122 A is longer than the deformed part 122 B, the spring constant of the valve 120 A is smaller, and the valve 120 A has a lower natural frequency than the valve 120 B. I have.
  • the shapes of the valves 122A and 120B are asymmetric with respect to the center lines 124A and 124B of the deformed parts 122A and 122B.
  • the positions of the center points of the suction holes 1 12 A and 1 12 B correspond to the points 1 26 and 1 26 B of the valves 1 20 A and 1 208 respectively.
  • the seal portions 128 A and 128 B seal the suction holes 112 A and 112 B provided in the valve plate 110.
  • FIG. 4 is a cylinder pressure and reed valve deflection diagram during one stroke in a low-speed operation of the refrigerant compressor according to the present embodiment.
  • FIG. 5 is a diagram showing the pressure in the cylinder and the amount of deflection of the reed valve during one stroke in the high-speed operation of the refrigerant compressor.
  • the compression section 6 is driven by the motor 3, and the piston 18 reciprocates in the cylinder 13.
  • the low-temperature and low-pressure refrigerant gas returned from the external refrigeration cycle (not shown) is first drawn into the closed vessel 1 from the suction pipe 2. It is. Refrigerant gas is further sucked in from the inlet portion 130B of the suction muffler 130, and passes through the suction holes 1 12A and 112B via the communication pipe 13OA.
  • the refrigerant gas opens the valves 122A and 122B and the cylinder 1 Guided to 3.
  • the valves 120A and 120B are closed, and the refrigerant gas is compressed to a high temperature and pressure, passes through a discharge pipe (not shown) from the discharge port, and is led to an external refrigeration cycle to perform refrigeration.
  • valves 120 A and 120 B are connected to the point at which the pressure in the cylinder 13 exceeds the pressure in the suction space 101 A of the cylinder head 101. Close with B, and the suction of refrigerant gas from suction muffler 130 is completed.
  • valve 120 A performs two opening and closing operations at the natural frequency of the primary deformation mode while bending the deformation section 122 A.
  • Repeat OA Since the natural frequency corresponding to the low-speed operation frequency has been selected for the valve 12OA, the valve 120A closes at almost the same timing as the point 140B.
  • the spring constant of the valve 120 A is small, even under the condition where the flow rate of the intake gas is low at the time of low-speed operation, the suction loss does not increase due to the insufficient amount of deflection.
  • valve 120 B the natural frequency higher than the valve 120 A, It has a spring constant and repeats four opening / closing operations 150 B between point 140 A and point 140 B.
  • the valve 120B opens a large amount with a predetermined amount of flexure corresponding to the refrigerant circulation amount in the first to third opening / closing operations 150B.
  • the fourth opening / closing operation the pressure difference between the inside of the cylinder 13 and the suction space 101A of the cylinder head 101 is very small because it is in the compression stroke. At this time, the refrigerant gas flows through the inlet hole 112A of the valve 120A, which is more greatly bent.
  • the valve 120B completes the opening / closing operation near the point 141B with almost no bending.
  • the knob 124B repeats three opening / closing operations 151B between the point 141A and the point 141B, and performs the predetermined operation according to the refrigerant circulation amount.
  • Point 14 1 A is the point when the pressure in cylinder 13 drops below the pressure in cylinder head 101 suction space 101 A
  • the point 141B indicates the point in time when the pressure in the cylinder 13 exceeds the pressure in the suction space 101A of the cylinder head 101.
  • the valve 120 A opens a large amount with a predetermined amount of deflection corresponding to the amount of circulating refrigerant at the first opening and closing operation 15 1 A.
  • the differential pressure between the inside of the cylinder 13 and the suction space 101A of the cylinder head 101 is very small because it is in the compression stroke. Therefore, after the second time, the refrigerant gas passes through the inlet hole 112B of the valve 120B, which is greatly bent. Therefore, the valve 120A completes the opening / closing operation near the point 141B with almost no bending.
  • the shapes of the knobs 120A and 120B are asymmetric with respect to the center lines 124A and 124B of the deformed portions 122A and 122B. For this reason, the points of action 12 6 A, 12 B of the gas pressure load acting on the valves 12 A, 12 B and the center line of the radial deformation of the valves 12 OA, 12 OB 1 2 4 A and 1 24 B shift. As a result, the valves 120A and 120B start opening while being torsionally deformed. That is, the torsional moment caused by the gas pressure load acts on the valves 12OA and 120B.
  • the force of peeling off the adhered part due to the viscosity of the refrigerating machine oil 7 acts on one side of the circular seal parts 128 A, 128 B of the valves 120 A, 120 B, and the valve 1 20 A and 120 B are easy to open. Therefore, the opening of the valves 120A and 120B in the suction stroke starts earlier. Therefore, the refrigerant gas is efficiently sucked into the cylinder 13 and the refrigeration capacity and the compression efficiency are increased.
  • the shapes of the valves 120 A and 120 B are asymmetric with respect to the center lines 124 A and 124 B of the deformed parts 122 A and 122 B, respectively. However, only one may do so.
  • the refrigerant gas in the sealed container 1 passes through the suction space 101 in the high-temperature cylinder head 101 via the suction muffler 130, and the suction hole 1 provided in the valve plate 110. Inhaled into cylinder 13 from 12 A and 11 B.
  • the refrigerant gas in the cylinder 13 is brought into a high temperature state of about 100 by compression action and is discharged to the discharge space 101 B of the cylinder head 101.
  • the cylinder head 101 is heated to a high temperature state of about 80 ° C.
  • the interval between the two suction holes 1 1 2 A and 1 1 2 B of the suction space 1 0 1 A in the cylinder head 101 is at least as small as the seal 1 2 28 A and the seal 1 2 8 B Is necessary to add the width of
  • the suction holes 112A and 112B are inclined as shown in Fig. 3, there is no need to consider the width between the seal part 128A and the seal part 128B, and the suction hole 1
  • the interval between 12 A and 11 B can be greatly reduced.
  • the volume of the suction space 101A and the heat receiving area in the cylinder head 101 can be made small, and the heat transfer to the flowing refrigerant gas is reduced.
  • both the suction holes 112A and 112B are inclined, but may be provided only to one of them.
  • valves 120A and 120B are two, but the same effect can be obtained with three or more valves.
  • the natural frequency is changed by changing the length of the valves 120A and 120B, but the width and shape of the valves 120A and 120B are changed.
  • the same effect can be obtained even if the natural frequency is changed by changing the natural frequency.
  • Also in the present embodiment, the number of times of opening and closing in one stroke of the valves 120A and 120B is described as 2 to 4 times. However, the same effect can be obtained if it is performed once or more.
  • a refrigerant compressor according to the present invention includes a piston, a cylinder, and a valve plate.
  • the valve plate is provided at an open end of the cylinder and has a plurality of suction holes.
  • the refrigerant compressor according to the present invention further includes a plurality of suction reed valves provided between the open end of the cylinder and the valve plate, and respectively opening and closing the plurality of suction holes. At least one of the suction lead valves has a different natural frequency than the other reed valves. With this configuration, the refrigeration capacity and compression efficiency of the refrigerant compressor can be increased, so that it can be applied to applications such as air conditioners and refrigeration units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

A valve plate has suction holes and suction reed valves opening and closing the suction holes. At least two of the suction reed valves have different natural frequencies. In this structure, one reed valve has a high natural frequency. Consequently, even when operation frequency increases to a higher level, a compressor can efficiently suck a refrigerant into a cylinder without having a delayed closure and reduced lift amount, and this results in higher refrigeration capability and compression efficiency of the compressor.

