WO2004094939A1 - Magnetic probe - Google Patents

Magnetic probe Download PDF

Info

Publication number
WO2004094939A1
WO2004094939A1 PCT/JP2003/005132 JP0305132W WO2004094939A1 WO 2004094939 A1 WO2004094939 A1 WO 2004094939A1 JP 0305132 W JP0305132 W JP 0305132W WO 2004094939 A1 WO2004094939 A1 WO 2004094939A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
subject
magnetic
detection
detection coil
Prior art date
Application number
PCT/JP2003/005132
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Yamakawa
Kazuaki Tabata
Original Assignee
Azuma Systems Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azuma Systems Co., Ltd filed Critical Azuma Systems Co., Ltd
Priority to AU2003235389A priority Critical patent/AU2003235389A1/en
Priority to PCT/JP2003/005132 priority patent/WO2004094939A1/en
Priority to JP2004571070A priority patent/JPWO2004094939A1/en
Publication of WO2004094939A1 publication Critical patent/WO2004094939A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Definitions

  • the present invention belongs to the technical field of magnetic probes used for surface inspection, flaw detection inspection, residual stress inspection, material inspection, etc. of an object containing a metal component, and in particular, freely forms according to the inspection object and required detection accuracy.
  • the present invention relates to a magnetic probe capable of performing high-precision inspection while using a detection coil that can be changed. Background art
  • Magnetic probes that use magnetism, particularly an alternating magnetic field, to perform various tests on a subject containing a metal component are known.
  • This type of magnetic probe has already been used for surface inspection, flaw detection inspection, residual stress inspection, material inspection, etc. of specimens containing metal components, but it is necessary to improve the detection accuracy in order to expand the range of use Is strongly desired. Therefore, a U-shaped core that forms a loop-shaped magnetic circuit in the interior of the subject and the surface space of the subject exists, and this core is AC-excited to produce the inside of the subject and the surface of the subject.
  • a magnetic probe has been proposed that includes an excitation coil that generates an AC magnetic field in space and a detection coil that locally detects a change in magnetic flux near the surface of the subject (for example, Japanese Patent Application Laid-Open No. 60-173). See No. 51.)
  • the magnetic probe configured as described above forms a magnetic circuit with the subject, it can generate a local strong magnetic field at a desired position on the subject, and the exciting unit and the detecting unit
  • the independent magnetic probe has an advantage that the detection coil can be miniaturized.
  • the above-described conventional magnetic probe has a disadvantage in that the detection coil is arranged such that the coil center line is directed perpendicular to the surface of the subject. Since the change in magnetic flux is detected using a general-purpose magnetic detection element such as a Hall element, there has been a problem that the detection accuracy is limited and the application of the magnetic probe is limited.
  • the AC magnetic field generated by the excitation coil is substantially parallel to the surface of the subject.
  • There is a magnetic change due to the surface shape or scratches of the subject mainly a force that appears as a change in magnetic flux along the surface of the subject.
  • a detection coil arranged perpendicular to the surface of the subject is a magnetic flux. Since only the vertical component of the change is detected, there is a drawback that it is not possible to detect even a minute change in the magnetic flux density along the surface of the subject.
  • the shape of the detection unit must be changed as appropriate according to the inspection target and the required detection accuracy.However, the size of a magnetic detection element such as a Hall element is specified in advance, and the shape can be freely changed. Due to the low degree of accuracy, there are drawbacks in that the applications of the magnetic probe are limited and the required accuracy cannot be secured.
  • An object of the present invention is to form a loop-shaped magnetic circuit by an excitation coil and a core, and to detect a change in magnetic flux locally near the surface of a subject without using a general-purpose magnetic detection element.
  • a magnetic probe that detects a change in magnetic flux near the surface of a subject has a plurality of subjects close to each other, and forms a loop-shaped magnetic circuit in the interior of the subject and in the space of the subject or the surface of the subject.
  • a ferromagnetic core an exciting coil that generates an alternating magnetic field along the surface of the subject in the subject and / or in a surface space of the subject by exciting the core with an alternating current; And a detection coil that is arranged so that the outer peripheral surface of the coil locally faces the surface of the subject and detects a change in magnetic flux near the surface of the subject.
  • a magnetic detection element such as a Hall element can be used to detect a local magnetic flux change near the surface of the subject while forming a loop-shaped magnetic circuit with the excitation coil and the core.
  • a detection coil that can be freely changed in shape, etc. according to the inspection object and required detection accuracy without using
  • the detection coil so that the coil center line is along the surface of the object and the coil outer peripheral surface is locally opposed to the surface of the object, the magnetic flux changes in the direction along the surface of the object. Can be detected with extremely high accuracy.
  • the detection coil arranged in this manner can be easily miniaturized in the direction along the surface of the subject, it is necessary to scan the magnetic probe (or move the subject) while inspecting the surface of the subject. The resolution can be easily improved.
  • the detection coil is a differential coil capable of detecting a differential voltage, and a pair of coils constituting the differential coil are arranged along the surface of the subject. In this case, the detection accuracy can be further improved by canceling the inherent error and the temperature error of the coil.
  • the detection coil is characterized in that it is formed using a spiral coil having a small thickness in a coil center line direction.
  • the resolution of the magnetic probe can be improved by performing the inspection while scanning the magnetic probe or the subject in the direction of the coil center line of the detection coil.
  • the detection coil is formed as a thin-film circuit pattern on a base material made of an insulator. In this case, the thickness of the detection coil in the direction of the center line of the coil is remarkably reduced, and the resolution of the magnetic probe can be further increased.
  • the detection coil is a differential coil capable of detecting a differential voltage, and a pair of coils constituting the differential coil is formed in a laminated shape with the base material interposed therebetween. .
  • the resolution of the magnetic probe be drastically improved, but also the inherent error and temperature error of the coil can be offset to obtain highly reliable inspection data.
  • an extremely thin detection coil can be formed by the existing thin film substrate manufacturing technology.
  • a plurality of the detection coils are provided so as to be arranged along the surface of the subject.
  • two-dimensional detection data can be obtained by scanning the magnetic probe or the subject in a direction orthogonal to the arrangement direction of the detection coils. If arranged in a magnetic probe Two-dimensional detection data can be obtained without scanning the subject.
  • FIG. 1 is a side view showing a basic configuration of a magnetic probe.
  • FIG. 2 is a perspective view showing a basic form of a detection coil.
  • FIG. 3 is a block diagram showing a detection circuit.
  • FIGS. 6A to 6C are explanatory views showing various embodiments of the detection coil.
  • () Is a side view of the detection coil
  • (B) is a plan view of the detection coil
  • (C) is a side sectional view of the detection coil.
  • FIG. 7 (A) to 7 (C) are explanatory views showing various embodiments of the detection coil, (A) is a front view and a side view of the detection coil, (B) is a front view of the detection coil, (C) 3 is a plan view of a detection coil.
  • 8 (A) to 8 (E) are explanatory diagrams showing examples of arrangement of a core and a detection coil.
  • FIG. 1 is a side view showing a basic configuration of a magnetic probe.
  • the magnetic probe 1 shown in this figure generates at least a core 3 and an excitation coil 3 in order to detect a magnetic flux change near the surface of the subject 2 while generating an alternating magnetic field inside the subject 2 and a surface space containing a metal component. It comprises a coil 4 and a detection coil 5.
  • the core 3 has a plurality of specimen proximity portions 3a, and is formed using a ferromagnetic material so as to form a loop-shaped magnetic circuit, with the inside of the specimen 2 and a surface space. ing.
  • the exciting coil 4 is wound around the core 3, and an AC voltage having a predetermined frequency is applied.
  • an AC voltage is applied to the excitation coil 4, the core 3 is AC-excited, and the inside of the subject 2 and the
  • An alternating magnetic field along the surface of the subject 2 is generated in the surface space.
  • the magnetic flux of this AC magnetic field is determined by the material of the subject 2 (flux change factors: magnetic permeability, conductivity, etc.), the surface state (flux change factors: magnetic permeability, conductivity, eddy current, detection gap, leakage magnetic flux, etc.), internal It changes according to the state (magnetic flux change factors: permeability, conductivity, eddy current, leakage flux, etc.).
  • This change in magnetic flux includes a component parallel to the surface of the subject 2 and a component perpendicular to the surface of the subject 2.
  • a large change also occurs in the vertical component.
