WO2004097507A1 - Optical coupling element, photo-refractive element having the same, and optical information processing device - Google Patents

Optical coupling element, photo-refractive element having the same, and optical information processing device Download PDF

Info

Publication number
WO2004097507A1
WO2004097507A1 PCT/JP2004/003926 JP2004003926W WO2004097507A1 WO 2004097507 A1 WO2004097507 A1 WO 2004097507A1 JP 2004003926 W JP2004003926 W JP 2004003926W WO 2004097507 A1 WO2004097507 A1 WO 2004097507A1
Authority
WO
WIPO (PCT)
Prior art keywords
photorefractive
electric field
medium
optical
optical coupling
Prior art date
Application number
PCT/JP2004/003926
Other languages
French (fr)
Japanese (ja)
Inventor
Takafumi Sassa
Tetsuya Aoyama
Tatsuo Wada
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Priority to JP2005505823A priority Critical patent/JP4675778B2/en
Publication of WO2004097507A1 publication Critical patent/WO2004097507A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/05Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect with ferro-electric properties
    • G02F1/0541Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect with ferro-electric properties using photorefractive effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching

Definitions

  • the present invention relates to an optical coupling element, a photorefractive element including the same, and an optical information processing apparatus. More particularly, the present invention relates to an optical coupling element suitable for use in a photorefractive element and a photorefractive element including the same.
  • the present invention relates to an element and an optical information processing apparatus, and more particularly, to an optical coupling element capable of easily and efficiently generating optical interference fringes in a photorefractive medium constituting a photorefractive element, and an optical coupling element including the optical coupling element.
  • the present invention relates to a photorefractive element and an optical information processing device.
  • the transfer of charges generated in the photorefractive medium due to the formation of optical interference fringes in the photorefractive medium is promoted by applying an electric field from the outside, and the photorefractive medium is accelerated.
  • Medium which is referred to as "external electric field driven photorefractive medium” in this specification
  • diffusion electric field induced in the photorefractive medium without applying an external electric field.
  • a photorefractive medium that enhances the photorefractive effect by promoting Electric Driven Photorefractive Medium " I do. ) Is known.
  • the external electric field driven photorefractive medium and the internal electric field driven photorefractive medium are collectively referred to simply as “photorefractive medium”.
  • a photorefractive element using an external electric field driven photorefractive medium is referred to as an “external electric field driven photorefractive element”.
  • the term “internal electric field driving type photorefractive element” shall be referred to as “the internal electric field driving type photorefractive element”.
  • a material having a glass transition temperature near room temperature, lower or higher than room temperature is used as an external electric field driven photorefractive medium, while an internal electric field driven photorefractive medium is used as an external electric field driven photorefractive medium. Glass transition temperature well above room temperature Use of the material. BACKGROUND
  • a grid of optical interference fringes formed in a photorefractive medium by irradiating two photons to the photorefractive element is required. It is known that a larger electric field (effective driving electric field) needs to be applied in the vector direction. That is, the effective driving electric field is applied in the lattice vector direction of the optical interference fringes. This is because the response amplitude can be increased and the response speed can be increased.
  • FIG. 1 shows a conceptual configuration explanatory view of a conventional external electric field drive type photorefractive element.
  • the external electric field driven photorefractive element 10 shown in FIG. 1 includes a substantially rectangular external electric field driven photorefractive medium 12, a pair of substantially flat transparent substrates 14 a, 14 b, and It has a pair of substantially flat transparent electrodes 16a and 16b attached to a pair of substantially flat transparent substrates 14a and 14b, respectively. And, between the transparent electrode 16a attached to the transparent substrate 14a and the transparent electrode 16b attached to the transparent substrate 14b, an external electric field driven photorefractive medium 12 is sandwiched. . More specifically, the external electric field-driven photorefractive medium 12 and the transparent electrodes 16a and 16b are defined by the one surface of the rectangular external electric field-driven photorefractive medium 12 and the transparent substrate 1.
  • a substantially flat transparent electrode 16a attached to a is arranged so as to contact the plane of 16a, and the other surface opposing one surface of the rectangular external electric field driven photorefractive medium 12 It is arranged so that the surface of the substantially flat transparent electrode 16b attached to the transparent substrate 14b abuts.
  • the structure of the external electric field driving type photorefractive element having such a configuration is as follows. It is generally called a sandwich type cell structure.
  • Reference numeral 18 denotes a power supply connected to the pair of transparent electrodes 16a and 16b, respectively, for applying an electric field to the external electric field drive type photoreflective medium 12 from the outside.
  • one side of the external electric field drive type photorefractive medium 12 for example, as shown in FIG.
  • two writing lights are irradiated from one transparent substrate 14a side.
  • the optical interference fringes are parallel to the bisector of the two writing lights in the external electric field driven photorefractive medium 12. Generated. Note that such an arrangement of the writing light is generally called a tilt arrangement.
  • the lattice vector of the optical interference fringes has a tilt angle 0 with respect to the externally applied electric field vector applied by the T source 18. (90 degrees)
  • the effective driving electric field applied in the lattice vector direction of the optical interference fringes is given as a cosine component of the externally applied electric field applied by the power supply 18. Therefore, in order to increase the effective driving electric field applied in the lattice vector direction of the optical interference fringes, it is necessary to make the inclination angle 0 as close to 0 as possible.
  • the tilt type arrangement shown in FIG. 1 has a problem that the inclination angle 0 cannot be made sufficiently small.
  • the inclination angle 0 is reduced, the incident angle of the writing light increases, and therefore, the reflection loss of the writing light on the surface of the transparent substrate 14a increases, and the external electric field driving type photo-reflector is increased. This is because the writing light cannot reach the active medium 12. As a result, the effective driving electric field component cannot be sufficiently increased.
  • the inclination angle 0 is generally used at around 30 °, and in this case, only about 50% of the externally applied electric field can be used as the effective driving electric field. .
  • the present invention has been made in view of the background of the invention as described above, the problems of the conventional technology, and the demand for the conventional technology, and the object thereof is to provide excellent operability and functionality.
  • a photorefractive element for realizing a photorefractive element capable of generating optical interference fringes in a photorefractive medium with high efficiency a photorefractive element including the same, and an optical information processing device It is. Disclosure of the invention
  • the optical coupling device is, for example, combined with a conventionally used sandwich-type cell structure to form an optical interference fringe optimally arranged in a photorefractive medium. That is, it is possible to easily form the light interference fringes arranged so that the inclination angle 0 becomes 0 ° with high efficiency.
  • a photorefractive element according to the present invention is one in which a photorefractive element is formed using the optical coupling element according to the present invention.
  • an optical information processing device configured using the photorefractive element according to the present invention. That is, the present invention comprises a trapezoidal prism having an incident surface set at a predetermined inclination with respect to the writing light incident on the photorefractive medium, and is disposed on at least one surface side of the photorefractive medium. Optical coupling element. Further, the optical coupling device according to the present invention is arranged such that the inclination of the incident surface is adjusted according to the desired period of the optical interference fringe formed in the photorefractive medium by the ## of the writing light to the photorefractive medium. Is set. Further, the present invention is a photorefractive element in which the optical coupling element according to the present invention is disposed on at least one surface side of the photorefractive medium.
  • the optical coupling element is disposed on one surface side of the substantially rectangular photorefractive medium and on the other surface side facing the one surface side, respectively.
  • One of the two writing lights emitted from a direction perpendicular to the thickness direction of the photorefractive medium and from a mirror image with respect to a plane passing through the center of the thickness is applied to one of the photorefractive media.
  • the other of the two writing lights is disposed on the other surface of the photorefractive medium facing the one surface of the photorefractive medium. The light enters the incident surface of the optical coupling device.
  • the present invention includes a two-dimensional encoding device, a spatial modulator control device, a spatial modulator, and a photorefractive element, and inputs an input signal to the two-dimensional encoding device and the spatial modulator.
  • One or both of the two write lights are controlled by the spatial modulator into which the two write lights are input to the spatial modulator through the control device and the two write lights are incident on the photorefractive element.
  • the optical information processing device is a photorefractive element according to the present invention, wherein the fractive element is a photorefractive element.
  • the photorefractive element is a photorefractive element according to the present invention, and two write lights to the photorefractive element are controlled by a single spatial modulator.
  • the present investigation is 27 and the fire source encoding apparatus, a spatial modulator controller, a spatial modulator, and a photo Refla data revertive element, the two-dimensional input signal
  • the two write lights are input to the spatial modulator through the encoding device and the spatial modulator control device, and the two write lights are incident on the photorefractive element by the spatial modulator.
  • the photorefractive element receives two writing lights in a tilt arrangement, and the two-dimensional encoding apparatus and the spatial transformation are used.
  • An optical information processing device that has an oblique image correction circuit between the controller and the controller, and performs image modulation of the two writing lights with a single spatial modulator by correcting the I ⁇ oblique image correction circuit. It is.
  • FIG. 1 is an explanatory diagram of a conceptual configuration of a conventional external electric field drive type photorefractive element.
  • FIG. 2 is a schematic structural perspective view of an external electric field driven photorefractive element as a photorefractive element according to the present invention including the optical coupling element according to the present invention.
  • FIG. 3 is a view (side view) of arrow A in FIG. 2, and corresponds to the drawing shown in FIG. 4A is a perspective view of a prism as an optical coupling element according to the present invention, and
  • FIG. 4B is a view (a side view) of FIG.
  • FIG. 5 is an explanatory diagram showing the formation of optical interference fringes in the external electric field driving type photorefractive element according to the present invention shown in FIGS.
  • FIG. 6 is a graph showing an example of the calculation results of the apex angle a on the writing light incident side and the total loss of transmitted light for the external electric field driven photoreflective element according to the present invention.
  • FIG. 7 is a graph showing experimental results of a two-light-wave coupling experiment using an external electric field driven photorefractive element according to the present invention.
  • FIG. 8 is an optical information processing apparatus according to the present invention showing an apparatus configuration for performing an optical memory, an image recognition (pattern matching), and a real-time degraded image tally jung which actively uses an optical correlation method as optical information processing.
  • FIG. 9 shows an optical information processing apparatus according to the present invention, which shows an apparatus configuration for detecting a moving object or real-time amplification of a moving image as optical information processing.
  • FIG. 10 is an explanatory diagram showing a configuration corresponding to the code C of the optical information processing device according to the present invention shown in FIG. 8 in the conventional optical information processing device.
  • FIG. 11 is an enlarged view of a main part, in which only the configuration of reference symbol C shown in FIG. 8 is extracted and shown.
  • FIG. 12 is an explanatory diagram showing a main part of a configuration of an optical information processing apparatus using a conventional external electric field driven type photorefractive element having an oblique image correction circuit.
  • FIG. 13 shows the photorefratiability according to the present invention provided with the optical coupling device according to the present invention.
  • FIG. 4 is an explanatory diagram of an internal electric field driving type photorefractive element as a switching element.
  • FIG. 14 is an explanatory diagram of an external electric field driven type photorefractive element as a photorefractive element according to the present invention including the optical coupling element according to the present invention, which does not include a transparent substrate.
  • FIG. 15 is an explanatory view of an internal electric field driven photorefractive element as a photorefractive element according to the present invention provided with the optical coupling element according to the present invention, which does not include a transparent substrate.
  • FIG. 16 shows (a) an external electric field driven photorefractive element as a photorefractive element according to the present invention provided with the optical coupling element according to the present invention, and one surface of an external electric field driven photorefractive medium.
  • FIG. 2 is a schematic perspective view illustrating a configuration in which a prism is provided as an optical coupling element only in FIG. 2B, and FIG. 2B is a view (a side view) of FIG. Explanation of reference numerals
  • FIG. 2 is a schematic structural perspective view of an external electric field driving type photorefractive element as a photorefractive element according to the present invention provided with an optical coupling element according to the present invention, and FIG. The view from the arrow A (side view) of 2 is shown (the drawing shown in FIG. 3 corresponds to the drawing shown in FIG. 1).
  • the external electric field driving type photorefractive element 100 shown in FIG. 2 includes a pair of trapezoidal, more specifically, truncated square pyramid-shaped prisms 102a and 102b as an optical coupling element according to the present invention. This is different from the external electric field driving type photorefractive element 10 shown in FIG.
  • the trapezoidal prism 102a is arranged on the transparent substrate 14a, while the trapezoidal prism 102b is arranged on the transparent substrate 14b. More specifically, the transparent substrate 14a and the bottom surface 108a of the prism 102a (the prism 102a has a trapezoidal shape in which the area of the bottom surface 108a is larger than the area of the upper surface 110a). The transparent substrate 14b and the bottom surface 108b of the prism 102b (the trapezoid 102b has a trapezoidal shape in which the area of the bottom surface 108b is larger than the area of the upper surface 11 Ob). I have.
  • FIG. 4 (a) shows a perspective view of the prisms 102a and 102b
  • FIG. 4 (b) shows a view from arrow B (side view) of FIG. 4 (a). .
  • the prisms 102a and 102b have a vertex angle a ( ⁇ ⁇ 90 °) on the writing light incident side, and
  • the trapezoidal prism has a trapezoidal side surface with the apex angle / 3 (/ 3 ⁇ 90 °) on the writing light emission side, the refractive index n, and the base length L as characteristic parameters. That is, the writing light incident surfaces 104a and 104b of the prisms 102a and 102b have inclinations with respect to the bottom surfaces 108a and 108b, and the writing light emitting surfaces of the prisms 102a and 102b.
  • 106a and 106b have a slope of] 3 with respect to the bottom surfaces 108a and 108b.
  • a solid that is optically transparent and can be cut and polished is used as a material for forming the prisms 102a and 102b.
  • an inorganic glass or a polymer can be used. More specifically, examples of the inorganic glass include quartz glass, soda-lime glass, borosilicate glass, and lead glass.
  • the polymer include polymethyl methacrylate, polystyrene, polycarbonate, and polyvinyl carbazole.
  • the apex angle a on the writing light incident side and the apex angle on the writing light emitting side] 3 and the refractive index n are formed in the external electric field driven type photorefractive medium 12.
  • the transmittance T of the entire external electric field driven type photorefractive element 100, and the optical input / output coupling rate (The optical input / output coupling rate is the writing light incident on the photorefractive element. This indicates the ratio of the power of the light emitted from the photorefractive element to the power.)
  • the relationship between the apex angle on the writing light incident side, the apex angle on the writing light emitting side], the refractive index n, the period of the optical interference fringes, the transmittance of the entire photorefractive element, and the optical input / output coupling ratio After It will be described in detail.
  • the above configuration in order to generate optical interference fringes in the external electric field drive type photorefractive medium 12, as shown in FIG.
  • the external electric field drive type photorefractive medium 12 has a thickness t direction.
  • the two writing light beams are applied perpendicularly to the plane and passing through the center of the thickness t from the mirror image to the entrance planes of the prisms 102 a and 102 b. Respectively.
  • the two writing light beams are perpendicular to the thickness t direction of the external electric field driven type photorefractive medium 12 and are prisms from the mirror image with respect to a plane passing through the center of the thickness t.
  • the two writing lights are refracted by the prisms 102a and 102b.
  • the light enters the external electric field driven photorefractive medium 12 and intersects on a plane passing through the center of the thickness t of the external electric field driven photorefractive medium 12.
  • the two writing light beams that enter and cross the external electric field driven type photorefractive medium 12 cause light interference in the photorefractive medium 12 parallel to the bisector of the two writing light beams. Stripes are formed.
  • the two writing lights incident on the photorefractive medium 12 are The writing light is incident on prisms 102a and 102b different from the prisms 102a and 102b on which the writing light is incident, and is emitted to the outside from emission surfaces 106a and 106b of the prisms 102a and 102b, respectively.
  • the two writing light beams are perpendicular to the thickness t direction of the external electric field driven type photorefractive medium 12 and are mirror images of a plane passing through the center of the thickness t.
  • a and 102b are incident on the incident surfaces 104a and 104b, respectively, are refracted by the prisms 102a and 102b, and are incident on the external electric field driven photorefractive medium 12.
  • the direction of the lattice vector of the optical interference fringe generated in the active medium 12 can be made to coincide with the direction of the externally applied electric field vector. Therefore, all of the externally applied electric field can be used for the effective driving electric field.
  • the photorefractive element according to the present invention including the optical coupling element such as the prisms 102a and 102b, without changing the arrangement of the optical system for entering the writing light,
  • the apex angle of the writing light incident side of the optical coupling element that is, the inclination of the writing light incident surface
  • an arbitrary crossing angle of the two writing lights that is, an optical interference fringe having an arbitrary period can be obtained. It can be easily obtained.
  • the apex angle a of the prisms 102 a and 102 b on the writing light incident side, the apex angle on the writing light emitting side, and the refractive index ⁇ are determined by the refractive index of the external electric field driven photorefractive medium 12. Correspondingly, it can be set so as to obtain a high optical input / output coupling ratio, for example, an optical input / output coupling ratio of 80% or more.
  • the period ⁇ of the light interference fringes obtained with respect to the apex angle a on the writing light incident side is given by the following equation.
  • is the wavelength of the light used as the writing light and ⁇ is the external electric field drive type
  • the refractive index of the photorefractive medium 1 2, 0 i n are those shall apply in refraction angle in the external electric field driven Fotori Furakutibu medium 1 within 2 represented by the following formula.
  • is the vertex angle of the prism 102 a and 102 b on the writing light incident side
  • 1 ⁇ is the refractive index of the prisms 102 & 102b.
  • the entire photorefractive element 100 that is, the photorefractive medium 12, a pair of transparent substrates 14a and 14b, a pair of transparent electrodes 16a and 16b, and a pair of prisms
  • the transmittance T of the photorefractive element 100 having 102 a and 102 b is expressed by the following equation.
  • the transmittance T is equal to the power of the incident light power 1 after passing through the photorefractive element 100 and exiting.
  • T (1 -R l ) (1 -R 2 ) 2 (1 -R 3 )
  • ] 3 is the apex angle of the prisms 102a and 102b on the writing light emission side.
  • the graph shown in FIG. 6 shows that, using the above equation, the period of the optical interference fringe is 0.5 ⁇ ! With respect to the refractive index of 1.70 of the external electric field driven type photorefractive medium 12.
  • 9 shows the calculation results of the apex angle a of the prisms 102a and 102b on the incident side of the writing light and the total loss of the transmitted light, which are calculated to obtain 2.2.0.
  • the curves indicated by the solid line (showing the apex angle a on the writing light incident side of the prisms 102a and 102b) and the broken line (showing the total loss of transmitted light) are In both cases, the lower power in the graph is 0.5 ⁇ in steps of 0.25111! It corresponds to an optical interference fringe period of ⁇ 2.0 ⁇ m.
  • the apex angle of the writing light incident side and the apex angle of the writing light emission side are equal to Assume that It is assumed that the refractive indices of the transparent substrates 14a and 14b and the transparent electrodes 16a and 16b are equal to the refractive indices of the prisms 102a and 102b.
  • the refractive indexes 11 of the prisms 102a and 10213 are set to 1.690 to 1.737.
  • the vertex angles of the prisms 102a and 102b on the writing light incident side are 57 ° to 76.
  • the base length L of the prisms 102a and 102b can be shortened by optimizing the apex angle ⁇ on the writing light exit side of the prisms 102a and 102b or adjusting the incident light height of the writing light.
  • the prisms 102a and 102b, that is, the optical coupling element according to the present invention also have the following features.
  • the period of the light interference fringes is the same as the writing light incident side of the prisms 102a and 102b. It is determined by the value of the term angle, in other words, the inclination of the entrance surfaces 104a and 104b of the prisms 102a and 102b. Therefore, when it is desired to change the period of the light interference fringes, it is sufficient to replace the prism with the apex angle on the writing light incident side set to a desired value. When it is desired to change the period of the optical interference fringes in the conventional photorefractive element 10, it is necessary to finely adjust the incident angle of the write light to the external electric field driven photorefractive medium 12 by a mirror or the like. Was.
  • the optical coupling element according to the present invention it is only necessary to replace the prism with a desired apex angle, and there is no need to change the beam arrangement of the incident light with a mirror or the like. Therefore, by using the optical coupling element according to the present invention, it is possible to construct an optical system having a simple configuration and strong against vibration.
  • the optical interference fringes can be obtained by changing the wavelength of the writing light incident on the optical coupling device without changing the apex angle on the writing light incident side. Can be changed.
  • the external electric field driven photorefractive element 100 used in this experiment is low as the external electric field driven photorefractive medium 12.
  • a polymer material having a glass transition temperature is used. This polymer material is a multi-component system including polyvinylinole force / levazonole (photoconductive polymer), ((4-piperidylphenyl) methylene) methane-1,1,1-dicarbonitrile (second-order nonlinear dye) Material.
  • this polymer material Since this polymer material has a glass transition temperature lower than room temperature, it has a large photoreflection effect due to the orientation enhancement effect. A ratatip effect is obtained at room temperature.
  • the photorefractive medium 12 formed of this polymer material had a refractive index of 1.'70 ⁇ 0.01 for the writing light of 633 nm used in the experiment. .
  • the photorefractive medium 12 used had a thickness t of 100 / zm.
  • Glass having a refractive index of 1.77 was used as a material for the prisms 102a and 102b and the transparent substrates 14a and 14b.
  • the design value of the apex angle a of the prisms 102a and 102b on the writing light incident side was set to 30 °.
  • the transparent electrodes 16a and 16b are laminated on one surface of each of the transparent substrates 14a and 14b, and the transparent electrode 16a and the transparent electrode 16b are combined so as to face each other.
  • An external electric field driven photorefractive medium 12 is sandwiched between 6a and the transparent electrode 16b to form a sandwich cell structure.
  • a He-Ne laser with a wavelength of 633 nm is used as a light source, and two writing lights are applied to the external electric field as shown in Fig. 5.
  • the driven photorefractive element 100 was irradiated, and a two-wave coupling experiment was performed.
  • the graph shown in FIG. 7 shows the experimental results of the above-described two-light-wave coupling experiment
  • the plot indicated by a triangle in the graph shown in FIG. 7 shows the external electric field-driven photovoltaic device according to the present invention.
  • the experimental results of the two-light-wave coupling experiment using the refractive element 100 are shown.
  • the plots indicated by the triangles in the rough shown in Fig. 7 are the conventional external electric-field-driven photorefractor shown in Fig. 1.
  • the results of a comparative experiment of a two-light-wave coupling experiment using a tapip element 10 are shown.
  • the optocoupler according to the invention is designed to provide an increase in the intensity, phase and interaction length of the internal electric field which determines the photorefratic response.
  • the electric field necessary for the movement of the photocarrier is supplied to the maximum by the external electric field.
  • optical information processing apparatuses can be manufactured using the photorefractive element according to the present invention including the optical coupling element according to the present invention. Specifically, it is possible to realize an optical information processing apparatus for performing optical information processing such as image recording, image recognition (pattern matching), real-time degraded image talling, moving object detection or real-time amplification of a moving image. .
  • FIGS. 8 and 9 are schematic diagrams each showing a device configuration for performing the various types of optical information processing described above.
  • FIG. 8 shows an example of an apparatus configuration for performing image recording, image recognition (pattern matching), and real-time degraded image cleaning using the optical correlation method as optical information processing.
  • FIG. 9 shows an example of an apparatus configuration for detecting moving objects or real-time decoding of moving images as optical information processing.
  • the input signal output from the central controller 200 is transmitted to the spatial modulator 206 through the two-dimensional encoder 202 and the spatial modulator controller 204.
  • the two write lights are controlled by the spatial modulator 206 into which the two write lights are input to the external electric field drive type photorefractive element 100 and the two write lights are simultaneously input from the central controller 200.
  • the output input signal is input to the spatial modulator 212 via the two-dimensional encoder 208 and the spatial modulator controller 210, and the light incident on the external electric field driven photorefractive element 100 is
  • the result image information obtained by the control can be obtained by inputting to the central control device 200 via the CCD camera 214 and the two-dimensional decoding device 210.
  • the input signal output from the central control unit 300 is transmitted through the two-dimensional encoding unit 302 and the spatial modulator control unit 304 to the spatial modulator 3.
  • the input to the external electric field driving type photorefractive element 100 is input to the external electric field driving type photodetector 100 by the spatial modulator 303 into which one of the two writing lights is incident.
  • the writing light is controlled, and the resulting image information obtained can be obtained by inputting to the central control unit 300 through the two-dimensional decoding device 312 by the CCD camera 3108 or the CCD camera 310.
  • a tunable laser can be used for each of the lasers 218, 220, and 314. In this case, multiplexing at multiple wavelengths is performed without adjusting the optical path in each device. Operation becomes possible.
  • Reference numeral 222 denotes a beam separator
  • reference numerals 222 and 222 denote half mirrors
  • reference numeral 316 denotes a beam separator.
  • the optical information processing apparatus shown in FIG. 8 to FIG. 9 described above is a photorefractive element, in place of the conventional external electric field drive type photorefractive element 10 shown in FIG. It differs from the conventional optical information processing apparatus in that an electric field driven photorefractive element 100 is used.
  • the configuration indicated by reference numeral C is also different from the configuration of the conventional optical information processing apparatus.
  • the configuration corresponding to the code C of the optical information processing apparatus shown in FIG. 8 is represented by the force shown in FIG.
  • the spatial light modulators 400a and 400b are applied to both of the two writing lights incident on the external electric field driven photorefractive element 10 in a tilt arrangement. Had to be installed.
  • FIG. 11 shows only the configuration of reference numeral C shown in FIG. 8.
  • parallel light can be made incident as two writing lights to the external electric field driven photorefractive element 100, so that one spatial modulator is used. 2 0 6
  • an oblique image correction circuit which will be described later with reference to FIG. Therefore, the space for the optical arrangement can be saved, and the overall configuration of the optical information processing apparatus can be simplified.
  • a conventional optical information processing apparatus in which two writing light beams are incident in a tilt type arrangement using an external electric field driven photorefractive element 10 having a conventional sandwich cell structure as shown in FIG.
  • an oblique image correction circuit 500 between the two-dimensional encoding device 202 and the spatial modulator control device 204, two writings can be performed by one spatial modulator 502. It can also serve as light image modulation.
  • Such a configuration can also save the space for disposing the optical system.
  • the above embodiment can be modified as described in the following (1) to (6).
  • the material of the external electric field driven photorefractive medium 12 is photoconductive and photoconductive.
  • a material having an electro-optic effect can be used. Such a material can be produced, for example, by mixing or chemically bonding a photoconductive material and an electro-optic effect material.
  • the photoconductive material include, for example, poly (vinylcarbazole) and poly (vinylenevinylene). Further, by adding a sensitizing dye such as trinitrofluorenone or fullerene to these materials, the light sensitivity can be enhanced.
  • Materials exhibiting the electro-optic effect include, for example, optical second-order nonlinear molecular
  • anisotropic linear polarizability such as donor groups such as amino group and methoxy group on azo, stinoleben, and polyene skeletons, and receptor groups such as formyl group and nitro group.
  • the force s described for the external electric field driven photorefractive medium which requires an externally applied electric field for the appearance of the photorefractive effect relates to an external electric field driven photorefractive medium.
  • the present invention may be applied to an internal electric field driven photorefractive medium in which an externally applied electric field is not required for the expression of the photorefractive effect.
  • the material shown in the above (1) can be basically used for the internal electric field driven type photorefractive medium, but the material of the external electric field driven type photorefractive medium has a glass transition temperature of room temperature. Alternatively, it must be lower or higher.
  • the material of the internal electric field driving type phototriflate medium is required to have a glass transition temperature sufficiently higher than room temperature. The glass transition temperature can be lowered, for example, by adding a plasticizer such as ethyl carbazole or butylbenzyl phthalate, or by chemically modifying a long-chain alkyl group to the material.
  • the photorefractive element according to the present invention is constituted by an internal electric field driving type photorefractive medium
  • an external electric field is simply applied to the transparent electrodes 16a and 16b as in the above-described embodiment. May not be used, or as shown in Fig. 13, the photoreflector may be used without transparent electrodes. Eve elements may be configured.
  • the transparent electrodes 16a and 16b are provided on the transparent substrates 14a and 14b, but it is needless to say that the present invention is not limited to this. That is, as shown in FIG. 14, the transparent electrodes 16a and 16b are directly disposed on the prisms 102a and 102b, respectively, and an external electrode is provided between the transparent electrodes 16a and 16b.
  • the electric-field-driven photolithographic medium 12 may be sandwiched.
  • the photorefractive element according to the present invention using the internal electric field driving type photorefractive medium as shown in FIG. 13, as shown in FIG. 15, the direct reflection between the prisms 102 a and 102 b occurs.
  • An internal electric field drive type photorefractive medium may be sandwiched.
  • the prism 102a is provided on one surface of the external electric field driving type photorefractive medium 12, and the prism 102b is provided on the other surface facing the one surface.
  • the optical coupling elements are provided on both surfaces of the external electric field driven type photorefractive medium 12, but it is a matter of course that the present invention is not limited to this. That is, as shown in FIGS. 16 (a) and 16 (b), an optical coupling element such as the prism 102a may be provided only on one surface of the external electric field driven photorefractive medium 12. Similarly, an optical coupling element such as a prism may be provided on only one surface of the internal electric field driven photorefractive medium.
  • one of the external electric field driven photorefractive medium 12 When an optical coupling element such as a prism is provided only on the surface, for example, in the configuration shown in Figs. 16 (a) and (b), one surface of the external electric field driven photorefractive medium 12 For one writing light incident on the prism 102 a as the optical coupling element disposed only for the other, the other writing light is composed of the external electric field driven photorefractive medium 12 and the transparent electrode It is supplied by the reflected light of the one writing light reflected at the interface with 16b. Also in this case, similarly to the above, an optical interference fringe in which the lattice vector and the externally applied electric field vector completely match is formed. Therefore, a photorefractive effect can be generated by one writing light.
  • an optical coupling element such as a prism
  • an optical coupling element such as a prism
  • the prism 102 a as an optical coupling element provided only on one surface of the internal electric field driving type photorefractive medium is provided.
  • the other writing light is reflected by the interface between the internal electric field drive type photorefractive medium and the transparent substrate 14b with respect to the one writing light incident on the substrate.
  • an optical interference fringe in which the lattice vector and the externally applied electric field vector completely match is formed. Therefore, a photorefractive effect can be generated by one writing light.
  • the prisms 102a and 102b can be configured to be detachable from the transparent substrates 14a and 14b. With this configuration, characteristic parameters such as the apex angle ⁇ on the writing light incident side Can be easily attached and detached as appropriate.
  • an object of the present invention is to realize a photorefractive element which has excellent operability and functionality, and which can easily and efficiently generate optical interference fringes in a photorefractive medium.
  • An optical coupling element or a photorefractive element provided with the optical coupling element has an excellent effect that an optical information processing device can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

There is provided an optical coupling element for realizing a photo-refractive element having an excellent operability and functionality and capable of easily and effectively generating light interference fringes in a photo-refractive medium. A photo-refractive element having the optical coupling element and an information processing device are also disclosed. The optical coupling element consists of a trapezoid-shaped prism having an incident plane set at a predetermined inclination with respect to the write light incoming into the photo-refractive medium and is arranged on at least one side of the photo-refractive medium. The photo-refractive element arranges the optical coupling element on at least one side of the photo-refractive medium. The information processing device includes the photo-refractive element having the optical coupling element arranged on at least one side of the photo-refractive medium.

Description

明 細 書 光結合素子およびそれを備えたフォトリフラクティブ素子ならびに光情報処理装 置 技術分野  Description Optical coupling element, photorefractive element provided with the same, and optical information processing device
本発明は、 光結合素子およびそれを備えたフォトリフラタティブ素子ならびに 光情報処理装置に関し、 さらに詳細には、 フォトリフラクティブ素子に用いて好 適な光結合素子およびそれを備えたフォトリフラタティブ素子ならびに光情報処 理装置に関レ、 特に、 フォトリフラクティブ素子を構成するフォトリフラタティ ブ媒質内において光干渉縞を容易力 高効率に発生することを可能にした光結合 素子およびそれを備えたフォトリフラクティブ素子ならびに光情報処理装置に関 する。 ここで、 フォトリフラクティブ媒質には、 フォトリフラクティブ媒質内におけ る光干渉縞の形成により該フォトリフラタティブ媒質内に発生した電荷の移動を、 外部から電界を加えることにより促進してフォトリフラタティブ効果を増大させ るフォトリフラクティブ媒質 (本明細書においては、 「外部電界駆動型フォトリ フラクティブ媒質」 と称する。 ) と、 外部から電界を加えることなしにフォトリ フラクティプ媒質内に誘起された拡散電界のみにより促進してフォトリフラクテ イブ効果を増大させるフォトリフラクティブ媒質 (本明細書においては、 「内部 電界駆動型フォトリフラクティブ媒質」 と!^る。) とが知られている。そして、 本明細書においては、 これら外部電界駆動型フォトリフラタティブ媒質と内部電 界駆動型フォトリフラクティブ媒質とを総称して、 単に 「フォトリフラクティブ 媒質」 と称するものとする。 The present invention relates to an optical coupling element, a photorefractive element including the same, and an optical information processing apparatus. More particularly, the present invention relates to an optical coupling element suitable for use in a photorefractive element and a photorefractive element including the same. The present invention relates to an element and an optical information processing apparatus, and more particularly, to an optical coupling element capable of easily and efficiently generating optical interference fringes in a photorefractive medium constituting a photorefractive element, and an optical coupling element including the optical coupling element. The present invention relates to a photorefractive element and an optical information processing device. Here, in the photorefractive medium, the transfer of charges generated in the photorefractive medium due to the formation of optical interference fringes in the photorefractive medium is promoted by applying an electric field from the outside, and the photorefractive medium is accelerated. Medium (which is referred to as "external electric field driven photorefractive medium" in this specification) and the diffusion electric field induced in the photorefractive medium without applying an external electric field. A photorefractive medium that enhances the photorefractive effect by promoting Electric Driven Photorefractive Medium " I do. ) Is known. In this specification, the external electric field driven photorefractive medium and the internal electric field driven photorefractive medium are collectively referred to simply as “photorefractive medium”.
また、 本明細書においては、 外部電界駆動型フォトリフラクティブ媒質を用い たフォトリフラクティブ素子を 「外部電界駆動型フォトリフラクティブ素子」 と 称し、 内部電界駆動型フォトリフラタティブ媒質を用いたフォトリフラクティブ 素子を 「内部電界駆動型フォトリフラクティブ素子」 と称するものとし、 これら 外部電界駆動型フオトリフラタティプ素子と内部電界駆動型フォトリフラタティ プ素子とを総称して、 単に 「フォトリフラクティブ素子 J と称するものとする。 なお、 一般に、 外部電界駆動型フォトリフラクティブ媒質としてはガラス転移 温度が室温付近かそれよりも低いか、 あるいはそれ以上の材料を用い、 一方、 内 部電界駆動型フォトリフラクティプ媒質としてはガラス転移温度が室温よりも十 分に高い材料を用いる。 背景技術  In this specification, a photorefractive element using an external electric field driven photorefractive medium is referred to as an “external electric field driven photorefractive element”. The term “internal electric field driving type photorefractive element” shall be referred to as “the internal electric field driving type photorefractive element”. Generally, a material having a glass transition temperature near room temperature, lower or higher than room temperature is used as an external electric field driven photorefractive medium, while an internal electric field driven photorefractive medium is used as an external electric field driven photorefractive medium. Glass transition temperature well above room temperature Use of the material. BACKGROUND
一般に、 フォトリフラクティブ素子において、 フォトリフラクティブ効果の†生 能を増大化させるためには、 フォトリフラクティブ素子に対する 2本の書き込み 光の照射によってフォトリフラタティブ媒質内に形成された光干渉縞の格子べク トル方向に、 より大きな電界 (実効駆動電界) を印加する必要があることが知ら れている。 即ち、 光干渉縞の格子べクトル方向に実効駆動電界を印加することに より、 応答振幅の増大や応答速度の高速化などが期待できるからである。 In general, in order to increase the performance of the photorefractive effect in a photorefractive element, a grid of optical interference fringes formed in a photorefractive medium by irradiating two photons to the photorefractive element is required. It is known that a larger electric field (effective driving electric field) needs to be applied in the vector direction. That is, the effective driving electric field is applied in the lattice vector direction of the optical interference fringes. This is because the response amplitude can be increased and the response speed can be increased.
なお、 2本の書き込み光をフォトリフラクティブ素子に照射すると、 光干渉縞 は、 フォトリフラクティブ媒質内において 2本の書き込み光の 2等分線と平行に 発生される。 ここで、 図 1には、 従来の外部電界駆動型フォトリフラタティブ素子の概念構 成説明図が示されている。  When two writing lights are irradiated on the photorefractive element, optical interference fringes are generated in the photorefractive medium in parallel with the bisector of the two writing lights. Here, FIG. 1 shows a conceptual configuration explanatory view of a conventional external electric field drive type photorefractive element.
この図 1に示す外部電界駆動型フォトリフラクティブ素子 1 0は、 略長方体状 の外部電界駆動型フォトリフラクティブ媒質 1 2と、 一対の略平板状の透明基板 1 4 a、 1 4 bと、 一対の略平板状の透明基板 1 4 a、 1 4 bにそれぞれ取り付 けられた一対の略平板状の透明電極 1 6 a、 1 6 bとを有して構成されている。 そして、 透明基板 1 4 aに取り付けられた透明電極 1 6 aと透明基板 1 4 bに 取り付けられた透明電極 1 6 bとの間に、 外部電界駆動型フオトリフラクティブ 媒質 1 2が挟持されている。 より詳細には、 外部電界駆動型フォトリフラタティ ブ媒質 1 2と透明電極 1 6 a、 1 6 bとは、 方体状の外部電界駆動型フォト リフラクティブ媒質 1 2の一方の面と透明基板 1 4 aに取り付けられた略平板状 の透明電極 1 6 aの平面とが当接するように配置され、 方体状の外部電界駆 動型フォトリフラクティブ媒質 1 2の一方の面と対向する他方の面と透明基板 1 4 bに取り付けられた略平板状の透明電極 1 6 bの平面とが当接するように配置 されている。  The external electric field driven photorefractive element 10 shown in FIG. 1 includes a substantially rectangular external electric field driven photorefractive medium 12, a pair of substantially flat transparent substrates 14 a, 14 b, and It has a pair of substantially flat transparent electrodes 16a and 16b attached to a pair of substantially flat transparent substrates 14a and 14b, respectively. And, between the transparent electrode 16a attached to the transparent substrate 14a and the transparent electrode 16b attached to the transparent substrate 14b, an external electric field driven photorefractive medium 12 is sandwiched. . More specifically, the external electric field-driven photorefractive medium 12 and the transparent electrodes 16a and 16b are defined by the one surface of the rectangular external electric field-driven photorefractive medium 12 and the transparent substrate 1. 4a A substantially flat transparent electrode 16a attached to a is arranged so as to contact the plane of 16a, and the other surface opposing one surface of the rectangular external electric field driven photorefractive medium 12 It is arranged so that the surface of the substantially flat transparent electrode 16b attached to the transparent substrate 14b abuts.
なお、 こうした構成の外部電界駆動型フォトリフラタティブ素子の構造は、 一 般にサンドィツチ型セル構造と称されている。 The structure of the external electric field driving type photorefractive element having such a configuration is as follows. It is generally called a sandwich type cell structure.
また、 符号 1 8は、 外部電界駆動型フォトリフラタティプ媒質 1 2に外部から 電界を加えるために一対の透明電極 1 6 a、 1 6 bにそれぞれ接続された電源で ある。  Reference numeral 18 denotes a power supply connected to the pair of transparent electrodes 16a and 16b, respectively, for applying an electric field to the external electric field drive type photoreflective medium 12 from the outside.
従来、 この外部電界駆動型フォトリフラタティプ素子 1 0に光干渉縞を形成す るための書き込み光を照射するには、 外部電界駆動型フォトリフラクティブ媒質 1 2の片面側、 例えば、 図 1に示すように一方の透明基板 1 4 a側から 2本の書 き込み光を照射する。 2本の書き込み光を外部電界駆動型フォトリフラクティブ 素子 1 0に照射すると、 光干渉縞は、 外部電界駆動型フオトリフラタティブ媒質 1 2内において 2本の書き込み光の 2等分線と平行に発生される。 なお、 こうし た書き込み光の配置を、 一般にチルト型配置と称する。  Conventionally, in order to irradiate the external electric field drive type photorefractive element 10 with writing light for forming optical interference fringes, one side of the external electric field drive type photorefractive medium 12, for example, as shown in FIG. As shown, two writing lights are irradiated from one transparent substrate 14a side. When the two writing lights are irradiated on the external electric field driven photorefractive element 10, the optical interference fringes are parallel to the bisector of the two writing lights in the external electric field driven photorefractive medium 12. Generated. Note that such an arrangement of the writing light is generally called a tilt arrangement.
この図 1に示すチルト型配置においては、 上記したように光干渉縞形成用の 2 本の書き込み光が外部電界駆動型フォトリフラクティブ素子 1 0の片面側から入 射されるものであるが、 外部電界駆動型フォトリフラクティブ媒質 1 2内に形成 される光干渉縞に駆動電界を加えるために、 光干渉縞の格子べクトルが T源 1 8 により印加される外部印加電界ベクトルに対して傾斜角 0 (く 9 0 ° ) だけ傾く In the tilt type arrangement shown in FIG. 1, as described above, two writing lights for forming optical interference fringes are incident from one side of the external electric field driving type photorefractive element 10. In order to apply a driving electric field to the optical interference fringes formed in the electric-field-driven photorefractive medium 12, the lattice vector of the optical interference fringes has a tilt angle 0 with respect to the externally applied electric field vector applied by the T source 18. (90 degrees)
(チルトする) ように、 書き込み光の入射角を選択する。 (Tilt) to select the incident angle of the writing light.
このようにすると、光干渉縞の格子べクトル方向に加えられる実効駆動電界は、 電源 1 8により印加される外部印加電界の余弦成分として与えられることになる。 従って、 光干渉縞の格子ベクトル方向に加えられる実効駆動電界を大きくするた めには、 傾斜角 0を限りなく 0に近づけることが必要となる。 しかしながら、 この図 1に示すチルト型配置においては、 傾斜角 0を十分に小 さくすることができないという問題点があつた。 In this case, the effective driving electric field applied in the lattice vector direction of the optical interference fringes is given as a cosine component of the externally applied electric field applied by the power supply 18. Therefore, in order to increase the effective driving electric field applied in the lattice vector direction of the optical interference fringes, it is necessary to make the inclination angle 0 as close to 0 as possible. However, the tilt type arrangement shown in FIG. 1 has a problem that the inclination angle 0 cannot be made sufficiently small.
即ち、 傾斜角 0を小さくしていくと書き込み光の入射角が大きくなり、 このた め透明基板 1 4 aの表面での書き込み光の反射損が大きくなつてしまい、 外部電 界駆動型フオトリフラタティブ媒質 1 2内に書き込み光が到達できなくなるから である。 そのため、 結果として実効駆動電界成分を十分に大きくすることができ ないものであった。 なお、 従来においては、 傾斜角 0は一般的に 3 0° 前後で利 用されることが多く、 この場合には実効駆動電界として外部印加電界の 5 0 %ほ どしか利用できないものであった。  That is, as the inclination angle 0 is reduced, the incident angle of the writing light increases, and therefore, the reflection loss of the writing light on the surface of the transparent substrate 14a increases, and the external electric field driving type photo-reflector is increased. This is because the writing light cannot reach the active medium 12. As a result, the effective driving electric field component cannot be sufficiently increased. Conventionally, the inclination angle 0 is generally used at around 30 °, and in this case, only about 50% of the externally applied electric field can be used as the effective driving electric field. .
このように、 従来から用いられているサンドイッチ型セル構造のフォトリフラ タティプ素子と書き込み光のチルト型配置との組み合わせは、 フォトリフラクテ ィブ性能を最大化させることができないシステムであるという 題点があった。 こうした問題点に鑑みて、 フォトリフラクティブ性能を最大化させることを目 的とした手法が提案されている (例えば、 特許文献 1として提示する特開平 7— 1 4 0 4 9 9号公報の第 3— 5頁ならびに図 1および図 1 3を参照する。 ) 。 しかしながら、 上記した特許文献 1に開示された手法においては、 操作性 '機 能性を備えて容易力ゝっ高効率に光干渉縞を発生可能な具体的な素子化については 開示されておらず、操作性■機能性に優れていて容易かつ高効率でフォトリフラ クティブ媒質内に光干渉縞を発生可能なフォトリフラクティブ素子を実現するた めの手法の提案が強く望まれていた。 本発明は、 上記したような発明の背景ならびに従来の技術の有する問題点や従 来の技術に対する要望に鑑みてなされたものであり、 その目的とするところは、 操作性 ·機能性に優れていて容易力 高効率でフォトリフラクティブ媒質内に光 干渉縞を発生可能なフォトリフラクティブ素子を実現するための光結合素子およ びそれを備えたフォトリフラクティブ素子ならびに光情報処理装置を提供しよう とするものである。 発明の開示 Thus, the combination of the conventionally used photorefractive element with a sandwich cell structure and the tilted arrangement of the writing light is a system in which the photorefractive performance cannot be maximized. there were. In view of these problems, a method for maximizing photorefractive performance has been proposed (for example, Japanese Patent Application Laid-Open No. — See page 5 and Figures 1 and 13.) However, the method disclosed in Patent Document 1 does not disclose a specific device that can easily generate optical interference fringes with high operability and functionality and with high efficiency. , Easy to operate, high efficiency There has been a strong demand for a proposal for a method for realizing a photorefractive element capable of generating optical interference fringes in an active medium. The present invention has been made in view of the background of the invention as described above, the problems of the conventional technology, and the demand for the conventional technology, and the object thereof is to provide excellent operability and functionality. To provide a photorefractive element for realizing a photorefractive element capable of generating optical interference fringes in a photorefractive medium with high efficiency, a photorefractive element including the same, and an optical information processing device It is. Disclosure of the invention
上記目的を達成するために、 本発明による光結合素子は、 例えば、 従来から用 いられているサンドィツチ型セル構造と組み合わせることで、 フォトリフラクテ イブ媒質内に、 最適に配置された光干渉縞、 即ち、 傾斜角 0が 0° となるように 配置された光干渉縞の形成を容易力ゝっ高効率で実現することができるものである。 また、上記目的を達成するために、本発明によるフォトリフラクティブ素子は、 本発明による光結合素子を用いてフォトリフラクティブ素子を構成したものであ る。  In order to achieve the above object, the optical coupling device according to the present invention is, for example, combined with a conventionally used sandwich-type cell structure to form an optical interference fringe optimally arranged in a photorefractive medium. That is, it is possible to easily form the light interference fringes arranged so that the inclination angle 0 becomes 0 ° with high efficiency. In order to achieve the above object, a photorefractive element according to the present invention is one in which a photorefractive element is formed using the optical coupling element according to the present invention.
さらに、 上記目的を達成するために、 本発明による光情報処理装置は、 本発明 によるフォトリブラクティブ素子を用いて光情報処理装置を構成したものである。 即ち、 本発明は、 フォトリフラクティブ媒質へ入射される書き込み光に対して 所定の傾きに設定された入射面を備えた台形状のプリズムよりなり、 上記フォト リフラクティブ媒質の少なくとも一方の面側に配置される光結合素子である。 また、 本癸明による光結合素子は、 上記入射面の傾きを、 上記書き込み光の上 記フォトリフラクティブ媒質への Λ#により上記フォトリフラクティブ媒質内に 形成される光干渉縞の所望の周期に応じて設定するようにしたものである。 また、 本発明は、 フォトリフラクティブ媒質の少なくとも一方の面側に、 本発 明による光結合素子を配設したフォトリフラクティブ素子である。 Furthermore, in order to achieve the above object, an optical information processing device according to the present invention is an optical information processing device configured using the photorefractive element according to the present invention. That is, the present invention comprises a trapezoidal prism having an incident surface set at a predetermined inclination with respect to the writing light incident on the photorefractive medium, and is disposed on at least one surface side of the photorefractive medium. Optical coupling element. Further, the optical coupling device according to the present invention is arranged such that the inclination of the incident surface is adjusted according to the desired period of the optical interference fringe formed in the photorefractive medium by the ## of the writing light to the photorefractive medium. Is set. Further, the present invention is a photorefractive element in which the optical coupling element according to the present invention is disposed on at least one surface side of the photorefractive medium.
また、 本宪明によるフォトリフラクティブ素子は、 上記光結合素子が、 略長方 体状のフォトリフラクティブ媒質の一方の面側と該一方の面側と対向する他方の 面側とにそれぞれ配置され、 上記フォトリフラクティブ媒質の厚さ方向に対して 垂直、 かつ、 上記厚さの中心を通る面に対して鏡像をなす方向から照射される 2 本の書き込み光のうちの一方を上記フォトリフラクティブ媒質の一方の面側に配 置された光結合素子の入射面に入射し、 上記 2本の書き込み光のうちの他方を上 記フォトリフラクティブ媒質の上記一方の面側と対向する上記他方の面側に配置 された光結合素子の入射面に入射するようにしたものである。  Further, in the photorefractive element according to the present invention, the optical coupling element is disposed on one surface side of the substantially rectangular photorefractive medium and on the other surface side facing the one surface side, respectively. One of the two writing lights emitted from a direction perpendicular to the thickness direction of the photorefractive medium and from a mirror image with respect to a plane passing through the center of the thickness is applied to one of the photorefractive media. And the other of the two writing lights is disposed on the other surface of the photorefractive medium facing the one surface of the photorefractive medium. The light enters the incident surface of the optical coupling device.
また、本発明は、 2次元符号化装置と、空間変調器制御装置と、空間変調器と、 フォトリフラタティブ素子とを有し、 入力信号を上記 2次元符号化装置と上記空 間変調器制御装置とを通して上記空間変調器へ入力して、 上記フオトリフラクテ ィブ素子への 2本の書き込み光が入射される上記空間変調器により該 2本の書き 込み光のいずれか一方または双方を制御する光情報処理装置において、 フォトリ フラクティブ素子が、 本発明によるフォトリフラクティブ素子である光情報処理 装置である。 Further, the present invention includes a two-dimensional encoding device, a spatial modulator control device, a spatial modulator, and a photorefractive element, and inputs an input signal to the two-dimensional encoding device and the spatial modulator. One or both of the two write lights are controlled by the spatial modulator into which the two write lights are input to the spatial modulator through the control device and the two write lights are incident on the photorefractive element. In optical information processing equipment, The optical information processing device is a photorefractive element according to the present invention, wherein the fractive element is a photorefractive element.
また、 本発明による光情報処理装置は、 上記フォトリフラクティブ素子が本発 明によるフォトリフラタティブ素子であり、 単一の上記空間変調器により上記フ オトリフラクティブ素子への 2本の書き込み光を制御するようにしたものである c また、本究明は、 27火元符号化装置と、空間変調器制御装置と、空間変調器と、 フォトリフラタティブ素子とを有し、 入力信号を上記 2次元符号化装置と上記空 間変調器制御装置とを通して上記空間変調器へ入力して、 上記フオトリフラクテ ィブ素子への 2本の書き込み光が入射される上記空間変調器により該 2本の書き 込み光を制御する光情報処理装置において、 フォトリフラクティブ素子は、 チル ト型配置により 2本の書き込み光を入射するものであり、 上記 2次元符号化装置 と上記空間変調器制御装置との間に斜め画像捕正回路を有し、 上 I ^斜め画像補正 回路の補正により単一の上記空間変調器によって上記 2本の書き込み光の画像変 調を行う光情報処理装置である。 図面の簡単な説明 Further, in the optical information processing device according to the present invention, the photorefractive element is a photorefractive element according to the present invention, and two write lights to the photorefractive element are controlled by a single spatial modulator. is obtained by way c Further, the present investigation is 27 and the fire source encoding apparatus, a spatial modulator controller, a spatial modulator, and a photo Refla data revertive element, the two-dimensional input signal The two write lights are input to the spatial modulator through the encoding device and the spatial modulator control device, and the two write lights are incident on the photorefractive element by the spatial modulator. In the optical information processing apparatus for controlling the optical information, the photorefractive element receives two writing lights in a tilt arrangement, and the two-dimensional encoding apparatus and the spatial transformation are used. An optical information processing device that has an oblique image correction circuit between the controller and the controller, and performs image modulation of the two writing lights with a single spatial modulator by correcting the I ^ oblique image correction circuit. It is. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 従来の外部電界駆動型フォトリフラクティブ素子の概念構成説明図で ある。  FIG. 1 is an explanatory diagram of a conceptual configuration of a conventional external electric field drive type photorefractive element.
図 2は、 本発明による光結合素子を備えた本発明によるフォトリフラクティブ 素子としての外部電界駆動型フオトリフラクティブ素子の概念構成斜視説明図で ある。 図 3は、 図 2の A矢視図 (側面図) であり、 図 1に示す図面に対応する。 図 4は、 (a ) は本発明による光結合素子としてのプリズムの斜視図であり、 ( b ) は (a ) の B矢視図 (側面図) である。 FIG. 2 is a schematic structural perspective view of an external electric field driven photorefractive element as a photorefractive element according to the present invention including the optical coupling element according to the present invention. FIG. 3 is a view (side view) of arrow A in FIG. 2, and corresponds to the drawing shown in FIG. 4A is a perspective view of a prism as an optical coupling element according to the present invention, and FIG. 4B is a view (a side view) of FIG.
図 5は、 図 2乃至図 3に示す本宪明による外部電界駆動型フォトリフラタティ ブ素子における光干渉縞の形成を示す説明図である。  FIG. 5 is an explanatory diagram showing the formation of optical interference fringes in the external electric field driving type photorefractive element according to the present invention shown in FIGS.
図 6は、 本発明による外部電界駆動型フォトリフラタティプ素子についての書 き込み光入射側の頂角 aと透過光の全損失との計算結果の一例を示すグラフであ る。  FIG. 6 is a graph showing an example of the calculation results of the apex angle a on the writing light incident side and the total loss of transmitted light for the external electric field driven photoreflective element according to the present invention.
図 7は、 本発明による外部電界駆動型フオトリフラタティブ素子による 2光波 結合実験の実験結果を示すグラフである。  FIG. 7 is a graph showing experimental results of a two-light-wave coupling experiment using an external electric field driven photorefractive element according to the present invention.
図 8は、光情報処理として光相関法を積極的に利用した光メモリ、画像認識(パ ターンマッチング) ならびにリアルタイム劣化画像タリーユングを行うための装 置構成を示す本発明による光情報処理装置である。  FIG. 8 is an optical information processing apparatus according to the present invention showing an apparatus configuration for performing an optical memory, an image recognition (pattern matching), and a real-time degraded image tally jung which actively uses an optical correlation method as optical information processing.
図 9は、 光情報処理として動体検出あるいは動画像のリアルタィム増幅を行う ための装置構成を示す本発明による光情報処理装置である。  FIG. 9 shows an optical information processing apparatus according to the present invention, which shows an apparatus configuration for detecting a moving object or real-time amplification of a moving image as optical information processing.
図 1 0は、 従来の光情報処理装置における、 図 8に示す本発明による光情報処 理装置の符号 Cに相当する構成を示す説明図である。  FIG. 10 is an explanatory diagram showing a configuration corresponding to the code C of the optical information processing device according to the present invention shown in FIG. 8 in the conventional optical information processing device.
図 1 1は、図 8に示す符号 Cの構成のみを取り出して示した要部拡大図である。 図 1 2は、 斜め画像捕正回路を備えた従来の外部電界駆動型フォトリフラクテ ィブ素子を用いた光情報処理装置の構成の要部を示す説明図である。  FIG. 11 is an enlarged view of a main part, in which only the configuration of reference symbol C shown in FIG. 8 is extracted and shown. FIG. 12 is an explanatory diagram showing a main part of a configuration of an optical information processing apparatus using a conventional external electric field driven type photorefractive element having an oblique image correction circuit.
図 1 3は、 本発明による光結合素子を備えた本発明によるフォトリフラタティ ブ素子としての内部電界駆動型フォトリブラクティブ素子の説明図である。 図 14は、 本発明による光結合素子を備えた本発明によるフォトリフラタティ プ素子としての外部電界駆動型フォトリフラクティブ素子であって、 透明基板を 備えていないものの説明図である。 FIG. 13 shows the photorefratiability according to the present invention provided with the optical coupling device according to the present invention. FIG. 4 is an explanatory diagram of an internal electric field driving type photorefractive element as a switching element. FIG. 14 is an explanatory diagram of an external electric field driven type photorefractive element as a photorefractive element according to the present invention including the optical coupling element according to the present invention, which does not include a transparent substrate.
図 1 5は、 本発明による光結合素子を備えた本発明によるフォトリフラタティ ブ素子としての内部電界駆動型フォトリフラクティブ素子であって、 透明基板を 備えていないものの説明図である。  FIG. 15 is an explanatory view of an internal electric field driven photorefractive element as a photorefractive element according to the present invention provided with the optical coupling element according to the present invention, which does not include a transparent substrate.
図 16は、 (a) は本発明による光結合素子を備えた本発明によるフォトリフ ラタティブ素子としての外部電界駆動型フオトリフラタティブ素子であって、 外 部電界駆動型フォトリフラクティブ媒質の一方の面にのみ光結合素子としてプリ ズムを配設したものの概念構成斜視説明図であり、 (b)は(a) の D矢視図(側 面図) である。 符号の説明  FIG. 16 shows (a) an external electric field driven photorefractive element as a photorefractive element according to the present invention provided with the optical coupling element according to the present invention, and one surface of an external electric field driven photorefractive medium. FIG. 2 is a schematic perspective view illustrating a configuration in which a prism is provided as an optical coupling element only in FIG. 2B, and FIG. 2B is a view (a side view) of FIG. Explanation of reference numerals
10、 100 外部電界駆動型フォトリフラタティブ素子  10, 100 External electric field driven photorefractive element
2 外部電界駆動型フォ  2 External electric field drive type
4 a、 14b  4a, 14b
6 a、 1 6 b 透明電極  6a, 16b transparent electrode
8  8
102 a、 102 b プリズム 102a, 102b prism
04 a、 1 04 b 書き込み光の入射面 106 a、 1 06 b 書き込み光の出射面 04a, 104b Write light incident surface 106 a, 106 b Writing light exit surface
108 a 、 1 08 b 底面  108a, 108b bottom
1 10 a 、 1 10 b 上面  1 10a, 1 10b Top surface
200、 300 中央制御装置  200, 300 Central control unit
202、 208、 3 02 2次元符号化装置  202, 208, 3 02 2D encoder
204、 21 0、 3 04 空間変調器制御装置  204, 210, 304 Spatial modulator controller
206、 21 2、 3 06、 502 空間変調器  206, 21 2, 3 06, 502 Spatial modulator
214、 308、 3 10 CCDカメラ  214, 308, 3 10 CCD camera
2 16、 31 2 2次元復号化装置  2 16, 31 2 2D decoding device
218、 220、 3 14 レ一ザ一  218, 220, 3 14 Laser
222、 31 6 ビームセパレーター  222, 316 beam separator
224、 226 ハーフミラー  224, 226 Half mirror
400 a 、 400 b 空間変調器  400a, 400b spatial modulator
500 斜め画像補正回路 発明を実施するための最良の形態  DESCRIPTION OF THE PREFERRED EMBODIMENTS 500 Skewed Image Correction Circuit
以下、 添付の図面を参照しながら、 本亮明による光結合素子およびそれを備え たフォトリフラクティブ素子ならぴに光情報処理装置の実施の形態の一例を詳細 に説明するものとする。 なお、 本明細書における説明ならびに添付の図面におい て、 それぞれ同一あるいは相当する構成や内容については、 それぞれ同一の符号 を用いて示すことにより、 その構成ならびに作用に関する重複する説明は省略す 図 2には、 本発明による光結合素子を備えた本発明によるフォトリフラタティ プ素子として、 外部電界駆動型フオトリフラタティブ素子の概念構成斜視説明図 が示されており、 図 3には図 2の A矢視図 (側面図) が示されている (図 3に示 す図面は、 図 1に示す図面に対応する。 ) 。 Hereinafter, with reference to the accompanying drawings, an optical coupling device according to the present invention and a photorefractive device including the same will be described in detail as well as an example of an embodiment of an optical information processing device. In the description of the present specification and the accompanying drawings, the same or corresponding components and contents will be denoted by the same reference numerals, and redundant description of the configuration and operation will be omitted. FIG. 2 is a schematic structural perspective view of an external electric field driving type photorefractive element as a photorefractive element according to the present invention provided with an optical coupling element according to the present invention, and FIG. The view from the arrow A (side view) of 2 is shown (the drawing shown in FIG. 3 corresponds to the drawing shown in FIG. 1).
この図 2に示す外部電界駆動型フォトリフラタティブ素子 100は、 本発明に よる光結合素子として、 一対の台形状、 より詳細には、 四角錐台形状のプリズム 102 a、 102 bを備えている点において、 図 1に示す外部電界駆動型フォト リフラクティブ素子 10とは異なる。  The external electric field driving type photorefractive element 100 shown in FIG. 2 includes a pair of trapezoidal, more specifically, truncated square pyramid-shaped prisms 102a and 102b as an optical coupling element according to the present invention. This is different from the external electric field driving type photorefractive element 10 shown in FIG.
即ち、 外部電界駆動型フォトリフラクティブ素子 100は、 透明基板 14 a上 に台形状のプリズム 102 aを配置しており、 一方、 透明基板 14b上に台形状 のプリズム 102 bを配置している。 より詳細には、 透明基板 14 aとプリズム 102 aの底面 108 a (プリズム 102 aは、 底面 108 aの面積の方が上面 110 aの面積より広い台形状である。 ) とが当接するように配置され、 透明基 板 14bとプリズム 102bの底面 108 b (プリズム 102 bは、 底面 108 bの面積の方が上面 11 Obの面積より広い台形状である。 ) とが当接するよう に配置されている。  That is, in the external electric field driving type photorefractive element 100, the trapezoidal prism 102a is arranged on the transparent substrate 14a, while the trapezoidal prism 102b is arranged on the transparent substrate 14b. More specifically, the transparent substrate 14a and the bottom surface 108a of the prism 102a (the prism 102a has a trapezoidal shape in which the area of the bottom surface 108a is larger than the area of the upper surface 110a). The transparent substrate 14b and the bottom surface 108b of the prism 102b (the trapezoid 102b has a trapezoidal shape in which the area of the bottom surface 108b is larger than the area of the upper surface 11 Ob). I have.
ここで、図 4 ( a )にはプリズム 102 a、 102bの斜視図が示されており、 図 4 (b) には図 4 (a) の B矢視図 (側面図) が示されている。  Here, FIG. 4 (a) shows a perspective view of the prisms 102a and 102b, and FIG. 4 (b) shows a view from arrow B (side view) of FIG. 4 (a). .
プリズム 102 a、 102 bは、書き込み光入射側の頂角 a (αく 90° ) と、 書き込み光出射側の頂角 /3 (/3<90° ) と、 屈折率 nと、 底辺長 Lとを特性パ ラメータとする側面形状が台形の台形状のプリズムである。 即ち、 プリズム 10 2 a、 102 bの書き込み光の入射面 104 a、 104 bは、 底面 108 a、 1 08 bに対して の傾斜を備え、 プリズム 102 a、 102 bの書き込み光の出 射面 106 a、 106 bは、 底面 108 a、 108 bに対して ]3の傾斜を備えて いる。 The prisms 102a and 102b have a vertex angle a (α <90 °) on the writing light incident side, and The trapezoidal prism has a trapezoidal side surface with the apex angle / 3 (/ 3 <90 °) on the writing light emission side, the refractive index n, and the base length L as characteristic parameters. That is, the writing light incident surfaces 104a and 104b of the prisms 102a and 102b have inclinations with respect to the bottom surfaces 108a and 108b, and the writing light emitting surfaces of the prisms 102a and 102b. 106a and 106b have a slope of] 3 with respect to the bottom surfaces 108a and 108b.
プリズム 102 a、 102bを構成する材料としては、 光学的に透明であって 切断ならびに研磨などの加工が可能な固体を用いるものであり、 例えば、 無機ガ ラスやポリマーなどを用いることができる。 さらに詳細に説明すれば、 無機ガラ スとしては、 例えば、 石英ガラス、 ソーダ石灰ガラス、 ホウケィ酸ガラスあるい は鉛ガラスなどがある。 また、 ポリマーとしては、 ポリメチルメタタリレート、 ポリスチレン、 ポリカーボネートあるいはポリビニルカルバゾールなどがある。 ここで、 プリズム 102 a、 102 bにおける特性パラメータのうち書き込み 光入射側の頂角 aと書き込み光出射側の頂角 ]3と屈折率 nとは、 外部電界駆動型 フォトリフラクティブ媒質 12に形成される光干渉縞の周期 Λと、 外部電界駆動 型フォトリフラクティブ素子 100全体の透過率 Tと、 光入出力結合率 (なお、 光入出力結合率とは、 フォトリフラクティブ素子に入射される書き込み光のパヮ 一に対するフォトリフラクティブ素子から出射された光のパワーの割合を示すも のである。 ) とを決定するためのパラメータである。 なお、 書き込み光入射側の 頂角 、 書き込み光出射側の頂角 ]3、 屈折率 n、 光干渉縞の周期 Λ、 フォトリフ ラタティプ素子全体の透過率 Τならぴに光入出力結合率の関係については、 後に 詳述する。 以上の構成において、 外部電界駆動型フォトリフラクティブ媒質 1 2内に光干 渉縞を発生させるには、 図 5に示すように、 外部電界駆動型フォトリフラタティ ブ媒質 1 2の厚さ t方向に対して垂直、 かつ、 厚さ tの中心を通る面に対して鏡 像をなす方向から 2本の書き込み光をプリズム 1 0 2 a、 1 0 2 bの入射面 1 0 4 a、 1 0 4 にそれぞれ入射する。 As a material for forming the prisms 102a and 102b, a solid that is optically transparent and can be cut and polished is used. For example, an inorganic glass or a polymer can be used. More specifically, examples of the inorganic glass include quartz glass, soda-lime glass, borosilicate glass, and lead glass. Examples of the polymer include polymethyl methacrylate, polystyrene, polycarbonate, and polyvinyl carbazole. Here, among the characteristic parameters of the prisms 102 a and 102 b, the apex angle a on the writing light incident side and the apex angle on the writing light emitting side] 3 and the refractive index n are formed in the external electric field driven type photorefractive medium 12. , The transmittance T of the entire external electric field driven type photorefractive element 100, and the optical input / output coupling rate (The optical input / output coupling rate is the writing light incident on the photorefractive element. This indicates the ratio of the power of the light emitted from the photorefractive element to the power.) The relationship between the apex angle on the writing light incident side, the apex angle on the writing light emitting side], the refractive index n, the period of the optical interference fringes, the transmittance of the entire photorefractive element, and the optical input / output coupling ratio After It will be described in detail. In the above configuration, in order to generate optical interference fringes in the external electric field drive type photorefractive medium 12, as shown in FIG. 5, the external electric field drive type photorefractive medium 12 has a thickness t direction. The two writing light beams are applied perpendicularly to the plane and passing through the center of the thickness t from the mirror image to the entrance planes of the prisms 102 a and 102 b. Respectively.
即ち、 外部電界駆動型フォトリフラクティブ媒質 1 2の厚さ t方向に対して垂 直、 つ、 厚さ tの中心を通る面に対して鏡像をなす方向から照射される 2本の 書き込み光のうちの一方をプリズム 1 0 2 aの入射面 1 0 4 aに入射し、 他方を プリズム 1 0 2 bの入射面 1 0 4 bに入射する。  That is, of the two writing light beams emitted from the direction perpendicular to the thickness t direction of the external electric field driven photorefractive medium 12 and from the mirror image with respect to a plane passing through the center of the thickness t. Is incident on the incident surface 104a of the prism 102a, and the other is incident on the incident surface 104b of the prism 102b.
上記したように、 2本の書き込み光が、 外部電界駆動型フォトリフラクティブ 媒質 1 2の厚さ t方向に対して垂直、 つ、 厚さ tの中心を通る面に対して鏡像 をなす方向からプリズム 1 0 2 a、 1 0 2 bの入射面 1 0 4 a、 1 0 4 bにそれ ぞれ入射されると、 2本の書き込み光はプリズム 1 0 2 a、 1 0 2 bにより屈折 されて外部電界駆動型フォトリフラクティブ媒質 1 2内に入射され、 外部電界駆 動型フォトリフラクティブ媒質 1 2の厚さ tの中心を通る面において交差する。 そして、 外部電界駆動型フォトリフラクティブ媒質 1 2内に入射されて交差す る 2本の書き込み光により、 フォトリフラクティブ媒質 1 2内において 2本の書 き込み光の 2等分線と平行に光干渉縞が形成される。  As described above, the two writing light beams are perpendicular to the thickness t direction of the external electric field driven type photorefractive medium 12 and are prisms from the mirror image with respect to a plane passing through the center of the thickness t. When the light is incident on the incident surfaces 104a and 104b of the 102a and 102b, respectively, the two writing lights are refracted by the prisms 102a and 102b. The light enters the external electric field driven photorefractive medium 12 and intersects on a plane passing through the center of the thickness t of the external electric field driven photorefractive medium 12. Then, the two writing light beams that enter and cross the external electric field driven type photorefractive medium 12 cause light interference in the photorefractive medium 12 parallel to the bisector of the two writing light beams. Stripes are formed.
なお、 フォトリフラクティブ媒質 1 2内に入射された 2本の書き込み光は、 当 該書き込み光が入射したプリズム 102 a、 102 bとはそれぞれ異なるプリズ ム 102 a、 102 bへ入射して、 それぞれプリズム 102 a、 102 bの出射 面 106 a、 106 bから外部へ出射される。 Note that the two writing lights incident on the photorefractive medium 12 are The writing light is incident on prisms 102a and 102b different from the prisms 102a and 102b on which the writing light is incident, and is emitted to the outside from emission surfaces 106a and 106b of the prisms 102a and 102b, respectively.
プリズム 102 a、 102 bの入射面 104 a、 104 bへそれぞれ入射され る 2本の書き込み光が平行光である場合において、 プリズム 102 aと 102 b とが同一の特性パラメータを備えており、 力つ、 「頂角 α=頂角 」 であるなら ば、 図 5に示すように、 プリズム 102 a、 102 bの出射面 104 a、 104 bからそれぞれ入射される 2本の書き込み光は平行光となる。 When the two writing beams respectively incident on the entrance surfaces 104a and 104b of the prisms 102a and 102b are parallel beams, the prisms 102a and 102b have the same characteristic parameters, If “vertical angle α = vertical angle”, then, as shown in FIG. 5, the two writing lights incident from the emission surfaces 104a and 104b of the prisms 102a and 102b, respectively, are parallel lights. Become.
ここで、 2本の書き込み光は外部電界駆動型フオトリフラタティブ媒質 1 2の 厚さ t方向に対して垂直、 かつ、 厚さ tの中心を通る面に対して鏡像をなす方向 からプリズム 102 a、 102 bの入射面 104 a、 104 bにそれぞれ入射さ れ、 プリズム 102 a、 102 bにより屈折されて外部電界駆動型フォトリフラ クティブ媒質 12内に入射されているので、 外部電界駆動型フォトリフラタティ ブ媒質 1 2内に発生される光干渉縞の格子べクトルの方向を、 外部印加電界べク トルの方向と一致させることができる。 このため、 外部印加電界の全てを実効駆 動電界に利用することができるようになる。 なお、 上記特許文献 1に開示された手法においても、 外部印加電界べクトルの 方向と光干渉縞の格子べクトルの方向とを一致させることができるが、 上記特許 文献 1に開示された手法はプリズム 102 a、 102 bのような光結合素子を備 えていないので、 書き込み光を入射する光学系の配置を変更することなしに、 2 本の書き込み光の交叉角を任意の大きさに設^ることが困難であり、 任意の周 期の光干渉縞を得ることが難しい。 Here, the two writing light beams are perpendicular to the thickness t direction of the external electric field driven type photorefractive medium 12 and are mirror images of a plane passing through the center of the thickness t. a and 102b are incident on the incident surfaces 104a and 104b, respectively, are refracted by the prisms 102a and 102b, and are incident on the external electric field driven photorefractive medium 12. The direction of the lattice vector of the optical interference fringe generated in the active medium 12 can be made to coincide with the direction of the externally applied electric field vector. Therefore, all of the externally applied electric field can be used for the effective driving electric field. In the method disclosed in Patent Document 1, the direction of the externally applied electric field vector and the direction of the lattice vector of the optical interference fringes can be matched, but the method disclosed in Patent Document 1 Since there is no optical coupling element such as the prisms 102a and 102b, without changing the arrangement of the optical system to which the writing light is incident, 2 It is difficult to set the crossing angle of the book writing light to an arbitrary size, and it is difficult to obtain optical interference fringes at an arbitrary period.
しかしながら、 後述するように、 プリズム 1 0 2 a、 1 0 2 bのような光結合 素子を備えた本発明によるフォトリフラクティブ素子においては、 書き込み光を 入射する光学系の配置を変更せずともに、 光結合素子の書き込み光入射側の頂角 即ち、 書き込み光の入射面の傾きを適当に選択することにより、 2本の書き 込み光の任意の交叉角、 即ち、 任意の周期の光干渉縞を容易に得ることができる ものである。 次に、 プリズム 1 0 2 a、 1 0 2 bの書き込み光入射側の頂角 aと書き込み光 出射側の頂角 と屈折率 ηとは、 外部電界駆動型フォトリフラクティブ媒質 1 2 の屈折率に対応して、 高光入出力結合率、 例えば、 8 0 %以上の光入出力結合率 が得られるように設定することができる。  However, as described later, in the photorefractive element according to the present invention including the optical coupling element such as the prisms 102a and 102b, without changing the arrangement of the optical system for entering the writing light, By appropriately selecting the apex angle of the writing light incident side of the optical coupling element, that is, the inclination of the writing light incident surface, an arbitrary crossing angle of the two writing lights, that is, an optical interference fringe having an arbitrary period can be obtained. It can be easily obtained. Next, the apex angle a of the prisms 102 a and 102 b on the writing light incident side, the apex angle on the writing light emitting side, and the refractive index η are determined by the refractive index of the external electric field driven photorefractive medium 12. Correspondingly, it can be set so as to obtain a high optical input / output coupling ratio, for example, an optical input / output coupling ratio of 80% or more.
ここで、 書き込み光入射側の頂角 aに対して得られる光干渉縞の周期 Λについ ては、 次式によって与えられる。  Here, the period 光 of the light interference fringes obtained with respect to the apex angle a on the writing light incident side is given by the following equation.
Λ = λ (2ncos 0 in) Λ = λ (2ncos 0 in )
ただし、 λは書き込み光として使用する光の波長であり、 ηは外部電界駆動型 フォトリフラクティブ媒質 1 2の屈折率であり、 0 i nは外部電界駆動型フォトリ フラクティブ媒質 1 2内での屈折角であつて次式で表されるものである。 Where λ is the wavelength of the light used as the writing light and η is the external electric field drive type The refractive index of the photorefractive medium 1 2, 0 i n are those shall apply in refraction angle in the external electric field driven Fotori Furakutibu medium 1 within 2 represented by the following formula.
Figure imgf000019_0001
Figure imgf000019_0001
ただし、 αはプリズム 1 0 2 a、 1 0 2 bの書き込み光入射側の頂角であり、Where α is the vertex angle of the prism 102 a and 102 b on the writing light incident side,
1^はプリズム1 0 2 &、 1 0 2 bの屈折率である。 1 ^ is the refractive index of the prisms 102 & 102b.
次に、 フォトリフラクティブ素子 1 0 0全体、 即ち、 フォトリフラクティブ媒 質 1 2と、一対の透明基板 1 4 a、 1 4 bと、一対の透明電極 1 6 a、 1 6 bと、 一対のプリズム 1 0 2 a、 1 0 2 bとを有するフォトリフラクティブ素子 1 0 0 の透過率 Tは、 次式の関係で表される。 なお、 ここでいう透過率 Tとは、 入射光 パワー 1に対して、 フォトリフラクティブ素子 1 0 0を透過して出射した後での パワーに等しい。 T=(1 -Rl) (1 -R2)2(1 -R3) Next, the entire photorefractive element 100, that is, the photorefractive medium 12, a pair of transparent substrates 14a and 14b, a pair of transparent electrodes 16a and 16b, and a pair of prisms The transmittance T of the photorefractive element 100 having 102 a and 102 b is expressed by the following equation. Here, the transmittance T is equal to the power of the incident light power 1 after passing through the photorefractive element 100 and exiting. T = (1 -R l ) (1 -R 2 ) 2 (1 -R 3 )
ただし、  However,
tan(90— 一 0。)  tan (90—one 0.)
=  =
tan (90— + 0。)
Figure imgf000020_0001
tan (90— + 0.)
Figure imgf000020_0001
tan[Qf + θ 0— β—sin—1 {npsin(af + θ 0— β )}]
Figure imgf000020_0002
tan [Qf + θ 0 — β—sin— 1 {n p sin (af + θ 0 — β)}]
Figure imgf000020_0002
tan[Qf+ Θ 0— β +sin—1 {n sin ( + θ 0— β )}] tan [Qf + Θ 0 — β + sin— 1 {n sin (+ θ 0 — β)}]
ただし、 ]3はプリズム 1 02 a、 102 bの書き込み光出射側の頂角である。 図 6に示すグラフは、 上記した式を用いて、 外部電界駆動型フォトリフラクテ ィブ媒質 1 2の屈折率 1. 70に対して光干渉縞の周期 0. 5 μπ!〜 2. 0 を得るために算出した、 プリズム 1 02 a、 1 02 bの書き込み光入射側の頂角 aと透過光の全損失との計算結果を示している。 この図 6に示すグラフにおレヽて は、 実線 (プリズム 102 a、 1 02 bの書き込み光入射側の頂角 aを示す。 ) および破線 (透過光の全損失を示す。 ) により示す曲線はともに、 グラフ中の下 力らステップ 0. 25 111刻みで0. 5 μπ!〜 2. 0 μ mの光干渉縞周期に対応 している。 なお、 書き込み光入射側の頂角ひと書き込み光出射側の頂角 とは、 等しいも のと仮定する。 また、 透明基板 14 a、 14bならびに透明電極 16 a、 16 b の屈折率は、 プリズム 102 a、 102 bの屈折率と等しいものと仮定する。 こうした場合に、 例えば、 周期 1. 25 μιηの光干渉縞を外部電界駆動型フォ トリフラクティブ媒質 12内に形成するにあたっては、 プリズム 102 a、 10 213の屈折率11を1. 690〜1. 737の範囲の値に設定し、 プリズム 102 a、 102 bの書き込み光入射側の頂角 を 57° 〜76。 の範囲の値に設定す ることによって、 フォトリフラクティブ素子 100に入射きれて当該フォトリフ ラタティブ素子 100を透過し、 当該フォトリフラクティブ素子から出射される 透過光、 即ち、 出射される書き込み光の全損失を 20%以下に抑制する、 換言す れば、 80%以上の高い光入出力結合率を達成することができる。 Here,] 3 is the apex angle of the prisms 102a and 102b on the writing light emission side. The graph shown in FIG. 6 shows that, using the above equation, the period of the optical interference fringe is 0.5 μπ! With respect to the refractive index of 1.70 of the external electric field driven type photorefractive medium 12. 9 shows the calculation results of the apex angle a of the prisms 102a and 102b on the incident side of the writing light and the total loss of the transmitted light, which are calculated to obtain 2.2.0. In the graph shown in FIG. 6, the curves indicated by the solid line (showing the apex angle a on the writing light incident side of the prisms 102a and 102b) and the broken line (showing the total loss of transmitted light) are In both cases, the lower power in the graph is 0.5 μπ in steps of 0.25111! It corresponds to an optical interference fringe period of ~ 2.0 µm. Note that the apex angle of the writing light incident side and the apex angle of the writing light emission side are equal to Assume that It is assumed that the refractive indices of the transparent substrates 14a and 14b and the transparent electrodes 16a and 16b are equal to the refractive indices of the prisms 102a and 102b. In such a case, for example, when forming an optical interference fringe having a period of 1.25 μιη in the external electric field driven photorefractive medium 12, the refractive indexes 11 of the prisms 102a and 10213 are set to 1.690 to 1.737. And the vertex angles of the prisms 102a and 102b on the writing light incident side are 57 ° to 76. By setting the value within the range, the incident light that enters the photorefractive element 100, passes through the photorefractive element 100, and is transmitted light emitted from the photorefractive element, that is, the total loss of the emitted write light is reduced. It can be suppressed to 20% or less, in other words, a high optical input / output coupling ratio of 80% or more can be achieved.
なお、 プリズム 102 a、 102bの底辺長 Lについては、 例えば、 「プリズ ム 102 a、 102 bの屈折率 n = 1. 737」 および 「プリズム 102 a、 1 02 bの書き込み光入射側の頂角 α = 57° 」 として、 透明電極 16 a、 16 b 力 らの書き込み光の入射光高さを 3 mmと仮定した場合には、 「プリズム 102 a、 102 bの底辺長 L=27mm」 となる。 ただし、 プリズム 102 a、 10 2 bの書き込み光出射側頂角 βの最適化あるいは書き込み光の入射光高さ調整に よって、 プリズム 102 a、 102 bの底辺長 Lは短縮化が可能である。 さらに、このプリズム 102 a、 102 b、即ち、本発明による光結合素子は、 以下の特徴をも有する。  For the base length L of the prisms 102a and 102b, for example, “the refractive index n of the prisms 102a and 102b n = 1.737” and “the apex angle of the writing light incident side of the prisms 102a and 102b” α = 57 ° ”, assuming that the incident light height of the writing light from the transparent electrodes 16a and 16b is 3 mm, the length of the bottom side of the prisms 102a and 102b is L = 27mm. . However, the base length L of the prisms 102a and 102b can be shortened by optimizing the apex angle β on the writing light exit side of the prisms 102a and 102b or adjusting the incident light height of the writing light. Further, the prisms 102a and 102b, that is, the optical coupling element according to the present invention also have the following features.
即ち、 光干渉縞の周期は、 プリズム 102 a、 102 bの書き込み光入射側の 項角 の値、 換言すれば、 プリズム 1 0 2 a、 1 0 2 bの入射面 1 0 4 a、 1 0 4 bの傾きで決定されることになる。 従って、 光干渉縞の周期を変更したい場合 には、 書き込み光入射側の頂角 を所望の値に設定したプリズムに交換すればよ い。 なお、 従来のフォトリフラクティブ素子 1 0において光干渉縞の周期を変更 したい場合には、 書き込み光の外部電界駆動型フォトリフラクティブ媒質 1 2へ の入射角をミラーなどで微調整することが必要であった。 しかしながら、 本発明 による光結合素子を用いれば、 所望の頂角 を備えたプリズムに交換するだけで よく、 ミラーなどで入射光のビーム配置を一切変更する必要がない。 従って、 本 発明による光結合素子を用いることにより、 構成が簡潔で振動に強い光学系の構 築が可能となる。 That is, the period of the light interference fringes is the same as the writing light incident side of the prisms 102a and 102b. It is determined by the value of the term angle, in other words, the inclination of the entrance surfaces 104a and 104b of the prisms 102a and 102b. Therefore, when it is desired to change the period of the light interference fringes, it is sufficient to replace the prism with the apex angle on the writing light incident side set to a desired value. When it is desired to change the period of the optical interference fringes in the conventional photorefractive element 10, it is necessary to finely adjust the incident angle of the write light to the external electric field driven photorefractive medium 12 by a mirror or the like. Was. However, if the optical coupling element according to the present invention is used, it is only necessary to replace the prism with a desired apex angle, and there is no need to change the beam arrangement of the incident light with a mirror or the like. Therefore, by using the optical coupling element according to the present invention, it is possible to construct an optical system having a simple configuration and strong against vibration.
なお、 本発明による光結合素子を用いた場合においては、 書き込み光入射側の 頂角ひを変更せずとも、 光結合素子へ入射される書き込み光の波長を変更するこ とにより、 光干渉縞の周期を変更することもできる。 次に、 本願宪明者により行われた実験結果について説明するが、 この実験に使 用した外部電界駆動型フオトリフラタティブ素子 1 0 0は、 外部電界駆動型フォ トリフラクティブ媒質 1 2として低ガラス転移温度を有するポリマー材料を用い ている。 このポリマー材料は、. ポリビニノレ力/レバゾーノレ (光導電†生ポリマー) 、 ( ( 4ーピペリジルフエニル) メチレン) メタン一 1, 1—ジカルボ二トリル(光 2次非線形色素) などを含む多成分系材料である。 このポリマー材料は、 室温よ りも低いガラス転移温度を有するために、 配向増大効果による大きなフォトリフ ラタティプ効果が室温で得られるものである。 また、 このポリマー材料により形 成されたフォトリフラクティブ媒質 1 2は、 実験で使用する波長 633 nmの書 き込み光に対して屈折率 1.' 70 ±0. 0 1を有することが確認された。 なお、 フォトリフラクティブ媒質 1 2は、 厚さ tとして 100 /zmの厚さを持つものを 用いた。 In the case where the optical coupling device according to the present invention is used, the optical interference fringes can be obtained by changing the wavelength of the writing light incident on the optical coupling device without changing the apex angle on the writing light incident side. Can be changed. Next, the results of an experiment performed by the present applicant will be described. The external electric field driven photorefractive element 100 used in this experiment is low as the external electric field driven photorefractive medium 12. A polymer material having a glass transition temperature is used. This polymer material is a multi-component system including polyvinylinole force / levazonole (photoconductive polymer), ((4-piperidylphenyl) methylene) methane-1,1,1-dicarbonitrile (second-order nonlinear dye) Material. Since this polymer material has a glass transition temperature lower than room temperature, it has a large photoreflection effect due to the orientation enhancement effect. A ratatip effect is obtained at room temperature. In addition, it was confirmed that the photorefractive medium 12 formed of this polymer material had a refractive index of 1.'70 ± 0.01 for the writing light of 633 nm used in the experiment. . The photorefractive medium 12 used had a thickness t of 100 / zm.
また、 プリズム 102 a、 102 bおよび透明基板 14 a、 14 bの材料とし ては、 屈折率 1. 77のガラスを使用した。  Glass having a refractive index of 1.77 was used as a material for the prisms 102a and 102b and the transparent substrates 14a and 14b.
そして、 プリズム 102 a、 102 bにおける書き込み光入射側の頂角 aの設 計値は、 30° とした。 この書き込み光入射側の頂角 「 = 30° 」 の値は、 光 干渉縞周期 0. 5 、 光入出力結合率 95%以上に対応する。  The design value of the apex angle a of the prisms 102a and 102b on the writing light incident side was set to 30 °. The value of the apex angle “= 30 °” on the writing light incident side corresponds to a light interference fringe period of 0.5 and a light input / output coupling ratio of 95% or more.
なお、 透明基板 14 a、 14 bのそれぞれの一方の表面には透明電極 16 a、 16 bが積層され、 透明電極 16 aと透明電極 1 6 bとが互いに向かい合うよう に組み合わされ、 透明電極 1 6 aと透明電極 16 bとの間に外部電界駆動型フォ トリフラタティブ媒質 1 2が挟持されてサンドィッチ型セル構造が形成されてい る。  The transparent electrodes 16a and 16b are laminated on one surface of each of the transparent substrates 14a and 14b, and the transparent electrode 16a and the transparent electrode 16b are combined so as to face each other. An external electric field driven photorefractive medium 12 is sandwiched between 6a and the transparent electrode 16b to form a sandwich cell structure.
上記した構成の外部電界駆動型フォトリフラクティブ素子 100を用いるとと もに、 光源として波長 633 nmを宪する He— Neレーザーを使用して、 図 5 に示すように 2本の書き込み光を外部電界駆動型フォトリフラクティブ素子 10 0に照射し、 2光波結合実験を行った。  In addition to using the external electric field driving type photorefractive element 100 having the above configuration, a He-Ne laser with a wavelength of 633 nm is used as a light source, and two writing lights are applied to the external electric field as shown in Fig. 5. The driven photorefractive element 100 was irradiated, and a two-wave coupling experiment was performed.
この 2光波結合実験では、 外部電界駆動型フォトリフラクティブ媒質 12中を 透過した書き込み光の出力変化を観測することによって、 フォトリフラクティブ 効果の発生を確認することができる。 即ち、 光干渉縞の発生によって、 外部電界 駆動型フォトリフラタティブ媒質 1 2内にフォトリフラタティブ効果に基づく屈 折率回折格子の形成が確認できる。 フォトリフラタティブ回折格子が形成される と、 2光波間でパワーの移動が生じ、 片方のパワーが増大すると同時にもう片方 のパワーが減少する光結合現象が生じる。 フォトリフラクティブ回折格子が効果 的に形成されるほど、 移動するパワー量が大きくなる。 In this two-light-wave coupling experiment, by observing the change in the output of the writing light transmitted through the external electric field driven type photorefractive medium 12, the photorefractive The effect can be confirmed. That is, the formation of the refractive index diffraction grating based on the photorefractive effect in the external electric field driven photorefractive medium 12 can be confirmed by the generation of the optical interference fringes. When a photorefractive grating is formed, a power shift occurs between the two light waves, and an optical coupling phenomenon occurs in which the power of one increases and the power of the other decreases. The more effectively the photorefractive grating is formed, the greater the amount of power transferred.
ここで、 図 7に示すグラフは、 上記した 2光波結合実験の実験結果を示してお り、 図 7に示すグラフ中で〇印で示されたプロットは、 本発明による外部電界駆 動型フオトリフラタティブ素子 1 0 0を用いた 2光波結合実験の実験結果を示し、 一方、 図 7に示すダラフ中で◊印で示されたプロットは、 図 1に示す従来の外部 電界駆動型フオトリフラタティプ素子 1 0を用いた 2光波結合実験の比較実験結 果を示している。  Here, the graph shown in FIG. 7 shows the experimental results of the above-described two-light-wave coupling experiment, and the plot indicated by a triangle in the graph shown in FIG. 7 shows the external electric field-driven photovoltaic device according to the present invention. The experimental results of the two-light-wave coupling experiment using the refractive element 100 are shown. On the other hand, the plots indicated by the triangles in the rough shown in Fig. 7 are the conventional external electric-field-driven photorefractor shown in Fig. 1. The results of a comparative experiment of a two-light-wave coupling experiment using a tapip element 10 are shown.
図 7に示すグラフには、 電源 1 8により ®ffをしばらく印加した後に、 書き込 み光を一本だけ透過させ (時間 t < 0 ) 、 「時間 t = 0」 においてもう片方の書 き込み光を入射したときにおける、 両方の書き込み光のパワー変化が示されてい る。 なお、 書き込み光パワーは 2 0 O mWZ c m2であり、 電源 1 8による印加 電界強度は 2 5 V/μ mであった。 In the graph shown in Fig. 7, after applying ff for a while from the power supply 18, only one write light is transmitted (time t <0), and the other write is performed at "time t = 0". The power change of both writing lights when light is incident is shown. The writing light power was 20 O mWZ cm 2 , and the electric field intensity applied by the power supply 18 was 25 V / μm.
図 7のグラフから明らかなように、 2本の書き込み光が照射されてフォトリフ ラクティブ媒質 1 2に光干渉縞が形成されると同時に、 2光波間で明らかなパヮ —移動が生じていることが分かる (図 7に示すグラフ中の〇印参照) 。 図 1に示 す従来の外部電界駆動型フォトリフラタティプ素子 1 0の場合 (図 7に示すダラ フ中の◊印参照) と比較して、 本発明による外部電界駆動型フォトリフラタティ ブ素子 1 0 0の場合 (図 7に示すグラフ中の〇印参照) はパワー移動量が大きい ことが分かる。 As is evident from the graph of FIG. 7, it is clear that the optical interference fringes are formed on the photorefractive medium 12 by irradiating the two writing lights, and at the same time, the apparent movement between the two light waves occurs. Understand (see the 〇 in the graph shown in Fig. 7). In the case of the conventional external electric field drive type photoreflector element 10 shown in FIG. In the case of the external electric field drive type photorefractive element 100 according to the present invention (see the symbol in the graph shown in FIG. 7), the amount of power transfer is larger than that in the symbol (◊ in the graph). .
この結果は、 本発明による外部電界駆動型フオトリフラタティブ素子 1 0 0に おいては、 光干渉縞が外部印加電界ベクトルと平行な格子ベクトルを有するよう に形成されたため、 外部印加電界を損失無く実効駆動電界に利用することができ たことに由来するものと認められる。 本発明による光結合素子は、 フォトリフラタティプ応答を決定づける内部電界 の強度と位相と相互作用長の増大をもたらすよう設計されている。 本発明による 光結合素子を備えたフォトリフラクティブ素子においては、 光キャリア移動に必 要な電界が外部電界によつて最大限に供給されることになる。 次に、 本発明による光結合素子を備えた本発明によるフォトリフラクティブ素 子を有して構成される、 本努明による光情報処理装置について説明する。  This result indicates that, in the external electric field driving type photorefractive element 100 according to the present invention, since the optical interference fringe was formed so as to have a lattice vector parallel to the external electric field vector, the external electric field was lost. This is considered to be due to the fact that it could be used for the effective driving electric field without any change. The optocoupler according to the invention is designed to provide an increase in the intensity, phase and interaction length of the internal electric field which determines the photorefratic response. In the photorefractive element provided with the optical coupling element according to the present invention, the electric field necessary for the movement of the photocarrier is supplied to the maximum by the external electric field. Next, an optical information processing apparatus according to the present invention, which includes the photorefractive element according to the present invention including the optical coupling element according to the present invention, will be described.
即ち、 本発明による光結合素子を備えた本発明によるフォトリフラクティブ素 子を用いて様々な光情報処理装置を作製することができる。具体的には、例えば、 画像記録、 画像認識 (パターンマッチング) 、 リアルタイム劣化画像タリーニン グ、 動体検出あるいは動画像のリアルタィム増幅などの光情報処理を行うための 光情報処理装置を実現することができる。  That is, various optical information processing apparatuses can be manufactured using the photorefractive element according to the present invention including the optical coupling element according to the present invention. Specifically, it is possible to realize an optical information processing apparatus for performing optical information processing such as image recording, image recognition (pattern matching), real-time degraded image talling, moving object detection or real-time amplification of a moving image. .
図 8乃至図 9は、 上記した各種の光情報処理を行うための装置構成を示す概略 構成説明図である。 ここで、 図 8は、 光情報処理として光相関法を積極的に利用 した画像記録、 画像認識 (パターンマッチング) ならびにリアルタイム劣化画像 クリーニングを行うため装置構成例を示している。 一方、 図 9は、 光情報処理と して動体検出あるいは動画像のリアルタイム增幅を行うため装置構成例を示して いる。 FIGS. 8 and 9 are schematic diagrams each showing a device configuration for performing the various types of optical information processing described above. FIG. Here, FIG. 8 shows an example of an apparatus configuration for performing image recording, image recognition (pattern matching), and real-time degraded image cleaning using the optical correlation method as optical information processing. On the other hand, FIG. 9 shows an example of an apparatus configuration for detecting moving objects or real-time decoding of moving images as optical information processing.
図 8に示す光情報処理装置においては、 中央制御装置 2 0 0から出力された入 力信号を 2次元符号化装置 2 0 2、 空間変調器制御装置 2 0 4を通して空間変調 器 2 0 6へ入力して、 外部電界駆動型フォトリフラクティブ素子 1 0 0への 2本 の書き込み光が入射される空間変調器 2 0 6により当該 2本の書き込み光を制御 すると同時に、 中央制御装置 2 0 0から出力された入力信号を 2次元符号化装置 2 0 8、 空間変調器制御装置 2 1 0を通して空間変調器 2 1 2へ入力し、 外部電 界駆動型フォトリフラクティブ素子 1 0 0へ入射する光を制御して、 得られる結 果画像情報は C C Dカメラ 2 1 4、 2次元復号化装置 2 1 6を介して中央制御装 置 2 0 0へ入力することにより得ることができる。  In the optical information processing apparatus shown in FIG. 8, the input signal output from the central controller 200 is transmitted to the spatial modulator 206 through the two-dimensional encoder 202 and the spatial modulator controller 204. The two write lights are controlled by the spatial modulator 206 into which the two write lights are input to the external electric field drive type photorefractive element 100 and the two write lights are simultaneously input from the central controller 200. The output input signal is input to the spatial modulator 212 via the two-dimensional encoder 208 and the spatial modulator controller 210, and the light incident on the external electric field driven photorefractive element 100 is The result image information obtained by the control can be obtained by inputting to the central control device 200 via the CCD camera 214 and the two-dimensional decoding device 210.
また、 図 9に示す情報処理装置に'おいては、 中央制御装置 3 0 0から出力され た入力信号を 2次元符号化装置 3 0 2、 空間変調器制御装置 3 0 4を通して空間 変調器 3 0 6へ入力して、 外部電界駆動型フォトリブラクティブ素子 1 0 0への 2本の書き込み光のうちの 1本の書き込み光が入射される空間変調器 3 0 6によ り当該 1本の書き込み光を制御し、 得られる結果画像情報は C C Dカメラ 3 0 8 あるいは C C Dカメラ 3 1 0によって 2次元復号化装置 3 1 2を介して中央制御 装置 3 0 0へ入力することにより得ることができる。 なお、 レーザー 2 1 8、 2 2 0、 3 1 4としては、 いずれも波長可変レーザー を使用することができ、 その場合には、 各装置内の光路を調整することなくマル チ波長での多重動作が可能となる。 Also, in the information processing apparatus shown in FIG. 9, the input signal output from the central control unit 300 is transmitted through the two-dimensional encoding unit 302 and the spatial modulator control unit 304 to the spatial modulator 3. The input to the external electric field driving type photorefractive element 100 is input to the external electric field driving type photodetector 100 by the spatial modulator 303 into which one of the two writing lights is incident. The writing light is controlled, and the resulting image information obtained can be obtained by inputting to the central control unit 300 through the two-dimensional decoding device 312 by the CCD camera 3108 or the CCD camera 310. . A tunable laser can be used for each of the lasers 218, 220, and 314. In this case, multiplexing at multiple wavelengths is performed without adjusting the optical path in each device. Operation becomes possible.
また、 符号 2 2 2はビームセパレーターであり、 符号 2 2 4、 2 2 6はハーフ ミラーであり、 符号 3 1 6はビームセパレーターである。  Reference numeral 222 denotes a beam separator, reference numerals 222 and 222 denote half mirrors, and reference numeral 316 denotes a beam separator.
ここで、 上記した図 8乃至図 9に示す光情報処理装置は、 フォトリフラタティ ブ素子として、 図 1に示す従来の外部電界駆動型フオトリフラタティブ素子 1 0 に代えて、 本発明による外部電界駆動型フォトリフラクティブ素子 1 0 0を用い た点において、 従来の光情報処理装置とは異なっている。  Here, the optical information processing apparatus shown in FIG. 8 to FIG. 9 described above is a photorefractive element, in place of the conventional external electric field drive type photorefractive element 10 shown in FIG. It differs from the conventional optical information processing apparatus in that an electric field driven photorefractive element 100 is used.
さらに、図 8に示す光情報処理装置においては、符号 Cで示す構成についても、 従来の光情報処理装置の構成とは異なっている。  Further, in the optical information processing apparatus shown in FIG. 8, the configuration indicated by reference numeral C is also different from the configuration of the conventional optical information processing apparatus.
即ち、 従来の光情報処理装置における図 8に示す光情報処理装置の符号 Cに相 当する構成が図 1 0に示されている力 従来の光情報処理装置においては、 光相 関などの光情報処理を行うためには、 チルト型配置で外部電界駆動型フォトリフ ラタティブ素子 1 0へ入射される 2本の書き込み光の両者に対して、 それぞれ空 間変調器 4 0 0 a、 4 0 0 bを設置する必要があった。  That is, in the conventional optical information processing apparatus, the configuration corresponding to the code C of the optical information processing apparatus shown in FIG. 8 is represented by the force shown in FIG. In order to perform information processing, the spatial light modulators 400a and 400b are applied to both of the two writing lights incident on the external electric field driven photorefractive element 10 in a tilt arrangement. Had to be installed.
しかしながら、 本発明による外部電界駆動型フォトリフラクティブ素子 1 0 0 を用いた本宪明による光情報処理装置においては、 図 1 1 (図 1 1は、 図 8に示 す符号 Cの構成のみを取り出して示した要部拡大図である。 ) に示すように、 外 部電界駆動型フォトリフラクティブ素子 1 0 0への2本の書き込み光として平行 光を入射することができるので、 1つの空間変調器 2 0 6で 2本の書き込み光の 画像変調を兼ねることができるとともに、 図 1 2を参照しながら後述する斜め画 像捕正回路も不要になる。 従って、 光学配置のスペースを節約できるとともに、 光情報処理装置の全体構成を簡素化することができる。 However, in the optical information processing apparatus according to the present invention using the external electric field driving type photorefractive element 100 according to the present invention, FIG. 11 (FIG. 11 shows only the configuration of reference numeral C shown in FIG. 8). As shown in the figure, parallel light can be made incident as two writing lights to the external electric field driven photorefractive element 100, so that one spatial modulator is used. 2 0 6 In addition to performing image modulation, an oblique image correction circuit, which will be described later with reference to FIG. Therefore, the space for the optical arrangement can be saved, and the overall configuration of the optical information processing apparatus can be simplified.
なお、 従来のサンドィツチ型セル構造の外部電界駆動型フォトリフラクティブ 素子 1 0を用いて、 チルト型配置で 2本の書き込み光を入射する従来の光情報処 理装置においても、 図 1 2に示すように、 2次元符号化装置 2 0 2と空間変調器 制御装置 2 0 4との間に斜め画像補正回路 5 0 0を組み込むことによって、 1つ の空間変調器 5 0 2によって、 2本の書き込み光の画像変調を兼ねることができ る。こうした構成によっても、光学系の配置のスペースを節約することができる。 なお、 上記した実施の形態は、 以下の (1 ) 乃至 (6 ) に説明するように変形 することができる。  A conventional optical information processing apparatus in which two writing light beams are incident in a tilt type arrangement using an external electric field driven photorefractive element 10 having a conventional sandwich cell structure as shown in FIG. In addition, by incorporating an oblique image correction circuit 500 between the two-dimensional encoding device 202 and the spatial modulator control device 204, two writings can be performed by one spatial modulator 502. It can also serve as light image modulation. Such a configuration can also save the space for disposing the optical system. The above embodiment can be modified as described in the following (1) to (6).
( 1 ) 上記した実施の形態においては、 外部電界駆動型フォトリフラクティブ 媒質 1 2の材料については詳細な説明を省略したが、 外部電界駆動型フォトリフ ラタティブ媒質 1 2の材料としては、 光導電性と電気光学効果とを有する材料を 用いることができる。 こうした材料は、 例えば、 光導電性材料と電気光学効果材 料とを混合あるいは化学的に結合させることで作製することができる。 そして、 光導電性を有する材料としては、 例えば、 ポリビュルカルバゾール、 ポリフエ二 レンビニレンなどがある。 さらには、 これらの材料にトリニトロフルォレノンや フラーレンなどの增感色素を加えることによって、 光感度を増強させることがで きる。 また、 電気光学効果を示す材料としては、 例えば、 光 2次非線形分子ゃ大 きな異方性線形分極率をもつ分子などがあり、 具体的には、 ァゾ、 スチノレベン、 ポリエン骨格などにアミノ基、 メトキシ基などのドナー基と、 ホルミル基、 二ト 口基などのァクセプターとを組み合わせた分子構造のものがある。 (1) In the above embodiment, the detailed description of the material of the external electric field driven photorefractive medium 12 is omitted, but the material of the external electric field driven photorefractive medium 12 is photoconductive and photoconductive. A material having an electro-optic effect can be used. Such a material can be produced, for example, by mixing or chemically bonding a photoconductive material and an electro-optic effect material. Examples of the photoconductive material include, for example, poly (vinylcarbazole) and poly (vinylenevinylene). Further, by adding a sensitizing dye such as trinitrofluorenone or fullerene to these materials, the light sensitivity can be enhanced. Materials exhibiting the electro-optic effect include, for example, optical second-order nonlinear molecular There are molecules that have anisotropic linear polarizability, such as donor groups such as amino group and methoxy group on azo, stinoleben, and polyene skeletons, and receptor groups such as formyl group and nitro group. Some have a molecular structure combining the above.
( 2 ) 上記した実施の形態においては、 フォトリフラクティブ効果の発現に外 部印加電界が必要な外部電界駆動型フオトリフラタティブ媒質について説明した 力 s、 本発明は外部電界駆動型フォトリフラクティブ媒質に限られるものではない ことは勿論である。 即ち、 フォトリフラクティブ効果の発現に外部印加電界が必 要ではない内部電界駆動型フォトリフラクティブ媒質に関して本発明を適用して もよい。  (2) In the above-described embodiment, the force s described for the external electric field driven photorefractive medium which requires an externally applied electric field for the appearance of the photorefractive effect.The present invention relates to an external electric field driven photorefractive medium. Of course, it is not limited. That is, the present invention may be applied to an internal electric field driven photorefractive medium in which an externally applied electric field is not required for the expression of the photorefractive effect.
ここで、 内部電界駆動型フォトリフラクティブ媒質も、 基本的には上記 ( 1 ) において示した材料を用いることができるものであるが、 外部電界駆動型フォト リフラタティブ媒質の材料はガラス転移温度が室温かあるいはそれ以下あるいは それ以上であること、 一方、 内部電界駆動型フオトリフラタティプ媒質の材料は ガラス転移温度が室温よりも十分に高いことが条件として加わる。 なお、 ガラス 転移温度の降下は、 例えば、 ェチルカルバゾール、 ブチルベンジルフタレートな どの可塑剤の添加、 あるいは材料への長鎖アルキル基の化学的修飾などによって 可能である。  Here, the material shown in the above (1) can be basically used for the internal electric field driven type photorefractive medium, but the material of the external electric field driven type photorefractive medium has a glass transition temperature of room temperature. Alternatively, it must be lower or higher. On the other hand, the material of the internal electric field driving type phototriflate medium is required to have a glass transition temperature sufficiently higher than room temperature. The glass transition temperature can be lowered, for example, by adding a plasticizer such as ethyl carbazole or butylbenzyl phthalate, or by chemically modifying a long-chain alkyl group to the material.
また、 内部電界駆動型フォトリフラクティブ媒質により本発明によるフォトリ フラクティブ素子を構成する場合には、上記した実施の形態と同様な構成として、 単に透明電極 1 6 a、 1 6 bに外部から電界を印加しないようにしてもよいし、 あるいは、 図 1 3に示すように、 透明電極を設けることなしにフォトリフラクテ イブ素子を構成してもよい。 In the case where the photorefractive element according to the present invention is constituted by an internal electric field driving type photorefractive medium, an external electric field is simply applied to the transparent electrodes 16a and 16b as in the above-described embodiment. May not be used, or as shown in Fig. 13, the photoreflector may be used without transparent electrodes. Eve elements may be configured.
(3) 上記した実施の形態においては、 透明基板 14 a、 14 bに透明電極 1 6 a、 16 bを配設するようにしたが、 これに限られるものではないことは勿論 である。 即ち、 図 14に示すように、 プリズム 102 a、 102 bに直接的に透 明電極 1 6 a、 1 6 bをそれぞれ配設して、 透明電極 16 aと透明電極 16 bと の間に外部電界駆動型フオトリフラタティプ媒質 1 2を挟持するようにしてもよ い。  (3) In the above embodiment, the transparent electrodes 16a and 16b are provided on the transparent substrates 14a and 14b, but it is needless to say that the present invention is not limited to this. That is, as shown in FIG. 14, the transparent electrodes 16a and 16b are directly disposed on the prisms 102a and 102b, respectively, and an external electrode is provided between the transparent electrodes 16a and 16b. The electric-field-driven photolithographic medium 12 may be sandwiched.
また、 図 1 3に示すような内部電界駆動型フォトリフラクティブ媒質を用いた 本発明によるフォトリフラクティブ素子においては、 図 1 5に示すように、 プリ ズム 102 aと 102 bとの間に直接的に内部電界駆動型フォトリフラクティブ 媒質を挟持するようにしてもよい。  Further, in the photorefractive element according to the present invention using the internal electric field driving type photorefractive medium as shown in FIG. 13, as shown in FIG. 15, the direct reflection between the prisms 102 a and 102 b occurs. An internal electric field drive type photorefractive medium may be sandwiched.
(4) 上記した実施の形態においては、 外部電界駆動型フォトリフラクティブ 媒質 12の一方^面にプリズム 102 aを配設するとともに当該一方の面と対向 する他方の面にプリズム 102 bを配設して、 外部電界駆動型フォトリフラクテ ィブ媒質 1 2の両方の面に光結合素子を酉己設するようにしたが、 これに限られる ものではないことは勿論である。 即ち、 図 16 (a) (b) に示すように、 外部 電界駆動型フォトリフラクティブ媒質 1 2の一方の面にのみ、 プリズム 102 a などの光結合素子を配設するようにしてもよい。 同様に、 内部電界駆動型フォト リフラクティブ媒質の一方の面にのみ、 プリズムなどの光結合素子を配設するよ うにしてもよレヽ。  (4) In the above-described embodiment, the prism 102a is provided on one surface of the external electric field driving type photorefractive medium 12, and the prism 102b is provided on the other surface facing the one surface. Thus, the optical coupling elements are provided on both surfaces of the external electric field driven type photorefractive medium 12, but it is a matter of course that the present invention is not limited to this. That is, as shown in FIGS. 16 (a) and 16 (b), an optical coupling element such as the prism 102a may be provided only on one surface of the external electric field driven photorefractive medium 12. Similarly, an optical coupling element such as a prism may be provided on only one surface of the internal electric field driven photorefractive medium.
なお、 上記したように外部電界駆動型フオトリフラタティブ媒質 1 2の一方の 面にのみプリズムなどの光結合素子を配設した場合、例えば、図 1 6 ( a ) ( b ) に示す構成の場合には、 外部電界駆動型フオトリフラタティブ媒質 1 2の一方の 面にのみ配設した光結合素子としてのプリズム 1 0 2 aに入射される 1本の書き 込み光に対して、 もう一本の書き込み光は、 外部電界駆動型フォトリフラタティ プ媒質 1 2と透明電極 1 6 bとの界面で反射される上記 1本の書き込み光の反射 光によって供給される。 この場合においても、 上記したと同様に、 格子ベクトル と外部印加電界べクトルとが完全に一致した光干渉縞が形成される。 従って、 1 本の書き込み光によってフォトリフラクティブ効果を発生させることができる。 また、 上記したように内部電界駆動型フオトリフラタティブ媒質の一方の面に のみプリズムなどの光結合素子を配設した場合、 例えば、 図 1 3に示す構成にお いてプリズム 1 0 2 aのみを配設して、 プリズム 1 0 2 bを配設しなかった場合 には、 内部電界駆動型フオトリフラタティブ媒質の一方の面にのみ配設した光結 合素子としてのプリズム 1 0 2 aに入射される 1本の書き込み光に対して、 もう 一本の書き込み光は、 内部電界駆動型フォトリフラクティブ媒質と透明基板 1 4 bとの界面で反射される上記 1本の書き込み光の反射光によって供給される。 こ の場合においても、 上記したと同様に、 格子べクトルと外部印加電界べクトルと が完全に一致した光干渉縞が形成される。 従って、 1本の書き込み光によってフ オトリフラタティブ効果を発生させることができる。 As described above, one of the external electric field driven photorefractive medium 12 When an optical coupling element such as a prism is provided only on the surface, for example, in the configuration shown in Figs. 16 (a) and (b), one surface of the external electric field driven photorefractive medium 12 For one writing light incident on the prism 102 a as the optical coupling element disposed only for the other, the other writing light is composed of the external electric field driven photorefractive medium 12 and the transparent electrode It is supplied by the reflected light of the one writing light reflected at the interface with 16b. Also in this case, similarly to the above, an optical interference fringe in which the lattice vector and the externally applied electric field vector completely match is formed. Therefore, a photorefractive effect can be generated by one writing light. As described above, when an optical coupling element such as a prism is provided only on one surface of the internal electric field driving type photorefractive medium, for example, only the prism 102 a in the configuration shown in FIG. 13 is used. When the prism 102 b is not provided and the prism 102 b is not provided, the prism 102 a as an optical coupling element provided only on one surface of the internal electric field driving type photorefractive medium is provided. The other writing light is reflected by the interface between the internal electric field drive type photorefractive medium and the transparent substrate 14b with respect to the one writing light incident on the substrate. Supplied by Also in this case, as described above, an optical interference fringe in which the lattice vector and the externally applied electric field vector completely match is formed. Therefore, a photorefractive effect can be generated by one writing light.
( 5 ) 上記した実施の形態においては詳細な説明を省略したが、 プリズム 1 0 2 a、 1 0 2 bは、 透明基板 1 4 a、 1 4 bに対して脱着自在に構成することが でき、 このように構成すると、 書き込み光入射側の頂角 αなどの特性パラメータ の異なるプリズムを適宜に容易に着脱することができる。 (5) Although the detailed description is omitted in the above embodiment, the prisms 102a and 102b can be configured to be detachable from the transparent substrates 14a and 14b. With this configuration, characteristic parameters such as the apex angle α on the writing light incident side Can be easily attached and detached as appropriate.
( 6 ) 上記した実施の形態ならびに上記 ( 1 ) 乃至 (5 ) に示す変形例は、 適 宜に組み合わせるようにしてもよい。 産業上の利用可能性  (6) The above-described embodiment and the modifications shown in (1) to (5) above may be combined as appropriate. Industrial applicability
本発明は、 以上説明したように構成されているので、 操作性'機能性に優れて いて容易かつ高効率でフォトリフラクティブ媒質内に光干渉縞を発生可能なフォ トリフラクティブ素子を実現するための光結合素子おょぴそれを備えたフォトリ フラクティブ素子ならぴに光情報処理装置を «することができるようになると いう優れた効果を奏する。  Since the present invention is configured as described above, an object of the present invention is to realize a photorefractive element which has excellent operability and functionality, and which can easily and efficiently generate optical interference fringes in a photorefractive medium. An optical coupling element or a photorefractive element provided with the optical coupling element has an excellent effect that an optical information processing device can be used.

Claims

請 求 の 範 囲 The scope of the claims
1 . フォトリフラクティブ媒質へ入射される書き込み光に対して所定の傾きに 設定された入射面を備えた台形状のプリズムよりなり、 前記フォトリフラタティ ブ媒質の少なくとも一方の面彻 Jに配置される 1. A trapezoidal prism having an incident surface set at a predetermined inclination with respect to the writing light incident on the photorefractive medium, and is arranged on at least one surface 彻 J of the photorefractive medium.
ことを特徴とする光結合素子。  An optical coupling device, comprising:
2. 請求項 1に記載の光結合素子において、 2. The optical coupling device according to claim 1,
前記入射面の傾きは、 前記書き込み光の前記フォトリフラクティブ媒質への入 射により、 前記フォトリフラクティブ媒質内に形成される光干渉縞の所望の周期 に応じて設定される  The inclination of the incident surface is set according to a desired period of an optical interference fringe formed in the photorefractive medium by the writing light being incident on the photorefractive medium.
ことを特徴とする光結合素子。  An optical coupling device, comprising:
3 . フォトリフラクティブ媒質の少なくとも一方の面側に、 請求項 1または請 求項 2のいずれか 1項に記載の光結合素子を配設した 3. The optical coupling device according to claim 1 or claim 2 is provided on at least one surface of the photorefractive medium.
ことを特 ί敷とするフォトリフラクティブ素子。  This is a photorefractive element.
4. 請求項 3に記載のフォトリフラクティブ素子において、 4. The photorefractive element according to claim 3,
前記光結合素子は、 暖方体状のフォトリフラクティブ媒質の一方の面側と該 —方の面側と対向する他方の面側とにそれぞれ配置され、  The optical coupling element is disposed on one surface side of the warm-cubic photorefractive medium and on the other surface side opposite to the negative surface side,
前記フォトリフラクティブ媒質の厚さ方向に対して垂直、 力つ、 前記厚さの中 心を通る面に対して鏡像をなす方向から照射される 2本の書き込み光のうちの一 方を前記フォトリフラクティブ媒質の一方の面側に配置された光結合素子の入射 面に入射し、 前記 2本の書き込み光のうちの他方を前記フォトリフラクティブ媒 質の前記一方の面側と対向する前記他方の面側に配置された光結合素子の入射面 に人射する Perpendicular to the thickness direction of the photorefractive medium; One of the two writing lights emitted from a direction forming a mirror image with respect to a plane passing through the heart is incident on an incident surface of an optical coupling element arranged on one surface side of the photorefractive medium, The other of the two writing lights is projected onto the incident surface of the optical coupling element disposed on the other surface of the photorefractive medium, which is opposite to the one surface of the photorefractive medium.
ことを特徴とするフォトリフラクティブ素子。  A photorefractive element, characterized in that:
5 . 27次元符号化装置と、 空間変調器制御装置と、 空間変調器と、 フォトリフ ラタティプ素子とを有し、 入力信号を前記 2次元符号化装置と前記空間変調器制 御装置とを通して前記空間変調器へ入力して、 前記フォトリフラタティプ素子へ の 2本の書き込み光が入射される前記空間変調器により該 2本の書き込み光の ヽ ずれカゝ一方または双方を制御する光情報処¾¾置において、 5. It has a 27-dimensional encoding device, a spatial modulator control device, a spatial modulator, and a photorefractive element, and inputs an input signal through the two-dimensional encoding device and the spatial modulator control device to the space. An optical information processor for controlling one or both of the two writing lights by the spatial modulator, which inputs the two writing lights to the photoreflective element when input to the modulator. In place
フォトリフラタティブ素子は、 請求項 3または請求項 4のいずれか 1項に記載 のフォトリフラクティブ素子である  The photorefractive element is the photorefractive element according to any one of claims 3 and 4.
ことを特徴とする光情報処理装置。  An optical information processing apparatus characterized by the above-mentioned.
6 . 請求項 5に記載の光情報処理装置において、 6. The optical information processing apparatus according to claim 5,
前記フォトリフラタティブ素子は、 請求項 4に記載のフォトリフラクティブ素 子であり、  The photorefractive element is the photorefractive element according to claim 4,
単一の前記空間変調器により前記フオトリフラタティブ素子への 2本の書き込 み光を制御する ことを特徴とする光情報処3¾置。 Two write lights to the photorefractive element are controlled by a single spatial modulator An optical information processing unit 3 characterized by the above-mentioned.
7 . 2次元符号化装置と、 空間変調器制御装置と、 空間変調器と、 フォトリフ ラタティプ素子とを有し、 入力信号を前記 2次元符号化装置と前記空間変調器制 御装置とを通して前記空間変調器へ入力して、 前記フォトリフラタティプ素子へ の 2本の書き込み光が入射される前記空間変調器により該 2本の書き込み光を制 御する光情報処理装置において、 7. A two-dimensional encoding device, a spatial modulator control device, a spatial modulator, and a photorefractive element, and an input signal is transmitted through the two-dimensional encoding device and the spatial modulator control device to the space. An optical information processing apparatus which controls the two writing lights by the spatial modulator into which the two writing lights are input to the modulator and the photo-reflecting element is input.
フォトリフラクティブ素子は、 チルト型配置により 2本の書き込み光を入射す るものであり、  The photorefractive element receives two writing lights in a tilted arrangement.
前記 2次元符号化装置と前記空間変調器制御装置との間に斜め画像補正回路を 有し、 前 |¾斜め画像補正回路の補正により単一の前記空間変調器によつて前記 2 本の書き込み光の画像変調を行う  An oblique image correction circuit is provided between the two-dimensional encoding device and the spatial modulator control device, and the two writing operations are performed by a single spatial modulator by correcting the oblique image correction circuit. Performs light image modulation
ことを特徴とする光情報処理装置。  An optical information processing apparatus characterized by the above-mentioned.
PCT/JP2004/003926 2003-03-25 2004-03-23 Optical coupling element, photo-refractive element having the same, and optical information processing device WO2004097507A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505823A JP4675778B2 (en) 2003-03-25 2004-03-23 Optical information processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-083433 2003-03-25
JP2003083433 2003-03-25

Publications (1)

Publication Number Publication Date
WO2004097507A1 true WO2004097507A1 (en) 2004-11-11

Family

ID=33398907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003926 WO2004097507A1 (en) 2003-03-25 2004-03-23 Optical coupling element, photo-refractive element having the same, and optical information processing device

Country Status (2)

Country Link
JP (1) JP4675778B2 (en)
WO (1) WO2004097507A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052198A (en) * 1991-06-25 1993-01-08 Fuji Xerox Co Ltd Light moving picture detection device
JPH07140499A (en) * 1993-11-22 1995-06-02 Nippon Telegr & Teleph Corp <Ntt> Writing method for organic photorefractive medium and organic photorefractive medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052198A (en) * 1991-06-25 1993-01-08 Fuji Xerox Co Ltd Light moving picture detection device
JPH07140499A (en) * 1993-11-22 1995-06-02 Nippon Telegr & Teleph Corp <Ntt> Writing method for organic photorefractive medium and organic photorefractive medium

Also Published As

Publication number Publication date
JPWO2004097507A1 (en) 2006-07-13
JP4675778B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
Yamada et al. Electric‐field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals
JP4920996B2 (en) Light control element, display device and stress measuring device
US20080138013A1 (en) High Efficiency Optical Diffraction Device
JPH11142806A (en) Optical device
US10416468B2 (en) Light field generator devices with series output couplers
JP2005130091A (en) Optical image reader
CN101320130A (en) Optical scanning device, image forming device and optical scanning method
Ruiz et al. Liquid crystal microlens arrays recorded by polarization holography
US20190025667A1 (en) Telescope Arrays and Superimposed Volume Gratings for Light Field Generation
US11796740B2 (en) Optical device
WO2004097507A1 (en) Optical coupling element, photo-refractive element having the same, and optical information processing device
TW507086B (en) Polarized separating back light source module
JP5249008B2 (en) Light modulator
JPH1090730A (en) Optical element, its drive method and display device
JP4534318B2 (en) Polarizing element
JPH01147527A (en) Liquid crystal device for laser scan
JP3324083B2 (en) Optical element fabrication method
JP2002099195A (en) Method of making phase type volume hologram optical element
CN1431525A (en) Plate lens with variable light refractive index
TWI278797B (en) Optical light valve
Cheng et al. Near-field flat focusing mirrors using a metallic subwavelength grating on top of a plasmonic waveguide
JP2837511B2 (en) Optical switch array
CN117008235A (en) Apparatus and method for manufacturing hologram optical element
Ludman et al. Holographic Nonspatial Filtering for Laser Beams
JPS60247228A (en) Optical fiber switch

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505823

Country of ref document: JP

122 Ep: pct application non-entry in european phase