Description

明細書  Specification
冷媒圧縮機 技術分野  Refrigerant compressor technical field
本発明は、 冷凍冷蔵装置等に使用される密閉型圧縮機の効率向上 に関する。 背景技術  The present invention relates to an improvement in the efficiency of a hermetic compressor used for a freezing and refrigeration apparatus. Background art
近年、 冷凍冷蔵装置等に使用される密閉型圧縮機は効率向上が強 く望まれている。 従来の密閉型圧縮機は、 たとえば圧縮部のバルブ 装置の吸入孔を 2個とすることにより吸入効率を高め、 圧縮効率を 改善している。 このような圧縮機は例えば、 特開平 3 — 1 7 5 1 7 4号公報に開示されている。 以下、 図面を参照しながら従来の密閉 型圧縮機の一例について説明する。  In recent years, the efficiency of hermetic compressors used in freezers and the like has been strongly desired. Conventional hermetic compressors improve the compression efficiency by, for example, increasing the suction efficiency by using two suction holes in the valve unit in the compression section. Such a compressor is disclosed in, for example, Japanese Patent Application Laid-Open No. 3-175174. Hereinafter, an example of a conventional hermetic compressor will be described with reference to the drawings.
図 6は従来の冷媒圧縮機の断面図であり、 図 7は従来の冷媒圧縮 機のバルブの分解斜視図である。 密閉容器 5 1 には、 吸入管 5 2の 一端である出口部 5 2 Aが接合され、 吸入管 5 2の他端は冷凍サイ クルの低圧側配管 (図示せず) と接合されている。 モ一夕 5 3は固 定子 5 4と回転子 5 5 とから構成され、圧縮部 5 6 を駆動している。 また、 冷凍機油 5 7は、 密閉容器 5 1 の底部に貯留している。 コィ ルばね 5 8は、モ一夕 5 3 と圧縮部 5 6 とを弾性的に支持している。  FIG. 6 is a sectional view of a conventional refrigerant compressor, and FIG. 7 is an exploded perspective view of a valve of the conventional refrigerant compressor. An outlet 52A, which is one end of a suction pipe 52, is connected to the closed vessel 51, and the other end of the suction pipe 52 is connected to a low-pressure side pipe (not shown) of the refrigeration cycle. The motor 53 is composed of a stator 54 and a rotor 55, and drives the compression unit 56. Refrigeration oil 57 is stored at the bottom of the sealed container 51. The coil spring 58 elastically supports the module 53 and the compression section 56.
圧縮部 5 6は、シリ ンダへッ ド 6 1 と、シリ ンダブロック 6 2 と、 バルブプレート 6 4と、吸入リードバルブ 6 7 と、ピス トン 6 8 と、 連接棒 7 0 と、 吸入マフラ 3 0 とから構成されている。 シリンダへ ッ ド 6 1 は吸入空間 6 1 Aと吐出空間 6 1 Bとを形成する。 シリ ン ダブロック 6 2はシリ ンダ 6 3 を有する。 バルブプレート 6 4は 2 個の吸入孔 6 5 と 2個の吐出孔 6 6 とを有する。 吸入リードバルブ (以下、 バルブ) 6 7は変形部 6 7 Aを有する。 連接棒 7 0はクラ ンク軸 6 9の偏芯部 6 9 Aに連結されている。 吸入マフラ 3 0は吸 入空間 6 1 Aに連通管 3 0 Aを介してバルブプレート 6 4の吸入孔 6 5 と連通し、 入口部 3 0 Bより冷媒ガスを吸入する。 The compression section 56 includes a cylinder head 61, a cylinder block 62, a valve plate 64, a suction reed valve 67, a piston 68, a connecting rod 70, and a suction muffler 3. 0. The cylinder head 61 forms a suction space 61A and a discharge space 61B. The cylinder block 62 has a cylinder 63. The valve plate 64 has two suction holes 65 and two discharge holes 66. The suction reed valve (hereinafter, valve) 67 has a deformed portion 67A. The connecting rod 70 is connected to the eccentric part 69 A of the crank shaft 69. The suction muffler 30 is connected to the suction space 61A via the communication pipe 30A and the suction hole of the valve plate 64. Communicates with 65 and draws refrigerant gas from the inlet 30B.
以上のように構成された冷媒圧縮機について以下その動作を説明 する。 まず、 モータ 5 3によって圧縮部 5 6が駆動され、 ピス トン 6 8はシリ ンダ 6 3内で往復運動する。 外部冷凍サイクル (図示せ ず) より戻ってきた低温低圧の冷媒ガスはまず吸入管 5 2から密閉 容器 5 1 内に吸入される。 冷媒ガスはさらに吸入マフラ 3 0の入口 部 3 0 Bより吸入され、 連通管 3 O Aを介して吸入孔 6 5 を通る。 吸入行程時にバルブ 6 7の変形部 6 7 Aを撓ませることにより、 冷 媒ガスはバルブ 6 7 を開いてシリ ンダ 6 3へ導かれる。 圧縮行程時 にはバルブ 6 7が閉じられ、 冷媒ガスは圧縮され高温高圧となり吐 出孔 6 6から吐出管 (図示せず) を通り、 外部冷凍サイクル (図示 せず) へ導かれて冷凍作用をなす。  The operation of the refrigerant compressor configured as described above will be described below. First, the compression section 56 is driven by the motor 53, and the piston 68 reciprocates in the cylinder 63. The low-temperature and low-pressure refrigerant gas returned from the external refrigeration cycle (not shown) is first drawn into the closed vessel 51 from the suction pipe 52. The refrigerant gas is further sucked from the inlet 30B of the suction muffler 30 and passes through the suction hole 65 through the communication pipe 3OA. By deforming the deformed portion 67 A of the valve 67 during the suction stroke, the coolant gas is guided to the cylinder 63 by opening the valve 67. During the compression stroke, the valve 67 is closed, and the refrigerant gas is compressed to a high temperature and high pressure, passes through the discharge port 66, passes through a discharge pipe (not shown), and is guided to an external refrigeration cycle (not shown) for refrigeration. Make
この時、 バルブ 6 7は、 低速の運転周波数に応じてタイミング良 く開閉動作するような固有振動数を有するよう設計されているため 圧縮機は吸入損失も小さく体積効率の高い運転が可能である。  At this time, the valve 67 is designed to have a natural frequency that opens and closes in a timely manner in accordance with the low-speed operation frequency, so the compressor has low suction loss and can operate with high volumetric efficiency. .
しかしながら低速の運転周波数から、 冷却負荷条件の変化で運転 周波数が高く変化すると、 バルブ 6 7 の固有振動数で決まる開閉動 作のタイミングにずれが生じる。 このときシリ ンダ 6 3内の圧力が シリ ンダヘッ ド 6 1 の吸入空間 6 1 A内を越える圧力となってもバ ルブ 6 7が閉動作を完了しない。 そのため閉じ遅れによって冷媒ガ スが逆流して体積効率が低下し、 冷凍能力、 冷凍効率が低下する。 バルブ 6 7の閉じ遅れによる冷媒ガスの逆流を小さくするために 高速運転に対応させて固有振動数を高く設計する対策が考えられる, この場合、 変形部 6 7 Aのばね定数が大きくなるため、 変形部 6 7 Aのたわみ量が小さくなり吸入損失が増大して冷凍能力、 冷凍効率 が低下する。 発明の開示  However, if the operating frequency changes from a low operating frequency to a high one due to a change in cooling load conditions, the timing of the opening / closing operation determined by the natural frequency of the valve 67 will be shifted. At this time, even if the pressure in the cylinder 63 exceeds the pressure in the suction space 61A of the cylinder head 61, the valve 67 does not complete the closing operation. As a result, the refrigerant gas flows backward due to the delay in closing and the volume efficiency is reduced, and the refrigeration capacity and refrigeration efficiency are reduced. In order to reduce the backflow of the refrigerant gas due to the delay of closing the valve 67, measures to design a high natural frequency corresponding to high-speed operation can be considered.In this case, the spring constant of the deformed part 67A increases, The amount of deflection of the deformed part 67 A decreases, the suction loss increases, and the refrigeration capacity and refrigeration efficiency decrease. Disclosure of the invention
本発明による冷媒圧縮機は、 ピス トンとシリ ンダとバルブプレ一 トとを有する。 バルブプレー卜はシリ ンダの開口端に設けられ、 複 数の吸入孔を有する。 本発明による冷媒圧縮機はさらに、 シリ ンダ の開口端とバルブプレートとの間に設けられ、 複数の吸入孔をそれ ぞれ開閉する複数の吸入リー ドバルブを有する。 吸入リードバルブ の少なく ともひとつは他のリードバルブと異なる固有振動数を有す る。 この構成により運転周波数が変化しても、 吸入リードバルブの 閉じ遅れやたわみ量の減少が防止される。 図面の簡単な説明 A refrigerant compressor according to the present invention includes a piston, a cylinder, and a valve plate. The valve plate is provided at the open end of the cylinder. It has a number of suction holes. The refrigerant compressor according to the present invention further has a plurality of suction lead valves provided between the open end of the cylinder and the valve plate to open and close the plurality of suction holes, respectively. At least one of the suction reed valves has a different natural frequency than the other reed valves. With this configuration, even if the operating frequency changes, a delay in closing the suction reed valve and a decrease in the amount of deflection are prevented. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の実施の形態における冷媒圧縮機の断面図である。 図 2は図 1 の冷媒圧縮機における吸入リードバルブの正面図であ る。  FIG. 1 is a sectional view of a refrigerant compressor according to an embodiment of the present invention. FIG. 2 is a front view of a suction reed valve in the refrigerant compressor of FIG.
図 3は図 1 の冷媒圧縮機におけるシリンダへッ ド部断面図である 図 4は本発明の実施の形態における冷媒圧縮機の低速運転におけ る一行程中のシリ ンダ内圧力、 リードバルブたわみ量線図である。  FIG. 3 is a cross-sectional view of a cylinder head of the refrigerant compressor of FIG. 1. FIG. 4 is a cylinder pressure and a reed valve deflection during one stroke in a low-speed operation of the refrigerant compressor according to the embodiment of the present invention. FIG.
図 5は本発明の実施の形態における冷媒圧縮機の高速運転におけ る一行程中のシリ ンダ内圧力、 リードバルブたわみ量線図である。 図 6は従来の冷媒圧縮機の断面図である。  FIG. 5 is a diagram showing the pressure in the cylinder and the amount of deflection of the reed valve during one stroke in the high-speed operation of the refrigerant compressor in the embodiment of the present invention. FIG. 6 is a sectional view of a conventional refrigerant compressor.
図 7は図 6の冷媒圧縮機のバルブ分解斜視図である。 発明を実施するための最良の形態  FIG. 7 is an exploded perspective view of a valve of the refrigerant compressor of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
図 1は、本発明の実施の形態における冷媒圧縮機の断面図である。 図 2は吸入リードバルブの正面図,である。 図 3はシリ ンダへッ ド部 断面図である。  FIG. 1 is a cross-sectional view of a refrigerant compressor according to an embodiment of the present invention. FIG. 2 is a front view of the suction reed valve. Fig. 3 is a sectional view of the cylinder head.
密閉容器 1 には、 吸入管 2の一端である出口部 2 Aが接合され、 吸入管 2の他端は冷凍サイクルの低圧側配管 (図示せず) と接合さ れている。 モータ 3は固定子 4 と回転子 5 とから構成され、 圧縮部 6 を駆動している。 また、 冷凍機油 7は、 密閉容器 1 の底部に貯留 している。 コイルばね 8は、 モー夕 3 と圧縮部 6 とを弾性的に支持 している。  An outlet 2A, which is one end of a suction pipe 2, is connected to the closed vessel 1, and the other end of the suction pipe 2 is connected to a low-pressure side pipe (not shown) of the refrigeration cycle. The motor 3 includes a stator 4 and a rotor 5 and drives a compression unit 6. The refrigerating machine oil 7 is stored at the bottom of the closed container 1. The coil spring 8 elastically supports the motor 3 and the compression section 6.
圧縮部 6は、シリンダヘッ ド 1 0 1 と、シリ ンダブロック 1 2 と、 バルブプレート 1 1 0 と吸入リードパルブ (以下、 バルブ) 1 2 0 A、 1 2 0 Bと、 ピス トン 1 8 と、 連接棒 2 0 と、 吸入マフラ 1 3 0 とから構成されている。 シリ ンダヘッ ド 1 0 1 は、 吸入空間 1 0 1 Aと吐出空間 1 0 1 Bとを形成する。 シリ ンダブロック 1 2はシ リ ンダ 1 3 を有する。 連接棒 2 0はクランク軸 1 9の偏芯部 1 9 A に連結されている。 吸入マフラ 1 3 0は、 吸入空間 1 0 1 Aに連通 管 1 3 O Aを介してバルブプレー卜 1 1 0の吸入孔 1 1 2 A, 1 1 2 Bと連通し、 入口部 1 3 0 Bより冷媒ガスを吸入する。 The compression unit 6 includes a cylinder head 101, a cylinder block 12 and It is composed of a valve plate 110, a suction reed valve (hereinafter, a valve) 120A, 120B, a piston 18, a connecting rod 20, and a suction muffler 130. The cylinder head 101 forms a suction space 101A and a discharge space 101B. The cylinder block 12 has a cylinder 13. The connecting rod 20 is connected to the eccentric part 19 A of the crankshaft 19. The suction muffler 130 communicates with the suction space 110 A through the pipe 13 OA, and communicates with the suction holes 1 12 A and 1 12 B of the valve plate 110, and the inlet section 130 B More refrigerant gas is sucked.
バルブプレート 1 1 0は吸入孔 1 1 2 A, 1 1 2 Bと吐出孔 (図 示せず) とを有する。 吸入孔 1 1 2 A, 1 1 2 Bはバルブプレート 1 1 0のシリ ンダ 1 3側の開口部 1 1 4 A , 1 1 4 Bからシリ ンダ ヘッ ド 1 0 1側の開口部 1 1 4 C, 1 1 4 Dへ、 互いの間隔が小さ くなる方向に傾斜している。 バルブ 1 2 0 A , 1 2 0 Bは、 長さの 異なる変形部 1 2 2 A, 1 2 2 Bをそれぞれ有している。 変形部 1 2 2 Aは変形部 1 2 2 Bより長いため、 バルブ 1 2 0 Aのバネ定数 のほうが小さく、 バルブ 1 2 0 Aはバルブ 1 2 0 Bより低い固有振 動数を有している。 また、 バルブ 1 2 0 A , 1 2 0 Bの形状は変形 部 1 2 2 A, 1 2 2 Bの中心線 1 2 4 A , 1 2 4 Bに対して非対称 である。 吸入孔 1 1 2 A, 1 1 2 Bの中心点の位置とバルブ 1 2 0 A , 1 2 0 8の点 1 2 6 , 1 2 6 Bとはそれぞれ対応している。  The valve plate 110 has suction holes 112A and 112B and a discharge hole (not shown). Suction holes 1 1 2 A, 1 1 2 B are openings 1 1 4 from cylinder 13 opening 1 1 4 A, 1 1 4 B to cylinder head 1 0 1 side of valve plate 1 1 10 Inclines to C, 114D in the direction in which the distance between them decreases. Valves 120A and 120B have deformed portions 122A and 122B having different lengths, respectively. Since the deformed part 122 A is longer than the deformed part 122 B, the spring constant of the valve 120 A is smaller, and the valve 120 A has a lower natural frequency than the valve 120 B. I have. The shapes of the valves 122A and 120B are asymmetric with respect to the center lines 124A and 124B of the deformed parts 122A and 122B. The positions of the center points of the suction holes 1 12 A and 1 12 B correspond to the points 1 26 and 1 26 B of the valves 1 20 A and 1 208 respectively.
シール部 1 2 8 A , 1 2 8 Bは、 バルブプレート 1 1 0 に設けら れた吸入孔 1 1 2 A, 1 1 2 Bをシールする。  The seal portions 128 A and 128 B seal the suction holes 112 A and 112 B provided in the valve plate 110.
以上のように構成された本実施の形態の冷媒圧縮機について、 以 下その動作を説明する。 図 4は、 本実施の形態による冷媒圧縮機の 低速運転における一行程中のシリ ンダ内圧力、 リードバルブたわみ 量線図である。 図 5は、 同冷媒圧縮機の高速運転における一行程中 のシリ ンダ内圧力、 リードバルブたわみ量線図である。  The operation of the refrigerant compressor of the present embodiment configured as described above will be described below. FIG. 4 is a cylinder pressure and reed valve deflection diagram during one stroke in a low-speed operation of the refrigerant compressor according to the present embodiment. FIG. 5 is a diagram showing the pressure in the cylinder and the amount of deflection of the reed valve during one stroke in the high-speed operation of the refrigerant compressor.
モータ 3 によって圧縮部 6が駆動され、 ピス トン 1 8はシリ ンダ 1 3内で往復運動する。 外部冷凍サイクル (図示せず) より戻って きた低温低圧の冷媒ガスはまず吸入管 2から密閉容器 1内に吸入さ れる。 冷媒ガスはさらに吸入マフラ 1 3 0の入口部 1 3 0 Bより吸 入され、連通管 1 3 O Aを介して吸入孔 1 1 2 A、 1 1 2 Bを通る。 吸入行程時にバルブ 1 2 0 A , 1 2 0 Bの変形部 1 2 2 A、 1 2 2 Bを撓ませることにより、 冷媒ガスはバルブ 1 2 0 A, 1 2 0 Bを 開いてシリ ンダ 1 3へ導かれる。 圧縮行程時にはバルブ 1 2 0 A, 1 2 0 Bが閉じられ、 冷媒ガスは圧縮され高温高圧となり吐出孔か ら吐出管 (図示せず) を通り、 外部冷凍サイクルへ導かれて冷凍作 用をなす。 The compression section 6 is driven by the motor 3, and the piston 18 reciprocates in the cylinder 13. The low-temperature and low-pressure refrigerant gas returned from the external refrigeration cycle (not shown) is first drawn into the closed vessel 1 from the suction pipe 2. It is. Refrigerant gas is further sucked in from the inlet portion 130B of the suction muffler 130, and passes through the suction holes 1 12A and 112B via the communication pipe 13OA. By deforming the deformed portions 122A and 122B of the valves 122A and 122B during the suction stroke, the refrigerant gas opens the valves 122A and 122B and the cylinder 1 Guided to 3. During the compression stroke, the valves 120A and 120B are closed, and the refrigerant gas is compressed to a high temperature and pressure, passes through a discharge pipe (not shown) from the discharge port, and is led to an external refrigeration cycle to perform refrigeration. Eggplant
シリ ンダ 1 3内でピス トン 1 8が往復運動を行う際、 吸入行程に おいて、 ピス トン 1 8が下死点側に移動する。 低速運転下ではこの 吸入行程において、 シリンダ 1 3内の圧力 1 4 0がシリ ンダへッ ド 1 0 1 の吸入空間 1 0 1 A内圧力より低下した時の差圧で生じるガ ス圧荷重がバルブ 1 2 0 A , 1 2 0 Bに作用する。 この時、 点 1 4 0 Aで吸入リードバルブ 1 2 O A, 1 2 0 Bが開き始め、 冷媒ガス がシリ ンダ 1 3内に吸い込まれる。 点 1 4 0 Aは、 差圧で生じるガ ス圧荷重が、 バルブ 1 2 0 A, 1 2 0 Bの撓み荷重とバルブ 1 2 0 A , 1 2 0 Bのシール部の冷凍機油の粘性による密着力との合力よ り大きくなつた時点を意味する。  When the piston 18 reciprocates in the cylinder 13, the piston 18 moves to the bottom dead center in the suction stroke. Under low-speed operation, during this suction stroke, the gas pressure load generated by the differential pressure when the pressure 140 in the cylinder 13 falls below the pressure in the suction space 101A of the cylinder head 101 is reduced. Acts on valves 120A and 120B. At this time, at point 140 A, the suction reed valves 12 OA and 120 B begin to open, and refrigerant gas is sucked into the cylinder 13. At point 140 A, the gas pressure load generated by the differential pressure is due to the bending load of the valves 120 A and 120 B and the viscosity of the refrigerating machine oil at the seals of the valves 120 A and 120 B. It means the point at which it becomes larger than the resultant force with adhesion.
また、 圧縮行程において、 バルブ 1 2 0 A, 1 2 0 Bは、 シリ ン ダ 1 3内の圧力がシリ ンダヘッ ド 1 0 1の吸入空間 1 0 1 A内の圧 力を越える点 1 4 0 Bで閉じ、 吸入マフラ 1 3 0からの冷媒ガスの 吸入が完了する。  In the compression stroke, the valves 120 A and 120 B are connected to the point at which the pressure in the cylinder 13 exceeds the pressure in the suction space 101 A of the cylinder head 101. Close with B, and the suction of refrigerant gas from suction muffler 130 is completed.
点 1 4 0 Aから点 1 4 0 Bの間において、 バルブ 1 2 0 Aは、 変 形部 1 2 2 Aを撓ませながら、 1次変形モードの固有振動数で 2回 の開閉動作 1 5 O Aを繰り返す。 バルブ 1 2 O Aは低速運転周波数 対応の固有振動数が選定されているため、 バルブ 1 2 0 Aは点 1 4 0 Bとほぼ同じタイミングで閉じ終える。 またバルブ 1 2 0 Aのば ね定数が小さいため、 低速運転時の吸入ガスの流速が遅い条件にお いても、 たわみ量不足で吸入損失が増大することはない。  Between point 140 A and point 140 B, valve 120 A performs two opening and closing operations at the natural frequency of the primary deformation mode while bending the deformation section 122 A. Repeat OA. Since the natural frequency corresponding to the low-speed operation frequency has been selected for the valve 12OA, the valve 120A closes at almost the same timing as the point 140B. In addition, because the spring constant of the valve 120 A is small, even under the condition where the flow rate of the intake gas is low at the time of low-speed operation, the suction loss does not increase due to the insufficient amount of deflection.
また、 バルブ 1 2 0 Bば、 バルブ 1 2 0 Aより高い固有振動数、 ばね定数を有しており、 点 1 4 0 Aから点 1 4 0 Bの間において、 4回の開閉動作 1 5 0 Bを繰り返す。 この時、 バルブ 1 2 0 Bは、 1 回目から 3回目の開閉動作 1 5 0 Bで冷媒循環量に応じた所定の たわみ量で大きく開口する。 4回目の開閉動作では、 圧縮行程にあ るためシリンダ 1 3内とシリ ンダヘッ ド 1 0 1 の吸入空間 1 0 1 A との差圧が非常に小さい状態にある。 このとき冷媒ガスはより大き く撓んだバルブ 1 2 0 Aの吸入孔 1 1 2 Aを流れる。 そのため、 バ ルブ 1 2 0 Bの吸入孔 1 1 2 Bを流れる冷媒ガスは僅かとなり、 冷 媒ガスの流れによる動圧が小さくなる。 すなわち、 バルブ 1 2 0 B はほとんど撓むことなく点 1 4 1 B近傍で開閉動作を完了する。 Also, if the valve 120 B, the natural frequency higher than the valve 120 A, It has a spring constant and repeats four opening / closing operations 150 B between point 140 A and point 140 B. At this time, the valve 120B opens a large amount with a predetermined amount of flexure corresponding to the refrigerant circulation amount in the first to third opening / closing operations 150B. In the fourth opening / closing operation, the pressure difference between the inside of the cylinder 13 and the suction space 101A of the cylinder head 101 is very small because it is in the compression stroke. At this time, the refrigerant gas flows through the inlet hole 112A of the valve 120A, which is more greatly bent. Therefore, the amount of the refrigerant gas flowing through the suction hole 112B of the valve 120B becomes small, and the dynamic pressure due to the flow of the refrigerant gas decreases. That is, the valve 120B completes the opening / closing operation near the point 141B with almost no bending.
したがって、 バルブ 1 2 0 A、 1 2 0 Bが閉じ遅れを生じること による冷媒ガスの逆流が防止されるとともに、 吸入行程時のたわみ 量過小に起因する吸入損失の増大も防止される。 このため、 体積効 率が高くなる。  Therefore, the backflow of the refrigerant gas due to the closing delay of the valves 120A and 120B is prevented, and the increase in suction loss due to an excessively small deflection amount during the suction stroke is also prevented. For this reason, the volume efficiency is increased.
また、 高速運転の場合において、 ノ ルブ 1 2 0 Bは、 点 1 4 1 A から点 1 4 1 Bの間で 3回の開閉動作 1 5 1 Bを繰り返し、 冷媒循 環量に応じた所定のたわみ量で撓んだ後タイミング良く閉じ終える, 点 1 4 1 Aは、 シリ ンダ 1 3内の圧力がシリ ンダへッ ド 1 0 1 の吸 入空間 1 0 1 A内圧力より低下する時点を意味する。 また点 1 4 1 Bは、 シリ ンダ 1 3内の圧力がシリ ンダへッ ド 1 0 1 の吸入空間 1 0 1 A内の圧力を越える時点を意味する。  Also, in the case of high-speed operation, the knob 124B repeats three opening / closing operations 151B between the point 141A and the point 141B, and performs the predetermined operation according to the refrigerant circulation amount. Point 14 1 A is the point when the pressure in cylinder 13 drops below the pressure in cylinder head 101 suction space 101 A Means Also, the point 141B indicates the point in time when the pressure in the cylinder 13 exceeds the pressure in the suction space 101A of the cylinder head 101.
バルブ 1 2 0 Aは、 1 回目の開閉動作 1 5 1 Aで冷媒循環量に応 じた所定のたわみ量で大きく開口する。 一方、 2回目の開閉動作に おいては、 圧縮行程にあるためシリ ンダ 1 3内とシリ ンダヘッ ド 1 0 1 の吸入空間 1 0 1 Aの差圧が非常に小さい状態にある。 そのた め、 冷媒ガスは、 2回目以降、 より大きく撓んだバルブ 1 2 0 Bの 吸入孔 1 1 2 Bを通過する。 そのため、 バルブ 1 2 0 Aは、 ほとん ど撓むことなく点 1 4 1 B近傍で開閉動作を完了する。  The valve 120 A opens a large amount with a predetermined amount of deflection corresponding to the amount of circulating refrigerant at the first opening and closing operation 15 1 A. On the other hand, in the second opening / closing operation, the differential pressure between the inside of the cylinder 13 and the suction space 101A of the cylinder head 101 is very small because it is in the compression stroke. Therefore, after the second time, the refrigerant gas passes through the inlet hole 112B of the valve 120B, which is greatly bent. Therefore, the valve 120A completes the opening / closing operation near the point 141B with almost no bending.
よって、 高速運転の場合においてもバルブ 1 2 O A, 1 2 0 Bの 閉じ遅れやたわみ量不足が生じることなく、 冷媒ガスは効率良くシ リ ンダ 1 3内に吸い込まれる。 したがって、 運転周波数が変化した 場合においても、 圧縮機の冷凍能力や圧縮効率が高くなる。 Therefore, even in the case of high-speed operation, the refrigerant gas is efficiently circulated without delay in closing the valves 12 OA and 120 B and insufficient deflection. Sucked into Linda 13 Therefore, even when the operating frequency changes, the refrigerating capacity and compression efficiency of the compressor increase.
また、 ノ ルブ 1 2 0 A , 1 2 0 Bの形状は変形部 1 2 2 A, 1 2 2 Bの中心線 1 2 4 A, 1 2 4 Bに対して非対称である。このため、 バルブ 1 2 0 A, 1 2 0 Bに作用するガス圧荷重の作用点 1 2 6 A, 1 2 6 Bと、 バルブ 1 2 O A, 1 2 O Bの橈み変形の中心線 1 2 4 A, 1 2 4 Bにズレが生じる。 これにより、 バルブ 1 2 0 A, 1 2 0 Bがねじり変形しながら開き始める。 すなわち、 ガス圧荷重によ るねじりモーメントがバルブ 1 2 O A, 1 2 0 Bに作用する。 この ため、 バルブ 1 2 0 A, 1 2 0 Bの円形シール部 1 2 8 A, 1 2 8 Bの片側に、 冷凍機油 7の粘性により密着部を引き剥がす力が集中 的に働き、バルブ 1 2 0 A, 1 2 0 Bは開き易くなる。 したがって、 吸入行程におけるバルブ 1 2 0 A, 1 2 0 Bの開き始めが早くなる。 そのため冷媒ガスは、 効率良く シリ ンダ 1 3内に吸い込まれ、 冷凍 能力や圧縮効率が高くなる。 なお、 図 2ではバルブ 1 2 0 A, 1 2 0 Bの形状はいずれも変形部 1 2 2 A, 1 2 2 Bの中心線 1 2 4 A , 1 2 4 Bに対して非対称であるが、 一方だけをそのようにしてもよ い。  Also, the shapes of the knobs 120A and 120B are asymmetric with respect to the center lines 124A and 124B of the deformed portions 122A and 122B. For this reason, the points of action 12 6 A, 12 B of the gas pressure load acting on the valves 12 A, 12 B and the center line of the radial deformation of the valves 12 OA, 12 OB 1 2 4 A and 1 24 B shift. As a result, the valves 120A and 120B start opening while being torsionally deformed. That is, the torsional moment caused by the gas pressure load acts on the valves 12OA and 120B. For this reason, the force of peeling off the adhered part due to the viscosity of the refrigerating machine oil 7 acts on one side of the circular seal parts 128 A, 128 B of the valves 120 A, 120 B, and the valve 1 20 A and 120 B are easy to open. Therefore, the opening of the valves 120A and 120B in the suction stroke starts earlier. Therefore, the refrigerant gas is efficiently sucked into the cylinder 13 and the refrigeration capacity and the compression efficiency are increased. In FIG. 2, the shapes of the valves 120 A and 120 B are asymmetric with respect to the center lines 124 A and 124 B of the deformed parts 122 A and 122 B, respectively. However, only one may do so.
密閉容器 1 内の冷媒ガスは吸入マフラ 1 3 0を介して高温のシリ ンダへッ ド 1 0 1内の吸入空間 1 0 1 Aを通過し、 バルブプレート 1 1 0に設けられた吸入孔 1 1 2 A , 1 1 2 Bからシリ ンダ 1 3内 に吸入される。 ここで、 シリ ンダ 1 3内の冷媒ガスは圧縮作用によ り約 1 0 0 程度の高温状態となりシリ ンダへッ ド 1 0 1 の吐出空 間 1 0 1 Bへ吐出される。 これにより、 シリ ンダヘッ ド 1 0 1 は加 熱され約 8 0 °C近くの高温状態となる。  The refrigerant gas in the sealed container 1 passes through the suction space 101 in the high-temperature cylinder head 101 via the suction muffler 130, and the suction hole 1 provided in the valve plate 110. Inhaled into cylinder 13 from 12 A and 11 B. Here, the refrigerant gas in the cylinder 13 is brought into a high temperature state of about 100 by compression action and is discharged to the discharge space 101 B of the cylinder head 101. As a result, the cylinder head 101 is heated to a high temperature state of about 80 ° C.
この時、 シリンダヘッ ド 1 0 1内の吸入空間 1 0 1 Aのふたつの 吸入孔 1 1 2 A, 1 1 2 Bの間隔は、 最小でもシール部 1 2 8 Aと シール部 1 2 8 Bとの幅を加えた距離が必要である。 ここで図 3 に 示すように吸入孔 1 1 2 A, 1 1 2 Bに傾斜を設ければ、 シール部 1 2 8 Aとシール部 1 2 8 Bとの幅を考慮する必要がなく吸入孔 1 1 2 A , 1 1 2 Bの間隔を大幅に小さくできる。 これにより、 シリ ンダヘッ ド 1 0 1 内の吸入空間 1 0 1 Aの容積と受熱面積とを小さ く構成することができ、 流れる冷媒ガスへの熱伝達は低減される。 したがって、 冷煤の温度は低く保たれ、 ガス冷媒の密度が高く冷媒 循環量が大きくなり、 冷凍能力や圧縮効率が高くなる。 なお、 図 3 では吸入孔 1 1 2 A, 1 1 2 Bの両方に傾斜を設けているが、 一方 だけに設けてもよい。 At this time, the interval between the two suction holes 1 1 2 A and 1 1 2 B of the suction space 1 0 1 A in the cylinder head 101 is at least as small as the seal 1 2 28 A and the seal 1 2 8 B Is necessary to add the width of Here, if the suction holes 112A and 112B are inclined as shown in Fig. 3, there is no need to consider the width between the seal part 128A and the seal part 128B, and the suction hole 1 The interval between 12 A and 11 B can be greatly reduced. Thus, the volume of the suction space 101A and the heat receiving area in the cylinder head 101 can be made small, and the heat transfer to the flowing refrigerant gas is reduced. Therefore, the temperature of the cold soot is kept low, the density of the gas refrigerant is high, the refrigerant circulation amount is large, and the refrigeration capacity and compression efficiency are high. In FIG. 3, both the suction holes 112A and 112B are inclined, but may be provided only to one of them.
なお、 本実施の形態において、 バルブ 1 2 0 A , 1 2 0 Bの個数 を 2個としているが、 3個以上でも同様の効果が得られる。  In the present embodiment, the number of valves 120A and 120B is two, but the same effect can be obtained with three or more valves.
また、 本実施の形態において、 バルブ 1 2 0 A , 1 2 0 Bの長さ を変えて固有振動数を変更しているが、 バルブ 1 2 0 A, 1 2 0 B の幅や形状を変えて固有振動数を変更しても同様の効果が得られる, また、 本実施の形態において、 バルブ 1 2 0 A , 1 2 0 Bの一行 程中の開閉回数を 2回から 4回として説明しているが、 1 回以上で あれば同様の効果が得られる。 産業上の利用可能性  In the present embodiment, the natural frequency is changed by changing the length of the valves 120A and 120B, but the width and shape of the valves 120A and 120B are changed. The same effect can be obtained even if the natural frequency is changed by changing the natural frequency.Also, in the present embodiment, the number of times of opening and closing in one stroke of the valves 120A and 120B is described as 2 to 4 times. However, the same effect can be obtained if it is performed once or more. Industrial applicability
本発明による冷媒圧縮機は、 ピス トンとシリ ンダとバルブプレー トとを有する。 バルブプレー トはシリ ンダの開口端に設けられ、 複 数の吸入孔を有する。 本発明による冷媒圧縮機はさ らに、 シリ ンダ の開口端とバルブプレートとの間に設けられ、 複数の吸入孔をそれ ぞれ開閉する複数の吸入リードバルブを有する。 吸入リ一ドバルブ の少なく ともひとつは他のリードバルブと異なる固有振動数を有す る。 この構成により、 冷媒圧縮機の冷凍能力や圧縮効率を高めるこ とができるので、 エアーコンディ ショナー、 冷凍冷蔵装置等の用途 に適用できる。  A refrigerant compressor according to the present invention includes a piston, a cylinder, and a valve plate. The valve plate is provided at an open end of the cylinder and has a plurality of suction holes. The refrigerant compressor according to the present invention further includes a plurality of suction reed valves provided between the open end of the cylinder and the valve plate, and respectively opening and closing the plurality of suction holes. At least one of the suction lead valves has a different natural frequency than the other reed valves. With this configuration, the refrigeration capacity and compression efficiency of the refrigerant compressor can be increased, so that it can be applied to applications such as air conditioners and refrigeration units.

Claims

請求の範囲 The scope of the claims
1 . ピス 卜ンと、 1. Piston and
前記ピス トンを収納するシリンダと、  A cylinder for storing the piston,
前記シリ ンダの開口端に設けられ、 第 1吸入孔と第 2吸入孔 とを設けられたバルブプレートと、  A valve plate provided at an open end of the cylinder and having a first suction hole and a second suction hole;
前記シリ ンダの開口端と前記バルブプレートとの間に設けら ' れ、 前記第 1吸入孔を開閉する第 1吸入リードバルブと、  A first suction reed valve provided between the open end of the cylinder and the valve plate to open and close the first suction hole;
前記シリ ンダの開口端と前記パルププレートとの間に設けら れ、 前記第 2吸入孔を開閉し、 前記第 1 リードバルブと異なる固有 振動数を有する第 2吸入リードバルブと、 を備えた、  A second suction reed valve that is provided between the open end of the cylinder and the pulp plate, opens and closes the second suction hole, and has a different natural frequency from the first reed valve.
冷媒圧縮機。  Refrigerant compressor.
2 . 前記第 1吸入リードバルブが第 1変形部を有し、 前記第 2吸 入リードバルブが第 2変形部を有し、 前記第 1吸入リードバルブの 形状が前記第 1変形部の中心線に対して非対称であるか、 前記第 2 吸入リ一ドバルブの形状が前記第 2変形部の中心線に対して非対称 であるか、 の少なく ともいずれかである、 2. The first suction reed valve has a first deformed portion, the second suction reed valve has a second deformed portion, and the shape of the first suction reed valve is a center line of the first deformed portion. Or the shape of the second suction lead valve is asymmetric with respect to the center line of the second deformable portion.
請求項 1記載の冷媒圧縮機。  The refrigerant compressor according to claim 1.
3 . 前記第 1吸入孔と前記第 2吸入孔との少なく とも一方が、 前 記バルブプレートの前記シリ ンダの開口端面から他端面へ、 前記第 1吸入孔と前記第 2吸入孔との間隔が小さくなる方向に傾斜してい る、 3. At least one of the first suction hole and the second suction hole extends from the opening end surface of the cylinder of the valve plate to the other end surface, and a distance between the first suction hole and the second suction hole. Is inclined in the direction in which
請求項 1記載の冷媒圧縮機。  The refrigerant compressor according to claim 1.
PCT/JP2004/006578 2003-05-12 2004-05-10 Refrigerant compressor WO2004099617A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/522,514 US20060039808A1 (en) 2003-05-12 2004-05-10 Refrigerant compressor
EP04732026A EP1541868A4 (en) 2003-05-12 2004-05-10 Refrigerant compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003133120 2003-05-12
JP2003-133120 2003-05-12
JP2004-120162 2004-04-15
JP2004120162A JP2004360686A (en) 2003-05-12 2004-04-15 Refrigerant compressor

Publications (1)

Publication Number Publication Date
WO2004099617A1 true WO2004099617A1 (en) 2004-11-18

Family

ID=33436441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006578 WO2004099617A1 (en) 2003-05-12 2004-05-10 Refrigerant compressor

Country Status (5)

Country Link
US (1) US20060039808A1 (en)
EP (1) EP1541868A4 (en)
JP (1) JP2004360686A (en)
KR (1) KR20050033613A (en)
WO (1) WO2004099617A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109475A1 (en) * 2005-03-30 2006-10-19 Matsushita Electric Industrial Co., Ltd. Hermetic compressor
JP2015500435A (en) * 2011-12-15 2015-01-05 ワールプール・エシ・ア Alternative compressor suction valve assembly

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895037A1 (en) * 2005-12-20 2007-06-22 Tecumseh Europ S A Sa VALVE DEVICE FOR FLUID COMPRESSOR AND FLUID COMPRESSOR
JP2010127100A (en) * 2008-11-25 2010-06-10 Daikin Ind Ltd Delivery valve and rotary compressor
US8747083B2 (en) * 2010-11-16 2014-06-10 Wen San Chou Air compressor having enlarged compartment for receiving pressurized air
BRPI1101993A2 (en) * 2011-04-28 2014-02-11 Whirlpool Sa Valve Arrangement for Hermetic Compressors
US9366462B2 (en) 2012-09-13 2016-06-14 Emerson Climate Technologies, Inc. Compressor assembly with directed suction
US11236748B2 (en) 2019-03-29 2022-02-01 Emerson Climate Technologies, Inc. Compressor having directed suction
US11767838B2 (en) 2019-06-14 2023-09-26 Copeland Lp Compressor having suction fitting
AT17214U1 (en) * 2019-12-19 2021-09-15 Anhui meizhi compressor co ltd Hermetically sealed refrigerant compressor
US11248605B1 (en) 2020-07-28 2022-02-15 Emerson Climate Technologies, Inc. Compressor having shell fitting
US11619228B2 (en) 2021-01-27 2023-04-04 Emerson Climate Technologies, Inc. Compressor having directed suction
KR20240067685A (en) * 2022-11-09 2024-05-17 삼성전자주식회사 Muffler for compressor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228951A (en) * 1996-02-26 1997-09-02 Matsushita Refrig Co Ltd Valve device for compressor
JPH09280168A (en) * 1996-04-10 1997-10-28 Toyota Autom Loom Works Ltd Piston type compressor
WO1997047882A1 (en) * 1996-06-14 1997-12-18 Matsushita Refrigeration Company Hermetic compressor
JP2000329066A (en) * 1999-05-19 2000-11-28 Toyota Autom Loom Works Ltd Suction valve construction of piston type compressor
JP2002106466A (en) * 2000-09-28 2002-04-10 Toyota Industries Corp Piston type compressor
JP2002332968A (en) * 2001-05-01 2002-11-22 Calsonic Kansei Corp Compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4200838C2 (en) * 1992-01-15 1994-12-22 Knf Neuberger Gmbh Pump with valves controlled by the medium
EP0821763B8 (en) * 1996-01-23 2005-08-17 Matsushita Refrigeration Company Electrically-operated sealed compressor
JPH09273478A (en) * 1996-04-08 1997-10-21 Toyota Autom Loom Works Ltd Piston type compressor
BR9900229A (en) * 1999-01-11 2000-07-11 Stumpp & Schuele Do Brasil Ind Process improvement for the manufacture of a membrane valve for the transfer of fluids / gases in hermetic and / or semi-hermetic compressors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228951A (en) * 1996-02-26 1997-09-02 Matsushita Refrig Co Ltd Valve device for compressor
JPH09280168A (en) * 1996-04-10 1997-10-28 Toyota Autom Loom Works Ltd Piston type compressor
WO1997047882A1 (en) * 1996-06-14 1997-12-18 Matsushita Refrigeration Company Hermetic compressor
JP2000329066A (en) * 1999-05-19 2000-11-28 Toyota Autom Loom Works Ltd Suction valve construction of piston type compressor
JP2002106466A (en) * 2000-09-28 2002-04-10 Toyota Industries Corp Piston type compressor
JP2002332968A (en) * 2001-05-01 2002-11-22 Calsonic Kansei Corp Compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1541868A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109475A1 (en) * 2005-03-30 2006-10-19 Matsushita Electric Industrial Co., Ltd. Hermetic compressor
KR100821796B1 (en) * 2005-03-30 2008-04-14 마쯔시다덴기산교 가부시키가이샤 Hermetic compressor
US7758318B2 (en) 2005-03-30 2010-07-20 Panasonic Corporation Hermetic compressor
JP2015500435A (en) * 2011-12-15 2015-01-05 ワールプール・エシ・ア Alternative compressor suction valve assembly

Also Published As

Publication number Publication date
EP1541868A1 (en) 2005-06-15
KR20050033613A (en) 2005-04-12
EP1541868A4 (en) 2005-12-14
US20060039808A1 (en) 2006-02-23
JP2004360686A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
WO2004099617A1 (en) Refrigerant compressor
CN102947652B (en) Cooling system of a refrigerator and suction system for a compressor fluid
EP2357427A1 (en) Refrigeration device
KR101280155B1 (en) Heat pump device, two-stage compressor, and method of operating heat pump device
US20080092588A1 (en) Reduced Input Power Cryogenic Refrigerator
US20060045762A1 (en) Suction muffler for compressor
US20090007590A1 (en) Refrigeration System
CN108344198B (en) Miniature throttle refrigerating system based on novel gas compression device
CN100434696C (en) Reciprocating piston compressor for trans-critical CO2 refrigeration cycle
US20060083627A1 (en) Vapor compression system including a swiveling compressor
US10167860B2 (en) Hermetic compressor and refrigeration apparatus
EP1957796B1 (en) A compressor
KR101248437B1 (en) Volumetric compressors
KR101463262B1 (en) Swash plate type compressor
EP2013481B1 (en) A compressor
CN217976514U (en) Reciprocating type refrigeration compressor
TW200532113A (en) Closed reciprocating compressor
JP2007255245A (en) Compressor
KR100341420B1 (en) Low noise type cylinder
US20050129548A1 (en) Suction valve and reciprocating compressor having the same
WO2002025110A1 (en) Valve assembly in hermetic compressor
KR20070023006A (en) Compressor
KR200317644Y1 (en) Inlet muffler of a compressor
JP2003049774A (en) Hermetic electric compressor and refrigerating/air- conditioning device
JP2007132262A (en) Compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057000992

Country of ref document: KR

Ref document number: 20048005118

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004732026

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006039808

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10522514

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057000992

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004732026

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10522514

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004732026

Country of ref document: EP