  • the vertical component In the case of a small change in magnetic flux, the vertical component hardly changes, and the change mainly appears in the parallel component.
  • the detection coil 5 is arranged so that the coil center line is along the surface of the subject 2 and the outer peripheral surface of the coil is locally opposed to the surface of the subject 2, and changes the magnetic flux near the surface of the subject 2.
  • the magnetic probe 1 of the present invention when forming a loop-shaped magnetic circuit by the exciting coil 4 and the core 3 and detecting a local magnetic flux change near the surface of the subject 2, includes the detecting coil 5
  • the coil center line is arranged along the surface of the subject 2 without being arranged perpendicular to the surface of the subject 2. This makes it possible to accurately detect even a small change in magnetic flux in which the vertical component hardly changes and the parallel component mainly changes.
  • FIG. 2 is a perspective view showing a basic form of a detection coil
  • FIG. 3 is a block diagram showing a detection circuit.
  • the detection coil 5 shown in FIG. 2 is a differential coil capable of detecting a differential voltage.
  • the pair of coils L1, L2 constituting the differential coil are connected in series so as to be arranged along the surface of the subject 2, and in addition to the terminals T1, T2 drawn from both ends thereof, It has a center tap terminal T 3 that is drawn out between the coils L l and L 2.
  • the coils L 1 and L 2 form a bridge circuit 6 with a pair of resistors R 1 and R 2 (or a variable resistor). Are output.
  • the resistance values of the resistors R1 and R2 are initially adjusted so that the differential output has a predetermined value.
  • the differential output of the bridge circuit 6 is amplified by the differential amplifier circuit 7 and then input to the synchronous detection circuit 8.
  • the synchronous detection circuit 8 inputs a synchronization signal from the AC excitation circuit section 10 of the excitation coil 4 via the 90 ° phase shifter 9 and, at the same time, outputs the differential signal at the cycle.
  • the detection circuit shown in FIG. 3 includes an integration circuit that performs an integration process using the scanning distance of the magnetic probe 1 as a parameter. Next, each part of the magnetic probe 1 will be described in detail.
  • FIG. 4 is an explanatory diagram showing various embodiments of the core.
  • Each of the cores 3 shown in this figure is a ferromagnetic material capable of forming a magnetic circuit, and is formed using, for example, ferrite.
  • the shape of the core 3 (side view) is a U-shape, a U-shape as shown in FIG. 4 (B), and a U-shape as shown in FIG. 4 (C).
  • a V-shape or a C-shape as shown in FIG. 4 (D) can be adopted.
  • the dimensions of the core 3 are set according to the excitation range (inspection range). For example, as shown in FIG.
  • FIG. 5 is an explanatory view showing various embodiments of the exciting coil.
  • Each of the excitation coils 4 shown in this figure is made of a conductive wire coated with an insulating material, and is wound around the core 3.
  • the winding position of the exciting coil 4 with respect to the core 3 is not limited to the upper part of the core 3 as shown in FIG. 5 (A), but may be the left and right legs of the core 3 as shown in FIG. 5 (B).
  • the excitation coil 4 may be wound around the upper part of the core 3 and the left and right legs.
  • the frequency of the AC voltage applied to the exciting coil 4 is set in consideration of the skin effect of the subject 2 due to the AC magnetic field. For example, when inspecting the surface of the subject 2, it is preferable to increase the frequency of the AC voltage, and when inspecting the inside or back surface of the subject 2, it is preferable to decrease the frequency of the AC voltage.
  • FIGS. 6 and 7 are explanatory diagrams showing various embodiments of the detection coil.
  • the detection coils 5 shown in these figures are all air-core coils.
  • Figure 6 (a) is explanatory diagrams showing various embodiments of the detection coil.
  • the detection coil 5 (equivalent to that shown in FIG. 2) of A) has coils L 1 and L 2 formed by winding a non-magnetic core material 5 a with an insulated conductor.
  • 6 (B) is a biaxial type in which a pair of detection coils 5 are integrated in a cross shape, and both detection coils 5 are arranged along the surface of the subject 2. . According to the two-axis type configured in this manner, even if one of the detection coils 5 is parallel to a linear defect (a crack or the like) of the subject 2, the other detection coil 5 does not respond to the linear defect. Since they intersect, linear defects can be reliably detected without overlooking them.
  • FIG. 6 (C) shows the detection coil 5 formed so that the thickness in the coil center line direction is as small as possible.
  • a coil winding groove having a predetermined width for example, 50 ⁇ m
  • the detection coil 5 is formed by winding a multi-layered conductive wire in each coil winding groove.
  • the detection coil 5 thus configured has a small thickness in the coil center line direction and a small interval between the coils L 1 and L 2, so that the resolution in the coil center line direction can be significantly improved.
  • the detection coil 5 shown in FIG. 7 is formed as a thin-film circuit pattern (spiral coil) on a base material 5c made of an insulator.
  • a detection coil 5 can be formed by, for example, an existing thin-film substrate manufacturing technology. However, if a semiconductor manufacturing technology or a micromachining technology is used, a finer and thinner detection coil can be formed.
  • the detection coil 5 shown in FIG. 7 uses a base material 5c (for example, a ceramic substrate) for a thin film substrate, and forms a conductor layer (for example, a copper foil) formed on the front and back thereof based on a circuit pattern.
  • the thin-film coils Ll and L2 are formed by vapor deposition.
  • a pair of coils L 1 and L 2 constituting the differential coil are formed in a laminated shape with the extremely thin base material 5 c interposed therebetween, so that the resolution in the coil center line direction can be drastically improved. become.
  • the detection coil 5 in which a plurality of coils Ll and L2 are one-dimensionally arranged may be juxtaposed in the scanning direction of the magnetic probe 1.
  • the coils L 1 and L 2 formed on the front and rear detection coils 5 at a half pitch from each other, it is possible to eliminate a gap in the one-dimensional array direction and prevent detection leakage.
  • a plurality of detection coils 5 may be arranged in two dimensions. In this case, two-dimensional detection data can be obtained without scanning the magnetic probe 1 or the subject 2.
  • FIG. 8 is an explanatory diagram showing an example of arrangement of a core and a detection coil.
  • the arrangement relationship between the core 3 and the detection coil 5 can be arbitrarily set according to the form of the subject 2, the inspection location, and the purpose of the inspection.
  • FIG. 8 (A) shows a basic arrangement relationship, wherein the detection coil 5 is arranged between the core 3 and the vicinity 3a of the subject.
  • FIG. 8 (B) shows an example of an arrangement in which a C-shaped core 3 is used, and is suitable for an end face inspection of the subject 2 and the like.
  • FIG. 8 (C) shows an arrangement suitable for inspecting the outer peripheral surface of a round bar or a pipe, and the detection coil 5 is arranged so as to sandwich the subject 2.
  • FIG. 8D shows an example in which the core 3 and the detection coil 5 are arranged with the subject 2 interposed therebetween.
  • FIG. 8 (E) shows an arrangement suitable for inspection of an end face of a round bar or the like.
  • the magnetic probe 1 configured as described above detects a local magnetic flux change near the surface of the subject 2 while forming a loop-shaped magnetic circuit by the excitation coil 4 and the core 3, such as a Hall element.
  • the detection coil 5 whose shape can be freely changed according to the inspection target and the required detection accuracy is used without using the magnetic detection element, the detection coil 5 and the coil center line are By arranging the coil along the surface and with the coil outer peripheral surface being locally opposed to the surface of the subject 2, it is possible to detect a magnetic flux change in the direction along the surface of the subject 2 with extremely high accuracy. .
  • the detection coil 5 arranged in this manner can be easily miniaturized in the direction along the surface of the subject 2, it is possible to scan the magnetic probe 1 (or move the subject).
  • the detection coil 5 is a differential coil capable of detecting a differential voltage, and a pair of coils L constituting the differential coil In the case where 1, 1 and L 2 are arranged along the surface of the subject 2, the inherent errors and temperature errors of the coils L 1 and L 2 are canceled out, so that the detection accuracy can be further improved.
  • the magnetic probe 1 or the subject 2 is inspected while scanning in the direction of the coil center line of the detection coil 5. By doing so, the resolution of the magnetic probe 1 can be increased.
  • the detection coil 5 When the detection coil 5 is formed as a thin-film circuit pattern on the base material 5c made of an insulator, the thickness of the detection coil 5 in the direction of the coil center line is dramatically reduced, and the magnetic probe 1 The resolution can be further increased.
  • the pair of coils Ll and L2 can be formed in a laminated shape with the base member 5c interposed therebetween, the differential output type detection coil 5 can be dramatically thinned. If the base material 5c for a thin film substrate is used, the detection coil 5 can be easily formed using the existing thin film substrate manufacturing technology.
  • the present invention relates to a magnetic probe used for surface inspection, flaw detection inspection, residual stress inspection, material inspection, and the like of an object containing a metal component, and in particular, freely adjusts a shape and the like according to an inspection object and a required detection accuracy. This is useful for performing high-precision inspections using a changeable detection coil.

