WO2004095494A1 - Electron-emitting material, its producing method, electron-emitting device using same, and image drawing device - Google Patents

Electron-emitting material, its producing method, electron-emitting device using same, and image drawing device Download PDF

Info

Publication number
WO2004095494A1
WO2004095494A1 PCT/JP2004/005703 JP2004005703W WO2004095494A1 WO 2004095494 A1 WO2004095494 A1 WO 2004095494A1 JP 2004005703 W JP2004005703 W JP 2004005703W WO 2004095494 A1 WO2004095494 A1 WO 2004095494A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
electron
sheet material
graphite
electron emission
Prior art date
Application number
PCT/JP2004/005703
Other languages
French (fr)
Japanese (ja)
Inventor
Motoshi Shibata
Masahiro Deguchi
Akira Taomoto
Toyokazu Ozaki
Original Assignee
Matsushita Electric Industrial Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co. Ltd. filed Critical Matsushita Electric Industrial Co. Ltd.
Publication of WO2004095494A1 publication Critical patent/WO2004095494A1/en
Priority to US11/047,656 priority Critical patent/US7736542B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes

Definitions

  • Electron emitting material its production and its use, electron leakage element and U-shaped device
  • the present invention relates to a sculpture-emitting material used for a display, a mf, an emitter, a lamp, an electric device, and the like, and a method for producing the same. Further, the present invention relates to an electron element and a surface image drawing apparatus using a light emitting material.
  • Japanese Patent Application Laid-Open No. 2000-178016 discloses that an artificial graphite sheet can be obtained by increasing a polymer sheet in two stages.
  • This graphite sheet is a carbon material (excellent electrical conductivity, conductivity, corrosion resistance, excellent flexibility, and a polymer sheet can be used to form a large sheet easily. It has ⁇ . List of other documents related to the present invention
  • Japanese Patent Application Laid-Open No. H10-269929 This publication describes that the emitter composition consisting of a photoresist ( ⁇ , indicated by reference numeral 21 on the front page of the publication) includes argon, phosphorus, boron, and carbon. There is disclosed a method of manufacturing an electron emission emitter formed by illuminating some of the ions.
  • Japanese Patent Laid-Open Publication No. 2003-16908 This publication discloses an electron having an electron-emitting layer made of graphite or the like (indicated by reference numeral 5 in FIGS. 1 and 4 (e) of the publication). An emissive element is disclosed.
  • Japanese Patent Application Laid-Open No. H10-188778 discloses a carbon body formed with male fine particles (reference numeral 21 in FIGS. 1 and 2 of the publication) as cores (reference numeral same as above). 22) An electron formed by arranging a plurality of electron emitters (5) terminated by a low work fee (23), such as lithium, on the (3) An emissive element is disclosed. JP-A-11-40044 can be mentioned as a publication related to this publication.
  • JP 2001-288625 ⁇ A This publication includes a graphene sheet having a truncated ice cream cone shape (reference numeral 12 in FIG. 2 of the publication). ), A graphitic nano-fino material having a circular separation and the like stacked through the layer is disclosed. It is also disclosed that this graphite nanofino material is used as an electron emission source.
  • Japanese Unexamined Patent Publication No. 2-174059 In this publication, a lithium ion-containing graphite compound thin film was dedoped by this lithium ion force and a defect was left in a portion where the lithium ion was present. Lithium containing graphite thin film crystallized as-is and doped lithium ions A solid-state positive electrode is disclosed.
  • Japanese Patent Application Laid-Open Publication No. 2000-3-17780669 Date of filing of Japanese patent application (Japanese Patent Application No. 2003-1131641)
  • This publication which was published after this date, includes a graphite layer (reference numeral 4003 in FIG. 4 of the same publication) that adsorbs impurities such as Cs and Ba with ions 3 ⁇ 4 ⁇ ⁇ 3 ⁇ 43 ⁇ 43 ⁇ 43 ⁇ 4, It is disclosed that a cooling is obtained by performing a force ration.
  • the graphite caused by the laser annealing shows that the connection in either direction between the planes and in the plane is not high (4 is also high.
  • the formation of the ⁇ J formed by the intercalation depends on the impurity species and the stage. MC by the order n m. n (m is 6 or 8 ⁇ T.) and order to be defined, the impurity concentration is made to exceed 3%.
  • the graphite sheet has excellent electrical conductivity, conductivity, and corrosion resistance of the carbon material, and can form a large-sized sheet having a uniform thickness, so that an electron-emitting portion such as a large-area display device can be formed. It is a material suitable for. However, since the surface does not have a structure with a curvature as small as a carbon nanotube on the surface, a large field emission start is required.
  • the work function is an important value in describing the release characteristics along with the size of m release start £.
  • the amount can be increased with a small 3 ⁇ 4 ⁇ change.
  • the magnitude of the work function is determined by the electronic state of the material that contributes to the emission. For this reason, even if a carbon material whose graphite is well defined and a structure having a curvature similar to that of a carbon nanotube is formed, performance exceeding that of a carbon nanotube cannot be obtained.
  • the present invention provides an electron emission material that has excellent electric conductivity, conductivity, and corrosion resistance of a carbon material, has a small field emission start and work function, and can display a large-area display device. Its main purpose is to:
  • the present invention provides the following electron-emitting sheet material, its manufacturing method, and
  • the present invention relates to a used electronic thigh element and an image drawing element.
  • An electron emission sheet comprising (102) and a graphite sheet (101) drawn on (102),
  • tilf self-graphite sheet (101) force It has a structure viewed as a graphenka layer consisting of multiple carbon hexagonal mesh planes.
  • each dalafen is arranged so that the c-axis direction of each dalafen is substantially perpendicular to the substrate (102) plane
  • the graphite sheet (101) is placed on ESt and (102) so that the c-axis direction of each graphene is substantially perpendicular to the IfifSSlg (102) plane.
  • Electron emission sheet material is Electron emission sheet material.
  • the concentration of the second element is 0.01 atom. /.
  • the second element is at least one element selected from the group consisting of Al-Li element and Al-earth element ⁇ S element.
  • the second element is 1) to 3) below;
  • the terrible graphite sheet (101) has a structure in which graphite composed of a plurality of carbon hexagonal mesh planes is laminated in layers.
  • Each dalaphen is stacked so that the c-axis direction of each graphene is substantially perpendicular to the ffffBSK (102) plane.
  • the graphite sheet (101) is laminated on the substrate (102) such that the c-axis direction of each graphene is substantially perpendicular to the filtS3 ⁇ 4t anti- (102) plane. So,
  • a method for producing an electron-emitting sheet material comprising a second element applying step of applying a second element other than carbon as an atom, molecule or cluster to a disgusting graphite sheet.
  • the key further comprises a step of further heat-treating the key Dalafite sheet.
  • the disgust second element application process a) ion implantation step of implanting at least one kind of atom and cluster ionized as a second element into a graphite sheet;
  • 3 ⁇ 43 ⁇ 4 having the following.
  • the 21.2 element providing step includes the following steps a) to c);
  • the polymer sheet is made of polyphenylene oxadiazole, polybenzothiazole, polybenzobisthiazole, polybenzoxazole, polybenzobisoxazolone, polythiazonole, polyamide, polyimide, polyamide.
  • a first heat treatment step in which the temperature is increased from the first tB3 ⁇ 4 in the gas at the first temperature and calcined at a temperature of 1000 ° C or more and less than 2500 ° C in the gas;
  • the concentration of the second element is not less than 0.005 atomic% and not more than 2 atomic%; Production of the electron emission sheet material described in 6
  • the thickness of the sheet is 10 ⁇ m or more and 1000 ⁇ m or less
  • the second element is at least one of an alkali metal element and an earth metal element.
  • the second element is at least one of nitrogen and old ⁇ 16 Of electron emission sheet material
  • the second element is at least one of the noble gas elements.
  • the second element is 1) to 3) below;
  • Item 17 Manufacturing of the electron-emitting sheet material according to item 16, which is a combination of two or three of the following.
  • An electron-emitting device comprising an electron-emitting sheet material, a conductive gate layer and one or more
  • the disgusting electron-emitting sheet material includes & (102) and a graphite sheet (101) laminated on ffl 3 ⁇ 43 ⁇ 4 (102),
  • Graphite sheet (101) Force It has a structure in which graphite consisting of a plurality of hexagonal carbon mesh layers is laminated in layers.
  • Each dalafen is stacked so that the c-axis direction of each dalafen is substantially perpendicular to the ffffSSS (102) plane.
  • the graphite sheet (101) is placed on the SS plate (102) so that the c-axis direction of each graphene is substantially perpendicular to the ⁇ 3 ⁇ 43 ⁇ 4 (102) plane,
  • the electron section and the electron leakage element are arranged such that the electrons emitted from the self-emitting electron emitting element cause the tilt self phosphor layer to emit light.
  • Phosphor light emitting device A phosphor light emitting device whose device is a device of ⁇ ⁇ 4 II ⁇ .
  • An anode part having a phosphor layer and a plurality of two-dimensionally arranged electrons
  • An image drawing apparatus including a 3 ⁇ 4 ⁇ element, and a tiilB node portion and an 3 ⁇ 4 element arranged so that electrons emitted from the 3 ⁇ 4lt element cause the phosphor layer to emit light.
  • a three-dimensional image element that controls the amount of phosphor emission based on the amount of electron emission from each of the plurality of electron-emitting elements.
  • FIG. 1 is a process cross-sectional view of an electron-emitting material according to a first embodiment of the present invention, an electron-emitting device manufactured therefrom, and an electronic device using the same.
  • FIG. 2 shows a measurement result of an emission current of the electron-emitting device according to the first embodiment of the present invention in response to an applied voltage of 1 KB.
  • FIG. 3 is a Fowler-Nordheim plot of the results shown in FIG.
  • FIG. 4 is a process cross-sectional view of an emission region in manufacturing and removing an electron emission material according to Difficult Example 3 of the present invention.
  • FIG. 5 is a process cross-sectional view of an electron-emitting material of Example 5 of the present invention and a sculpted emission region in a method for producing the same.
  • FIG. 6 is a diagram showing a crystal structure of graphite.
  • FIG. 7 is a schematic diagram showing a graph of a graph sheet.
  • FIG. 8 is a diagram showing a typical X-ray diffraction pattern of graphite.
  • FIG. 9 is a schematic diagram showing a layer structure of a conventional graphite sheet.
  • FIG. 10 is a cross-sectional view showing an example of an image forming apparatus in which a plurality of electron leakage elements are two-dimensionally arranged.
  • the electron emission sheet material of the present invention comprises: (102) (102) a graphite sheet (101) laminated thereon; (1) ⁇ Graphite sheet (101) has a structure in which it is laminated in a graphene force composed of a plurality of carbon hexagonal mesh planes,
  • Each graphene is aligned so that the c-axis direction of each dalafen is substantially perpendicular to the finest (102) plane.
  • the graphite sheet (101) is laminated on the front IES plate (102) so that the c-axis direction of each dalafen is substantially perpendicular to the (102) plane,
  • a Dalaphite sheet is a crystal sheet in which carbon atoms 606 constitute a hexagonal carbon plane, and a plane structure composed of a plurality of hexagonal carbon planes. means.
  • ⁇ S ⁇ f removal of the graphite sheet will be described in detail later.
  • ⁇ SIJ is used to (1) heat-treat a polymer sheet such as polyimide, and (2) graphite particles together with a polymer binder. ⁇ can be mentioned.
  • each of the graphite sheets (1) and (2) described above since the dalaphen is layered in a layer, the surface of the graphite sheet and the c-axis direction of each dalaphen are substantially perpendicular. In other words, each Dalaphen layer is laminated so that it is almost TO.
  • the graphite sheet manufactured by the manufacturing method of (a) and (b) is commercially available.
  • the above graphite sheet constitutes an electron emission region.
  • the above graphite sheet is laminated on a curtain.
  • (graphite sheet) is laminated on the above-mentioned sheet so that the c-axis direction of each dalafen constituting the graphite sheet is substantially perpendicular to the front IBS plate (102) plane. ing.
  • the two layers are laminated so that the fiber surface and each graphene layer become almost TO.
  • the thickness of the graphite sheet of the present invention is not limited, and it can be determined appropriately according to its use, use mode, and the like.
  • it is usually 10 m or more and 1000 ⁇ m or less, especially It is desirable that
  • the graphite sheet is desirably formed with irregularities on its surface. Separation of irregularities is suitable for the desired characteristics! I can decide. It is preferable that the graphite sheet has an uneven structure provided by the following manufacturing method. More specifically, 1) irregularities formed by implanting ionized atoms, molecules, or clusters into a graphite sheet; 2) formation by illuminating radicalized atoms, molecules, or clusters on a graphite sheet Or 3) It is desirable that an uneven structure formed by causing electrically neutral atoms, molecules or clusters to reach the graphite sheet is formed on the surface of the Dalafite sheet.
  • the sickle can be made from the material of the sickle.
  • glass ceramics (A 1 2 0 3, Z r O 2 oxide such as ceramics, non-oxide ceramics such as S i 3 N 4, BN) absolute ⁇ material such; low resistance silicon, metal ' It is also possible to use conductive materials such as alloys and depleted ⁇ ).
  • the thickness of the employment is not limited, and is generally 0.5 to 2 rnm.
  • the wisteria and the graphite sheet can be provided with or without a separate layer between them.
  • an adhesive layer, m lower layer, etc.
  • the view of the second element can be scaled from elements other than carbon depending on the desired sheet properties.
  • At least one of an alkali ⁇ S element and an alkaline earth element can be used as the second element.
  • at least one of Li, Na, K, Cs, Rb, Ca, Sr, and Ba can be used.
  • the alkali metal element and the alkaline earth metal element are chemically adsorbed or physically adsorbed on the interlayer or on the surface of Daraphite, so that the work function is reduced and electron emission can be started at a low level.
  • At least one of nitrogen and nitrogen can be used as the second element.
  • Nitrogen and wisteria not only chemisorb or physically adsorb on the interlayer or decaying surface of Dalaphite, but also change the electronic state by bonding with carbon atoms. be able to.
  • At least one of rare gas elements can be used as the second element.
  • at least one of Ne, Ar, Kr, and Xe can be used for 3 ⁇ 43 ⁇ 4.
  • the rare gas element can change the electronic state of graphite by forming carbon atoms and conductive layers between or in layers of graphite.
  • the electron-emitting sheet material of the present invention includes, as a second element, the following 1) to 3);
  • the content of the second element can be appropriately determined according to the desired sheet properties of the second element, but generally, the content of the second element in the graphite sheet is not less than 0.001 atomic% and not more than 3 atomic%. In particular, it is desirable that the content be contained in the range of 0.05 atomic% to 2 atomic%, and more preferably 0.01 atomic% to 1 atomic%.
  • the second element may be present anywhere in the sheet material, but is preferably present on the sheet surface. More specifically, it is preferable to cover the surface layer from the sheet surface to a depth of 10% (particularly 1%) of the sheet thickness (hereinafter, also simply referred to as “surface layer”). For example, if the sheet thickness is 100 ⁇ m, it is desirable that the second element be present within a range from the sheet surface to a depth of 1 ⁇ . If the content of the second element in the surface layer is in the above range, it means that a graphite intercalation compound is formed, while the second element is deposited on the interlayer or the surface of the graphite or physically.
  • the electronic state at or near the surface of the graphite is changed, and the work function value can be reduced. If the concentration of the second element is too low, the decrease in the work function value will be small, and will be close to the original value of the graphite.
  • the crane due to the ⁇ ⁇ ⁇ ⁇ ⁇ is small, the force and the difficulty are fast, and the spatter resistance of positive ions It is possible to use an electronic device that is excellent in performance and does not deteriorate even in the sky.
  • the electron-emitting sheet material of the present invention may be manufactured by any method as long as the constituent force S like ffjf can be obtained.
  • the electron-emitting sheet material of the present invention can be obtained by a production method including a step of applying a second element other than carbon as atoms, molecules, or clusters thereof to a graphite sheet.
  • Graphite sheets ( ⁇ that do not contain the second element) can be used or commercially available. Further, a graphite sheet obtained by the method described in (1) can also be used. In particular, a sheet obtained by substituting a polymer sheet can be used. The polymer sheet is not limited as long as it can obtain Graphiteca S by reason.
  • Polyphenylene oxadiazole, polybenzothiazole, polybenzobisthiazole, polybenzoxazole, polyben At least one of zobisoxazole, polythiazole, polyamide, polyamideimide, polyimide and polyacrylonitrile can be used for. Among them, polyimide is preferred. More preferably, it is polyimide.
  • ⁇ Polyimide
  • the sheet is in an inert gas, its polymer power S! ⁇ ⁇ , and after passing through a carbon precursor, it becomes almost 100% carbonized 100 ° Temperature rise from room temperature until separation of C or more (preliminary, then graphite finish) 25 Temperature rise from room temperature to 5 oo ° C or more (two-step process of performing MM)
  • the graphite sheet obtained in this way can form a foamed state more reliably than a sheet not subjected to such a process.
  • the maximum value of pre-baking and final baking can be determined appropriately according to the view of the polymer, etc.
  • This polyimide sheet is one of the aromatic ⁇ ! The best quality graphite You can give a build.
  • the thickness of the polymer sheet is not limited, but may be set so as to be the desired thickness of the electron emission sheet material of the present invention. In terms of ⁇ , 5 ⁇ m or more and 300 ⁇ m or less are preferred, and preferably 25 ⁇ m or more and 125 ⁇ or less.
  • a heat treatment temperature of 100 ° C. or more and 300 ° C. or less in an inert gas and a heat treatment time of 10 minutes or more and 600 minutes or less may be appropriately determined.
  • the first departure in inert gas from ⁇ g to the first 3 ⁇ 43 ⁇ 4 the first treatment step of applying a pressure of 1000 g or more and less than 250 ° C. and a second treatment in an inert gas after the first heat treatment step. It is preferable to employ a method comprising a second heat treatment step in which the temperature is raised to 250 ° C. or more at an increase of 2.
  • a method comprising a second heat treatment step in which the temperature is raised to 250 ° C. or more at an increase of 2.
  • the first value of firiB is usually from 1 ° C to 20 ° C, and preferably from 5 ° CZ to 10 ° C / min. Also, the second ascension of Kenmi
  • the content of Si is usually preferably 1 ° CZ or more and 20 ° CZ or less, particularly preferably 5 ° 0min or more and 10 ° CZ or less.
  • the electron-emitting sheet material of the present invention can be suitably obtained.
  • FIG. 7 Such a graphite sheet is shown in FIG. 7 as an image diagram.
  • the graphite sheet 615 is composed of a laminate of a plurality of graphenes 616.
  • such a graphite sheet has a peak at (002), where n indicates its own, as shown in the X-ray diffraction pattern of FIG. For example, it has a peak only at (0 2 n ) (n is a natural number), and typically has peaks only at (0 2) and (0 4).
  • the diffraction angle of (0 2) is around 26.5 °.
  • ⁇ of the graphite sheet used in the present invention includes a journey of reading and molding graphite particles (graphite flakes) together with a polymerized sculpture material. This is described in detail in Japanese Patent Application Laid-Open No. 11-161 (US Pat. No. 5,866,467, which is incorporated herein by reference).
  • a graph item sheet is shown in Fig. 9 as an image diagram. As shown in FIG. 9, the sheet 6 13 is in a state where the graphite powder 6 14 is arranged in an S layer.
  • the pressure during molding may be, for example, 140 psi or more and 160 000 psi or less.
  • the X-ray diffraction pattern of such a graphite sheet unlike FIG. 8, shows peaks everywhere, and as a result is described as “broad”.
  • the method of adding the second element is not particularly limited as long as the second element can be fixed to the graphite sheet, and the method described in (1) can be applied.
  • the second element is provided in the form of atoms, molecules and clusters thereof.
  • the second element may be applied before the graphite sheet is laminated on the contrary, or a certain element may be added even after the graphite sheet is laminated on the graphite sheet.
  • the second element is a second element alone or a compound of two or more ⁇ ! It is also possible to apply in the form of (molecule). Force It is particularly desirable to apply the second element as a single atom, molecule or cluster.
  • At least two or more steps are employed.
  • the concave fit structure is already formed on the surface of the graphite sheet in the first step, so the interlayer or area of the graphite sheet is formed. Chemical or physical adsorption on the surface ⁇ Fiber and graphite can be easily formed to promote Si ⁇ with carbon atoms.
  • the ion, atom, molecule or cluster containing the second element is ionized at the ion position I ⁇ of ⁇ ], and then mass spectrometry is performed.
  • Retrieving the cluster ⁇ 3 ⁇ 4 ⁇ can be employed favorably.
  • this method it is possible to form an uneven structure on the surface of the graphite sheet by colliding atoms and molecules or clusters thereof on the surface of the graphite sheet. Since the projection-like structure with small curvature is covered with high density in the uneven structure generated by ion irradiation, an emission part that can emit electrons with a low voltage is formed on the surface of the graphite sheet irradiated with ions. Is done.
  • the concentration distribution in the surface shape and material can be controlled by changing the atomic species, the calo speed mffi, and the implantation.
  • IEb a known method such as a method of irradiating an rf band electromagnetic wave to the gas phase of an atom, molecule or cluster containing the second element can be preferably employed.
  • Radicals have less change in their original state due to collisions as compared with ions, but are superior in iridical activity. For this reason, by illuminating the radicals, ⁇ "or their clusters on the graphite sheet, the atoms, molecules or their clusters are adsorbed or physically adsorbed to the interlayer or surface of the graphite.
  • an uneven structure is formed by the sublimation or destruction of an object with the carbon atoms constituting the graphite, and the uneven structure generated by the radical irradiation has a small curvature that easily occurs due to the sculpting power.
  • a high-density release is formed, that is, an emission portion capable of emitting electrons at a low applied voltage is formed on the surface of the graphite sheet irradiated with the radioactive ray.
  • the graph eye By making electrically neutral atoms, molecules or their clusters reach the sheet and depositing them on the graphite surface, irregularities with small curvature can be formed. Thereby, the electron emission portion can be configured for a woman.
  • the atoms, molecules, or their clusters that have reached the graphite surface are attached or physically adsorbed to the interlayers or surfaces of the graphite, or are formed as carbon atoms constituting the graphite, thereby providing an uneven structure or carbon. It is a compound compound.
  • the uneven structure has a small curvature ⁇ , and the separation becomes the emission part.
  • the electronic state near the surface can be changed by the surface adsorbate, the original clusters, and the carbonization that enter the graphite.
  • the sheet to which the second element has been added may be further processed as necessary.
  • the chemistry between the second element and the graphite in the vicinity of the surface can be uniformed in the plane of uneven carbonization ⁇ !, and the concentration distribution of atoms, molecules, or their clusters in the depth direction can be achieved. Can be made uniform or controlled.
  • the electronic arm element of the present invention is an electronic element including an electron emission sheet material, a conductive gate layer and a crane.
  • a key self-emissive sheet material comprising R (102) and a graphite sheet (101) laminated on ffitBSt (102),
  • Each dalafen is stacked with each other so that the c-axis direction of each dalafen is substantially perpendicular to the tfitfiSS (102) plane.
  • a tilt-graphite sheet (101) is laminated on the ⁇ »(102) such that the c-axis direction of each dalafen is substantially perpendicular to the plane of the a-plate (102).
  • the electronic thigh element of the present invention can use a squash (a spacer or the like) employed in the remote emitting device of the present invention, except for using the electron emitting sheet material of the present invention as the electron emitting region.
  • FIG. 1 (c) shows U of the electron element according to the present invention.
  • the electron emission region is formed by an electron rising sheet material including 02 and graphite sheet 101.
  • the sickle and the graphite sheet are separated via the adhesive layer 103.
  • Xie is suitable for the material of: ffl.
  • a conductive material such as The thickness of the letter is not limited, and may be about 0.5 to 2 mm apart.
  • the adhesive for example, a commercially available conductive adhesive or the like can be used. The thickness of the adhesive layer using an adhesive can be set to 1: 1 according to the adhesive or the like.
  • a lower portion for supplying electrons to the electron-emitting region may be provided as necessary. That is, a lower electrode ffii can be formed between the elongation and the electron emission region.
  • the lower layer is made of, for example, aluminum, titanium, chromium, nickel, chromium, gold, tungsten, and other gold materials; a composite material obtained by laminating a metal with a low-resistance n-type semiconductor, such as silicon or gallium nitride, and a metal. Can be used.
  • the thickness of the lower part is generally:! ⁇ 50 m.
  • the conductive gout layer 106 has a function of giving a chunk to the electron emission region by application and controlling the amount of electrons by its ashamedy.
  • the material is not limited as long as it has such a function.
  • a material having excellent processability such as close contact with a layer to be formed and a pattern win can be preferably used.
  • II, copper, anolem, nickel can be used for female.
  • Conductive gate The thickness of the layer is usually 0 .:! ⁇ 3 ⁇ 3 ⁇ 43 ⁇ 4.
  • the electron emitting device of the present invention as long as the electron emitting region (especially the graphite sheet 101 of the electron emitting sheet material of the present invention), the conductive gate layer 106 and the force S sword are not used, You may adopt the arrangement.
  • the space between the electron emission region and the conductive gate layer should be at least one of a space and a body. For example, as shown in FIG. 1 (c), the conductive gate layer 1
  • the space is preferably in a vacuum or a state close thereto.
  • the distance between the two layers can be determined as appropriate according to the desired performance, ashamedy, and the like. In general, the shorter the pur, the lower the mm.
  • the electron emission region (electron emission layer) and the conductive gate layer are substantially arranged in the TO, and the power is preferably higher.
  • the electron emission region and the conductive gate layer and the force S are not removed means that the electron emission region and the conductive gate layer 106 are located between the gate and the sea, as illustrated in FIG. 1 (c). Means that the edge is kept.
  • the electron emission region and the conductive gate layer 106 can be disposed so as to stand apart. Further, both may be fixed to each other via a spacer (thread edge).
  • a spacer an insulating material such as alumina, zirconia, and silicon dioxide can be preferably used.
  • the electron leak element of the present invention can be hung in the same manner as the electronic thigh element of the present invention.
  • a predetermined voltage may be applied between the lower gate or the electron emission region provided on the sickle and the conductive gate layer.
  • n electron emission regions may be adjusted as your power to the electric field bow daughter 1 1 0 6 VZm or more of the electric field.
  • the ⁇ , ⁇ atmosphere be in a vacuum or a state close thereto.
  • the driving temperature is not limited, it is usually preferable to set the driving temperature to about 0 to 60 ° C. Further, the current may be DC or pulsed ( ⁇ ), or may be shifted.
  • the phosphor light-emitting device of the present invention includes an anode portion having a phosphor layer and an electron; a W device, and a tiff self-anode portion and an electron such that electrons emitted from the junkie electronic thigh element cause the phosphor layer to emit light.
  • the electron emitting element is the electronic element of the present invention.
  • the phosphor light emitting device of the present invention uses the electronic w device of the present invention as an electronic device.
  • Other elements woven or housing, etc.
  • FIG. 1 One example of the fluorescent element of the present invention is shown in FIG.
  • the anode part can be used as a bell, which is similar to an electron simpler, and in this order, the phosphor layer 109, transparent »(anode 108 and glass holding layer 107)
  • the structure of each layer ⁇ and its formation may be in accordance with the following technique.
  • Each layer constituting the anode portion takes out light from the front surface (the anode node), and is shelved with phosphor light-emitting elements, and eliminates the use of transparent materials.
  • the anodic electrode include indium tin oxide (ITO), tin oxide, and an oxide port.
  • the phosphor layer 109 may be appropriately formed according to a desired color development or the like. That is, various phosphors (chemical formulas) can be applied according to each of the three primary colors of red (R), blue (B), and green (G), and intermediate colors thereof. For example, Y 2 0 3 system, the red phosphor of G d beta 0 3 system or the like; Z n S system, the phosphor of the Zeta eta theta system like; Y 2 S i 0 5 system, the blue fluorescence of Z n S system, etc. Body.
  • the phosphor layer may be formed, for example, as a thin film by printing or coating a transparent layer containing these on a transparent substrate or on a transparent substrate 108.
  • the electron simplicity and the anode may be arranged so that electrons emitted from the electron emission region of the knitted device collide with the phosphor layer of the anode to emit light.
  • the electron emission region and the anode section (phosphor layer) are arranged so as to face each other. It is preferable that a space (especially a vacuum space) is provided between the two.
  • the electron emission region (electron emission layer) and the phosphor layer are arranged in the TO.
  • the distance between the electron emission region and the phosphor layer is generally within the range of 100 m to 2 mm, and can be appropriately adjusted according to desired performance and the like.
  • the image forming apparatus includes an anode portion having a phosphor layer and a plurality of two-dimensionally arranged electronic thigh elements, so that electrons emitted from the tiitS electronic element cause the phosphor layer to emit light.
  • electrons that are extracted from the electron emission region and reach the vicinity of the gate cage are accelerated by the light applied between the phosphor layer and the gate, and are irradiated on the phosphor layer.
  • the phosphor layer emits light. Since the key of light emission can be controlled by 3 ⁇ 4ff applied to the gate healing, an image drawing device capable of displaying images and characters on a large scale by extending the gate of each electronic thigh element by ⁇ legs is used. it can.
  • the electronic element of the present invention is used as an electronic element.
  • the following elements can be used in the image drawing device.
  • FIG. 10 shows an outline of the male and female painting apparatus of the present invention.
  • a plurality of electronic devices 703 are arranged two-dimensionally. That is, electronic thigh elements are arranged on the same plane to form an array of electronic thigh elements.
  • an array for example, a configuration (that is, a matrix or the like) having a pattern of a plurality of conductive gate layers 706 so as to be orthogonal to the pattern with respect to a plurality of electrically totalized turns is exemplified. This is useful for performing the large box equipment.
  • the phosphor layer may have the same configuration as the phosphor layer of the phosphor light emitting device.
  • the number 'type' of the phosphor layers may be determined as appropriate according to the number of pixels, the size of ⁇ , and the like.
  • the number of electronic thigh elements corresponding to one pixel varies depending on the desired degree of incidence and the like, but it is usually 1 to 50 grains! ⁇ .
  • each of the phosphor layers (one pixel) having a set of the three primary colors R, G, and B corresponds to each electronic thigh element 703, respectively.
  • mfei You just need to arrange it.
  • Various arrangements such as a vertical stripe and a horizontal stripe can be applied to the arrangement of the three primary colors.
  • the number of electronic elements corresponding to one pixel in a color image is usually 1 to: I 0 0!
  • the size of the phosphor layer should be such that the amount of light emitted from each phosphor layer can be individually controlled based on the amount of electronic knees from each electron beam device 703.
  • a part of the phosphor layer in the anode section it is preferable that the electronic thigh region and the electronic thigh region of the electronic thigh element face each other while maintaining the ⁇ state.
  • the removal of the image forming apparatus of the present invention may be performed in the same manner as a known field emission display or the like.
  • driving driers 718 and 719 are respectively attached to the lower mm 2 or the electron emission region of the electronic device and the conductive gut layer 706, and a predetermined ME is applied to both layers.
  • a polyimide sheet of ⁇ 75 / m (trade name Kapton (registered trademark): Toray DuPont Ring) was used. ⁇ Crying is performed at a temperature of 4 ° C / min from room temperature in an inert gas atmosphere, and is performed for 2 hours at 1100 ° C in the carbonization region. The temperature is raised at 13 ⁇ 420 ° C / min, and it is 2700, a graphite area. In C for 1 hour. After the completion of this work, a graphite sheet was obtained by rolling. The thickness of the graphite sheet 101 was about 10 ⁇ which was thicker than the polyimide sheet (FIG. 1 (a)). Since the graphite sheet 101 is highly flexible, it can be easily handled in the subsequent device fabrication process.
  • the graphite sheet 101 was fixed on the glass wrist 102 having a high flatness and high efficiency using an adhesive layer 103 (Alecom Cerama Bond 503) which is composed of anoremina. .
  • Li ions were implanted into the graphite sheet at 200 ° C under the condition that the distribution was in the range of 0. 1 to ⁇ m centering on the 0.4 m depth region.
  • ion implantation The more uneven structure 104 force S was formed (Fig. 1 (b)).
  • Each of the graphite sheet 101 and the conductive gate layer 106 has its own positive
  • FIG. 2 shows the results of measuring the emission current with respect to the applied voltage.
  • the horizontal axis represents applied voltage (unit: kV)
  • the vertical axis represents current value (unit: mA).
  • “SG” stands for Super Graphite (S
  • the emission start 3 ⁇ 4EE is about 1.7 kV3 ⁇ 43 ⁇ 4 Was reduced by 0.5 k. This value is almost the same as the value when carbon nanotubes are used as the electron-emitting neo-material. This indicates that the effect of irradiation with Li ions is very large, and that a high-performance electron leakage element force S can be obtained.
  • FIG. 3 shows the result of FN (Fowler-Nordheim) plotting of the measurement result of FIG.
  • the horizontal axis is the reciprocal of the electric field bow daughter calculated from the applied 3 ⁇ 41 £ and the gap length
  • the vertical axis is the value obtained by dividing the measured ⁇ by the square of the m daughter.
  • the slope of the graph indicates the magnitude of the apparent work function, and the smaller the slope, the more easily the electrons are extracted.
  • the size of iSi is proportional to the amount of current, and is proportional to the density of the structure that contributes to electron emission.
  • the ion implantation amount was reduced by a factor of 10 compared to the case of the Li irradiation high concentration: the result of ⁇ is shown as “L ifa & ⁇ .
  • the release of m is even lower than that of, but the work function value is larger, which is the same as the value of the non-implanted resin supergraphite sheet.
  • the work function is considered to have hardly changed because the Li force applied to the vicinity of the surface is small, and the Li ion irradiation was further reduced by a factor of 10.
  • the graphite sheet which is the base material of the electron-emitting material, has uniform characteristics over a large area, so that a large and uniform electronic thigh element can be easily formed without being restricted by the element size. You can manifest.
  • adjacent conductive gates 106 are connected to each other.
  • a phosphor light emitting device in which a phosphor layer 109 emitting light by irradiation of electrons is arranged on a transparent basket 108 formed on a glass screen 107 facing the electron leakage element.
  • Fluorescent materials used for the phosphor layer include fluorescent materials such as ZnO: Zn and ZnS based phosphors corresponding to the energy value of the It ’s good to measure it.
  • a ZnS-based phosphor was applied as a phosphor layer on a transparent conductor (ITO) which was a caro-speed.
  • the phosphor light-emitting device obtained in the above manner is placed in a vacuum chamber, and electrons are extracted by applying Effi between the gate layer 106 and the graphite sheet 101, which is an electron-emitting material.
  • a transparent sword that functions as a fast-paced jog A 3 kv acceleration mi was applied between the gates m3 ⁇ 4.
  • the power S of 300 to 400 c dZm 2 was obtained.
  • the luminous bow girl must use a gut between the electron emitting materials to illuminate the work irradiating the phosphor, or ISS the energy of the electrons irradiating the phosphor by the voltage between the acceleration electrode and the gate electrode. was completed.
  • Example 1 the graphite sheet 101 was bonded to the substrate 102 before the Li ion was implanted. However, the graphite sheet 101 was bonded to the graphite sheet 101 after the ion implantation was performed. The same effect was obtained even when the film was adhered to the film. Similar effects were obtained by implanting Li ions after forming m 105 and the conductive gate layer 106.
  • Example 1 i was implanted, but at least Li, Na, K, Cs,: Rb of alkali metal and alkali: at least Ca, Sr, Ba of t ⁇ S A similar effect was obtained by hitting either one.
  • Nitrogen and silicon have a rough structure, but their work function has been slightly reduced due to the change of electronic state due to penetration between graphite layers and fiber-bonding with carbon atoms.
  • the field emission started from low ⁇ due to the formation of the uneven structure.
  • the effect of reducing the work function was smaller than that of implanting Al-Li metal or Al-earth metal.
  • the ions to be implanted were not limited to atoms, and the same effect was obtained for those clusters. The same effect was obtained even when the valence of the ions was changed. The same effect was obtained when the temperature of the substrate at the time of ion implantation was 100 ° C. or less. Further, by performing the treatment at a temperature of 100 ° C. or less after the ion implantation, the chemistry between the second element and the graphite in the vicinity of the surface is promoted, and the unevenness in the plane of the uneven structure is enhanced. Uniformization, uniformity or control of the it ⁇ distribution of atoms, molecules or their clusters could be achieved.
  • Example 1 a bonding agent composed of alumina was used for bonding graphite sheets 102 and 05 together.
  • Other adhesives can be used without any hindrance in terms of conductivity, material, etc. if they have sufficient adhesive strength.
  • Example 1 ⁇ i is required when the temperature exceeds 100 ° C. at which the polyimide sheet is sufficiently carbonized. Needle 2 500 ° C or higher.
  • the ID of the starting polyimide film is not limited to 75 ⁇ m. For example, similar results were obtained for commercial products in the range of 25 to 300 / x ni. Similar results were obtained when the thickness of the wheat graphite sheet was 1 ⁇ or more.
  • the graphitica S which is not a sheet shape reflecting the shape of the raw material but a powdery shape smaller than 1 mm, is formed, but this powder is irradiated with ions.
  • the same results as in the graph sheet: ⁇ were obtained.
  • the ion-irradiated powder was mixed and applied to a binder of a mechanical system, and the electron emission characteristics from a region subjected to a predetermined treatment were not affected by non-inter, one, or substituting. Similar results were obtained using powdered Dalaphite prepared by cutting or pulverizing a graphite sheet regardless of the presence or absence of elements other than carbon.
  • the step of irradiating radicalized nitrogen onto a graphite sheet instead of the step of implanting Li ions is performed by the same steps as in Example 1 except that the electronic device is built up. In a way to release and release ⁇ 4.
  • nitrogen was used as the radical source for illuminating the graphite sheet.
  • alkali metals L i, Na, K, C s, R b, alkali d ⁇ C a, S r , Ba, and at least one of the rare gas elements Ne, Ar, Kr, and Xe provided the same effect. Similar effects were obtained not only for irradiated radionuclide or molecules but also for their clusters. Similar effects were obtained when the temperature of the substrate when radiating the radicals was 100 ° C. or lower.
  • the radical irradiation at a temperature of 100 ° or less, the chemistry between the second element and the graphite in the vicinity of the surface is promoted, and And the concentration distribution of atoms, molecules or their clusters in the depth direction could be uniformed or controlled.
  • the step of irradiating an electrically neutral Cs metal with a graphite sheet is performed instead of the step of implanting a L ion.
  • the graphite sheet 401 before the step of impregnating the graphite sheet with Cs ⁇ is almost flat except for the Tsuruta surface defects 402.
  • the layer spacing is very uniform.
  • the domain size in that plane is small compared to highly oriented graphite (HOPG).
  • HOPG highly oriented graphite
  • the graphite sheet 401 was opposed to the Norrebo with Cs atb in vacuum, and the keys were set at 194 ° C and 350 ° C, respectively.
  • the emission characteristics were measured in the same manner as in Example 1. As a result, the emission power S was started at 0.7 kV, and the fluctuation of the field emission current was small, and the sculpture emission characteristic was small with little place dependence. Since the uneven structure is almost unchanged before and after the irradiation of Cs atoms, it is considered that the work function is lowered by Cs adsorbing on graphite, the electrons are easily emitted, and the emission output is started at low.
  • the Cs atom was used as the element in the graphite sheet, but nitrogen, alkali metals Li, Na, K :, Cs, Rb, and a Similar effects were obtained for at least one of Ca, Sr, and Ba of iHl males. The same effect can be obtained not only for atoms and molecules but also for clusters of these elements.Furthermore, when the fiber is irradiated with a neutral element at a temperature of 100 ° C or less, the same effect can be obtained. The effect was obtained. In addition, by applying heat treatment at a temperature of 100 ° C.
  • Example 4 the electronic thigh element was illuminated in the same process as in Male Example 3 by illuminating the argon ion before irradiating the graphite sheet with electrically neutral Cs metal. In the same way, we evaluated the emission characteristics.
  • the graphite sheet is fixed to the glass, it was implanted in the grayed La Fight sheets at room temperature in 1 square cm per 4.5 accelerates X 1 0 1 6 amino Anoregonion flffi 1 8 0 k V.
  • the same method and conditions as in Example 3 were applied to a graphite sheet irradiated with ions. s metal impregnated.
  • the field emission characteristics were measured in the same manner as in Example 1. As a result, the emission power S started from 0.4 kV, and a good m emission pattern with little fluctuation in emission current and little place dependence was exhibited.
  • the release and release start Sffi of the age at which the above-mentioned C s atom process was performed by the occupational worker was 1.O kV and 0.ek V ⁇ O .7 kV, respectively.
  • the C s atom impregnation process was performed after the anoregon ion irradiation process. By doing so, it was possible to further reduce the release of Kaimedai®.
  • the concentration of Cs atoms in the vicinity of the surface is almost the same, and the same result can be obtained if the »energy and irradiation amount of the ions are almost the same even if the ion is changed in the ion irradiation process. It is considered that Cs atoms easily enter the graphite between the graphite layers due to the concave-convex structure caused by the ion irradiation process.
  • the cs atom was used as the element in the graphite sheet.
  • the alkali metals Li, Na, K, Cs, Rb, and the alkali metal C A similar effect was obtained if at least one of a, Sr, and Ba was eaten.The same effect was obtained not only for atoms and molecules but also for clusters of them.
  • the same effect S was obtained when the temperature of the element J was not more than 100 ° C.
  • the step of irradiating the graphite sheet with electrically neutral Mo metal before the anoregon ion irradiation step is performed in the same manner as in the fourth embodiment except that the electronic element is removed.
  • the emission characteristics of m were improved.
  • a graphite sheet was fixed to a glass substrate 501 prepared in the same manner as in Example 1, and a Daraphite sheet was opposed to a knuckle voluminized with Mo S in vacuum.
  • the temperature of the graphite sheet was set to 500 ° C.
  • Mo atoms evaporated from the crucible, and fireman's standard while diffusing surface 30 nm of Mo ⁇ particles 502 are uniformly formed on the graph Ai preparative surface (FIG. 5 (a)) 0
  • the mochi was subjected to argon ion irradiation (Fig. 5 (b)) and C s annihilation impregnation (Fig. 5 (c)).
  • the Mo recording particles 502 serve as a mask.
  • Example 4 X-ray measurements confirmed that no intercalation compound was clearly formed, and surface analysis confirmed that Mo atoms, Cs atoms, and argon nuclear S were near the S surface. Also, C s depth distribution results of measurement of the atoms are distributed in 1 0 22 density per maximum 1 cubic cm in a range to a depth of 2 mu m, ⁇ argon atoms depth 0. When the distribution of the ⁇ m release characteristic was measured in a range of 0.2 ⁇ m with the center at 25 ⁇ m, the release of 0.4 kv was started in the same manner as in Example 4. The width and the location dependency were greatly improved as compared with Example 4.
  • the field emission characteristics from the graphite sheet 501 before the Argon ion irradiation step and the C s ⁇ impregnation step are not as good as those of Cs metal-impregnated: ⁇ , but the nanometer-sized structure is high on the surface. Because of the density of the castle, the release of the pen is improved as compared to the ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , ⁇ ⁇ , and Mo ⁇ « ⁇ 502 « ⁇ 502 « ⁇ 502 « ⁇ 502 « ⁇ 502 « ⁇ s Wei region 504 It was easily removed by performing ⁇ ® sound wave ⁇ (Fig. 5 (d)). Since the sculpture emission characteristics I "at this time are not affected by the work function of Mo, the emission characteristics 14 are higher than those in Fig. 5 (c).
  • the diameter and density of the fine particles can be easily controlled by the Si reaction g and the amount of Mo atoms per unit time (flux density).
  • the type of male is not limited if the etching depth in the force ion irradiation step (b) using Mo fine particles is slower than the etching wedge of the graphite. If it is faster than the etching rate of graphite, Typically, it is desirable that the fine particles be capable of forming a columnar convex structure having a height of 30 nm or more.
  • is supplied to the surface opposite to the surface by evaporation, but ⁇ particles can also be generated by supplying a ⁇ containing a predetermined amount and leaking on a sickle. Was possible.
  • the force S of irradiating 4.5 ⁇ 10 16 argon ions per square cm at room temperature at a caro-speed of 180 kV Even if the ion species is changed, the same result can be obtained if the kinetic energy of the ion and the irradiation amount are almost the same, and it is also possible to form a circular structure with an irradiation amount of 30 nm or more in height. desirable.
  • the graphite sheet 501 is used as the tt element in the Jt "
  • the same effect can be obtained by using at least one of Li, Na, K, Cs, Rb of alkali and Ca, Sr, and Ba of anorecali ⁇ .
  • the effect was not limited to atoms and molecules, and similar effects were obtained with those clusters.
  • the same effect was obtained when the temperature of the fiber when illuminating the neutral element was 100 ° C or lower.
  • the neutral element Jt3 ⁇ 4 by subjecting the neutral element Jt3 ⁇ 4 to a temperature of less than 1000 ° C, the chemistry between the carbon element and the graphite is promoted near the surface, and the uneven structure is increased. It was possible to uniformize or control the distribution of atoms, molecules or their clusters in the depth direction in the plane of ⁇ ).
  • the electron emission device was used in the same process as in Example 3, except that the radical was irradiated before the C s annihilation impregnation deposition process, and the m emission characteristics were described in the same manner. did.
  • Example 3 Glass prepared in the same manner as in Example 3 By irradiating a boron nitride cylinder filled with elemental gas with a microphone mouth wave of 400 W, ⁇ radicals are generated, and ⁇
  • was used as the radical source for illuminating the graphite sheet, but nitrogen, alkali metals L i, Na, K, R b, alkaline earth metals C a, S r, At least one of Ba, the rare gas elements N e, Ar, K r, and X e ⁇ ⁇ T ⁇
  • S was obtained, but the electronegativity of the element covered near the surface The difference is large, the more desirable, the better.
  • the same effect was obtained not only for the irradiated radionuclide but also for the atom or molecule clusters. The same effect was obtained when the temperature at the time of irradiating the radicals was 100 ° C. or less.
  • the chemistry between the element other than carbon and graphite and the graphite can be promoted in the vicinity of the surface. It was possible to equalize or control the concentration distribution of atoms, molecules or their clusters in the depth direction in the plane of the surface.
  • the Cs element was used as a neutral element for irradiating the graphite sheet.
  • the alkali metals Li, Na, K, Cs, Rb, and the alkaline earth metal Cs Similar effects were obtained if at least one of a, Sr, and Ba was included. The effect was not limited to atoms and molecules, but similar effects were obtained with those clusters.
  • the temperature of the sickle when illuminating the neutral element is 100 ° C or less. If so, a similar effect was obtained.
  • the second element is added to a graphite sheet (particularly, a surface layer) in the form of atoms, molecules, or clusters thereof, thereby improving the electron emission characteristics while utilizing the inherent characteristics of the carbon material.
  • the carbon material has excellent electrical conductivity, conductivity, corrosion resistance '14, etc., has a smaller field emission start efficiency or work function than conventional products, and can reduce the electron emission material. As a result, it is possible to carry high-efficiency electronic thigh elements and Oran display freshness.
  • the electron-emitting sheet material of the present invention is expected to be particularly applicable to various uses other than those in which an electron-emitting material is conventionally used.
  • the electron emission sheet material of the present invention can be suitably used for, for example, a display, a tube, an emitter, a lamp, an electrode, and the like.

Abstract

An electron-emitting material having a field-emission start voltage or work function smaller than conventional ones. The material comprises a substrate (102) and a graphite sheet (101) laminated on the substrate (102). (1) The graphite sheet (101) has a structure in which graphenes each composed of a carbon hexagonal network surface are layered, (2) the graphemes are so stacked that the c-axis direction of each grapheme is substantially perpendicular to the surface of the substrate (102), (3) the graphite sheets (101) is so laminated on the substrate (102) that the c-axis direction of each grapheme is substantially perpendicular to the surface of the substrate (102), and (4) the graphite sheet (101) each contains an element other than carbon as a second element.

Description

電子放出材料及びその製 去とそれを用レ、た電子漏素子及ひ U鍾画 装置 技術分野  Electron emitting material, its production and its use, electron leakage element and U-shaped device
本発明は、 ディスプレイ、 mf , ェミッタ一、 ランプ、 電 等に用い られる雕放出材料及びその製 法に関する。 さらに、 本発明は、 ® 放出 材料を用レ、た電子 ¾lt素子及ひ面像描 Γ装置に関する。  The present invention relates to a sculpture-emitting material used for a display, a mf, an emitter, a lamp, an electric device, and the like, and a method for producing the same. Further, the present invention relates to an electron element and a surface image drawing apparatus using a light emitting material.
明 背田景擁  Akira Keisuke Seta
近年、 ディスプレイ装置に対する薄型化、 大面積化、 低消費 ®Λ化等の要請 が高まりつつある。 このような要請に応えるため、 電子源に の少ない冷 麵電子源を棚すること力 s検討されてレヽる。  In recent years, there has been an increasing demand for thinner display devices, larger area, lower power consumption, and the like for display devices. In order to respond to such demands, it has been studied that shelves can be provided with cold electron sources with few electron sources.
1 9 9 1年に直徵十 n m、長さ数 μ mの円筒形の炭素素材であるカーボン ナノチューブが開発された。 それが開発されるまでは、 スピント型 (例えば、 Journal of Applied Physics, Vol. 39、 No. 7、 P3504 (1968)) と呼ばれ る円錐形状の金属で形成された冷,を用いたディスプレイが数多く報告さ れてレ、る。ところが、カーボンナノチューブは、炭素材料の優れた電気伝導度、 云導度、 耐食性を有するだけでなく、 曲率雜が非常に小さい。 このため、 カーボンナノチューブは、 高効率、 堅牢、 力つィ 空でも安定な電子 ¾l†素子 として期待されている。 そのため、 研究開発 の主流は、 カーボンナノチュ ーブに移り始めている (例えば、 Applied Physics Letters, Vol. 78, No. 4, P 539 (2001))。  In 1991, a carbon nanotube, a cylindrical carbon material with a diameter of just 10 nm and a length of several μm, was developed. Until it was developed, a display using a Spindt-type (for example, Journal of Applied Physics, Vol. 39, No. 7, P3504 (1968)), a cold-type display made of conical metal, was used. Many have been reported. However, carbon nanotubes not only have excellent electrical conductivity, conductivity, and corrosion resistance of carbon materials, but also have a very small curvature. For this reason, carbon nanotubes are expected to be high-efficiency, robust, and stable electronic devices even in power. Therefore, the mainstream of R & D has begun to shift to carbon nanotubes (for example, Applied Physics Letters, Vol. 78, No. 4, P 539 (2001)).
一方、 特開 2 0 0 0— 1 7 8 0 1 6号公報には、 高分子シートを 2段階 « することにより人造のグラフアイトシートが得られることが開示されている。 このグラフアイトシートは、 炭素材料 (^れた電気伝導度、 謝云導度、 耐食性 のほか、 柔軟性に優れ、 さらに高分子シートを用レ、ることから、 容易に大麵 シートを形成できるという赚を有する。 本発明に関連する他の文献の一覧 On the other hand, Japanese Patent Application Laid-Open No. 2000-178016 discloses that an artificial graphite sheet can be obtained by increasing a polymer sheet in two stages. This graphite sheet is a carbon material (excellent electrical conductivity, conductivity, corrosion resistance, excellent flexibility, and a polymer sheet can be used to form a large sheet easily. It has 赚. List of other documents related to the present invention
(1) 特開平 10— 269929号公報:この公報には、 フォトレジスト からなるエミッタ構成餅才(同公報フロントページの参照符号 21で表される 辦才) にアルゴン、 リン、 硼素、 炭素のレ、ずれかのイオンを照 してなる電子 放出用エミッタの製 ^去が開示されている。  (1) Japanese Patent Application Laid-Open No. H10-269929: This publication describes that the emitter composition consisting of a photoresist (辦, indicated by reference numeral 21 on the front page of the publication) includes argon, phosphorus, boron, and carbon. There is disclosed a method of manufacturing an electron emission emitter formed by illuminating some of the ions.
(2) 米国特許第 5863467号 (特開平 11— 1621号公報) :こ の公報については、 後财る。  (2) US Patent No. 5863467 (Japanese Unexamined Patent Application Publication No. 11-1621): This gazette will be described later.
(3) 特開 2003—16908号公報:この公報には、 グラフアイトな どからなる電子放出層 (同公報の図 1および図 4 (e) の参照符号 5で表され る ォ) を有する電子放出素子が開示されている。  (3) Japanese Patent Laid-Open Publication No. 2003-16908: This publication discloses an electron having an electron-emitting layer made of graphite or the like (indicated by reference numeral 5 in FIGS. 1 and 4 (e) of the publication). An emissive element is disclosed.
(4) 特開平 10— 188778号公報 (特に段^ 号0066) :この 公報には、 雄微粒子 (同公報図 1および図 2の参照符号 21) をコアとして 形成された炭素体 (同参照符号 22) に醜を介して、 リチウムなどの低仕事 関謝料 (同参照符号 23) によって終端された複数個の電子放出体 (同参照 符号 5) を (同参照符号 3) 上に並べてなる電子放出素子が開示されてい る。 この公報と関連する公報として、 特開平 11—40044号公報を挙げる ことができる。  (4) Japanese Patent Application Laid-Open No. H10-188778 (particularly, step No. 0066): This publication discloses a carbon body formed with male fine particles (reference numeral 21 in FIGS. 1 and 2 of the publication) as cores (reference numeral same as above). 22) An electron formed by arranging a plurality of electron emitters (5) terminated by a low work fee (23), such as lithium, on the (3) An emissive element is disclosed. JP-A-11-40044 can be mentioned as a publication related to this publication.
( 5 ) 特開昭 62— 91413号公報:この公報には、 層状ダラファイト の c軸方向にカーボンをイオン打ち込みしてなる半金属 ·金属の多層材料構造 が開示されている。  (5) Japanese Patent Application Laid-Open No. Sho 62-91413: This publication discloses a semi-metal / metal multilayer material structure obtained by ion-implanting carbon in the c-axis direction of lamellar dalafite.
(6) 特開 2001—288625^報:この公報には、 先端の切られ たアイスクリームコーン形状を有するグラフェンシート (同公報の図 2の参照 符号 12) 力 S角嫩金属 (同参照符号 14) を介して積層された円¾^離など を有するグラフアイ トナノファイノく一材料が開示されている。 このグラフアイ トナノファイノく一材料は、 電子放出源として用いられることも開示されている。  (6) JP 2001-288625 ^ A: This publication includes a graphene sheet having a truncated ice cream cone shape (reference numeral 12 in FIG. 2 of the publication). ), A graphitic nano-fino material having a circular separation and the like stacked through the layer is disclosed. It is also disclosed that this graphite nanofino material is used as an electron emission source.
(7) 特開平 2— 174059号公報:この公報には、 リチウムイオンを 含むグラフアイト化合物薄膜からこのリチウムイオン力 S脱ドーピングされ、 こ のリチウムイオンが存在している部分に欠陥部を残したまま結晶化させられ てなるグラフアイト薄膜と、 ドーピングされたリチウムイオンとを備えたリチ ゥム固体 正極が開示されている。 (7) Japanese Unexamined Patent Publication No. 2-174059: In this publication, a lithium ion-containing graphite compound thin film was dedoped by this lithium ion force and a defect was left in a portion where the lithium ion was present. Lithium containing graphite thin film crystallized as-is and doped lithium ions A solid-state positive electrode is disclosed.
( 8 ) 特開 2 0 0 3— 1 7 8 6 6 9号公報: の ¾ ^出願 (特願 2 0 0 3— 1 1 6 4 1 ) の出願日 (2 0 0 3年 4月 2 2日) 以降に公開されたこの公 報には、 グラフアイト層 (同公報の図 4の参照符号 4 0 3 ) に C sや B aなど の不純物をイオン ¾λ^¾¾¾¾によって勸卩し、 ィンタ一力レーションを行 うことにより冷 置を得ることが開示されている。 なお、 レーザーァニー ルによりィ懷したグラフアイトは、面間およひ 内のどちらの方向の結^ (4も 高くない。 また、 インターカレーシヨンによって形成される化^ ¾Jは、 不純物 種とステージ次数 nによって MCm . n (mは 6又は 8を^ Τ。) と定義されるた め、 不純物濃度は 3 %を超えるものとなっている。 発明の開示 (8) Japanese Patent Application Laid-Open Publication No. 2000-3-17780669: Date of filing of Japanese patent application (Japanese Patent Application No. 2003-1131641) This publication, which was published after this date, includes a graphite layer (reference numeral 4003 in FIG. 4 of the same publication) that adsorbs impurities such as Cs and Ba with ions ¾λ ^ ¾¾¾¾, It is disclosed that a cooling is obtained by performing a force ration. In addition, the graphite caused by the laser annealing shows that the connection in either direction between the planes and in the plane is not high (4 is also high. In addition, the formation of the ^^ J formed by the intercalation depends on the impurity species and the stage. MC by the order n m. n (m is 6 or 8 ^ T.) and order to be defined, the impurity concentration is made to exceed 3%. disclosure of the invention
しかしながら、単一構造のカーボンナノチューブを大量かつ安価に «する 方法は未だ開発途上にある。 また、 大讓で均一力 経日按定性に優れた 放出部の形成工程も ¾ϊεされていなレ、。  However, a method for producing a large amount of carbon nanotubes having a single structure at low cost is still under development. In addition, the process of forming the discharge portion, which is excellent in uniformity and uniformity over time, has not been performed.
一方、 グラフアイトシートは、 炭素材料の優れた電気伝導度、 謝云導度、 耐 食性を有し、 均一な厚さの大麵シートが形成できるので、 大面積表示装置な どの電子放出部形成に適した材料である。 しカゝし、 表面上にカーボンナノチュ ーブほどの曲率雜の小さな構造は しなレヽので、大きな電界放出開始 «ΙΪ が必要になる。  On the other hand, the graphite sheet has excellent electrical conductivity, conductivity, and corrosion resistance of the carbon material, and can form a large-sized sheet having a uniform thickness, so that an electron-emitting portion such as a large-area display device can be formed. It is a material suitable for. However, since the surface does not have a structure with a curvature as small as a carbon nanotube on the surface, a large field emission start is required.
仕事関数は、 m 放出開始 ®£の大きさと並んで 放出特性を言鞭する上 で重要な値である。 仕事関数が小さい は、 小さい ¾Ε変化で 量を大き くすることが可能となる。 しかしながら、 仕事関数の大きさは、 離放出に寄 与する物質の電子状態で決定される。 このため、 たとえグラフアイトを誠分 とする炭素材料でカーボンナノチューブと同等の曲率判圣の構造を形成して も、 カーボンナノチューブを凌駕する性能を得ることはできない。  The work function is an important value in describing the release characteristics along with the size of m release start £. When the work function is small, the amount can be increased with a small ¾Ε change. However, the magnitude of the work function is determined by the electronic state of the material that contributes to the emission. For this reason, even if a carbon material whose graphite is well defined and a structure having a curvature similar to that of a carbon nanotube is formed, performance exceeding that of a carbon nanotube cannot be obtained.
本発明は、 炭素材料の優れた電気伝導度、 謝云導度、 耐食性を有し、 つ、 電界放出開始 と仕事関数が小さ 、大面積の表示装置を«できる電子放 出材料を ¾ ^することを主な目的とする。  The present invention provides an electron emission material that has excellent electric conductivity, conductivity, and corrosion resistance of a carbon material, has a small field emission start and work function, and can display a large-area display device. Its main purpose is to:
すなわち、 本発明は、 下記の電子放出シート材料及びその製^法とそれを 用 ヽた電子腿素子及 «像描画素子に係る。 That is, the present invention provides the following electron-emitting sheet material, its manufacturing method, and The present invention relates to a used electronic thigh element and an image drawing element.
1. (102) と、 ΙΐΕ¾¾ (102) 上に ¾ されたグラフアイト シート (101) とを含む電子放出シートネ才料であって、  1. An electron emission sheet comprising (102) and a graphite sheet (101) drawn on (102),
(1) tilf己グラフアイトシート (101) 力 複数の炭素六角網面からなるグ ラフェンカ層状に觀した構造を有し、  (1) tilf self-graphite sheet (101) force It has a structure viewed as a graphenka layer consisting of multiple carbon hexagonal mesh planes.
(2) 各ダラフェンの c軸方向が前記基板 (102) 面に対して実質的に直角 になるように、 各ダラフェンどうしが asしており、  (2) the dalaphens are arranged so that the c-axis direction of each dalafen is substantially perpendicular to the substrate (102) plane,
(3) 各グラフェンの c軸方向が IfifSSlg (102) 面に対して実質的に直角 になるように、 觸己グラフアイトシート (101) が ESt及 (102) 上に 麵されており、  (3) The graphite sheet (101) is placed on ESt and (102) so that the c-axis direction of each graphene is substantially perpendicular to the IfifSSlg (102) plane.
(4) tfflBグラフアイトシート (101) 力 S、 炭素以外の元素を第 2元素とし て含む、  (4) tfflB graphite sheet (101) Force S, including elements other than carbon as the second element,
電子放出シート材料。 Electron emission sheet material.
2. 前記グラフアイトシートの X線回折パターンにおいて、 (002n) 面 (ただし、 nは、 自然数を示す。) のピークが^ &する、 嫌己項 1纖の電子 放出シート材料。 2. An electron-emitting sheet material of the 1st fiber, wherein the peak of the (002 n ) plane (where n is a natural number) is & in the X-ray diffraction pattern of the graphite sheet.
3. 嫌己グラフアイトシートの X線回折パターンにおいて、 (002) 面 および(004)面のピークが械する、 #f|5¾l言 の電子放出シ一ト材料。  3. The #f | 5¾l electron-emitting sheet material whose peaks on the (002) and (004) planes in the X-ray diffraction pattern of the terrible graphite sheet.
4. 嫌己ダラフェンどうしの層間に ffrlE第 2元素が^ Ϊする、 |ίίΐΒ¾1記 載の電子放出シ一ト材料。  4. An electron-emitting sheet material as described in | ίίΐΒ¾1 where the second element of ffrlE is between the layers of dalaphen.
5. SfllE第 2元素の濃度が、 0. 001原子%以上 3原子%以下である、 m^ 1 f¾feの電子放出シート材料。  5. A m ^ 1 f mfe electron emission sheet material in which the concentration of the second element of SfllE is 0.001 to 3 atomic%.
6. 嫌己第 2元素の濃度が、 0. 005原子%以上 2原子%以下である、 t 1記載の電子放出シート材料。  6. The electron-emitting sheet material according to t1, wherein the concentration of the disgusting second element is 0.005 atomic% or more and 2 atomic% or less.
7. 編己第 2元素の濃度が、 0. 01原子。/。以上 1原子%以下である、 前 記項 1言 の電子放出シート材料。  7. The concentration of the second element is 0.01 atom. /. The electron-emitting sheet material according to item 1 above, which is not less than 1 atomic%.
8. シートの厚みが 10 μ m以上 1000 μ m以下である前記項 1記載の 電子放出シート材料。  8. The electron-emitting sheet material according to the above item 1, wherein the thickness of the sheet is 10 μm or more and 1000 μm or less.
9. 第 2元素の一部又は全部が、 シート表面からシートの厚みの 10 %の 深さまでの表面層に する tffil 1 の電子放出シート材料。 10. 第 2元素が、 アル力リ 元素及びアル力リ土類^ S元素の少なく とも 1種である嫌 KM 1言 B¾の電子放出シート材料。 9. An electron-emitting sheet material of tffil 1 in which part or all of the second element forms a surface layer from the sheet surface to a depth of 10% of the sheet thickness. 10. An electron emission sheet material according to claim 1, wherein the second element is at least one element selected from the group consisting of Al-Li element and Al-earth element ^ S element.
11. 第 2元素が、 L i、 Na、 K、 Cs、 Rb、 Ca、 3]:及び8&の 少なくとも 1種である謙 e> 1 の電子放出シート材料。  11. An electron-emitting sheet material having a modest e> 1 in which the second element is at least one of Li, Na, K, Cs, Rb, Ca, 3]: and 8 &.
12. 第 2元素が、 窒素及ひ鶴の少なくとも 1種である |1¾^1言 の 電子放出シート材料。  12. The electron-emitting sheet material according to | 1¾ ^ 1, wherein the second element is at least one of nitrogen and crane.
13. 第 2元素が、 希ガス元素の少なくとも 1種である Ιΐ5¾ 1記載の電 子放出シート材料。  13. The electron emission sheet material according to item 5.1, wherein the second element is at least one of rare gas elements.
14. 第 2元素が、 Ne、 Ar、 K r及ぴ X eの少なくとも 1種である前 曾 Kg 1 の電子放出シート材料。  14. The electron emission sheet material of the preceding Kg 1 wherein the second element is at least one of Ne, Ar, Kr and Xe.
15. 第 2元素が、 下記 1) 〜3) ;  15. The second element is 1) to 3) below;
1 ) アル力リ 元素及ぴアル力リ土類^ S元素の少なくとも 1種、 1) At least one of the elements and elements
2 ) 窒素及ひ の少なくとも 1種、 2) at least one of nitrogen and
3 ) 希ガス元素の少なくとも 1種  3) At least one rare gas element
の 2つ又は 3つの糸且^:である fiJtS¾ 1記載の電子放出シート材料。  The electron emission sheet material according to fiJtS¾1, wherein the two or three yarns are:
16. 纖及 (102) と、 SiltfiS^ (102) 上に積層されたグラフアイ トシート (101) とを含む電子放出シート卞才料の製造: W去であり、 編 才料は、  16. Manufacture of electron emission sheet Byeon, including fiber (102) and graphite sheet (101) laminated on SiltfiS ^ (102):
(1) 嫌己グラフアイトシート (101) は、 複数の炭素六角網面からなるグ ラフヱンが層状に積層した構造を有し、  (1) The terrible graphite sheet (101) has a structure in which graphite composed of a plurality of carbon hexagonal mesh planes is laminated in layers.
(2) 各グラフェンの c軸方向が ffffBSK (102) 面に対して実質的に直 角になるように、 各ダラフェンどうしが積層しており、  (2) Each dalaphen is stacked so that the c-axis direction of each graphene is substantially perpendicular to the ffffBSK (102) plane.
(3) 各グラフェンの c軸方向が filtS¾t反 (102) 面に対して実質的に直 角になるように、 前記グラフアイトシート (101) が前記基板 (102) 上 に積層されているものであって、  (3) The graphite sheet (101) is laminated on the substrate (102) such that the c-axis direction of each graphene is substantially perpendicular to the filtS¾t anti- (102) plane. So,
嫌己グラフアイトシートに、 炭素以外の第 2元素を原子、 分子又はクラスタ 一として付与する第 2元素付与工程を有する、電子放出シート材料の製 法。  A method for producing an electron-emitting sheet material, comprising a second element applying step of applying a second element other than carbon as an atom, molecule or cluster to a disgusting graphite sheet.
17. mm, 2元素付与工程の後に、 鍵己ダラファイトシートをさらに熱 処理する工程を有する ΙίίΙ己項 16記載の電子放出シ一ト材料の製 i ^fe  17. After the step of adding 2 mm elements, the key further comprises a step of further heat-treating the key Dalafite sheet.
18. 嫌己第 2元素付与工程が、 a ) 第 2元素としてイオン化した原子、 及びクラスターの少なくとも 1種をグラフアイトシートに打ち込むィオン打ち込み工程、 18. The disgust second element application process a) ion implantation step of implanting at least one kind of atom and cluster ionized as a second element into a graphite sheet;
を有する、 辦 6«の電子放出シート材料の製  Made of «6« electron-emitting sheet material
1 9. tins第 2元素付与工程が、  1 9.
b ) 第 2元素としてラジカル化した原子、 分子及びクラスタ一の少なくと も 1種をグラフアイトシートに照 るラジカル照射工程  b) A radical irradiation step of irradiating at least one of the radicalized atoms, molecules and clusters as a second element on a graphite sheet
を有する、 fiitffig l 6|¾¾の電子放出シート材料の製 法。  A method for producing an electron emission sheet material of fiitffig l 6 | ¾¾ having the following.
2 0. 歯己第 2元素付与工程が、  20. The tooth second element application process
c ) 第 2元素として電気的に中性の原子、分子及びクラスターの少なくと も 1種をグラフアイトシートに到達させる中性物到達工程  c) Neutral substance reaching process in which at least one kind of electrically neutral atoms, molecules and clusters as the second element reaches the graphite sheet.
を有する、 fijfB¾ l 6ΙΞ¾の電子放出シート材料の製  Made of fijfB¾l 6 電子 electron emission sheet material
2 1 . 2元素付与工程が、 下記の工程 a ) 〜 c ) ;  The 21.2 element providing step includes the following steps a) to c);
a ) 第 2元素としてイオン化した原子、 分子及びクラスターの少なくとも 1種をダラファイトシ一トに打ち込むィオン打ち込み工程、  a) an ion implantation step of implanting at least one kind of atoms, molecules and clusters ionized as a second element into a dalaphite sheet;
b ) 第 2元素としてラジカル化した原子、 分子及びクラスタ一の少なくと も 1種をグラフアイトシートに照 it るラジカル照射工程、 及び  b) a radical irradiation step of irradiating at least one of the radicalized atoms, molecules and clusters as a second element on a graphite sheet; and
c ) 第 2元素として電気的に中性の原子、 分子及びクラスターの少なくと も 1種をグラフアイトシートに到達させる中性物到達工程  c) A process for reaching at least one of electrically neutral atoms, molecules and clusters as the second element to the graphite sheet.
の 2種又は 3種の工程を有する tiff己項 1 6記載の電子放出シート材料の製 at¾¾0 The production of the electron-emitting sheet material according to the above item 16 having two or three types of processes at¾¾ 0
2 2. 廳己ダラファイトシートが、 高分子シートを襲理することによつ て得られる tiltffii l 6言 E ^の電子放出シート材料の製造方法。  2 2. A method for producing an electron-emitting sheet material of tiltffiil 6 words obtained by attacking a polymer sheet with a Daraphyte sheet.
2 3. 前記高分子シー卜が、 ポリフエ二レンォキサジァゾール、 ポリベン ゾチアゾール、 ポリべンゾビスチアゾール、 ポリべンゾォキサゾール、 ポリべ ンゾビスォキサゾーノレ、 ポリチアゾーノレ、 ポリアミド、 ポリイミド、 ポリアミ ドィミド及びポリアクリロニトリルの少なくとも 1種である廳己項 2 2記載 の電子放出シート材料の製造方  2 3. The polymer sheet is made of polyphenylene oxadiazole, polybenzothiazole, polybenzobisthiazole, polybenzoxazole, polybenzobisoxazolone, polythiazonole, polyamide, polyimide, polyamide. A method for producing an electron-emitting sheet material according to Item 22 which is at least one of imide and polyacrylonitrile.
2 4. 己高分子シート力 ポリイミドである鎌己項 2 2記載の電子放出 シー卜材料の製  2 4. Self-polymer sheet force Manufacture of the electron emission sheet material described in 22.
2 5. ttl 高分子シートが、芳香族ポリイミドである 2 2記載の電 子放出シート材料の^ 2 5. The electrode according to 22, wherein the ttl polymer sheet is an aromatic polyimide. ^ Of child release sheet material
26. ΙίίΙΕ»理が、 ガス中で第 1の tB¾ から第 1の で昇温して 1000°C以上 2500°C未満の温度で焼成する第 1の熱処理ェ 程と、 ΙίίΙΞ第 1の»理工程後に不活性ガス中で第 2の出発 から第 2の昇 度で 2500°C以上の で焼成する第 2の熱処理工程とからなる Ιίί 項 22 の電子放出シート材料の製  26. A first heat treatment step in which the temperature is increased from the first tB¾ in the gas at the first temperature and calcined at a temperature of 1000 ° C or more and less than 2500 ° C in the gas; A second heat treatment step of firing at 2500 ° C. or higher at a second rate from the second start in an inert gas after the step, and producing the electron emission sheet material according to item 22.
27. 前記グラフアイトシートの X線回折パターンにおいて、 (002n) 面 (ただし、 nは、 自«を示す。) のピークが^ Ϊする、 前記項 16記載の 電子放出シ一ト材料の製造風 27. The production of the electron-emitting sheet material according to the above item 16, wherein in the X-ray diffraction pattern of the graphite sheet, the peak of the (002 n ) plane (where n represents an axis) is infinite. Wind
28. 前記グラフアイトシ一トの X線回折パターンにおいて、 (002) 面および (004) 面のピークが する、 嫌 3¾16言嫌の電子放出シート 材料の^ m  28. In the X-ray diffraction pattern of the graphite sheet, the peaks of the (002) plane and the (004) plane are found.
29. ΙΞグラフェンどうしの層間に嫌己第 2元素が雜する、 i 29. 嫌 The second element disturbed between layers of graphene, i
6言 E¾の電子放出シート材料の S^'ife 6 words S ^ 'ife of electron emission sheet material of E¾
30. 謙己第 2元素の濃度が、 0.001原子0 /0以上 3原子0 /0以下である、 編 e¾i 6記載の電子放出シート材料の製造紘 30. Kenonore concentration of the second element, 0.001 atomic 0/0 to 3 atoms 0/0 or less, the production of electron-emitting sheet material of the knitted E¾i 6 wherein Hiroshi
31. 前記第 2元素の濃度が、 0.005原子%以上 2原子%以下である、
Figure imgf000009_0001
6記載の電子放出シート材料の製 ぁ
31. the concentration of the second element is not less than 0.005 atomic% and not more than 2 atomic%;
Figure imgf000009_0001
Production of the electron emission sheet material described in 6
32. 前記第 2元素の濃度が、 0. 01原子%以上 1原子%以下である、 嫌己項 16記載の電子放出シート材料の製造方  32. The method for manufacturing an electron-emitting sheet material according to item 16, wherein the concentration of the second element is 0.01 atomic% or more and 1 atomic% or less.
33. シートの厚みが 10 μ m以上 1000 μ m以下である |ϋΐΞ¾ 16記 載の電子放出シート材料の製造方法。  33. The thickness of the sheet is 10 μm or more and 1000 μm or less ||
34. 第 2元素の一部又は全部力 シート表面からシートの厚みの 10 % の深さまでの表面層に する ΙΐίΙΕ項 16記載の電子放出シート材料の製造 方法。  34. Part or all of the second element Force The method for producing an electron emission sheet material according to item 16, wherein the surface layer is formed from the sheet surface to a depth of 10% of the sheet thickness.
35. 第 2元素が、 アル力リ金属元素及びアル力リ土類金属元素の少なく とも 1種である |ίί ¾ 16記載の電子放出シート材料の製造方 fe>  35. The second element is at least one of an alkali metal element and an earth metal element. | Ίί ¾16.
36. 第 2元素が、 L i、 Na、 K、 Cs、 Rb、 Ca、 3]:及び8&の 少なくとも 1種である鎌己項 16記載の電子放出シ一ト材料の製^ &  36. The electron emission sheet material according to item 16, wherein the second element is at least one of Li, Na, K, Cs, Rb, Ca, 3]: and 8 &
37. 第 2元素が、 窒素及ひ舊の少なくとも 1種である ΙΐΒΐΙ 16 の電子放出シート材料の製 37. The second element is at least one of nitrogen and old ΙΐΒΐΙ 16 Of electron emission sheet material
38. 第 2元素が、希ガス元素の少なくとも 1種である ΙΐΗΙ 16言 の 電子放出シート材料の^ m  38. The second element is at least one of the noble gas elements.
39. 第 2元素が、 Ne、 Ar、 K r及び X eの少なくとも 1種である前 記項 16纖の電子放出シート材料の  39. The material for an electron emission sheet of item 16 above, wherein the second element is at least one of Ne, Ar, Kr, and Xe.
40. 第 2元素が、 下記 1)〜3) ;  40. The second element is 1) to 3) below;
1 ) アル力リ雄元素及ぴアル力リ土類^ M元素の少なくとも 1種、 1) At least one of the male element and the earth element ^ M element
2 ) 窒素及ひ¾^の少なくとも 1種、 2) at least one of nitrogen and
3 ) 希ガス元素の少なくとも 1種  3) At least one rare gas element
の 2つ又は 3つの組合せである前記項 16記載の電子放出シート材料の製 造  Item 17. Manufacturing of the electron-emitting sheet material according to item 16, which is a combination of two or three of the following.
41. 電子放出シート材料、 導電性ゲート層及ひ 1« を含む電子 ¾W素 子であって、  41. An electron-emitting device comprising an electron-emitting sheet material, a conductive gate layer and one or more
嫌己電子放出シート材料が、 & (102) と、 ffl ¾¾ (102) 上に積 層されたグラフアイトシート (101) とを含み、  The disgusting electron-emitting sheet material includes & (102) and a graphite sheet (101) laminated on ffl ¾¾ (102),
(1) ΙΐΞグラフアイトシート (101) 力 複数の炭素六角網面からなるグ ラフエンが層状に積層した構造を有し、  (1) Graphite sheet (101) Force It has a structure in which graphite consisting of a plurality of hexagonal carbon mesh layers is laminated in layers.
(2) 各ダラフェンの c軸方向が ffffSSS (102) 面に对して実質的に直角 になるように、 各ダラフェンどうしが積層しており、  (2) Each dalafen is stacked so that the c-axis direction of each dalafen is substantially perpendicular to the ffffSSS (102) plane.
(3) 各グラフェンの c軸方向が ΙίΤΪΕ¾¾ (102) 面に対して実質的に直角 になるように、 前記グラフアイトシート (101) が前言 SS板 (102) 上に 麵されており、  (3) The graphite sheet (101) is placed on the SS plate (102) so that the c-axis direction of each graphene is substantially perpendicular to the ΙίΤΪΕ¾¾ (102) plane,
(4) ttit己グラフアイトシート (101) 1 炭素以外の元素を第 2元素とし て含み、  (4) ttit self-graphite sheet (101) 1 Including elements other than carbon as the second element,
Ιίΐ グラフアイトシ一ト (101) と導電性ゲート層 (106) とが « が The graphite sheet (101) and the conductive gate layer (106)
(105) を介して配置されている、 (105) are located through
ことを糊敫とする電子藤素子。  An electronic wisteria element that makes this possible.
42. 蛍光体層を有するァノード部及び電子 W素子を含み、 廳己電子放 射素子から放出された電子が tilf己蛍光体層を発光させるように Ιίίΐ己ァノード 部及び電子漏素子力 己置されている蛍光体発光素子であって、嫌己電子 ¾lt 素子が Ιίί ¾4 II ^の素子である蛍光体発光素子。 42. Including the anode section having the phosphor layer and the electron W element, the electron section and the electron leakage element are arranged such that the electrons emitted from the self-emitting electron emitting element cause the tilt self phosphor layer to emit light. Phosphor light emitting device, A phosphor light emitting device whose device is a device of Ιίί Ιίί4 II ^.
4 3. 蛍光体層を有するァノード部及び二次元的に配列された複数の電子 4 3. An anode part having a phosphor layer and a plurality of two-dimensionally arranged electrons
¾Ιί素子を含み、廳己電子 ¾lt素子から放出された電子が蛍光体層を発光させ るように tiilBァノ一ド部及び電子 ¾ 素子が配置されている画像描画装置で あって、 friE電子 ¾w素子が tiite¾4 1記載の素子である画像描画装 ¾>An image drawing apparatus including a ¾Ιί element, and a tiilB node portion and an ¾ element arranged so that electrons emitted from the ¾lt element cause the phosphor layer to emit light. An image drawing device in which the element is an element described in tiite¾41.
4 4. 複数の電子放射素子の個々からの電子放射量によって蛍光体発光量 を制御する ΙΐίΙΒ¾4 3言 の画«画素子。 図面の簡単な説明 4 4. A three-dimensional image element that controls the amount of phosphor emission based on the amount of electron emission from each of the plurality of electron-emitting elements. BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明の実施例 1の電子放出材料及びその製造 去とそれを用レ、た 電子 素子の工程断面図である。  FIG. 1 is a process cross-sectional view of an electron-emitting material according to a first embodiment of the present invention, an electron-emitting device manufactured therefrom, and an electronic device using the same.
図 2は、本発明の実施例 1の電子お谢素子の印加 1KBこ対する ® 放出電流 の測 ¾¾果を示す。  FIG. 2 shows a measurement result of an emission current of the electron-emitting device according to the first embodiment of the present invention in response to an applied voltage of 1 KB.
図 3は、 図 2に表示した結果を Fowler-Nordheimプロットした図である。 図 4は、本発明の難例 3の電子放出材料及 の製 ^去における 放 出領域の工程断面図である。  FIG. 3 is a Fowler-Nordheim plot of the results shown in FIG. FIG. 4 is a process cross-sectional view of an emission region in manufacturing and removing an electron emission material according to Difficult Example 3 of the present invention.
図 5は、本発明の実施例 5の電子放出材料及びその製 法における雕放 出領域の工程断面図である。  FIG. 5 is a process cross-sectional view of an electron-emitting material of Example 5 of the present invention and a sculpted emission region in a method for producing the same.
図 6は、 グラフアイトの結晶構造を示す図である。  FIG. 6 is a diagram showing a crystal structure of graphite.
図 7は、 グラフアイトシートのグラフ を示 式図である。  FIG. 7 is a schematic diagram showing a graph of a graph sheet.
図 8は、 グラフアイトの代表的な X線回折パターンを示す図である。  FIG. 8 is a diagram showing a typical X-ray diffraction pattern of graphite.
図 9は、 従来のグラフアイトシートの層構成を示す模式図である。  FIG. 9 is a schematic diagram showing a layer structure of a conventional graphite sheet.
図 1 0は、電子漏素子を二次元的に複数個配置した画纖画装置の一例を 示す断面 見図である。  FIG. 10 is a cross-sectional view showing an example of an image forming apparatus in which a plurality of electron leakage elements are two-dimensionally arranged.
符号の説明  Explanation of reference numerals
1 0 1 グラフアイトシート  1 0 1 Graphite sheet
1 0 2  1 0 2
1 0 3 接着層  1 0 3 Adhesive layer
1 0 4 凸凹構造  1 0 4 Rough structure
1 0 5 絶漏 106 導電性ゲート層 1 0 5 106 conductive gate layer
1 0 7 ガラス s¾  1 0 7 Glass s¾
1 0 8  1 0 8
1 0 9 蛍光体層  1 0 9 Phosphor layer
4 0 1 グラフアイトシート  4 0 1 Graphite sheet
4 0 2 表面欠陥  4 0 2 Surface defect
4 0 3  4 0 3
5 0 1 グラフアイトシート  5 0 1 Graphite sheet
5 0 2 Mo 微粒子  5 0 2 Mo fine particles
5 0 3 Cs ,域  5 0 3 Cs, area
5 0 4 Cs 魏域  5 0 4 Cs Wei area
6 0 6 炭素原子  6 0 6 carbon atom
6 0 7 グラフェンネ冓造  6 0 7 Graphene shakuzo
6 1 3 成型体 (グラフアイト iBg^ 体、 ダイヤモンド: 結体) 6 1 3 Molded body (Graphite iBg ^ body, diamond: union)
6 1 4 炭素材料 (グラフアイト粉末、 ダイヤモンド、粒子) 6 1 4 Carbon material (Graphite powder, diamond, particles)
6 1 5 高配向' 14グラフアイトシート  6 1 5 Highly oriented '14 Graphite sheet
6 1 6 ダラフェン構造  6 1 6 Dalaphen structure
7 0 1 謝  7 0 1 Xie
7 0 2 電 合層 (下部翻  7 0 2 Electrode layer
7 0 3 電子脑層  7 0 3 Electronic layer
7 0 6 制御 ¾® (導電性ゲート層)  7 0 6 Control ¾® (conductive gate layer)
7 1 3 蛍光体層  7 1 3 Phosphor layer
7 1 4 アノード  7 1 4 Anode
7 1 5 言 IJDS¾I才  7 1 5 words IJDS¾I
7 1 8、 719 画ドライノく 発明を実施するための最良の形態  7 1 8, 719 Dryokuku Best mode for carrying out the invention
<電子放出シート材料〉  <Electron emission sheet material>
本発明の電子放出シート材料は、 (102) と、
Figure imgf000012_0001
(102) 上 に積層されたグラフアイトシート (101) とを含む; T才料であって、 (1) ΙίίϊΕグラフアイトシート (101) 、 複数の炭素六角網面からなるグ ラフエン力湄状に積層した構造を有し、
The electron emission sheet material of the present invention comprises: (102)
Figure imgf000012_0001
(102) a graphite sheet (101) laminated thereon; (1) ΙίίϊΕGraphite sheet (101) has a structure in which it is laminated in a graphene force composed of a plurality of carbon hexagonal mesh planes,
(2) 各ダラフェンの c軸方向が finest (102) 面に対して実質的に直角 になるように、 各グラフェンどうしが ¾ϋしており、  (2) Each graphene is aligned so that the c-axis direction of each dalafen is substantially perpendicular to the finest (102) plane.
(3) 各ダラフェンの c軸方向が (102) 面に対して実質的に直角 になるように、 前記グラフアイトシート (101) が前 IES板 (102) 上に 積層されており、  (3) The graphite sheet (101) is laminated on the front IES plate (102) so that the c-axis direction of each dalafen is substantially perpendicular to the (102) plane,
(4) 膽己グラフアイトシート (101) 力 炭素以外の元素を第 2元素と して含む。  (4) Guilty Graphite Sheet (101) Force Contains elements other than carbon as the second element.
(グラフアイトシートにつレ、て)  (Graphite sheet)
ダラファイトシートとは、 図 6のように、 炭素原子 606が炭素六角面を構 成し、 複数の炭素六角面からなる平面 « (グラフェン層構造) 607が層状 に,した結晶構造を^ シートを意味する。  As shown in Fig. 6, a Dalaphite sheet is a crystal sheet in which carbon atoms 606 constitute a hexagonal carbon plane, and a plane structure composed of a plurality of hexagonal carbon planes. means.
このグラフアイトシートの^ S^f去は、後に詳しく説明されるが、 ^SIJして、 ( 1 ) ポリイミドなどの高分子シートを熱処理する方法、 (2) グラフアイト 粒子を重合 結合材と共に赚 βする方法を挙げることができる。  ^ S ^ f removal of the graphite sheet will be described in detail later. ^ SIJ is used to (1) heat-treat a polymer sheet such as polyimide, and (2) graphite particles together with a polymer binder. β can be mentioned.
上記 (1) (2) のいずれのグラフアイトシートにおいても、 ダラフェンが 層状に積層しているので、 当該グラフアイトシート面と各ダラフェンの c軸方 向とがほぼ直角である。 換計れば、 各ダラフェン層が、 ほぼ TOになるよう に積層している。 なお、 (1) (2) のレ、ずれの製法によるグラフアイトシート ち市販されている。  In each of the graphite sheets (1) and (2) described above, since the dalaphen is layered in a layer, the surface of the graphite sheet and the c-axis direction of each dalaphen are substantially perpendicular. In other words, each Dalaphen layer is laminated so that it is almost TO. In addition, (1) and (2), the graphite sheet manufactured by the manufacturing method of (a) and (b) is commercially available.
本発明の電子放出シート材料においては、 上記グラフアイトシートが電子放 出領域を構成する。 上記グラフアイトシートは、 簾上に積層される。 この場 合、 グラフアイトシートを構成する各ダラフェンの c軸方向が前 IBS板 (10 2)面に対して実質的に直角になるように、 (グラフアイトシ一ト)が前言 上に積層されている。 換言すれば、 繊面と各グラフヱン層とがほぼ TOにな るように両者が積層される。  In the electron emission sheet material of the present invention, the above graphite sheet constitutes an electron emission region. The above graphite sheet is laminated on a curtain. In this case, (graphite sheet) is laminated on the above-mentioned sheet so that the c-axis direction of each dalafen constituting the graphite sheet is substantially perpendicular to the front IBS plate (102) plane. ing. In other words, the two layers are laminated so that the fiber surface and each graphene layer become almost TO.
本発明のグラフアイトシートの厚みは限定的ではなく、 その用途、使用態様 等に応じて適: i¾S定することができる。 例えば、 電子藤素子等に用いる齢 には、 通常 10 m以上 1000 μ m以下、 特に 50 m以上 200 u m以下 とすることが望ましい。 The thickness of the graphite sheet of the present invention is not limited, and it can be determined appropriately according to its use, use mode, and the like. For example, for the age used for electron wisteria elements, etc., it is usually 10 m or more and 1000 μm or less, especially It is desirable that
グラフアイトシートは、 その表面に凹凸が形成されてレ、ることが望ましレ、。 凹凸の離は所望の特 に応じて適!^定できる。 グラフアイトシートが、 特 に、 後記の製 ^法により付与される凹凸構造を有すること力 s好ましい。 より 具体的には、 1 ) イオン化した原子、 分子又はクラスターをグラフアイトシ一 トに打ち込むことにより形成される凹凸、 2) ラジカル化した原子、 分子又は クラスターをグラフアイトシートに照 することにより形成される凹凸、 ある いは 3 ) 電気的に中性の原子、 分子又はクラスターをグラフアイトシートに到 達させることにより形成される凹凸構造がダラファイトシート表面上に形成 されていることが望ましい。  The graphite sheet is desirably formed with irregularities on its surface. Separation of irregularities is suitable for the desired characteristics! I can decide. It is preferable that the graphite sheet has an uneven structure provided by the following manufacturing method. More specifically, 1) irregularities formed by implanting ionized atoms, molecules, or clusters into a graphite sheet; 2) formation by illuminating radicalized atoms, molecules, or clusters on a graphite sheet Or 3) It is desirable that an uneven structure formed by causing electrically neutral atoms, molecules or clusters to reach the graphite sheet is formed on the surface of the Dalafite sheet.
鎌は、 の材質から適細いることができる。 例えば、 ガラス、 、 セラミックス (A 1 203、 Z r O2等の酸化物セラミックス、 S i 3N4、 B N 等の非酸化物セラミックス) 等の絶椽性材料;低抵抗シリコン、 金属'合金、 滅間化^)等の導電性材料を用レ、ることもできる。雇の厚みは限定的でな く、 一般的には 0. 5〜2 rnm¾¾とすればよレヽ。 The sickle can be made from the material of the sickle. For example, glass, ceramics (A 1 2 0 3, Z r O 2 oxide such as ceramics, non-oxide ceramics such as S i 3 N 4, BN) absolute椽性material such; low resistance silicon, metal ' It is also possible to use conductive materials such as alloys and depleted ^). The thickness of the employment is not limited, and is generally 0.5 to 2 rnm.
藤とグラフアイトシートとは、 両者間に別の層を介在させても良いし、介 在させなくても良レヽ。 別の層としては、 例えば接着剤層、 m (下部 ¾® 等を介在させることができる。  The wisteria and the graphite sheet can be provided with or without a separate layer between them. As another layer, for example, an adhesive layer, m (lower layer, etc.) can be interposed.
(第 2元素について)  (About the second element)
第 2元素の觀は、所望のシート特性に応じて炭素以外の元素から適 尺 することができる。  The view of the second element can be scaled from elements other than carbon depending on the desired sheet properties.
例えば、 第 2元素として、 アルカリ^ S元素及びアル力リ土類^ Μ元素の少 なくとも 1種を用いることができる。 特に、 L i、 N a、 K、 C s、 R b、 C a、 S r及び B aの少なくとも 1種を に用レ、ることができる。 アル力リ金 属元素及びアル力リ土類金属元素は、 ダラファイトの層間又は表面に化学吸着 又は物理吸着することにより、 仕事関数が小さくなり、 低 で電子放出が開 始することができる。  For example, at least one of an alkali ^ S element and an alkaline earth element can be used as the second element. In particular, at least one of Li, Na, K, Cs, Rb, Ca, Sr, and Ba can be used. The alkali metal element and the alkaline earth metal element are chemically adsorbed or physically adsorbed on the interlayer or on the surface of Daraphite, so that the work function is reduced and electron emission can be started at a low level.
例えば、 第 2元素として、 窒素及 の少なくとも 1種を用いることがで きる。 窒素及び藤は、 ダラファイトの層間又 ί滅面に化学吸着又は物理吸着 するだけでなく、炭素原子と置 は結合することにより電子状態を街卿する ことができる。 For example, at least one of nitrogen and nitrogen can be used as the second element. Nitrogen and wisteria not only chemisorb or physically adsorb on the interlayer or decaying surface of Dalaphite, but also change the electronic state by bonding with carbon atoms. be able to.
例えば、 第 2元素として、 希ガス元素の少なくとも 1種を用いることができ る。 特に、 N e、 A r、 K r及び X eの少なくとも 1種を¾¾に用いることが できる。 希ガス元素は炭素原子と 、しなレヽが、 グラフアイトの層間又は層中 に することにより、 グラファイトの電子状態を変化させることができる。 本発明の電子放出シート材料は、 第 2元素として、 下記 1 ) 〜3 ) ; For example, at least one of rare gas elements can be used as the second element. In particular, at least one of Ne, Ar, Kr, and Xe can be used for ¾¾. The rare gas element can change the electronic state of graphite by forming carbon atoms and conductive layers between or in layers of graphite. The electron-emitting sheet material of the present invention includes, as a second element, the following 1) to 3);
1 ) アル力リ観元素及びアル力リ土類^ 元素の少なくとも 1種、1) at least one of the elements
2 ) 窒素及ひ藤の少なくとも 1種、 2) at least one of nitrogen and wisteria,
3 ) 希ガス元素の少なくとも 1種  3) At least one rare gas element
の 2つ又は 3つの組^:を用いることが好ましレ、。 これらの組^:を用いる ことによって、 より効果的にグラフアイトの電子状態を制御することが可能と なる。 特に、 これらの組^:を採用することにより、 近接した 子間に双 極子分極が形成されることにより、 グラフアイトの電子状態が変化して仕事関 数が小さくなり、 低 で電子放出が開始するという効果が得られる。  It is preferable to use two or three pairs of ^ :. By using these sets ^ :, it is possible to control the electronic state of graphite more effectively. In particular, by adopting these pairs ^ :, dipole polarization is formed between adjacent elements, the electronic state of graphite changes, the work function decreases, and electron emission starts at low The effect is obtained.
第 2元素の含有量は、 第 2元素の 、 所望のシート特性等に応じて適宜決 定することができるが、 一般的にはグラファイトシート中 0. 0 0 1原子%以 上 3原子%以下、 特に 0 · 0 0 5原子%以上 2原子%以下、 さらには 0. 0 1 原子%以上 1原子%以下含まれてレ、ることが望ましレ、。  The content of the second element can be appropriately determined according to the desired sheet properties of the second element, but generally, the content of the second element in the graphite sheet is not less than 0.001 atomic% and not more than 3 atomic%. In particular, it is desirable that the content be contained in the range of 0.05 atomic% to 2 atomic%, and more preferably 0.01 atomic% to 1 atomic%.
第 2元素は、 シート材料中のどこに存在していても良いが、 特にシート表面 に していること力 S好ましい。 より具体的には、 シート表面からシートの厚 みの 1 0 % (特に 1 %)の深さまでの表面層(以下、単に「表面層」 ともいう。) に ¾することが好ましレヽ。 例えば、 シート厚みが 1 0 0 μ mである は、 シート表面から深さ 1 μ πιまでの範囲内に第 2元素が していることが望 ましい。 表面層における第 2元素の含有量が上言 囲にある は、 グラファ ィト層間化合物が形成されるに至らなレ、一方、第 2元素がグラフアイ卜の層間 又は表面に化 及着又は物理吸着するために、 グラフアイトの表面又はその近 傍の電子状態が変ィ匕して仕事関数の値を減少させることができる。 第 2元素の 濃度が低くなりすぎると、 仕事関数の値の減少量は小さくなり、 グラフアイト 本来の値に限りなく近くなる。  The second element may be present anywhere in the sheet material, but is preferably present on the sheet surface. More specifically, it is preferable to cover the surface layer from the sheet surface to a depth of 10% (particularly 1%) of the sheet thickness (hereinafter, also simply referred to as “surface layer”). For example, if the sheet thickness is 100 μm, it is desirable that the second element be present within a range from the sheet surface to a depth of 1 μπι. If the content of the second element in the surface layer is in the above range, it means that a graphite intercalation compound is formed, while the second element is deposited on the interlayer or the surface of the graphite or physically. Due to the adsorption, the electronic state at or near the surface of the graphite is changed, and the work function value can be reduced. If the concentration of the second element is too low, the decrease in the work function value will be small, and will be close to the original value of the graphite.
また、第 2元素の含有量が上雄囲内であれば、 グラフアイト本来の觀的 性質及ひ熟的な性質を ¾»rることができる。 そのため、 グラフアイト^れ た電気伝導度、 i¾f云導度等により、 を流した^においてもジユー Λ による鶴が小さく、 力 、 難散が早く、 さらに、 正イオンに財る耐スパ ッタ性に優れ、 空でも性能が低下しなレ、電子 ¾tt素子を することがで きる。 In addition, if the content of the second element is within the upper male box, the 及 »r nature and mature nature. Therefore, due to the reduced electrical conductivity, i¾f conductivity, etc., the crane due to the ユ ー 小 さ く is small, the force and the difficulty are fast, and the spatter resistance of positive ions It is possible to use an electronic device that is excellent in performance and does not deteriorate even in the sky.
<電子放出シート材料の製 去〉  <Removal of electron emission sheet material>
本発明の電子放出シート材料は、 ffjf己のような構成力 S得られる限りどの製去 であっても良い。 特に、 グラフアイトシートに、 炭素以外の第 2元素を原子、 分子又はこれらのクラスターとして付与する工程を有する製造方法によって、 本発明の電子放出シート材料を に得ることができる。  The electron-emitting sheet material of the present invention may be manufactured by any method as long as the constituent force S like ffjf can be obtained. In particular, the electron-emitting sheet material of the present invention can be obtained by a production method including a step of applying a second element other than carbon as atoms, molecules, or clusters thereof to a graphite sheet.
(グラフアイトシートの製造にっレヽて)  (Regarding manufacturing of graphite sheet)
グラフアイトシート (ΙίίΙΒ第 2元素を含まないもの) は、 又は市販のも のを使用しても良レ、。 また、 の製法によって得られたグラフアイトシート も使用することができる。 特に、 高分子シートを讓理することによって得ら れるシートを に用レヽることができる。 高分子シートとしては、 »理によ つてグラフアイトカ S得られるものであれば限定でなく、 ポリフエ二レンォキサ ジァゾ一ノレ、 ポリべンゾチアゾール、 ポリべンゾビスチアゾール、 ポリべンゾ ォキサゾール、 ポリべンゾビスォキサゾール、 ポリチアゾール、 ポリアミド、 ポリアミドィミド、 ポリイミド及びポリアクリロニトリノレの少なくとも 1種を に用いることができる。 この中でも、 ポリイミドが好ましレ、。 より好まし くは芳截ポリイミドである。 例えば、 芳翻ポリイミドの:^、 そのシート を不活性ガス中で、 その高分子力 S !^军を始め、 炭素前駆体を経て、 ほぼ 1 0 0 %の炭素化物となる 1 0 0 0°C以上の離まで室温から昇温して讓理(予 し、 その後グラフアイト化が終了する 2 5 o o°c以上の まで室温 から昇温して»理 (MM を行う 2段階の »理工程を行うことが望まし レ、。 これにより得られるグラフアイトシートは、 このような »理工程を行わ ないものに比較して、 より確実に発泡状態を形成することができる。 なお、 グ ラファイトシートの ?、 密度、 表面状態等によって、 予備 び本焼成の 最高 · ¾ϋ^等は、 高分子の觀等に応じて適宜決定できる。 このポリ イミドシートは、 芳香^!合高分子シートの中で、 最も良質のグラフアイト構 造を与えることができる。 Graphite sheets (ΙίίΙΒ that do not contain the second element) can be used or commercially available. Further, a graphite sheet obtained by the method described in (1) can also be used. In particular, a sheet obtained by substituting a polymer sheet can be used. The polymer sheet is not limited as long as it can obtain Graphiteca S by reason. Polyphenylene oxadiazole, polybenzothiazole, polybenzobisthiazole, polybenzoxazole, polyben At least one of zobisoxazole, polythiazole, polyamide, polyamideimide, polyimide and polyacrylonitrile can be used for. Among them, polyimide is preferred. More preferably, it is polyimide. For example, in the case of: 翻 Polyimide: ^, the sheet is in an inert gas, its polymer power S! ^ 军, and after passing through a carbon precursor, it becomes almost 100% carbonized 100 ° Temperature rise from room temperature until separation of C or more (preliminary, then graphite finish) 25 Temperature rise from room temperature to 5 oo ° C or more (two-step process of performing MM) The graphite sheet obtained in this way can form a foamed state more reliably than a sheet not subjected to such a process. Depending on the density, surface condition, etc., the maximum value of pre-baking and final baking can be determined appropriately according to the view of the polymer, etc. This polyimide sheet is one of the aromatic ^! The best quality graphite You can give a build.
高分子シー卜の厚みは限^]でなく、 目的とする本発明の電子放出シート材 料の厚みになるように設定すれば良レ、。 ~ ^的には 5 μ m以上 3 0 0 μ m以下 ¾¾、 好ましくは 2 5 ;u m以上 1 2 5 μ ηι以下とすれば良レヽ。  The thickness of the polymer sheet is not limited, but may be set so as to be the desired thickness of the electron emission sheet material of the present invention. In terms of ^, 5 μm or more and 300 μm or less are preferred, and preferably 25 μm or more and 125 μηι or less.
讓幽牛は、 所定のグラフアイト構造が得られるように設定すれば良い。 一般的には、 不活性ガス中で熱処理温度 1 0 0 0°C以上 3 0 0 0°C以下、 熱処 理時間 1 0分以上 6 0 0分以下の範囲内で適宜決定すれば良レヽ。  It is only necessary that the ox cow be set so as to obtain a predetermined graphite structure. Generally, a heat treatment temperature of 100 ° C. or more and 300 ° C. or less in an inert gas and a heat treatment time of 10 minutes or more and 600 minutes or less may be appropriately determined. .
より具体的には、不活性ガス中で第 1の出発^ gから第 1の ¾¾で ?显 して 1 0 0 0°C以上 2 5 0 0°C未満の^ gで « る第 1の»理工程と、前 記第 1の熱処理工程後に不活性ガス中で第 2の出発 から第 2の昇 度 で 2 5 0 0°C以上の で^ ¾する第 2の熱処理工程とからなる方法を好ま しく採用できる。 このような讓理工程によって、 グラフアイトシートに不要 な成分原子を ¾^翠してガス化させて除去し、 大¾¾かつ均一な物性を有する グラフアイトシートを^ ffiかつ確実に形成することができる。  More specifically, the first departure in inert gas from ^ g to the first ¾¾? Then, the first treatment step of applying a pressure of 1000 g or more and less than 250 ° C. and a second treatment in an inert gas after the first heat treatment step. It is preferable to employ a method comprising a second heat treatment step in which the temperature is raised to 250 ° C. or more at an increase of 2. By such a process, unnecessary component atoms in the graphite sheet can be removed by gasification and gasification, and a graphite sheet having large and uniform physical properties can be formed efficiently and reliably. it can.
は、 用いるシート (樹脂) の觀、 シート厚み等に応じて適餓定 すれば良レ、。 firiBの第 1の は、 通常 1 °cz分以上 2 0 °cz分以下、 特 に 5°CZ分以上 1 0°C/分以下とすることが望ましい。 また、 謙己の第 2の昇 It is good to determine the starvation according to the view of the sheet (resin) to be used and the sheet thickness. The first value of firiB is usually from 1 ° C to 20 ° C, and preferably from 5 ° CZ to 10 ° C / min. Also, the second ascension of Kenmi
Si は、通常 1 °CZ分以上 2 0 °CZ分以下、 特に 5 °0 分以上 1 0 °CZ分以 下とすることが望ましい。 The content of Si is usually preferably 1 ° CZ or more and 20 ° CZ or less, particularly preferably 5 ° 0min or more and 10 ° CZ or less.
このようにして得られるシートに対し、 第 2元素を原子、 分子又はこれらの クラスターとして付与することによって、本発明の電子放出シート材料を好適 に得ることができる。  By giving the second element as an atom, a molecule or a cluster thereof to the sheet thus obtained, the electron-emitting sheet material of the present invention can be suitably obtained.
このようなグラフアイトシートは、 イメージ図として図 7に表される。 この グラフアイトシ一ト 6 1 5は、複数のグラフェン 6 1 6の積層体から構成され る。  Such a graphite sheet is shown in FIG. 7 as an image diagram. The graphite sheet 615 is composed of a laminate of a plurality of graphenes 616.
また、 このようなグラフアイトシートは、 図 8の X線回折パターンに示され るように、 (0 0 2 ") (ただし、 nは、 自«を示す。) にピークを有する。 詳 述すれば、 ( 0 0 2 n) (nは、自然数)にのみピークを有する。代表的には、 (0 0 2) および (0 0 4 ) にのみピークを有する。 なお、 n = lとした^であ る (0 0 2 ) の回折角度は 2 6 . 5° 付近である。 以上のようなグラフアイトシートのほか、本発明において用いられるグラフ アイトシートの ^としては、グラフアイト粒子(グラフアイトフレーク) を重合雕合材と共に讀成型する旅を挙げることができる。 これにつレ、て は、 特開平 1 1— 1 6 2 1号公報 (米国特許第 5 8 6 3 4 6 7号、 この米国特 許は、 本明細書に援用される) に詳しく説明されている。 重合維合材として は、 ェポキ、^脂を挙げることができる。 グラフアイト立子と重合^合材と の充填比は、 一例として 6 : 4を挙げることができる。 このようなグラフアイ トシートは、 イメージ図として図 9に示される。 図 9に^ょうに、 このシー ト 6 1 3では、 グラフアイト粉末 6 1 4力 S層状に配列した状態である。 また、 成形時の圧力としては、一例として 1 4 0 0 p s i以上 1 6 0 0 0 p s i 以下を挙げることができる。 このようなグラフアイトシートの X線回折パター ンは、 図 8とは異なり、 あちこちにピークが出て、 結果として 「ブロード」 と 評される。 In addition, such a graphite sheet has a peak at (002), where n indicates its own, as shown in the X-ray diffraction pattern of FIG. For example, it has a peak only at (0 2 n ) (n is a natural number), and typically has peaks only at (0 2) and (0 4). The diffraction angle of (0 2) is around 26.5 °. In addition to the above-described graphite sheet, ^ of the graphite sheet used in the present invention includes a journey of reading and molding graphite particles (graphite flakes) together with a polymerized sculpture material. This is described in detail in Japanese Patent Application Laid-Open No. 11-161 (US Pat. No. 5,866,467, which is incorporated herein by reference). ing. Examples of the polymerized filler include epoxy and fat. As an example, the filling ratio between the graphite rod and the polymer mixture is 6: 4. Such a graph item sheet is shown in Fig. 9 as an image diagram. As shown in FIG. 9, the sheet 6 13 is in a state where the graphite powder 6 14 is arranged in an S layer. The pressure during molding may be, for example, 140 psi or more and 160 000 psi or less. The X-ray diffraction pattern of such a graphite sheet, unlike FIG. 8, shows peaks everywhere, and as a result is described as “broad”.
(第 2元素の付与について)  (About the addition of the second element)
第 2元素を付与する方法は、第 2元素をグラフアイトシートに固定できる限 り特に制限されず、 の方法を適 用することができる。 特に、 本発明で は、 第 2元素を原子、 分子及びこれらのクラスターの形態で付与する。 第 2元 素の付与は、 グラフアイトシートを 反に積層する前であっても良いし、 ある レ、はグラフアイトシートを に積層した後であっても良レ、。 第 2元素は、 第 2元素単体又は 2種以上の化^! (分子) の形態で付与することも可能である 力 特に第 2元素単一の原子、 分子又はクラスタ一として付与することが望ま しい。  The method of adding the second element is not particularly limited as long as the second element can be fixed to the graphite sheet, and the method described in (1) can be applied. In particular, in the present invention, the second element is provided in the form of atoms, molecules and clusters thereof. The second element may be applied before the graphite sheet is laminated on the contrary, or a certain element may be added even after the graphite sheet is laminated on the graphite sheet. The second element is a second element alone or a compound of two or more ^! It is also possible to apply in the form of (molecule). Force It is particularly desirable to apply the second element as a single atom, molecule or cluster.
特に、 下記の工程 a )〜c ) ;  In particular, the following steps a) to c):
a ) 第 2元素としてイオン化した原子、 分子及びこれらのクラスターの少 なくとも 1種をグラフアイトシートに打ち込む工程 (ィオン打ち込みェ 、 b ) 第 2元素としてラジカノレ化した原子、 分子及びこれらのクラスターの 少なくとも 1種をグラフアイトシ一卜に照 i る工程(ラジカル照射工禾 D、 及び  a) A step of implanting at least one kind of atoms and molecules ionized as a second element and their clusters into a graphite sheet (ion implantation b) A b) Radical-cancelled atoms and molecules as second elements and A step of irradiating at least one species with a graphite sheet (radical irradiation process D, and
c ) 第 2元素として電気的に中性の原子、 及びこれらのクラスターの 少なくとも 1種をグラフアイトシ一卜に到達させる工程 (中性物到達: m) の少なくとも 1種の工程を採用することが好ましレ、。 c) a step of causing electrically neutral atoms as the second element and at least one of these clusters to reach the graphite sheet (neutral reaching: m) It is preferable to employ at least one type of process.
より好ましくは、少なくとも 2種以上の工程を採用する。 2つ以上の工程を 実施することにより、 第 2の製造工程においては、 第 1の继工程で凹 fit冓造 がグラフアイトシートの表面に既に形成されているので、 グラフアイトの層間 又 ί域面への化学又は物理吸着 ·纖、 及び、 グラフアイトを構成してレ、る炭 素原子との Si^を容易に進行させることができる。  More preferably, at least two or more steps are employed. By carrying out two or more steps, in the second manufacturing step, the concave fit structure is already formed on the surface of the graphite sheet in the first step, so the interlayer or area of the graphite sheet is formed. Chemical or physical adsorption on the surface · Fiber and graphite can be easily formed to promote Si ^ with carbon atoms.
上記 a ) の; ^去としては、 例えば第 2元素を含む原子、 分子又はクラスター の を^]のィオンィ I ^置でィオン化した後、質量分析を行うことにより所 定のィオン原子、分子又はクラスターを取り出す^ ¾ ^の の; ^去を好まし く採用することができる。 この方法によれば、 グラフアイトシート表面にィォ ンィ匕した原子、分子又はそれらのクラスターを衝突及 入させることにより、 シート表面に凸凹構造を形成することができる。 ィオン照射で生じた凸凹構造 中には、 曲率雜が小さい突起状構造が高密度で被するため、 イオンが照射 されたグラフアイトシート表面には、低い印加 ®ϊで電子放出できる 放出 部が形成される。 さらに、 イオン打ち込みでは、 原子種、カロ速 mffi、 打ち込み を変化させることにより、表面形状及 質中での濃度分布を制御するこ とができる。  In the above a), for example, the ion, atom, molecule or cluster containing the second element is ionized at the ion position I ^ of ^], and then mass spectrometry is performed. Retrieving the cluster ^ ¾ ^ can be employed favorably. According to this method, it is possible to form an uneven structure on the surface of the graphite sheet by colliding atoms and molecules or clusters thereof on the surface of the graphite sheet. Since the projection-like structure with small curvature is covered with high density in the uneven structure generated by ion irradiation, an emission part that can emit electrons with a low voltage is formed on the surface of the graphite sheet irradiated with ions. Is done. Furthermore, in ion implantation, the concentration distribution in the surface shape and material can be controlled by changing the atomic species, the calo speed mffi, and the implantation.
±IEb) の: W去としては、 例えば第 2元素を含む原子、 分子又はクラスター の気相に r f帯の電磁波を照射する方法等の公知の方法を好ましく採用する ことができる。 ラジカルは、 イオンと比較して衝突による原 置変化は少な いが、 ィ匕学 活性に優れている。 このため、 グラフアイトシートにラジカル ィ匕した原子、 ^"又はそれらのクラスタ一を照 ttることにより、 原子、 分子 又はそれらのクラスターがグラフアイトの層間又は表面にィ匕吸着学又は物理 吸着したり、 グラフアイトを構成している炭素原子との 物が昇華又は することにより、 凹凸構造が形成される。 ラジカル照射で生じた凸凹構造 には、雕集中力瑢易に起こる曲率雜が小さい突起状離が高密度で被す る。 すなわち、 ラジカノレが照射されたグラフアイトシート表面には、 低印加電 圧で電子放出可能となる ® 放出部が形成されることとなる。  As for (IEb), a known method such as a method of irradiating an rf band electromagnetic wave to the gas phase of an atom, molecule or cluster containing the second element can be preferably employed. Radicals have less change in their original state due to collisions as compared with ions, but are superior in iridical activity. For this reason, by illuminating the radicals, ^ "or their clusters on the graphite sheet, the atoms, molecules or their clusters are adsorbed or physically adsorbed to the interlayer or surface of the graphite. In addition, an uneven structure is formed by the sublimation or destruction of an object with the carbon atoms constituting the graphite, and the uneven structure generated by the radical irradiation has a small curvature that easily occurs due to the sculpting power. In other words, a high-density release is formed, that is, an emission portion capable of emitting electrons at a low applied voltage is formed on the surface of the graphite sheet irradiated with the radioactive ray.
上記 c ) の 法としては、 例えば特開平 8 - 1 6 8 9 6 1号公報に開示され ている方法を好ましく採用することができる。 この方法によれば、 グラフアイ トシートに電気的に中性の原子、分子又はそれらのクラスターを到達させ、 グ ラファイト表面に堆積させることによって、 曲率雜の小さい凸凹髓を形成 することができる。 これにより、 電子放出部を女 に構成することができる。 また、 グラフアイト表面に到達した原子、 分子又はそれらのクラスターがグ ラフアイトの層間又 面に化 着又は物理吸着したり、 グラフアイトを構 成している炭素原子と することにより、 凹凸構造又は炭素化合物力研城さ れる。 凸凹構造は曲率^^が小さく、 その離が 放出部となる。 また、 表 面吸着物、 グラフアイト中に進入した原^クラスター、 炭素化^等カ^ ½ することによって、 表面近傍の電子状態を変えることができる。 As the above-mentioned method c), for example, a method disclosed in Japanese Patent Application Laid-Open No. 8-169691 can be preferably employed. According to this method, the graph eye By making electrically neutral atoms, molecules or their clusters reach the sheet and depositing them on the graphite surface, irregularities with small curvature can be formed. Thereby, the electron emission portion can be configured for a woman. In addition, the atoms, molecules, or their clusters that have reached the graphite surface are attached or physically adsorbed to the interlayers or surfaces of the graphite, or are formed as carbon atoms constituting the graphite, thereby providing an uneven structure or carbon. It is a compound compound. The uneven structure has a small curvature ^^, and the separation becomes the emission part. In addition, the electronic state near the surface can be changed by the surface adsorbate, the original clusters, and the carbonization that enter the graphite.
(第 2元素付 の讓理について)  (About the processing with the second element)
本発明では、 必要に応じて、第 2元素が付与されたシートをさらに讓理し ても良い。 この»理によって、 表面近傍に している第 2元素とグラファ ィ卜との化学 の碰、 凸凹中 化^!の平面内での均一化、 原子、 分子 又はそれらのクラスターの深さ方向濃度分布の均一化又は制御を行うことが できる。  In the present invention, the sheet to which the second element has been added may be further processed as necessary. By this process, the chemistry between the second element and the graphite in the vicinity of the surface can be uniformed in the plane of uneven carbonization ^ !, and the concentration distribution of atoms, molecules, or their clusters in the depth direction can be achieved. Can be made uniform or controlled.
»a ^件は限定的でなく、例えば不活 I·生ガス中で温度 30 o°c以上 100 0 °c以下で 5分以上 60分以 rasとすれば良レヽ。  »A ^ Cases are not limited. For example, if the temperature is 30 o ° c or more and 1000 ° C or less and 5 minutes or more and 60 minutes or more ras in inert I. raw gas, it is good.
ぐ電子娜素子 >  GU Electronics>
本発明の電子腕素子は、 電子放出シート材料、導電性ゲート層及ひ 鶴 を含む電子 素子であって、  The electronic arm element of the present invention is an electronic element including an electron emission sheet material, a conductive gate layer and a crane.
鍵己電子放出シート材料が、 R (102) と、 ffitBSt反 (102) 上に積 層されたグラフアイトシート (101) とを含む材料であって、  A key self-emissive sheet material comprising R (102) and a graphite sheet (101) laminated on ffitBSt (102),
(1) ΐΞグラフアイトシート (101) 力 \ 複数の炭素六角網面からなるグ ラフヱンが層状に積層した構造を有し、  (1) Graphite sheet (101) Force \ has a structure in which graphite consisting of a plurality of carbon hexagonal mesh layers is laminated in layers,
(2) 各ダラフェンの c軸方向が tfitfiSS (102) 面に対して実質的に直角 になるように、 各ダラフェンどうし力 s積層しており、  (2) Each dalafen is stacked with each other so that the c-axis direction of each dalafen is substantially perpendicular to the tfitfiSS (102) plane.
(3) 各ダラフェンの c軸方向が前言 a£板 (102) 面に対して実質的に直角 になるように、 tilt己グラフアイトシート (101) が ΙΐίΐΒ» (102) 上に 積層されており、  (3) A tilt-graphite sheet (101) is laminated on the ダ »(102) such that the c-axis direction of each dalafen is substantially perpendicular to the plane of the a-plate (102). ,
(4) ΙΐίΙΕグラフアイトシート (101) 力 \ 炭素以外の元素を第 2元素とし て含み、 (4) Graphite sheet (101) Force \ Elements other than carbon are used as the second element. Including
Ι ΙΞグラフアイトシ一トと導電性グート層とが »ϋを介して配置されて いる、  Ι ΙΞ Graphite sheet and conductive gut layer are arranged via »
ことを糊敫とする。  This is called glue.
すなわち、本発明の電子腿素子は、 電子放出領域として本発明の電子放出 シート材料を用いるほかは、 の離放出射素子で採用されている驟 (ス ぺーサ一等) を適用することができる。本発明における電子 ¾Ιί素子の Uを 図 1 ( c ) に示す。  In other words, the electronic thigh element of the present invention can use a squash (a spacer or the like) employed in the remote emitting device of the present invention, except for using the electron emitting sheet material of the present invention as the electron emitting region. . FIG. 1 (c) shows U of the electron element according to the present invention.
電子放出領域は、 0 2及びグラフアイトシート 1 0 1を含む電子 騰シート材料によって形成される。 図 1 ( c ) では、鎌とグラフアイトシ ートとは接着層 1 0 3を介して ¾ されてレ、る。  The electron emission region is formed by an electron rising sheet material including 02 and graphite sheet 101. In FIG. 1 (c), the sickle and the graphite sheet are separated via the adhesive layer 103.
謝は、 の材質から適:! fflいることができる。 例えば、 ガラス、 、 セラミックス (A l 2O3、 Z r 02等の酸化物セラミックス、 S i 3N4、 B N 等の非酸化物セラミックス) 等の «性材料;低抵抗シリコン、 金属'合金、 間化^!等の導電性材料を用レ、ることもできる。謝の厚みは限定的でな く、 ~ 的には 0 . 5〜 2 mm離とすればよい。 接着剤としては、例えば市 販の導電' 着剤等を用レ、ることができる。接着剤を使用する^^の接着剤層 の厚みは、 接着剤の 等に応じて適: 1^定できる。 Xie is suitable for the material of: ffl. For example, glass, ceramics (A l 2 O 3, Z r 0 2 oxides such as ceramics, non-oxide ceramics such as S i 3 N 4, BN) « material such as; low resistance silicon, metal 'alloy , Intermediate ^! It is also possible to use a conductive material such as The thickness of the letter is not limited, and may be about 0.5 to 2 mm apart. As the adhesive, for example, a commercially available conductive adhesive or the like can be used. The thickness of the adhesive layer using an adhesive can be set to 1: 1 according to the adhesive or the like.
また、本発明の電子放射素子では、必要に応じて電子放出領域に電子を供給 する下部 を設けても良い。 すなわち、凝才と電子放出領域の間に下部電 ffiiを形成することができる。 下部 ¾®iとしては、 例えばアルミ二ゥム、 チ タン、 クロム、 ニッケル、 , 金、 タングステン等の金殿才料;シリコン、 窒 化ガリゥム等の低抵抗 n形半導体と金属とを積層した複合材料等を使用する ことができる。 下部 の厚みは、一般的には:!〜 5 0 m禾敏とすればよ い。  In the electron-emitting device of the present invention, a lower portion for supplying electrons to the electron-emitting region may be provided as necessary. That is, a lower electrode ffii can be formed between the elongation and the electron emission region. The lower layer is made of, for example, aluminum, titanium, chromium, nickel, chromium, gold, tungsten, and other gold materials; a composite material obtained by laminating a metal with a low-resistance n-type semiconductor, such as silicon or gallium nitride, and a metal. Can be used. The thickness of the lower part is generally:! ~ 50 m.
導電性グート層 1 0 6は、 印加によって電子放出領域に対して霸を与 え、 その 嫉によって 子量を制御する機能を有する。 そのような機 能を有する限りその材質は限定的でない。 特に、 瞧する層との密着 、バタ ーン勝等の加工性等に富む を好適に使用することができる。一般的には、 II、銅、 ァノレミニゥム、 ニッケ Λ を女 ¾1に用いることができる。 導電性ゲー ト層の厚みは、 通常 0. :!〜 3 ζ πι¾¾とすればよレヽ。 The conductive gout layer 106 has a function of giving a chunk to the electron emission region by application and controlling the amount of electrons by its jealousy. The material is not limited as long as it has such a function. In particular, a material having excellent processability such as close contact with a layer to be formed and a pattern win can be preferably used. Generally, II, copper, anolem, nickel can be used for female. Conductive gate The thickness of the layer is usually 0 .:! ~ 3 ππι¾¾.
本発明の電子脑素子では、 電子放出領域(特に本発明の電子放出シート材 料のグラフアイトシ一ト 1 0 1 ) と導電性ゲート層 1 0 6と力 S劍虫しない限り、 どのような配置を採用してもよレ、。 電子放出領域と導電性ゲート層との間は、 空間及 体の少なくとも 1種が介在すればよレ、。 例えば、 図 1 ( c ) のよ うに、 グラフアイトシート 1 0 1力 m 1 0 5.を介して導電性ゲート層 1 In the electron emitting device of the present invention, as long as the electron emitting region (especially the graphite sheet 101 of the electron emitting sheet material of the present invention), the conductive gate layer 106 and the force S sword are not used, You may adopt the arrangement. The space between the electron emission region and the conductive gate layer should be at least one of a space and a body. For example, as shown in FIG. 1 (c), the conductive gate layer 1
0 6と対向するように配置されてもよい。 具体的には、 のスピント型電子06 may be arranged to face. Specifically, Spindt-type electron
¾ ^素子におけるゲート とエミッタの酉己置と同様にすることもできる。上 記空間は、 真空又はそれに近い状態とすること力 S好ましい。 両層間の薩は、 所望の性能、 ® ^嫉等に応じて適宜定めることができる。 一般的には、 上記 隹が短いほど、 より低い mmで済む。 また、 電子放出領域 (電子放出層) と 導電性ゲート層とは、 実質的に TOに配置されてレ、ること力 s好ましレ、。 This can be done in the same way as the gate and emitter of the device. The space is preferably in a vacuum or a state close thereto. The distance between the two layers can be determined as appropriate according to the desired performance, jealousy, and the like. In general, the shorter the pur, the lower the mm. In addition, the electron emission region (electron emission layer) and the conductive gate layer are substantially arranged in the TO, and the power is preferably higher.
「電子放出領域と導電性ゲート層と力 S撤 しない」 とは、 図 1 ( c ) に例示 されるように、 電子放出領域と導電性ゲート層 1 0 6とカ灘間し、 これらの間 で縁が保たれてレ、ることを意味する。  "The electron emission region and the conductive gate layer and the force S are not removed" means that the electron emission region and the conductive gate layer 106 are located between the gate and the sea, as illustrated in FIG. 1 (c). Means that the edge is kept.
電子放出領域と導電性ゲート層 1 0 6とは、それそ'; 虫立して設置すること ができる。また、互いにスぺーサ(糸縁体)を介して両者が固定されてもよい。 スぺーサとしては、 例えばアルミナ、 ジルコユア、 二酸化ケイ素等の絶緣材料 を好ましく使用することができる。  The electron emission region and the conductive gate layer 106 can be disposed so as to stand apart. Further, both may be fixed to each other via a spacer (thread edge). As the spacer, an insulating material such as alumina, zirconia, and silicon dioxide can be preferably used.
本発明の電子漏素子は、 の電子腿素子と同様の方法で垂させるこ とができる。 例えば、 鎌上に設けられた下部 «®i又は電子放出領域と、 導 電性ゲート層との間に所定の を印加すればよい。 n 電子放出領域が 電界弓娘 1 1 0 6 VZm以上の電界にお力れるように調節すればよい。 この ^,麵雰囲気は、一般的に真空又はそれに近い状態とすることが好ましい。 また、駆動温度は限定的ではないが、 通常 0〜6 0°C程度に設定することが望 ましレ、。また、電流は、直流又はパルス状(倾被)のレ、ずれであってもよレ、。 The electron leak element of the present invention can be hung in the same manner as the electronic thigh element of the present invention. For example, a predetermined voltage may be applied between the lower gate or the electron emission region provided on the sickle and the conductive gate layer. n electron emission regions may be adjusted as your power to the electric field bow daughter 1 1 0 6 VZm or more of the electric field. It is generally preferable that the ^, 麵 atmosphere be in a vacuum or a state close thereto. Although the driving temperature is not limited, it is usually preferable to set the driving temperature to about 0 to 60 ° C. Further, the current may be DC or pulsed (倾), or may be shifted.
<蛍光体発光素子 >  <Phosphor light emitting device>
本発明の蛍光体発光素子は、蛍光体層を有するァノード部及び電子; W素子 を含み、鍾己電子腿素子から放出された電子が ΙίίΙΒ蛍光体層を発光させるよ うに tiff己アノード部及び電子 素子が配置されている蛍光体発光素子であ つて、 前記電子放射素子が前記の本発明の電子お 素子である。 The phosphor light-emitting device of the present invention includes an anode portion having a phosphor layer and an electron; a W device, and a tiff self-anode portion and an electron such that electrons emitted from the junkie electronic thigh element cause the phosphor layer to emit light. The phosphor light emitting element in which the element is arranged The electron emitting element is the electronic element of the present invention.
本発明の蛍光体発光素子は、電子 ¾Ιί素子として本発明の電子 w素子を使 用するものである。 その他の要素 (織又はハウジング等) は、 の蛍光体 発光素子で用レ、られてレ、る要素を適用することができる。本発明の蛍光脑子 の一例を図 1 ( d) に^ 1"。  The phosphor light emitting device of the present invention uses the electronic w device of the present invention as an electronic device. Other elements (woven or housing, etc.) can be used in the phosphor light emitting element of the present invention. One example of the fluorescent element of the present invention is shown in FIG.
アノード部は、 冓成として、 電子簡素子に近レ、順に蛍光体層 1 0 9、 透明 » (ァノード 1 0 8及びガラス擁 1 0 7力 S積層された ¾ϋ体 を鐘に用いることができる。 各層の構 β¾¾びその形成は、 の技術に従え ばよい。  The anode part can be used as a bell, which is similar to an electron simpler, and in this order, the phosphor layer 109, transparent »(anode 108 and glass holding layer 107) The structure of each layer β and its formation may be in accordance with the following technique.
ァノード部を構成する各層は、 前面(ァノード都) から発光を取り出 は、 の蛍光体発光素子で棚されてレ、る透明性材料をそれぞ滅用 "t lば よレ、。 難は、 ガラス纖、 謹等を麵することができる。 アノード電 としては、 インジウム錫酸化物 (I T O)、 酸化スズ、 酸化 口、等を例示 することができる。  Each layer constituting the anode portion takes out light from the front surface (the anode node), and is shelved with phosphor light-emitting elements, and eliminates the use of transparent materials. Examples of the anodic electrode include indium tin oxide (ITO), tin oxide, and an oxide port.
蛍光体層 1 0 9としては、所望の発色等に応じて適: 1^成すればよい。 すな わち、赤(R) ·青(B) '緑(G)の 3原色、 これらの中間色等の各色に応じ、 各種蛍光体(化^)) 力ら適 することができる。例えば、 Y203系、 G d Β 03系等の赤色蛍光体; Z n S系、 Ζ η θ系等の 蛍光体; Y 2 S i 05 系、 Z n S系等の青色蛍光体が挙げられる。 蛍光体層の形成は、例えばこれら を含む激夜又は分散液を透明 ¾ 1 0 8上に印刷又は塗布することにより薄 膜として形成すればよい。 The phosphor layer 109 may be appropriately formed according to a desired color development or the like. That is, various phosphors (chemical formulas) can be applied according to each of the three primary colors of red (R), blue (B), and green (G), and intermediate colors thereof. For example, Y 2 0 3 system, the red phosphor of G d beta 0 3 system or the like; Z n S system, the phosphor of the Zeta eta theta system like; Y 2 S i 0 5 system, the blue fluorescence of Z n S system, etc. Body. The phosphor layer may be formed, for example, as a thin film by printing or coating a transparent layer containing these on a transparent substrate or on a transparent substrate 108.
電子簡素子とアノード部 (特に蛍光体層) の酉己置は、編己素子の電子放出 領域から放出される電子がアノード部の蛍光体層に衝突して発光できるよう にすればよい。 好ましくは、 電子放出領域とアノード部 (蛍光体層) が互いに 対向するように配置する。 両者の間は、 空間 (特に真空空間) になっているこ とが好ましい。 また、 電子放出領域 (電子放出層) と蛍光体層は、 TOに配置 することが望ましい。 電子放出領域と蛍光体層との «は、一般的に 1 0 0 m〜 2 mmの範囲内にぉレ、て、所望の性能等に応じて適: ijg節することができ る。  The electron simplicity and the anode (particularly, the phosphor layer) may be arranged so that electrons emitted from the electron emission region of the knitted device collide with the phosphor layer of the anode to emit light. Preferably, the electron emission region and the anode section (phosphor layer) are arranged so as to face each other. It is preferable that a space (especially a vacuum space) is provided between the two. In addition, it is desirable that the electron emission region (electron emission layer) and the phosphor layer are arranged in the TO. The distance between the electron emission region and the phosphor layer is generally within the range of 100 m to 2 mm, and can be appropriately adjusted according to desired performance and the like.
<画像描画装置 > 本発明の画^画装置は、蛍光体層を有するァノード部及び二次元的に酉 】 された複数の電子腿素子を含み、 tiitS電子 素子から放出された電子が蛍 光体層を発光させるように IBァノ一ド部及び電子 ¾lt素子が配置されてレ、 る画像描画装置であって、 ΙϋΐΒ電子灘素子が本発明の電子藤素子である。 この画像描 Γ装置では、 電子放出領域から取り出され、 ゲート籠付近に到 達した電子が、蛍光体層とゲート籍間に印加された豪によって加速されて 蛍光体層に照射されることによって、 蛍光体層が発光する。 発光の鍵は、 ゲ 一ト癒に印加する ¾ffによって制御が可能であるので、個々の電子腿素子 のゲート を Φ脚することにより、大¾¾に画像や文字を表示できる画 像描画装置が雞できる。 <Image drawing device> The image forming apparatus according to the present invention includes an anode portion having a phosphor layer and a plurality of two-dimensionally arranged electronic thigh elements, so that electrons emitted from the tiitS electronic element cause the phosphor layer to emit light. An image drawing apparatus in which an IB node section and an electronic element are arranged, wherein the electronic element is the electronic wister element of the present invention. In this image drawing device, electrons that are extracted from the electron emission region and reach the vicinity of the gate cage are accelerated by the light applied between the phosphor layer and the gate, and are irradiated on the phosphor layer. The phosphor layer emits light. Since the key of light emission can be controlled by ¾ff applied to the gate healing, an image drawing device capable of displaying images and characters on a large scale by extending the gate of each electronic thigh element by Φ legs is used. it can.
本発明の画像描画装置は、電子 素子として本発明の電子 ¾w素子を^ ffl する。 その他の要素 (ハウジング、 ,睡用ドライノく等) は、 の画腿画装 置で用レ、られてレ、る要素を適用することができる。本発明の画雄画装置の概 要を図 1 0に^ r。  In the image drawing apparatus of the present invention, the electronic element of the present invention is used as an electronic element. For other elements (housings, driers for sleep, etc.), the following elements can be used in the image drawing device. FIG. 10 shows an outline of the male and female painting apparatus of the present invention.
電子謝素子 7 0 3は、 二次元状に複数個配列されている。 すなわち、 同一 平面上に電子腿素子が配列され、電子腿素子のアレイを形成する。 このよ うなァレイとしては、例えば電気的に総された複数本の ターンに対し、 そのパターンに直交するように複数本の導電性ゲート層 7 0 6のパターンを 有する構成 (すなわち、 マトリックスお) が大面函の装置を^ tする上で有 利である。  A plurality of electronic devices 703 are arranged two-dimensionally. That is, electronic thigh elements are arranged on the same plane to form an array of electronic thigh elements. As such an array, for example, a configuration (that is, a matrix or the like) having a pattern of a plurality of conductive gate layers 706 so as to be orthogonal to the pattern with respect to a plurality of electrically totalized turns is exemplified. This is useful for performing the large box equipment.
蛍光体層の 冓成は、前記の蛍光体発光素子の蛍光体層と同様の構成を採 用することができる。 蛍光体層の数'種類は、 画素数、 麵の大きさ等に応じ て適宜決定すればよい。 1画素に対応する電子腿素子の数は、所望の発 度等により異なるが、 通常は 1〜 5 0個禾!^とすればよレ、。  The phosphor layer may have the same configuration as the phosphor layer of the phosphor light emitting device. The number 'type' of the phosphor layers may be determined as appropriate according to the number of pixels, the size of 麵, and the like. The number of electronic thigh elements corresponding to one pixel varies depending on the desired degree of incidence and the like, but it is usually 1 to 50 grains! ^.
特に、 力ラー画像を表示する^^には、各電子腿素子 7 0 3にそれぞれに 対応するように、 RG Bの 3原色を一組とする蛍光体層 (1画素) の各々をァ ノード mfei:に配針ればよい。 3原色の配 法は、縦ストライプ状、横ス トライプ等の各種の配 法を適用できる。 カラー画像の 、 1画素に対応 する電子 素子の数は、 通常は 1〜: I 0 0個禾!^とすることが好ましレ、。 蛍光体層 7 1 3を含むアノード部 7 1 4と各電子腿素子 7 0 3のレイァ ゥトは、 各電子藤素子 703からの電子膝量によって、個々の蛍光体層発 光量を個別に親卸できるように^ ©1"ればよい。 特に、 アノード部の蛍光体層 の一部又は全部と、 電子腿素子の電子腿領域と力 両層が実 に φί?状 態を保ちながら対面するような構成とすること力好ましレ、。 In particular, in order to display a color image, each of the phosphor layers (one pixel) having a set of the three primary colors R, G, and B corresponds to each electronic thigh element 703, respectively. mfei: You just need to arrange it. Various arrangements such as a vertical stripe and a horizontal stripe can be applied to the arrangement of the three primary colors. The number of electronic elements corresponding to one pixel in a color image is usually 1 to: I 0 0! ^ The anode part 7 14 including the phosphor layer 7 13 and the layer of each electronic thigh element 7 03 The size of the phosphor layer should be such that the amount of light emitted from each phosphor layer can be individually controlled based on the amount of electronic knees from each electron beam device 703. In particular, a part of the phosphor layer in the anode section Alternatively, it is preferable that the electronic thigh region and the electronic thigh region of the electronic thigh element face each other while maintaining the φί state.
本発明の画^ s画装置の 去は、 的には公知の電界放出ディスプレ ィ等と同様にすればよい。 例えば、 電子篇素子の下部 mm 2又は電子放出 領域と導電性グート層 706とに駆動ドライノく 718及び 719をそれぞれ 取り付け、 両層に所定の MEを印加すればよレ、。  The removal of the image forming apparatus of the present invention may be performed in the same manner as a known field emission display or the like. For example, driving driers 718 and 719 are respectively attached to the lower mm 2 or the electron emission region of the electronic device and the conductive gut layer 706, and a predetermined ME is applied to both layers.
実 施 例  Example
以下に実施例を示し、 本発明をより詳細に説明する。 ただし、 本発明の範囲 は、 実施例に限定されない。  Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to the examples.
実施例 1 Example 1
ii¥75/ mのポリイミドシート (商品名カプトン (登録商標) :東レ 'デ ュポンネ環) を用いた。 «誠は、 不活性ガス雰囲気中で、 常温から 度 4°C/m i nで 显し、 炭素化領域にある 1100°Cで 2時間麟し 本 焼成は、 不活性ガス雰囲気中で、 常温から ^1¾ 20 °C/m i nで昇温し、 グラフアイト化領域である 2700。Cで 1時間麟した。本誠終了後に圧延 を行うことによりグラフアイトシートを得た。 このグラフアイトシート 101 の厚みは、 ポリイミドシートより厚い約 10 Ομπιであった (図 1 (a))。 このグラフアイトシート 101は柔軟性に富むため、その後の素子ィ樓工程 において取り扱レヽが容易であった。 また、 電子; W素子として安定に動作させ るために、平坦な ¾t反に^ ^系又は ^^系接着剤によって固定することが望ま しい。 そこで、 本雄例では、 平; t且性が高く^ ffiなガラス製艳醒反 102上 に、 ァノレミナを 分とする接着層 103 (ァレコム セラマボンド 50 3) を用いてグラフアイトシート 101を固定した。  ii A polyimide sheet of ¥ 75 / m (trade name Kapton (registered trademark): Toray DuPont Ring) was used.誠 Crying is performed at a temperature of 4 ° C / min from room temperature in an inert gas atmosphere, and is performed for 2 hours at 1100 ° C in the carbonization region. The temperature is raised at 1¾20 ° C / min, and it is 2700, a graphite area. In C for 1 hour. After the completion of this work, a graphite sheet was obtained by rolling. The thickness of the graphite sheet 101 was about 10 μππ which was thicker than the polyimide sheet (FIG. 1 (a)). Since the graphite sheet 101 is highly flexible, it can be easily handled in the subsequent device fabrication process. In addition, in order to operate stably as an electron; W element, it is desirable to fix it with a ^^-based or ^^-based adhesive in contrast to a flat Δt. Therefore, in the present example, the graphite sheet 101 was fixed on the glass wrist 102 having a high flatness and high efficiency using an adhesive layer 103 (Alecom Cerama Bond 503) which is composed of anoremina. .
次に、 深さ 0. 4 mの領域を中心に 0. ら μ mの範囲に分布する条件にて L iイオンを 200°Cでグラフアイトシートに打ち込んだ。 打ち込みは 3回に 分けて行レヽ、力 0速 ME 45 k V、 25k V及び 10k Vの順序で、 それぞれ 1 平方 cmあたり 1. 5X 1016、 1. 2 1016及び1. 0X 1016個打ち 込んだ。 表面近傍の構造を錢電子顕^^で観察した結果、 イオン打ち込みに より凸凹構造 1 0 4力 S形成されていた (図 1 ( b ) )。 また、 二次イオン質量分 析法 (S I M S ) により L i原子の深さ方向の分布を測定した結果、 ほぼ^ j牛 通りに L i原子が分布しており、 X線測定では、 グラフアイト C軸方向の面間 隔には変化が認められず、 層間化^が形成されて ヽなレヽことを ¾mした。 次に、 アルミナ粉末とバインダ一の混^)である絶欄 1 0 5をスクリーン 印刷により ί懐した後、銀の微粒子とバインダ一の ¾ ^である導電性グート 層 1 0 6を同じくスクリーン印屈 IJによって形成した (図 1 ( c ) )。 グラフアイ トシート 1 0 1と導電 '14ゲート層 1 0 6間、 及び、 隣り合う導電性ゲート 1 0 6間の £¾ϊは、 それぞれ 3 5 0 μ m及び 5 0 0 /z mとした。 Next, Li ions were implanted into the graphite sheet at 200 ° C under the condition that the distribution was in the range of 0. 1 to μm centering on the 0.4 m depth region. Implantation in three rows Rere, force 0 speed ME 45 k V, in the order 25k V and 10k V, respectively 1 square cm per 1. 5X 10 16, 1. 2 10 16 and 1. 0X 10 16 pieces I typed it in. As a result of observing the structure near the surface with a Zen electron microscope ^^, ion implantation The more uneven structure 104 force S was formed (Fig. 1 (b)). In addition, as a result of measuring the distribution of Li atoms in the depth direction by secondary ion mass spectrometry (SIMS), the Li atoms are distributed almost in the form of ^ j cattle. No change was observed in the axial spacing, and it was confirmed that the interlayer was formed and that the thickness was large. Next, after blanking the blank 105, which is a mixture of alumina powder and the binder ^), by screen printing, the silver fine particles and the conductive gut layer 106, which is the binder of the binder, are also screen-printed. Cr formed by IJ (Fig. 1 (c)). The gap between the graphite sheet 101 and the conductive '14 gate layer 106 and between the adjacent conductive gates 106 was 350 μm and 500 / zm, respectively.
グラフアイトシート 1 0 1及び導電性ゲ一ト層 1 0 6にそれぞれ の正 Each of the graphite sheet 101 and the conductive gate layer 106 has its own positive
¾¾ぴ負極を して を印加したところ、 1 . 2 k vから 放出が開始 し、 ® 放出電流の βも小さく、 場所依存性も少ない良好な 放出特 14を 示した。 図 2には、 印加電压に対する « 放出電流を測定した結果を示す。 図 2中、 横軸は印加 (単位は k V)、 縦軸は電流値 (単位は mA) を示 す。 また、 「S G」 は、 イオン照射を行っていないスーパーグラフアイト (S(4) When applied with the negative electrode, emission started at 1.2 kv, and the emission current β was small and showed good emission characteristics with little location dependence. FIG. 2 shows the results of measuring the emission current with respect to the applied voltage. In Fig. 2, the horizontal axis represents applied voltage (unit: kV), and the vertical axis represents current value (unit: mA). “SG” stands for Super Graphite (S
G) を電子放出部として用いたときの測 诘果、 L i照 高濃度は、 本雄例 での測定結果をそれぞれ示す。 The measurement results when G) was used as the electron-emitting portion, and the Li illuminance concentration show the measurement results in this example.
イオンを打ち込んでいないグラフアイトシートを電子放出材料として用い たほかは鎌己と同じ構成を有する電子腿素子 (lutes G) では、 放出開 始 ¾EEは約 1 . 7 k V¾¾であり、 離放出開始 が 0 . 5 k 小さく なっていた。 この値は、 電子放出ネオ料としてカーボンナノチューブを用いた場 合の値とほぼ同 ¾gである。 このことから、 L iイオンを照射した効果は非常 に大きく、 高性能の電子漏素子力 S得られることがわかる。  In the electronic thigh element (lutes G), which has the same structure as that of Kamaki, except that a graphite sheet not implanted with ions is used as the electron-emitting material, the emission start ¾EE is about 1.7 kV¾¾ Was reduced by 0.5 k. This value is almost the same as the value when carbon nanotubes are used as the electron-emitting neo-material. This indicates that the effect of irradiation with Li ions is very large, and that a high-performance electron leakage element force S can be obtained.
図 3には、 図 2の測 诘果を F N (Fowler-Nordheim) プロットした結果を 示す。 横軸は印加 ¾1£とギヤップ長から算出した電界弓娘の逆数であり、 縦軸 は測定 ®¾¾を m 娘の 2乗で割って得られた値である。 グラフの傾きは、 見 カけの仕事関数の大きさを示しており、傾きが小さレ、ほど電子が取り出し易レヽ ホ才料であること示している。 また、 iSiの大きさは電流量に比例しており、 電 子放出に寄与する構造の密度に比例して 、る。  FIG. 3 shows the result of FN (Fowler-Nordheim) plotting of the measurement result of FIG. The horizontal axis is the reciprocal of the electric field bow daughter calculated from the applied ¾1 £ and the gap length, and the vertical axis is the value obtained by dividing the measured 測定 by the square of the m daughter. The slope of the graph indicates the magnitude of the apparent work function, and the smaller the slope, the more easily the electrons are extracted. Also, the size of iSi is proportional to the amount of current, and is proportional to the density of the structure that contributes to electron emission.
図 3に示すように、 L iィオンを照射した^ ·の仕事関数の大きさは、 ィォ ンを打ち込んで!/、なレ、グラフアイトシート (図 3中、 「 S G」 で表記) よりも 2害 ijほど小さレ、。 この仕事関数の減少、は、イオン照射により形成された凹凸構 造とリチウム原子 ¾λよる表面電子状態の変化が考えられる。 As shown in Fig. 3, the magnitude of the work function of ^ Type /, Nare, graphite sheet (indicated by “SG” in Fig. 3) 2 harm ij smaller than ij. This decrease in work function can be attributed to the uneven structure formed by ion irradiation and changes in the surface electronic state due to lithium atoms ¾λ.
図 2及び図 3の中には、 L i照射高濃度の場合よりもィオンの打ち込み量を 1 0分の 1にした:^の結果を 「L i f a &} として示す。 L i照射高濃 度の に比べて、 m 放出開始 ®Bまさらに下がるが、仕事関数の値は大き くなり、イオンを打ち込んでいなレヽスーパーグラフアイトシートの値と同 である。 これらの結果は、 イオン照射による表面形状変化によって、 nm 開始 が低下するが、表面近傍に被する L i力 s少ないことから仕事関数は ほとんど変化しなかったと考えられる。 L iイオン照 量をさらに 1 0分の 1 に減少させた^^、 開始 も仕事関数もグラフアイトシートとほと んど変わらなレ、。従って、 L iィオンを用レ、てグラフアイトシートの仕事関数 を変ィ匕させるためには、 一定量以上の L iイオンの ¾λが必要である。 なお、 L i照射高濃度の場合、 グラフアイト中に存在する L i原子の濃度は 0. 0 6 %纖であり、 照 J†量の下 P賺は 0. 0 0 1 %離であると考えられる。 な お、 照射量の上 P賺は 3 であると考えられる。  In FIGS. 2 and 3, the ion implantation amount was reduced by a factor of 10 compared to the case of the Li irradiation high concentration: the result of ^ is shown as “L ifa &}. The release of m is even lower than that of, but the work function value is larger, which is the same as the value of the non-implanted resin supergraphite sheet. Although the onset of nm is decreased by the shape change, the work function is considered to have hardly changed because the Li force applied to the vicinity of the surface is small, and the Li ion irradiation was further reduced by a factor of 10. ^^, The start and work function are almost the same as the graphite sheet, so using Lion to change the work function of the graphite sheet requires a certain amount of ¾λ of Li ion is required. In the case of, the concentration of Li atoms present in the graphite is 0.06% fiber, and the Pnote under the irradiation amount is considered to be 0.01% apart. It is considered that the quantity P is 3 in terms of quantity.
電子放出材料の基材であるグラフアイトシートは、大面積で均一な特性のも のが得られるので、 素子 «ェ程に制約を受けることなく、大¾¾化で均一な 電子腿素子を容易に顯することができる。 なお、各素子を個別に動作させ るためには、 図 1 ( d ) に示すように、 隣り合う導電性ゲート 1 0 6どうしを The graphite sheet, which is the base material of the electron-emitting material, has uniform characteristics over a large area, so that a large and uniform electronic thigh element can be easily formed without being restricted by the element size. You can manifest. In addition, in order to operate each element individually, as shown in FIG. 1 (d), adjacent conductive gates 106 are connected to each other.
» ればよい。 »I do.
さらに、 ·電子漏素子に対向してガラス簾 1 0 7に形成した透明籠 1 0 8上に電子の照射により発光する蛍光体層 1 0 9を配置した蛍光体発光装置 をィ懷した。 蛍光体層に用いられる蛍光 ί材才料としては、カロ速される ¾itm子 が持つエネルギー値に対応した Z n O : Z n、 Z n S系蛍光体等の蛍光材料を 所望の発光色に て徵尺すれば良レ、。 本実施例では、カロ速 である透明導 纏 (I TO) 上に蛍光体層として Z n S系蛍光体を塗布した。  Furthermore, a phosphor light emitting device in which a phosphor layer 109 emitting light by irradiation of electrons is arranged on a transparent basket 108 formed on a glass screen 107 facing the electron leakage element. Fluorescent materials used for the phosphor layer include fluorescent materials such as ZnO: Zn and ZnS based phosphors corresponding to the energy value of the It ’s good to measure it. In the present example, a ZnS-based phosphor was applied as a phosphor layer on a transparent conductor (ITO) which was a caro-speed.
以上のようにして^^した蛍光体発光装置を真空槽内に l¾gし、ゲート層 1 0 6と電子放出材料であるグラフアイトシート 1 0 1との間に Effiを印カロし て電子を取り出し、カロ速慰亟として機能する透明薩 1 0 8と電子篇素子の ゲート m¾間に 3 k vの加速 mi£を印加した。 蛍光体発) t¾を測^ ると、The phosphor light-emitting device obtained in the above manner is placed in a vacuum chamber, and electrons are extracted by applying Effi between the gate layer 106 and the graphite sheet 101, which is an electron-emitting material. , A transparent sword that functions as a fast-paced jog A 3 kv acceleration mi was applied between the gates m¾. When the t¾ is measured ^
3 0 0〜4 0 0 c dZm2の発 度力 S得られた。 発光弓娘は、 蛍光体に照射 される職量をグート 電子放出材料間 によって霞するカゝ、 あるい は蛍光体に照射される電子のエネルギーを加速電極ーゲート電極間電圧によ つて ISSすることができた。 The power S of 300 to 400 c dZm 2 was obtained. The luminous bow girl must use a gut between the electron emitting materials to illuminate the work irradiating the phosphor, or ISS the energy of the electrons irradiating the phosphor by the voltage between the acceleration electrode and the gate electrode. Was completed.
さらに、 この蛍光体発雜置を二次元的に複数個配置し、個々の蛍光体発光 量を制御することにより任意形状/任意輝度の画像を表示する画像描画装置 をイ^することができ  Further, by arranging a plurality of the phosphor spreaders two-dimensionally and controlling the amount of light emitted from each phosphor, it is possible to obtain an image drawing apparatus for displaying an image of an arbitrary shape / arbitrary brightness.
なお、 実施例 1では、 L iイオンを打ち込む前にグラフアイトシート 1 0 1 を基板 1 0 2に接着したが、 グラフアイトシート 1 0 1に ¾接ィオンを打ち込 んだ'後に ¾¾ι 0 2に接着しても同様の効果が得られた。 また、 m 1 0 5 と導電性ゲート層 1 0 6を作成した後に L iイオンを打ち込んでも同様の効 果が得られた。  In Example 1, the graphite sheet 101 was bonded to the substrate 102 before the Li ion was implanted. However, the graphite sheet 101 was bonded to the graphite sheet 101 after the ion implantation was performed. The same effect was obtained even when the film was adhered to the film. Similar effects were obtained by implanting Li ions after forming m 105 and the conductive gate layer 106.
また、 実施例 1ではし iを打ち込んだが、 アル力リ金属の L i、 N a、 K、 C s、 : R b、 アルカリ: t^^Sの C a、 S r、, B aの少なくともいずれか 1つ を打ち込むことによつても同様の効果が得られた。 窒素、 の には、 凸 凹構造も形成されるが、 グラフアイトの層間に進入したり、 炭素原子と纖ゃ 結合することで電子状態が変化して、 仕事関数が少し小さくなつた。 また、 例 えば、 希ガスの H e、 N e、 A r、 K r、 X eなどを打ち込んだ^^では、 凸 凹構造は形成されることにより、 低 ¾Εから電界放出は開始したが、仕事関数 が小さくなる効果はアル力リ金属やアル力リ土類金属を打ち込んだ より は小さかった。  Also, in Example 1, i was implanted, but at least Li, Na, K, Cs,: Rb of alkali metal and alkali: at least Ca, Sr, Ba of t ^^ S A similar effect was obtained by hitting either one. Nitrogen and silicon have a rough structure, but their work function has been slightly reduced due to the change of electronic state due to penetration between graphite layers and fiber-bonding with carbon atoms. In addition, for example, in ^^ in which rare gases He, Ne, Ar, Kr, and Xe were injected, the field emission started from low 低 due to the formation of the uneven structure. The effect of reducing the work function was smaller than that of implanting Al-Li metal or Al-earth metal.
さらに、 打ち込むイオンは原子、 こ限らず、 それらのクラスターでも同 様の効果があり、 イオンの価数を変えても同様の効果が得られた。 イオンを打 ち込む時の基板の温度は、 1 0 0 0°C以下であれば、 同様の効果が得られた。 また、 イオン打ち込み後に 1 0 0 0°C以下の で»理を行うことにより、 表面近傍に している第 2元素とグラフアイトとの化学^ &の促進、 凸凹構 化^の平面内での均一化、 原子、 分子又はそれらのクラスターの it ^分 布の均一化又は制御を行うことができた。  Furthermore, the ions to be implanted were not limited to atoms, and the same effect was obtained for those clusters. The same effect was obtained even when the valence of the ions was changed. The same effect was obtained when the temperature of the substrate at the time of ion implantation was 100 ° C. or less. Further, by performing the treatment at a temperature of 100 ° C. or less after the ion implantation, the chemistry between the second element and the graphite in the vicinity of the surface is promoted, and the unevenness in the plane of the uneven structure is enhanced. Uniformization, uniformity or control of the it ^ distribution of atoms, molecules or their clusters could be achieved.
また、 グラフアイトシート 1 0 1をガラス製の 0 2上に接着した 力 漏的弓娘が十分であれば材質及 電性の有無に力かわらず、 i .In addition, the graphite sheet 101 was adhered on glass 02. If there is enough power leaky bow daughter, regardless of material and electrical conductivity, i.
1 0 2の替わりとして用いることができた。 It could be used instead of 102.
本実施例 1では、 グラフアイトシート 1 0 2と 0 5の接着にアル ミナを 分とする歸剤を用いた。 それ以外の接着剤でも、 十分な接着力が あれば、 導電性の有無、 材質等に隱なく使用することができる。  In Example 1, a bonding agent composed of alumina was used for bonding graphite sheets 102 and 05 together. Other adhesives can be used without any hindrance in terms of conductivity, material, etc. if they have sufficient adhesive strength.
実施例 1では、 ¾i誠時の は、 ポリイミドシートが十分に炭化される 1 0 0 0°Cを超えてレ、れば必要 + であり、 本 «の最高 は、 グラフアイ ト構造が十分発針る 2 5 0 0 °C以上であること力 S好ましレ、。  In Example 1, は i is required when the temperature exceeds 100 ° C. at which the polyimide sheet is sufficiently carbonized. Needle 2 500 ° C or higher.
また、 及 υ« ^寺間は、 ϊΗΙ誠、 本誠の最高贿等によって異 なるので、 本実施例の組み合わせに限定されるものではない。  In addition, since the distance between the temples depends on the best of Makoto and Makoto Makoto, it is not limited to the combination of the present embodiment.
出発原料のポリイミドフィルムの ID?は、 7 5 μ mに限定されるものではな い。 例えば、 商品化されている 2 5〜3 0 0 /x niの範囲内のものについて したところ、 同様の結果が得られた。 また、 麦のグラフアイトシートの厚 さが 1 Ο μ πι以上であれば、 同様の結果が得られた。  The ID of the starting polyimide film is not limited to 75 μm. For example, similar results were obtained for commercial products in the range of 25 to 300 / x ni. Similar results were obtained when the thickness of the wheat graphite sheet was 1 μμπι or more.
及 υ¾¾#時間を変えて誠した:^には、原材料の形を反映したシ ート状ではなく、雖 1 mmより小さい粉末状のグラフアイトカ S形成されるが、 この粉末にィオンを照射して電界放出特性を計測したところグラフアイトシ ートの:^と同様の結果が得られた。 さらに、 イオン照 I済みの粉末を 贿機系のバインダ一に混合して塗布し、所定の »理を行った領域からの電 子放出特性にノインタ、、一又は讓理の影響はなかった。 また、 炭素以外の元素 の有無にかかわらずグラフアイトシートを裁断又は粉砕することによって作 製した粉末状ダラファイトを用いても同様の結果が得られた。  After changing the # time, the graphitica S, which is not a sheet shape reflecting the shape of the raw material but a powdery shape smaller than 1 mm, is formed, but this powder is irradiated with ions. When the field emission characteristics were measured, the same results as in the graph sheet: ^ were obtained. Furthermore, the ion-irradiated powder was mixed and applied to a binder of a mechanical system, and the electron emission characteristics from a region subjected to a predetermined treatment were not affected by non-inter, one, or substituting. Similar results were obtained using powdered Dalaphite prepared by cutting or pulverizing a graphite sheet regardless of the presence or absence of elements other than carbon.
実施例 2  Example 2
本実施例では、 L iイオンを打ち込む工程に変えて、 ラジカル化した窒素を グラフアイトシートに照 J る工程を行うこと は、 実施例 1と同じ工程で 電子篇素子を ί樓し、 同様の方法で離放出^ 4を言權した。  In this embodiment, the step of irradiating radicalized nitrogen onto a graphite sheet instead of the step of implanting Li ions is performed by the same steps as in Example 1 except that the electronic device is built up. In a way to release and release ^ 4.
窒素ガスを満たした窒化硼素製の円筒に 2 0 0 Wのマイク口波を照射する ことにより、 反応性の高い窒素ラジカルを し、 円筒の一端に開けられた穴 力 ¾ΕΕを利用して真^^器に窒素ラジカルを導入した。 器内のグ ラファイトシートの^ I を 9 5 0°Cに設定し、 窒素ラジカルをグラフアイト表 面に 1平方 c mあたり 1 0 22個照射した。 By irradiating a 200 W microphone mouth wave to a nitrogen-filled cylinder made of nitrogen gas, highly reactive nitrogen radicals are generated, and the hole force 開 け opened at one end of the cylinder is used to generate a true nitrogen radical. A nitrogen radical was introduced into the vessel. Set ^ I of the graphite sheet in the vessel to 950 ° C, and set the nitrogen The surface was irradiated 10 22 per square cm.
X線測定により、 層間化^^が形成されていないことを した。 表面分析 により、 窒素原子、 及び、 炭素と窒素の化^ ^表面近傍に雜していること 力 ¾ ^、された。 また、 窒素原子の深さ方向の分布を測定した結果、 深さ Ι μ πι までの範囲に最大 1立方 c mあたり 1 0 1 9個の密度で窒素原子が分布していX-ray measurements showed that no interlayer ^^ was formed. Surface analysis revealed that nitrogen atoms and the formation of carbon and nitrogen ^ ^ were present near the surface. As a result of measurement of a distribution in the depth direction of the nitrogen atom, up to 1 per cubic cm 0 1 9 nitrogen atoms at a density of not distributed in the range up to a depth Ι μ πι
• た。
実施例 1と同様にして ® 放出特性を測定したところ、 1 . 2 1^ ¥カゝら¾^ 放出が開始し、 m 放出 ϋ¾の変動も小さく、 場所依存性も少ない良好な 放出特 を示した。 窒素がグラフアイト中に進入又は炭素と窒素の化^;を形 成することにより、 仕事関数が下がり電子は放出され^くなり、 低 ¾!£で電 界放出が開始されたと考えられる。  When the release characteristics were measured in the same manner as in Example 1, it was found that 1.2 1 ^ \ ^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^ '小 さ く' 示 し 、 'n given', and 'n' ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^ Long, which is good Was. It is considered that the work function was reduced by the nitrogen entering the graphite or forming carbon and nitrogen into the graphite, and the electrons were released, and the field emission was started at low 低! £.
なお、本実施例では、 グラフアイトシートに照 t るラジカル源として窒素 を用いたが、 アルカリ金属の L i、 N a、 K、 C s、 R b、 アルカリ d^^ の C a、 S r、 B a、 希ガス元素の N e、 A r、 K r、 X eのうちの少なくと も 1つを含めば同様の効果が得られた。 また、 照射ラジカノ 子又は分子 に限らずそれらのクラスターでも同様の効果が得られた。 また、 ラジカルを照 射する時の基板の温度は、 1 0 0 0°C以下であれば、 同様の効果が得られた。 また、 ラジカル照 に 1 0 0 0°じ以下の で«理を行うことにより、 表 面近傍に している第 2元素とグラフアイ卜との化学 ®^の促進、ィ匕^の 平面内での均一化、 原子、 分子又はそれらのクラスターの深さ方向濃度分布の 均一化又は制御を行うことができた。  In this example, nitrogen was used as the radical source for illuminating the graphite sheet. However, alkali metals L i, Na, K, C s, R b, alkali d ^^ C a, S r , Ba, and at least one of the rare gas elements Ne, Ar, Kr, and Xe provided the same effect. Similar effects were obtained not only for irradiated radionuclide or molecules but also for their clusters. Similar effects were obtained when the temperature of the substrate when radiating the radicals was 100 ° C. or lower. Further, by treating the radical irradiation at a temperature of 100 ° or less, the chemistry between the second element and the graphite in the vicinity of the surface is promoted, and And the concentration distribution of atoms, molecules or their clusters in the depth direction could be uniformed or controlled.
また、 赚ラジカルを照射した には、 織 を酸化物の昇華 以上 に設定することにより、 表面の炭素原子は^ ¾と して 1酸ィ 素、 2酸化 炭素として表面から» る。 これらの は、 グラフアイト表面に する 表面欠陥から優先的に進 るので、 鋭い凸凹構造が高密度の形成される。 従 つて、 ® 放出開始 ¾Εは窒素ラジカルを照射した^に比較して小さくなつ た。.  In addition, in the case of irradiation with 赚 radical, by setting the texture to the sublimation of oxide or more, the carbon atoms on the surface are changed from the surface to silicon oxide and carbon dioxide as ¾. Since these are preferentially advanced from surface defects on the graphite surface, sharp uneven structures are formed at a high density. Therefore, ® release start ¾Ε became smaller than ^ which was irradiated with nitrogen radicals. .
粒径 1 mmより小さレヽ粉末状のグラフアイトにラジカノレを照射して電界放 出特 14を計測したところ同様の結果が得られた。 さらに、 この粉末を び 棚系のバインダ一に混合して塗布し、所定の讓理を行つた領域からの電子 放出特性も同様であつ また、 炭素以外の元素の有無に関わらずグラフアイ トシートを裁断又は粉 ¾ ^"ることによつて した粉末状グラファイトを用Similar results were obtained by irradiating a powdery graphite powder having a particle size of less than 1 mm with radioactive cane and measuring the electric field emission characteristics14. Further, this powder is mixed and applied to a binder of a shelf system, and an electron from a region where a predetermined substitution is performed. The release characteristics are the same. Also, regardless of the presence or absence of elements other than carbon, powdered graphite obtained by cutting or powdering graphite sheet is used.
V、ても同様の诘果が得られた。 V, a similar result was obtained.
実施例 3  Example 3
実施例 3では、 L iィオンを打ち込む工程に代えて、 電気的に中性な C s金 属をグラフアイトシ一トに照 る工程を行う は、実施例 1と同じ工程で 電子 ¾W素子を «し、 同様の:^去で 放出特 14を ΐ¾Εした。  In the third embodiment, the step of irradiating an electrically neutral Cs metal with a graphite sheet is performed instead of the step of implanting a L ion. «Similar: ^ I've recently identified 14 release characteristics.
図 4 ( a ) に示すように、 C s麵をグラフアイトシートに含浸させる工程 を行う前のグラファイトシート 4 0 1上は、 鶴田な表面欠陥 4 0 2を除けば、 ほぼフラットである。本実施例で用 、た高分子シートを«することにより作 製したダラファイトシート 4 0 1は、 層間隔は非常に均一である。 その面内で のドメインサイズは、 高配向グラフアイト (HO P G) に比較して小さい。 こ のため、表面には原子がグラフアイト内に侵入する入り口となる各種の表面欠 陥が高密度で する。  As shown in FIG. 4 (a), the graphite sheet 401 before the step of impregnating the graphite sheet with Cs 麵 is almost flat except for the Tsuruta surface defects 402. In the Dalafite sheet 401 produced in this example by adding a polymer sheet, the layer spacing is very uniform. The domain size in that plane is small compared to highly oriented graphite (HOPG). As a result, the surface is densely packed with various surface defects that serve as entry points for atoms to enter the graphite.
次に、真空中で C s を Atbたノレッボにグラフアイトシート 4 0 1を対向 させ、 それぞれの鍵を 1 9 4°C及び 3 5 0 °Cに設定した。 ルツボから蒸発し †:C s原子は、 グラフアイト表面に 1平方 c mあたり 1 0 1 6個到達し、表面欠 陥 4 0 2からグラフアイ卜の眉間を押し広げて 曼し、 C s含^ I域 4 0 3が 形成された (図 4 ( b ) )。 Next, the graphite sheet 401 was opposed to the Norrebo with Cs atb in vacuum, and the keys were set at 194 ° C and 350 ° C, respectively. Evaporated from the crucible †: C s atoms reached 10 16 per square cm on the graphite surface, and from the surface defect 402, the gloves of the graphite were pushed out and spread, and C s included ^ I region 4003 was formed (Fig. 4 (b)).
X線測定により、 明確に層間化^ Jが形成されて!/、ないこと力 S漏された。 表面分析により、 C s原子力 S表面近傍に していること力 ¾ ^された。また、 C s原子の深さ方向の分布を測定した結果、深さ 2 μ mまでの範囲に最大 1立 方 c mあたり 1 0 22個の密度で C s原子が分布して!/、た。 X-ray measurement clearly forms interlayer ^ J! /, No power S leaked. By surface analysis, it was confirmed that the surface was near the C s nuclear S surface. Also, C s depth distribution results of measurement of the atoms, and range distribution C s atoms at most 1 cubic 1 0 22 density per cm in the depth 2 mu m! /, Was.
実施例 1と同様に 放出特性を測定したところ、 0. 7 k Vカゝら 放出 力 S開始し、 電界放出電流の変動も小さく、 場所依存性も少なレヽ舰な雕放出 特 を示した。 凸凹構造は C s原子照射前後でほぼ わらないので、 C sがグ ラファイトに 曼ゃ吸着することにより、仕事関数が下がり電子は放出されや すくなり、 低 で離放出力開始されたと考えられる。  The emission characteristics were measured in the same manner as in Example 1. As a result, the emission power S was started at 0.7 kV, and the fluctuation of the field emission current was small, and the sculpture emission characteristic was small with little place dependence. Since the uneven structure is almost unchanged before and after the irradiation of Cs atoms, it is considered that the work function is lowered by Cs adsorbing on graphite, the electrons are easily emitted, and the emission output is started at low.
なお、本実施例では、 グラフアイトシ一卜に照 J る中 ' 素として C s原 子を用いたが、 窒素、 アルカリ金属の L i、 N a、 K:、 C s、 R b、 ァ ノレ力リ iHl雄の C a、 S r、 B aうちの少なくとも 1っ めば同様の効果 が得られた。 また、 照 t るのは原子、 分子に限らずそれらのクラスターでも 同様の効果が得られ また、 中性元素を照射る時の纖の «は、 1 0 0 0 °C以下であれば、同様の効果が得られた。また、中 14¾素照搬に 1 0 0 0 °C 以下の で«理を行うことで、表面近傍に械して 、る炭素以外の元素と グラフアイトとの化学 ® ^の促進、 凸凹^ ^化^^の平面内での均一化、 原 子、分子又はそれらのクラスタ一の深さ方向濃度分布の均一化又は制御を行う ことができた。 In this example, the Cs atom was used as the element in the graphite sheet, but nitrogen, alkali metals Li, Na, K :, Cs, Rb, and a Similar effects were obtained for at least one of Ca, Sr, and Ba of iHl males. The same effect can be obtained not only for atoms and molecules but also for clusters of these elements.Furthermore, when the fiber is irradiated with a neutral element at a temperature of 100 ° C or less, the same effect can be obtained. The effect was obtained. In addition, by applying heat treatment at a temperature of 100 ° C. or less to the medium 14 ° C., it is possible to promote the chemistry of graphite other than carbon with an element other than carbon by applying a treatment in the vicinity of the surface, and to make the surface uneven. The uniformity in the plane of ^^ and the uniformity or control of the concentration distribution in the depth direction of an atom, a molecule, or a cluster thereof could be performed.
また、粒径 l mmより小さい粉末状のグラフアイトに中 素を照射して電 界放出特 を計測したところ、 同様の結果が得られた。 さらに、 この粉末を無 機系又は棚系バインダ一に混合して塗布し、所定の讓理を行つた領域から の電子放出特性にバインダー又は讓理の影響はなかった。 また、 炭素 の 元素の有無に関わらずグラフアイトシートを裁断又は粉砕することによって 擁した粉末状ダラファイトを用レ、ても同様の結果力 S得られた。  The same results were obtained when field emission characteristics were measured by irradiating powdery graphite with a particle diameter of less than l mm with nitrogen. Further, the powder was mixed with an inorganic or shelf-based binder and applied, and the electron emission characteristics from the region where the predetermined processing was performed were not affected by the binder or the processing. Similar results were obtained when powdered Dalaphite was used by cutting or pulverizing the graphite sheet regardless of the presence or absence of the carbon element.
雄例 4  Male example 4
実施例 4では、電気的に中性な C s金属をグラフアイトシートに照射するェ 程より前にアルゴンィオンを照 jt る^ μま、 雄例 3と同じ工程で電子腿 素子を «し、 同様の 去で電 放出特 を評価した。  In Example 4, the electronic thigh element was illuminated in the same process as in Male Example 3 by illuminating the argon ion before irradiating the graphite sheet with electrically neutral Cs metal. In the same way, we evaluated the emission characteristics.
実施例 1と同様に、 ガラス に固定したグラフアイトシートに、 1平方 c mあたり 4 . 5 X 1 0 1 6個のァノレゴンィオンを加速 flffi 1 8 0 k Vで室温でグ ラファイトシートに打ち込んだ。 次に、 イオン照 i÷したグラフアイトシートに 実施例 3と同様の方法 ·条件で。 s金属を含浸させた。 As in Example 1, the graphite sheet is fixed to the glass, it was implanted in the grayed La Fight sheets at room temperature in 1 square cm per 4.5 accelerates X 1 0 1 6 amino Anoregonion flffi 1 8 0 k V. Next, the same method and conditions as in Example 3 were applied to a graphite sheet irradiated with ions. s metal impregnated.
X線測定により、 明確には層間化^が形成されて ヽないことを βした。 表面分析により、 C s原子とアルゴン原子力 S表面近傍に していること力 S確 認された。 また、 C s原子の深さ方向の分布を測定した結果、 深さ 2 μ ιηまで の範囲に最大 1立方 c mあたり 1 0 2 2個の密度で分布しており、アルゴン原子 は深さ 0 . 2 5 μ mを中心に 0 . 2 μ mの範囲に分布してレ、た。 X-ray measurement showed that no interlayer was clearly formed. From the surface analysis, it was confirmed that the force S was in the vicinity of the C s atom and the argon nuclear S surface. Also, C s depth distribution results of measurement of the atoms are distributed at a maximum 1 cubic cm 1 0 2 2 pieces of density per a range to a depth of 2 μ ιη, argon atoms is zero depth. It was distributed over a range of 0.2 μm centered on 25 μm.
実施例 1と同様に電界放出特性を測定したところ、 0 . 4 k Vから 放出 力 S開始し、 《 放出電流の変動も小さく、 場所依存性も少ない良好な m 放出 雜を示した。 アルゴンイオン照 t工程、 C sイオン照 工程、 実施例 3に記 載の C s原子 曼工程を職で行った齢の離放出開始 Sffiは、 それぞれ 1 . O k V、 0. e k V^O . 7 k Vであり、 ァノレゴンイオン照射工程後に C s 原子含浸工程を行うことにより、 さらに 放出開女台 ®ΐを低下することがで きた。 表面近傍に雜する C s原子の濃度はほぼ同じであり、 また、 ィオン照 射工程において、ィォ を変えてもイオンの »エネルギーと照射量をほぼ 同じにすれば同様の結果が得られること力ゝら、ィオン照射工程でィ懷された凹 凸構造のためにグラフアイトの層間に C s原子がグラフアイト中に入り易く なっていると考えられる。 The field emission characteristics were measured in the same manner as in Example 1. As a result, the emission power S started from 0.4 kV, and a good m emission pattern with little fluctuation in emission current and little place dependence was exhibited. Argon ion irradiation process, Cs ion irradiation process, described in Example 3. The release and release start Sffi of the age at which the above-mentioned C s atom process was performed by the occupational worker was 1.O kV and 0.ek V ^ O .7 kV, respectively.The C s atom impregnation process was performed after the anoregon ion irradiation process. By doing so, it was possible to further reduce the release of Kaimedai®. The concentration of Cs atoms in the vicinity of the surface is almost the same, and the same result can be obtained if the »energy and irradiation amount of the ions are almost the same even if the ion is changed in the ion irradiation process. It is considered that Cs atoms easily enter the graphite between the graphite layers due to the concave-convex structure caused by the ion irradiation process.
なお、本実施例では、 グラフアイトシートに照 it る中' (^素として c s原 子を用いたが、 アルカリ金属の L i、 N a、 K、 C s、 R b、 アルカリ 金 属の C a、 S r、 B aうちの少なくとも 1つを食めば同様の効果が得られた。 また、 照 J "Tるのは原子、 分子に限らず、 それらのクラスターでも同様の効果 が得られた。 また、 中¾¾素を照 J "Tる時の £¾の は、 1 0 0 0°C以下で あれば、 同様の効果力 S得られた。 また、 中性元素照†¾に 1 0 0 0°C以下の温 度で »理を行うことにより、表面近傍に してレ、る炭素以外の元素とダラ ファイトとの化学 の促進、 凸凹構^ H匕合物の平面内での均一化、 原子、 分子又はそれらのクラスターの深さ方向濃度分布の均一化又は制御を行うこ とができた。  In the present example, the cs atom was used as the element in the graphite sheet. (^ Element, but the alkali metals Li, Na, K, Cs, Rb, and the alkali metal C A similar effect was obtained if at least one of a, Sr, and Ba was eaten.The same effect was obtained not only for atoms and molecules but also for clusters of them. The same effect S was obtained when the temperature of the element J was not more than 100 ° C. By performing the treatment at a temperature of 0 0 0 C or less, the chemistry between the element other than carbon and dalaphite near the surface is promoted, and the uneven structure Uniformization, uniformization or control of the concentration distribution of atoms, molecules or their clusters in the depth direction could be achieved.
また、粒径 1 mmより小さい粉末状のグラフアイトに中' |4¾素を照射して電 界放出特 を計測したところ同様の結果が得られた。 さらに、 この粉末を « 及 機系のバインダ一に混合して塗布し、所定の讓理を行った領域からの 電子放出特 にバインダー^ »理の影響はなかった。 また、 炭素 の元素 の有無に関わらずダラファイトシートを裁断又は粉碎することによつて した粉末状グラフアイトを用いても同様の結果力 s得られた。  The same results were obtained when the field emission characteristics were measured by irradiating medium graphite with powdery graphite having a particle size of less than 1 mm. Further, this powder was mixed and applied to a binder of a binder system, and the effect of electron emission from a region subjected to a predetermined treatment, in particular, a binder treatment was not affected. Similar results were obtained by using powdered graphite obtained by cutting or pulverizing the Dalaphite sheet regardless of the presence or absence of the carbon element.
実施例 5  Example 5
本実施例では、 ァノレゴンイオン照射工程前に、 電気的に中性な Mo金属をグ ラフアイトシートに照射る工程を行うこと は、実施例 4と同じ工程で電 子 素子を«し、 同様の方法で m 放出特性を? ι¾した。  In the present embodiment, the step of irradiating the graphite sheet with electrically neutral Mo metal before the anoregon ion irradiation step is performed in the same manner as in the fourth embodiment except that the electronic element is removed. The emission characteristics of m were improved.
実施例 1と同様に準備したガラス基板に固定したグラフアイトシート 5 0 1に、真空中で M o Sを A Lたノレッボにダラファイ トシートを対向させ、 グ ラファイトシートの を 500°Cに設定した。ルツボから蒸発した Mo原子 は、表面を拡散しながら纏し 30 nmの Mo械微粒子 502がグラフアイ ト表面に均一に形成された (図 5 (a))0 次に、 難例 4と同様の餅でアル ゴンイオン照射 (図 5 (b)) と C s滅含浸工程 (図 5 (c)) を行った。 ァ ルゴンィオン照射ェ程にぉレ、ては、 M o録微粒子 502がマスクとなり、 MA graphite sheet was fixed to a glass substrate 501 prepared in the same manner as in Example 1, and a Daraphite sheet was opposed to a knuckle voluminized with Mo S in vacuum. The temperature of the graphite sheet was set to 500 ° C. Mo atoms evaporated from the crucible, and fireman's standard while diffusing surface 30 nm of Mo械微particles 502 are uniformly formed on the graph Ai preparative surface (FIG. 5 (a)) 0 Next, similar to the flame Example 4 The mochi was subjected to argon ion irradiation (Fig. 5 (b)) and C s annihilation impregnation (Fig. 5 (c)). In the same way as Argon ion irradiation, the Mo recording particles 502 serve as a mask.
0 微粒子 502力 S雜しなレ、領域が職的にエッチングされ(図 5 (b))、 円概 冓造 503力 S形成された。一方、 C s 含浸工程では、 C s原子は、 円 状凸構造 503の側面から優先的グラフアイトシ一トに含浸し、 C s含浸 領域 504が开滅された。 0 Fine particles with a force of 502 were not etched, and the area was professionally etched (Fig. 5 (b)), forming a roughly 503 force S in a circular structure. On the other hand, in the C s impregnation step, C s atoms were impregnated into the preferential graphite sheet from the side surface of the circular convex structure 503, and the C s impregnated region 504 was extinguished.
X線測定により、 明確には層間化合物が形成されていないことを確、し^ 表面分析により、 M o原子、 C s原子とアルゴン原子力 S表面近傍に してレヽ ることカ^、された。 また、 C s原子の深さ方向の分布を測定した結果、 深さ 2 μ mまでの範囲に最大 1立方 c mあたり 1 022個の密度で分布しており、ァ ルゴン原子は深さ 0. 25 μ mを中心に 0. 2μ mの範囲に分布してレ寸 m放出特 I·生を測定したところ、 実施例 4と同じく 0. 4kvカゝら m放出 が開始したが、 m放出 m¾¾の麵幅と、 場所依存性が実施例 4と比較して大 きく向上した。 X-ray measurements confirmed that no intercalation compound was clearly formed, and surface analysis confirmed that Mo atoms, Cs atoms, and argon nuclear S were near the S surface. Also, C s depth distribution results of measurement of the atoms are distributed in 1 0 22 density per maximum 1 cubic cm in a range to a depth of 2 mu m, § argon atoms depth 0. When the distribution of the 寸 m release characteristic was measured in a range of 0.2 μm with the center at 25 μm, the release of 0.4 kv was started in the same manner as in Example 4. The width and the location dependency were greatly improved as compared with Example 4.
また、 アルゴンィオン照射工程、 C s ^^含浸工程を行う前のグラフアイト シート 501からの電界放出特性は、 C s金属を含浸した:^に及ばないが、 ナノメートルサイズの構造が表面に高密度で城してレ、るため、鄉立子がなレ、 に比べて、 放出嫩が向上し なお、 Mo^ «÷502«C s 魏域 504とは 間力で付着しているので、例え〖ί®音波による赚を 行うことにより容易に除去することができた (図 5 (d))。 この時の雕放出 特 I"生は、 Moの仕事関数の影響を受けないので、 図 5 (c) の よりも 放出特 14が向上した。  In addition, the field emission characteristics from the graphite sheet 501 before the Argon ion irradiation step and the C s ^^ impregnation step are not as good as those of Cs metal-impregnated: ^, but the nanometer-sized structure is high on the surface. Because of the density of the castle, the release of the pen is improved as compared to the 鄉 立 子 が な レ, な お, and Mo ^ «÷ 502« C s Wei region 504 It was easily removed by performing 赚 ® sound wave 赚 (Fig. 5 (d)). Since the sculpture emission characteristics I "at this time are not affected by the work function of Mo, the emission characteristics 14 are higher than those in Fig. 5 (c).
また、微粒子の径と密度は Si反 ¾gと単位時間あたりに に到 る M o 原子の量 (フラックス密度) によって容易に制御可能である。 また、 本実施例 では、 Moの微粒子を用いている力 イオン照射工程 (b) においてのエッチ ング ¾ が、 グラフアイ卜のエッチング藤より遅ければ、 雄の種類を限定 するものではなレヽ。 もし、 グラフアイトのエッチング速度より早い場合でも、 典型的には高さ 3 0 n m以上の円柱形凸構造が形成可能な微粒子であること が望ましい。 なお、 本雄例では、 を蒸着によって £t反表面に供給してい るが、 所定の を含有する棚匕^)を供給して、 鎌上で加漏するこ とによっても掷粒子は^!合可能であった。 In addition, the diameter and density of the fine particles can be easily controlled by the Si reaction g and the amount of Mo atoms per unit time (flux density). Also, in this example, the type of male is not limited if the etching depth in the force ion irradiation step (b) using Mo fine particles is slower than the etching wedge of the graphite. If it is faster than the etching rate of graphite, Typically, it is desirable that the fine particles be capable of forming a columnar convex structure having a height of 30 nm or more. In the present example, 掷 is supplied to the surface opposite to the surface by evaporation, but ^ particles can also be generated by supplying a 棚 containing a predetermined amount and leaking on a sickle. Was possible.
また、 ィオン照 工程 ( b ) におレ、ては、 カロ速 1 8 0 k Vで、 1平方 c mあたり 4. 5 X 1 0 1 6個のアルゴンイオンを室温で照射している力 S、イオン 種を変えてもイオンの運動エネルギーと照射量をほぼ同じにすれば同様の結 果が得られ、 また、 照 量は高さ 3 0 nm以上の円娜 造が形成可能であ ることが望ましい。 In addition, in the ion irradiation step (b), the force S of irradiating 4.5 × 10 16 argon ions per square cm at room temperature at a caro-speed of 180 kV, Even if the ion species is changed, the same result can be obtained if the kinetic energy of the ion and the irradiation amount are almost the same, and it is also possible to form a circular structure with an irradiation amount of 30 nm or more in height. desirable.
なお、本実施例では、 グラフアイトシート 5 0 1に照 Jt "る中 tt¾素として In this example, the graphite sheet 501 is used as the tt element in the Jt "
C s原子を用レヽたが、 アルカリ の L i、 N a、 K、 C s、 R b、 ァノレカリ ^の C a、 S r、 B aうちの少なくとも 1つを含めば同様の効果が得ら れた。 また、 照 るのは原子、 分子に限らず、 それらのクラスターでも同様 の効果が得られた。 また、 中性元素を照 t る時の纖の は、 1 0 0 0°C 以下であれば、 同様の効果が得られた。 また、 中性元素照 Jt¾に 1 0 0 0°C以 下の で«¾を行うことで、表面近傍に してレ、る炭素 の元素とグ ラファイトとの化学 の促進、 凸凹構叙は化^)の平面内での均一化、 原 子、分子又はそれらのクラスターの深さ方向 分布の均一化又は制御を行う ことができた。 The same effect can be obtained by using at least one of Li, Na, K, Cs, Rb of alkali and Ca, Sr, and Ba of anorecali ^. Was. The effect was not limited to atoms and molecules, and similar effects were obtained with those clusters. The same effect was obtained when the temperature of the fiber when illuminating the neutral element was 100 ° C or lower. In addition, by subjecting the neutral element Jt¾ to a temperature of less than 1000 ° C, the chemistry between the carbon element and the graphite is promoted near the surface, and the uneven structure is increased. It was possible to uniformize or control the distribution of atoms, molecules or their clusters in the depth direction in the plane of ^).
粒径 l mmより小さい粉末状のグラフアイ卜に中性元素を照射して電界放 出特性を計測したところ同様の結果が得られた。 さらに、 この粉末を «び 有機系のバインダ一に混合して塗布し、所定の讓理を行つた領域からの電子 放出特性にバインダー"^ »理の影響はなかった。 また、 炭素以外の元素の有 無に関わらずグラフアイトシートを裁断又は粉碎することによつて «した 粉末状グラフアイトを用いても同様の結果が得られた。  The same result was obtained when the powdery graphite particles having a particle size of less than l mm were irradiated with a neutral element and the field emission characteristics were measured. Furthermore, this powder was mixed with an organic binder and applied, and the electron emission characteristics from the region subjected to the predetermined substitution were not affected by the binder treatment. Similar results were obtained using powdered graphite, which was obtained by cutting or pulverizing the graphite sheet regardless of the presence or absence of the powder.
実施例 6  Example 6
本実施例では、 C s滅含浸蒸着工程の前に瞧ラジカルを照 tl"ること以 外は、 実施例 3と同じ工程で電子藤素子を擁し、 同様の方法で m 放出特 性を言 ¾5した。  In this example, the electron emission device was used in the same process as in Example 3, except that the radical was irradiated before the C s annihilation impregnation deposition process, and the m emission characteristics were described in the same manner. did.
実施例 3と同様に準備したガラス 反に固定したグラフアイトシ一トに、酸 素ガスを満たした窒化硼素製の円筒に 4 0 0 Wのマイク口波を照射すること により、 ^^ラジカルを し、 円筒の 1端に開けられた穴から ¾|£を利用し て真^ T 器に赚ラジカルを導入した。 器内のグラフアイトシート の を酸化物が昇華しなレヽ 以下に設定し、麟ラジカルを 1平方 c mあ たり 1 0 2 2個照射した。 次に、 雄例 3と同様の条件で C s 含浸工程を行 つた。 X線測定では、 層間化^)力 S形成されておらず、 表面分析では、 酵原 子及び炭素の酸化物力 s表面近傍に して V、ること力 ¾ ^、され Glass prepared in the same manner as in Example 3 By irradiating a boron nitride cylinder filled with elemental gas with a microphone mouth wave of 400 W, ^^ radicals are generated, and 真 | £ is used through a hole drilled at one end of the cylinder.赚 radical was introduced into the T vessel. Oxide of graphite sheets in the vessel is set below sublimated Rere was irradiated 1 0 2 2 or Ah 1 square cm of Lin radicals. Next, a C s impregnation step was performed under the same conditions as in Example 3. In the X-ray measurement, no interlaminarization ^) force S was formed, and in the surface analysis, the enzyme and carbon oxide forces s
実施例 3と同様に 放出碰を測定したところ、 0. 3 1^ から¾ 放出 が開始し、 ® 放出 の »も小さく、 場所依存性も少な ¾¾¾例 3、 及 び、赚ラジカルをだけを同じ餅で照射した ょりも良好な m 放出撤 を示した。 この結果は、 赫がグラフアイト中に進入又は炭素と窒素の化^! を形成するだけでなく、電子親和力の小さレ、 と正にィオン化し "レヽ C s 原子との間で電子の移動が起こることで形成される双極子モーメントにより、 仕事関数が効果的に低下したためであると考えられる。  When the amount of release was measured in the same manner as in Example 3, the release of ¾ started from 0.3 1 ^, the release of the release was small, and the dependence on the location was small. Irradiation with rice cake also showed good m release. The result is that he entered graphite or converted carbon and nitrogen ^! Not only to form but also to have a small electron affinity, and to be positively ionized, and the work function is effectively reduced by the dipole moment formed by the transfer of electrons between the Cs atom It is considered to be.
なお、本実施例では、 グラフアイトシートに照 J るラジカル源として瞧 を用いたが、 窒素、 アルカリ金属の L i、 N a、 K、 R b、 アルカリ土類金属 の C a、 S r、 B a、 希ガス元素の N e、 A r、 K r、 X eのうちの少なくと も 1つ ¾T ^めば同様の効果力 S得られたが、表面近傍に被する元素の電気陰性 度の差が大きレ、方が望ましレ、。 また、 照射ラジカノ ¾は原子又は分子に限らず それらのクラスターでも同様の効果が得られた。 また、 ラジカルを照 る時 の の温度は、 1 0 0 0°C以下であれば、 同様の効果が得られた。 また、 ラ ジカノレ照 J†¾に 1 0 0 0°C以下の で 1W理を行うことにより、表面近傍に してレ、る炭素以外の元素とグラフアイトとの化学 の促進、ィ匕合物の平 面内での均一化、原子、 分子又はそれらのクラスターの深さ方向濃度分布の均 一化又は制御を行うことができた。  In this example, 瞧 was used as the radical source for illuminating the graphite sheet, but nitrogen, alkali metals L i, Na, K, R b, alkaline earth metals C a, S r, At least one of Ba, the rare gas elements N e, Ar, K r, and X e 同 様 T ^ The same effect S was obtained, but the electronegativity of the element covered near the surface The difference is large, the more desirable, the better. The same effect was obtained not only for the irradiated radionuclide but also for the atom or molecule clusters. The same effect was obtained when the temperature at the time of irradiating the radicals was 100 ° C. or less. In addition, by applying 1W treatment to the surface of the canola at a temperature of 100 ° C. or lower, the chemistry between the element other than carbon and graphite and the graphite can be promoted in the vicinity of the surface. It was possible to equalize or control the concentration distribution of atoms, molecules or their clusters in the depth direction in the plane of the surface.
なお、本実施例では、 グラフアイトシートに照射する中性元素として C s原 子を用いたが、 アルカリ金属の L i、 N a、 K、 C s、 R b、 アルカリ土類金 属の C a、 S r、 B aうちの少なくとも 1つを含めば同様の効果が得られた。 また、 照 るのは原子、 分子に限らず、 それらのクラスターでも同様の効果 が得られた。 また、 中性元素を照 i る時の鎌の は、 1 0 0 0°C以下で あれば、 同様の効果が得られた。 また、 中 素照纖に 1 o o o°c以下の温 度で健理を行うことで、表面近傍に被している炭素 の元素とグラファ ィトとの化学^の鍵、 凸凹 化^^の平面内での均一化、 原子、 分子 又はそれらのクラスターの深さ方向濃度分布の均一化又は制御を行うことが できた。 In this example, the Cs element was used as a neutral element for irradiating the graphite sheet. However, the alkali metals Li, Na, K, Cs, Rb, and the alkaline earth metal Cs Similar effects were obtained if at least one of a, Sr, and Ba was included. The effect was not limited to atoms and molecules, but similar effects were obtained with those clusters. In addition, the temperature of the sickle when illuminating the neutral element is 100 ° C or less. If so, a similar effect was obtained. In addition, by applying heat to the carbon fiber at a temperature of 1 ooo ° C or less, the key to the chemistry of the carbon element and graphite covering the surface near the surface and the unevenness of the surface It was possible to homogenize or control the concentration distribution of atoms, molecules or their clusters in the depth direction.
また、 l mmより小さい粉末状のグラフアイトに中†4¾素を照射して電 界放出特 14を計測したところ同様の結果が得られた。 さらに、 この粉末を « 及 Ό ^系のバインダ一に混合して塗布し、所定の »理を行った領域からの 電子放出特性にノくインタ"一^ «理の影響はなかった。 また、 炭素以外の元素 の有無に関わらずグラフアイトシートを裁断又は粉碎することによって « した粉末状ダラファイトを用いても同様の結果が得られた。 発明の効果  The same result was obtained when the powdery graphite smaller than 1 mm was irradiated with medium-sized hydrogen and the field emission characteristics were measured. Further, the powder was mixed and applied to a binder of the 及 and 系 systems, and the electron emission characteristics from the region subjected to the predetermined treatment were not affected by the イ ン タ イ ン タ 理 理. Similar results were obtained by using powdered dalarite obtained by cutting or pulverizing a graphite sheet regardless of the presence or absence of elements other than carbon.
本発明では、 グラフアイトシート (特に表面層) に対し、 第 2元素を原子、 分子又はこれらのクラスターの形態で付与することにより、炭素材料本来の特 性を活かしつつ、 電子放出特 14の向上を図ることができる。 すなわち、 炭素材 料が優れた電気伝導度、 云導度、 耐食' 14等を備えるとともに、 従来品よりも 電界放出開始 ¾ffi又は仕事関数が小さレ、電子放出材料を ¾Wすることができ る。 それによつて、 高効率の電子腿素子、 大蘭表示装鮮を搬すること が可能となる。  In the present invention, the second element is added to a graphite sheet (particularly, a surface layer) in the form of atoms, molecules, or clusters thereof, thereby improving the electron emission characteristics while utilizing the inherent characteristics of the carbon material. Can be achieved. In other words, the carbon material has excellent electrical conductivity, conductivity, corrosion resistance '14, etc., has a smaller field emission start efficiency or work function than conventional products, and can reduce the electron emission material. As a result, it is possible to carry high-efficiency electronic thigh elements and Oran display freshness.
産業上の利用可能性  Industrial applicability
本発明の電子放出シート材料は、 特に、従来より電子放出材料が用いられて いる用途をはじめ、 それ以外の様々な用途への応用も期待される。 本発明の電 子放出シート材料は、 例えばディスプレイ、 線管、 ェミッタ一、 ランプ、 電 等に好適に用レ、ることができる。  The electron-emitting sheet material of the present invention is expected to be particularly applicable to various uses other than those in which an electron-emitting material is conventionally used. The electron emission sheet material of the present invention can be suitably used for, for example, a display, a tube, an emitter, a lamp, an electrode, and the like.

Claims

請求の範囲 The scope of the claims
1. (102) と、 fflte¾¾ (102) 上に ¾ϋされたグラフアイト シート (101) とを含む電子放出シート材料であって、 1. An electron emitting sheet material comprising (102) and a graphite sheet (101) coated on fflte (102),
(1) tllBグラフアイトシート (101) 、 複数の炭素六角網面からなるグ ラフエンカ S層状に ¾ϋした構造を有し、  (1) tllB graphite sheet (101) has a structure formed in a graph enca S layer composed of a plurality of hexagonal carbon planes,
(2) 各グラフェンの c軸方向が tiltESt反 (102) 面に対して実質的に直角 になるように、 各ダラフェンどうし力 しており、  (2) The forces of each dalaphen are such that the c-axis direction of each graphene is substantially perpendicular to the tiltESt anti- (102) plane.
(3) 各グラフヱンの c軸方向が肅 ESt及 (102) 面に対して実質的に直角 になるように、 ΙίΐΙΕグラフアイトシート (101) が ΙϊΕ¾ί反 (102) 上に 鵷されており、  (3) The graphit sheet (101) is placed on the counter (102) so that the c-axis direction of each graphon is substantially perpendicular to the Shusu ESt and the (102) plane.
(4) tiflEグラフアイトシート (101) 力 炭素以外の元素を第 2元素とし て含む、  (4) tiflE graphite sheet (101) Force Including elements other than carbon as the second element,
電子放出シート材料。 Electron emission sheet material.
2. 編己グラフアイトシ一トの X線回折パターンにおいて、 (002n) 面 (ただし、 nは、 自然数を示す。) のピークが する、 請求項 1記載の電子 放出シートネ才; 1¾ 3. 嫌己グラフアイトシートの X線回折パターンにおいて、 (002) 面 および(004)面のピーク力 ¾する、請求項 1記載の電子放出シート材料。 2. The electron emission sheet according to claim 1, wherein a peak of the (002 n ) plane (where n is a natural number) appears in the X-ray diffraction pattern of the self-graph graph sheet. 2. The electron-emitting sheet material according to claim 1, wherein in the X-ray diffraction pattern of the terrible graphite sheet, the peak force of the (002) plane and the (004) plane is different.
4. 前記ダラフェンどうしの層間に tine第 2元素が存在する、 請求項 1記 載の電子放出シート材料。 4. The electron emission sheet material according to claim 1, wherein a second element of tin exists between the layers of the dalaphen.
5. 觸 S第 2元素の濃度が、 0. 001原子。/。以上 3原子。/。以下である、 請求項 1纖の電子放出シート材料。 5. Touch S The concentration of the second element is 0.001 atom. /. More than 3 atoms. /. The electron emission sheet material according to claim 1, wherein:
6. 前記第 2元素の濃度が、 0. 005原子%以上 2原子%以下である、 請求項 1記載の電子放出シート材料。 6. The electron emission sheet material according to claim 1, wherein the concentration of the second element is 0.005 atomic% or more and 2 atomic% or less.
7. 2元素の濃度が、 o. oi原子0 /0以上 1原子0 /0以下である、 請 求項 1纖の電子放出シート材料。 7. concentration of 2 elements, o. Oi atoms is 0/0 or 1 atom 0/0 or less,請Motomeko 1纖electron emitting sheet material.
8. シートの厚みが 10 μ m以上 1000 ^ m以下である請求項 1 fEifeの 電子放出シート材料。 · 8. The electron emission sheet material of fEife, wherein the thickness of the sheet is 10 μm or more and 1000 ^ m or less. ·
9. 第 2元素の ~¾又は全部力 S、 シート表面からシートの厚みの 10 %の 深さまでの表面層に する請求項 1言凍の電子放出シート材料。 9. The electron-emitting sheet material according to claim 1, wherein the second element has a surface layer extending from the sheet surface to a depth of 10% of the sheet thickness.
10. 第 2元素が、 アル力リ 元素及ぴアル力リ土類金属元素の少なく とも 1種である請求項 1記載の電子放出シート材料。 10. The electron emission sheet material according to claim 1, wherein the second element is at least one of an element and an earth metal element.
11. 第 2元素が、 L i、 Na、 K、 Cs、 Rb、 Ca、 31:及び8&の 少なくとも 1種である請求項 1言 の電子放出シート材料。 11. The electron emission sheet material according to claim 1, wherein the second element is at least one of Li, Na, K, Cs, Rb, Ca, 31: and 8 &.
12. 第 2元素が、 窒素及ひ藤の少なくとも 1種である請求項 1 ϊ の 電子放出シート材料。 12. The electron emission sheet material according to claim 1, wherein the second element is at least one of nitrogen and wisteria.
13. 第 2元素が、 希ガス元素の少なくとも 1種である請求項 1記載の電 子放出シ一ト材料。 13. The electron emission sheet material according to claim 1, wherein the second element is at least one of rare gas elements.
14. 第 2元素が、 Ne、 Ar、 K r及び X eの少なくとも 1種である請 求項 1言 の電子放出シート材料。 14. The electron-emitting sheet material according to claim 1, wherein the second element is at least one of Ne, Ar, Kr, and Xe.
15. 第 2元素が、 下記 1) 〜3) ; 15. The second element is 1) to 3) below;
1 ) アル力リ 元素及びアル力リ土類金属元素の少なくとも 1種、 1) At least one of the elements and earth metal elements
2 ) 窒素及ひ の少なくとも 1種、 2) at least one of nitrogen and
3) 希ガス元素の少なくとも 1種  3) At least one rare gas element
の 2つ又は 3つの組^:である請求項 1記載の電子放出シート材料。 2. The electron emission sheet material according to claim 1, wherein the electron emission sheet material is a set of two or three of:
16. 蔵 (102) と、 ΙίίΙΒ» (102)上に積層されたグラフアイ トシート (101) と^む電子放出シート材料の製^去であり、 16. Manufacturing of the electron emission sheet material, which is called the warehouse (102) and the graphite sheet (101) laminated on the glass (102),
(1) tirlEグラフアイトシート (101) は、 複数の炭素六角網面からなる グラフヱンカ層状に麵した構造を有し、 (1) The tirlE graphite sheet (101) has a structure formed into a graphlinker layer composed of a plurality of carbon hexagonal mesh planes,
(2)各ダラフェンの c軸方向が ffHBS^ (102)面に対して実質的に直 角になるように、 各グラフェンどうしが積層しており、  (2) Each graphene is stacked so that the c-axis direction of each dalafen is substantially perpendicular to the ffHBS ^ (102) plane.
(3)各ダラフェンの c軸方向が |ίΠΒ¾Κ (102)面に対して実質的に直 角になるように、 前記グラフアイトシート (101) が前 IBS板 (102) 上 に麵されて ヽるものであつて、 (3) The graphite sheet (101) is placed on the front IBS plate (102) so that the c-axis direction of each dalafen is substantially perpendicular to the | ίΠΒ¾Κ (102) plane. Things
ISグラフアイトシートに、 炭素以外の第 2元素を原子、 分子又はクラスタ 一として付与する第 2元素付与工程を有する、電子放出シート材料の 法。  An electron emission sheet material method, comprising a second element providing step of providing a second element other than carbon as an atom, molecule or cluster to an IS graphite sheet.
17. fifia第 2元素付与工程の後に、 膽5グラフアイトシートをさらに熱 処理する工程を有する請求項 16記載の電子放出シート材料の 17. The electron emission sheet material according to claim 16, further comprising a step of further heat-treating the graphite sheet after the fifia second element providing step.
18. fiJlB第 2元素付与工程が、 18. fiJlB 2nd element application process,
a ) 第 2元素としてィオン化した原子、 分子及びクラスタ一の少なくとも 1種をダラファイトシートに打ち込むィオン打ち込み工程、  a) an ion implantation step of implanting at least one of atoms, molecules, and clusters ionized as a second element into a dalaphite sheet;
を有する、 請求項 16 f織の電子放出シート材料の製 去。  The production of an electron emission sheet material having a texture of 16 f, comprising:
19. 廳第 2元素付与工程が、 19. The second step of applying the second element
b)第 2元素としてラジカノレイ匕した原子、 分子及びクラスタ一の少なくと も 1種をグラフアイトシートに照 i "るラジカル照射工程  b) A radical irradiation step of irradiating at least one of the atoms, molecules, and clusters which have been subjected to radioactive ray as a second element on a graphite sheet.
を有する、 請求項 16言 E¾の電子放出シート材料の製造方?去。  17. The method for producing an electron-emitting sheet material according to claim 16, comprising:
20. 謙己第 2元素付与工程が、 20. The second element addition process
c)第 2元素として電気的に中性の原子、 分子及ぴクラスターの少なくと も 1種をグラフアイトシ一トに到達させる中性物到達工程 を有する、 請求項 1 6纖の電子放出シート材料の製 あ c) Neutral substance reaching process in which at least one kind of electrically neutral atoms, molecules and clusters as the second element reaches the graphite sheet. Claim 16: Manufacturing of a 6-fiber electron emission sheet material.
2 1 . 2元素付与工程が、 下記の工程 a ) 〜 c ) ; The 21.2 element providing step includes the following steps a) to c);
a )第 2元素としてイオン化した原子、 ^"及びクラスターの少なくとも 1種をグラフアイトシートに打ち込むィオン打ち込み工程、  a) an ion implantation step of implanting at least one kind of atom, ^ "and cluster ionized as a second element into a graphite sheet;
b ) 第 2元素としてラジカル化した原子、 分子及びクラスターの少なくと も 1種をグラフアイトシートに照射するラジカル照射工程、 及び  b) a radical irradiation step of irradiating the graphite sheet with at least one of atoms, molecules and clusters radicalized as a second element, and
c ) 第 2元素として電気的に中性の原子、 分子及ぴクラスターの少なくと も 1種をグラフアイトシートに到達させる中性物到達工程  c) A process for reaching at least one of electrically neutral atoms, molecules and clusters as the second element to the graphite sheet.
の 2種又は 3種の工程を有する請求項 1 6記載の電子放出シート材料の製  17. The method for producing an electron-emitting sheet material according to claim 16, comprising two or three steps of:
2 2. 驗ダラファイトシートが、 高分子シートを讓理することによつ て得られる請求項 1 6言 の電子放出シート材料の製^ 22. The method for producing an electron emission sheet material according to claim 16, wherein the test Daraphyte sheet is obtained by treating a polymer sheet.
2 3. 鍵己高分子シートカ ポリフエ二レンォキサジァゾーノレ、 ポリベン ゾチアゾール、 ポリべンゾビスチアゾール、 ポリべンゾォキサゾール、 ポリべ ンゾビスォキサゾール、 ポリチアゾール、 ポリアミド、 ポリイミド、 ポリアミ ドィミド及びポリアクリロニトリルの少なくとも 1種である請求項 2 2記載 の電子放出シート材料の製造方 2 3. Key sheet polymer polyphenylene oxadiazonole, polybenzothiazole, polybenzobisthiazole, polybenzozoxazole, polybenzobisoxazole, polythiazole, polyamide, polyimide, polyamideamide 22. The method for producing an electron emission sheet material according to claim 22, which is at least one of polyacrylonitrile and polyacrylonitrile.
2 4. 前記高分子シートが、 ポリイミドである請求項 2 215 ^の電子放出 シー卜材料の製2 4. The electron emission sheet material according to claim 2, wherein the polymer sheet is a polyimide.
2 5. 編己高分子シートが、 芳香族ポリイミドである請求項 2 2記載の電 子放出シート材料の製駄法。 22. The method according to claim 22, wherein the knitted polymer sheet is an aromatic polyimide.
2 6. m m^ 不活性ガス中で第 ιの出発 から第 ιの昇^ で昇温して 1 0 0 0°C以上 2 5 0 0°C未満の で焼成する第 1の熱処理ェ 程と、 ΙίίϊΕ第 1の 理工程後に不活' t ^'ス中で第 2の出発 から第 2の昇 ^ii度で 2 5 0 0°C以上の £¾で«する第 2の熱処理工程とからなる請求 項 2 2言 fi¾の電子放出シート材料の^ ^fe 2 6.mm ^ The first heat treatment step in which the temperature is raised from the start of the ι in the inert gas to the 第 th rise and baked at 100 ° C or more and less than 250 ° C. ΙίίϊΕ After the first processing step, inactive 't ^' The second heat treatment step is performed at a temperature of ^ ii degrees and a temperature of 250 ° C. or more.
2 7. 前記グラフアイトシ一トの X線回折パターンにおいて、 (0 0 2 n) 面 (ただし、 nは、 自鐘を示す。) のピーク力 S被する、 請求項 1 6記載の 電子放出シート材料の麟方法。 In X-ray diffraction pattern of 2 7. The graph eye tosylate Ichito, (0 0 2 n) plane (where, n represents the self-bell.) To the peak force S of electron emission of claims 1 to 6, wherein Sheet material lining method.
2 8. 前記グラフアイトシ一トの X線回折パターンにおいて、 (0 0 2) 面おょぴ (0 0 4) 面のピーク力 する、 請求項 1 6|¾の電子放出シート 材料の 2 8. The electron emission sheet according to claim 16, wherein in the X-ray diffraction pattern of the graphite sheet, the peak force of the (0 2) plane is (0 4) plane.
2 9. fl ダラフェンどうしの層間に ΙίίΙΞ第 2元素が彼する、請求項 1 6記載の電子放出シート材料の 2 9. The electron emission sheet material according to claim 16, wherein the second element is interposed between the layers of flalafene.
3 0. 前記第 2元素の濃度が、 0. 0 0 1原子%以上 3原子%以下である、 請求項 1 6記載の電子放出シート材料の製造规 30. The method for manufacturing an electron-emitting sheet material according to claim 16, wherein the concentration of the second element is 0.01 to 3 atomic%.
3 1. 前記第 2元素の濃度が、 0. 0 0 5原子%以上 2原子0 /0以下である、 請求項 1 6記載の電子放出シート材料の製 あ 3 1. Concentration of the second element, 0. is 0 0 5 atomic% or more and 2 atomic 0/0 or less, Oh manufacturing the electron-emitting sheet material according to claim 1 6, wherein
3 2. 前記第 2元素の濃度が、 0. 0 1原子%以上 1原子%以下である、 請求項 1 6魏の電子放出シート材料の製造紘 3 2. The method for producing an electron-emitting sheet material according to claim 16, wherein the concentration of the second element is not less than 0.01 atomic% and not more than 1 atomic%.
3 3. シートの厚みが 1 0 m以上 1 0 0 0 μ m以下である請求項 1 6記 載の電子放出シート材料の製造; W去。 3 3. The production of the electron-emitting sheet material according to claim 16, wherein the sheet has a thickness of 10 m or more and 100 μm or less;
3 4. 第 2元素の一部又は全部が、 シート表面からシートの厚みの 1 0 % の深さまでの表面層に する請求項 1 6記載の電子放出シート材料の製造 方法。 3. The method for producing an electron-emitting sheet material according to claim 16, wherein a part or all of the second element forms a surface layer from the sheet surface to a depth of 10% of the sheet thickness.
35. 第 2元素が、 アル力リ 元素及びアル力リ土類金属元素の少なく とも 1種である請求項 16言纖の電子放出シート材料の $¾ ^ 35. The fibrous electron emission sheet material $ ¾ ^, wherein the second element is at least one of an element and an earth element.
36. 第 2元素が、 L i、 Na、 K、 Cs、 Rb、 Ca、 Sr及ぴ Baの 少なくとも 1種である請求項 16記載の電子放出シート材料の 36. The electron emission sheet material according to claim 16, wherein the second element is at least one of Li, Na, K, Cs, Rb, Ca, Sr, and Ba.
37. 第 2元素が、 窒素及 の少なくとも 1種である請求項 16雄 の電子放出シート材料の製^^37. The method of claim 16, wherein the second element is at least one of nitrogen and nitrogen.
38. 第 2元素が、希ガス元素の少なくとも 1種である請求項 16 |5¾の 電子放出シート材料の製 38. The electron emission sheet material according to claim 16, wherein the second element is at least one of rare gas elements.
39. 第 2元素が、 Ne、 Ar、 K r及び X eの少なくとも 1種である請 求項 16|5¾の電子放出シー卜材料の製駄¾ 39. The material of claim 16 | 5, wherein the second element is at least one of Ne, Ar, Kr and Xe.
40. 第 2元素が、 下記 1) 〜3); 40. The second element is 1) to 3) below:
1 ) アル力リ 元素及びアル力リ土類^ S元素の少なくとも 1種、 1) at least one of the elements and elements
2 ) 窒素及 の少なくとも 1種、 2) at least one of nitrogen and
3 ) 希ガス元素の少なくとも 1種  3) At least one rare gas element
の 2つ又は 3つの組^:である請求項 16記載の電子放出シート材料の製 法。  17. The method for producing an electron-emitting sheet material according to claim 16, which is a set of two or three of the following.
41. 電子放出シート材料、 導電性ゲート層及ひ を含む電子 ¾Ιί素 子であって、 41. An electron element including an electron emission sheet material, a conductive gate layer and
嫌己電子放出シートネ才料が、 墓 (102) と、 廳己應 (102) 上に積 層されたグラフアイトシート (101) とを含み、  The feeble electron emission sheet material includes a tomb (102) and a graphite sheet (101) stacked on the cafeteria (102),
(1) 鎌己グラフアイトシート (101) 力 複数の炭素六角網面からなるグ ラフエンが層状に積層した構造を有し、  (1) Kamami Graphite Sheet (101) Force A graphite sheet consisting of a plurality of carbon hexagonal mesh planes has a layered structure,
(2) 各ダラフェンの c軸方向力ftllSSS (102) 面に対して実質的に直角 になるように、 各グラフェンどうしが積層しており、 (3) 各グラフェンの c軸方向が |ίίίΒ¾¾ (1 0 2) 面に対して実質的に直角 になるように、 tiif己グラフアイトシート (1 0 1 ) が ΙίίϊΕ¾¾ (1 0 2) 上に 積層されており、 (2) c-axis force of each dalafen ftllSSS Each graphene is laminated so that it is substantially perpendicular to the (102) plane. (3) The tiif self-graphite sheet (1 0 1) is stacked on 1 (1 0 2) so that the c-axis direction of each graphene is substantially perpendicular to the | ίίίΒ¾¾ (1 0 2) plane. Has been
(4) fflfBグラフアイトシート (1 0 1 ) 力 炭素 の元素を第 2元素とし て含み、  (4) fflfB graphite sheet (101) containing carbon element as a second element,
ΙίίϊΒグラフアイトシート (1 0 1) と導電性ゲート層 (1 0 6) と力 漏 ( 1 0 5) を介して配置されている、  て い る It is arranged via the graphite sheet (101), the conductive gate layer (106) and the power leakage (105),
ことを糊敫とする電子; W素子。  An electronic device that has the following characteristics: W element.
4 2. 蛍光体層を有するァノード部及び電子腿素子^^み、 鍵己電子放 射素子から放出された電子が tins蛍光体層を発光させるように前記アノード 部及び電子漏素子力 置されてレ、る蛍光体発光素子であって、廳電子藤 素子が請求項 4 1言 の素子である蛍光体発光素子。 4 2. The anode section and the electron tread element having the phosphor layer, the anode section and the electron leakage element are arranged so that the electrons emitted from the key electron emission element emit the tins phosphor layer. 41. A phosphor light emitting device, wherein the electronic device is a device according to claim 41.
4 3. 蛍光体層を有するァノード部及び二次元的に配列された複数の電子4 3. An anode part having a phosphor layer and a plurality of two-dimensionally arranged electrons
¾lt素子を含み、 tiff己電子腿素子から放出された電子力 s蛍光体層を発光させ るように tut己アノード部及び電子 素子が配置されている画像描画装置で あって、 tfrt己電子 素子が請求項 4 1記載の素子である画像描画装 4 4. 複数の電子放射素子の個々からの電子放射量によって蛍光体発光量 を制御する請求項 4 3 の画 i¾画素子。 An image drawing apparatus including a ¾lt element, an electron force emitted from a tiff self-electron element, and a tut self-anode section and an electronic element arranged to emit light from a phosphor layer. The image drawing device according to claim 41, wherein the amount of phosphor emission is controlled by the amount of electron emission from each of the plurality of electron-emitting devices.
PCT/JP2004/005703 2003-04-22 2004-04-21 Electron-emitting material, its producing method, electron-emitting device using same, and image drawing device WO2004095494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/047,656 US7736542B2 (en) 2003-04-22 2005-02-02 Electron-emitting material, manufacturing method therefor and electron-emitting element and image displaying device employing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003116841A JP2006196186A (en) 2003-04-22 2003-04-22 Electron-emitting material and its manufacturing method, and field emission element and image drawing element using them
JP2003-116841 2003-04-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/047,656 Continuation US7736542B2 (en) 2003-04-22 2005-02-02 Electron-emitting material, manufacturing method therefor and electron-emitting element and image displaying device employing same

Publications (1)

Publication Number Publication Date
WO2004095494A1 true WO2004095494A1 (en) 2004-11-04

Family

ID=33308007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005703 WO2004095494A1 (en) 2003-04-22 2004-04-21 Electron-emitting material, its producing method, electron-emitting device using same, and image drawing device

Country Status (2)

Country Link
JP (1) JP2006196186A (en)
WO (1) WO2004095494A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842271B2 (en) 2004-12-07 2010-11-30 Petrik Viktor I Mass production of carbon nanostructures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101603766B1 (en) * 2009-11-13 2016-03-15 삼성전자주식회사 Graphene laminate and process for preparing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437530B2 (en) * 1982-06-11 1992-06-19 Hitachi Ltd
JP2000090813A (en) * 1998-06-18 2000-03-31 Matsushita Electric Ind Co Ltd Electron emission element, electron emission source, their manufacture, image display device using them, and its manufacture
JP2000178016A (en) * 1998-12-11 2000-06-27 Matsushita Electric Ind Co Ltd Production of graphite sheet and thermal conductive material using the same
JP2004119263A (en) * 2002-09-27 2004-04-15 Matsushita Electric Ind Co Ltd Electron emissive material and its manufacturing method and field emission device and picture drawing element using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437530B2 (en) * 1982-06-11 1992-06-19 Hitachi Ltd
JP2000090813A (en) * 1998-06-18 2000-03-31 Matsushita Electric Ind Co Ltd Electron emission element, electron emission source, their manufacture, image display device using them, and its manufacture
JP2000178016A (en) * 1998-12-11 2000-06-27 Matsushita Electric Ind Co Ltd Production of graphite sheet and thermal conductive material using the same
JP2004119263A (en) * 2002-09-27 2004-04-15 Matsushita Electric Ind Co Ltd Electron emissive material and its manufacturing method and field emission device and picture drawing element using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842271B2 (en) 2004-12-07 2010-11-30 Petrik Viktor I Mass production of carbon nanostructures

Also Published As

Publication number Publication date
JP2006196186A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
US7736542B2 (en) Electron-emitting material, manufacturing method therefor and electron-emitting element and image displaying device employing same
US7351443B2 (en) Electron-emmiting material and manufacturing method therefor
JP5580866B2 (en) Ultraviolet light generation target, electron beam excited ultraviolet light source, and method for producing ultraviolet light generation target
JP2003257359A (en) Electron amplifier with carbon nanotube and method of manufacturing the same
JP2002105623A (en) Carbon onion thin film and manufacturing method
JP2003217516A (en) Field emission element having carbon nano-tube covered by protection film
US6861798B1 (en) Tailored spacer wall coatings for reduced secondary electron emission
Eyidi et al. Superconducting properties, microstructure and chemical composition of MgB2 sheathed materials
Liu et al. Study on the emission properties of the impregnated cathode with nanoparticle films
JP5580932B2 (en) Ultraviolet light generation target, electron beam excited ultraviolet light source, and method for producing ultraviolet light generation target
KR20010033105A (en) Ion-Bombarded Graphite Electron Emitters
US20100072879A1 (en) Field emission device with anode coating
Nakamoto et al. Suitability of low-work-function titanium nitride coated transfer mold field-emitter arrays for harsh environment applications
WO2004095494A1 (en) Electron-emitting material, its producing method, electron-emitting device using same, and image drawing device
JP2004119263A (en) Electron emissive material and its manufacturing method and field emission device and picture drawing element using it
CN108257848B (en) Target for ultraviolet light generation, method for producing same, and electron beam-excited ultraviolet light source
US10381215B2 (en) Target for ultraviolet light generation, and method for manufacturing same
JP4357066B2 (en) Field electron emission device and manufacturing method thereof
JP2006114265A (en) Manufacturing method of micro electron source device
TWI290952B (en) Blue fluorescent substance for display device and method for producing the same and field emission type display device
JP2008308725A (en) Method for depositing film of phosphor
JP2005306729A (en) Method for manufacturing a plurality of carbon fibers, electron emitting device using the same, electron source, method for manufacturing image forming apparatus, and negative electrode of secondary battery and hydrogen storage body
Li et al. Field emission from cobalt-containing amorphous carbon composite films heat-treated in an acetylene ambient
Mao et al. Electron field emission from hydrogen-free amorphous carbon-coated ZnO tip array
JP2007056351A (en) Target for ion plating used for manufacturing of zinc oxide-based electroconductive film, its manufacturing method, and method for manufacturing zinc oxide-based electroconductive film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11047656

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase