WO2004096759A1 - Method for producing perfluoroalkanesulfonyl fluoride - Google Patents

Method for producing perfluoroalkanesulfonyl fluoride Download PDF

Info

Publication number
WO2004096759A1
WO2004096759A1 PCT/JP2004/005905 JP2004005905W WO2004096759A1 WO 2004096759 A1 WO2004096759 A1 WO 2004096759A1 JP 2004005905 W JP2004005905 W JP 2004005905W WO 2004096759 A1 WO2004096759 A1 WO 2004096759A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
general formula
reaction
temperature
formula
Prior art date
Application number
PCT/JP2004/005905
Other languages
French (fr)
Japanese (ja)
Inventor
Barabanov Valerij Georgievich
Bourutskaya Galina Vasiljevna
Bispen Tatjyana Alekseevna
Kaurova Galina Ivanovna
Iljin Nikolaj Alekseevich
Denisenkov Uladimir Fedrovich
Moldavsky Dmitrij Dmitrievich
Nurgalieva Svetlana Mikhajlovna
Shkuljteskaya Larisa Vasiljevna
Fedorova Tatjyana Vasiljevna
Furin Georgij Georgievich
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to JP2005505882A priority Critical patent/JPWO2004096759A1/en
Publication of WO2004096759A1 publication Critical patent/WO2004096759A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/22Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof from sulfonic acids, by reactions not involving the formation of sulfo or halosulfonyl groups; from sulfonic halides by reactions not involving the formation of halosulfonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/78Halides of sulfonic acids
    • C07C309/79Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms
    • C07C309/80Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms of a saturated carbon skeleton

Definitions

  • the present invention relates to a method for producing perfluoroalkanesulfonyl fluoride.
  • the present invention relates to an intermediate compound in the synthesis of perfluoroalkanesulfonic acid and salts thereof (S. Benefice — Malouet, H.Blancoueta 1., J. of Fluorine Chemistry, 31 (1) 986), 319.332), and as a raw material in the synthesis of perphnoleoloalkanesulfonylimides and salts thereof (U.S. Pat. No. 5,072,040, 1991). (Feb.
  • PFASF perfluoro-anolecancer-norehoninorefureo-leo-lide
  • Pentaphthalene ethane phenol is obtained by interacting the required type of olefin with S 0 2 F 2 in a solvent at a temperature of 110 ° C for 60 hours in the presence of cesium fluoride.
  • Methods for producing ninolefnoreolide and heptafluoroisopropanesulfonylfluoride are known (US Patent No. 3,542,864, January 1970, January 24). Day) . This method uses complex cesium fluoride and expensive equipment, and generates toxic and difficult-to-reuse waste. No further development was seen since it was born.
  • perfluoroalkanesulfonyl fluoride is obtained by the Simons method (in anhydrous hydrogen fluoride in the presence of sodium fluoride, at a temperature of 10 to 17 ° C, on a nickel anode with sulfur).
  • Simons method in anhydrous hydrogen fluoride in the presence of sodium fluoride, at a temperature of 10 to 17 ° C, on a nickel anode with sulfur.
  • Is a method of electrochemically fluorinating halogenated hydrocarbon-alkanesulfonyl chlorides containing, with a yield of 79-85%, B rice, Trott, U.S. Pat. No. 8, 1954; ⁇ ; Gramstad, R. N. Haszeldine, J. of Chem. Soc. London, 1957, P. 2640-26-45) It is manufactured by
  • the productivity of electrolytic cells is not always constant. That is, it increases during the early stages of electrolysis, then stabilizes for a short period of time, and then decreases rapidly due to anode corrosion and the deposition of resinous products on the anode. Therefore, the above yield of 79-85% is not always constant throughout the process.
  • the formation of large amounts of by-products also reduces the efficiency of fluorine and power utilization and makes it difficult to separate the desired product, which mixes with hydrogen fluoride (H F). Separation from HF is a difficult task in itself, but the target product cannot be subsequently separated by any method other than rectification.
  • the reaction between an alkane sulfonyl fluoride having a hydrocarbon group and a fluorine gas is used.
  • a method for obtaining a fluoroalkanesulfonyl fluoride is known (Kanto Denka Kogyo Co., Ltd., Japanese Patent Application Laid-Open No. 2003-206272), but in this method, a part of a hydrocarbon group is The yield of PFASF in which all hydrogen atoms have been replaced by fluorine atoms is low because many hydrofluoroalkanesulfoninolefluorides in which all hydrogen atoms have been replaced by fluorine atoms are by-produced (1 2%). Disclosure of the invention
  • the present invention provides, for example, the following methods [1] to [5] in order to solve the above problems.
  • R f - CHF - S 0 2 F (1) ( In the formula, represents a CF 3 or C 2 F 5)
  • R f -CF 2 -SO s F (2) (in the above formula, R f represents the same as defined above)
  • perfluoroolefin of the kind required as a raw material compound
  • the temperature is 35 to 85 ° C, preferably 45 to 85 ° C.
  • Monohydroperfluoroalkanesulfonylfluoride obtained by hydrolyzing perfluoroalkanesultone (PFAS) formed by reacting with sulfuric anhydride at 65 ° C for a reaction time of 12 to 32 hours.
  • PFAS perfluoroalkanesultone
  • MH PFASF is fluorinated by reacting with fluorine or a gas containing fluorine at a temperature of 0 to 30 ° C, preferably 20 to 30 ° C, whereby the perfluoroalkanesulfonyl is obtained.
  • Fluoride can be obtained.
  • Rf-CF CF 2 S0 Rf-CF-CF 2 Rf-CFH-S0. F ⁇ Rf-CF 2 -S0 2 F
  • R f represents the same as defined above.
  • the temperature is set based on the physicochemical constants of the perfluoroalkane sultone to be hydrolyzed, i.e. the boiling point of the perfluoroalkane sultone, plus 33 ° C, but this is determined. It is not an important parameter.
  • Alkanesulfonylfluora The fluorination process, which uses elemental fluorine to replace the last hydrogen atom in the sulfide, has never been performed before and to our knowledge has not been published in the literature. This process can produce up to 87.5% of the desired product in the above temperature range (0-30 ° C) of the elemental fluorination stage without forming significant decomposition fluorination products. Work in yield.
  • the mixture formed as a result of the fluorination is also washed with an aqueous solution of Al2O3 to remove the hydrogen fluoride formed, dried over zeolite or siliceous gel and, if necessary, rectified.
  • a solvent is not particularly required, but an inert solvent may be used in the present reaction.
  • MH PFESF monohydroperfluoroethanesulfonyl fluoride
  • Example 1 the various conditions were changed as shown in Table 1 as Example 2 and Example 3, and the starting materials were perfluoroethyl and perfluorobutene, respectively, and the monohydric acid was used, respectively.
  • Fluorometansulfonylfluoride (MH P FMS F) and monohydroperf / leo mouth propane snorehoninolehus leoride (MH PFPSF) were synthesized. Table 1 also shows the yields of the obtained products.
  • MH PFESF Place 170 g of MH PFESF in a 0.2 liter steel bubbler (steel grade 12 x 18H10T), heat to 40 ° C, and nitrogen 5 liters per hour Supply at the speed of In this case, the ratio (molar ratio) of MH PF ES F to nitrogen is 1: 3.
  • a gas mixture of nitrogen and MHPFESF is supplied to a steel reactor (steel type 12 X 18H10T, length 1800 mm, diameter 45 mm) heated to 30 ° C. Fluorine gas is supplied to the same reactor so that the molar ratio of MHPFESF to fluorine is 1: 0,95.
  • the reaction product is passed through a 5 wt% 0.1 aqueous solution, dried over silica gel, and collected in a collector at a temperature of ⁇ 78 ° C. or lower. 16.3 g of perphnoleno-mouth ethanes-norefonyl funoreolide (PFESF) is obtained. The yield of the desired product was 87.5%.
  • PFESF perphnoleno-mouth ethanes-norefonyl funoreolide
  • This type of fluorination was performed in a 2.5 liter capacity steel autoclave (grade 12 X 18 H10 T). 18.5 g of MH PFESF was charged into the autoclave, and fluorine gas was supplied at a temperature of 30 ° C. so that the molar ratio of MH PFESF to fluorine was 1: 1.036. After holding for 24 hours, neutralize with a 5% by weight aqueous solution of 1011 and dry with silica gel. 17.7 grams of PFESF were obtained, corresponding to a yield of 87.2%.
  • Example 4 flow method
  • Example 5 static method
  • the synthesis was carried out by changing the raw materials, the reaction temperature, the molar ratio of the raw materials to fluorine, and the reaction system as shown in Table 2.
  • Table 2 also shows the yields of the obtained products.
  • the production method of the PFASF of the present invention guarantees a high yield of the desired product using standard production techniques and available raw materials. This gives the possibility of realizing this under industrial conditions.
  • This method unlike electrochemical fluorination, guarantees time stability of the process and a significant reduction in power consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for producing a perfluoroalkanesulfonyl fluoride represented by the general formula: Rf-CF2-SO2F (wherein Rf represents F, CF3 or C2F5) is characterized in that a monohydroperfluoroalkanesulfonyl fluoride represented by the general formula: Rf-CHF-SO2F (wherein Rf is as defined above) is reacted with fluorine or a gas containing fluorine.

Description

明 細 書 パーフルォロ アルカ ンスルホニノレフルォライ ドの製造方法  Description Method for producing perfluoroalkane sulfoninolefluoride
技術分野 Technical field
本発明はパーフルォロアルカ ンスルホニルフルオラィ ドの製造方 法に関する。 本発明は、 特に、 パーフルォロ アルカ ンスルホン酸お よびその塩類の合成における中間化合物と して ( S . B e n e f i c e — M a l o u e t , H. B l a n c o u e t a 1 . , J . o f F l u o r i n e C h e m i s t r y , 3 1 ( 1 9 8 6 ) , 3 1 9. 3 3 2 ) 、 また、 パーフノレオロ アルカ ンスルホニルイ ミ ドおよびその塩類の合成における原料と して (米国特許第 5 0 7 2 0 4 0号、 1 9 9 1年 1 2月 1 0 日) 、 また、 高いエッチング速度 を有するク リーニングガスの成分と して使用されている、 各種パー フノレオロアノレカ ンスノレホニノレフスレオライ ド (P F A S F) 、 すなわ ち、 ト リ フノレオロ メ タ ンスノレホニノレフノレオライ ド、 ペンタフノレォロ エタンスノレホニルフルオラィ ドおよびへプタフルォロプロノくンスル ホニルフルオラィ ドの製造法に関する。  The present invention relates to a method for producing perfluoroalkanesulfonyl fluoride. In particular, the present invention relates to an intermediate compound in the synthesis of perfluoroalkanesulfonic acid and salts thereof (S. Benefice — Malouet, H.Blancoueta 1., J. of Fluorine Chemistry, 31 (1) 986), 319.332), and as a raw material in the synthesis of perphnoleoloalkanesulfonylimides and salts thereof (U.S. Pat. No. 5,072,040, 1991). (Feb. 10) Also, various kinds of perfluoro-anolecancer-norehoninorefureo-leo-lide (PFASF), which is used as a component of a cleaning gas having a high etching rate, that is, Tri-Fonoleolo-metanosulfonolefnoleolide, pentaphnoreolo-ethanesnolefonylfluoride, and heptafluoropronosulfonylfluoride
背景技術 Background art
溶媒内において、 フッ化セシゥムの存在下、 温度 1 1 0 °Cで 6 0 時間、 必要とされる種類のォレフィ ンと S 02 F2 を相互作用させ る こ とによって、 ペンタ フノレォロエタ ンスノレホニノレフノレオライ ドぉ よびヘプタフルォロイソプロパンスルホニルフルオラィ ドを製造す る方法は知られている (米国特許第 3 5 4 2 8 6 4号、 1 9 7 0年 1 1月 2 4 日) 。 この方法は、 設備構成が複雑であり、 かつ高価な フッ化セシウムを使用する上に、 有毒かつ再利用困難な廃棄物を発 生するため、 それ以後の発展は見られなかった。 Pentaphthalene ethane phenol is obtained by interacting the required type of olefin with S 0 2 F 2 in a solvent at a temperature of 110 ° C for 60 hours in the presence of cesium fluoride. Methods for producing ninolefnoreolide and heptafluoroisopropanesulfonylfluoride are known (US Patent No. 3,542,864, January 1970, January 24). Day) . This method uses complex cesium fluoride and expensive equipment, and generates toxic and difficult-to-reuse waste. No further development was seen since it was born.
工業分野においては、 パーフルォロアルカンスルホニルフルオラ ィ ドはサイモンス法 (無水フッ化水素中において、 フッ化ナト リ ウ ムの存在下、 温度 1 0〜 1 7 °Cでニッケル陽極上において硫黄を含 むハロゲン化炭化水素一アルカンスルホニルク ロライ ドを電気化学 的にフッ素化する方法であり、 収率は 7 9〜 8 5 %、 B r i c e , T r o t t , 米国特許第 2 7 3 2 3 9 8号、 1 9 5 4年 ; Τ . G r a m s t a d , R . N. H a s z e l d i n e , J . o f C h e m . S o c . L o n d o n , 1 9 5 7 , P . 2 6 4 0 - 2 6 4 5 ) によつて製造されている。  In the industrial field, perfluoroalkanesulfonyl fluoride is obtained by the Simons method (in anhydrous hydrogen fluoride in the presence of sodium fluoride, at a temperature of 10 to 17 ° C, on a nickel anode with sulfur). Is a method of electrochemically fluorinating halogenated hydrocarbon-alkanesulfonyl chlorides containing, with a yield of 79-85%, B rice, Trott, U.S. Pat. No. 8, 1954; Τ; Gramstad, R. N. Haszeldine, J. of Chem. Soc. London, 1957, P. 2640-26-45) It is manufactured by
しかし、 電解槽の生産性は常に一定ではない。 すなわち、 それは 電解初期には増大し、 その後短い期間安定化した後、 陽極の腐食や 陽極上への樹脂状生成物の付着によつて急速に低下する。 従って、 上記の 7 9〜 8 5 %という収率はプロセス全体にわたって一定とい う訳ではない。 大量の副生成物が形成されることによつてもフッ素 と電力の利用効率は低下し、 かつ目的生成物の分離が困難になり、 さらにそれがフッ化水素 (H F ) と混合する。 H Fからの分離はそ れ自体が困難な課題であるが、 その後で目的生成物は精留以外の方 法では分離することができない。 別の原料 (アルキルスルホニルァ ルキルエーテルまたはアルキルスルホニルアルキルアミ ド) を使用 することによって電流およびフッ素の効率を増大させよ う とする試 みがなされたが、 この場合でもプロセスの不安定性と樹脂形成は解 消することができず、 また原料の入手には困難が伴う (H. A. V 0 g e 1 , J . C . H a n s e n , 米国特許第 5 4 8 6 2 7 1号、 1 9 9 4年) 。  However, the productivity of electrolytic cells is not always constant. That is, it increases during the early stages of electrolysis, then stabilizes for a short period of time, and then decreases rapidly due to anode corrosion and the deposition of resinous products on the anode. Therefore, the above yield of 79-85% is not always constant throughout the process. The formation of large amounts of by-products also reduces the efficiency of fluorine and power utilization and makes it difficult to separate the desired product, which mixes with hydrogen fluoride (H F). Separation from HF is a difficult task in itself, but the target product cannot be subsequently separated by any method other than rectification. Attempts have been made to increase current and fluorine efficiency by using alternative materials (alkylsulfonylalkyl ethers or alkylsulfonylalkyl amides), but process instability and resin formation still occur. Cannot be canceled, and it is difficult to obtain raw materials (HA V0ge1, J.C. Hansen, US Pat. No. 5,486,271, 1994). .
電解法によるフッ素化以外の製造法と しては、 炭化水素基を持つ アルカンスルホニルフルオラィ ドとフッ素ガスの反応によ り、 パー フルォロアルカンスルホニルフルオラィ ドを得る方法が知られてい る (関東電化工業株式会社、 特開 2 0 0 3— 2 0 6 2 7 2 ) が、 こ の方法では、 炭化水素基の一部の水素原子がフッ素原子に置換され た、 ハイ ドロフルォロアルカンスルホニノレフルォライ ドが多く副生 するために、 全ての水素原子がフッ素原子に置換された P F A S F の収率が低い ( 1 2 %) 。 発明の開示 As a production method other than the fluorination by the electrolytic method, the reaction between an alkane sulfonyl fluoride having a hydrocarbon group and a fluorine gas is used. A method for obtaining a fluoroalkanesulfonyl fluoride is known (Kanto Denka Kogyo Co., Ltd., Japanese Patent Application Laid-Open No. 2003-206272), but in this method, a part of a hydrocarbon group is The yield of PFASF in which all hydrogen atoms have been replaced by fluorine atoms is low because many hydrofluoroalkanesulfoninolefluorides in which all hydrogen atoms have been replaced by fluorine atoms are by-produced (1 2%). Disclosure of the invention
本発明の課題は、 高い収率で目的生成物を得るために、 商業的に 入手可能な工業原料を使用して、 かつ廃棄物の少ない標準的な生産 技術によ り、 電気化学的方法に代わる P F A S Fの製造方法を開発 することである。  It is an object of the present invention to provide an electrochemical process using commercially available industrial raw materials and a low waste standard production technique in order to obtain the desired products in high yields. The development of alternative PFASF manufacturing methods.
本発明は、 上記課題を解決するため、 例えば、 下記 〔 1〕 〜 〔 5 〕 の方法を提供する。  The present invention provides, for example, the following methods [1] to [5] in order to solve the above problems.
〔 1〕 下記一般式 ( 1 ) :  [1] The following general formula (1):
R f - CHF - S 02 F ( 1 ) (上式中、 は 、 C F3 または C2 F 5 を表す) R f - CHF - S 0 2 F (1) ( In the formula, represents a CF 3 or C 2 F 5)
で表されるモノ ヒ ドロパーフノレオ口アル力ンスルホニルフルオラィ ドを、 フッ素またはフッ素を含むガスと反応させることを特徴とす る、 下記一般式 ( 2 ) : Characterized by reacting a monohydroperphnoleophthalic acid sulfonyl fluoride represented by the formula with fluorine or a gas containing fluorine, the following general formula (2):
R f - C F2 - S Os F ( 2 ) (上式中、 R f は前記規定に同一ものを表す) R f -CF 2 -SO s F (2) (in the above formula, R f represents the same as defined above)
で表されるパーフルォロアルカンスルホニルフルオラィ ドの製造方 法。 A method for producing perfluoroalkanesulfonyl fluoride represented by the formula:
〔 2〕 一般式 ( 1 ) で表される化合物とフッ素またはフッ素を 含むガスとの反応が、 温度 0〜 3 0 °Cで行われることを特徴とする 上記 〔 1〕 に記載の方法。 〔 3〕 一般式 ( 1 ) で表される化合物が、 パーフルォロアルカ ンスル ト ンの加水分解によって得られることを特徴とする上記 〔 1 〕 に記載の方法。 [2] The method according to [1], wherein the reaction between the compound represented by the general formula (1) and fluorine or a gas containing fluorine is performed at a temperature of 0 to 30 ° C. [3] The method of the above-mentioned [1], wherein the compound represented by the general formula (1) is obtained by hydrolysis of perfluoroalkane sultone.
〔 4〕 パーフノレオロアノレカンスノレ ト ンが、 パ一フルォロォレフ インと無水硫酸との反応によって得られることを特徴とする上記 〔 3〕 に記載の方法。  [4] The method of the above-mentioned [3], wherein the perfunoleoloanolecanthoretone is obtained by reacting perfluoroolein with sulfuric anhydride.
〔 5〕 パーフルォロォレフイ ンと無水硫酸との反応が、 温度 4 5〜 8 5 °Cで行われることを特徴とする上記 〔 4〕 に記載の方法。  [5] The method according to [4], wherein the reaction between perfluoroolefin and sulfuric anhydride is carried out at a temperature of 45 to 85 ° C.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の方法においては、 例えば、 原料化合物と して必要とされ る種類のパーフルォロォレフイ ン (P F O) を使用し、 これを温度 3 5〜 8 5 °C、 好ましく は 4 5〜 6 5 °Cで、 反応時間 1 2〜 3 2時 間の間、 無水硫酸と反応させて生成したパーフルォロアルカンスル トン (P F A S ) を加水分解して得られたモノ ヒ ドロパーフルォロ アルカンスルホニルフルオラィ ド (MH P F A S F) を、 温度 0〜 3 0 °C、 好ましくは 2 0〜 3 0 °Cで、 フッ素またはフッ素を含むガ スと反応させることによってフッ素化し、 これによつてパーフルォ ロアルカンスルホニルフルオラィ ドを得ることができる。  In the method of the present invention, for example, perfluoroolefin (PFO) of the kind required as a raw material compound is used, and the temperature is 35 to 85 ° C, preferably 45 to 85 ° C. Monohydroperfluoroalkanesulfonylfluoride obtained by hydrolyzing perfluoroalkanesultone (PFAS) formed by reacting with sulfuric anhydride at 65 ° C for a reaction time of 12 to 32 hours. (MH PFASF) is fluorinated by reacting with fluorine or a gas containing fluorine at a temperature of 0 to 30 ° C, preferably 20 to 30 ° C, whereby the perfluoroalkanesulfonyl is obtained. Fluoride can be obtained.
このプロセスは下記のフローによって説明される。  This process is illustrated by the following flow.
Rf-CF=CF2 S0 Rf-CF- CF2 Rf - CFH- S0。F → Rf - CF2- S02F Rf-CF = CF 2 S0 Rf-CF-CF 2 Rf-CFH-S0. F → Rf-CF 2 -S0 2 F
I I  I I
02S— 0 0 2 S— 0
こ こで、 R f は前記規定に同一のものを表す。  Here, R f represents the same as defined above.
加水分解を行うにあたって、 温度は加水分解されるパーフルォロ アル力ンスル ト ンの物理化学定数に基づいて、 すなわち、 パーフル ォロアルカンスルト ンの沸騰点プラス 3 3 °Cに設定するが、 これは 決定的に重要なパラメータではない。 アルカンスルホニルフルオラ ィ ド中の最後の水素原子を置換するために、 フッ素元素を利用する フッ素化プロセスは、 以前には行われたことがなく、 我々の知る限 りでは文献にも公開されていない。 このプロセスは、 フッ素元素に よるフッ素化段階の上記の温度範囲 ( 0〜 3 0 °C) において、 著し い分解フッ素化生成物を形成することなく、 最大 8 7. 5 %の目的 生成物収率で進行する。 In carrying out the hydrolysis, the temperature is set based on the physicochemical constants of the perfluoroalkane sultone to be hydrolyzed, i.e. the boiling point of the perfluoroalkane sultone, plus 33 ° C, but this is determined. It is not an important parameter. Alkanesulfonylfluora The fluorination process, which uses elemental fluorine to replace the last hydrogen atom in the sulfide, has never been performed before and to our knowledge has not been published in the literature. This process can produce up to 87.5% of the desired product in the above temperature range (0-30 ° C) of the elemental fluorination stage without forming significant decomposition fluorination products. Work in yield.
フッ素化の結果生成された混合物は、 同じく生成したフッ化水素 を除去するためにアル力 リ水溶液で洗浄し、 ゼォライ トまたはシリ 力ゲルで乾燥し、 必要な場合には精留を行う。  The mixture formed as a result of the fluorination is also washed with an aqueous solution of Al2O3 to remove the hydrogen fluoride formed, dried over zeolite or siliceous gel and, if necessary, rectified.
使用される全ての試薬は入手可能な工業製品であり、 加水分解の 段階における副生成物は、 各種化学物質の製造に利用することがで きる。  All reagents used are industrial products available and by-products from the hydrolysis stage can be used in the production of various chemicals.
なお、 本発明に係る反応では、 溶媒は特に必要ないが、 本反応に 不活性な溶媒を使用してもよい。  In the reaction according to the present invention, a solvent is not particularly required, but an inert solvent may be used in the present reaction.
以下に実施例を挙げて本発明をさらに説明する。  Hereinafter, the present invention will be further described with reference to examples.
実施例 1  Example 1
パーフルォロ プロパンスノレトンの合成  Synthesis of perfluoro propane snoreton
加熱用ジャケッ トおよび試薬投入用の接続管を備えた容量 2 リ ッ トルの鋼製反応器 (鋼種 1 2 X 1 8 H 1 0 T) に、 4 9 2グラム ( 3. 2 8モル) のパーフルォロプロパンと 2 5 6 グラム ( 3. 2モ ル) の S O3 を入れる。 反応器を 8 5 °Cまで加熱して、 この状態で 1 2時間保持する。 室温まで冷却した後、 過剰のパーフルォロプロ パンを除去する。 6 9 3グラム ( 3モル) のパーフルォロプロパン スノレ ト ンが得られる。 収率は 9 1. 9 %。 Into a 2 liter capacity steel reactor (steel grade 12 × 18H10T) with heating jacket and connecting pipe for reagent introduction, 4992 grams (3.28 moles) par full O b propane and add SO 3 2 5 6 grams (3.2 molar). The reactor is heated to 85 ° C and kept in this state for 12 hours. After cooling to room temperature, the excess perfluoropropane is removed. 693 grams (3 moles) of perfluoropropane snoretone are obtained. The yield is 91.9%.
モノ ヒ ドロパーフスレオ口エタンスノレホニノレフノレオライ ドの合成 撹拌器、 還流冷却器および滴下漏斗を備えた容量 2 リ ッ トルのフ ラスコに 5 5 0グラムの水 ( 1 0倍過剰量に相当) を入れ、 温度 0 〜十 1 °Cでパーフルォロプロパンスル ト ン 6 9 3 gを強く撹拌しな がら徐々に注入する。 加水分解反応の終了はガス発生の停止によつ て判断する。 必要とする温度レベルを維持するためには、 例えば、 フラスコを冷媒槽に入れたり、 または冷却蛇管内に冷媒を供給して 反応物を冷却するといった、 いずれも既知の任意の方法を用いてよ い。 反応が終わると 2つの層が形成されるので、 モノ ヒ ドロパーフ ルォロエタンスルホニルフルオラィ ド (MH P F E S F ) を含有す る下層を分離し、 これをゼオライ トで乾燥する。 これによ り、 乾燥 した MH P F E S Fが 4 8 8グラム ( 2. 6 5モル) 得られるが、 これは収率 8 8 %に相当する。 Synthesis of mono-hydroperfusolean ethanes-norefoninolephnoleolide 550 grams of water (equivalent to a 10-fold excess) in a 2-liter flask equipped with a stirrer, reflux condenser and dropping funnel Put the temperature 0 At 十 11 ° C., slowly inject 693 g of perfluoropropane sultone while stirring vigorously. The end of the hydrolysis reaction is determined by stopping the gas generation. To maintain the required temperature level, any known method can be used, for example, placing the flask in a coolant bath or supplying coolant in a cooling tube to cool the reactants. No. At the end of the reaction, two layers are formed. The lower layer containing monohydroperfluoroethanesulfonyl fluoride (MH PFESF) is separated and dried over zeolite. This gives 48.8 g (2.65 mol) of dried MH PFESF, which corresponds to a yield of 88%.
実施例 2および 3  Examples 2 and 3
実施例 1において、 各種条件を、 表 1 に実施例 2および実施例 3 と して示すように変更し、 かつそれぞれ出発原料をパーフルォロェ チ ンおよびパーフルォロブテンと して、 それぞれモノ ヒ ドロパー フルォロ メ タ ンスルホニルフルオラィ ド (MH P FMS F) および モノ ヒ ドロパーフ /レオ口 プロパンスノレホニノレフスレオライ ド (MH P F P S F) の合成を行った。 得られた生成物の収率を同じく表 1 に 示す。 In Example 1, the various conditions were changed as shown in Table 1 as Example 2 and Example 3, and the starting materials were perfluoroethyl and perfluorobutene, respectively, and the monohydric acid was used, respectively. Fluorometansulfonylfluoride (MH P FMS F) and monohydroperf / leo mouth propane snorehoninolehus leoride (MH PFPSF) were synthesized. Table 1 also shows the yields of the obtained products.
表 1 パ -フルォロアルカンスルトンの合成 パーフルォロアルカンスルトンの加水分解 原料 生成さ 原料 無水 生成さ 収率 合成パラメ一 原料 生成された 原料 水の 生成され 温度 収率 PF0の れた PF0の 硫酸 れた (%) タ PFAS MHPFASFの PFAS 員里 た MHPFASF (。 (%) 施 c) Table 1 Synthesis of perfluoroalkane sultone Hydrolysis of perfluoroalkane sultone Raw material Produced raw material Anhydrous generated Yield Synthetic parameter Raw material Produced raw material Water generated temperature Yield PF0 Sulfuric acid (%) PFAS MHPFASF PFAS member MHPFASF (. (%) Application c)
名称 PFASの 員里 の質 PFASの 温度 時間 の名称 名称 の質量 (g)  Name PFAS member quality PFAS temperature Time name Name mass (g)
 An example
名称 、 g 量、 g 員里、 g (°C) (hr) (g) (g)  Name, g amount, g member, g (° C) (hr) (g) (g)
Λ. ~ パーフ パーフ モノヒ ドロ  Λ. ~ Perf Perf Monohydro
フル ノレ才ロ 252 202 430 94. 8 60 22 ノレ才 p パーフルォ 430 430 320 0〜+1 95. 0 ォ口 ェタン ェタン 口メタンス  252 202 430 94.8 60 22 No.p Perflu 430 430 320 0〜 + 1 95.0 Met Methanes
2 ェチ スノレト スルト ルホニルフ  2ch Snoret Surt Ruhonylf
- I レン ン ン ルォライ ド  -I Ren Lou Ride
(MHPFMSF)  (MHPFMSF)
パー パーフ パーフ モノヒ ドロ  Par Perf Perf Monohydro
フル ノレォロ 325 130 445 97. 8 45 32 ノレ才口 パーフルォ 445 290 302 0—+1 81. 0 ォ口 ブタン ブタン ロプロノ ン  Hulu Norero 325 130 445 97.8 45 32 Nore Taiki Perfuru 445 290 302 0— + 1 81.0 o Butane Butane Loprononone
3 ブテ スルト スノレト スノレホニノレ  3 Bute Surt Sunoret Sunorehoninore
ン ン ン フルオラィ  NN Fluor
K  K
(MHPFPSF) (MHPFPSF)
実施例 4 Example 4
フ ロー方式による MH P F E S Fのフッ素化  Fluorination of MH PF ESF by flow method
容量 0. 2 リ ツ トルの鋼製バブラ一 (鋼種 1 2 X 1 8 H 1 0 T) に 1 7 0 gの MH P F E S Fを入れ、 4 0 °Cまで加熱し、 窒素を 5 リ ッ トル毎時の速度で供給する。 この場合、 MH P F E S F と窒素 の比率 (モル比) を 1 : 3 とする。 窒素と MH P F E S Fの混合気 体を、 3 0 °Cまで加熱した鋼製反応器 (鋼種 1 2 X 1 8 H 1 0 T、 長さ 1 8 0 0 mm、 直径 4 5 mm) に供給する。 この同じ反応器に フッ素ガスを、 MH P F E S Fとフッ素のモル比率が 1 : 0, 9 5 となるように供給する。 反応生成物を 5重量% 0!1水溶液に通し 、 シリカゲルで乾燥し、 温度— 7 8 °C以下の捕集器に収集する。 1 6 3. 3 gのパーフノレオ口エタンスノレホニルフノレオライ ド (P F E S F) が得られる。 目的生成物の収率は 8 7. 5 %であった。  Place 170 g of MH PFESF in a 0.2 liter steel bubbler (steel grade 12 x 18H10T), heat to 40 ° C, and nitrogen 5 liters per hour Supply at the speed of In this case, the ratio (molar ratio) of MH PF ES F to nitrogen is 1: 3. A gas mixture of nitrogen and MHPFESF is supplied to a steel reactor (steel type 12 X 18H10T, length 1800 mm, diameter 45 mm) heated to 30 ° C. Fluorine gas is supplied to the same reactor so that the molar ratio of MHPFESF to fluorine is 1: 0,95. The reaction product is passed through a 5 wt% 0.1 aqueous solution, dried over silica gel, and collected in a collector at a temperature of −78 ° C. or lower. 16.3 g of perphnoleno-mouth ethanes-norefonyl funoreolide (PFESF) is obtained. The yield of the desired product was 87.5%.
実施例 5  Example 5
静態方式による MH P F E S Fのフッ素化  Fluorination of MH PF ESF by static method
この方式のフッ素化は、 容量 2. 5 リ ッ トルの鋼製オー トク レー ブ (鋼種 1 2 X 1 8 H 1 0 T) 内で行われた。 このオートクレーブ に 1 8. 5 gの MH P F E S Fを投入し、 温度 3 0 °Cでフッ素ガス を、 MH P F E S F とフッ素のモル比率が 1 : 1 . 0 3 6 となるよ うに供給し、 この混合物を 2 4時間保持した後、 5重量%1 011水 溶液で中和し、 シリカゲルで乾燥する。 1 7. 7グラムの P F E S Fが得られ、 収率は 8 7. 2 %に相当する。  This type of fluorination was performed in a 2.5 liter capacity steel autoclave (grade 12 X 18 H10 T). 18.5 g of MH PFESF was charged into the autoclave, and fluorine gas was supplied at a temperature of 30 ° C. so that the molar ratio of MH PFESF to fluorine was 1: 1.036. After holding for 24 hours, neutralize with a 5% by weight aqueous solution of 1011 and dry with silica gel. 17.7 grams of PFESF were obtained, corresponding to a yield of 87.2%.
実施例 6〜 1 9  Examples 6 to 19
実施例 4 (フ ロー方式) または実施例 5 (静態方式) において、 原料、 反応温度、 原料とフッ素とのモル比および反応方式を表 2に 示すよ うに変更して合成を行った。 得られた生成物の収率を同じく 表 2に示す。 表 2 In Example 4 (flow method) or Example 5 (static method), the synthesis was carried out by changing the raw materials, the reaction temperature, the molar ratio of the raw materials to fluorine, and the reaction system as shown in Table 2. Table 2 also shows the yields of the obtained products. Table 2
Figure imgf000011_0001
Figure imgf000011_0001
産業上の利用可能性 Industrial applicability
上記実施例の結果からもわかるように、 本発明の P F A S Fの製 造法は、 標準的な生産技術手法と入手可能な原料を使用して、 高い 目的生成物の収率を保証するものであり、 これを工業的条件で実現 する可能性を与えるものである。 この方法は、 電気化学的フッ素化 とは異なり、 工程の時間的安定性と電力消費の著しい削減を保証す るものである。  As can be seen from the results of the above examples, the production method of the PFASF of the present invention guarantees a high yield of the desired product using standard production techniques and available raw materials. This gives the possibility of realizing this under industrial conditions. This method, unlike electrochemical fluorination, guarantees time stability of the process and a significant reduction in power consumption.

Claims

請 求 の 範 囲 The scope of the claims
1. 下記一般式 ( 1 ) : 1. The following general formula (1):
R f - CH F - S O2 F ( 1 ) (上式中、 R f は F、 C F 3 または C 2 F 5 を表す) R f-CH F-SO 2 F (1) (where R f represents F, CF 3 or C 2 F 5 )
で表されるモノ ヒ ドロパーフノレオ口アル力ンスルホニルフルオラィ ドを、 フッ素またはフッ素を含むガスと反応させることを特徴とす る、 下記一般式 ( 2 ) : Characterized by reacting a monohydroperphnoleophthalic acid sulfonyl fluoride represented by the formula with fluorine or a gas containing fluorine, the following general formula (2):
R f - C F2 - S O2 F ( 2 ) (上式中、 R f は前記規定に同一のものを表す) R f - CF 2 - SO 2 F (2) ( In the above formula, R f is meanings identical to the normal)
で表されるパーフルォロアルカンスルホニルフルオラィ ドの製造方 法。 A method for producing perfluoroalkanesulfonyl fluoride represented by the formula:
2. —般式 ( 1 ) で表される化合物とフッ素またはフッ素を含む ガスとの反応が、 温度 0〜 3 0 °Cで行われることを特徴とする請求 項 1に記載の方法。  2. The method according to claim 1, wherein the reaction of the compound represented by the general formula (1) with fluorine or a gas containing fluorine is performed at a temperature of 0 to 30 ° C.
3. —般式 ( 1 ) で表される化合物が、 パーフルォロアルカンス ルトンの加水分解によって得られることを特徴とする請求項 1 に記 載の方法。  3. The method according to claim 1, wherein the compound represented by the general formula (1) is obtained by hydrolysis of perfluoroalkane sultone.
4. ノヽ0ーフノレオロアノレカンスノレト ンが、 ノヽ0ーフノレォロォレフイ ン と無水硫酸との反応によって得られることを特徴とする請求項 3に 記載の方法。 4. Nono 0 over unloading Leo lower Roh perlecan Sno Leto down A method according to claim 3, characterized in that it is obtained by the reaction of Nono 0 over unloading Reo Roo reflex Lee emissions and sulfuric anhydride.
5. パーフルォロォレフイ ンと無水硫酸との反応が、 温度 4 5〜 8 5 °Cで行われることを特徴とする請求項 4に記載の方法。  5. The method according to claim 4, wherein the reaction between perfluoroolefin and sulfuric anhydride is carried out at a temperature of 45 to 85 ° C.
PCT/JP2004/005905 2003-04-25 2004-04-23 Method for producing perfluoroalkanesulfonyl fluoride WO2004096759A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505882A JPWO2004096759A1 (en) 2003-04-25 2004-04-23 Method for producing perfluoroalkanesulfonyl fluoride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2003112421/04A RU2237659C1 (en) 2003-04-25 2003-04-25 Method for preparing perfluoroalkane sulfofluoride
RU2003112421 2003-04-25

Publications (1)

Publication Number Publication Date
WO2004096759A1 true WO2004096759A1 (en) 2004-11-11

Family

ID=33414381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005905 WO2004096759A1 (en) 2003-04-25 2004-04-23 Method for producing perfluoroalkanesulfonyl fluoride

Country Status (5)

Country Link
JP (1) JPWO2004096759A1 (en)
KR (1) KR20050112119A (en)
CN (1) CN1777579A (en)
RU (1) RU2237659C1 (en)
WO (1) WO2004096759A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111588A1 (en) * 2007-03-12 2008-09-18 Asahi Glass Company, Limited Method for producing difluoromethanebis(sulfonylfluoride)
WO2009060815A1 (en) 2007-11-06 2009-05-14 Central Glass Company, Limited Process for preparation of trifluoromethanesulfonyl fluoride
JP2010095470A (en) * 2008-10-16 2010-04-30 Asahi Glass Co Ltd Method for producing fluorine-containing compound having fluorosulfonyl group

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609879B2 (en) * 2009-09-04 2014-10-22 旭硝子株式会社 Method for producing bissulfonylimide ammonium salt, bissulfonylimide and bissulfonylimide lithium salt
FR3008093B1 (en) * 2013-07-04 2015-12-11 Rhodia Operations PROCESS FOR FLUORINATION OF HALIDE COMPOUNDS OF SULFONYL
CN104387300B (en) * 2014-11-11 2015-09-23 中国船舶重工集团公司第七一八研究所 A kind of purification process of fluoroform sulfonic acid fluoride
CN107573267B (en) * 2017-10-19 2020-03-10 中国科学院上海有机化学研究所 Trifluoromethyl-containing alkyl sulfonyl fluoride compound, and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512455A (en) * 1997-02-18 2001-08-21 ミネソタ マイニング アンド マニュファクチャリング カンパニー Method for preparing β-sultone fluoride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512455A (en) * 1997-02-18 2001-08-21 ミネソタ マイニング アンド マニュファクチャリング カンパニー Method for preparing β-sultone fluoride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI M. ET AL: "Development of direct fluorination technology for application to materials for lithium battery", JOURNAL OF FLUORINE CHEMISTRY, vol. 120, no. 2, 1 April 2003 (2003-04-01), pages 105 - 110, XP004413658 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111588A1 (en) * 2007-03-12 2008-09-18 Asahi Glass Company, Limited Method for producing difluoromethanebis(sulfonylfluoride)
JP5158073B2 (en) * 2007-03-12 2013-03-06 旭硝子株式会社 Method for producing difluoromethane bis (sulfonyl fluoride)
WO2009060815A1 (en) 2007-11-06 2009-05-14 Central Glass Company, Limited Process for preparation of trifluoromethanesulfonyl fluoride
JP2010095470A (en) * 2008-10-16 2010-04-30 Asahi Glass Co Ltd Method for producing fluorine-containing compound having fluorosulfonyl group

Also Published As

Publication number Publication date
CN1777579A (en) 2006-05-24
RU2237659C1 (en) 2004-10-10
JPWO2004096759A1 (en) 2006-07-13
KR20050112119A (en) 2005-11-29

Similar Documents

Publication Publication Date Title
CN104755418B (en) It is used to prepare the method for the imide salts containing fluorosulfonyl group
KR101676054B1 (en) Processes for preparing poly(pentafluorosulfanyl)aromatic compounds
CN111498819A (en) Preparation of imides containing fluorosulfonyl groups
JP5169880B2 (en) Method for purifying trifluoromethanesulfonyl fluoride
CN105722820A (en) Synthesis of fluorotrifluoromethylsulfonyl imide
JP2014196303A (en) Method for producing fluorine-containing n-alkylsulfonylimide compound and method for producing ionic compound
JP5146149B2 (en) Method for purifying trifluoromethanesulfonyl fluoride
KR101431926B1 (en) Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof
WO2004096759A1 (en) Method for producing perfluoroalkanesulfonyl fluoride
TWI636034B (en) Method for producing fluorinated methane
JP6779265B2 (en) Methods for Fluorinating Sulfonyl Halide Compounds
EP2157078B1 (en) Fluorine compound and fluorinating agent comprising the compound
JP2010059071A (en) Method for purifying trifluoromethanesulfonyl fluoride
WO2011148958A1 (en) Process for preparation of fluorine-containing imide compounds
JPS62228492A (en) Prevention of corrosion by mixture of hydrogen fluoride and antimony pentahalide
JP5158073B2 (en) Method for producing difluoromethane bis (sulfonyl fluoride)
JP2008255100A (en) Method for producing trifluoromethanesulfonyl fluoride
JP5558067B2 (en) Method for producing perfluorosulfonic acid having an ether structure and derivatives thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivatives thereof
WO2006077727A1 (en) Method for producing octafluoro-1,4-pentadiene
JPWO2005085187A1 (en) Method for producing fluorine compound
JP4161229B2 (en) Process for producing (haloalkyl) dibenzoonium salt and process for producing hydrogen sulfate
RU2813596C1 (en) Method of obtaining 2,3,3,3-tetrafluoropropylene
WO2012039025A1 (en) Process for producing perfluoroalkylsulfonamide
JP3625028B2 (en) Method for producing fluoroacetone
JP2008127318A (en) Method for producing fluorine-containing fluorosulfonylalkyl vinyl ether

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505882

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057018435

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048110523

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057018435

Country of ref document: KR

122 Ep: pct application non-entry in european phase