Abstract

A magnetic probe comprising a detection coil the shape of which is changeable freely depending on a test object or a required sensing accuracy precisely detects a change in the magnetic flux along the surface of the test object. A magnetic probe (1), which detects a change in the magnetic flux in the vicinity of the surface of an object (2) while generating an AC magnetic field inside the object (2) containing a metal component and/or in the space on the surface of the object (2), comprises a ferromagnetic core (3) having object proximity sections (3a), forming a looped magnetic circuit through the inside of the object (2) and/or the space on the surface of the object (2), an excitation coil (4) AC-exciting the core (3) and generating an AC magnetic field along the surface of the object inside the object (2) and/or in the space on the surface of the object (2), and a detection coil (5) the coil center line of which extends along the surface of the object (2), the coil outer face of which locally faces the surface of the object (2), and which detects a change in the magnetic flux in the vicinity of the surface of the object (2).

Description

明 細 書 磁気プローブ 技術分野  Description Magnetic probe Technical field
本発明は、 金属成分を含む被検体の表面検査、 探傷検査、 残留応力検査、 材質 検査などに用いられる磁気プローブの技術分野に属し、 特に、 検査対象や要求検 出精度に応じて自由に形状などの変更が可能な検出コイルを用いながら、 高精度 な検査を行うことができる磁気プローブに関する。 背景技術  The present invention belongs to the technical field of magnetic probes used for surface inspection, flaw detection inspection, residual stress inspection, material inspection, etc. of an object containing a metal component, and in particular, freely forms according to the inspection object and required detection accuracy. The present invention relates to a magnetic probe capable of performing high-precision inspection while using a detection coil that can be changed. Background art
磁気、 特に交流磁界を利用し、 金属成分を含む被検体の各種検査を行う磁気プ ローブが知られている。 この種の磁気プローブは、 金属成分を含む被検体の表面 検査、 探傷検査、 残留応力検査、 材質検査などで既に利用されているが、 その利 用範囲を広げるために、 検出精度を向上させることが強く要望されている。 そこで、 被検体の内部や被検体の表面空間を存して、 ループ状の磁気回路を形 成するコ字状のコアと、 このコアを交流励磁して、 被検体の内部や被検体の表面 空間に交流磁界を発生させる励磁コイルと、 被検体の表面近傍で局部的に磁束変 化を検出する検出コイルとを備える磁気プローブが提案されている (例えば、 特 開昭 6 0— 1 7 3 5 1号公報参照。 ) 。  2. Description of the Related Art Magnetic probes that use magnetism, particularly an alternating magnetic field, to perform various tests on a subject containing a metal component are known. This type of magnetic probe has already been used for surface inspection, flaw detection inspection, residual stress inspection, material inspection, etc. of specimens containing metal components, but it is necessary to improve the detection accuracy in order to expand the range of use Is strongly desired. Therefore, a U-shaped core that forms a loop-shaped magnetic circuit in the interior of the subject and the surface space of the subject exists, and this core is AC-excited to produce the inside of the subject and the surface of the subject. A magnetic probe has been proposed that includes an excitation coil that generates an AC magnetic field in space and a detection coil that locally detects a change in magnetic flux near the surface of the subject (for example, Japanese Patent Application Laid-Open No. 60-173). See No. 51.)
上記のように構成された磁気プローブは、 被検体と共に磁気回路を形成するた め、 被検体の所望の位置に局部的な強い磁界を発生させることができ、 また、 励 磁部と検出部が独立しているため、 検出コイルを小型化できるという利点がある しかしながら、 上記従来の磁気プローブは、 コイル中心線が被検体の表面に対 して垂直方向を向くように配置された検出コイルや、 ホール素子などの汎用の磁 気検出素子を用いて磁束変化を検出するため、 検出精度に限界があったり、 磁気 プローブの用途が限定されるという問題があつた。  Since the magnetic probe configured as described above forms a magnetic circuit with the subject, it can generate a local strong magnetic field at a desired position on the subject, and the exciting unit and the detecting unit However, the independent magnetic probe has an advantage that the detection coil can be miniaturized.However, the above-described conventional magnetic probe has a disadvantage in that the detection coil is arranged such that the coil center line is directed perpendicular to the surface of the subject. Since the change in magnetic flux is detected using a general-purpose magnetic detection element such as a Hall element, there has been a problem that the detection accuracy is limited and the application of the magnetic probe is limited.
つまり、 励磁コイルが発生させる交流磁界は、 被検体の表面に対して略平行で あり、 被検体の表面形状や傷などによる磁気的な変化は、 主に被検体の表面に沿 う磁束の変化として現れる力 被検体の表面に対して垂直に配置された検出コィ ルは、 磁束変化の垂直成分のみを検出するため、 被検体の表面に沿う磁束の微小 な密度変化までは検出できないという欠点がある。 That is, the AC magnetic field generated by the excitation coil is substantially parallel to the surface of the subject. There is a magnetic change due to the surface shape or scratches of the subject, mainly a force that appears as a change in magnetic flux along the surface of the subject.A detection coil arranged perpendicular to the surface of the subject is a magnetic flux. Since only the vertical component of the change is detected, there is a drawback that it is not possible to detect even a minute change in the magnetic flux density along the surface of the subject.
また、 磁気プローブにおいては、 検査対象や要求検出精度に応じて、 検出部の 形状を適宜変更する必要があるが、 ホール素子などの磁気検出素子は、 予めサイ ズが規定され、 形状変更の自由度が低いため、 磁気プローブの用途が限定された り、 要求精度を確保できないといった不都合を招く欠点がある。  In the case of a magnetic probe, the shape of the detection unit must be changed as appropriate according to the inspection target and the required detection accuracy.However, the size of a magnetic detection element such as a Hall element is specified in advance, and the shape can be freely changed. Due to the low degree of accuracy, there are drawbacks in that the applications of the magnetic probe are limited and the required accuracy cannot be secured.
本発明の目的は、 励磁コイル及びコアによってループ状の磁気回路を形成しつ つ、 被検体の表面近傍で局部的に磁束変化を検出するにあたり、 汎用の磁気検出 素子を用いることなく、 検査対象や要求検出精度に応じて自由に形状などの変更 が可能な検出コイルを用いるものでありながら、 被検体の表面に沿う方向の磁束 変化をきわめて精度良く検出することができる磁気プローブを提供することにあ る。 発明の開示  An object of the present invention is to form a loop-shaped magnetic circuit by an excitation coil and a core, and to detect a change in magnetic flux locally near the surface of a subject without using a general-purpose magnetic detection element. To provide a magnetic probe that can detect a change in magnetic flux in the direction along the surface of the subject with extremely high accuracy, while using a detection coil whose shape can be freely changed according to the required detection accuracy. It is in. Disclosure of the invention
上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたも のであって、 金属成分を含む被検体の内部及び 又は被検体の表面空間に交流磁 界を発生させながら、 被検体の表面近傍で磁束変化を検出する磁気プローブであ つて、 複数の被検体近接部を有し、 被検体の内部及びノ又は被検体の表面空間を 存して、 ループ状の磁気回路を形成する強磁性体のコアと、 前記コアを交流励磁 し、 被検体の内部及び 又は被検体の表面空間に、 被検体の表面に沿う交流磁界 を発生させる励磁コイルと、 コイル中心線が被検体の表面に沿い、 かつ、 コイル 外周面が被検体の表面に局部的に対向するように配置され、 被検体の表面近傍で 磁束変化を検出する検出コイルとを備えることを特徴とする。  It was created in view of the above-mentioned circumstances to solve these problems, and is to generate an AC magnetic field inside the specimen containing a metal component and / or in the surface space of the specimen, A magnetic probe that detects a change in magnetic flux near the surface of a subject, has a plurality of subjects close to each other, and forms a loop-shaped magnetic circuit in the interior of the subject and in the space of the subject or the surface of the subject. A ferromagnetic core, an exciting coil that generates an alternating magnetic field along the surface of the subject in the subject and / or in a surface space of the subject by exciting the core with an alternating current; And a detection coil that is arranged so that the outer peripheral surface of the coil locally faces the surface of the subject and detects a change in magnetic flux near the surface of the subject.
磁気プローブをこのように構成すれば、 励磁コイル及ぴコアによってループ状 の磁気回路を形成しつつ、 被検体の表面近傍における局部的な磁束変化を検出す るにあたり、 ホール素子などの磁気検出素子を用いることなく、 検査対象や要求 検出精度に応じて自由に形状などの変更が可能な検出コイルを用いるものであり ながら、 検出コイルを、 コイル中心線が被検体の表面に沿い、 かつ、 コイル外周 面が被検体の表面に局部的に対向するように配置することにより、 被検体の表面 に沿う方向の磁束変化をきわめて精度良く検出することが可能になる。 しかも、 このように配置した検出コイルは、 被検体の表面に沿う方向の小型化が容易であ るため、 磁気プローブを走査 (又は被検体を移動) させながら、 被検体の表面を 検査する場合、 その分解能を容易に向上させることができる。 With this configuration of the magnetic probe, a magnetic detection element such as a Hall element can be used to detect a local magnetic flux change near the surface of the subject while forming a loop-shaped magnetic circuit with the excitation coil and the core. A detection coil that can be freely changed in shape, etc. according to the inspection object and required detection accuracy without using However, by arranging the detection coil so that the coil center line is along the surface of the object and the coil outer peripheral surface is locally opposed to the surface of the object, the magnetic flux changes in the direction along the surface of the object. Can be detected with extremely high accuracy. In addition, since the detection coil arranged in this manner can be easily miniaturized in the direction along the surface of the subject, it is necessary to scan the magnetic probe (or move the subject) while inspecting the surface of the subject. The resolution can be easily improved.
また、 前記検出コイルは、 差分電圧を検出可能な差動コイルであり、 該差動コ ィルを構成する一対のコィルが、 被検体の表面に沿つて並ぶことを特徴とする。 この場合においては、 コイルの固有誤差や温度誤差を相殺して、 検出精度を更に 向上させることができる。  Further, the detection coil is a differential coil capable of detecting a differential voltage, and a pair of coils constituting the differential coil are arranged along the surface of the subject. In this case, the detection accuracy can be further improved by canceling the inherent error and the temperature error of the coil.
また、 前記検出コイルは、 コイル中心線方向の厚さが薄い渦巻コイルを用いて 構成されることを特徴とする。 この場合においては、 磁気プローブ又は被検体を 、 検出コイルのコイル中心線方向に走査しながら検査を行うことにより、 磁気プ 口ーブの分解能を高めることができる。  Further, the detection coil is characterized in that it is formed using a spiral coil having a small thickness in a coil center line direction. In this case, the resolution of the magnetic probe can be improved by performing the inspection while scanning the magnetic probe or the subject in the direction of the coil center line of the detection coil.
また、 前記検出コイルは、 絶縁体からなるベース材に薄膜状の回路パターンと して形成されることを特徴とする。 この場合においては、 検出コイルのコイル中 心線方向の厚さを飛躍的に薄く し、 磁気プローブの分解能を更に高めることがで さる。  The detection coil is formed as a thin-film circuit pattern on a base material made of an insulator. In this case, the thickness of the detection coil in the direction of the center line of the coil is remarkably reduced, and the resolution of the magnetic probe can be further increased.
また、 前記検出コイルは、 差分電圧を検出可能な差動コイルであり、 該差動コ ィルを構成する一対のコイルが、 前記ベース材を挟んで積層状に形成されること を特徴とする。 この場合においては、 磁気プローブの分解能を飛躍的に向上させ ることができるだけでなく、 コイルの固有誤差や温度誤差を相殺して、 信頼性の 高い検査データを得ることができる。 また、 薄膜基板用のベース材を使用すれば 、 既存の薄膜基板製造技術によって、 きわめて薄い検出コイルを形成することが できる。  Further, the detection coil is a differential coil capable of detecting a differential voltage, and a pair of coils constituting the differential coil is formed in a laminated shape with the base material interposed therebetween. . In this case, not only can the resolution of the magnetic probe be drastically improved, but also the inherent error and temperature error of the coil can be offset to obtain highly reliable inspection data. Further, if a base material for a thin film substrate is used, an extremely thin detection coil can be formed by the existing thin film substrate manufacturing technology.
また、 前記検出コイルは、 被検体の表面に沿って並ぶように複数設けられるこ とを特徴とする。 この場合においては、 磁気プローブ又は被検体を、 検出コイル の配列方向に対して、 直交方向に走査することにより、 2次元の検出データを得 ることができ、 また、 複数の検出コイルを 2次元に配列すれば、 磁気プローブや 被検体を走査しなくても、 2次元の検出データを得ることができる。 図面の簡単な説明 Further, a plurality of the detection coils are provided so as to be arranged along the surface of the subject. In this case, two-dimensional detection data can be obtained by scanning the magnetic probe or the subject in a direction orthogonal to the arrangement direction of the detection coils. If arranged in a magnetic probe Two-dimensional detection data can be obtained without scanning the subject. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 磁気プローブの基本構成を示す側面図である。  FIG. 1 is a side view showing a basic configuration of a magnetic probe.
第 2図は、 検出コイルの基本形を示す斜視図である。  FIG. 2 is a perspective view showing a basic form of a detection coil.
第 3図は、 検出回路を示すブロック図である。  FIG. 3 is a block diagram showing a detection circuit.
第 4図 (A) 〜 (F ) はコアの各種実施形態を示す説明図である。  4 (A) to 4 (F) are explanatory views showing various embodiments of the core.
第 5図 (A) 〜 (C ) は励磁コイルの各種実施形態を示す説明図である。 第 6図 (A) 〜 (C ) は検出コイルの各種実施形態を示す説明図であり、 (A 5 (A) to 5 (C) are explanatory views showing various embodiments of the exciting coil. FIGS. 6A to 6C are explanatory views showing various embodiments of the detection coil.
) は検出コイルの側面図、 (B ) は検出コイルの平面図、 (C ) は検出コイルの 側断面図である。 () Is a side view of the detection coil, (B) is a plan view of the detection coil, and (C) is a side sectional view of the detection coil.
第 7図 (A) 〜 ( C ) は検出コイルの各種実施形態を示す説明図であり、 (A ) は検出コイルの正面図および側面図、 (B ) は検出コイルの正面図、 (C ) は 検出コイルの平面図である。  7 (A) to 7 (C) are explanatory views showing various embodiments of the detection coil, (A) is a front view and a side view of the detection coil, (B) is a front view of the detection coil, (C) 3 is a plan view of a detection coil.
第 8図 (A) 〜 ( E ) はコア及び検出コイルの配置例を示す説明図である。 発明を実施するための最良の形態  8 (A) to 8 (E) are explanatory diagrams showing examples of arrangement of a core and a detection coil. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の実施形態を図面に基づいて説明する。  Next, an embodiment of the present invention will be described with reference to the drawings.
[磁気プローブ]  [Magnetic probe]
まず、 本発明に係る磁気プローブの基本的な構成について説明する。 第 1図は 、 磁気プローブの基本構成を示す側面図である。 この図に示される磁気プローブ 1は、 金属成分を含む被検体 2の内部や表面空間に交流磁界を発生させながら、 被検体 2の表面近傍で磁束変化を検出するために、 少なくともコア 3、 励磁コィ ル 4及び検出コイル 5を備えて構成されている。  First, the basic configuration of the magnetic probe according to the present invention will be described. FIG. 1 is a side view showing a basic configuration of a magnetic probe. The magnetic probe 1 shown in this figure generates at least a core 3 and an excitation coil 3 in order to detect a magnetic flux change near the surface of the subject 2 while generating an alternating magnetic field inside the subject 2 and a surface space containing a metal component. It comprises a coil 4 and a detection coil 5.
コア 3は、 複数の被検体近接部 3 aを有しており、 被検体 2の内部や表面空間 を存して、 ループ状の磁気回路を形成するように、 強磁性材料を用いて形成され ている。  The core 3 has a plurality of specimen proximity portions 3a, and is formed using a ferromagnetic material so as to form a loop-shaped magnetic circuit, with the inside of the specimen 2 and a surface space. ing.
励磁コイル 4は、 コア 3に卷装され、 所定周波数の交流電圧が印加される。 励 磁コイル 4に交流電圧を印加すると、 コア 3が交流励磁され、 被検体 2の内部や  The exciting coil 4 is wound around the core 3, and an AC voltage having a predetermined frequency is applied. When an AC voltage is applied to the excitation coil 4, the core 3 is AC-excited, and the inside of the subject 2 and the
4 - 1 差替え用紙 (規則 26) 表面空間に、 被検体 2の表面に沿う交流磁界が発生する。 この交流磁界の磁束は 、 被検体 2の材質 (磁束変化要因:透磁率、 導電率など) 、 表面状態 (磁束変化 要因:透磁率、 伝導率、 渦電流、 検出ギャップ、 漏れ磁束など) 、 内部状態 (磁 束変化要因:透磁率、 伝導率、 渦電流、 漏れ磁束など) などに応じて変化する。 4-1 Replacement Form (Rule 26) An alternating magnetic field along the surface of the subject 2 is generated in the surface space. The magnetic flux of this AC magnetic field is determined by the material of the subject 2 (flux change factors: magnetic permeability, conductivity, etc.), the surface state (flux change factors: magnetic permeability, conductivity, eddy current, detection gap, leakage magnetic flux, etc.), internal It changes according to the state (magnetic flux change factors: permeability, conductivity, eddy current, leakage flux, etc.).
4 - 2 差替え用紙 (規則 26) この磁束変化には、 被検体 2の表面に平行な成分と、 被検体 2の表面に垂直な成 分とが含まれており、 比較的大きい磁束変化の場合は、 垂直成分にも大きな変化 が現れるが、 微小な磁束変化の場合は、 垂直成分が殆ど変化せず、 主に平行成分 に変化が現れる。 4-2 Replacement Form (Rule 26) This change in magnetic flux includes a component parallel to the surface of the subject 2 and a component perpendicular to the surface of the subject 2. In the case of a relatively large change in magnetic flux, a large change also occurs in the vertical component. In the case of a small change in magnetic flux, the vertical component hardly changes, and the change mainly appears in the parallel component.
検出コイル 5は、 コイル中心線が被検体 2の表面に沿い、 かつ、 コイル外周面 が被検体 2の表面に局部的に対向するように配置され、 被検体 2の表面近傍で磁 束変化を検出する。 つまり、 本発明の磁気プローブ 1は、 励磁コイル 4及びコア 3によってループ状の磁気回路を形成しつつ、 被検体 2の表面近傍における局部 的な磁束変化を検出するにあたり、 検出コイル 5を、 被検体 2の表面に対して垂 直方向に配置することなく、 コイル中心線が被検体 2の表面に沿うように配置し ている。 これにより、 垂直成分が殆ど変化せず、 主に平行成分が変化するような 微小な磁束変化であっても、 精度良く検出することが可能になる。  The detection coil 5 is arranged so that the coil center line is along the surface of the subject 2 and the outer peripheral surface of the coil is locally opposed to the surface of the subject 2, and changes the magnetic flux near the surface of the subject 2. To detect. That is, the magnetic probe 1 of the present invention, when forming a loop-shaped magnetic circuit by the exciting coil 4 and the core 3 and detecting a local magnetic flux change near the surface of the subject 2, includes the detecting coil 5 The coil center line is arranged along the surface of the subject 2 without being arranged perpendicular to the surface of the subject 2. This makes it possible to accurately detect even a small change in magnetic flux in which the vertical component hardly changes and the parallel component mainly changes.
[検出回路]  [Detection circuit]
第 2図は、 検出コイルの基本形を示す斜視図、 第 3図は、 検出回路を示すプロ ック図である。 第 2図に示される検出コイル 5は、 差分電圧を検出可能な差動コ ィルである。 差動コイルを構成する一対のコイル L 1、 L 2は、 被検体 2の表面 に沿って並ぶように直列に接続されており、 その両端部から引き出される端子 T 1、 T 2の他に、 コィノレ L l、 L 2間から引き出されるセンタータップ端子 T 3 を備える。  FIG. 2 is a perspective view showing a basic form of a detection coil, and FIG. 3 is a block diagram showing a detection circuit. The detection coil 5 shown in FIG. 2 is a differential coil capable of detecting a differential voltage. The pair of coils L1, L2 constituting the differential coil are connected in series so as to be arranged along the surface of the subject 2, and in addition to the terminals T1, T2 drawn from both ends thereof, It has a center tap terminal T 3 that is drawn out between the coils L l and L 2.
第 3図に示すように、 コィノレ L l、 L 2は、 一対の抵抗 R l、 R 2 (又は可変 抵抗) と共にブリッジ回路 6を構成しており、 このブリッジ回路 6からコイル L 1、 L 2の差動電圧が出力される。 ブリッジ回路 6は、 被検体 2が無いとき、 そ の差動出力が所定の値となるように抵抗 R 1、 R 2の抵抗値が初期調整される。 これにより、 コィノレ L 1、 L 2の固有誤差や温度誤差が相殺された検出信号を得 ることができるだけでなく、 コイル中心線方向の分解能を高めることが可能にな る。  As shown in FIG. 3, the coils L 1 and L 2 form a bridge circuit 6 with a pair of resistors R 1 and R 2 (or a variable resistor). Are output. In the bridge circuit 6, when there is no subject 2, the resistance values of the resistors R1 and R2 are initially adjusted so that the differential output has a predetermined value. As a result, it is possible to not only obtain a detection signal in which the intrinsic errors and temperature errors of the coils L 1 and L 2 have been offset, but also increase the resolution in the coil center line direction.
ブリッジ回路 6の差動出力は、 差動増幅回路 7によって増幅された後、 同期検 波回路 8に入力される。 同期検波回路 8は、 9 0 ° 移相器 9を介して、 励磁コィ ル 4の交流励磁回路部 1 0から同期信号を入力すると共に、 その周期で上記差動  The differential output of the bridge circuit 6 is amplified by the differential amplifier circuit 7 and then input to the synchronous detection circuit 8. The synchronous detection circuit 8 inputs a synchronization signal from the AC excitation circuit section 10 of the excitation coil 4 via the 90 ° phase shifter 9 and, at the same time, outputs the differential signal at the cycle.
5 出力を検波し、 磁束変化信号を得る。 尚、 この磁束変化信号は、 コイル L l、 L 2の差動信号 (微分信号) であるため、 図 3に示す検出回路には、 磁気プローブ 1の走査距離をパラメータとして積分処理を行う積分回路 1 1が設けられている 次に、 磁気プローブ 1の各部を詳細に説明する。 Five The output is detected and a magnetic flux change signal is obtained. Since the magnetic flux change signal is a differential signal (differential signal) of the coils L 1 and L 2, the detection circuit shown in FIG. 3 includes an integration circuit that performs an integration process using the scanning distance of the magnetic probe 1 as a parameter. Next, each part of the magnetic probe 1 will be described in detail.
[コア]  [Core]
第 4図は、 コアの各種実施形態を示す説明図である。 この図に示されるコア 3 は、 いずれも磁気回路を形成可能な強磁性体であり、 例えば、 フェライトを用い て形成されている。 コア 3の形状 (側面視) としては、 第 4図 (A) に示すよう, なコ字型、 第 4図 (B ) に示すような U字型、 第 4図 (C ) に示すような V字型 、 第 4図 (D) に示すような C字型などを採用することができる。 また、 コア 3 は、 励磁範囲 (検査範囲) に応じて寸法が設定されており、 例えば、 第 4図 (E ) に示すように、 励磁コイル 4の巻き方向に幅広とすれば、 コア 3の内周部に多 数の検出コイル 5を 1次元に配列して、 検査領域を拡張することができる。 また 、 第 4図 (F ) に示すように、 複数のコア 3を並設しても同等の効果が得られる  FIG. 4 is an explanatory diagram showing various embodiments of the core. Each of the cores 3 shown in this figure is a ferromagnetic material capable of forming a magnetic circuit, and is formed using, for example, ferrite. As shown in FIG. 4 (A), the shape of the core 3 (side view) is a U-shape, a U-shape as shown in FIG. 4 (B), and a U-shape as shown in FIG. 4 (C). A V-shape or a C-shape as shown in FIG. 4 (D) can be adopted. The dimensions of the core 3 are set according to the excitation range (inspection range). For example, as shown in FIG. 4 (E), if the width of the core 3 is increased in the winding direction of the excitation coil 4, By arranging a large number of detection coils 5 one-dimensionally on the inner periphery, the inspection area can be expanded. Also, as shown in FIG. 4 (F), even if a plurality of cores 3 are arranged in parallel, the same effect can be obtained.
[励磁コイル] [Excitation coil]
第 5図は、 励磁コイルの各種実施形態を示す説明図である。 この図に示される 励磁コイル 4は、 いずれも絶縁被覆された導線からなり、 コア 3に卷装されてい る。 コア 3に対する励磁コイル 4の卷装位置は、 第 5図 (A) に示すように、 コ ァ 3の上部に限らず、 第 5図 (B ) に示すように、 コア 3の左右脚部としてもよ レ、。 また、 第 5図 (C ) に示すように、 コア 3の上部及び左右脚部に励磁コイル 4を巻装してもよい。 励磁コイル 4に印加する交流電圧の周波数は、 被検体 2の 交流磁界による表皮効果を考慮して設定される。 例えば、 被検体 2の表面を検査 する場合は、 交流電圧の周波数を高くし、 被検体 2の内部又は裏側表面を検査す る場合は、 交流電圧の周波数を低くすることが好ましい。  FIG. 5 is an explanatory view showing various embodiments of the exciting coil. Each of the excitation coils 4 shown in this figure is made of a conductive wire coated with an insulating material, and is wound around the core 3. The winding position of the exciting coil 4 with respect to the core 3 is not limited to the upper part of the core 3 as shown in FIG. 5 (A), but may be the left and right legs of the core 3 as shown in FIG. 5 (B). Well. Further, as shown in FIG. 5 (C), the excitation coil 4 may be wound around the upper part of the core 3 and the left and right legs. The frequency of the AC voltage applied to the exciting coil 4 is set in consideration of the skin effect of the subject 2 due to the AC magnetic field. For example, when inspecting the surface of the subject 2, it is preferable to increase the frequency of the AC voltage, and when inspecting the inside or back surface of the subject 2, it is preferable to decrease the frequency of the AC voltage.
[検出コイル]  [Detection coil]
第 6図及び第 7図は、 検出コイルの各種実施形態を示す説明図である。 これら の図に示す検出コイル 5は、 いずれも空心コイルとしてある。 例えば、 第 6図 (  6 and 7 are explanatory diagrams showing various embodiments of the detection coil. The detection coils 5 shown in these figures are all air-core coils. For example, Figure 6 (
6 A) の検出コイル 5 (第 2図のものと同等) は、 非磁性体の芯材 5 aに、 絶縁被 覆された導線を卷いてコイル L 1、 L 2を形成している。 また、 第 6図 (B ) に 示すものは、 一対の検出コイル 5を交差状に一体化した 2軸型であり、 いずれの 検出コイル 5も、 被検体 2の表面に沿うように配置される。 このように構成され た 2軸型によれば、 一方の検出コイル 5が被検体 2の線状欠陥 (クラックなど) に対して平行になっても、 他方の検出コイル 5が線状欠陥に対して交差するので 、 線状欠陥を見落すことなく確実に検出することが可能になる。 6 The detection coil 5 (equivalent to that shown in FIG. 2) of A) has coils L 1 and L 2 formed by winding a non-magnetic core material 5 a with an insulated conductor. 6 (B) is a biaxial type in which a pair of detection coils 5 are integrated in a cross shape, and both detection coils 5 are arranged along the surface of the subject 2. . According to the two-axis type configured in this manner, even if one of the detection coils 5 is parallel to a linear defect (a crack or the like) of the subject 2, the other detection coil 5 does not respond to the linear defect. Since they intersect, linear defects can be reliably detected without overlooking them.
第 6図 (C ) は、 コイル中心線方向の厚さが可及的に薄くなるように形成され た検出コイル 5を示している。 この検出コイル 5に用いる卷枠 (ボビン) 5 bの 外周部には、 所定間隔 (例えば、 5 0 μ πι) を存して、 所定幅 (例えば、 5 0 μ m) のコイル卷装溝が 2本形成されており、 各コイル卷装溝に、 絶縁被覆された 導線を多層卷きすることにより検出コイル 5が構成されている。 このように構成 された検出コイル 5は、 コイル中心線方向の厚さが薄く、 しかも、 コィノレ L l、 L 2の間隔が小さいため、 コイル中心線方向の分解能を大幅に向上させることが できる。  FIG. 6 (C) shows the detection coil 5 formed so that the thickness in the coil center line direction is as small as possible. A coil winding groove having a predetermined width (for example, 50 μm) is provided at a predetermined interval (for example, 50 μππ) at an outer peripheral portion of a winding frame (bobbin) 5 b used for the detection coil 5. The detection coil 5 is formed by winding a multi-layered conductive wire in each coil winding groove. The detection coil 5 thus configured has a small thickness in the coil center line direction and a small interval between the coils L 1 and L 2, so that the resolution in the coil center line direction can be significantly improved.
第 7図に示される検出コイル 5は、 絶縁体からなるベース材 5 cに薄膜状の回 路パターン (渦巻コイル) として形成されている。 このような検出コイル 5は、 例えば、 既存の薄膜基板製造技術によって形成することが可能であるが、 半導体 製造技術やマイクロマシニング技術を用いれば、 さらに微小で薄い検出コイルを 形成することができる。  The detection coil 5 shown in FIG. 7 is formed as a thin-film circuit pattern (spiral coil) on a base material 5c made of an insulator. Such a detection coil 5 can be formed by, for example, an existing thin-film substrate manufacturing technology. However, if a semiconductor manufacturing technology or a micromachining technology is used, a finer and thinner detection coil can be formed.
第 7図に示される検出コイル 5は、 薄膜基板用のベース材 5 c (例えば、 セラ ミック基板) を用い、 その表裏に形成される導体層 (例えば、 銅箔) を、 回路パ ターンに基づいて蒸着処理することにより、 薄膜状のコイル L l、 L 2が形成さ れる。 つまり、 差動コイルを構成する一対のコイル L 1、 L 2力 きわめて薄い ベース材 5 cを挟んで積層状に形成されるため、 コイル中心線方向の分解能を飛 躍的に向上させることが可能になる。  The detection coil 5 shown in FIG. 7 uses a base material 5c (for example, a ceramic substrate) for a thin film substrate, and forms a conductor layer (for example, a copper foil) formed on the front and back thereof based on a circuit pattern. The thin-film coils Ll and L2 are formed by vapor deposition. In other words, a pair of coils L 1 and L 2 constituting the differential coil are formed in a laminated shape with the extremely thin base material 5 c interposed therebetween, so that the resolution in the coil center line direction can be drastically improved. become.
また、 上記のように形成される検出コイル 5では、 第 7図 (B ) に示すように 、 複数のコイル L l、 L 2を 1次元に配列することが容易である。 このように複 数のコイル L l、 L 2を 1次元に配列すれば、 磁気プローブ 1又は被検体 2を、  Further, in the detection coil 5 formed as described above, as shown in FIG. 7 (B), it is easy to arrange a plurality of coils Ll and L2 one-dimensionally. By arranging a plurality of coils Ll and L2 in one dimension in this way, the magnetic probe 1 or the subject 2
7 コイル L I、 L 2の配列方向に対して、 直交方向に走査することにより、 2次元 の検出データを得ることができる。 また、 第 7図 (C ) に示すように、 複数のコ ィル L l、 L 2が 1次元に配列された検出コイル 5を、 磁気プローブ 1の走査方 向に並設してもよい。 この場合には、 前後の検出コイル 5に形成されるコイル L 1、 L 2を、 互いに半ピッチずらして配置することにより、 1次元配列方向の隙 間を無くし、 検出漏れを防止することができる。 尚、 複数の検出コイル 5を 2次 元に配列してもよく、 この場合には、 磁気プローブ 1や被検体 2を走査しなくて も、 2次元の検出データが得られる。 7 By scanning in the direction orthogonal to the arrangement direction of the coils LI and L2, two-dimensional detection data can be obtained. Further, as shown in FIG. 7 (C), the detection coil 5 in which a plurality of coils Ll and L2 are one-dimensionally arranged may be juxtaposed in the scanning direction of the magnetic probe 1. In this case, by disposing the coils L 1 and L 2 formed on the front and rear detection coils 5 at a half pitch from each other, it is possible to eliminate a gap in the one-dimensional array direction and prevent detection leakage. . Note that a plurality of detection coils 5 may be arranged in two dimensions. In this case, two-dimensional detection data can be obtained without scanning the magnetic probe 1 or the subject 2.
[コァ及び検出コィルの配置]  [Arrangement of core and detection coil]
第 8図は、 コア及び検出コイルの配置例を示す説明図である。 この図に示すよ うに、 磁気プローブ 1においては、 被検体 2の形態や検査箇所、 検査目的に応じ て、 コア 3と検出コイル 5との配置関係を任意に設定することが可能である。 第 8図 (A) は、 基本的な配置関係を示しており、 検出コイル 5は、 コア 3の被検 体近接部 3 a間に配置されている。 また、 第 8図 (B ) は、 C型のコア 3を用い る場合の配置例を示しており、 被検体 2の端面検査などに適している。 また、 第 8図 (C ) は、 丸棒やパイプの外周面検査に適した配置であり、 検出コイル 5が 被検体 2を挟むように配置されている。 また、 第 8図 (D ) は、 被検体 2を挟ん で、 コア 3と検出コイル 5とを配置した例を示している。 更に、 第 8図 (E ) は 、 丸棒などの端面検査に適した配置である。  FIG. 8 is an explanatory diagram showing an example of arrangement of a core and a detection coil. As shown in this figure, in the magnetic probe 1, the arrangement relationship between the core 3 and the detection coil 5 can be arbitrarily set according to the form of the subject 2, the inspection location, and the purpose of the inspection. FIG. 8 (A) shows a basic arrangement relationship, wherein the detection coil 5 is arranged between the core 3 and the vicinity 3a of the subject. FIG. 8 (B) shows an example of an arrangement in which a C-shaped core 3 is used, and is suitable for an end face inspection of the subject 2 and the like. FIG. 8 (C) shows an arrangement suitable for inspecting the outer peripheral surface of a round bar or a pipe, and the detection coil 5 is arranged so as to sandwich the subject 2. FIG. 8D shows an example in which the core 3 and the detection coil 5 are arranged with the subject 2 interposed therebetween. Further, FIG. 8 (E) shows an arrangement suitable for inspection of an end face of a round bar or the like.
叙述の如く構成された磁気プローブ 1は、 励磁コイル 4及びコア 3によってル ープ状の磁気回路を形成しつつ、 被検体 2の表面近傍における局部的な磁束変化 を検出するにあたり、 ホール素子などの磁気検出素子を用いることなく、 検査対 象や要求検出精度に応じて自由に形状などの変更が可能な検出コイル 5を用いる ものでありながら、 検出コイル 5を、 コイル中心線が被検体の表面に沿い、 かつ 、 コイル外周面が被検体 2の表面に局部的に対向するように配置することにより 、 被検体 2の表面に沿う方向の磁束変化をきわめて精度良く検出することが可能 になる。  The magnetic probe 1 configured as described above detects a local magnetic flux change near the surface of the subject 2 while forming a loop-shaped magnetic circuit by the excitation coil 4 and the core 3, such as a Hall element. Although the detection coil 5 whose shape can be freely changed according to the inspection target and the required detection accuracy is used without using the magnetic detection element, the detection coil 5 and the coil center line are By arranging the coil along the surface and with the coil outer peripheral surface being locally opposed to the surface of the subject 2, it is possible to detect a magnetic flux change in the direction along the surface of the subject 2 with extremely high accuracy. .
しかも、 このように配置した検出コイル 5は、 被検体 2の表面に沿う方向の小 型化が容易であるため、 磁気プローブ 1を走査 (又は被検体を移動) させながら  In addition, since the detection coil 5 arranged in this manner can be easily miniaturized in the direction along the surface of the subject 2, it is possible to scan the magnetic probe 1 (or move the subject).
8 、 被検体 2の表面を検査する場合、 その分解能を容易に向上させることができる また、 検出コイル 5を、 差分電圧を検出可能な差動コイルとし、 該差動コイル を構成する一対のコイル L 1、 L 2を、 被検体 2の表面に沿って並ぶように配置 した場合には、 コイル L l、 L 2の固有誤差や温度誤差を相殺して、 検出精度を 更に向上させることができる。 8 When the surface of the subject 2 is inspected, the resolution can be easily improved. The detection coil 5 is a differential coil capable of detecting a differential voltage, and a pair of coils L constituting the differential coil In the case where 1, 1 and L 2 are arranged along the surface of the subject 2, the inherent errors and temperature errors of the coils L 1 and L 2 are canceled out, so that the detection accuracy can be further improved.
また、 検出コイル 5を、 コイル中心線方向の厚さが薄い渦巻コイルを用いて構 成した場合には、 磁気プローブ 1又は被検体 2を、 検出コイル 5のコイル中心線 方向に走査しながら検査を行うことにより、 磁気プローブ 1の分解能を高めるこ とができる。  When the detection coil 5 is formed using a spiral coil having a small thickness in the direction of the coil center line, the magnetic probe 1 or the subject 2 is inspected while scanning in the direction of the coil center line of the detection coil 5. By doing so, the resolution of the magnetic probe 1 can be increased.
また、 検出コイル 5を、 絶縁体からなるベース材 5 cに薄膜状の回路パターン として形成した場合には、 検出コイル 5のコイル中心線方向の厚さを飛躍的に薄 くし、 磁気プローブ 1の分解能を更に高めることができる。 しかも、 一対のコィ ル L l、 L 2を、 ベース材 5 cを挟んで積層状に形成することができるため、 差 動出力型の検出コイル 5を飛躍的に薄型化することができる。 また、 薄膜基板用 のベース材 5 cを使用すれば、 既存の薄膜基板製造技術を用いて上記検出コイル 5を容易に形成することができる。  When the detection coil 5 is formed as a thin-film circuit pattern on the base material 5c made of an insulator, the thickness of the detection coil 5 in the direction of the coil center line is dramatically reduced, and the magnetic probe 1 The resolution can be further increased. In addition, since the pair of coils Ll and L2 can be formed in a laminated shape with the base member 5c interposed therebetween, the differential output type detection coil 5 can be dramatically thinned. If the base material 5c for a thin film substrate is used, the detection coil 5 can be easily formed using the existing thin film substrate manufacturing technology.
また、 検出コイル 5を、 被検体 2の表面に沿って並ぶように複数設けた場合に は、 磁気プローブ 1又は被検体 2を、 検出コイル 5の配列方向に対して、 直交方 向に走査することにより、 2次元の検出データを得ることができ、 また、 複数の 検出コイル 5を 2次元に配列すれば、 磁気プローブ 1や被検体 2を走査しなくて も、 2次元の検出データを得ることができる。 産業上の利用可能性  When a plurality of detection coils 5 are arranged along the surface of the subject 2, the magnetic probe 1 or the subject 2 is scanned in a direction orthogonal to the arrangement direction of the detection coils 5. In this way, two-dimensional detection data can be obtained, and by arranging the plurality of detection coils 5 two-dimensionally, two-dimensional detection data can be obtained without scanning the magnetic probe 1 or the subject 2. be able to. Industrial applicability
本発明は、 金属成分を含む被検体の表面検査、 探傷検査、 残留応力検査、 材質 検査などに用いられる磁気プローブに関するものであり、 特に、 検査対象や要求 検出精度に応じて自由に形状などの変更が可能な検出コィルを用いて、 高精度な 検査を行う場合に有用なものである。  The present invention relates to a magnetic probe used for surface inspection, flaw detection inspection, residual stress inspection, material inspection, and the like of an object containing a metal component, and in particular, freely adjusts a shape and the like according to an inspection object and a required detection accuracy. This is useful for performing high-precision inspections using a changeable detection coil.

Claims

求 の 範 囲 Range of request
1 . 金属成分を含む被検体の内部及びノ又は被検体の表面空間に交流磁界を発生 させながら、 被検体の表面近傍で磁束変化を検出する磁気プローブであって、 複数の被検体近接部を有し、 被検体の内部及び 又は被検体の表面空間を存し て、 ループ状の磁気回路を形成する強磁性体のコアと、  1. A magnetic probe that detects a change in magnetic flux near the surface of an object while generating an AC magnetic field inside the object containing metal components and in the surface space of the object. A ferromagnetic core that forms a loop-shaped magnetic circuit in the interior of the subject and / or the surface space of the subject,
前記コアを交流励磁し、 被検体の内部及び Ζ又は被検体の表面空間に、 被検体  The core is AC-excited, and the specimen is placed inside the specimen and in the surface space of the specimen.
 冃
の表面に沿う交流磁界を発生させる励磁コイルと、 An exciting coil for generating an alternating magnetic field along the surface of the
コイル中心線が被検体の表面に沿い、 かつ、 コイル外周面が被検体の表面に局 部的に対向するように配置され、 被検体の表面近傍で磁束変化を検出する検出コ ィルと  A detection coil that is arranged so that the coil center line is along the surface of the subject and the outer peripheral surface of the coil is locally opposed to the surface of the subject, and detects a change in magnetic flux near the surface of the subject;
を備えることを特徴とする磁気プローブ。 A magnetic probe comprising:
2 . 前記検出コイルは、 差分電圧を検出可能な差動コイルであり、 該差動コイル を構成する一対のコイルが、 被検体の表面に沿って並ぶことを特徴とする請求項 1記載の磁気プローブ。  2. The magnet according to claim 1, wherein the detection coil is a differential coil capable of detecting a differential voltage, and a pair of coils constituting the differential coil are arranged along the surface of the subject. probe.
3 . 前記検出コイルは、 コイル中心線方向の厚さが薄い渦巻コイルを用いて構成 されることを特徴とする請求項 1又は 2記載の磁気プローブ。  3. The magnetic probe according to claim 1, wherein the detection coil is configured using a spiral coil having a small thickness in a coil center line direction.
4 . 前記検出コイルは、 絶縁体からなるベース材に薄膜状の回路パターンとして 形成されることを特徴とする請求項 3記載の磁気プロ一ブ。  4. The magnetic probe according to claim 3, wherein the detection coil is formed as a thin-film circuit pattern on a base material made of an insulator.
5 . 前記検出コイルは、 差分電圧を検出可能な差動コイルであり、 該差動コイル を構成する一対のコイルが、 前記ベース材を挟んで積層状に形成されることを特 徴とする請求項 4記載の磁気プロ一ブ。  5. The detection coil is a differential coil capable of detecting a differential voltage, and a pair of coils constituting the differential coil is formed in a laminated shape with the base material interposed therebetween. Item 4. The magnetic probe according to Item 4.
6 . 前記検出コイルは、 被検体の表面に沿って並ぶように複数設けられることを 特徴とする請求項 1〜 5のいずれかに記載の磁気プローブ。  6. The magnetic probe according to any one of claims 1 to 5, wherein a plurality of the detection coils are provided so as to be arranged along a surface of the subject.
10 Ten
PCT/JP2003/005132 2003-04-22 2003-04-22 Magnetic probe WO2004094939A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003235389A AU2003235389A1 (en) 2003-04-22 2003-04-22 Magnetic probe
PCT/JP2003/005132 WO2004094939A1 (en) 2003-04-22 2003-04-22 Magnetic probe
JP2004571070A JPWO2004094939A1 (en) 2003-04-22 2003-04-22 Magnetic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/005132 WO2004094939A1 (en) 2003-04-22 2003-04-22 Magnetic probe

Publications (1)

Publication Number Publication Date
WO2004094939A1 true WO2004094939A1 (en) 2004-11-04

Family

ID=33307206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005132 WO2004094939A1 (en) 2003-04-22 2003-04-22 Magnetic probe

Country Status (3)

Country Link
JP (1) JPWO2004094939A1 (en)
AU (1) AU2003235389A1 (en)
WO (1) WO2004094939A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305755A (en) * 2011-07-26 2012-01-04 北京航空航天大学 Radial magnetic field-based online abrasive grain monitoring sensor and monitoring method
US20130181702A1 (en) * 2012-01-13 2013-07-18 Polyresearch Ag Active mechanical force and axial load sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161631A (en) * 1981-03-31 1982-10-05 Toshiba Corp Detecting device for surface stress
JPS61258161A (en) * 1985-03-21 1986-11-15 ロツクウエル インタ−ナシヨナル コ−ポレ−シヨン Noncontacting magnetic stress and temperature detector
JPS63177053A (en) * 1987-01-19 1988-07-21 Nippon Steel Corp Method and apparatus for detecting surface flaw of steel material
JPH08105860A (en) * 1994-10-06 1996-04-23 Nippon Steel Corp Flaw detector for conductor
US6201391B1 (en) * 1998-10-07 2001-03-13 Southwest Research Institute Nonlinear harmonics method and system for measuring degradation in protective coatings
JP2003156307A (en) * 2001-11-20 2003-05-30 Kazuhiro Yamakawa Method, sensor and apparatus for detection of surface shape, method and apparatus for discrimination of coin, method and apparatus for detection of surface defects and visualization apparatus for surface shape

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161631A (en) * 1981-03-31 1982-10-05 Toshiba Corp Detecting device for surface stress
JPS61258161A (en) * 1985-03-21 1986-11-15 ロツクウエル インタ−ナシヨナル コ−ポレ−シヨン Noncontacting magnetic stress and temperature detector
JPS63177053A (en) * 1987-01-19 1988-07-21 Nippon Steel Corp Method and apparatus for detecting surface flaw of steel material
JPH08105860A (en) * 1994-10-06 1996-04-23 Nippon Steel Corp Flaw detector for conductor
US6201391B1 (en) * 1998-10-07 2001-03-13 Southwest Research Institute Nonlinear harmonics method and system for measuring degradation in protective coatings
JP2003156307A (en) * 2001-11-20 2003-05-30 Kazuhiro Yamakawa Method, sensor and apparatus for detection of surface shape, method and apparatus for discrimination of coin, method and apparatus for detection of surface defects and visualization apparatus for surface shape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305755A (en) * 2011-07-26 2012-01-04 北京航空航天大学 Radial magnetic field-based online abrasive grain monitoring sensor and monitoring method
US20130181702A1 (en) * 2012-01-13 2013-07-18 Polyresearch Ag Active mechanical force and axial load sensor
US9494556B2 (en) * 2012-01-13 2016-11-15 Polyresearch Ag Active mechanical force and axial load sensor

Also Published As

Publication number Publication date
AU2003235389A1 (en) 2004-11-19
JPWO2004094939A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4039578B2 (en) Magnetic probe
US5831431A (en) Miniaturized coil arrangement made by planar technology, for the detection of ferromagnetic materials
US8274276B2 (en) System and method for the non-destructive testing of elongate bodies and their weldbond joints
US8704513B2 (en) Shielded eddy current coils and methods for forming same on printed circuit boards
US6791319B2 (en) Eddy current probe with transverse polygonal detecting coil
JP2005043206A (en) Eddy current sensor for nondestructive inspection
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
JPH09145810A (en) Superconducting quantum interference device fluxmeter and non-destructive inspection device
EP3376216B1 (en) Method for eddy-current testing of electrically conductive objects and device for realizing said method
US20120153944A1 (en) Method for inspecting an austenitic stainless steel weld
JP5215303B2 (en) Method and device for conducting eddy current inspection of conductive parts with separate radiation / reception functions
JP2007298509A (en) Fluxgate-type micromagnetometer with improved field coil
Abdallh et al. A Rogowski–Chattock coil for local magnetic field measurements: Sources of error
JP4192708B2 (en) Magnetic sensor
WO2004094939A1 (en) Magnetic probe
JPH1038854A (en) Non-destructive inspection method and device of conductive material
Sergeeva-Chollet et al. Eddy current probes based on magnetoresistive array sensors as receivers
Maruyama et al. Developments of flat∞ coil for defect searching in the curved surfaces
WO2020049883A1 (en) Electric current measurement apparatus and electric current measurement method
JP6597081B2 (en) Flaw detection probe and flaw detection method
JP2003344362A (en) Eddy current flaw detection probe and eddy current flaw detector
JP2016133459A (en) Eddy current flaw detection probe, and eddy current flaw detection device
US11543553B2 (en) Multi-synthetic aperture inductive coil transducer
Jin et al. Serial magnetic tunnel junction based sensors for detecting far-side pits in metallic specimens
JP2002055083A (en) Eddy current flaw detection probe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004571070

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase