WO2004094313A1 - Surface-treated particle of water-soluble inorganic compound, process for producing the same, and particulate detergent composition - Google Patents

Surface-treated particle of water-soluble inorganic compound, process for producing the same, and particulate detergent composition Download PDF

Info

Publication number
WO2004094313A1
WO2004094313A1 PCT/JP2004/005910 JP2004005910W WO2004094313A1 WO 2004094313 A1 WO2004094313 A1 WO 2004094313A1 JP 2004005910 W JP2004005910 W JP 2004005910W WO 2004094313 A1 WO2004094313 A1 WO 2004094313A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
particles
inorganic compound
soluble
soluble inorganic
Prior art date
Application number
PCT/JP2004/005910
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Masui
Naoki Nakamura
Tatsuo Nagano
Kodo Horie
Satoshi Matsunaga
Katsuya Nagayasu
Satoru Nagata
Sumito Kinoe
Miyuki Miyake
Eri Hidai
Original Assignee
Lion Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corporation filed Critical Lion Corporation
Priority to JP2005505805A priority Critical patent/JP4753021B2/en
Priority to KR1020057019167A priority patent/KR101102273B1/en
Publication of WO2004094313A1 publication Critical patent/WO2004094313A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds

Definitions

  • the present invention relates to a surface-treated water-soluble inorganic compound particle, a method for producing the same, and a granular detergent composition.
  • the present invention relates to surface-treated water-soluble inorganic compound particles.
  • the present invention relates to surface-treated water-soluble inorganic compound particles which are powder-mixed with a granular detergent composition as a powdering agent.
  • the blended particles may interact with each other, leading to another problem of reducing the solubility of the granular detergent.
  • a powder of a water-soluble inorganic compound is mixed with detergent particles
  • the water-soluble inorganic compound violently agglomerates with the detergent particles to form aggregates, which remain undissolved. Had become.
  • a technique has been proposed in which a water-soluble inorganic compound is granulated with a water-soluble polymer compound to improve the dissolution rate of the granules and the dispersibility during washing (Japanese Patent Application Laid-Open No. 63-209398). Bulletin, Japanese Translation of PCT International Publication No. 2000-501250).
  • the following techniques have been proposed (Japanese Patent Application Laid-Open Nos. H8-600200, H7-124750, and 2000-34496).
  • a detergent composition having a fluidity improving effect and a fine powder formation suppressing effect by coating a detergent component with an aluminosilicate and a water-soluble polymer, and a silicon dioxide particle and a water-soluble Granular detergents with excellent storage stability, which are coated with a conductive polymer have been proposed (Japanese Patent Application Laid-Open No. 2000-500583, Japanese Patent Application Laid-Open No. Hei 6-172880). No.).
  • granules are prepared by variously combining anionic surfactants, nonionic surfactants, water-soluble inorganic compounds, water-soluble binders such as polyethylene glycol, etc., which are usually used in granular detergent compositions, to prepare enzymes and bleaching agents.
  • a method for stabilizing the activity of the surfactant, a method for suppressing the hydrolysis of the surfactant itself, and the like have also been proposed (Japanese Patent Application Laid-Open Nos. 6-192697 and 4-157040). No. 0, Japanese Unexamined Patent Publication (Kokai) No. 3-266569 /).
  • the methods described in these documents are not sufficiently effective in suppressing the formation of detergent agglomerates and preventing the undissolved residue during washing using low-temperature water. .
  • the present invention does not form agglomerates even when wet at low water temperature and low stirring power, shows excellent solubility during washing, has excellent fluidity, and is suitable for use in a granulator during production. It is an object of the present invention to provide surface-treated water-soluble inorganic compound particles capable of preventing adhesion. Further, the granular detergent composition containing these particles is excellent in fluidity and non-solidification after long-term storage.
  • the present inventors have proposed a surface-treated water-soluble inorganic compound particle obtained by treating a surface of a water-soluble inorganic compound core particle with an organic or inorganic water-soluble polymer compound, and further treating the treated surface with a poorly water-soluble compound. By doing so, it was found that the above objectives could be achieved.
  • a water-soluble inorganic compound core particle is surface-treated with an organic or inorganic water-soluble polymer compound as a first surface treating agent, and the treated surface is a second water-insoluble compound as a second surface treating agent.
  • Surface-treated water-soluble inorganic compound particles treated with are surface-treated with.
  • the first surface treatment portion exhibits exothermicity in the process of dissolving or dispersing in water; the second surface treatment portion exhibits endothermicity in the process of dissolving or dispersing in water; 2.
  • the water-soluble polymer compound is characterized by being one or more selected from pinyl polymer compounds, polysaccharides, derivatives thereof, and polyester polymer compounds [1] to [1]. 4] The surface-treated water-soluble inorganic compound particles according to any one of the above.
  • the water-soluble polymer compound is a compound having a lipoxyl group [1] ⁇ ! :
  • a method for producing surface-treated water-soluble inorganic compound particles comprising the following first step and second step.
  • First step a step of adding an aqueous solution of a water-soluble polymer compound to the core particles of the water-soluble inorganic compound and treating the surface of the core particles of the water-soluble inorganic compound with the water-soluble polymer compound.
  • Second step a step of adding a poorly water-soluble compound to the water-soluble inorganic compound core particles treated in the first step, and subjecting the particles to a surface treatment.
  • a washing method comprising: performing a washing with the laundry containing the surface-treated water-soluble inorganic compound particles according to any one of [1] to [10] at a bath ratio of 7 to 15 1 ⁇ and a washing temperature of 5 to 12 ° C.
  • Fig. 1 is a diagram showing the relationship between the amount of heat absorbed during dissolution and dispersion of the surface treatment part and the maximum temperature rise measured by the amount of heat generated by wetting.
  • the surface-treated water-soluble inorganic compound particles which are the first surface treatment agent of the present invention, are obtained by subjecting water-soluble inorganic compound core particles to a surface treatment with an organic or inorganic water-soluble polymer compound, and further treating the treated surface with a poorly water-soluble compound. It is processed by.
  • Water-soluble inorganic compound is obtained by subjecting water-soluble inorganic compound core particles to a surface treatment with an organic or inorganic water-soluble polymer compound, and further treating the treated surface with a poorly water-soluble compound. It is processed by.
  • the water-soluble inorganic compound of the present invention has a solubility in water at 5 ° C of 1 g / 100 g or more, preferably 2 g Z100 g or more, more preferably 3 g Z100 g or more.
  • Preferred water-soluble inorganic compounds include those generally used as a washing builder.
  • Such compounds include carbonates, bicarbonates and sesquicarbonates, sulfates and sulfites, phosphates and polycondensed phosphates, silicates, nitrates and nitrites, chlorides and the like.
  • carbonates, sulfates, polycondensed phosphates and the like are more preferred, and sodium carbonate, potassium carbonate, sodium sulfate, potassium sulfate, sodium tripolyphosphate and the like are particularly preferred.
  • a water-soluble inorganic salt in which the pH of a saturated aqueous solution at 5 ° C is 8 or more can be more preferably used from the viewpoint of contribution to cleaning performance.
  • Complex salts of inorganic salts with other water-soluble inorganic salts can also be suitably used, such as berkeite, which is a complex salt of sodium carbonate and sodium sulfate. It is.
  • the water-soluble alkali inorganic salts can be used alone or in an appropriate combination of two or more.
  • the coagulation of hydrate crystals of the water-soluble inorganic compound is deeply involved. It is preferable to apply the present invention to a substance that easily becomes a hydrate crystal at a temperature lower than 20 ° C.
  • inorganic salts such as sodium carbonate and carbonated carbonate
  • neutral inorganic salts such as sodium sulfate.
  • the water-soluble inorganic compound core particles can be obtained by a conventional method, and the average particle diameter is preferably from 100 to 150 m, more preferably from 200 to 100 m.
  • the average particle diameter is less than 10, surface treatment with a water-soluble polymer compound may be difficult, and if it exceeds 150, the solubility of the water-soluble inorganic compound may decrease.
  • water-soluble inorganic compound core particles commercially available ones can be appropriately used. The average particle size is determined by a measuring method described in Examples described later. There are various grades of commercially available water-soluble inorganic compound core particles, but they do not limit the use of the present invention. For example, water-soluble inorganic salts containing impurities mixed in the production process, storage stabilizers for stabilizing quality, and antioxidants are also included in the scope of the present invention.
  • Organic water-soluble polymer compound is also included in the scope of the present invention.
  • the organic water-soluble high molecular weight compound as the second surface treatment agent used for the surface treatment of the water-soluble inorganic compound is 0.1 lg or more, preferably 0.2 g with respect to 100 g of water at 40 ° C. Above, more preferably a polymer compound that is uniformly mixed with water at a concentration of 2 g or more.
  • the organic water-soluble polymer compound is not particularly limited as long as it is an organic water-soluble polymer compound, and may be used alone or in an appropriate combination of two or more.
  • organic water-soluble polymer compound examples include a natural polymer compound, a semi-synthetic polymer compound, and a synthetic polymer compound.
  • vinyl polymer compounds, polysaccharides, polyether polymer compounds, polyester polymer compounds, peptide polymer compounds, polyurethanes, and derivatives thereof can be used.
  • vinyl polymer compound examples include a pinyl polycarboxylate (acrylic acid polymer), a biel polysulfonate, a polyvinyl pyridine salt, and a polybilimidazolium salt.
  • Various natural or synthetic polysaccharides can be used as the polysaccharide.
  • polyester-based polymer compounds include terephthalic acid and ethylene dali. Copolymers and copolymers with Z or propylene glycol units or turbomers. Examples of these include commercially available TeX care 4291 (manufactured by Clariant), TeX care SRN-300 (manufactured by Clariant), and the like.
  • peptide-based molecular compounds or derivatives thereof include gelatin, casein, albumin, collagen, polyglutamate, polyaspartate, polylysine, polyarginine, and derivatives thereof.
  • the polyurethane examples include a water-soluble polyurethane and the like.
  • other water-soluble polymer compounds such as polyethylene glycol can also be used.
  • the water-soluble inorganic compound is easily hydrated, the water-soluble inorganic compound is surface-treated with a water-soluble organic polymer compound. It is preferable that a material that exerts a waterlogging action in an initial stage of contact with water under the state of being in contact with water.
  • the water-soluble organic polymer compound having such properties include those having a hydrophilic functional group such as anionic, amphoteric, and nonionic.
  • water-soluble organic polymer compound having an anionic group examples include a polymer compound having a carboxyl group and a sulfo group, and a water-soluble polysaccharide having an anionic group.
  • water-soluble organic polymer compound having a hydroxyl group examples include a monomer such as acrylic acid, maleic acid, itaconic acid, aconitic acid, methacrylic acid, fumaric acid, 2-hydroxyacrylic acid, or citraconic acid. And vinyl salts thereof, and copolymers of these monomers with other vinyl monomers and vinyl polycarboxylic acids (salts) such as salts thereof.
  • water-soluble polymer compound having a sulfo group examples include monomers obtained by polymerizing monomers such as acrylamidopropanesulfonic acid, methacrylamidopropanesulfonic acid, and styrenesulfonic acid, and salts thereof, and these polymers and other polymers.
  • vinyl-based polysulfonic acids (salts) such as copolymers with vinyl-based polymers and salts thereof.
  • water-soluble polysaccharide having an anionic group examples include polyuronates, For example, there may be mentioned formate, polyaspartate, lagenanan, hyaluronate, chondroitin sulfate, carboxymethylcellulose and the like.
  • amphoteric water-soluble polymer compound examples include a copolymer of a vinyl monomer having an anionic group and a vinyl monomer having a cation group, a carboxybetaine group or a sulfovinyl group.
  • acrylic acid Z-dimethylaminoethyl methacrylic acid copolymer, acrylic acid, and methylaminoethyl methacrylic acid copolymer.
  • nonionic water-soluble polymer compound examples include synthetic polymer compounds such as polyacrylamide, polyvinyl alcohol, polyvinylpyrrolidone, polypinylethyl ether, and polyethylene glycol, hydroxyethyl cellulose, guar gum, dextran, pullulan, and the like. Polysaccharides.
  • a vinyl polymer having a carboxylic acid group or a sulfo group and particularly preferable are vinyl polycarboxylic acids having a high anionic group content per unit mass.
  • polyacrylic acid salts, acrylic acid-Z maleic acid copolymer salts, acrylic acid-Z itaconic acid copolymer salts, alkyl acrylate copolymer salts, and derivatives thereof are most suitable.
  • the weight average molecular weight of the organic water-soluble polymer compound of the present invention is 500 or more, preferably 1, 000 to 1, 000, 0000, more preferably 1, 000 to 2, 0 0, 0 0 0.
  • the average molecular weight of polyethylene glycol in the present invention indicates the average molecular weight described in the standard of cosmetic raw materials (the second edition).
  • the weight average molecular weight of the organic water-soluble polymer compound in the present invention is a value measured by gel permeation chromatography using polyethylene dalicol as a standard substance.
  • the method for surface-treating a water-soluble inorganic compound with an organic water-soluble polymer compound is not particularly limited.
  • a method in which an organic water-soluble polymer compound is added to a water-soluble inorganic compound, mixed or coated, or the like can be used.
  • an organic water-soluble polymer compound as an aqueous solution for surface treatment. This aqueous solution is preferably added dropwise or spray-added to the water-soluble inorganic compound in a stirred and fluidized state.
  • the inorganic water-soluble polymer compound is a compound which is uniformly miscible with water at a concentration of 0.1 g or more, preferably 0.2 g or more, more preferably 2 g or more at 100 ° C. of water at 40 ° C. It is. There is no particular limitation as long as such an inorganic water-soluble polymer compound is used, and one kind may be used alone, or two or more kinds may be used in appropriate combination.
  • the inorganic water-soluble polymer compound a compound obtained by subjecting a solution containing a precursor compound of a metal alkoxide to a hydrolysis / condensation polymerization reaction is preferable, and a silicate is particularly preferable.
  • Silicate has long been incorporated into stones and is known as water glass. Based on its structure, it can be classified according to the form of anions (Friedrich Liebau, "Structural Chemistry of Si 1 icates “p 72, Springer-Verlag, 1985).
  • the number of bridging oxygens of the oxygen bonded to Si (S i— O— S i), and the number of bridging oxygens is 4, 3, 2, 1, 0, and Q 4 Classified into Q3, Q2, Ql and Q0 units (Y. T sunawa ki, N. I wamo to, T. Hattori and A. M its ubishi, J. No nCryst. Solids, vo 1 44, p 369 (198 1)).
  • the silicate contains Q2 unit and / or Q3 unit in order to sufficiently exhibit the treatment effect, and the Si 2 ZM 2 2 molar ratio (where M represents an alkali metal) is 1.
  • Alkali metal silicates having 6 to 4, preferably 2 to 3.5 are preferred, and sodium silicate is particularly preferred.
  • the method for surface-treating the water-soluble inorganic compound with the inorganic water-soluble polymer compound is not particularly limited.
  • a method of adding, mixing or coating an inorganic water-soluble polymer compound to a water-soluble inorganic compound can be used. It is preferable to use an inorganic water-soluble polymer compound as an aqueous solution for surface treatment. This aqueous solution is preferably added dropwise or spray-added to the water-soluble inorganic compound in a stirred and fluidized state. Poorly water-soluble compound
  • the poorly water-soluble compound used in the present invention is a compound having a solubility in water at 20 ° C. of less than 2 g / 100 g, preferably less than 1 g / 100 g, more preferably less than 0.1 g / 100 g. Those having a water-repellent action at the initial stage in contact with are preferred. Further, an organic compound having a melting point of 200 ° C. or lower, preferably 0 to 160 ° C., more preferably 20 to 8 ° ⁇ , and still more preferably 40 to 60 ° C. is suitable.
  • the poorly water-soluble compounds can be used alone or in an appropriate combination of two or more.
  • poorly water-soluble compounds include higher fatty acids, dicarboxylic acids, higher alcohols, higher alcohols having an HLB of 5 or less, preferably 3 or less, alkylene oxide adducts of higher fatty acids, higher fatty acid esters, and glycerides of higher fatty acids. I can do it.
  • those having a carbon chain length of 12 to 22 carbon atoms, more preferably 14 to 18 carbon atoms are suitable, and specifically, dodecanol, tetrade phenol, hexade phenol, octadecanol and the like are preferable. Is mentioned.
  • an alkylene oxide adduct of a higher alcohol or fatty acid having an HLB of 5 or less, preferably 3 or less a 1-3 mol ethylene oxide adduct of an alcohol or fatty acid having 16 to 22 carbon atoms is preferable.
  • examples thereof include a 1 mol ethylene oxide adduct of hexadenicol, a 3 mol ethylene oxide adduct of octadecanol, and a 1 mol ethylene oxide adduct of palmitic acid.
  • methyl esters or ethyl esters such as palmitic acid, myristic acid, stearic acid, arachidic acid, and behenic acid are suitable.
  • Di or tridalicelide is preferred.
  • anion is a poorly water-soluble compound. It is preferred to use a surfactant acid precursor.
  • anionic surfactant acid precursor any anionic surfactant acid precursor can be suitably used.
  • anionic surfactant acid precursors saturated or Are unsaturated fatty acids (average carbon chain length of 8 to 22), linear or branched alkyl (average carbon chain length of 8 to 18) benzenesulfonic acid, long chain alkyl (average carbon chain length of 10 to 20) sulfone Acid, long-chain olefin (average carbon chain length 10-20) Sulfonic acid, long-chain monoalkyl (average carbon chain length 10-20) Sulfuric acid ester, polyoxyethylene (average degree of polymerization 1-10) length Chain alkyl (average carbon chain length: 10 to 20) Ether sulfate, polyoxyethylene (average degree of polymerization: 3 to 30) Alkyl (average carbon chain length: 6 to 12) Phenyl ether sulfate, ⁇ -sulfo Examples include fatty acids (average carbon chain length of 8 to 22), long-chain monoalkyl, dialkyl or sesquialkyl phosphoric acid, polyoxyethylene monoalkyl, dialkyl or
  • the anionic surfactant acid precursor is preferably a saturated or unsaturated fatty acid (average carbon chain length of 8 to 22), and more preferably has a carbon chain length of 8 to 18 carbon atoms.
  • Specific examples include saturated fatty acids such as acetic acid, lauric acid, myristic acid, and palmitic acid, and unsaturated fatty acids such as oleic acid.
  • saturated fatty acids having 12 to 18 carbon atoms are preferable from the viewpoint of storage stability, and rapaulinic acid is more preferable in consideration of productivity.
  • the method of surface-treating the water-soluble inorganic compound surface-treated with the first surface-treating agent with a poorly water-soluble compound is not particularly limited.
  • a method in which a poorly water-soluble compound is added to the surface-treated water-soluble inorganic compound, mixed or coated, or the like can be used.
  • a method is preferred in which the poorly water-soluble compound is melted into a liquid state, and the liquid is dropped or spray-added to the surface-treated water-soluble inorganic compound in a stirred and fluidized state.
  • the amounts of each component in the surface-treated water-soluble inorganic compound particles of the present invention are shown below.
  • the water-soluble inorganic compound is preferably used in an amount of 60 to 99.8% by mass, particularly preferably 70 to 97% by mass, based on the total amount of the surface-treated water-soluble inorganic compound particles. If the amount of the water-soluble inorganic compound is less than 60% by mass, the alkali agent may be insufficient. On the other hand, if the amount exceeds 99.8% by mass, the amount of the treating agent is too small, and sufficient surface treatment cannot be performed. May not be.
  • the organic water-soluble polymer compound is preferably used in an amount of 0.1 to 10% by mass, particularly 0.5 to 8% by mass, based on the core particles of the water-soluble inorganic compound. If it is less than 0.1% by mass, In some cases, the effect of the surface treatment may not be obtained. When the amount exceeds 10% by mass, the amount of the inorganic compound may be too small.
  • the inorganic water-soluble polymer compound is preferably used in an amount of 1 to 30% by mass, particularly preferably 10 to 28% by mass, based on the core particles of the water-soluble inorganic compound. If the amount is less than 1% by mass, the effect of the surface treatment may not be obtained. If the amount exceeds 30% by mass, the amount of the inorganic compound may be too small.
  • the poorly water-soluble compound is preferably used in an amount of 0.1 to 10% by mass, particularly 2 to 8% by mass, based on the water-soluble inorganic compound core particles surface-treated with the first surface treating agent. If the amount is less than 0.1% by mass, the effect of the surface treatment may not be obtained. If the amount exceeds 10% by mass, the amount of the inorganic compound may be too small.
  • a surfactant an optional component of the (b) surfactant-containing particles described below, and the like may be contained as long as the effects of the present invention are not impaired.
  • Surface-treated water-soluble inorganic compound particles may be contained as long as the effects of the present invention are not impaired.
  • the surface-treated water-soluble inorganic compound particles of the present invention are obtained by subjecting water-soluble inorganic compound core particles to a surface treatment with an organic or inorganic water-soluble polymer compound, and further treating the treated surface with a poorly water-soluble compound.
  • the surface of the present invention refers to a water-soluble inorganic compound particle group (secondary particles or (Including agglomerated particles). In the case of the water-soluble inorganic compound particle group, the depth of the minute concave portions on the surface is 0.01 to 50 m.
  • the water-soluble polymer compound and the poorly water-soluble compound on the surface of the water-soluble inorganic compound core particles form a layer by the presence of the water-soluble polymer compound on the surface of the water-soluble inorganic compound core particles.
  • the poorly water-soluble compound may be present in the part, or may be in a randomly mixed state. From the viewpoints of solubility and storage stability, it is preferable that the outermost layer of the surface-treated water-soluble inorganic compound particles contains more hardly water-soluble compounds than water-soluble polymer compounds. Further, from the viewpoint of manufacturability, it is preferable that a larger amount of the water-soluble polymer compound is present near the surface of the core particles of the water-soluble inorganic compound than the hardly water-soluble compound.
  • a particularly preferred structure of the surface-treated water-soluble inorganic compound particles is a water-soluble inorganic compound core particle. And a water-soluble polymer compound formed partially or entirely on the surface of the particles.
  • core particles of a water-soluble inorganic compound such as a carboxylate usually become alkaline when they come into contact with water or a water-soluble polymer solution. Therefore, when the poorly water-soluble compound is an acid precursor of an anionic surfactant such as a higher fatty acid, it is neutralized on the particle surface by the second surface treatment.
  • the neutralization reaction does not occur partially and may remain in the form of the acid precursor.
  • the neutralization state of the acid precursor of the anionic surfactant can also be examined by a differential scanning calorimetry (Differential Scanning Calorimeter try; etc.).
  • a second surface treatment part is formed with the anionic surfactant acid precursor and Z or a salt thereof.
  • the particles can be suitably used as the surface-treated water-soluble inorganic compound particles in the present invention.
  • the first surface-treated portion and the second surface-treated portion may impair the effects of the present invention as other components.
  • Various additives such as a binder, a dispersant, a solubilizer, a pH adjuster, and a surfactant other than the poorly water-soluble compound may be appropriately contained as long as the surfactant is not contained.
  • Surface-treated water-soluble inorganic compound particles In the above, the content is preferably less than 10% by mass, more preferably 5% by mass or less, further preferably 1% by mass or less. It is not included in the amount of the activator.
  • the first surface treatment portion exhibits exothermicity in the process of dissolution or dispersion in water
  • the second surface treatment portion exhibits endothermicity in the process of dissolution or dispersion in water
  • the first surface treatment It is preferable that the entire surface treatment part consisting of the part and the second surface treatment part shows endothermicity in the process of dissolving or dispersing in water.
  • Agglomerates formed between the water-soluble inorganic compound core particles and the detergent particles are considered as follows.
  • Many water-soluble inorganic compounds which are powder-blended with the granular detergent composition generate a lot of heat upon contact with water.
  • the heat of dissolution of sodium carbonate is-24.57 kJ / mo 1 (described in General Chemical Industrial Products, SODA Ash Technical & Handling Guide), hydration of sodium sulfate The heat is 79.58 kJ / mo 1 (described in Chemical Handbook).
  • the first surface treatment section shows heat-generating property in the process of dissolving or dispersing in water
  • the second surface treatment section shows endothermic property in the process of dissolution or dispersion in water
  • the calorific value of the entire surface treatment part comprising the first surface treatment part and the second surface treatment part is endothermic, preferably 30 to 80 J / g particles, more preferably 40 to 70 J / g particles.
  • the JZg particles mean the amount of heat (J) per gram of the inorganic compound particles (the same applies to the following description).
  • the first surface treatment section exhibits a water immersion action and the second surface treatment section exhibits a water repellency action.
  • the wetting rate is a factor that affects the dissolution time, even if the heat of dissolving or dispersing the entire processing unit in water is endothermic, if the wetting rate is too high, the core water solubility Dissolution of the inorganic compound proceeds. As a result, when the excessively dissolved water-soluble inorganic compound is exposed to low-temperature water, re-condensation of hydrate crystals may occur, and aggregates may be formed. On the other hand, if the water repellency is excessive and the wetting rate is too slow, the dissolution itself is hindered, and the surface-treated water-soluble inorganic compound particles may remain undissolved.
  • the material has a certain range of wetting rate.
  • the value of the wetting rate varies depending on the measurement method and the amount of the sample, but in the present invention, when measured by the Pashban method described later in detail, 0.5 g of the surface-treated water-soluble inorganic compound particles is used.
  • the wetting rate due to permeation and capillary action is in the range of 100 to 400 minutes, more preferably in the range of 200 to 400 minutes.
  • the physical properties of the surface-treated water-soluble inorganic compound particles of the present invention are not particularly limited, but the bulk density is usually 0.3 g / cm 3 or more, preferably 0.5 to 1.4 g / cm. 3 , more preferably 0.6 to 1.2 / cm 3 . Bulk density is too small If it is too large, it may be easy to classify it when it is used by mixing with other particles.
  • the average particle size is preferably from 200 to 2000 m, more preferably from 300 to 1500 m.
  • the average particle size is less than 200 m, the specific surface area is too large, and it may be difficult to obtain the hydration inhibiting effect.
  • the average particle size is more than 2000 m, the solubility of the surface-treated water-soluble inorganic compound particles themselves is reduced. It may deteriorate.
  • the angle of repose is 70. Or less, more preferably 50 ° or less. If the angle of repose exceeds 70 °, the handling of particles may deteriorate.
  • the measurement of the bulk density and the average particle diameter is carried out according to the methods described in Examples described later.
  • the water content in the surface-treated water-soluble inorganic compound particles is preferably 8% by mass or less, more preferably 7% by mass or less, particularly preferably 6% by mass or less, from the viewpoint of preventing solidification (caking) during storage.
  • the water content in the present invention is measured by the heating loss method specified in JIS K3363-1998.
  • the method for producing surface-treated water-soluble inorganic compound particles of the present invention includes the following first step and second step.
  • First step a step of adding an aqueous solution of a water-soluble polymer compound to the core particles of the water-soluble inorganic compound and treating the surface of the core particles of the water-soluble inorganic compound with the water-soluble polymer compound.
  • Second step a step of adding a poorly water-soluble compound to the water-soluble inorganic compound core particles treated in the first step, and subjecting the particles to a surface treatment.
  • the first step is a step of adding an aqueous solution of a water-soluble polymer compound to the core particles of the water-soluble inorganic compound, and treating the surface of the core particles of the water-soluble inorganic compound with the water-soluble polymer compound.
  • the water-soluble inorganic compound core particles are charged into a granulation and coating apparatus described below, and an aqueous solution of a water-soluble polymer compound is added thereto to perform surface treatment.
  • the aqueous solution of the water-soluble polymer compound is usually 0.1 to 90% by mass, preferably 0.5 to 80% by mass, more preferably 1 to 60% by mass, and has a viscosity ( (Measured value at 25 ° C using Brookfield viscometer) Force 0.001 to 100 Pa's, preferably 0.0005 to 50 Pa's It is preferable to use a certain organic water-soluble polymer compound aqueous solution.
  • an inorganic water-soluble polymer compound it is usually preferably 1 to 60% by mass, preferably 5 to 55% by mass, and more preferably 10 to 50% by mass. It is preferable that the aqueous solution of the water-soluble polymer compound is added dropwise or sprayed to the core particles of the water-soluble inorganic compound in a stirred and fluidized state.
  • the second step is a step of adding a poorly water-soluble compound to the water-soluble inorganic compound core particles treated in the first step, and subjecting the particles to a surface treatment.
  • the water-soluble inorganic compound core particles treated in the first step are filled in a granulation / coating apparatus described later, and a water-insoluble compound is added thereto to perform a surface treatment. It is preferable that the hardly water-soluble compound is melted to be in a liquid state, and the liquid is dropped or spray-added to the water-soluble inorganic compound surface-treated in the first step of the stirring / flowing state.
  • a stirring granulation method in which a treating agent (a water-soluble polymer compound, a poorly water-soluble compound) is added to the water-soluble inorganic compound core particles, and the mixture is stirred with a stirring blade to granulate and coat.
  • a tumbling granulation method in which a treating agent is sprayed while the inorganic compound core particles are tumbled to granulate and coat, (3). The treating agent is sprayed while fluidizing the water-soluble inorganic compound core particles.
  • the first step and the second step described above may be performed by the same granulation / coating method and apparatus, or a plurality of granulation / coating methods.
  • the methods and apparatus may be combined. Hereinafter, each method, manufacturing apparatus, conditions and the like will be described.
  • the apparatus has a stirring shaft provided with a stirring blade at the center of the inside, and has a structure in which a clearance is formed between the stirring blade and the vessel wall when the stirring blade rotates.
  • the clearance is preferably from 1 to 30 mm, more preferably from 3 to 10 mm. If the clearance is less than 1 mm, the mixing machine may be easily overpowered due to the adhesion layer. If it exceeds 30 mm, the compaction efficiency is reduced, so that the particle size distribution becomes broad, and the granulation time becomes longer, which may lower the productivity.
  • agitating granulators include Henschel mixer (manufactured by Mitsui Miike Kakoki Co., Ltd.), high-speed mixer (manufactured by Fukae Kogyo Co., Ltd.), and vertical granule Ichiichi Ichiichi (manufactured by Parek Co., Ltd.).
  • Device. It is particularly preferable to use a horizontal type mixing tank having a stirring shaft at the center of a cylinder and a stirring blade attached to the shaft to mix powder.
  • Such mixers include, for example, a Lödige mixer (manufactured by Matsupo Corporation) and a blow shear mixer (manufactured by Taiheiyo Kiko Co., Ltd.).
  • the Froude number defined by the following formula is preferably from 1 to 16, and more preferably from 2 to 9. If the fluid number is less than 1, the surface treatment may be insufficient due to insufficient fluidization. On the other hand, if it exceeds 16, the shearing force on the particles becomes too strong, and the surface treatment may be broken.
  • the stirring granulator used is equipped with a chopper that rotates at a high speed to promote the compaction of the granules and the disintegration of coarse powder.
  • the rotation speed of the chopper is preferably such that the surface treatment portion is not broken.
  • the tip speed (peripheral speed) of the chopper is preferably 3 OmZs or less, more preferably 0 to 20 mZs or less.
  • the granulation time in batch granulation and the average residence time in continuous granulation are preferably from 0.5 to 20 minutes, more preferably from 3 to 10 minutes. If the granulation time (average residence time) is less than 0.5 minutes, the time is too short to control the granulation to obtain a suitable average particle diameter and bulk density, and the particle size distribution becomes broad. There is. If it exceeds 20 minutes, the time may be too long and the productivity may decrease.
  • a treating agent such as an aqueous solution of a water-soluble polymer compound or a sparingly water-soluble compound is preferably added dropwise or sprayed to particles in a stirred and fluidized state.
  • stirring can be started to perform granulation and coating operations.
  • any type of rolling granulator can be used.
  • a drum-shaped cylinder that rotates to perform processing is preferable, and a thing provided with a baffle plate of an arbitrary shape is particularly preferable.
  • the drum type granulator include a horizontal cylindrical type granulator, a conical drum type granulator described in the first edition of the first edition of the Granulation Hundred Book, edited by the Japan Powder Industry Association, a multi-stage conical drum type granulator, Drum type granulators with stirring blades and the like can be mentioned.
  • Preferred granulation conditions in the tumbling granulation method are shown below.
  • the processing time in the batch system and the average residence time defined by the following formula in the continuous system are preferably from 5 to 120 minutes, more preferably from 10 to 90 minutes, and still more preferably from 10 to 40 minutes. If the time is less than 5 minutes, high bulk density may not be obtained, while if it exceeds 120 minutes, productivity may be reduced or particles may be disintegrated.
  • Tm Average residence time (min)
  • the Froude number defined by the following formula is 0.01 to 0.8.
  • the number of fluids is more preferably 0.05 to 0.7, and 0.1 to 0.6. 5 is more preferred. If the Froude number is less than 0.01, uniform and high bulk density particles may not be obtained.On the other hand, if the Froude number is more than 0.8, particles are scattered and normal in the case of a drum type mixer. Shear mixing may not occur.
  • V Peripheral speed of the outermost periphery of the rotary mixer (mZs)
  • volume filling ratio (X) (M / p) / VX 100
  • V Volume of rotating container mixer (L)
  • a treating agent such as an aqueous solution of a water-soluble polymer or a poorly water-soluble compound is added by spraying to the particles in a rolling / flowing state.
  • stirring is started to perform granulation and coating operations.
  • any type of fluidized-bed granulator composed of a fluidized bed main body, a flow straightening plate, a blower, an intake filter, an air heater, a cooler, a spray device, a dust collector, and the like can be used.
  • batch type fluidized bed granulator top spray type, side spray type, bottom spray type, etc.
  • top spray type, side spray type, bottom spray type, etc. described in Japan Powder Technology Association, Granulation Handbook 1st edition, 1st printing, spouted fluidized bed granulator, Spouted bed granulator, semi-continuous Fluidized bed granulator (dispersed plate inverted discharge type, bottom discharge type, side wall discharge type, etc.)
  • Continuous fluidized bed granulator horizontal multi-chamber type, cylindrical type, etc.
  • Examples of the use of specific equipment are the batch type fluidized bed granulator G 1 att-I P OWR EX series [manufactured by Baurex Co., Ltd.], Floco Ichiyuichi series [manufactured by Okawara Seisakusho Co., Ltd.], continuous flow
  • the MIXGR AD series of bed granulators [manufactured by Okawara Seisakusho Co., Ltd.] and the like.
  • the average thickness of the raw material powder layer at the time of standing is preferably about 50 to 500 mm.
  • air is sent to the fluidized bed to make the powder fluidized, and then spraying of a treating agent such as an aqueous solution of a water-soluble polymer compound or a poorly water-soluble compound is started.
  • a treating agent such as an aqueous solution of a water-soluble polymer compound or a poorly water-soluble compound.
  • the spray nozzle it is also preferable to use a two-fluid nozzle in order to improve the spray state, in addition to a normal pressurizing nozzle.
  • the average droplet diameter at this time is preferably about 5 to 500 m.
  • the wind speed is adjusted in the range of 0.2 to 4. O m / s, and the wind temperature is adjusted to 5 to 70 ° C, preferably 7 to 65 ⁇ . It is preferable to perform the production while periodically dropping the fine particles attached to the bag filter with pulsed air.
  • the temperature of the surface-treated water-soluble inorganic compound particles immediately after the completion of the second step is preferably equal to or higher than the melting point of the anionic surfactant acid precursor.
  • the temperature of the particles be equal to or higher than the melting point of the poorly water-soluble compound.
  • the temperature of the water-soluble inorganic compound core particles treated in the first step is lower than the melting point of the poorly water-soluble compound, the surface after the surface treatment with the poorly water-soluble compound is completed.
  • the temperature of the treated water-soluble inorganic compound particles is preferably equal to or higher than the melting point of the poorly water-soluble compound. If the temperature is lower than the melting point, the dispersibility and uniformity of the poorly water-soluble compound in the granulation-coating system will be poor, and the surface treatment with the poorly water-soluble compound may be insufficient.
  • the surface-treated water-soluble inorganic compound particles obtained by the above method may be further surface-treated with an organic or inorganic fine powder.
  • Surface treatment The water-soluble inorganic compound particles
  • the fine powder to be treated include a surfactant at room temperature, a long-chain fatty acid salt, an aluminosilicate, an oil-absorbing carrier, and a clay mineral.
  • the surfactant examples include an anionic surfactant, a cationic surfactant, and a nonionic surfactant.
  • Long-chain fatty acid salts include alkali and non-alkali metal long-chain fatty acid salts, aluminosilicates such as A-type, P-type, X-type, etc., and oil-absorbing carriers such as silica, silicate compounds, and spherical porous hydrous amorphous
  • clay minerals such as silicic acid include montmorillonite, nontronite, paiderite, pyrophyllite, savonite, hectorite, stevensite, and talc. These can be used alone or in an appropriate combination of two or more.
  • Non-alkali metal long-chain fatty acid salts and luk are water-repellent, preventing aggregation of water-soluble inorganic compounds.
  • Aluminosilicates are commonly used as Ca-trapping builder, and when used alone for surface treatment, mixed Acts as a treating agent on the surface of the detergent particles to be produced.
  • the fine particles preferably have a primary particle diameter of 1 Z5 or less, more preferably 1 Z10 or less, based on the average particle diameter of the surface-treated water-soluble inorganic compound particles.
  • the amount of the fine powder is preferably 0.1 to 10% by mass, more preferably 1 to 8% by mass, based on the surface-treated water-soluble inorganic compound particles.
  • the surface-treated water-soluble inorganic compound particles obtained by the above-described method can be classified as necessary to use only the surface-treated water-soluble inorganic compound particles having a desired particle size.
  • a sieve can be suitably used.
  • gyroscopic sieves, flat sieves and vibrating sieves are preferred.
  • the gyro sieve is a sieve that gives a horizontal circular motion to a slightly inclined plane sieve.
  • a flat sieve is a sieve that gives a reciprocating motion almost parallel to the surface on a slightly inclined flat sieve.
  • a vibrating sieve is a sieve that vibrates rapidly in a direction substantially perpendicular to the sieve surface.
  • the time of sieving is preferably 5 seconds or more, and it is also preferable to use a tapping pole to improve sieving efficiency.
  • a sieve include Gyro Shifu Yuichi (manufactured by Tokuju Kosakusho Co., Ltd.), Rottekus Screener (manufactured by Seishin Enterprise), and Dalton Vibrating Sieve (manufactured by Dalton Co., Ltd.).
  • Can be Vibration by the sieve is suitably 60 to 300 times / minute, preferably 100 to 250 times / minute, More preferably, it is given by a vibration of 150 to 2000 times / minute. If the frequency of the sieve is less than 60 times the Z-minute, the classification effect may be deteriorated, while if it exceeds 300 times, dust generation may increase.
  • the fine powder is again put into the granulator together with the water-soluble inorganic compound core particles, and the granulation is preferably performed for the coating operation.
  • the coarse powder is pulverized to a particle size equivalent to that of the water-soluble inorganic compound before the granulation / coating operation, and then again put together with the core particles of the water-soluble inorganic compound into the granulator, where the granulation / coating operation is performed. It is preferable to subject to. At this time, as a crusher for crushing coarse powder, a model having a classification screen and a rotary blade is preferable.
  • Examples of such a mill include Fitzmill (manufactured by Hosokawa Micron Corp.), New Speed Mill (manufactured by Okada Seie Co., Ltd.), and Feather Mill (manufactured by Hosokawa Micron Corp.).
  • Fitzmill manufactured by Hosokawa Micron Corp.
  • New Speed Mill manufactured by Okada Seie Co., Ltd.
  • Feather Mill manufactured by Hosokawa Micron Corp.
  • the peripheral speed of the tip of the blade of the mill is preferably 15 to 9 OmZs, more preferably 20 to 8 OmZs, and even more preferably 25 to 7 OmZs. If the tip peripheral speed is less than 15 mZ s, the crushing ability may be insufficient
  • the third step the water solubility after the surface treatment in the second step
  • the third step it is preferable to include a step of suppressing hydration crystal growth on the surface of the inorganic compound core particles.
  • the hydrated crystal grows, many irregularities are generated on the surface of the core particles of the water-soluble inorganic compound, the bulk density decreases, and the angle of repose increases.
  • the hydrated crystals break through the surface treatment and solidify with the hydrated crystals protruding from nearby surface-treated water-soluble inorganic compound particles, resulting in strong hydrated consolidation.
  • Methods for suppressing hydrated crystals include [1] a method of cooling the surface-treated particles after the second step, and [2] a method of drying the surface-treated particles after the second step.
  • Cooling method is preferred from the viewpoint of maintaining good solubility.
  • the method of cooling the surface-treated particles after the second step is not particularly limited as long as the surface-treated water-soluble inorganic compound particles can be cooled to 30 ° C or lower, preferably 25 or lower.
  • the cooling rate is preferably 5 ° C hr or more, more preferably 10 ° C hr or more.
  • the cooling method and device are not particularly limited, but the cooling device is classified into a cooling device using a cooled heat transfer surface and a cooling device using an air flow.
  • a torus disk manufactured by Hosoka Micron Corp.
  • Frigomix manufactured by Nisshin Engineering Co., Ltd.
  • Fluidized beds can be used for cooling by using airflow.
  • Specific examples of the use of the apparatus are the batch type fluidized bed granulator G 1 att-POWR EX series (manufactured by Baurex), Floco Ichiyuichi series (manufactured by Okawara Corporation), continuous flow
  • the MI XGRAD series of bed granulators manufactured by Okawara Seisakusho Co., Ltd.
  • the method of drying the surface-treated particles after the second step is not particularly limited as long as the surface-treated water-soluble inorganic compound particles can be dried. More specifically, a similar device used in the above method [1] can be used as a drying device by setting the temperature of a heating medium such as a transmission surface or an airflow to 50 to 300 ° C, preferably 60 to 250 ° C. Utilizing and drying.
  • a heating medium such as a transmission surface or an airflow
  • the surface-treated water-soluble inorganic compound particles obtained by the above production method can be used as they are as a granular detergent composition.However, they should be mixed with a detergent particle group as an alkaline agent to form a granular detergent composition. Is preferred.
  • This group of detergent particles is usually selected from surfactant-containing particles containing a surfactant and an inorganic compound, enzyme particles, bleach particles, and bleach activator particles.
  • the mixing ratio (mass ratio) is preferably 3/97 to 97/3, more preferably 5/95 to 95/5, and still more preferably 10/90 to 90/10. preferable.
  • the granular detergent composition may optionally include surface-treated water-soluble inorganic compound particles and a detergent particle group.
  • dry mixing is preferably used.
  • any mixer may be used as long as various kinds of particles can be sufficiently mixed.
  • As the mixing machine a mixing machine of a horizontal cylindrical type, a double cone type, a V type, a rotation type and a revolution type can be suitably used. Further, a stirring granulator or a tumbling granulator may be used.
  • a horizontal cylindrical type or a double conical type is used, at a temperature of 0 to 50 ° C,? 1 "is mixed in the order of 0.01 to 0.2 (calculation formula is as described above). At this time, the order of adding various particles and other components is not particularly limited.
  • the granular detergent composition preferably contains (a) the above-mentioned surface-treated water-soluble inorganic compound particles, and (b) surfactant-containing particles containing a surfactant and an inorganic compound.
  • the ratio (al) / bl) of the average particle diameter of the (al) surface-treated water-soluble inorganic compound particles and the (bl) surfactant-containing particles is preferably Is from 0.5 to 2, more preferably from 0.5 to 1.5, and even more preferably from 0.6 to 1.3.
  • the ratio (a 2) / (b 2) of the bulk density of (a 2) the surface-treated surface-treated water-soluble inorganic compound particles to (b 2) the surfactant-containing particles is preferably 0.5 to 2 , More preferably 0.6 to 1.5, and still more preferably 0.6 to 1.4.
  • the blending amount of the surface-treated water-soluble inorganic compound particles in the granular detergent composition is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, and particularly preferably 10 to 30% by mass.
  • the blending amount of the surfactant-containing particles in the granular detergent composition is preferably 10 to 97% by mass, more preferably 30 to 95% by mass, and still more preferably 50 to 90% by mass. .
  • the mixing ratio of (a) the surface-treated water-soluble inorganic compound particles and (b) the surfactant-containing particles is (a) particle Z (b) particles (mass ratio), preferably 1Z99 to 50Z50, more preferably 5/50. It is 95-40 / 60, particularly preferably 10 / 90-30 / 70. If the mass ratio exceeds 50/50, fluidity and solubility may be significantly deteriorated.
  • the surfactant-containing particles contain a surfactant and an inorganic compound.
  • the surfactant include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant. These may be used alone or in combination of two or more. It can be used together.
  • the anion surfactant is not particularly limited as long as it is conventionally used in detergents, and various anion surfactants can be used. For example, the following can be mentioned.
  • Hyorefin sulfonate having 10 to 20 carbon atoms
  • Ethylene oxide, propylene oxide, butylene oxide or the like having a linear or branched alkyl or alkenyl group having 10 to 20 carbon atoms and an average addition mole number of 10 mol or less.
  • alkyl polyhydric alcohol ether sulfate such as alkyl glyceryl ether sulfonic acid having 10 to 20 carbon atoms
  • anionic surfactants include alkali metal salts of linear alkylbenzene sulfonic acid (LAS) (eg, sodium or potassium salts), alkali metal salts of AOS, SF, and AES (eg, sodium or potassium salts) And alkali metal salts of higher fatty acids (eg, sodium or potassium salts).
  • LAS linear alkylbenzene sulfonic acid
  • AOS alkylbenzene sulfonic acid
  • AES alkali metal salts of higher fatty acids
  • alkali metal salts of higher fatty acids eg, sodium or potassium salts
  • nonionic surfactant examples include the following.
  • An alkylene oxide having 2 to 4 carbon atoms is added to an aliphatic alcohol having 6 to 22 carbon atoms, preferably 8 to 18 carbon atoms, preferably 3 to 30 mol, preferably 5 to 20 mol.
  • polyoxyethylene alkyl (or alkenyl) ether and polyoxyethylene polyoxypropylene alkyl (or alkenyl) ether are preferred.
  • the aliphatic alcohol used here includes a primary alcohol and a secondary alcohol. Further, the alkyl group may have a branched chain. As the aliphatic alcohol, a primary alcohol is preferred.
  • Alkylene oxide is added between ester bonds of a long-chain fatty acid alkyl ester, for example, a fatty acid alkyl ester alkoxylate represented by the following general formula (I)
  • RiCO represents a fatty acid residue having 6 to 22 carbon atoms, preferably 8 to 18 carbon atoms
  • OA represents an alkylene group having 2 to 4 carbon atoms, preferably 2 to 3 carbon atoms such as ethylene oxide and propylene oxide.
  • n represents the average number of moles of alkylene oxide added, and is generally a number of 3 to 30, preferably 5 to 20.
  • R 2 has a substituent having 1 to 3 carbon atoms. May represent a lower (C1-4) alkyl group.
  • nonionic surfactants polyoxyethylene alkyl (or alkenyl) ethers having a melting point of 50 or less and an HLB of 9 to 16, polyoxyethylene polyoxypropylene alkyl (or alkenyl) ethers, fatty acid methyl esters, and ethylene oxide Fatty acid methyl ester ethoxylate to which side is added, fatty acid methyl ester ethoxypropoxylate to which ethylene oxide and propylene oxide are added to fatty acid methyl ester, and the like are preferably used. These nonionic surfactants may be used alone or in combination of two or more. be able to.
  • the HLB of the nonionic surfactant in the present invention is a value obtained by the Griffin method (Yoshida, Shindo, Ogaki, Yamanaka co-edited, "New Edition Surfactant Handpuck", Industrial Books Co., Ltd., 1991, p. 234).
  • the melting point in the present invention is a value measured by a melting point measuring method described in JISK 0064-1992 "Method for measuring melting point and melting range of chemical products"
  • the cationic surfactant for example, Can be mentioned.
  • the long-chain alkyl is an alkyl group having 12 to 26 carbon atoms, preferably 14 to 18 carbon atoms
  • the short-chain alkyl is an alkyl group having 1 to 4 carbon atoms, preferably 1 to 2 carbon atoms, a benzyl group, and 2 to 4 carbon atoms. Represents a 2-3 hydroxyalkyl group or a polyoxyalkylene group.
  • amphoteric surfactant examples include an amphoteric surfactant such as an imidazoline-based or amido-bein-in-based surfactant.
  • the surfactant in the surfactant-containing particles is preferably an anion surfactant and a nonion surfactant from the viewpoint of cleaning performance, and a combination use of an anion surfactant and a nonion surfactant. Is more preferred.
  • the mass ratio of the compounding amounts of the anionic surfactant and the nonionic surfactant is 0.1 to 10%. Is preferred, 0.2 to 8 is more preferred, and 0.3 to 7 is even more preferred.
  • the amount of the surfactant is preferably (10) 50 to 50% by mass in the surfactant-containing particles (a) from the viewpoint of solubility and fluidity due to mixing with the surface-treated water-soluble inorganic compound particles. More preferably, it is 15 to 40% by mass. If the amount is more than 50% by mass, the fluidity may be deteriorated. If the amount is less than 10% by mass, the solubility may be deteriorated.
  • the surfactant-containing particles further contain an inorganic compound.
  • the inorganic compound is not particularly limited, but all inorganic compounds contained in the following inorganic builders, reducing agents, and extenders can be used.
  • the inorganic compound sodium carbonate, potassium carbonate, sodium sulfate, and aluminosilicate are preferable.
  • the compounding amount of the inorganic compound in the surfactant-containing particles is 10 to 80% by mass, preferably 20 to 70% by mass, and more preferably 30 to 60% by mass. If the amount of the inorganic compound is too small, the fluidity may be degraded. If the amount is too large, dusting of the powder may occur.
  • the surfactant-containing particles preferably further contain a water-soluble polymer compound, whereby the fluidity and solidification after storage over time can be further improved.
  • the water-soluble polymer compound include the same water-soluble polymer compounds as those described above in (a) the surface-treated water-soluble inorganic compound particles.
  • the water-soluble polymer compound used here may be the same as or different from (a) the water-soluble polymer compound.
  • an acrylic acid polymer compound or a cellulose polymer compound is preferable, and as the acrylic polymer compound, an acrylic acid polymer, acrylic acid / Maleic acid copolymers are preferred.
  • CMC carboxymethyl cellulose
  • the weight average molecular weight of the water-soluble polymer compound is preferably from 1,000 to 1,000,000.
  • the water-soluble polymer compound can be used alone or in an appropriate combination of two or more.
  • the compounding amount of the water-soluble polymer compound in the surfactant-containing particles is 0.1 to 10% by mass, preferably 0.5% to 9% by mass, and more preferably 1 to 8% by mass. . If the amount of the water-soluble polymer compound is too small, the intended effect may not be obtained. If the amount is too large, the solubility of (b) the surfactant-containing particles themselves may be deteriorated.
  • the surfactant-containing particles (b) of the present invention may contain the following optional components in addition to the above essential components.
  • the inorganic compound is an essential component, it will be described in more detail below. Water-soluble polymer compounds are also described redundantly. Each of these optional components can be used alone or in combination of two or more.
  • washing builder examples include inorganic and organic builders.
  • Examples of the inorganic builder include sodium salt, potassium carbonate, sodium bicarbonate, sodium sulfite, sodium sesquicarbonate, sodium silicate, crystalline layered sodium silicate, amorphous layered sodium silicate, and the like, sulfuric acid, and the like.
  • Neutral salts such as sodium, orthophosphates, pyrophosphates, tripolyphosphates, metaphosphates, hexametaphosphates, phosphates such as phytates, the following general formula (II) X 1 (M 20 ) ⁇ A 1 2 ⁇ 3 ⁇ y 1 (S i ⁇ 2 ) ⁇ w 1 (H 2 ⁇ ) (II)
  • M is an alkali metal atom such as sodium, potassium, etc.
  • X 1 , y 1, and w 1 indicate the number of moles of each component, and generally, X 1 is 0.7 to 1.5, y 1 the number of 0. 8 ⁇ 6, w 1 represents any positive number.
  • a crystalline aluminosilicate represented by the following general formulas (1 1 1) and (IV)
  • M is an alkali metal atom such as sodium or potassium
  • x 3 , y 3 , z 3 and w 3 represent the number of moles of each component, and generally, X 3 is 0.2 to 1.1. , y 3 from 0.2 to 4.0, 2 3 0. 001-0. 8, w 3 0 or amorphous aluminosilicates and the like represented by any showing a positive number.
  • inorganic builders sodium carbonate, potassium carbonate, sodium silicate, sodium tripolyphosphate, and sodium aluminum silicate are preferred.
  • Organic builder examples include aminocarboxylic acid salts such as triacetate triacetate, ethylenediaminetetraacetate, i3-alanine diacetate, aspartate diacetate, methylglycine diacetate, and iminodisuccinate; serine diacetate Hydroxyamino carboxylates such as hydroxyiminodisuccinate, hydroxyethylethylenediamine triacetate, dihydroxysethylglycine; hydroxycarboxylates such as hydroxyacetate, tartrate, citrate and dalconate Cyclocarboxylates such as pyromellitate, benzopolycarboxylate, and cyclopentanetetracarboxylate; carboxymethyl tartronate, carboxymethyloxysuccinate, oxydisuccinate, tartaric acid Ethers such as mono or disuccinate Rubonates; polymers or copolymers such as itaconic acid, fumaric acid, t
  • citrate preferred are citrate, aminocarboxylate, hydroxyaminocarboxylate, polyacrylate, acrylate-maleic acid copolymer, and polyacetalcarboxylate, and particularly, hydroxyiminodisuccinate.
  • Suitable are polyacetone carponic acid salts such as 5,000, preferably 5,000 to 200,000 polyglyoxylic acid.
  • the blending amount of the organic builder is preferably 0.5 to 20% by mass, more preferably 1 to 0% by mass in the surfactant-containing particles.
  • citrate for the purpose of improving detergency and dispersibility of stains in washing liquid, citrate, aminocarboxylate, hydroxyaminocarboxylate, polyacrylate, atalylic acid-maleic acid copolymer, polyaceta It is preferable to use an organic builder such as a monocarboxylate and an inorganic builder such as zeolite in combination.
  • Examples of the dissolution promoter to be incorporated into the surfactant-containing particles include, for example, inorganic ammonium salts such as potassium carbonate, ammonium sulfate, and ammonium chloride; Sodium monobenzenesulfonate, sodium xylenesulfonate, sodium benzenesulfonate having 1 to 5 carbon atoms such as sodium cumene sulfonate, sodium benzoate, sodium benzenesulfonate, sodium chloride, citric acid, D- Examples include water-soluble substances such as glucose, urea, and sucrose.
  • inorganic ammonium salts such as potassium carbonate, ammonium sulfate, and ammonium chloride
  • Sodium monobenzenesulfonate, sodium xylenesulfonate, sodium benzenesulfonate having 1 to 5 carbon atoms such as sodium cumene sulfonate, sodium benzoate, sodium benzenesulfonate
  • potassium carbonate and sodium chloride are preferable, and carbon dioxide rim is particularly preferable in view of the balance between the solubility improving effect and the cost.
  • the blending amount is preferably 1 to 15% by mass, more preferably 2 to 12% by mass, more preferably 2 to 12% by mass in the surfactant-containing particles from the viewpoint of the solubility improving effect. It is 5 to 10% by mass.
  • the surfactant-containing particles it is preferably 1 to 10% by mass, more preferably 2 to 8% by mass, and still more preferably 3 to 7% by mass.
  • Examples of the swellable water-insoluble substance to be incorporated in the surfactant-containing particles include powdered cellulose, crystalline cellulose, bentonite, and the like.
  • Fluorescent agent bis (triazinylaminostilbene) disulfonic acid derivative (Tinopal AMS—GX), bis (sulfostyryl) biphenyl salt [Tinopearl CBS-X], etc.
  • Antistatic agent cationic surfactant such as dialkyl-type quaternary ammonium salt
  • Extender sodium sulfate, potassium sulfate, etc.
  • Reducing agent sodium sulfite, potassium sulfite, etc.
  • Bleaching activation catalysts include transition metal atoms and ligands such as copper, iron, manganese, nickel, cobalt, chromium, vanadium, ruthenium, rhodium, palladium, rhenium, tungsten, and molybdenum, and nitrogen atoms and oxygen.
  • a complex is formed via an atom or the like, and the transition metal contained is preferably cobalt, manganese, or the like. Particularly, manganese is preferred.
  • the average particle size of the surfactant-containing particles is preferably from 200 to 150001, more preferably from 250 to 1000 rn, even more preferably from 300 to 700 m.
  • the bulk density is preferably 0. 4 ⁇ 1. 2gZcm 3, more preferably 0. 5 ⁇ 1. 0 gZ cm 3 .
  • the average particle diameter and the bulk density are measured according to the methods described in Examples.
  • the water content of the surfactant-containing particles is preferably 4 to 10% by mass, more preferably 5 to 9% by mass, and still more preferably 5 to 8% by mass from the viewpoint of solubility and storage stability.
  • the surfactant-containing particles can be obtained by the following granulation method.
  • An extruding granulation method in which the raw material powder and one component of the binder (surfactant, water, liquid polymer component, etc.) are kneaded and kneaded, and then extruded and granulated. Kneading. Kneading, crushing and granulating methods to crush and granulate, stirring granulation method in which a binder component is added to raw material powder and agitating with stirring blades to granulate, spraying one component of binder while rolling raw material powder And a fluidized bed granulation method in which a raw material powder is fluidized while a liquid binder is sprayed and granulated. Specific equipment and conditions that can be used in these granulation methods are described in JP-A-2003-105400, JP-A-2003-238998, edited by the Japan Powder Technology Association and the first edition of the Granulation Handbook. It is as follows.
  • the granular detergent composition of the present invention comprises, from the viewpoint of preventing solidification (caking) during storage, one of (a) the surface-treated water-soluble inorganic compound particles and (b) the surfactant-containing particles, and preferably both of them. It is preferable to perform a surface treatment with an organic or inorganic fine powder.
  • the fine powder is not particularly limited as long as it is a fine powder having a primary particle diameter of 30 m or less, preferably 0.1 to 10 m.
  • the fine powder include a room temperature solid surfactant, a long-chain fatty acid alkaline earth, and the like.
  • Examples include metal salts, aluminosilicates, silica, clay minerals, and the like. Of these, aluminosilicates are preferred.
  • the amount of the fine powder is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass in the granular detergent composition. %, More preferably 0.5 to 3% by mass.
  • the water content of the granular detergent composition of the present invention is preferably 10% by mass or less, more preferably 4 to 9% by mass, and still more preferably 5 to 8% by mass from the viewpoint of solubility and storage stability.
  • a combination of (a) a surface-treated water-soluble inorganic compound particle and (b) a surfactant-containing particle that particularly satisfies the following conditions is preferable.
  • the water-soluble inorganic compound of the particles is sodium carbonate or potassium carbonate, and the water-soluble polymer compound is one or two selected from a vinyl polymer compound, a polysaccharide or a derivative thereof, and a polyester polymer compound.
  • the amount of the poorly water-soluble compound in the particles is less than 10% by mass, and (b) the amount of the surfactant in the surfactant-containing particles is 10 to 50% by mass.
  • the granular detergent composition of the present invention contains, in addition to (a) surface-treated water-soluble inorganic compound particles and (b) surfactant-containing particles, other particles such as enzyme particles, bleach particles, and bleach activator particles. be able to.
  • enzyme particles As the enzyme in the enzyme particles, commercially available enzyme particles currently used for granular clothing detergents can be used as they are. Specifically, proteases such as sabinase 12T, kannase 12 ⁇ , 24 ⁇ , evarase 8T, Deozyme, lipases such as revorase ultra 50T, LI ⁇ 50 ⁇ , etc., amylase such as Termamyl 100, etc., cellzym 0 Cellulase of 7 ⁇ and others (above, manufactured by Nopozymes), Maxacal 45G, Maxam 30G, Properase 1000E (above, manufactured by Diene Core) and the like.
  • proteases such as sabinase 12T, kannase 12 ⁇ , 24 ⁇ , evarase 8T, Deozyme, lipases such as revorase ultra 50T, LI ⁇ 50 ⁇ , etc.
  • amylase such as Termamyl 100, etc.
  • cellzym 0 Cellulase of 7 ⁇ and others above
  • the average particle size of the enzyme particles is preferably from 200 to 1000 m, more preferably from 300 to 700 m, from the viewpoint of solubility and storage stability.
  • the measurement of the average particle diameter is based on the measuring method described in Examples described later.
  • the amount of the enzyme particles is preferably 0.1 to 5% by mass, more preferably 0.2 to 2% by mass, based on the total amount of the granular detergent composition, from the viewpoint of cleaning performance.
  • Bleach particles consist of hydrogen peroxide or a peroxide that generates hydrogen peroxide when dissolved in water, usually one of sodium percarbonate and sodium perborate Or both are used. In particular, sodium percarbonate is preferred from the viewpoint of stability over time. These peroxides are treated with a coating or the like in order to prevent decomposition due to contact of water or other detergent components with the surfaces of the particles composed of the peroxide. Used in Various oxygen bleaching agents in the form of particles subjected to coagulation have been proposed, and examples thereof include bleaching agent particles described in Japanese Patent No. 2918991.
  • the bleaching agent particles are granulated products obtained by separately spraying an aqueous boric acid solution and an aqueous solution of an alkali metal silicate onto particles of sodium percarbonate kept in a fluid state, and drying.
  • a conventionally known stabilizer such as a chelating agent may be used in combination with the coating agent.
  • the average particle diameter of the coated sodium percarbonate particles is preferably from 100 to 200 m, more preferably from 200 to L 00, from the viewpoint of stability and solubility of the sodium percarbonate particles. 0 im, more preferably 300 to 800 m, such as SPC-D manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the blending amount of the bleaching particles depends on the bleaching performance and efficiency. Therefore, it is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass, based on the total amount of the granular detergent composition.
  • the bleaching activator in the bleaching activator particles may be tetraacetylethylenediamine, alkanoyloxybenzenesulfonic acid having 8 to 12 carbon atoms, alkanoyloxybenzoic acid having 8 to 12 carbon atoms, or a mixture thereof. Salts are preferred. Of these, 4-decanoyloxybenzoic acid, sodium 4-dodecanolyloxybenzenesulfonate, and sodium 4-nonanoyloxybenzenesulfonate are preferred. Xybenzoic acid and sodium 4-nonanoyloxybenzenesulfonate are more preferred.
  • the bleach activator is obtained by heating and melting a solid binder material at room temperature, such as polyethylene glycol of PEG # 300 to # 200, preferably PEG # 400 to # 600.
  • a bleach activator and powder of surfactant such as olefin sulfonate, alkylbenzene sulfonate, alkyl sulfate, etc.
  • surfactant powder Preferred is a ⁇ -olefin sulfonic acid salt having an alkyl chain length of 14.
  • the blending amount of the bleach activator in the granulated product is preferably 30 to 95% by mass, and more preferably 50 to 90% by mass. If the compounding amount is outside this range, it may be difficult to sufficiently obtain the effect of granulation.
  • the compounding amount of the binder substance is 0.5 to 30% by mass, preferably 1 to 20% by mass, more preferably 5 to 20% by mass in the granulated material.
  • the compounding amount of the surfactant powder is It is preferably 0 to 50% by mass, more preferably 3 to 40% by mass, particularly preferably 5 to 30% by mass in the granulated product.
  • the average particle size of the bleach activator particles is preferably from 200 to 1500 m, more preferably from 300 to L000 m, from the viewpoint of solubility and storage stability.
  • the blending amount of the bleach activator particles is preferably from 0.1 to 15% by mass, particularly preferably from 0.3 to 10% by mass, based on the total amount of the granular detergent composition.
  • These dyes and pigments are converted into an aqueous solution or dispersion, and then the particles are stirred and tumbled in a stirring granulator or a tumbling granulator similar to a granulator for surfactant-containing particles. While adding, it can be colored.
  • the particles may be colored by spraying the aqueous solution or dispersion liquid onto the particles while the particles are transported on a belt conveyor.
  • the coloring amount is preferably 0.001 to 1% by mass based on the particles to be colored.
  • the fragrance may be added to one or both of (a) the surface-treated water-soluble inorganic compound particles and (b) the surfactant-containing particles, and then the respective particles may be mixed. After mixing the water-soluble inorganic compound particles and the (b) surfactant-containing particles, fragrance may be applied.
  • the fragrance used the components described in JP-A-2002-146399 and JP-A-2003-89800 can be used.
  • the fragrance is a mixture of a fragrance component, a solvent, a fragrance stabilizer and the like.
  • flavor is not limited to the fragrance
  • the physical properties of the granular detergent composition of the present invention are not particularly limited, but the bulk density is usually 0.3 g / cm 3 or more, preferably 0.5 to: L. 2 g, 'cm 3 And more preferably 0.6 to 1.1 gZcm 3 .
  • the average particle size is preferably from 200 to 1500 m, more preferably from 250 to 1000 m, and even more preferably from 280 to 700 m. If the average particle size is less than 200 m, dust may be easily generated or the handling property may be deteriorated.On the other hand, if the average particle size exceeds 1500 m, it may be difficult to obtain the solubility intended by the present invention. .
  • the fluidity of the granular detergent composition is preferably 60 ° or less, particularly preferably 50 ° or less as a repose angle.
  • the fluidity should preferably be 60 ° or less, more preferably 50 ° or less, as the angle of repose. Preferred from the point.
  • the granular detergent composition of the present invention can be filled into a suitable container to form a granular detergent article in a container.
  • a suitable container As the material of the container, saving permeability in terms of stability humidity 30 gZm 2 • 24 hours preferably (40 ° C, 90% RH ) or less, 25 gZm 2 ⁇ 24 hours (40 ° C, 90% RH ) or less Is more preferred. These can be achieved by combining general packaging materials and changing the thickness.
  • the moisture permeability in the present invention is JIS
  • the granular detergent composition of the present invention can be further used as a compression detergent such as a tablet detergent and a briguet detergent by compression molding after further mixing a disintegrant and the like. Since the granular detergent composition of the present invention can improve the fluidity and solidification after long-term storage while ensuring sufficient low-temperature solubility, it is particularly suitable for washing in a short-time washing course, and washing in a weak-flow course. It is suitable for applications or purposes, such as for washing, cold water washing, and washing machines with detergent inlets. Washing method
  • the water-soluble inorganic compound particles are surface-treated with an organic or inorganic water-soluble polymer compound, and the treated surface is not treated with a poorly water-soluble compound. Washing the laundry with the surface-treated water-soluble inorganic compound particles at a bath ratio of 7 to 15 LZ kg, preferably 8 to 15 LZ kg, more preferably 10 to 13 L / kg.
  • the washing method is performed at a rinsing temperature of 5 to 12 ° C, preferably 7 to 12 ° C, and more preferably 10 to 12 ° C.
  • the present invention when the washing is performed at the bath ratio and the washing temperature in the above range, the effect of not forming aggregates even when moistened at a low water temperature and a low stirring force is exhibited.
  • the treated water-soluble inorganic compound particles, which are blended with the particles can provide a powdery detergent composition having excellent fluidity and non-solidification properties after long-term storage.
  • the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
  • the composition is “%” by mass%, and the amount of each component in the table is (a) surface-treated water-soluble inorganic compound particles in Tables 1 to 4 and ( b) Regarding the composition of the surfactant-containing particles, the compounding amount as a pure component is shown, and other tables show the compounding amounts of the listed components. Examples and comparative examples
  • a water-soluble inorganic compound core particle is equipped with a plow-blade shovel, and the clearance between the shovel and the wall is 5 mm. Then, stirring at a spindle speed of 150 rpm was started (chopper rotation speed: 115 rpm, blade tip speed (peripheral speed): 6.9 m / s). 10 seconds after the start of stirring, an aqueous solution of a water-soluble polymer compound (concentration is described in the raw material column described below, the same applies hereinafter) was spray-added for 180 seconds using a pressurized nozzle (flat nozzle) with a spray angle of 115 degrees.
  • the granulation and coating operations were performed, and the aqueous solution of the water-soluble polymer compound was stored for 10 days at the temperatures shown in Tables 1 to 4 before use. If the water content relative to the total amount of the prepared particles exceeded 10%, the device was dried by introducing hot air into the above device, and the water content was adjusted to the values shown in Tables 1 to 4.
  • the coating operation was carried out by spraying the poorly water-soluble compounds shown in Tables 1 to 4 with a spray nozzle with a spray angle of 60 ° (full cone nozzle) for 180 seconds while continuing to stir with a professional mixer. . Finally, fine powder was added as needed, and stirring was continued for 30 seconds to obtain particles.
  • the coating operation was performed by appropriately passing warm water through the mixer jacket through the first and second steps so that the particle temperature immediately after the completion of the coating operation was as shown in Tables:! To 4.
  • the obtained particles are filled in a fluidized bed (G 1 att-POWREX, model number FD-WRT-20, manufactured by Parex Co., Ltd.), and after filling, air (air) at 15 ° C is filled in the fluidized bed. And cooled the particles to obtain particles cooled to 20 ° C.
  • the wind speed in the fluidized bed was adjusted in the range of 0.2 to 10. Om / s while checking the fluidized state.
  • the obtained particles are classified using a sieve with an aperture of 2000 m, and the surface-treated water-soluble inorganic compound particles that pass through a sieve with an aperture of 2000 m (the average particle diameter, angle of repose, and bulk density are described in Tables 1 to 4. ) Got.
  • Method for producing surface-treated water-soluble inorganic compound particles 2 (stirring granulation 2)
  • the surface-treated water-soluble inorganic compound particles (the average particle diameter, the angle of repose, and the bulk density are determined in the same manner as in step 3 of the above-described method 1 for producing the surface-treated water-soluble inorganic compound particles). 1-4) were obtained.
  • Method for producing surface-treated water-soluble inorganic compound particles 3 (rolling granulation)
  • the water-soluble inorganic compound core particles were mixed with a horizontal cylindrical tumbling mixer (cylinder diameter: 585 mm, cylinder length: 490 mm, container: 131.7 L). (With two baffles with a clearance of 20 mm and a height of 45 mm) (filling rate: 20% by volume), and the rolling operation was started at a rotation speed of 22 rpm. Thirty seconds after the start of rolling, a water-soluble polymer aqueous solution was spray-added at 100 gZmin using a two-fluid hollow cone nozzle with a spray angle of 70 °, and granulation and coating operations were performed.
  • the fluidized bed (G 1 att—P atWREX, Model No. FD—WRT—20 manufactured by Parex Co., Ltd.) is filled, and after filling, a wind (air) at 15 ° C. is sent into the fluidized bed, and the particle size is reduced. A cooling operation was performed. The wind speed in the fluidized bed was adjusted in the range of 0.2 to 10. Om / s while checking the fluidized state. As a result, particles cooled to 20 ° C were obtained. The obtained particles are classified by using a sieve having a mesh size of 250 m and a mesh size of 2000 m, and pass through a sieve having a mesh size of 2000 m without passing through the mesh size of 250 m. The diameter, angle of repose, and bulk density are shown in Tables 1-4. Method for producing surface-treated water-soluble inorganic compound particles 4 (fluidized bed granulation)
  • water-soluble inorganic compound core particles were placed in a fluidized bed (PAREX Co., Ltd., GI att—PWREX, model number FD—WRT—20), and the powder was left standing. A mass that gives a layer thickness of 200 mm was added. Then, a 50 ° C air (air) was sent into the fluidized bed, and after confirming that the powder had fluidized, the water-soluble polymer aqueous solution was sprayed from above onto the fluidized powder bed. The granulation and coating operations were performed while adjusting the wind speed in the fluidized bed in the range of 0.2 to 10. Om / s while checking the fluidized state. A two-fluid hollow cone nozzle with a spray angle of 70 ° was used for spraying the water-soluble polymer aqueous solution. The spray speed was about 100 gZmin. 2nd step
  • the coating operation was performed by spraying the poorly water-soluble compounds shown in Tables 1 to 4 at 100 gZmin using the same two-fluid hollow cone cone nozzle. .
  • the powder was flowed while the wind (air) at 50 ° C was continuously fed into the fluidized bed until the water content became 8% by mass.
  • the granulated material is discharged from the fluidized bed, and a rolling drum (0.6 m in diameter, 48 m in length, 1 mm in thickness, 12 cm in width, 12 cm in length and 48 cm in length) The granulated material and the fine powder were mixed for 60 seconds at a rotation speed of 2 Orpm with 4 plates.
  • the surface-treated water-soluble inorganic compound particles (average particle diameter, angle of repose, The bulk densities are shown in Tables 1-4).
  • Production method of surface-treated water-soluble inorganic compound particles 5 (stirring granulation + tumbling granulation)
  • water-soluble inorganic compound core particles were Into a Reedige mixer (M20 type, manufactured by Matsupo Corporation) with a clearance of 5 mm between the excavator and the wall (filling ratio: 30% by volume), and start stirring at 200 rpm at the main shaft. (The chopper was stopped.) 10 seconds after the start of stirring, an aqueous solution of a water-soluble polymer was added in 30 seconds, and granulation and coating operations were performed.
  • the obtained granules are discharged from the Lodige mixer, and are fed into a horizontal cylindrical rolling mixer (cylinder diameter: 585 mm, cylinder length: 490 mm, container: 31.7 L, drum inner wall surface) (With two baffles with a clearance of 20 mm from the inner wall and a height of 45 mm)) and started rolling at a rotation speed of 22 rpm. Thirty seconds after the start of rolling, the poorly water-soluble compounds shown in Tables 1 to 4 were spray-added at 100 g Zmin using a two-fluid holo-cone nozzle with a spray angle of 70 °, and coating was performed. .
  • the surface-treated water-soluble inorganic compound particles (average particle diameter, angle of repose, and bulk density are shown in Table 3) by the same operation as in the third step of the above-mentioned method 3 for producing the surface-treated water-soluble inorganic compound particles (rolling granulation). 1-4) were obtained.
  • the poorly water-soluble compound was added in a liquid state having a melting point or higher.
  • coarse particles of surface-treated water-soluble inorganic compound particles which are not used as the surface-treated water-soluble inorganic compound particles generated in the classification process of the surface-treated water-soluble inorganic compound particles 1 to 5 are manufactured by Fimill (Hosokawa Micron Co., Ltd.) The mixture was ground using KA-3) (screen hole diameter: 1.2 mm, number of revolutions: 470 rpm), and put into a granulator together with a water-soluble inorganic compound at the next granulation and reused.
  • the calorific value (Q A ) of the water-soluble inorganic compound core particles and the calorific value (Q B ) of only the first surface treatment section were measured.
  • the first surface treatment unit for heat generation in the solution or dispersion process in water, Q B - means processing section that satisfies Q A ⁇ 0.
  • the second surface treatment part that absorbs heat in the melting-decomposition process in water refers to processing unit which satisfies the Q- Q B> 0.
  • the endothermic in the dissolution / dispersion process in the entire surface treatment section means a state of Q ⁇ Q A > 0.
  • Q, 0 and ⁇ 3 3 were both exothermic (i.e., a negative value).
  • Comparative Test Example a29 Although the maximum temperature rise of sodium carbonate particles in 29 is 31.6 ° C, the surface treatment aqueous solution whose heat of solution in the surface treatment part is in the range of 30 to 80 JZ g The temperature of the conductive inorganic compound particles is suppressed to a degree of temperature rise of 15 ° C to 6 ° C.
  • the obtained maximum temperature rise was evaluated based on the following evaluation criteria.
  • Tables 1 to 4 show, in addition to the above evaluation results, the temperatures at which the used water-soluble inorganic compound core particles, water-soluble polymer compounds and poorly water-soluble compounds were used, and the temperatures after the second step in each production method.
  • the temperature of the surface-treated water-soluble inorganic compound particles and the production method used for preparing each surface-treated water-soluble inorganic compound particle are also described.
  • Surfactant-containing particles b1 to b7 were obtained by the following production method.
  • surfactant-containing particles b1 were prepared in the following procedure. First, water was poured into a jacketed mixing tank equipped with a stirrer, and the temperature was adjusted to 60 ° C. To this, a surfactant excluding ⁇ -SF-Na and a nonionic surfactant, and PEG # 6000 were added and stirred for 10 minutes. Then MA1 (acrylic acid (Maleic acid copolymer sodium salt) and a fluorescent agent.
  • MA1 acrylic acid (Maleic acid copolymer sodium salt
  • the slurry was spray-dried using a countercurrent spray drying tower at a hot air temperature of 280 ° C to obtain an average particle diameter of 320 ⁇ m and a bulk density of 0 Spray-dried particles with 30 g Z cm 3 and 5% moisture were obtained, while the fatty acid ester of the raw material was sulfonated and neutralized to obtain an aqueous slurry of ⁇ -SF-Na (water concentration 25%). Then, a part of nonionic surfactant (Q! —SF—25% based on Na) is added, and the water content is reduced under reduced pressure with a thin film dryer to 11%, and one SF—Na and nonion are added. A mixed concentrate of surfactant was obtained.
  • Q! —SF—25% based on Na a part of nonionic surfactant
  • This surfactant-containing kneaded material is extruded using a Pellet Yuichi Double (manufactured by Fuji Padal Co., Ltd., EXDF JS-100 type) equipped with a die with a hole diameter of 10 mm, and cut with a cutter (the peripheral speed of the cutter is 5 ms) A pellet-like surfactant-containing molded product having a length of about 5 to 30 mm was obtained.
  • a Pellet Yuichi Double manufactured by Fuji Padal Co., Ltd., EXDF JS-100 type
  • particulate A-type zeolite (average particle size: 180 m) as a grinding aid was added to the obtained pellet-like surfactant-containing molded product, and cooled air (10 ° C, 15 mZs) was added.
  • a horizontal cylindrical tumbling mixer (cylinder diameter: 585 mm, cylinder length: 490 mm, container: 131.7 L drum inner wall with 20 mm clearance from the inner wall and two baffles 45 mm high) Under the conditions of a filling rate of 30% by volume, a rotation speed of 22 rpm, and 25 ° C, 1.5% equivalent of fine powder type A zeolite was added. While spraying 0.5% equivalent of nonionic surfactant and perfume, it was tumbled for 1 minute to modify the surface to obtain particles.
  • the surfactant-containing particles were transported on a belt conveyor at a speed of 0.5 mZ s (the height of the surfactant-containing particle layer on the belt conveyor was 30 mm, and the A 20% aqueous dispersion of the dye was sprayed on the surface to obtain surfactant-containing particles bl (average particle diameter 550 zm, bulk density 0.84 g / cm 3 ).
  • Surfactant-containing particles b2 and b3 (average particle diameter and bulk density are described in Table 5) were obtained in the same manner as the method for preparing surfactant-containing particles b1. Preparation method of surfactant-containing particles 2
  • surfactant-containing particles b4 were prepared in the following procedure. Of the components shown in Table 5 below, all components (temperature 25 ° C) except for surfactants and 5.0% equivalent of P-type zeolite, pigments, and fragrances used for surface coating were subjected to a plow blade excavator. Equipped with an excavator and a clearance meter between the excavator and the wall with a clearance of 5 mm (a filling ratio of 50% by volume, manufactured by Matsupo Co., Ltd., M20), and agitated the main spindle at 200 rpm and the chopper at 200 rpm. .
  • a surfactant mixture (a mixture of a nonionic surfactant and an anionic surfactant preliminarily heated to 60 ° C and uniformly mixed) and water (temperature 60 ° C) were added in 2 minutes, Agitation granulation was continued at a jacket temperature of 30 ° C. until the average particle diameter reached 400. Finally, 5.0% equivalent of P-type zeolite was added and stirred for 30 seconds to modify the surface to obtain particles.
  • a 20% aqueous dispersion of the pigment is sprayed in the same manner as in the method 1 for preparing the surfactant-containing particles, and the surfactant-containing particles b 4 (average particle diameter 400 m and a bulk density of 0.80 gZcm 3 ) were obtained.
  • surfactant-containing particles b5 were prepared by the following procedure.
  • nonionic surfactants powdered zeolite A (zeolite) For kneading a part of Olite A) (2.0% equivalent (each particle, same hereafter)) during kneading, 3.2% equivalent for milling aid, 1.5% equivalent for surface coating
  • components other than pigments and perfumes are dissolved or dispersed in water to prepare a slurry with a water content of 38%, and then sprayed using a countercurrent spray-drying tower at a hot air temperature of 300.
  • the surfactant-containing kneaded material was extruded using a pellet doubler (EXDF JS-100, manufactured by Fuji Padal Co., Ltd.) equipped with a die with a hole diameter of 10 mm, and was cut with a cutter (one round of cutlery).
  • a pellet-like surfactant-containing molded product having a speed of 5 m / s) and a length of about 5 to 30 mm was obtained.
  • the obtained pellet-like surfactant-containing molded product was pulverized by the same method as in the method 1 for preparing surfactant-containing particles, and then subjected to surface modification to obtain particles.
  • a 20% aqueous dispersion of the pigment is sprayed in the same manner as in the method 1 for preparing the surfactant-containing particles, and the surfactant-containing particles b 5 (average particle diameter 540 m and a bulk density of 77 gZcm 3 ).
  • Surfactant-containing particles b7 (average particle diameter and bulk density are described in Table 5) were obtained in the same manner as the method for preparing surfactant-containing particles b5. Preparation method of surfactant-containing particles 4
  • surfactant-containing particles b6 were prepared in the following procedure. First, water was charged into a jacketed mixing tank equipped with a stirrer, and the temperature was adjusted to 50 ° C. Sodium sulfate and a fluorescent agent were added thereto, and the mixture was stirred for 10 minutes. Subsequently, after sodium carbonate was added, PAS (sodium polyacrylate) was added, and the mixture was further stirred for 10 minutes, and then sodium salt and a part of powdered A-type zeolite were added. Further, the mixture was stirred for 30 minutes to prepare a slurry for spray drying. The temperature of the obtained slurry for spray drying was 50 ° C. This slurry is pressure Spray drying is carried out with a counter-current spray dryer equipped with a nozzle, with a water content of 3% and a bulk density of 0
  • Spray-dried particles having a particle size of 50 gZcm 3 and an average particle size of 250 m were obtained.
  • a nonionic surfactant PEG # 6000, and anionic surfactant were mixed at a temperature of 80 ° C. to prepare a surfactant composition having a water content of 10%.
  • LAS—Na was used in the form of a solution neutralized with an aqueous sodium hydroxide solution.
  • the obtained spray-dried particles are charged (filling rate 50% by volume) into a Reedige mixer (M20 type, manufactured by Matsupo Co., Ltd.) equipped with a plow blade-shaped shovel and having a clearance between the shovel and the wall of 5 mm, and a jacket
  • a Reedige mixer M20 type, manufactured by Matsupo Co., Ltd.
  • stirring of the spindle 150 rpm
  • the chopper (4000 rpm) was started while flowing hot water at 80 ° C at a flow rate of 10 LZ.
  • the surfactant composition prepared above was added thereto over 2 minutes, and then stirred for 5 minutes.
  • the layered silicate (SKS_6, average particle size 5 / m) and a part of powder A zeolite were used. (Equivalent to 10%) and stirred for 2 minutes to obtain particles.
  • the obtained particles and a part of powder A-type zeolite (equivalent to 2%) are mixed with a V blender, and after spraying a fragrance, a surfactant is used to color some of the surfactant-containing particles. It was sprayed with a 20% aqueous dispersion of the dye in the same manner as in preparation method 1 containing particles, give the interfacial active agent-containing particles b 6 (average particle size 300 / m, the bulk density 0. 75 g / cm 3) Was.
  • a bleach activator granule A having an average particle diameter of about 700 am was obtained.
  • Preparation method of bleach activator granulated product B A bleach activator granule B was prepared in the same manner as the bleach activator granule A, except that sodium 4-dodecanoyloxybenzenesulfonate was used as the bleach activator.
  • a bleach activator granule C was prepared in the same manner as the bleach activator granule A, except that sodium 4-nonanoyloxybenzenesulfonate was used as the bleach activator.
  • a granular detergent composition was prepared by the following method, and the solubility (low-temperature aggregation rate), the solidification property (solidification rate), and the fluidity were evaluated. The results are shown in Tables 6 to 10.
  • Horizontal cylindrical tumbling mixer (cylinder diameter 585 mm, cylinder length 490 mm, vessel 1 31.7 L drum inner wall clearance 20 mm, height 45 mm (With two baffles) at a filling rate of 30% by volume, a rotation speed of 22 rpm, and a temperature of 25 ° C.
  • the surfactant-containing particles (b) described in 5 and other components were mixed for 5 minutes according to the compositions shown in Tables 6 to 10 to obtain a granular detergent composition.
  • Tables 6 to 10 show the average particle size and bulk density of the obtained granular detergent composition.
  • the detergent composition preferably has a low-temperature aggregation rate of less than 20%.
  • Paper container consisting of three layers of coated pole paper (basis weight: 350 g / m 2 ), wax sand paper (basis weight: 30 g / m 2 ), and kraft pulp paper (basis weight: 70 g / m 2 ) from the outside Using (moisture permeability 25 gZm 2 * 24 hours (40 ° C 90 RH)), a box having a length of 15 cm, a width of 9.3 cm and a height of 18.5 cm was prepared. Put 1.2 kg of the granular detergent composition in this box, store in a recycle constant temperature and humidity room at 25 ° C (65% RH for 8 hours) and 45 ° C (85% RH for 16 hours) for 30 days, A sample for solidification test was obtained. After storage over time, the detergent was gently transferred to a sieve having an opening of 4 mm, solidified on the sieve, the remaining detergent was weighed, and the solidification rate was determined by the following formula. Mass of detergent composition left on sieve
  • the detergent composition preferably has a solidification rate of less than 20%.
  • the angle of repose was measured by the below-described method of measuring the angle of repose using the granular detergent composition after the evaluation of the solidification property. The results were evaluated according to the following evaluation criteria. Considering the usability at home, the detergent composition preferably has a repose angle of 60 ° or less. Evaluation criteria>
  • Angle of repose is 50. Over 60 ° or less.
  • the average particle diameter, bulk density and angle of repose in the present invention were measured by the following methods.
  • the opening of the first sieve at which the integrated mass frequency is 50% or more is defined as am, and the opening of the sieve one step larger than am is defined as bm.
  • the average particle diameter (weight 50%) was determined by the following formula, where the integration of the mass frequency from the sieve to the am sieve was c%, and the mass frequency on the am sieve was d%.
  • the bulk density was measured according to JIS K3362-1998.
  • the angle of repose was measured using a turntable type angle of repose meter manufactured by Tsutsui Physical and Chemical Instruments Co., Ltd. [Table 6]
  • Example 1 to 17 the dye aqueous dispersion sprayed at the time of preparing the surfactant-containing particles was subjected to surface-treated water-soluble inorganic compound particles, surfactant-containing particles, and other particle components in a horizontal cylindrical tumbling mixer. After powder mixing, the mixture was sprayed by the same method as described in Method 1 for preparing surfactant-containing particles to obtain a granular detergent composition (Examples 53 to 69). Also in this granular detergent composition, the same evaluation results as in Examples 1 to 17 were obtained.
  • Example 4 the surface-treated water-soluble inorganic compound particles a 9 Except having changed to 3, a12, and a16 particles, it prepared similarly to Example 4 and obtained the granular detergent composition (Examples 70-74). With this granular detergent composition, the same evaluation results as in Example 4 were obtained.
  • Example 30 except that the a18 particles, which are the surface-treated water-soluble inorganic compound particles, were changed to all, a13 to a15, and a20 to a24 particles. Preparation was performed in the same manner as in Example 30 to obtain a granular detergent composition (Examples 75 to 83). The same evaluation results as in Example 30 were obtained with this granular detergent composition.
  • 40 g of the granular detergent composition of Example 4 and 40 g of the granular detergent composition of Comparative Example 2 were divided into six parts each of a pulse of a fully automatic washing machine “MAW-V8TP” manufactured by Mitsubishi Electric Corporation. It was placed in a conical cluster near the outer periphery of one of the fan-shaped depressions. 3 kg of clothing (50% of cotton underwear, 50% by weight of polyester Z cotton blended shirt) was put into a washing tub so as not to disturb the state of aggregation of the detergent composition. 38 L of tap water at 10 ° C was injected at a flow rate of 10 LZ so that water did not directly hit the detergent. We washed in the "wash quickly" course, a short-time washing course.
  • Example 4 After completion of the washing process (3 minutes), drainage was performed, and the state of the detergent composition remaining in clothing and the washing tub was visually determined.
  • Comparative Example 2 a large amount of aggregates of the detergent composition remained, whereas in Example 4, no detergent composition remained.
  • the granular detergent composition of Example 4 and the granular detergent composition 4 of Comparative Example 3 did not. 0 g of the pulsator of the fully automatic washing machine “ASW-ZR750” manufactured by Sanyo Electric Co., Ltd. placed. 3 kg of clothing (50% by mass of cotton underwear, 50% by mass of polyester cotton blend) was put into a washing tub so as not to destroy the detergent composition.
  • Example 4 About the granular detergent composition of Example 4 and the granular detergent composition of Comparative Example 3, using a drum type washing machine with a detergent inlet (manufactured by Sharp Corp., ES-E61), the inlet was used. 40 g of the granular detergent composition was added and washed on a standard course (water temperature 10 ° C, water volume 30 L, clothing 3 kg (cotton underwear 50% by mass, polyester / cotton blended shirt 50% by mass)). When this washing was repeated once a day for 30 days, the detergent composition remained undissolved at the inlet in Comparative Example 3 (about 10 g), whereas the detergent composition did not remain in Example 4 .
  • a standard course water temperature 10 ° C, water volume 30 L, clothing 3 kg (cotton underwear 50% by mass, polyester / cotton blended shirt 50% by mass)
  • Ses QUi TM Sodium Ses qu icarbonate (FMC, USA, average particle size 290 zm, bulk density 0.75 g / cm 3 )
  • Carbonated rim Carbonated rim (powder) (manufactured by Asahi Glass Co., Ltd., average particle diameter 490 m, bulk density 1.30 g / cm 3 )
  • HPC Hydroxypropylcellulose (HPC, S SLT yp e, manufactured by Nippon Soda Co., Ltd.) Diluted with water to a pure content of 5%
  • MA1 Acrylic / maleic acid copolymer Na salt, Aquaric TL-400 (Nippon Shokubai Co., Ltd.) (40% pure water solution)
  • MA2 acrylic acid-nomaleic acid copolymer
  • Na salt Aqualic TL-1400 (manufactured by Nippon Shokubai Co., Ltd.) diluted with water to a pure content of 20%
  • MA3 Acrylic acid / maleic acid copolymer Na salt: Sokal an CP45 (manufactured by BASF) diluted with water to a pure content of 20% •
  • PAS Polyacrylic acid Na salt, Aquaric DL-40 (Nippon Shokubai Co., Ltd.) 40% pure solution
  • PAP Polyaspartic acid sodium, Baypure DS 100/40% (manufactured by Bayer, pure 40% aqueous solution)
  • PEG # 6000 polyethylene glycol manufactured by Lion Corporation, trade name PEG
  • Myristic acid Myristic acid, manufactured by Shin Nippon Rika Co., Ltd., melting point 52 ° C
  • Palmitic acid Nippon Rika Co., Ltd., palmitic acid P, melting point 58 ° C
  • A-type zeolite Shilton B (manufactured by Mizusawa Chemical Co., Ltd., 80% pure)
  • LAS-K Linear alkyl (10-14 carbon atoms) benzenesulfonic acid (Lipo> LH-200 (Lion Co., Ltd.) LAS-H pure content 96%) was added to 48% water at the time of preparing the surfactant composition. Neutralize with potassium oxide solution).
  • the blending amounts in Table 5 indicate mass% as LASK.
  • LAS-Na linear alkyl (10-14 carbon atoms) Benzenesulfonic acid (Lybon LH-200 (LAS-H pure content 96%) manufactured by Lion Co., Ltd.) was added to 48% water at the time of preparing the surfactant composition. Neutralize with aqueous sodium oxide).
  • the blending amounts in Table 5 indicate mass% as LAS-Na.
  • AOS—K having an alkyl group with 14 to 18 carbon atoms—potassium olefin sulfonate (manufactured by Lion Corporation)
  • AOS—Na powdered sodium alpha-leufine sulfonate having 14 carbon atoms (trade name: Lipolan P J-400, manufactured by Lion Corporation)
  • AS—Na Sodium alkyl sulfate having an alkyl group with 10 to 18 carbon atoms (Sandet LNM manufactured by Sanyo Chemical Industries, Ltd.)
  • Nonionic surfactant A Oxidized styrene averaged 8 mol adduct of Diadol 13 (manufactured by Mitsubishi Chemical Corporation) (90% pure content)
  • Nonionic surfactant B ECOROL 26 (alcohol with alkyl group having 12 to 16 carbon atoms, manufactured by E COGRE EN), average 15 mol ethylene oxide adduct (90% pure)
  • Dye B Pigment Green 7 (Dainichi Seika Kogyo Co., Ltd.)
  • Dye C Acrylonitrile / styrene / acrylic acid as the constituent monomer.
  • Spherical resin particles with an average particle diameter of 0.35 xm obtained by radical emulsion polymerization in a water dispersion system.
  • BAS IC RED-1 is an aqueous dispersion of a pink fluorescent pigment obtained by adding the polymerized resin suspension to a suspension and subjecting it to heat treatment.
  • Perfume A Perfume composition A shown in JP-A-2002-146399 [Table 11] to [Table 18]
  • Fragrance C Fragrance composition C shown in JP-A-2002-146399 [Table 11] to [Table 18]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Detergent Compositions (AREA)

Abstract

Surface-treated water-soluble inorganic compound particles obtained by treating the surface of core particles of a water-soluble inorganic compound with an organic or inorganic, water-soluble polymer and further treating the surface of the resultant particles with a sparingly water-soluble compound. The surface-treated water-soluble inorganic compound particles do not agglomerate even when wetted under the conditions of a low water temperature and a low stirring force. The particles have excellent solubility during laundering. They have excellent flowability and can be prevented from adhering to a granulator during production.

Description

明 細 書  Specification
表面処理水溶性無機化合物粒子及びその製造方法、 並びに粒状洗剤組成物 技術分野 TECHNICAL FIELD The present invention relates to a surface-treated water-soluble inorganic compound particle, a method for producing the same, and a granular detergent composition.
本発明は、 表面処理された水溶性無機化合物粒子に関する。 特に、 粒状洗剤組 成物にアル力リ剤として粉体混合される表面処理水溶性無機化合物粒子に関する  The present invention relates to surface-treated water-soluble inorganic compound particles. In particular, the present invention relates to surface-treated water-soluble inorganic compound particles which are powder-mixed with a granular detergent composition as a powdering agent.
背景技術 Background art
従来、 固体粒子の八ンドリング性、 崩壊性、 貯蔵安定性、 溶解性等に関する種 々の問題点を解決するため、 粒子を水溶性高分子化合物で造粒する方法 (特開平 Conventionally, a method of granulating particles with a water-soluble polymer compound in order to solve various problems related to octundling, disintegration, storage stability, solubility, etc.
3 - 5 3 0 0 0号公報) 、 粒子表面を被覆する方法等 (特開 2 0 0 1— 2 9 3 3 5 4号公報) が提案されている。 A method of coating the particle surface (Japanese Patent Application Laid-Open No. 2000-293354) has been proposed.
粒状洗剤組成物の分野では、 界面活性剤を含む洗剤粒子が、 冬季における洗濯 中にゲル化 ·凝集して溶け残る現象がしばしば観察される。 特に、 近年、 洗濯機 の大型化による浴比の低下や、 省エネ設計による濯ぎ水量の低下が進むとともに 、 粉末洗剤を漬け置きして使用する方法等も汎用されるようになってきた。 この ことから、 低温水を使用した冬季の洗濯時に洗剤の溶け残りが発生しやすい状況 にある。 この問題を解決するため、 洗剤粒子の表面を水溶性高分子で被覆する方 法が提案されている (特開平 7— 2 4 2 8 9 9号公報) 。  In the field of granular detergent compositions, a phenomenon is often observed in which detergent particles containing a surfactant gel and coagulate during washing in winter and remain undissolved. In particular, in recent years, the bath ratio has been reduced due to an increase in the size of a washing machine, and the amount of rinsing water has been reduced due to an energy-saving design. In addition, a method of pickling and using a powdered detergent has become widely used. For this reason, there is a tendency for detergent to remain undissolved when washing in winter using low-temperature water. In order to solve this problem, a method of coating the surface of detergent particles with a water-soluble polymer has been proposed (Japanese Patent Application Laid-Open No. Hei 7-224 999).
一方では、 粒状洗剤に種々の機能を付与すべく、 様々な粒子をブレンドする技 術が提案されている。 この場合、 ブレンドされた粒子が互いに影響し合い、 粒状 洗剤の溶解性を低下させるという別の問題を招来することがあった。 特に、 洗剤 粒子に水溶性無機化合物を粉体混合すると、 水溶性無機化合物が水と接触して水 和する際に洗剤粒子と激しく凝集して凝集体を生成し、 これが溶け残る現象が問 題となっていた。  On the other hand, there has been proposed a technique of blending various particles in order to impart various functions to the granular detergent. In this case, the blended particles may interact with each other, leading to another problem of reducing the solubility of the granular detergent. In particular, when a powder of a water-soluble inorganic compound is mixed with detergent particles, when the water-soluble inorganic compound comes into contact with water and hydrates, the water-soluble inorganic compound violently agglomerates with the detergent particles to form aggregates, which remain undissolved. Had become.
この問題を解決するため、 洗剤粒子側をノニオン界面活性剤で被覆するととも に、 アル力リ金属塩側を水溶性有機物溶液及び Z又は固体粉体で被覆する技術が 提案されている (特開 2 0 0 2 - 2 6 6 0 0 0号公報) 。 しかしながら、 上記提案では、 衣類の共存条件下における粒状洗剤及び洗剤凝 集物の溶解性が評価されておらず、 撹拌力が乏しくかつ低温水を用いて行う実際 の洗濯時に、 洗剤凝集物の発生及びその溶け残りの抑制技術としては不充分であ る。 水溶性無機化合物の溶解発熱を制御するという視点からの検討は、 全くなさ れていない点においても不充分である。 In order to solve this problem, a technique has been proposed in which the detergent particle side is coated with a nonionic surfactant and the metal salt side is coated with a water-soluble organic substance solution and Z or solid powder (Japanese Patent Application Laid-Open (JP-A) No. 2002-110630). (Japanese Patent Application Laid-Open No. 2002-266600). However, the above proposal does not evaluate the solubility of the granular detergent and detergent aggregates under the coexisting condition of the clothes, and the detergent agglomeration is generated during actual washing with low stirring power and low-temperature water. It is not sufficient as a technique for suppressing the undissolved residue. Investigations from the viewpoint of controlling the heat of dissolution of water-soluble inorganic compounds are insufficient even in the point that nothing has been done.
さらに、 粉体同士を混合する際に生じる問題を解決する技術として、 例えば、 水に不溶の粉体又は漂白活性化剤等の造粒物を、 多価金属ィオンと反応する官能 基を有する水溶性高分子化合物で被覆した後、 多価金属イオンで架橋する技術 ( 特表平 1 1— 5 1 4 4 0 2号公報、 特開昭 6 3 - 1 3 0 5 2 2号公報) が提案さ れている。 しかしながら、 これらの技術も、 貯蔵安定性や多水性組成物に配合し たときの形体安定性の向上を目的としたものであり、 溶解時における凝集物の形 成を抑制するものではない。  Further, as a technique for solving the problems that occur when powders are mixed with each other, for example, water-insoluble powders or granulated materials such as bleach activators are converted into aqueous solutions having a functional group that reacts with polyvalent metal ions. After cross-linking with a polyvalent metal ion after coating with a conductive polymer compound (Japanese Patent Application Laid-Open (JP-A) No. 115-15042, Japanese Patent Laid-Open No. 63-135022) Has been done. However, these techniques are also aimed at improving storage stability and form stability when blended in a multi-aqueous composition, and do not suppress the formation of aggregates during dissolution.
また、 粒状洗剤に粉体混合することを目的とした水溶性無機化合物粒子に対し て、 様々な被覆技術が提案されている。  In addition, various coating techniques have been proposed for water-soluble inorganic compound particles intended to be mixed with powder in a granular detergent.
例えば、 水溶性無機化合物を水溶性高分子化合物で造粒し、 顆粒の溶解速度や 洗濯時の分散性を改善する技術が提案されている (特開昭 6 3— 2 0 3 9 8号公 報、 特表 2 0 0 1— 5 0 5 2 4 0号公報) 。 また、 水溶性無機化合物に対し、 ァ ルカリ金属珪酸塩等の水難溶性無機化合物を複数混合したり、 これらを複合化し たりする技術や、 水溶性無機化合物担体に濃厚シリゲート溶液を吹きつけてコー トする技術等が提案されている (特開平 8— 6 0 2 0 0号公報、 特開平 4一 2 7 5 4 0 0号公報、 特開 2 0 0 0— 3 4 4 9 6号公報) 。  For example, a technique has been proposed in which a water-soluble inorganic compound is granulated with a water-soluble polymer compound to improve the dissolution rate of the granules and the dispersibility during washing (Japanese Patent Application Laid-Open No. 63-209398). Bulletin, Japanese Translation of PCT International Publication No. 2000-501250). In addition, a technique of mixing a plurality of poorly water-soluble inorganic compounds such as alkali metal silicates with a water-soluble inorganic compound, or combining these, or spraying a concentrated silicate solution onto a water-soluble inorganic compound carrier to coat the same. The following techniques have been proposed (Japanese Patent Application Laid-Open Nos. H8-600200, H7-124750, and 2000-34496).
しかしながら、 これらの被覆技術も、 粒子の貯蔵安定性及び洗浄力向上への寄 与を主眼としたものであり、 低温水で洗濯する際における洗剤凝集物の形成を抑 制し、 その溶け残りを防止し得るか否かは不明である。  However, these coating techniques also focus on the storage stability of the particles and the improvement in detergency, and suppress the formation of detergent aggregates when washing with low-temperature water, and reduce the undissolved residue. It is unknown whether it can be prevented.
一方、 水溶性無機化合物の溶解性に関する問題に対して、 難水溶性 (有機) 化 合物で無機化合物を被覆する技術も提案されている。 例えば、 溶解速度を制御す る技術として、 高級アルコールを用いた被覆法が提案されている (特開 2 0 0 1 - 5 1 0 5 0 1号公報) 。  On the other hand, to solve the problem of the solubility of the water-soluble inorganic compound, a technique of coating the inorganic compound with a poorly water-soluble (organic) compound has been proposed. For example, as a technique for controlling the dissolution rate, a coating method using a higher alcohol has been proposed (Japanese Patent Laid-Open No. 2001-501501).
また、 撹拌力が充分加わる条件下において、 低温水で洗濯する際の溶け残りを 改善する技術として、 脂肪酸塩で被覆する方法 (特開平 1一 2 2 9 0 9 8号公報 、 特開平 1 0— 2 3 7 4 9 8号公報) 、 水溶性アル力リ無機粒子をァニオン界面 活性剤の酸前駆体で被覆すると同時に表面で中和する方法等が提案されている ( 特開 2 0 0 1— 8 1 4 9 8号公報、 特開平 1 0 - 1 5 8 6 9 9号公報) が、 その 効果のほどは定かではない。 In addition, under conditions where stirring power is sufficiently applied, undissolved residue when washing with cold water As a technique for improvement, a method of coating with a fatty acid salt (Japanese Unexamined Patent Publication No. Hei 11-22998, Japanese Unexamined Patent Publication No. Hei 10-237498) is disclosed. A method of coating with an acid precursor of an activator and neutralizing the surface at the same time has been proposed (Japanese Patent Application Laid-Open No. 2001-81498, Japanese Patent Application Laid-Open No. Hei 10-158896) Gazette), but the effect is not as clear.
さらに、 粒状洗剤分野におけるその他の被覆技術として、 洗剤成分をアルミノ 珪酸塩と水溶性高分子で被覆することにより、 流動性改良効果及び微粉形成抑制 効果を有する洗剤組成物や、 二酸化ケイ素粒子と水溶性高分子とで被覆した、 貯 蔵安定性に優れた粒状洗剤等が提案されている (特表 2 0 0 0— 5 0 5 8 3 4号 公報、 特開平 6 - 1 7 2 8 0 0号公報) 。  Further, as another coating technique in the field of granular detergents, a detergent composition having a fluidity improving effect and a fine powder formation suppressing effect by coating a detergent component with an aluminosilicate and a water-soluble polymer, and a silicon dioxide particle and a water-soluble Granular detergents with excellent storage stability, which are coated with a conductive polymer, have been proposed (Japanese Patent Application Laid-Open No. 2000-500583, Japanese Patent Application Laid-Open No. Hei 6-172880). No.).
また、 粒状洗剤組成物に通常用いられるァニオン界面活性剤、 ノニオン界面活 性剤、 水溶性無機化合物、 ポリエチレングリコール等の水溶性粘結剤等を、 種々 組み合わせて顆粒を調製し、 酵素や漂白剤等の活性を安定化させる手法、 界面活 性剤自体の加水分解を抑制する手法等も提案されている (特開平 6— 1 9 2 6 9 7号公報、 特開平 4一 3 4 5 7 0 0号公報、 特開平 3— 2 6 5 6 9 9号公報) 。 しかしながら、 これら各文献に記載された方法も、 低温水を用いた洗濯時にお いて、 洗剤凝集物の形成を抑制し、 その溶け残りを防止するという効果において は充分なものであるとは言い難い。  In addition, granules are prepared by variously combining anionic surfactants, nonionic surfactants, water-soluble inorganic compounds, water-soluble binders such as polyethylene glycol, etc., which are usually used in granular detergent compositions, to prepare enzymes and bleaching agents. A method for stabilizing the activity of the surfactant, a method for suppressing the hydrolysis of the surfactant itself, and the like have also been proposed (Japanese Patent Application Laid-Open Nos. 6-192697 and 4-157040). No. 0, Japanese Unexamined Patent Publication (Kokai) No. 3-266569 /). However, the methods described in these documents are not sufficiently effective in suppressing the formation of detergent agglomerates and preventing the undissolved residue during washing using low-temperature water. .
以上のように、 低温水下かつ撹拌力が不充分な状態で洗濯した際に起こる洗剤 凝集物の生成を効率的に防止でき、 且つ洗濯中には優れた溶解性を示す水溶性無 機化合物粒子、 この粒子を配合してなり、 長期保存後の流動性、 非固化性に優れ る粒状洗剤組成物が望まれていた。 発明の開示  As described above, a water-soluble inorganic compound that can efficiently prevent the formation of detergent agglomerates that occurs when washing under low-temperature water and with insufficient stirring power, and that exhibits excellent solubility during washing. There has been a demand for a particulate detergent composition comprising the particles and the particles, and having excellent fluidity and non-solidification properties after long-term storage. Disclosure of the invention
本発明は、 低水温及び低撹拌力の状態で湿潤しても凝集物を形成せず、 且つ洗 濯中には優れた溶解性を示し、 流動性に優れ、 製造時の造粒機への付着性を防止 することができる表面処理水溶性無機化合物粒子を提供することを目的とする。 さらに、 この粒子を配合した粒状洗剤組成物は、 長期保存後の流動性、 非固化性 に優れるものである。 本発明者らは、 水溶性無機化合物核粒子が有機又は無機水溶性高分子化合物で 表面処理され、 さらにその処理された表面が水難溶性化合物で処理されてなる表 面処理水溶性無機化合物粒子とすることにより、 上記目的を達成できることを見 出した。 The present invention does not form agglomerates even when wet at low water temperature and low stirring power, shows excellent solubility during washing, has excellent fluidity, and is suitable for use in a granulator during production. It is an object of the present invention to provide surface-treated water-soluble inorganic compound particles capable of preventing adhesion. Further, the granular detergent composition containing these particles is excellent in fluidity and non-solidification after long-term storage. The present inventors have proposed a surface-treated water-soluble inorganic compound particle obtained by treating a surface of a water-soluble inorganic compound core particle with an organic or inorganic water-soluble polymer compound, and further treating the treated surface with a poorly water-soluble compound. By doing so, it was found that the above objectives could be achieved.
即ち、 下記発明を提供する。  That is, the following invention is provided.
[ 1 ] . 水溶性無機化合物核粒子が第 1表面処理剤である有機又は無機水溶性高分 子化合物で表面処理され、 さらにその処理された表面が第 2表面処理剤である水 難溶性化合物で処理されてなる表面処理水溶性無機化合物粒子。  [1] A water-soluble inorganic compound core particle is surface-treated with an organic or inorganic water-soluble polymer compound as a first surface treating agent, and the treated surface is a second water-insoluble compound as a second surface treating agent. Surface-treated water-soluble inorganic compound particles treated with.
[2]. 水溶性無機化合物核粒子と、 この粒子表面上の一部又は全面に形成された 水溶性高分子化合物を含む第 1表面処理部と、 第 1表面処理部表面上の一部又は 全面に形成された水難溶性化合物を含む第 2表面処理部とを有する [ 1 ]記載の表 面処理水溶性無機化合物粒子。 [2]. A water-soluble inorganic compound core particle, a first surface treatment section containing a water-soluble polymer compound formed on a part or the whole surface of the particle, and a part or a part on the surface of the first surface treatment part. The surface-treated water-soluble inorganic compound particles according to [1], further comprising a second surface-treated portion containing a poorly water-soluble compound formed on the entire surface.
[3]. 前記第 1表面処理部が水への溶解又は分散過程で発熱性を示し、 前記第 2 表面処理部が水への溶解又は分散過程で吸熱性を示し、 第 1表面処理部と第 2表 面処理部からなる全表面処理部が水への溶解又は分散過程で吸熱性を示すことを 特徴とする [ 2 ]記載の表面処理水溶性無機化合物粒子。  [3]. The first surface treatment portion exhibits exothermicity in the process of dissolving or dispersing in water; the second surface treatment portion exhibits endothermicity in the process of dissolving or dispersing in water; 2. The surface-treated water-soluble inorganic compound particles according to [2], wherein the entire surface-treated portion comprising the second surface-treated portion exhibits endothermic properties in the process of dissolving or dispersing in water.
[4]. 水溶性無機化合物核粒子が、 炭酸ナトリウム又は炭酸カリウムであること を特徴とする [ 1 ]〜 [ 3 ]のいずれかに記載の表面処理水溶性無機化合物粒子。  [4]. The surface-treated water-soluble inorganic compound particles according to any one of [1] to [3], wherein the water-soluble inorganic compound core particles are sodium carbonate or potassium carbonate.
[5]. 水溶性高分子化合物がピニル系高分子化合物、 多糖類、 その誘導体及びポ リエステル系高分子化合物から選ばれる 1種又は 2種以上であることを特徴とす る [ 1 ]〜 [4]のいずれかに記載の表面処理水溶性無機化合物粒子。  [5]. The water-soluble polymer compound is characterized by being one or more selected from pinyl polymer compounds, polysaccharides, derivatives thereof, and polyester polymer compounds [1] to [1]. 4] The surface-treated water-soluble inorganic compound particles according to any one of the above.
[6]. 水溶性高分子化合物が力ルポキシル基を有する化合物であることを特徴と する [ 1 ]〜!: 4]のいずれかに記載の表面処理水溶性無機化合物粒子。  [6]. It is characterized in that the water-soluble polymer compound is a compound having a lipoxyl group [1] ~! : The surface-treated water-soluble inorganic compound particles according to any one of 4).
[7]. 水溶性高分子化合物が水ガラスであることを特徴とする [1ト [4]のいず れかに記載の表面処理水溶性無機化合物粒子。  [7]. The surface-treated water-soluble inorganic compound particles according to any one of [1] to [4], wherein the water-soluble polymer compound is water glass.
[8]. 水難溶性化合物がァニォン界面活性剤酸前駆体及び Z又はその塩であるこ とを特徴とする [ 1 ]〜[: 7 ]のいずれかに記載の表面処理水溶性無機化合物粒子。  [8]. The surface-treated water-soluble inorganic compound particles according to any one of [1] to [: 7], wherein the poorly water-soluble compound is an anionic surfactant acid precursor and Z or a salt thereof.
[9]. ァニオン界面活性剤酸前駆体が脂肪酸であることを特徴とする [ 8 ]記載の 表面処理水溶性無機化合物粒子。 [10]. 粒状洗剤組成物配合用のアルカリ剤であることを特徴とする [1]〜[: 9] のいずれかに記載の表面処理水溶性無機化合物粒子。 [9] The surface-treated water-soluble inorganic compound particles according to [8], wherein the anionic surfactant acid precursor is a fatty acid. [10]. The surface-treated water-soluble inorganic compound particle according to any one of [1] to [: 9], which is an alkaline agent for blending a granular detergent composition.
[11]. 下記第 1工程及び第 2工程を含む表面処理水溶性無機化合物粒子の製造 方法。  [11]. A method for producing surface-treated water-soluble inorganic compound particles, comprising the following first step and second step.
第 1工程:水溶性無機化合物核粒子に水溶性高分子化合物水溶液を添加し、 水溶 性高分子化合物で水溶性無機化合物核粒子を表面処理する工程。 First step: a step of adding an aqueous solution of a water-soluble polymer compound to the core particles of the water-soluble inorganic compound and treating the surface of the core particles of the water-soluble inorganic compound with the water-soluble polymer compound.
第 2工程:第 1工程で処理された水溶性無機化合物核粒子に水難溶性化合物を添 加し、 前記粒子を表面処理する工程。 Second step: a step of adding a poorly water-soluble compound to the water-soluble inorganic compound core particles treated in the first step, and subjecting the particles to a surface treatment.
[12]. 水難溶性化合物がァニオン界面活性剤酸前駆体であることを特徴とする [11]記載の製造方法。  [12] The production method according to [11], wherein the poorly water-soluble compound is an anionic surfactant acid precursor.
[13]. 第 2工程終了直後における表面処理水溶性無機化合物粒子の温度が、 ァ 二オン界面活性剤酸前駆体の融点以上であることを特徴とする [12]記載の製造 方法。  [13]. The method according to [12], wherein the temperature of the surface-treated water-soluble inorganic compound particles immediately after the end of the second step is equal to or higher than the melting point of the acid precursor of the dione surfactant.
[14]. (a) [1]〜[10]のいずれかに記載の表面処理水溶性無機化合物粒子 と、 (b) 界面活性剤及び無機化合物を含む界面活性剤含有粒子とを含有するこ とを特徴とする粒状洗剤組成物。  [14]. (A) The surface-treated water-soluble inorganic compound particles according to any one of [1] to [10], and (b) a surfactant and surfactant-containing particles containing an inorganic compound. A granular detergent composition characterized by the following.
[15], (b) 界面活性剤含有粒子中に、 水溶性高分子化合物を含むことを特徴 とする [14]記載の粒状洗剤組成物。  [15], (b) The granular detergent composition according to [14], wherein the surfactant-containing particles contain a water-soluble polymer compound.
[16]. (a) 表面処理水溶性無機化合物粒子中の水難溶性化合物の配合量が 1 0質量%未満であり、 かつ (b) 界面活性剤含有粒子中の界面活性剤配合量が 1 0〜50質量%であることを特徴とする [14]又は [15]記載の粒状洗剤組成物  [16]. (A) the amount of the poorly water-soluble compound in the surface-treated water-soluble inorganic compound particles is less than 10% by mass, and (b) the amount of the surfactant in the surfactant-containing particles is 10% by mass. [15] The granular detergent composition according to [14] or [15], which is 50 to 50% by mass.
[171. [1]〜!: 10]のいずれかに記載の表面処理水溶性無機化合物粒子を含む 洗濯浴と洗濯物とを、 浴比7〜15 1^ 、 洗濯温度 5〜12°Cにて行う洗濯 方法。 図面の簡単な説明 [171. [1] ~! A washing method comprising: performing a washing with the laundry containing the surface-treated water-soluble inorganic compound particles according to any one of [1] to [10] at a bath ratio of 7 to 15 1 ^ and a washing temperature of 5 to 12 ° C. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 表面処理部の溶解,分散時の吸熱量と、 湿潤発熱量の測定による最 大温度上昇度の関係を示す図である。 発明を実施するための最良の形態 Fig. 1 is a diagram showing the relationship between the amount of heat absorbed during dissolution and dispersion of the surface treatment part and the maximum temperature rise measured by the amount of heat generated by wetting. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1表面処理剤である表面処理水溶性無機化合物粒子は、 水溶性無機 化合物核粒子が有機又は無機水溶性高分子化合物で表面処理され、 さらにその処 理された表面が水難溶性化合物で処理されてなるものである。 水溶性無機化合物  The surface-treated water-soluble inorganic compound particles, which are the first surface treatment agent of the present invention, are obtained by subjecting water-soluble inorganic compound core particles to a surface treatment with an organic or inorganic water-soluble polymer compound, and further treating the treated surface with a poorly water-soluble compound. It is processed by. Water-soluble inorganic compound
本発明の水溶性無機化合物は、 5 °Cにおける水への溶解度が 1 g / 1 0 0 g以 上、 好ましくは 2 g Z l 0 0 g以上、 より好ましくは 3 g Z l 0 0 g以上の水溶 性無機化合物をいう。 このような水溶性無機化合物であれば、 特に限定されず、 1種単独で又は 2種以上を適宜組み合わせて用いることができる。  The water-soluble inorganic compound of the present invention has a solubility in water at 5 ° C of 1 g / 100 g or more, preferably 2 g Z100 g or more, more preferably 3 g Z100 g or more. Means a water-soluble inorganic compound. There is no particular limitation as long as such a water-soluble inorganic compound is used, and one or a combination of two or more can be used as appropriate.
好ましい水溶性無機化合物としては、 一般に洗浄ビルダーとして用いられるも のが挙げられる。 このような化合物として、 炭酸塩、 重炭酸塩及びセスキ炭酸塩 類、 硫酸塩及び亜硫酸塩類、 リン酸塩及び重縮合リン酸塩類、 珪酸塩類、 硝酸塩 及び亜硝酸塩類、 塩化物等が挙げられる。 この中でも、 炭酸塩類、 硫酸塩類、 重 縮合リン酸塩類等がさらに好ましく、 炭酸ナトリウム、 炭酸カリウム、 硫酸ナト リウム、 硫酸カリウム、 トリポリリン酸ナトリウム等が特に好ましい。  Preferred water-soluble inorganic compounds include those generally used as a washing builder. Such compounds include carbonates, bicarbonates and sesquicarbonates, sulfates and sulfites, phosphates and polycondensed phosphates, silicates, nitrates and nitrites, chlorides and the like. Among these, carbonates, sulfates, polycondensed phosphates and the like are more preferred, and sodium carbonate, potassium carbonate, sodium sulfate, potassium sulfate, sodium tripolyphosphate and the like are particularly preferred.
水溶性無機化合物としては、 洗浄性能への寄与という点から、 5 °Cの飽和水溶 液の p Hが 8以上である水溶性アル力リ無機塩をより好適に用いることができる さらに、 水溶性アル力リ無機塩とそれ以外の他の水溶性アル力リ無機塩類との 複合塩も好適に用いることができ、 例えば、 炭酸ナトリウムと硫酸ナトリウムの 複合塩であるバーケアィト等はその代表的な例である。 水溶性アルカリ無機塩は 1種単独で又は 2種以上を適宜組み合わせて用いることができる。  As the water-soluble inorganic compound, a water-soluble inorganic salt in which the pH of a saturated aqueous solution at 5 ° C is 8 or more can be more preferably used from the viewpoint of contribution to cleaning performance. Complex salts of inorganic salts with other water-soluble inorganic salts can also be suitably used, such as berkeite, which is a complex salt of sodium carbonate and sodium sulfate. It is. The water-soluble alkali inorganic salts can be used alone or in an appropriate combination of two or more.
水溶性無機化合物が低撹拌状態で湿潤して凝集塊を形成する場合には、 水溶性 無機化合物の水和物結晶の凝結が深く関与する。 2 0 °C未満の温度で水和物結晶 となりやすい物質に対して本発明を適用するのが好ましい。 このようなものとし て炭酸ナトリゥム、 炭酸力リゥム等のアル力リ性無機塩や硫酸ナトリゥム等の中 性無機塩が最も好ましい。 水溶性無機化合物核粒子は常法により得ることができ、 その平均粒子径は、 1 0 0〜1 5 0 0 mが好ましく、 より好ましくは、 2 0 0〜1 0 0 0 である 。 平均粒子径が 1 0 未満では、 水溶性高分子化合物による表面処理が困難 となる場合があり、 1 5 0 0 を超えると水溶性無機化合物の溶解性が低下す る場合がある。 このような水溶性無機化合物核粒子は、 市販のものを適宜用いる ことができる。 なお、 平均粒子径は後述する実施例に記載の測定法による。 市販で入手可能な水溶性無機化合物核粒子には様々なグレードのものがあるが 、 本発明の利用を限定するものではない。 例えば、 製造工程で混入する不純物や 品質安定化の為の保存安定剤や酸化防止剤を含む水溶性アル力リ無機塩も本発明 の範囲に含まれる。 有機水溶性高分子化合物 When the water-soluble inorganic compound is moistened under low stirring to form an agglomerate, the coagulation of hydrate crystals of the water-soluble inorganic compound is deeply involved. It is preferable to apply the present invention to a substance that easily becomes a hydrate crystal at a temperature lower than 20 ° C. As such, most preferred are inorganic salts such as sodium carbonate and carbonated carbonate, and neutral inorganic salts such as sodium sulfate. The water-soluble inorganic compound core particles can be obtained by a conventional method, and the average particle diameter is preferably from 100 to 150 m, more preferably from 200 to 100 m. If the average particle diameter is less than 10, surface treatment with a water-soluble polymer compound may be difficult, and if it exceeds 150, the solubility of the water-soluble inorganic compound may decrease. As such water-soluble inorganic compound core particles, commercially available ones can be appropriately used. The average particle size is determined by a measuring method described in Examples described later. There are various grades of commercially available water-soluble inorganic compound core particles, but they do not limit the use of the present invention. For example, water-soluble inorganic salts containing impurities mixed in the production process, storage stabilizers for stabilizing quality, and antioxidants are also included in the scope of the present invention. Organic water-soluble polymer compound
上記水溶性無機化合物の表面処理に用いる第 2表面処理剤である有機水溶性高 分子化合物は、 4 0 °Cにおいて水 1 0 0 gに対しては 0 . l g以上、 好ましくは 0 . 2 g以上、 より好ましくは 2 g以上の濃度で水と均一に混和する高分子化合 物である。 このような有機水溶性高分子化合物であれば特に限定されず、 1種単 独で又は 2種以上を適宜組み合わせて用いることができる。  The organic water-soluble high molecular weight compound as the second surface treatment agent used for the surface treatment of the water-soluble inorganic compound is 0.1 lg or more, preferably 0.2 g with respect to 100 g of water at 40 ° C. Above, more preferably a polymer compound that is uniformly mixed with water at a concentration of 2 g or more. The organic water-soluble polymer compound is not particularly limited as long as it is an organic water-soluble polymer compound, and may be used alone or in an appropriate combination of two or more.
有機水溶性高分子化合物としては、 天然高分子化合物、 半合成高分子化合物及 び合成高分子化合物等が挙げられる。 具体的にはビニル系高分子化合物、 多糖類 、 ポリエーテル系高分子化合物、 ポリエステル系高分子化合物、 ペプチド系高分 子化合物、 ポリウレタン、 及びそれらの誘導体等を用いることができる。 この中 でも、 ビエル系高分子化合物、 多糖類、 その誘導体及びポリエステル系高分子化 合物から選ばれる 1種を単独で又は 2種以上を適宜組み合わせて用いることが好 ましい。  Examples of the organic water-soluble polymer compound include a natural polymer compound, a semi-synthetic polymer compound, and a synthetic polymer compound. Specifically, vinyl polymer compounds, polysaccharides, polyether polymer compounds, polyester polymer compounds, peptide polymer compounds, polyurethanes, and derivatives thereof can be used. Among them, it is preferable to use one selected from a biel-based polymer compound, a polysaccharide, a derivative thereof, and a polyester-based polymer compound alone or in an appropriate combination of two or more.
ビニル系高分子化合物としては、 例えば、 ピニル系ポリカルボン酸塩類 (ァク リル酸系高分子化合物) 、 ビエル系ポリスルホン酸塩、 ポリビニルピリジン塩、 ポリビエルイミダゾリウム塩等が挙げられる。 多糖類としては、 各種天然又は合 成多糖類を用いることができる。  Examples of the vinyl polymer compound include a pinyl polycarboxylate (acrylic acid polymer), a biel polysulfonate, a polyvinyl pyridine salt, and a polybilimidazolium salt. Various natural or synthetic polysaccharides can be used as the polysaccharide.
ポリエステル系高分子化合物としては、 例えば、 テレフタル酸とエチレンダリ コ一ル及び Z又はプロピレングリコ一ル単位とのコポリマ一又はターボリマ一等 が挙げられる。 これらの例としては、 市販品の T e X c a r e 4 2 9 1 (クラリ アント製) 、 T e X c a r e S R N - 3 0 0 (クラリアント社製) 等が挙げられ る。 Examples of polyester-based polymer compounds include terephthalic acid and ethylene dali. Copolymers and copolymers with Z or propylene glycol units or turbomers. Examples of these include commercially available TeX care 4291 (manufactured by Clariant), TeX care SRN-300 (manufactured by Clariant), and the like.
ぺプチド系髙分子化合物又はその誘導体の具体例としては、 ゼラチン、 カゼィ ン、 アルブミン、 コラーゲン、 ポリグルタミン酸塩、 ポリアスパラギン酸塩、 ポ リリジン、 ポリアルギニン及びこれらの誘導体等が挙げられる。  Specific examples of peptide-based molecular compounds or derivatives thereof include gelatin, casein, albumin, collagen, polyglutamate, polyaspartate, polylysine, polyarginine, and derivatives thereof.
ポリウレタンとしては、 例えば、 水溶性ポリウレタン等が挙げられる。 また、 ポリエチレングリコ一ル等のその他の水溶性高分子化合物も用いることができる 特に、 水溶性無機化合物が水和しやすくなるという点から、 水溶性無機化合物 を水溶性有機高分子化合物で表面処理した状態下、 水と接する初期段階において 浸水作用を発揮するものが好適である。 このような特性を有する水溶性有機高分 子化合物としては、 ァニオン性、 両性、 ノニオン性等の親水性官能基を有するも のが挙げられる。  Examples of the polyurethane include a water-soluble polyurethane and the like. In addition, other water-soluble polymer compounds such as polyethylene glycol can also be used. Particularly, since the water-soluble inorganic compound is easily hydrated, the water-soluble inorganic compound is surface-treated with a water-soluble organic polymer compound. It is preferable that a material that exerts a waterlogging action in an initial stage of contact with water under the state of being in contact with water. Examples of the water-soluble organic polymer compound having such properties include those having a hydrophilic functional group such as anionic, amphoteric, and nonionic.
ァニオン性基を有する水溶性有機高分子化合物としては、 例えば、 カルポキシ ル基、 スルホ基を有する高分子化合物、 ァニオン性基を有する水溶性多糖類が挙 げられる。  Examples of the water-soluble organic polymer compound having an anionic group include a polymer compound having a carboxyl group and a sulfo group, and a water-soluble polysaccharide having an anionic group.
力ルポキシル基を有する水溶性有機高分子化合物としては、 例えば、 アクリル 酸、 マレイン酸、 ィタコン酸、 アコニット酸、 メタクリル酸、 フマル酸、 2—ヒ ドロキシアクリル酸、 シトラコン酸等のモノマーを重合させてなるポリマ一及び その塩、 並びにこれらのモノマーとその他のビニル系モノマーとの共重合体及び その塩等のビニル系ポリカルボン酸 (塩) が挙げられる。  Examples of the water-soluble organic polymer compound having a hydroxyl group include a monomer such as acrylic acid, maleic acid, itaconic acid, aconitic acid, methacrylic acid, fumaric acid, 2-hydroxyacrylic acid, or citraconic acid. And vinyl salts thereof, and copolymers of these monomers with other vinyl monomers and vinyl polycarboxylic acids (salts) such as salts thereof.
スルホ基を有する水溶性高分子化合物としては、 例えば、 アクリルアミドプロ パンスルホン酸、 メタクリルアミドプロパンスルホン酸、 スチレンスルホン酸等 のモノマーを重合してなるモノマー及びその塩、 並びにこれらのポリマーとその 他のビニル系ポリマ一との共重合体及びその塩等のビニル系ポリスルホン酸 (塩 ) 等が挙げられる。  Examples of the water-soluble polymer compound having a sulfo group include monomers obtained by polymerizing monomers such as acrylamidopropanesulfonic acid, methacrylamidopropanesulfonic acid, and styrenesulfonic acid, and salts thereof, and these polymers and other polymers. And vinyl-based polysulfonic acids (salts) such as copolymers with vinyl-based polymers and salts thereof.
ァニオン性基を有する水溶性多糖類としては、 例えば、 ポリウロン酸塩、 アル ギン酸塩、 ポリアスパラギン酸塩、 力ラゲ一ナン、 ヒアルロン酸塩、 コンドロイ チン硫酸塩、 カルポキシメチルセルロース等が挙げられる。 Examples of the water-soluble polysaccharide having an anionic group include polyuronates, For example, there may be mentioned formate, polyaspartate, lagenanan, hyaluronate, chondroitin sulfate, carboxymethylcellulose and the like.
両性水溶性高分子化合物としては、 例えば、 ァニオン性基を有するビニル系単 量体とカチォン性基を有するビニル系単量体との共重合体、 カルボキシべタイン 基又はスルホべ夕ィン基を有するビエル系の両性高分子が挙げられ、 具体的には Examples of the amphoteric water-soluble polymer compound include a copolymer of a vinyl monomer having an anionic group and a vinyl monomer having a cation group, a carboxybetaine group or a sulfovinyl group. Biel-based amphoteric polymer having
、 アクリル酸 Zジメチルアミノエチルメタクリル酸共重合体、 アクリル酸,ジェ チルアミノエチルメタクリル酸共重合体等が挙げられる。 And acrylic acid Z-dimethylaminoethyl methacrylic acid copolymer, acrylic acid, and methylaminoethyl methacrylic acid copolymer.
ノニオン性水溶性高分子化合物としては、 例えば、 ポリアクリルアミド、 ポリ ビニルアルコール、 ポリビニルピロリドン、 ポリピニルェチルエーテル、 ポリエ チレングリコール等の合成高分子化合物、 ヒドロキシェチルセルロース、 グァー ガム、 デキストラン、 プルラン等の多糖類が挙げられる。  Examples of the nonionic water-soluble polymer compound include synthetic polymer compounds such as polyacrylamide, polyvinyl alcohol, polyvinylpyrrolidone, polypinylethyl ether, and polyethylene glycol, hydroxyethyl cellulose, guar gum, dextran, pullulan, and the like. Polysaccharides.
これらの中でも、 水と接する初期段階における浸水作用に優れ、 水に溶解又は 分散する際に発熱する化合物が好ましい。 この点を考慮すると、 力ルポキシル基 又はスルホ基を有するビニル系ポリマーを用いることが好ましく、 特に、 単位質 量当たりのァニオン性基含量の高いビニル系ポリカルボン酸類が好適である。 具体的には、 ポリアクリル酸塩、 アクリル酸 Zマレイン酸共重合体塩、 ァクリ ル酸 Zィタコン酸共重合体塩、 アクリル酸アルキル共重合体塩、 及びこれらの誘 導体等が最適である。  Among these, compounds that have excellent water immersion at the initial stage of contact with water and generate heat when dissolved or dispersed in water are preferred. In view of this point, it is preferable to use a vinyl polymer having a carboxylic acid group or a sulfo group, and particularly preferable are vinyl polycarboxylic acids having a high anionic group content per unit mass. Specifically, polyacrylic acid salts, acrylic acid-Z maleic acid copolymer salts, acrylic acid-Z itaconic acid copolymer salts, alkyl acrylate copolymer salts, and derivatives thereof are most suitable.
本発明の有機水溶性高分子化合物の重量平均分子量は 5 0 0以上であり、 好ま しくは 1 , 0 0 0〜1, 0 0 0 , 0 0 0、 より好ましくは 1 , 0 0 0〜2 0 0, 0 0 0である。 なお、 本発明におけるポリエチレングリコールの平均分子量は、 化粧品原料基準 (第 2版注解) 記載の平均分子量を示す。 また、 本発明における 有機水溶性高分子化合物重量平均分子量は、 ポリエチレンダリコールを標準物質 とするゲルパーミエ一ションクロマトグラフィーによる測定値である。  The weight average molecular weight of the organic water-soluble polymer compound of the present invention is 500 or more, preferably 1, 000 to 1, 000, 0000, more preferably 1, 000 to 2, 0 0, 0 0 0. In addition, the average molecular weight of polyethylene glycol in the present invention indicates the average molecular weight described in the standard of cosmetic raw materials (the second edition). The weight average molecular weight of the organic water-soluble polymer compound in the present invention is a value measured by gel permeation chromatography using polyethylene dalicol as a standard substance.
有機水溶性高分子化合物で水溶性無機化合物を表面処理する方法としては、 特 に限定されるものではない。 例えば、 水溶性無機化合物に有機水溶性高分子化合 物を添加、 混合又は被覆する方法等が挙げられる。 有機水溶性高分子化合物を、 水溶液として表面処理に用いることが好適である。 この水溶液を、 撹拌 ·流動化 状態の水溶性無機化合物に滴下又はスプレー添加することが好ましい。 無機水溶性高分子化合物 The method for surface-treating a water-soluble inorganic compound with an organic water-soluble polymer compound is not particularly limited. For example, a method in which an organic water-soluble polymer compound is added to a water-soluble inorganic compound, mixed or coated, or the like can be used. It is preferable to use an organic water-soluble polymer compound as an aqueous solution for surface treatment. This aqueous solution is preferably added dropwise or spray-added to the water-soluble inorganic compound in a stirred and fluidized state. Inorganic water-soluble polymer compound
一方、 無機水溶性高分子化合物は、 40°Cにおいて水 100 gに対して 0. 1 g以上、 好ましくは 0. 2 g以上、 より好ましくは 2 g以上の濃度で水と均一に 混和する化合物である。 このような無機水溶性高分子化合物であれば特に限定さ れず、 1種単独で又は 2種以上を適宜組み合わせて用いることができる。 無機水 溶性高分子化合物としては、 金属アルコキシドの前駆体化合物を含む溶液を加水 分解 ·縮重合反応することによって得られるものが好ましく、 特に珪酸塩が好ま しい。  On the other hand, the inorganic water-soluble polymer compound is a compound which is uniformly miscible with water at a concentration of 0.1 g or more, preferably 0.2 g or more, more preferably 2 g or more at 100 ° C. of water at 40 ° C. It is. There is no particular limitation as long as such an inorganic water-soluble polymer compound is used, and one kind may be used alone, or two or more kinds may be used in appropriate combination. As the inorganic water-soluble polymer compound, a compound obtained by subjecting a solution containing a precursor compound of a metal alkoxide to a hydrolysis / condensation polymerization reaction is preferable, and a silicate is particularly preferable.
珪酸塩は古くから石鹼に配合され、 水ガラスとして知られており、 その構造に 基づき、 陰イオンの形による分類に従って分類することができる (F r i e d r i c h L i e b a u, "S t r u c t u r a l Ch emi s t r y o f S i 1 i c a t e s" p 72, S p r i ng e r -Ve r l a g, 1985年発 行) 。  Silicate has long been incorporated into stones and is known as water glass. Based on its structure, it can be classified according to the form of anions (Friedrich Liebau, "Structural Chemistry of Si 1 icates "p 72, Springer-Verlag, 1985).
詳細には、 S iに結合する酸素の架橋酸素数 (S i— O— S i) で分類でき、 その架橋酸素数が 4、 3、 2、 1、 0に対応して、 それぞれ Q 4、 Q3、 Q2、 Q l、 Q0ユニットに分類される (Y. T s u n awa k i , N. I wamo t o, T. Ha t t o r i and A. M i t s ub i s h i , J . No n-C r y s t . S o l i d s, v o 1 44, p 369 (198 1) ) 。  In detail, it can be classified by the number of bridging oxygens of the oxygen bonded to Si (S i— O— S i), and the number of bridging oxygens is 4, 3, 2, 1, 0, and Q 4 Classified into Q3, Q2, Ql and Q0 units (Y. T sunawa ki, N. I wamo to, T. Hattori and A. M its ubishi, J. No nCryst. Solids, vo 1 44, p 369 (198 1)).
珪酸塩としては、 処理効果を充分に発揮する点から、 Q 2ユニット及び/又は Q3ユニットを含み、 S i〇2ZM2〇モル比 (ここで、 Mはアルカリ金属を示 す) が 1. 6〜4、 好ましくは 2〜3. 5を有するアルカリ金属珪酸塩が好まし く、 特に珪酸ナトリウムが好ましい。 The silicate contains Q2 unit and / or Q3 unit in order to sufficiently exhibit the treatment effect, and the Si 2 ZM 2 2 molar ratio (where M represents an alkali metal) is 1. Alkali metal silicates having 6 to 4, preferably 2 to 3.5 are preferred, and sodium silicate is particularly preferred.
無機水溶性高分子化合物で水溶性無機化合物を表面処理する方法としては、 特 に限定されるものではない。 例えば、 水溶性無機化合物に無機水溶性高分子化合 物を添加、 混合又は被覆する方法等が挙げられる。 無機水溶性高分子化合物を、 水溶液として表面処理に用いることが好適である。 この水溶液を、 撹拌 ·流動化 状態の水溶性無機化合物に滴下又はスプレー添加することが好ましい。 水難溶性化合物 The method for surface-treating the water-soluble inorganic compound with the inorganic water-soluble polymer compound is not particularly limited. For example, a method of adding, mixing or coating an inorganic water-soluble polymer compound to a water-soluble inorganic compound can be used. It is preferable to use an inorganic water-soluble polymer compound as an aqueous solution for surface treatment. This aqueous solution is preferably added dropwise or spray-added to the water-soluble inorganic compound in a stirred and fluidized state. Poorly water-soluble compound
本発明で用いる水難溶性化合物は、 20°Cにおける水への溶解度が 2 g/10 0 g未満、 好ましくは 1 g/100 g未満、 より好ましくは 0. l gZl O O g 未満の化合物で、 水と接する初期段階で撥水作用のあるものが好ましい。 また、 200°C以下、 好ましくは 0~160°C、 より好ましくは 20〜8 Ο λ さらに 好ましくは 40〜60 °Cの融点を有する有機化合物が好適である。 水難溶性化合 物は 1種単独で又は 2種以上を適宜組み合わせて用いることができる。  The poorly water-soluble compound used in the present invention is a compound having a solubility in water at 20 ° C. of less than 2 g / 100 g, preferably less than 1 g / 100 g, more preferably less than 0.1 g / 100 g. Those having a water-repellent action at the initial stage in contact with are preferred. Further, an organic compound having a melting point of 200 ° C. or lower, preferably 0 to 160 ° C., more preferably 20 to 8 ° λ, and still more preferably 40 to 60 ° C. is suitable. The poorly water-soluble compounds can be used alone or in an appropriate combination of two or more.
水難溶性化合物としては、 例えば、 高級脂肪酸、 ジカルボン酸、 高級アルコー ル、 HLB 5以下、 好ましくは 3以下の高級アルコール又は高級脂肪酸のアルキ レンオキサイド付加物、 高級脂肪酸エステル、 高級脂肪酸のグリセライド等が挙 げられる。  Examples of poorly water-soluble compounds include higher fatty acids, dicarboxylic acids, higher alcohols, higher alcohols having an HLB of 5 or less, preferably 3 or less, alkylene oxide adducts of higher fatty acids, higher fatty acid esters, and glycerides of higher fatty acids. I can do it.
高級アルコールとしては、 炭素数 12〜22、 より好ましくは炭素数 14〜1 8の炭素鎖長を有するものが好適であり、 具体的には、 ドデカノール、 テトラデ 力ノール、 へキサデ力ノール、 ォクタデカノール等が挙げられる。  As the higher alcohol, those having a carbon chain length of 12 to 22 carbon atoms, more preferably 14 to 18 carbon atoms are suitable, and specifically, dodecanol, tetrade phenol, hexade phenol, octadecanol and the like are preferable. Is mentioned.
HLB 5以下、 好ましくは 3以下の高級アルコール又は高級脂肪酸のアルキレ ンォキサイド付加物としては、 炭素数 16〜22のアルコール又は脂肪酸の 1〜 3モルエチレンォキサイド付加体が好適であり、 具体的には、 へキサデ力ノール の 1モルエチレンォキシド付加体、 ォクタデカノールの 3モルエチレンォキシド 付加体、 パルチミン酸の 1モルエチレンォキシド付加体等が挙げられる。  As an alkylene oxide adduct of a higher alcohol or fatty acid having an HLB of 5 or less, preferably 3 or less, a 1-3 mol ethylene oxide adduct of an alcohol or fatty acid having 16 to 22 carbon atoms is preferable. Examples thereof include a 1 mol ethylene oxide adduct of hexadenicol, a 3 mol ethylene oxide adduct of octadecanol, and a 1 mol ethylene oxide adduct of palmitic acid.
高級脂肪酸エステルとしては、 パルミチン酸、 ミリスチン酸、 ステアリン酸、 ァラキジン酸、 ベヘン酸等のメチルエステル又はェチルエステル等が好適である 高級脂肪酸のグリセライドとしては、 ラウリン酸、 パルミチン酸、 ステアリン 酸等のモノ、 ジ又はトリダリセライドが好適である。  As higher fatty acid esters, methyl esters or ethyl esters such as palmitic acid, myristic acid, stearic acid, arachidic acid, and behenic acid are suitable. Di or tridalicelide is preferred.
また、 初期の湿潤時には吸熱して水溶性無機化合物の発熱を制御し、 洗濯する と徐々に水溶性無機化合物との中和反応等により水溶性となるという点から、 水 難溶性化合物として、 ァニオン界面活性剤酸前駆体を用いることが好ましい。 ァニオン界面活性剤酸前駆体としては、 任意のァニオン界面活性剤の酸前駆体 を好適に用いることができる。 ァニオン界面活性剤の酸前駆体としては、 飽和又 は不飽和脂肪酸 (平均炭素鎖長 8〜 2 2 ) 、 直鎖又は分岐鎖アルキル (平均炭素 鎖長 8〜1 8 ) ベンゼンスルホン酸、 長鎖アルキル (平均炭素鎖長 1 0〜2 0 ) スルホン酸、 長鎖ォレフィン (平均炭素鎖長 1 0〜2 0 ) スルホン酸、 長鎖モノ アルキル (平均炭素鎖長 1 0〜2 0 ) 硫酸エステル、 ポリオキシエチレン (平均 重合度 1〜1 0 ) 長鎖アルキル (平均炭素鎖長 1 0〜2 0 ) エーテル硫酸エステ ル、 ポリオキシエチレン (平均重合度 3〜3 0 ) アルキル (平均炭素鎖長 6〜 1 2 ) フエニルエーテル硫酸エステル、 α—スルホ脂肪酸 (平均炭素鎖長 8〜 2 2 ) 、 長鎖モノアルキル、 ジアルキル又はセスキアルキルリン酸、 ポリオキシェチ レンモノアルキル、 ジアルキル又はセスキアルキルリン酸等が挙げられる。 ァニオン界面活性剤酸前駆体としては、 飽和又は不飽和脂肪酸 (平均炭素鎖長 8 - 2 2 ) が好ましく、 炭素数 8〜1 8の炭素鎖長を有するものがより好ましい 。 具体的には、 力プリン酸、 ラウリン酸、 ミリスチン酸、 パルミチン酸等の飽和 脂肪酸、 ォレイン酸等の不飽和脂肪酸等が挙げられる。 この中でも、 保存安定性 の点から、 炭素数 1 2〜1 8の飽和脂肪酸が好ましく、 製造性を考慮すると、 ラ ゥリン酸がより好ましい。 In addition, since it absorbs heat during the initial wetting to control the heat generation of the water-soluble inorganic compound, and gradually becomes water-soluble due to a neutralization reaction with the water-soluble inorganic compound when washed, anion is a poorly water-soluble compound. It is preferred to use a surfactant acid precursor. As the anionic surfactant acid precursor, any anionic surfactant acid precursor can be suitably used. As anionic surfactant acid precursors, saturated or Are unsaturated fatty acids (average carbon chain length of 8 to 22), linear or branched alkyl (average carbon chain length of 8 to 18) benzenesulfonic acid, long chain alkyl (average carbon chain length of 10 to 20) sulfone Acid, long-chain olefin (average carbon chain length 10-20) Sulfonic acid, long-chain monoalkyl (average carbon chain length 10-20) Sulfuric acid ester, polyoxyethylene (average degree of polymerization 1-10) length Chain alkyl (average carbon chain length: 10 to 20) Ether sulfate, polyoxyethylene (average degree of polymerization: 3 to 30) Alkyl (average carbon chain length: 6 to 12) Phenyl ether sulfate, α-sulfo Examples include fatty acids (average carbon chain length of 8 to 22), long-chain monoalkyl, dialkyl or sesquialkyl phosphoric acid, polyoxyethylene monoalkyl, dialkyl or sesquialkyl phosphoric acid, and the like. The anionic surfactant acid precursor is preferably a saturated or unsaturated fatty acid (average carbon chain length of 8 to 22), and more preferably has a carbon chain length of 8 to 18 carbon atoms. Specific examples include saturated fatty acids such as acetic acid, lauric acid, myristic acid, and palmitic acid, and unsaturated fatty acids such as oleic acid. Among them, saturated fatty acids having 12 to 18 carbon atoms are preferable from the viewpoint of storage stability, and rapaulinic acid is more preferable in consideration of productivity.
第 1の表面処理剤で表面処理された水溶性無機化合物を、 さらに水難溶性化合 物で表面処理する方法としては、 特に限定されるものではない。 例えば、 表面処 理された水溶性無機化合物に水難溶性化合物を添加、 混合又は被覆する方法等が 挙げられる。 水難溶性化合物を溶融させて液体状とし、 この液体を、 撹拌 '流動 状態の表面処理された水溶性無機化合物に滴下する又はスプレー添加する方法が 好ましい。  The method of surface-treating the water-soluble inorganic compound surface-treated with the first surface-treating agent with a poorly water-soluble compound is not particularly limited. For example, a method in which a poorly water-soluble compound is added to the surface-treated water-soluble inorganic compound, mixed or coated, or the like can be used. A method is preferred in which the poorly water-soluble compound is melted into a liquid state, and the liquid is dropped or spray-added to the surface-treated water-soluble inorganic compound in a stirred and fluidized state.
本発明の表面処理水溶性無機化合物粒子中の各成分配合量を下記に示す。 水溶性無機化合物は、 表面処理水溶性無機化合物粒子全量に対して 6 0〜9 9 . 8質量%用いることが好ましく、 7 0〜9 7質量%が特に好ましい。 水溶性無 機化合物が 6 0質量%未満ではアルカリ剤として不充分となる場合があり、 一方 、 9 9 . 8質量%を超えると処理剤の量が少なくなりすぎ、 十分な表面処理がで きない場合がある。  The amounts of each component in the surface-treated water-soluble inorganic compound particles of the present invention are shown below. The water-soluble inorganic compound is preferably used in an amount of 60 to 99.8% by mass, particularly preferably 70 to 97% by mass, based on the total amount of the surface-treated water-soluble inorganic compound particles. If the amount of the water-soluble inorganic compound is less than 60% by mass, the alkali agent may be insufficient. On the other hand, if the amount exceeds 99.8% by mass, the amount of the treating agent is too small, and sufficient surface treatment cannot be performed. May not be.
有機水溶性高分子化合物は、 水溶性無機化合物核粒子に対して 0 . 1〜 1 0質 量%、 特に 0 . 5〜 8質量%で用いることが好ましい。 0 . 1質量%未満では、 表面処理の効果が得られない場合があり、 1 0質量%を超えると、 無機化合物の 配合量が少なくなりすぎる場合がある。 The organic water-soluble polymer compound is preferably used in an amount of 0.1 to 10% by mass, particularly 0.5 to 8% by mass, based on the core particles of the water-soluble inorganic compound. If it is less than 0.1% by mass, In some cases, the effect of the surface treatment may not be obtained. When the amount exceeds 10% by mass, the amount of the inorganic compound may be too small.
無機水溶性高分子化合物を配合する場合、 無機水溶性高分子化合物は、 水溶性 無機化合物核粒子に対して 1〜 3 0質量%、 特に 1 0〜2 8質量%で用いること が好ましい。 1質量%未満では、 表面処理の効果が得られない場合があり、 3 0 質量%を超えると、 無機化合物の配合量が少なくなりすぎる場合がある。  When the inorganic water-soluble polymer compound is blended, the inorganic water-soluble polymer compound is preferably used in an amount of 1 to 30% by mass, particularly preferably 10 to 28% by mass, based on the core particles of the water-soluble inorganic compound. If the amount is less than 1% by mass, the effect of the surface treatment may not be obtained. If the amount exceeds 30% by mass, the amount of the inorganic compound may be too small.
水難溶性化合物は、 第 1の表面処理剤で表面処理された水溶性無機化合物核粒 子に対して、 0 . 1〜1 0質量%、 特に 2〜8質量%で用いることが好ましい。 0 . 1質量%未満では、 表面処理の効果が得られない場合があり、 1 0質量%を 超えると、 無機化合物の配合量が少なくなりすぎる場合がある。  The poorly water-soluble compound is preferably used in an amount of 0.1 to 10% by mass, particularly 2 to 8% by mass, based on the water-soluble inorganic compound core particles surface-treated with the first surface treating agent. If the amount is less than 0.1% by mass, the effect of the surface treatment may not be obtained. If the amount exceeds 10% by mass, the amount of the inorganic compound may be too small.
なお、 その他成分として、 界面活性剤や後述する (b ) 界面活性剤含有粒子の 任意成分等を本発明の効果を損なわない範囲で含んでもよい。 表面処理水溶性無機化合物粒子  In addition, as other components, a surfactant, an optional component of the (b) surfactant-containing particles described below, and the like may be contained as long as the effects of the present invention are not impaired. Surface-treated water-soluble inorganic compound particles
本発明の表面処理水溶性無機化合物粒子は、 水溶性無機化合物核粒子が有機又 は無機水溶性高分子化合物で表面処理され、 さらにその処理された表面が水難溶 性化合物で処理されてなる。 本発明の表面とは、 水溶性無機化合物粒子の一次粒 子表面又は造粒して 1次粒子が 2〜 3 0個程度固まってひとつになっている水溶 性無機化合物粒子群 (2次粒子又は凝集粒子を含む) の全表面のどちらも含むも のである。 なお、 水溶性無機化合物粒子群となっている場合、 表面の微小凹部の 深さは 0 . 0 1〜5 0 mである。  The surface-treated water-soluble inorganic compound particles of the present invention are obtained by subjecting water-soluble inorganic compound core particles to a surface treatment with an organic or inorganic water-soluble polymer compound, and further treating the treated surface with a poorly water-soluble compound. The surface of the present invention refers to a water-soluble inorganic compound particle group (secondary particles or (Including agglomerated particles). In the case of the water-soluble inorganic compound particle group, the depth of the minute concave portions on the surface is 0.01 to 50 m.
水溶性無機化合物核粒子の表面上における、 水溶性高分子化合物と水難溶性化 合物は、 水溶性無機化合物核粒子の表面に水溶性高分子化合物が存在して層を形 成し、 その外層部に水難溶性化合物が存在しても、 ランダムに混在した状態にな つていてもよい。 溶解性と保存安定性の点から、 表面処理水溶性無機化合物粒子 の最外層に水溶性高分子化合物よりも水難溶性化合物が多く存在していることが 好ましい。 また、 製造性の点から、 水溶性無機化合物核粒子の表面近傍に、 水難 溶性化合物よりも水溶性高分子化合物が多く存在することが好ましい。  The water-soluble polymer compound and the poorly water-soluble compound on the surface of the water-soluble inorganic compound core particles form a layer by the presence of the water-soluble polymer compound on the surface of the water-soluble inorganic compound core particles. The poorly water-soluble compound may be present in the part, or may be in a randomly mixed state. From the viewpoints of solubility and storage stability, it is preferable that the outermost layer of the surface-treated water-soluble inorganic compound particles contains more hardly water-soluble compounds than water-soluble polymer compounds. Further, from the viewpoint of manufacturability, it is preferable that a larger amount of the water-soluble polymer compound is present near the surface of the core particles of the water-soluble inorganic compound than the hardly water-soluble compound.
表面処理水溶性無機化合物粒子の特に好ましい構造は、 水溶性無機化合物核粒 子と、 この粒子表面上の一部又は全面に形成された水溶性高分子化合物を含む第A particularly preferred structure of the surface-treated water-soluble inorganic compound particles is a water-soluble inorganic compound core particle. And a water-soluble polymer compound formed partially or entirely on the surface of the particles.
1表面処理部と、 第 1表面処理部表面上の一部又は全面に形成された水難溶性化 合物を含む第 2表面処理部とを有する構造である。 This is a structure having a first surface treatment section and a second surface treatment section containing a poorly water-soluble compound formed on a part or the whole surface of the first surface treatment section.
特にカルボン酸塩等の水溶性無機化合物核粒子は、 水や水溶性高分子溶液に接 した場合に、 通常はアルカリ性となる。 それゆえ、 水難溶性化合物が高級脂肪酸 等のァニオン界面活性剤の酸前駆体である場合は、 第 2の表面処理により、 粒子 表面上で中和される。 添加するァニオン界面活性剤の酸前駆体の量が比較的多い 場合は、 部分的に中和反応が起こらず、 酸前駆体の形で残存することもあり得る 。 ァニオン界面活性剤の酸前駆体の中和状態は示差走査熱量測定法 (D i f ί e r e n t i a l S c ann i ng Ca l o r ime t r y; 等によって調べ ることも可能である。 このように、 ァニオン界面活性剤の酸前駆体は粒子表面で 完全中和される場合も部分中和される場合もあり得るため、 ァニオン界面活性剤 の酸前駆体及び Z又はその塩による第 2表面処理部が形成されるが、 いずれの場 合も本発明における表面処理水溶性無機化合物粒子として好適に利用可能である なお、 第 1表面処理部及び第 2表面処理部には他の成分として、 本発明の効果 を損なわない範囲で、 バインダー、 分散剤、 可溶化剤、 pH調整剤、 水難溶性化 合物以外の界面活性剤等の各種添加剤が適宜含まれていてもよい。 界面活性剤が 含まれる場合は、 表面処理水溶性無機化合物粒子中、 10質量%未満が好ましく 、 より好ましくは 5質量%以下、 さらに好ましくは 1質量%以下である。 なお、 水難溶性化合物として配合される脂肪酸等は、 表面処理水溶性無機化合物粒子中 の界面活性剤の配合量には含まれない。  In particular, core particles of a water-soluble inorganic compound such as a carboxylate usually become alkaline when they come into contact with water or a water-soluble polymer solution. Therefore, when the poorly water-soluble compound is an acid precursor of an anionic surfactant such as a higher fatty acid, it is neutralized on the particle surface by the second surface treatment. When the amount of the acid precursor of the anionic surfactant to be added is relatively large, the neutralization reaction does not occur partially and may remain in the form of the acid precursor. The neutralization state of the acid precursor of the anionic surfactant can also be examined by a differential scanning calorimetry (Differential Scanning Calorimeter try; etc.). Since the acid precursor of the agent can be completely neutralized or partially neutralized on the particle surface, a second surface treatment part is formed with the anionic surfactant acid precursor and Z or a salt thereof. However, in any case, the particles can be suitably used as the surface-treated water-soluble inorganic compound particles in the present invention.The first surface-treated portion and the second surface-treated portion may impair the effects of the present invention as other components. Various additives such as a binder, a dispersant, a solubilizer, a pH adjuster, and a surfactant other than the poorly water-soluble compound may be appropriately contained as long as the surfactant is not contained. Surface-treated water-soluble inorganic compound particles In the above, the content is preferably less than 10% by mass, more preferably 5% by mass or less, further preferably 1% by mass or less. It is not included in the amount of the activator.
本発明において、 さらに、 第 1表面処理部が水への溶解又は分散過程で発熱性 を示し、 前記第 2表面処理部が水への溶解又は分散過程で吸熱性を示し、 第 1表 面処理部と第 2表面処理部からなる全表面処理部が水への溶解又は分散過程で吸 熱性を示すことが好ましい。  In the present invention, further, the first surface treatment portion exhibits exothermicity in the process of dissolution or dispersion in water, the second surface treatment portion exhibits endothermicity in the process of dissolution or dispersion in water, and the first surface treatment. It is preferable that the entire surface treatment part consisting of the part and the second surface treatment part shows endothermicity in the process of dissolving or dispersing in water.
このような特性を有することで、 水溶性無機化合物核粒子及び洗剤粒子間で形 成される凝集物を抑制し、 低温水に接触した初期には水溶性無機化合物の溶解発 熱を制御し、 且つ撹拌力が加わる洗濯中には、 低撹拌下であってもすばやく溶解 する特性を顕著に示すことができる。 By having such characteristics, aggregates formed between the core particles of the water-soluble inorganic compound and the detergent particles are suppressed, and the dissolution and heat generation of the water-soluble inorganic compound are controlled at the initial stage of contact with low-temperature water, Also dissolves quickly during washing with agitation, even with low agitation Characteristics can be remarkably exhibited.
水溶性無機化合物核粒子及び洗剤粒子間で形成される凝集物については以下の ように考えられる。 粒状洗剤組成物に粉体ブレンドされるような水溶性無機化合 物は、 水との接触で激しく発熱するものが多い。 例えば、 炭酸ナトリウムの溶解 熱は、 - 24. 57 k J /mo 1 (Ge n e r a l Chemi c a l I nd u s t r i a l P r oduc t s社、 SODA As h T e c n i c a l &Hand l i ng Gu i d e記載) 、 硫酸ナトリゥムの水和熱は一 79. 58 k J/mo 1 (化学便覽記載) であるが、 これは、 水溶性無機化合物の水に 対する溶解過程において、 水和による発熱量が極めて大きく、 無機化合物の結晶 格子の崩壊に要する吸熱よりも、 無機イオンとなるための水和による発熱が大き く上回ることに起因する特性である。  Agglomerates formed between the water-soluble inorganic compound core particles and the detergent particles are considered as follows. Many water-soluble inorganic compounds which are powder-blended with the granular detergent composition generate a lot of heat upon contact with water. For example, the heat of dissolution of sodium carbonate is-24.57 kJ / mo 1 (described in General Chemical Industrial Products, SODA Ash Technical & Handling Guide), hydration of sodium sulfate The heat is 79.58 kJ / mo 1 (described in Chemical Handbook). This is due to the extremely large amount of heat generated by hydration in the process of dissolving the water-soluble inorganic compound in water, This is a characteristic due to the fact that the heat generated by hydration to become inorganic ions greatly exceeds the endotherm required for collapse.
このような特性を有する水溶性無機化合物が、 粒状洗剤と共に洗濯槽に供給さ れ、 低温水により湿潤状態とされると、 激しく発熱して粒子付近の温度が上昇す る。 この温度上昇は、 近傍の洗剤粒子を固体から液晶状へと変化させてゲル化を 引き起こす一方で、 無機化合物自体の溶解も促進されて局所的に過飽和な溶解状 態を形成する。 この過飽和状態下の無機化合物が、 大量の水で撹拌される前に低 温水で冷却されると、 水和物結晶となって凝結する。 このため、 ゲル化した洗剤 粒子を巻き込んだ凝集塊が形成される。  When a water-soluble inorganic compound having such properties is supplied to a washing tub together with a granular detergent and is made wet by low-temperature water, the heat is generated violently, and the temperature near the particles rises. This increase in temperature causes the nearby detergent particles to change from a solid state to a liquid crystal state, causing gelation, while also promoting the dissolution of the inorganic compound itself to form a locally supersaturated dissolved state. When the supersaturated inorganic compound is cooled with low-temperature water before being stirred with a large amount of water, it forms hydrate crystals and condenses. As a result, an agglomerate containing the gelled detergent particles is formed.
この凝集塊の形成を抑制するには、 洗剤粒子のゲル化や水和凝結の原因となる 水溶性無機化合物が、 水に溶解する際の発熱を抑えることが有効である。 すなわ ち、 溶解過程で発熱する水溶性無機化合物の水和を断つか、 又は水和によって生 じた発熱を奪うことができるような特性をもつ処理が必要となる。 その一方で、 発熱は、 溶解過程を進行させるのに有効であるため、 洗濯中に迅速に溶解すると いう特性を確保するためには、 水との接触を完全に封じたり、 水和熱を全て奪つ たりするような処理は適当でない。  In order to suppress the formation of the aggregates, it is effective to suppress the heat generation when the water-soluble inorganic compound causing gelation and hydration coagulation of the detergent particles is dissolved in water. In other words, it is necessary to have a treatment that has the property of cutting off the hydration of the water-soluble inorganic compound that generates heat during the dissolution process or removing the heat generated by the hydration. On the other hand, heat generation is effective in promoting the dissolution process, so in order to ensure the property that it dissolves quickly during washing, it completely shuts off contact with water and completely removes heat of hydration. Processing that takes away is not appropriate.
これらを両立させるためには、 第 1表面処理部が水への溶解又は分散過程で発 熱性を示し、 前記第 2表面処理部が水への溶解又は分散過程で吸熱性を示し、 第 1表面処理部と第 2表面処理部からなる全表面処理部が水への溶解又は分散過程 で吸熱性とすることで、 水溶性無機化合物核粒子の溶解発熱を制御し、 かつ、 撹 拌力が加わる洗濯中には、 低撹拌下であっても迅速に溶解する特性を付与できる 第 1表面処理部が水への溶解又は分散過程で発熱性を示し、 前記第 2表面処理 部は吸熱性を示すが、 具体的な熱量は、 使用する処理剤の種類、 処理量、 第 1表 面処理部と第 2表面処理部のバランス、 処理条件によって異なる。 第 1表面処理 部と第 2表面処理部とからなる全表面処理部の熱量は吸熱であり、 30〜80 J /g粒子が好ましく、 40〜70 J/g粒子がより好ましい。 なお、 JZg粒子 は、 無機化合物粒子 1 gあたり熱量 (J) を意味するものである (以下の説明に おいても同様) 。 In order to achieve both of these, the first surface treatment section shows heat-generating property in the process of dissolving or dispersing in water, the second surface treatment section shows endothermic property in the process of dissolution or dispersion in water, By making all the surface treatment sections including the treatment section and the second surface treatment section endothermic during the process of dissolving or dispersing in water, the dissolution and heat generation of the water-soluble inorganic compound core particles can be controlled, and During the washing in which the stirring power is applied, the first surface treatment section which can impart the property of rapidly dissolving even under low stirring shows exothermicity in the process of dissolving or dispersing in water, and the second surface treatment section Although it shows endothermic properties, the specific amount of heat depends on the type and amount of treatment agent used, the balance between the first surface treatment unit and the second surface treatment unit, and the treatment conditions. The calorific value of the entire surface treatment part comprising the first surface treatment part and the second surface treatment part is endothermic, preferably 30 to 80 J / g particles, more preferably 40 to 70 J / g particles. The JZg particles mean the amount of heat (J) per gram of the inorganic compound particles (the same applies to the following description).
また、 第 1表面処理部は浸水作用を示し、 第 2表面処理部は撥水作用を示すも のであることが好適である。 この場合、 表面処理水溶性無機化合物粒子の水と接 触した初期段階の濡れ速度を制御することが好ましい。  Further, it is preferable that the first surface treatment section exhibits a water immersion action and the second surface treatment section exhibits a water repellency action. In this case, it is preferable to control the wetting rate of the surface-treated water-soluble inorganic compound particles at the initial stage in contact with water.
すなわち、 濡れ速度は、 溶解時間に影響を与える要因であるので、 処理部全体 の水への溶解又は分散時の熱が吸熱であっても、 濡れ速度が速すぎれば、 核とな る水溶性無機化合物の溶解は進行する。 その結果、 過剰に溶け出した水溶性無機 化合物が低温水に晒されることで水和物結晶の再凝結が起こり、 凝集塊を形成す る場合がある。 一方、 撥水作用が過剰となり濡れ速度が遅すぎる場合は、 溶解自 体が阻害されるので、 表面処理水溶性無機化合物粒子は、 そのまま溶け残る場合 がある。  In other words, since the wetting rate is a factor that affects the dissolution time, even if the heat of dissolving or dispersing the entire processing unit in water is endothermic, if the wetting rate is too high, the core water solubility Dissolution of the inorganic compound proceeds. As a result, when the excessively dissolved water-soluble inorganic compound is exposed to low-temperature water, re-condensation of hydrate crystals may occur, and aggregates may be formed. On the other hand, if the water repellency is excessive and the wetting rate is too slow, the dissolution itself is hindered, and the surface-treated water-soluble inorganic compound particles may remain undissolved.
以上の理由から、 さらに、 一定範囲の濡れ速度を有するものであることがより 好ましい。  For the above reasons, it is more preferable that the material has a certain range of wetting rate.
一般的に、 濡れ速度は、 測定方法や試料量によってその値が変わるものである が、 本発明では、 後に詳述するパッシュバン法により測定した場合に、 表面処理 水溶性無機化合物粒子 0. 5 gあたりの、 浸透及び毛管現象による濡れ速度が、 100〜400分間の範囲にあることが好ましく、 200〜400分間の範囲に あることがより好ましい。  In general, the value of the wetting rate varies depending on the measurement method and the amount of the sample, but in the present invention, when measured by the Pashban method described later in detail, 0.5 g of the surface-treated water-soluble inorganic compound particles is used. Preferably, the wetting rate due to permeation and capillary action is in the range of 100 to 400 minutes, more preferably in the range of 200 to 400 minutes.
本発明の表面処理水溶性無機化合物粒子の物性値は、 特に制限されるものでは ないが、 嵩密度は、 通常、 0. 3 g/cm3以上、 好ましくは 0. 5〜1. 4g /cm3, より好ましくは 0. 6〜1. 2/cm3である。 嵩密度が小さ過ぎて も大き過ぎても他の粒子と混合して使用する際に分級しやすくなる場合がある。 また、 平均粒子径は、 好ましくは 200〜2000 m、 より好ましくは 300 〜 1500 mである。 平均粒子径が 200 m未満になると、 比表面積が大き 過ぎ、 水和抑制効果が得られにくくなる可能性があり、 一方、 2000 mを超 えると表面処理水溶性無機化合物粒子そのものの溶解性が劣化する場合がある。 さらに、 安息角は 70。 以下が好ましく、 より好ましくは 50° 以下である。 安 息角が 70° を超えると粒子の取扱性が悪化する場合がある。 なお、 嵩密度及び 平均粒子径の測定は、 後述の実施例記載の方法による。 The physical properties of the surface-treated water-soluble inorganic compound particles of the present invention are not particularly limited, but the bulk density is usually 0.3 g / cm 3 or more, preferably 0.5 to 1.4 g / cm. 3 , more preferably 0.6 to 1.2 / cm 3 . Bulk density is too small If it is too large, it may be easy to classify it when it is used by mixing with other particles. The average particle size is preferably from 200 to 2000 m, more preferably from 300 to 1500 m. When the average particle size is less than 200 m, the specific surface area is too large, and it may be difficult to obtain the hydration inhibiting effect.On the other hand, when the average particle size is more than 2000 m, the solubility of the surface-treated water-soluble inorganic compound particles themselves is reduced. It may deteriorate. In addition, the angle of repose is 70. Or less, more preferably 50 ° or less. If the angle of repose exceeds 70 °, the handling of particles may deteriorate. The measurement of the bulk density and the average particle diameter is carried out according to the methods described in Examples described later.
表面処理水溶性無機化合物粒子中の水分は、 貯蔵中の固化 (ケーキング) を防 止する観点から、 8質量%以下が好ましく、 さらに 7質量%以下、 特に 6質量% 以下が好ましい。 なお、 本発明における水分量は J I SK3362— 1998に 規定された加熱減量法により測定する。 表面処理水溶性無機化合物粒子の製造方法  The water content in the surface-treated water-soluble inorganic compound particles is preferably 8% by mass or less, more preferably 7% by mass or less, particularly preferably 6% by mass or less, from the viewpoint of preventing solidification (caking) during storage. The water content in the present invention is measured by the heating loss method specified in JIS K3363-1998. Method for producing surface-treated water-soluble inorganic compound particles
以下、 本発明の表面処理水溶性無機化合物粒子の製造方法について詳述する。 本発明の表面処理水溶性無機化合物粒子の製造方法は、 下記第 1工程及び第 2ェ 程を含むものである。  Hereinafter, the method for producing the surface-treated water-soluble inorganic compound particles of the present invention will be described in detail. The method for producing surface-treated water-soluble inorganic compound particles of the present invention includes the following first step and second step.
第 1工程:水溶性無機化合物核粒子に水溶性高分子化合物水溶液を添加し、 水溶 性高分子化合物で水溶性無機化合物核粒子を表面処理する工程。 First step: a step of adding an aqueous solution of a water-soluble polymer compound to the core particles of the water-soluble inorganic compound and treating the surface of the core particles of the water-soluble inorganic compound with the water-soluble polymer compound.
第 2工程:第 1工程で処理された水溶性無機化合物核粒子に水難溶性化合物を添 加し、 前記粒子を表面処理する工程。 Second step: a step of adding a poorly water-soluble compound to the water-soluble inorganic compound core particles treated in the first step, and subjecting the particles to a surface treatment.
第 1工程は、 水溶性無機化合物核粒子に水溶性高分子化合物水溶液を添加し、 水溶性高分子化合物で水溶性無機化合物核粒子を表面処理する工程である。 水溶性無機化合物核粒子を、 後述する造粒,被覆 (コーティング) 装置内に充 填し、 これに水溶性高分子化合物水溶液を添加し、 表面処理を行う。  The first step is a step of adding an aqueous solution of a water-soluble polymer compound to the core particles of the water-soluble inorganic compound, and treating the surface of the core particles of the water-soluble inorganic compound with the water-soluble polymer compound. The water-soluble inorganic compound core particles are charged into a granulation and coating apparatus described below, and an aqueous solution of a water-soluble polymer compound is added thereto to perform surface treatment.
水溶性高分子化合物水溶液は、 有機水溶性高分子化合物の場合、 通常 0. 1〜 90質量%、 好ましくは 0. 5〜80質量%、 さらに好ましくは 1〜60質量% であって、 粘度 (ブルックフィールド型粘度計を用いた 25°Cにおける測定値 ) 力 0. 001〜100 P a ' s、 好ましくは 0. 0005〜50Pa ' sで ある有機水溶性高分子化合物水溶液とすることが好ましい。 無機水溶性高分子化 合物の場合、 通常 1〜6 0質量%、 好ましくは 5〜5 5質量%、 さらに好ましく は 1 0〜5 0質量%無機水溶性高分子化合物とすることが好ましい。 水溶性高分 子化合物水溶液を、 撹拌 ·流動化状態の水溶性無機化合物核粒子に滴下又はスプ レー添加することが好ましい。 In the case of an organic water-soluble polymer compound, the aqueous solution of the water-soluble polymer compound is usually 0.1 to 90% by mass, preferably 0.5 to 80% by mass, more preferably 1 to 60% by mass, and has a viscosity ( (Measured value at 25 ° C using Brookfield viscometer) Force 0.001 to 100 Pa's, preferably 0.0005 to 50 Pa's It is preferable to use a certain organic water-soluble polymer compound aqueous solution. In the case of an inorganic water-soluble polymer compound, it is usually preferably 1 to 60% by mass, preferably 5 to 55% by mass, and more preferably 10 to 50% by mass. It is preferable that the aqueous solution of the water-soluble polymer compound is added dropwise or sprayed to the core particles of the water-soluble inorganic compound in a stirred and fluidized state.
第 2工程は、 第 1工程で処理された水溶性無機化合物核粒子に水難溶性化合物 を添加し、 前記粒子を表面処理する工程である。  The second step is a step of adding a poorly water-soluble compound to the water-soluble inorganic compound core particles treated in the first step, and subjecting the particles to a surface treatment.
第 1工程で処理された水溶性無機化合物核粒子を、 後述する造粒 ·被覆装置内 に充填し、 これに水難溶性化合物を添加して表面処理を行う。 水難溶性化合物は 、 溶融させて液体状とし、 この液体を、 撹拌 ·流動状態の第 1工程で表面処理さ れた水溶性無機化合物に滴下する又はスプレー添加する方法が好ましい。  The water-soluble inorganic compound core particles treated in the first step are filled in a granulation / coating apparatus described later, and a water-insoluble compound is added thereto to perform a surface treatment. It is preferable that the hardly water-soluble compound is melted to be in a liquid state, and the liquid is dropped or spray-added to the water-soluble inorganic compound surface-treated in the first step of the stirring / flowing state.
上記第 1及び第 2工程において、 水溶性無機化合物核粒子を具体的に造粒 ·被 覆する方法としては、 以下の方法が挙げられる。 (1 ) . 水溶性無機化合物核粒子 に処理剤等 (水溶性高分子化合物、 水難溶性化合物) を添加し撹拌羽根で撹拌し て造粒,被覆する撹拌造粒法、 (2 ) . 水溶性無機化合物核粒子を転動させつつ処 理剤等を噴霧して造粒 ·被覆する転動造粒法、 (3 ) . 水溶性無機化合物核粒子を 流動化させつつ、 処理剤等を噴霧し造粒 ·被覆する流動層造粒法等が挙げられる 上記第 1工程、 及び第 2工程はそれぞれ同一の造粒 ·被覆方法及び装置によつ てなされてもよいし、 複数の造粒 ·被覆方法及び装置を組み合わせてもよい。 以 下、 それぞれの方法、 製造装置、 条件等について説明する。  In the above first and second steps, the following methods may be mentioned as specific methods for granulating and coating the water-soluble inorganic compound core particles. (1) A stirring granulation method in which a treating agent (a water-soluble polymer compound, a poorly water-soluble compound) is added to the water-soluble inorganic compound core particles, and the mixture is stirred with a stirring blade to granulate and coat. A tumbling granulation method in which a treating agent is sprayed while the inorganic compound core particles are tumbled to granulate and coat, (3). The treating agent is sprayed while fluidizing the water-soluble inorganic compound core particles. The first step and the second step described above may be performed by the same granulation / coating method and apparatus, or a plurality of granulation / coating methods. The methods and apparatus may be combined. Hereinafter, each method, manufacturing apparatus, conditions and the like will be described.
( 1 ) . 撹拌造粒法 (1). Agitation granulation method
撹拌造粒法では任意の型式の撹拌造粒装置を使用することができる。 その中で も、 撹拌羽根を備えた撹拌軸を内部の中心に有し、 撹拌羽根が回転する際に撹拌 羽根と器壁との間にクリアランスを形成する構造の装置であることが好ましい。 クリアランスは 1〜 3 0 mmであるのが好ましく、 3〜1 0 mmがより好ましい 。 クリアランスが 1 mm未満では付着層により混合機が過動力となりやすい場合 がある。 3 0 mmを超えると圧密化の効率が低下するため粒度分布がブロードに 、 また、 造粒時間が長くなり生産性が低下する場合がある。 この様な構造を有す る撹拌造粒機としては、 例えばヘンシェルミキサー (三井三池化工機 (株) 製) 、 ハイスピードミキサー (深江工業 (株) 製)、 バーチカルグラ二ユレ一夕一( ( 株) パゥレック製)等の装置が挙げられる。 特に好ましくは横型の混合槽で円筒 の中心に撹拌軸を有し、 この軸に撹拌羽根を取付けて粉末の混合を行う形式のミ キサ一である。 このようなミキサーとしては、 例えばレーディゲミキサー( (株 ) マツポー製)、 ブローシェア一ミキサー(大平洋機工 (株) 製)である。 In the stirring granulation method, any type of stirring granulator can be used. Among them, it is preferable that the apparatus has a stirring shaft provided with a stirring blade at the center of the inside, and has a structure in which a clearance is formed between the stirring blade and the vessel wall when the stirring blade rotates. The clearance is preferably from 1 to 30 mm, more preferably from 3 to 10 mm. If the clearance is less than 1 mm, the mixing machine may be easily overpowered due to the adhesion layer. If it exceeds 30 mm, the compaction efficiency is reduced, so that the particle size distribution becomes broad, and the granulation time becomes longer, which may lower the productivity. Has such a structure Examples of agitating granulators include Henschel mixer (manufactured by Mitsui Miike Kakoki Co., Ltd.), high-speed mixer (manufactured by Fukae Kogyo Co., Ltd.), and vertical granule Ichiichi Ichiichi (manufactured by Parek Co., Ltd.). Device. It is particularly preferable to use a horizontal type mixing tank having a stirring shaft at the center of a cylinder and a stirring blade attached to the shaft to mix powder. Such mixers include, for example, a Lödige mixer (manufactured by Matsupo Corporation) and a blow shear mixer (manufactured by Taiheiyo Kiko Co., Ltd.).
撹拌造粒法における好適な造粒条件を以下に示す。  Preferred granulation conditions in the stirring granulation method are shown below.
(i) フルード数 (F r数)  (i) Froude number (Fr number)
撹拌造粒法においては、 下記式で定義されるフルード数は 1〜1 6であるのが 好ましく、 2〜9がより好ましい。 フルード数が 1未満であると、 流動化が不充 分であるため表面処理が不充分となる場合がある。 一方、 1 6を超えると粒子に 対するせん断力が強くなり過ぎ表面処理部に壊れが発生する場合がある。  In the stirring granulation method, the Froude number defined by the following formula is preferably from 1 to 16, and more preferably from 2 to 9. If the fluid number is less than 1, the surface treatment may be insufficient due to insufficient fluidization. On the other hand, if it exceeds 16, the shearing force on the particles becomes too strong, and the surface treatment may be broken.
F r = V 2/ (R X g ) F r = V 2 / (RX g)
V:撹拌羽根の先端の周速 (mZ s )  V: Peripheral speed at the tip of the stirring blade (mZ s)
R:撹拌羽根の回転半径 (m)  R: Rotation radius of stirring blade (m)
g :重力加速度 (mZ s 2) g: Gravitational acceleration (mZ s 2 )
(i i) チョッパー回転数  (i i) Chopper rotation speed
撹拌造粒法において、 使用される撹拌造粒機には、 造粒物の圧密化促進及び粗 粉解砕促進のために、 高速で回転するチョッパーが装備されている。 チョッパー の回転速度としては表面処理部の壊れが発生しない程度の回転数が好ましい。 チ ョッパー先端速度 (周速) で 3 O mZ s以下が好ましく、 0〜2 0 mZ s以下が より好ましい。  In the stirring granulation method, the stirring granulator used is equipped with a chopper that rotates at a high speed to promote the compaction of the granules and the disintegration of coarse powder. The rotation speed of the chopper is preferably such that the surface treatment portion is not broken. The tip speed (peripheral speed) of the chopper is preferably 3 OmZs or less, more preferably 0 to 20 mZs or less.
(i i i) 造粒時間  (i i i) Granulation time
撹拌造粒法において、 回分式の造粒における造粒時間及び連続式の造粒におけ る平均滞留時間は、 0 . 5〜2 0分が好ましく、 3〜1 0分がより好ましい。 造 粒時間 (平均滞留時間) が 0 . 5分未満であると、 時間が短過ぎて好適な平均粒 子径及び嵩密度を得るための造粒制御が困難となり、 粒度分布がブロードになる 場合がある。 2 0分を超えると時間が長過ぎて生産性が低下する場合がある。  In the stirring granulation method, the granulation time in batch granulation and the average residence time in continuous granulation are preferably from 0.5 to 20 minutes, more preferably from 3 to 10 minutes. If the granulation time (average residence time) is less than 0.5 minutes, the time is too short to control the granulation to obtain a suitable average particle diameter and bulk density, and the particle size distribution becomes broad. There is. If it exceeds 20 minutes, the time may be too long and the productivity may decrease.
(i v ) 水溶性無機化合物核粒子の充填率 撹拌造粒法において、 水溶性無機化合物核粒子の造粒機への充填率 (仕込み量(iv) Filling rate of water-soluble inorganic compound core particles In the stirring granulation method, the filling rate of the water-soluble inorganic compound core particles into the granulator (the charged amount)
) としては、 混合機の全内容積の 70容積%以下が好ましく、 15〜40容積% がより好ましい。 充填率 (仕込み量) が、 70容積%を超えると混合機内での混 合効率が低下し、 好適に造粒を行うことができない場合がある。 ) Is preferably 70% by volume or less of the total internal volume of the mixer, more preferably 15 to 40% by volume. If the filling ratio (prepared amount) exceeds 70% by volume, the mixing efficiency in the mixer will decrease, and granulation may not be performed properly.
(v) 処理剤の添加方法  (v) Method of adding treatment agent
撹拌造粒法において、 水溶性高分子化合物水溶液、 水難溶性化合物等の処理剤 は、 好ましくは撹拌 ·流動状態の粒子に対して、 滴下もしくは噴霧して添加され る。 静置状態にある粒子に処理剤等を滴下もしくは添加した後、 撹拌を開始して 造粒,被覆操作も可能である。 しかしながら、 被覆性を高めるためにも、 撹拌- 流動状態の粒子に対して滴下もしくは噴霧して添加することが好ましい。  In the stirring granulation method, a treating agent such as an aqueous solution of a water-soluble polymer compound or a sparingly water-soluble compound is preferably added dropwise or sprayed to particles in a stirred and fluidized state. After dropping or adding a treating agent or the like to the particles in a stationary state, stirring can be started to perform granulation and coating operations. However, in order to enhance the coatability, it is preferable to add the particles by dropping or spraying to the particles in the stirring-fluid state.
(2). 転動造粒法 (2). Rolling granulation method
転動造粒法では任意の型式の転動造粒装置を使用することができる。 その中で もドラム状の円筒が回転して処理するものが好ましく、 特に任意の形状の邪魔板 を具備しているものが好ましい。 ドラム型造粒機としては、 水平円筒型造粒機、 日本粉体工業技術協会編、 造粒八ンドブック第一版第 1刷記載の円錐ドラム型造 粒機、 多段円錐ドラム型造粒機、 撹拌羽根付ドラム型造粒機等が挙げられる。 転動造粒法における好適な造粒条件を以下に示す。  In the rolling granulation method, any type of rolling granulator can be used. Among them, a drum-shaped cylinder that rotates to perform processing is preferable, and a thing provided with a baffle plate of an arbitrary shape is particularly preferable. Examples of the drum type granulator include a horizontal cylindrical type granulator, a conical drum type granulator described in the first edition of the first edition of the Granulation Hundred Book, edited by the Japan Powder Industry Association, a multi-stage conical drum type granulator, Drum type granulators with stirring blades and the like can be mentioned. Preferred granulation conditions in the tumbling granulation method are shown below.
(0 処理時間  (0 processing time
回分式における処理時間、 連続式における以下の式で定義される平均滞留時間 は、 5〜120分が好ましく、 より好ましくは 10〜90分、 さらに好ましくは 10〜40分である。 前記時間が 5分未満であると、 高嵩密度にならない場合が ある一方、 120分を超えると生産性の低下又は粒子が崩壊する場合がある。  The processing time in the batch system and the average residence time defined by the following formula in the continuous system are preferably from 5 to 120 minutes, more preferably from 10 to 90 minutes, and still more preferably from 10 to 40 minutes. If the time is less than 5 minutes, high bulk density may not be obtained, while if it exceeds 120 minutes, productivity may be reduced or particles may be disintegrated.
Tm= (m/Q) X 60  Tm = (m / Q) X 60
Tm :平均滞留時間 (mi n)  Tm: Average residence time (min)
m :容器回転型混合機内の粒子滞留量 (kg)  m: Particle retention amount in the container rotary mixer (kg)
Q :連続運転における能力 (kg/h r)  Q: Capacity in continuous operation (kg / hr)
(ii) フルード数 (F r)  (ii) Froude number (F r)
下記式で定義されるフルード数は、 0. 01〜0. 8となる条件を選択するの が好ましい。 フル一ド数は、 0. 05〜0. 7がより好ましく、 0. 1〜0. 6 5がさらに好ましい。 フルード数が 0. 01未満であると、 均一でかつ高嵩密度 の粒子が得られない場合がある一方、 0. 8を超えると、 ドラム型混合機の場合 には、 粒子が飛散し、 正常な剪断混合が起こらない場合がある。 It is preferable to select a condition in which the Froude number defined by the following formula is 0.01 to 0.8. The number of fluids is more preferably 0.05 to 0.7, and 0.1 to 0.6. 5 is more preferred. If the Froude number is less than 0.01, uniform and high bulk density particles may not be obtained.On the other hand, if the Froude number is more than 0.8, particles are scattered and normal in the case of a drum type mixer. Shear mixing may not occur.
F r =V2/' (RXg) F r = V 2 / '(RXg)
V:容器回転型混合機最外周の周速 (mZs)  V: Peripheral speed of the outermost periphery of the rotary mixer (mZs)
R:容器回転型混合機最外周の回転中心からの半径 (m)  R: Radius from the center of rotation of the outermost periphery of the rotary mixer (m)
g:重力加速度 (mZ s 2) g: Gravitational acceleration (mZ s 2 )
(iii) 容積充填率 (X)  (iii) Volume filling rate (X)
下記式で定義される容積充填率が、 15〜50容積%となる条件を選択するの が好ましい。 容積充填率は、 より好ましくは 20〜45容積%、 さらに好ましく は 25〜40容積%である。 容積充填率が 15容積%未満であると、 生産性が悪 い場合がある一方、 50容積%を超えると良好な剪断混合が生じない場合がある 容積充填率 (X) = (M/p) /VX 100  It is preferable to select conditions under which the volume filling ratio defined by the following formula is 15 to 50% by volume. The volume filling ratio is more preferably 20 to 45% by volume, and even more preferably 25 to 40% by volume. If the volume filling ratio is less than 15% by volume, productivity may be poor, but if it exceeds 50% by volume, good shear mixing may not occur. Volume filling ratio (X) = (M / p) / VX 100
M:容器回転型混合機への水溶性無機化合物核粒子の仕込量 (g)  M: Amount of water-soluble inorganic compound core particles charged to the rotary mixer (g)
P :水溶性無機化合物核粒子の嵩密度 (gZL)  P: Bulk density of water-soluble inorganic compound core particles (gZL)
V:容器回転型混合機の容積 (L)  V: Volume of rotating container mixer (L)
(iv) 処理剤の添加方法  (iv) Treatment agent addition method
転動造粒法において、 水溶性高分子水溶液、 水難溶性化合物等の処理剤は、 転 動 ·流動状態の粒子に対して噴霧して添加される。 静置状態にある粒子に処理剤 等を滴下もしくは添加した後、 撹拌を開始して造粒,被覆操作も可能である。 し かしながら、 被覆性を高めるためにも、 撹拌 ·流動状態の粒子に対して滴下もし くは噴霧して添加することが好ましい。  In the tumbling granulation method, a treating agent such as an aqueous solution of a water-soluble polymer or a poorly water-soluble compound is added by spraying to the particles in a rolling / flowing state. After the treatment agent or the like is dropped or added to the particles in a stationary state, stirring is started to perform granulation and coating operations. However, in order to enhance the coatability, it is preferable to add the particles in a state of being stirred or flowing by dropping or spraying.
(3). 流動層造粒法 (3). Fluidized bed granulation method
流動層造粒法では流動層本体、 整流板、 送風機、 吸気フィルター、 エアヒータ 一及びクーラー、 スプレー装置、 集塵装置等で構成された任意の型式の流動層造 粒装置を使用することができる。 例えば、 日本粉体技術協会編、 造粒ハンドブッ ク第一版第 1刷記載の回分式流動層造粒装置 (トップスプレー式、 サイドスプレ 一式、 ボトムスプレー式等) 、 噴流流動層造粒装置、 噴流動層造粒装置、 半連続 式流動層造粒装置 (分散板反転排出式、 下部排出式、 側壁排出式等) 連続式流動 層造粒装置 (横型多室型、 円筒型等) 等が好適に利用できる。 具体的装置の利用 例としては回分式流動層造粒装置の G 1 a t t一 P OWR E Xシリーズ [ (株) バウレックス製] 、 フローコ一夕一シリーズ [ (株) 大川原製作所製] 、 連続式 流動層造粒装置の M I X G R ADシリーズ [ (株) 大川原製作所製] 等が挙げら れる。 In the fluidized-bed granulation method, any type of fluidized-bed granulator composed of a fluidized bed main body, a flow straightening plate, a blower, an intake filter, an air heater, a cooler, a spray device, a dust collector, and the like can be used. For example, batch type fluidized bed granulator (top spray type, side spray type, bottom spray type, etc.) described in Japan Powder Technology Association, Granulation Handbook 1st edition, 1st printing, spouted fluidized bed granulator, Spouted bed granulator, semi-continuous Fluidized bed granulator (dispersed plate inverted discharge type, bottom discharge type, side wall discharge type, etc.) Continuous fluidized bed granulator (horizontal multi-chamber type, cylindrical type, etc.) can be suitably used. Examples of the use of specific equipment are the batch type fluidized bed granulator G 1 att-I P OWR EX series [manufactured by Baurex Co., Ltd.], Floco Ichiyuichi series [manufactured by Okawara Seisakusho Co., Ltd.], continuous flow The MIXGR AD series of bed granulators [manufactured by Okawara Seisakusho Co., Ltd.] and the like.
流動層造粒法における造粒条件として、 静置時の原料粉体層の平均厚さは 5 0 〜5 0 0 mm程度が好ましい。 その後、 流動層に風を送り、 粉体を流動化させた 後に水溶性高分子化合物水溶液、 水難溶性化合物等の処理剤の噴霧を開始する。 噴霧ノズルとしては、 通常の加圧ノズルのほか、 噴霧状体を良好にするため、 2 流体ノズルを用いることも好ましい。 この時の平均液滴径は 5〜 5 0 0 m程度 が好ましい。 噴霧が進むにつれて造粒も進み粒子径が大きくなるため、 流動化状 態を維持するため風速を調整しながら造粒を行う。 風速は 0 . 2〜4. O m/ s の範囲で調整を行い、 風温度は 5〜7 0 °C、 好ましくは 7〜6 5 ^で行う。 バグ フィルターに付着した微粒子は定期的にパルスエアーで落としながら製造を行う ことが好ましい。  As the granulation conditions in the fluidized bed granulation method, the average thickness of the raw material powder layer at the time of standing is preferably about 50 to 500 mm. After that, air is sent to the fluidized bed to make the powder fluidized, and then spraying of a treating agent such as an aqueous solution of a water-soluble polymer compound or a poorly water-soluble compound is started. As the spray nozzle, it is also preferable to use a two-fluid nozzle in order to improve the spray state, in addition to a normal pressurizing nozzle. The average droplet diameter at this time is preferably about 5 to 500 m. As spraying progresses, granulation proceeds and the particle size increases, so granulation is performed while adjusting the wind speed to maintain a fluidized state. The wind speed is adjusted in the range of 0.2 to 4. O m / s, and the wind temperature is adjusted to 5 to 70 ° C, preferably 7 to 65 ^. It is preferable to perform the production while periodically dropping the fine particles attached to the bag filter with pulsed air.
上記表面処理水溶性無機化合物粒子の製造方法で製造する場合、 第 2工程終了 直後における表面処理水溶性無機化合物粒子の温度が、 ァニオン界面活性剤酸前 駆体の融点以上であることが好ましい。 特に、 第 2工程で水難溶性化合物を添加 する際には、 第 1工程で処理された水溶性無機化合物核粒子の温度に留意すると よい。 具体的にはこの粒子の温度を水難溶性化合物の融点以上にすることが好ま しい。 また、 水難溶性化合物を添加する時、 第 1工程で処理された水溶性無機化 合物核粒子の温度が該水難溶性化合物の融点未満である場合は、 水難溶性化合物 による表面処理終了後の表面処理水溶性無機化合物粒子の温度が、 水難溶性化合 物の融点以上であることが好ましい。 これらの温度が融点未満であると、 造粒' 被覆装置系内において水難溶性化合物の分散性 ·均一性が悪くなり、 水難溶性化 合物による表面処理が不充分となることがある。  In the case where the surface-treated water-soluble inorganic compound particles are produced by the method for producing the surface-treated water-soluble inorganic compound particles, the temperature of the surface-treated water-soluble inorganic compound particles immediately after the completion of the second step is preferably equal to or higher than the melting point of the anionic surfactant acid precursor. In particular, when adding the poorly water-soluble compound in the second step, it is good to pay attention to the temperature of the water-soluble inorganic compound core particles treated in the first step. Specifically, it is preferable that the temperature of the particles be equal to or higher than the melting point of the poorly water-soluble compound. When adding the poorly water-soluble compound, if the temperature of the water-soluble inorganic compound core particles treated in the first step is lower than the melting point of the poorly water-soluble compound, the surface after the surface treatment with the poorly water-soluble compound is completed. The temperature of the treated water-soluble inorganic compound particles is preferably equal to or higher than the melting point of the poorly water-soluble compound. If the temperature is lower than the melting point, the dispersibility and uniformity of the poorly water-soluble compound in the granulation-coating system will be poor, and the surface treatment with the poorly water-soluble compound may be insufficient.
上述の方法で得られた表面処理水溶性無機化合物粒子を、 さらに有機又は無機 の微粉体で表面処理してもよい。 表面処理水溶性無機化合物粒子をさらに表面処 理する微粉体としては、 常温固体の界面活性剤、 長鎖脂肪酸塩、 アルミノ珪酸塩 、 吸油性担体、 粘土鉱物等が挙げられる。 The surface-treated water-soluble inorganic compound particles obtained by the above method may be further surface-treated with an organic or inorganic fine powder. Surface treatment The water-soluble inorganic compound particles Examples of the fine powder to be treated include a surfactant at room temperature, a long-chain fatty acid salt, an aluminosilicate, an oil-absorbing carrier, and a clay mineral.
界面活性剤としては、 ァニオン界面活性剤、 カチオン界面活性剤、 ノニオン界 面活性剤が挙げられる。 長鎖脂肪酸塩としてはアルカリ、 非アルカリ金属の長鎖 脂肪酸塩、 アルミノケィ酸塩としては A型、 P型、 X型等、 吸油性担体としては シリカ、 珪酸塩化合物、 球状多孔質含水非晶質珪酸等、 粘土鉱物としてはモンモ リロナイト、 ノントロナイト、 パイデライト、 パイロフイライト、 サボナイト、 ヘクトライト、 スチ一ブンサイ卜、 タルク等が挙げられる。 これらは 1種単独で 又は 2種以上を適宜組み合わせて用いることができる。 この中でも、 非アルカリ 金属の長鎖脂肪酸塩、 タルク、 アルミノケィ酸塩が好ましい。 非アルカリ金属の 長鎖脂肪酸塩及び夕ルクは撥水性であるため、 水溶性無機化合物の凝集を防ぎ、 アルミノケィ酸塩は C a捕捉ビルダ一として汎用され、 単独で表面処理に用いた 場合、 混合される洗剤粒子の表面の処理剤としての役割を果たす。  Examples of the surfactant include an anionic surfactant, a cationic surfactant, and a nonionic surfactant. Long-chain fatty acid salts include alkali and non-alkali metal long-chain fatty acid salts, aluminosilicates such as A-type, P-type, X-type, etc., and oil-absorbing carriers such as silica, silicate compounds, and spherical porous hydrous amorphous Examples of clay minerals such as silicic acid include montmorillonite, nontronite, paiderite, pyrophyllite, savonite, hectorite, stevensite, and talc. These can be used alone or in an appropriate combination of two or more. Of these, long-chain fatty acid salts of non-alkali metals, talc, and aluminoketes are preferred. Non-alkali metal long-chain fatty acid salts and luk are water-repellent, preventing aggregation of water-soluble inorganic compounds.Aluminosilicates are commonly used as Ca-trapping builder, and when used alone for surface treatment, mixed Acts as a treating agent on the surface of the detergent particles to be produced.
これら微粉体の粒子径は、 表面処理水溶性無機化合物粒子の平均粒子径に対し て 1 Z 5以下の 1次粒子径をもつことが好ましく、 より好ましくは 1 Z 1 0以下 である。 また、 微粉体の配合量は表面処理水溶性無機化合物粒子に対して、 0 . 1〜1 0質量%が好ましく、 より好ましくは 1〜8質量%である。  The fine particles preferably have a primary particle diameter of 1 Z5 or less, more preferably 1 Z10 or less, based on the average particle diameter of the surface-treated water-soluble inorganic compound particles. The amount of the fine powder is preferably 0.1 to 10% by mass, more preferably 1 to 8% by mass, based on the surface-treated water-soluble inorganic compound particles.
上述の方法により得られた表面処理水溶性無機化合物粒子は、 必要に応じて分 級して所望の粒度の表面処理水溶性無機化合物粒子のみ利用することもできる。 分級装置としては、 一般に知られたいかなる分級装置も用いることができ、 特に 篩が好適に利用できる。 中でもジャイロ式篩、 平面篩及び振動篩が好適である。 ジャイロ式篩は僅かに傾斜した平面篩に対し、 水平な円運動を与える篩である。 平面篩は僅かに傾斜した平面篩に、 面にほぼ平行に往復運動を与える篩である。 振動篩は、 篩面にほぼ直角方向に急速な振動を与える篩である。 篩に供する時間 は 5秒以上とすることが好ましく、 また、 ふるい効率を向上させる為にはタツピ ングポールを用いることも好ましい。 このような篩の具体例としては、 ジャイロ シフ夕一 ( (株) 徳寿工作所製) 、 ローテツクススクリーナー ( (株) セイシン 企業製) 、 ダルトン振動ふるい ( (株) ダルトン製) 等が挙げられる。 篩による 振動は、 好適には 6 0〜 3 0 0 0回/分、 好ましくは 1 0 0〜 2 5 0 0回/分、 さらに好ましくは 1 5 0〜 2 0 0 0回/分の振動で与えられる。 篩の振動数が 6 0回 Z分未満であると、 分級効果が悪化する場合がある一方、 3 0 0 0回 分を 超えると発塵が増大する場合がある。 The surface-treated water-soluble inorganic compound particles obtained by the above-described method can be classified as necessary to use only the surface-treated water-soluble inorganic compound particles having a desired particle size. As the classification device, any generally known classification device can be used, and particularly, a sieve can be suitably used. Among them, gyroscopic sieves, flat sieves and vibrating sieves are preferred. The gyro sieve is a sieve that gives a horizontal circular motion to a slightly inclined plane sieve. A flat sieve is a sieve that gives a reciprocating motion almost parallel to the surface on a slightly inclined flat sieve. A vibrating sieve is a sieve that vibrates rapidly in a direction substantially perpendicular to the sieve surface. The time of sieving is preferably 5 seconds or more, and it is also preferable to use a tapping pole to improve sieving efficiency. Specific examples of such a sieve include Gyro Shifu Yuichi (manufactured by Tokuju Kosakusho Co., Ltd.), Rottekus Screener (manufactured by Seishin Enterprise), and Dalton Vibrating Sieve (manufactured by Dalton Co., Ltd.). Can be Vibration by the sieve is suitably 60 to 300 times / minute, preferably 100 to 250 times / minute, More preferably, it is given by a vibration of 150 to 2000 times / minute. If the frequency of the sieve is less than 60 times the Z-minute, the classification effect may be deteriorated, while if it exceeds 300 times, dust generation may increase.
分級工程で分離した表面処理水溶性無機化合物粒子のうち、 微粉については再 度水溶性無機化合物核粒子と共に造粒機に投入し、 造粒《被覆操作に供すること が好ましい。 また、 粗粉については粉碎し、 造粒'被覆操作前の水溶性無機化合 物と同等の粒子径にした後、 再度水溶性無機化合物核粒子と共に造粒機に投入し 、 造粒 ·被覆操作に供することが好適である。 この際粗粉を粉碎する粉砕機とし ては、 分級スクリーンと回転ブレードを持った機種が好ましい。 このような粉碎 機としてはフィッツミル (ホソカワミクロン (株) 製) 、 ニュースピードミル ( 岡田精ェ (株) 製) 、 フェザーミル (ホソカワミクロン (株) 製) 等が挙げられ る。 また、 粉碎機内に冷風を流し冷却しながら粉碎することもできる。 冷風と粉 碎品をサイクロンで分級し、 その時微粉を分級することも可能である。 さらに、 多段粉碎することで、 より粒度分布がシャープになる。 粉碎機のブレードの先端 周速としては 1 5〜9 O mZ sが好ましく、 2 0〜8 O mZ sがより好ましく、 2 5〜7 O mZ sがさらに好ましい。 先端周速が 1 5 mZ s未満であると粉砕能 力が不充分となる場合があり、 9 O mZ sを超えると粉碎されやすくなる場合が ある。  Of the surface-treated water-soluble inorganic compound particles separated in the classification step, it is preferable that the fine powder is again put into the granulator together with the water-soluble inorganic compound core particles, and the granulation is preferably performed for the coating operation. Also, the coarse powder is pulverized to a particle size equivalent to that of the water-soluble inorganic compound before the granulation / coating operation, and then again put together with the core particles of the water-soluble inorganic compound into the granulator, where the granulation / coating operation is performed. It is preferable to subject to. At this time, as a crusher for crushing coarse powder, a model having a classification screen and a rotary blade is preferable. Examples of such a mill include Fitzmill (manufactured by Hosokawa Micron Corp.), New Speed Mill (manufactured by Okada Seie Co., Ltd.), and Feather Mill (manufactured by Hosokawa Micron Corp.). In addition, it is also possible to pulverize while cooling by flowing cold air through the pulverizer. It is also possible to classify the cold air and the ground product with a cyclone and then classify the fine powder. Furthermore, the particle size distribution becomes sharper by multi-stage grinding. The peripheral speed of the tip of the blade of the mill is preferably 15 to 9 OmZs, more preferably 20 to 8 OmZs, and even more preferably 25 to 7 OmZs. If the tip peripheral speed is less than 15 mZ s, the crushing ability may be insufficient, and if it exceeds 9 O mZ s, the crushing may be liable to occur.
表面処理水溶性無機化合物粒子を、 高嵩密度にし、 安息角を小さくするために は、 上記第 1工程及び第 2工程の表面処理後、 第 3工程:第 2工程の表面処理後 の水溶性無機化合物核粒子の表面上の水和結晶成長を抑制する工程を含むことが 好ましい。 これにより表面処理水溶性無機化合物粒子の表面形状の円滑性を保つ とよい。 水和結晶が成長すると、 水溶性無機化合物核粒子の表面に多数の凹凸が 生じて、 嵩密度が低下し、 安息角も大きくなる。 場合によっては水和結晶が表面 処理を突き破り、 近傍の表面処理水溶性無機化合物粒子から突き出た水和結晶同 士で凝結し、 強固な水和固結となることもある。  In order to make the surface-treated water-soluble inorganic compound particles have a high bulk density and a small angle of repose, after the surface treatment in the first step and the second step, the third step: the water solubility after the surface treatment in the second step It is preferable to include a step of suppressing hydration crystal growth on the surface of the inorganic compound core particles. Thereby, it is preferable to maintain the smoothness of the surface shape of the surface-treated water-soluble inorganic compound particles. When the hydrated crystal grows, many irregularities are generated on the surface of the core particles of the water-soluble inorganic compound, the bulk density decreases, and the angle of repose increases. In some cases, the hydrated crystals break through the surface treatment and solidify with the hydrated crystals protruding from nearby surface-treated water-soluble inorganic compound particles, resulting in strong hydrated consolidation.
水和結晶を抑制する方法としては、 [ 1 ]第 2工程後の表面処理された粒子を冷 却する方法、 [ 2 ]第 2工程後の表面処理された粒子を乾燥する方法等が挙げられ る。 これらのうちで、 溶解性を良好に保つ点から、 [ 1 ]冷却する方法が好ましい [ 1 ]第 2工程後の表面処理された粒子を冷却する方法は、 表面処理水溶性無機 化合物粒子を 30°C以下、 好ましくは 25 以下まで冷却可能であれば特に限定 されない。 冷却速度は 5°CZh r以上とすることが好ましく、 10°C h r以上 とすることがより好ましい。 冷却方法及び装置は特に限定されないが、 冷却装置 としては冷却された伝熱面により冷却を行うものと、 気流を用いるものに分けら れる。 例えば、 冷却された伝面を用いるものとしては、 トーラスディスク (ホソ カヮミクロン (株) 製) 、 フリゴミックス (日清エンジニアリング (株) 製) 等 が挙げられる。 気流を用いることで冷却を行うものとしては、 流動層が挙げられ る。 具体的装置の利用例としては回分式流動層造粒装置の G 1 a t t -POWR EXシリーズ ( (株) バウレックス製) 、 フローコ一夕一シリーズ ( (株) 大川 原製作所製) 、 連続式流動層造粒装置の MI XGRADシリーズ ( (株) 大川原 製作所製) 等が挙げられる。 表面処理水溶性無機化合物粒子の表面処理部の剥が れ、 壊れの可能性を鑑みると、 流動層の利用が好ましい。 Methods for suppressing hydrated crystals include [1] a method of cooling the surface-treated particles after the second step, and [2] a method of drying the surface-treated particles after the second step. You. Among them, [1] Cooling method is preferred from the viewpoint of maintaining good solubility. [1] The method of cooling the surface-treated particles after the second step is not particularly limited as long as the surface-treated water-soluble inorganic compound particles can be cooled to 30 ° C or lower, preferably 25 or lower. The cooling rate is preferably 5 ° C hr or more, more preferably 10 ° C hr or more. The cooling method and device are not particularly limited, but the cooling device is classified into a cooling device using a cooled heat transfer surface and a cooling device using an air flow. For example, a torus disk (manufactured by Hosoka Micron Corp.), Frigomix (manufactured by Nisshin Engineering Co., Ltd.), etc., may be used as those using a cooled transmission surface. Fluidized beds can be used for cooling by using airflow. Specific examples of the use of the apparatus are the batch type fluidized bed granulator G 1 att-POWR EX series (manufactured by Baurex), Floco Ichiyuichi series (manufactured by Okawara Corporation), continuous flow The MI XGRAD series of bed granulators (manufactured by Okawara Seisakusho Co., Ltd.) and the like. In view of the possibility that the surface-treated portion of the surface-treated water-soluble inorganic compound particles may be peeled off or broken, it is preferable to use a fluidized bed.
[ 2 ]第 2工程後の表面処理された粒子を乾燥する方法は、 表面処理水溶性無機 化合物粒子を乾燥できれば特に限定されない。 具体的には、 上記 [1]方法に用い られる同様の装置を、 伝面や気流といった熱媒体の温度を 50〜300°C、 好ま しくは 60〜250°Cとすることで、 乾燥装置として利用し乾燥する方法が挙げ られる。 粒状洗剤組成物  [2] The method of drying the surface-treated particles after the second step is not particularly limited as long as the surface-treated water-soluble inorganic compound particles can be dried. More specifically, a similar device used in the above method [1] can be used as a drying device by setting the temperature of a heating medium such as a transmission surface or an airflow to 50 to 300 ° C, preferably 60 to 250 ° C. Utilizing and drying. Granular detergent composition
上記製造方法によって得られた表面処理水溶性無機化合物粒子はそのまま、 粒 状洗剤組成物として用いることもできるが、 アル力リ剤として洗浄剤粒子群と混 合して粒状洗剤組成物とすることが好ましい。 この洗浄剤粒子群は通常、 界面活 性剤及び無機化合物を含有する界面活性剤含有粒子、 酵素粒子、 漂白剤粒子及び 漂白活性化剤粒子等から選ばれ構成される。 混合比率 (質量比) は、 表面処理水 溶性無機化合物粒子 Z洗浄剤粒子群 = 3/97〜 97/3が好ましく、 5/95 〜95/ 5がより好ましく 10/90〜90/10がさらに好ましい。  The surface-treated water-soluble inorganic compound particles obtained by the above production method can be used as they are as a granular detergent composition.However, they should be mixed with a detergent particle group as an alkaline agent to form a granular detergent composition. Is preferred. This group of detergent particles is usually selected from surfactant-containing particles containing a surfactant and an inorganic compound, enzyme particles, bleach particles, and bleach activator particles. The mixing ratio (mass ratio) is preferably 3/97 to 97/3, more preferably 5/95 to 95/5, and still more preferably 10/90 to 90/10. preferable.
粒状洗剤組成物は、 表面処理水溶性無機化合物粒子と洗浄剤粒子群とを、 任意 に混合して得ることができる。 その混合方法としては、 乾式混合が好適に用いら れる。 使用する混合機は、 各種粒子同士が充分に混合できる限りいかなる混合機 を用いてもよい。 混合機としては、 水平円筒型、 二重円錐型、 V型、 自転 '公転 型等の混合機が好適に利用できる。 また、 撹拌造粒機、 転動造粒機を用いてもよ い。 好ましくは、 水平円筒型又は二重円錐型を用い、 温度 0〜50°C、 ? 1"数0 . 01〜0. 2 (算出式は上述した通り) で混合する。 このとき、 各種粒子やそ れ以外の成分の添加順序は、 特に問わない。 The granular detergent composition may optionally include surface-treated water-soluble inorganic compound particles and a detergent particle group. Can be obtained by mixing. As the mixing method, dry mixing is preferably used. As the mixer to be used, any mixer may be used as long as various kinds of particles can be sufficiently mixed. As the mixing machine, a mixing machine of a horizontal cylindrical type, a double cone type, a V type, a rotation type and a revolution type can be suitably used. Further, a stirring granulator or a tumbling granulator may be used. Preferably, a horizontal cylindrical type or a double conical type is used, at a temperature of 0 to 50 ° C,? 1 "is mixed in the order of 0.01 to 0.2 (calculation formula is as described above). At this time, the order of adding various particles and other components is not particularly limited.
粒状洗剤組成物としては、 (a) 上記表面処理水溶性無機化合物粒子と、 (b ) 界面活性剤及び無機化合物を含む界面活性剤含有粒子とを含有することが好ま しい。 粒状洗剤組成物の容器内での分級を防止するために、 (a l) 表面処理水 溶性無機化合物粒子と (b l) 界面活性剤含有粒子の平均粒子径の比 (a l) / b l) は、 好ましくは 0. 5〜2、 より好ましくは 0. 5〜1. 5、 さらに好ま しくは 0. 6〜1. 3である。 また、 (a 2) 表面処理表面処理水溶性無機化合 物粒子と (b 2) 界面活性剤含有粒子の嵩密度の比 (a 2) / (b 2) は、 好ま しくは 0. 5〜2、 より好ましくは 0. 6〜1. 5、 さらに好ましくは 0. Ί〜 1. 4である。  The granular detergent composition preferably contains (a) the above-mentioned surface-treated water-soluble inorganic compound particles, and (b) surfactant-containing particles containing a surfactant and an inorganic compound. In order to prevent the classification of the granular detergent composition in the container, the ratio (al) / bl) of the average particle diameter of the (al) surface-treated water-soluble inorganic compound particles and the (bl) surfactant-containing particles is preferably Is from 0.5 to 2, more preferably from 0.5 to 1.5, and even more preferably from 0.6 to 1.3. The ratio (a 2) / (b 2) of the bulk density of (a 2) the surface-treated surface-treated water-soluble inorganic compound particles to (b 2) the surfactant-containing particles is preferably 0.5 to 2 , More preferably 0.6 to 1.5, and still more preferably 0.6 to 1.4.
( a ) 表面処理水溶性無機化合物粒子の粒状洗剤組成物中の配合量は、 1〜 5 0質量%が好ましく、 より好ましくは 5〜40質量%、 特に好ましくは 10〜3 0質量%である。 一方、 (b) 界面活性剤含有粒子の粒状洗剤組成物中の配合量 は、 10〜97質量%が好ましく、 より好ましくは 30〜95質量%、 さらに好 ましくは 50〜90質量%である。  (a) The blending amount of the surface-treated water-soluble inorganic compound particles in the granular detergent composition is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, and particularly preferably 10 to 30% by mass. . On the other hand, the blending amount of the surfactant-containing particles in the granular detergent composition is preferably 10 to 97% by mass, more preferably 30 to 95% by mass, and still more preferably 50 to 90% by mass. .
(a) 表面処理水溶性無機化合物粒子と (b) 界面活性剤含有粒子の配合比率 は (a) 粒子 Z (b) 粒子 (質量比) が、 好ましくは 1Z99〜50Z50、 よ り好ましくは 5/95〜40/60、 特に好ましくは 10/90〜30/70で ある。 質量比が 50/50を超えると流動性や溶解性が大きく劣化する場合があ る。  The mixing ratio of (a) the surface-treated water-soluble inorganic compound particles and (b) the surfactant-containing particles is (a) particle Z (b) particles (mass ratio), preferably 1Z99 to 50Z50, more preferably 5/50. It is 95-40 / 60, particularly preferably 10 / 90-30 / 70. If the mass ratio exceeds 50/50, fluidity and solubility may be significantly deteriorated.
(b) 界面活性剤含有粒子は、 界面活性剤と無機化合物とを含有する。 界面活 性剤としては、 ァニオン界面活性剤、 ノニオン界面活性剤、 カチオン界面活性剤 及び両性界面活性剤が挙げられ、 これらを 1種単独で又は 2種以上を適宜組み合 わせて用いることができる。 (b) The surfactant-containing particles contain a surfactant and an inorganic compound. Examples of the surfactant include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant. These may be used alone or in combination of two or more. It can be used together.
ァニオン界面活性剤としては、 従来より洗剤において使用されるものであれば 、 特に限定されるものではなく、 各種のァニオン界面活性剤を使用することがで きる。 例えば、 以下のものを挙げることができる。  The anion surfactant is not particularly limited as long as it is conventionally used in detergents, and various anion surfactants can be used. For example, the following can be mentioned.
(1) 炭素数 8〜18のアルキル基を有する直鎖又は分岐鎖のアルキルベンゼン スルホン酸塩 (LAS)  (1) Linear or branched alkylbenzene sulfonate having 8 to 18 carbon atoms (LAS)
(2) 炭素数 10〜20のアルキル硫酸塩 (AS) 又はアルケニル硫酸塩 (2) C10-C20 alkyl sulfate (AS) or alkenyl sulfate
(3) 炭素数 10〜20のひーォレフィンスルホン酸塩 (AOS) (3) Hyorefin sulfonate (AOS) having 10 to 20 carbon atoms
(4) 炭素数 10〜20のアルカンスルホン酸塩  (4) Alkane sulfonate having 10 to 20 carbon atoms
(5) 炭素数 10〜20の直鎖又は分岐鎖のアルキル基もしくはアルケニル基を 有し、 平均付加モル数が 10モル以下のエチレンオキサイド、 プロピレンォキサ ィド、 ブチレンォキサイド又はそれらの混合物を付加したアルキルエーテル硫酸 塩 (AES) 又はアルケニルエーテル硫酸塩  (5) Ethylene oxide, propylene oxide, butylene oxide or a mixture thereof, having a linear or branched alkyl or alkenyl group having 10 to 20 carbon atoms and having an average addition mole number of 10 mol or less. Alkyl ether sulfate (AES) or alkenyl ether sulfate with
(6) 炭素数 10〜20の直鎖又は分岐鎖のアルキル基もしくはアルケニル基を 有し、 平均付加モル数が 10モル以下のエチレンォキサイド、 プロピレンォキサ ィド、 ブチレンォキサイド又はそれらの混合物を付加したアルキルエーテルカル ボン酸塩又はアルケニルェ一テルカルボン酸塩  (6) Ethylene oxide, propylene oxide, butylene oxide or the like having a linear or branched alkyl or alkenyl group having 10 to 20 carbon atoms and an average addition mole number of 10 mol or less. Alkyl carboxylate or alkenyl ether carboxylate to which a mixture of
(7) 炭素数 10〜20のアルキルグリセリルェ一テルスルホン酸等のアルキル 多価アルコールエーテル硫酸塩  (7) alkyl polyhydric alcohol ether sulfate such as alkyl glyceryl ether sulfonic acid having 10 to 20 carbon atoms
( 8 ) 炭素数 10〜 20の高級脂肪酸塩  (8) Higher fatty acid salts having 10 to 20 carbon atoms
(9) 炭素数 8〜20の飽和又は不飽和 α—スルホ脂肪酸 (α-SF) 塩又はそ のメチル、 ェチルもしくはプロピルエステル等  (9) Saturated or unsaturated α-sulfofatty acid (α-SF) salt having 8 to 20 carbon atoms or its methyl, ethyl or propyl ester, etc.
ァニオン界面活性剤としては、 直鎖アルキルベンゼンスルホン酸 (LAS) の アルカリ金属塩 (例えば、 ナトリウム又はカリウム塩等) 、 AOS, 一 SF、 AESのアル力リ金属塩 (例えば、 ナトリゥム又は力リゥム塩等) 、 高級脂肪酸 のアルカリ金属塩 (例えば、 ナトリウム又はカリウム塩等) が好ましい。  Examples of anionic surfactants include alkali metal salts of linear alkylbenzene sulfonic acid (LAS) (eg, sodium or potassium salts), alkali metal salts of AOS, SF, and AES (eg, sodium or potassium salts) And alkali metal salts of higher fatty acids (eg, sodium or potassium salts).
ノ二オン界面活性剤としては、 例えば、 以下のものを挙げることができる。 (1) 炭素数 6〜22、 好ましくは 8〜18の脂肪族アルコールに炭素数 2〜4 のアルキレンォキサイドを平均 3〜30モル、 好ましくは 5〜20モル付加した ポリオキシアルキレンアルキル (又はアルケニル) エーテル Examples of the nonionic surfactant include the following. (1) An alkylene oxide having 2 to 4 carbon atoms is added to an aliphatic alcohol having 6 to 22 carbon atoms, preferably 8 to 18 carbon atoms, preferably 3 to 30 mol, preferably 5 to 20 mol. Polyoxyalkylene alkyl (or alkenyl) ether
この中でも、 ポリオキシエチレンアルキル (又はアルケニル) エーテル、 ポリ ォキシエチレンポリオキシプロピレンアルキル (又はアルケニル) エーテルが好 適である。 ここで使用される脂肪族アルコールとしては、 第 1級アルコール、 第 2級アルコールが挙げられる。 また、 そのアルキル基は、 分岐鎖を有していても よい。 脂肪族アルコールとしては、 第 1級アルコ一ルが好ましい。  Among these, polyoxyethylene alkyl (or alkenyl) ether and polyoxyethylene polyoxypropylene alkyl (or alkenyl) ether are preferred. The aliphatic alcohol used here includes a primary alcohol and a secondary alcohol. Further, the alkyl group may have a branched chain. As the aliphatic alcohol, a primary alcohol is preferred.
(2) ポリオキシエチレンアルキル (又はアルケニル) フエニルエーテル (2) Polyoxyethylene alkyl (or alkenyl) phenyl ether
(3) 長鎖脂肪酸アルキルエステルのエステル結合間にアルキレンォキサイドが 付加した、 例えば下記一般式 (I) で表される脂肪酸アルキルエステルアルコキ シレート (3) Alkylene oxide is added between ester bonds of a long-chain fatty acid alkyl ester, for example, a fatty acid alkyl ester alkoxylate represented by the following general formula (I)
R^O (OA) nOR2 … (I)R ^ O (OA) n OR 2 … (I)
(式中、 RiCOは、 炭素数 6〜22、 好ましくは 8〜18の脂肪酸残基を示し 、 OAは、 エチレンオキサイド、 プロピレンオキサイド等の炭素数 2〜4、 好ま しくは 2〜 3のアルキレンォキサイドの付加単位を示し、 nはアルキレンォキサ イドの平均付加モル数を示し、 一般に 3〜30、 好ましくは 5〜20の数である 。 R2は炭素数 1〜3の置換基を有してもよい低級 (炭素数 1〜4) アルキル基 を示す。 ) (Wherein, RiCO represents a fatty acid residue having 6 to 22 carbon atoms, preferably 8 to 18 carbon atoms, and OA represents an alkylene group having 2 to 4 carbon atoms, preferably 2 to 3 carbon atoms such as ethylene oxide and propylene oxide. And n represents the average number of moles of alkylene oxide added, and is generally a number of 3 to 30, preferably 5 to 20. R 2 has a substituent having 1 to 3 carbon atoms. May represent a lower (C1-4) alkyl group.)
(4) ポリオキシエチレンソルビ夕ン脂肪酸エステル  (4) Polyoxyethylene sorbitan fatty acid ester
(5) ポリオキシエチレンソルビット脂肪酸エステル  (5) Polyoxyethylene sorbite fatty acid ester
(6) ポリオキシエチレン脂肪酸エステル  (6) Polyoxyethylene fatty acid ester
(7) ポリオキシエチレン硬化ヒマシ油  (7) Polyoxyethylene hydrogenated castor oil
(8) グリセリン脂肪酸エステル  (8) Glycerin fatty acid ester
上記のノニオン界面活性剤の中でも、 融点が 50 以下で HLBが 9〜16の ポリオキシエチレンアルキル (又はアルケニル) エーテル、 ポリオキシエチレン ポリオキシプロピレンアルキル (又はアルケニル) エーテル、 脂肪酸メチルエス テルにエチレンォキサイドが付加した脂肪酸メチルエステルエトキシレート、 脂 肪酸メチルエステルにエチレンォキサイドとプロピレンォキサイドが付加した脂 肪酸メチルエステルエトキシプロポキシレート等が好適に用いられる。 また、 こ れらのノニォン界面活性剤は 1種単独で又は 2種以上を適宜組み合わせて用いる ことができる。 Among the above nonionic surfactants, polyoxyethylene alkyl (or alkenyl) ethers having a melting point of 50 or less and an HLB of 9 to 16, polyoxyethylene polyoxypropylene alkyl (or alkenyl) ethers, fatty acid methyl esters, and ethylene oxide Fatty acid methyl ester ethoxylate to which side is added, fatty acid methyl ester ethoxypropoxylate to which ethylene oxide and propylene oxide are added to fatty acid methyl ester, and the like are preferably used. These nonionic surfactants may be used alone or in combination of two or more. be able to.
なお、 本発明におけるノニオン界面活性剤の HLBとは、 Gr i f f i nの方 法により求められた値である (吉田、 進藤、 大垣、 山中共編、 「新版界面活性剤 ハンドプック」 、 工業図書株式会社、 1991年、 第 234頁参照) 。  The HLB of the nonionic surfactant in the present invention is a value obtained by the Griffin method (Yoshida, Shindo, Ogaki, Yamanaka co-edited, "New Edition Surfactant Handpuck", Industrial Books Co., Ltd., 1991, p. 234).
また、 本発明における融点とは、 J I S K 0064-1992 「化学製品の 融点及び溶融範囲測定方法」 に記載されている融点測定法によって測定された値 カチオン界面活性剤としては、 例えば、 以下のものを挙げることができる。  In addition, the melting point in the present invention is a value measured by a melting point measuring method described in JISK 0064-1992 "Method for measuring melting point and melting range of chemical products" As the cationic surfactant, for example, Can be mentioned.
( 1 ) ジ長鎖アルキルジ短鎖アルキル型 4級ァンモニゥム塩  (1) Di long chain alkyl di short chain alkyl type quaternary ammonium salt
( 2 ) モノ長鎖アルキルトリ短鎖アルキル型 4級ァンモニゥム塩  (2) Mono long chain alkyl tri short chain alkyl type quaternary ammonium salt
(3) トリ長鎖アルキルモノ短鎖アルキル型 4級ァンモニゥム塩  (3) Tri long chain alkyl mono short chain alkyl type quaternary ammonium salt
(上記長鎖アルキルは炭素数 12〜26、 好ましくは 14〜 18のアルキル基、 短鎖アルキルは炭素数 1〜4、 好ましくは 1〜2のアルキル基、 ベンジル基、 炭 素数 2〜4、 好ましくは 2〜 3のヒドロキシアルキル基、 又はポリオキシアルキ レン基を示す。 )  (The long-chain alkyl is an alkyl group having 12 to 26 carbon atoms, preferably 14 to 18 carbon atoms, and the short-chain alkyl is an alkyl group having 1 to 4 carbon atoms, preferably 1 to 2 carbon atoms, a benzyl group, and 2 to 4 carbon atoms. Represents a 2-3 hydroxyalkyl group or a polyoxyalkylene group.)
両性界面活性剤としては、 イミダゾリン系や、 アミドべ夕イン系等の両性界面 活性剤を挙げることができる。  Examples of the amphoteric surfactant include an amphoteric surfactant such as an imidazoline-based or amido-bein-in-based surfactant.
(b) 界面活性剤含有粒子中の界面活性剤は、 洗浄性能の点から、 ァニオン界 面活性剤とノ二オン界面活性剤が好ましく、 ァニオン界面活性剤とノ二オン界面 活性剤との併用がより好ましい。 ァニォン界面活性剤とノニォン界面活性剤を併 用する場合には、 ァニオン界面活性剤とノニオン界面活性剤の配合量の質量比 ( ァニオン界面活性剤 Zノニオン界面活性剤) が、 0. 1〜 10が好ましく、 0. 2〜8がより好ましく、 0. 3〜7がさらに好ましい。  (b) The surfactant in the surfactant-containing particles is preferably an anion surfactant and a nonion surfactant from the viewpoint of cleaning performance, and a combination use of an anion surfactant and a nonion surfactant. Is more preferred. When the anionic surfactant and the nonionic surfactant are used together, the mass ratio of the compounding amounts of the anionic surfactant and the nonionic surfactant (anionic surfactant Z nonionic surfactant) is 0.1 to 10%. Is preferred, 0.2 to 8 is more preferred, and 0.3 to 7 is even more preferred.
界面活性剤の配合量は、 (a) 表面処理水溶性無機化合物粒子との混合による 溶解性や流動性の観点から、 ( b ) 界面活性剤含有粒子中に好ましくは 10〜 5 0質量%、 より好ましくは 15〜40質量%である。 50質量%を超えて配合す ると流動性が劣化する場合があり、 10質量%未満であると溶解性が劣化する場 合がある。  The amount of the surfactant is preferably (10) 50 to 50% by mass in the surfactant-containing particles (a) from the viewpoint of solubility and fluidity due to mixing with the surface-treated water-soluble inorganic compound particles. More preferably, it is 15 to 40% by mass. If the amount is more than 50% by mass, the fluidity may be deteriorated. If the amount is less than 10% by mass, the solubility may be deteriorated.
(b) 界面活性剤含有粒子は、 さらに無機化合物を含む。 これにより、 流動性 改善の効果が得られる。 無機化合物としては、 特に限定されないが、 下記に示す 無機ビルダー、 還元剤、 増量剤に含まれる全ての無機化合物を用いることができ(b) The surfactant-containing particles further contain an inorganic compound. This allows for liquidity The effect of improvement is obtained. The inorganic compound is not particularly limited, but all inorganic compounds contained in the following inorganic builders, reducing agents, and extenders can be used.
、 1種単独で又は 2種以上を適宜組み合わせて用いることができる。 この中でも 無機化合物としては、 炭酸ナトリウム、 炭酸カリウム、 硫酸ナトリウム、 アルミ ノ珪酸塩が好ましい。 , Can be used alone or in combination of two or more. Among them, as the inorganic compound, sodium carbonate, potassium carbonate, sodium sulfate, and aluminosilicate are preferable.
( b ) 界面活性剤含有粒子中の無機化合物の配合量は、 1 0〜8 0質量%、 好 ましくは 2 0〜7 0質量%、 より好ましくは 3 0〜6 0質量%である。 無機化合 物の配合量が少なすぎると流動性が劣化する場合があり、 多すぎると粉の発塵が 起こる場合がある。  (b) The compounding amount of the inorganic compound in the surfactant-containing particles is 10 to 80% by mass, preferably 20 to 70% by mass, and more preferably 30 to 60% by mass. If the amount of the inorganic compound is too small, the fluidity may be degraded. If the amount is too large, dusting of the powder may occur.
( b ) 界面活性剤含有粒子は、 さらに水溶性高分子化合物を含むことが好まし く、 これにより、 経時保存後の流動性や固化性をさらに改善することができる。 水溶性高分子化合物としては、 上記 (a ) 表面処理水溶性無機化合物粒子におい て挙げられた水溶性高分子化合物と同様のものが挙げられる。 なお、 ここで用い る水溶性高分子化合物は、 (a ) 水溶性高分子化合物と同じであってもよいし異 なっていてもよい。 (b ) 界面活性剤含有粒子中の水溶性高分子化合物としては 、 アクリル酸系高分子化合物やセルロース系高分子化合物が好ましく、 アクリル 酸系高分子化合物としては、 アクリル酸重合体、 アクリル酸/マレイン酸の共重 合体が好ましい。 セルロース系高分子化合物としては、 カルポキシメチルセル口 ース (C M C) が好ましい。 水溶性高分子化合物の重量平均分子量は 1, 0 0 0 〜 1 0 0, 0 0 0が好ましい。 水溶性高分子化合物は 1種単独で又は 2種以上を 適宜組み合わせて用いることができる。  (b) The surfactant-containing particles preferably further contain a water-soluble polymer compound, whereby the fluidity and solidification after storage over time can be further improved. Examples of the water-soluble polymer compound include the same water-soluble polymer compounds as those described above in (a) the surface-treated water-soluble inorganic compound particles. The water-soluble polymer compound used here may be the same as or different from (a) the water-soluble polymer compound. (B) As the water-soluble polymer compound in the surfactant-containing particles, an acrylic acid polymer compound or a cellulose polymer compound is preferable, and as the acrylic polymer compound, an acrylic acid polymer, acrylic acid / Maleic acid copolymers are preferred. As the cellulosic polymer compound, carboxymethyl cellulose (CMC) is preferable. The weight average molecular weight of the water-soluble polymer compound is preferably from 1,000 to 1,000,000. The water-soluble polymer compound can be used alone or in an appropriate combination of two or more.
( b ) 界面活性剤含有粒子中の水溶性高分子化合物の配合量は、 0 . 1〜1 0 質量%、 好ましくは 0 . 5 %〜9質量%、 より好ましくは 1〜8質量%である。 水溶性高分子化合物の配合量が少なすぎると、 目的とする効果が得られない場合 があり、 多すぎると (b ) 界面活性剤含有粒子そのものの溶解性が劣化してしま う場合がある。  (b) The compounding amount of the water-soluble polymer compound in the surfactant-containing particles is 0.1 to 10% by mass, preferably 0.5% to 9% by mass, and more preferably 1 to 8% by mass. . If the amount of the water-soluble polymer compound is too small, the intended effect may not be obtained. If the amount is too large, the solubility of (b) the surfactant-containing particles themselves may be deteriorated.
本発明の (b ) 界面活性剤含有粒子には、 上記必須成分のほかに下記に示す任 意成分を含有することができる。 なお、 無機化合物は必須成分であるが、 下記に も重複してより詳細に記載される。 水溶性高分子化合物も重複して記載される。 これら任意成分は、 各々 1種単独で又は 2種以上を適宜組み合わせて用いること ができる。 The surfactant-containing particles (b) of the present invention may contain the following optional components in addition to the above essential components. Although the inorganic compound is an essential component, it will be described in more detail below. Water-soluble polymer compounds are also described redundantly. Each of these optional components can be used alone or in combination of two or more.
(1) 洗浄ビルダー  (1) Cleaning builder
(b) 界面活性剤含有粒子中に配合される洗浄ビルダーとしては、 無機及び有 機ビルダ一が挙げられる。  (b) Examples of the washing builder to be incorporated into the surfactant-containing particles include inorganic and organic builders.
(1 - 1) 無機ビルダー  (1-1) Inorganic builder
無機ビルダ一としては、 例えば炭酸ナトリウム、 炭酸カリウム、 重炭酸ナトリ ゥム、 亜硫酸ナトリウム、 セスキ炭酸ナトリウム、 珪酸ナトリウム、 結晶性層状 珪酸ナトリウム、 非結晶性層状珪酸ナトリゥム等のアル力リ性塩、 硫酸ナトリウ ム等の中性塩、 オルソリン酸塩、 ピロリン酸塩、 トリポリリン酸塩、 メタリン酸 塩、 へキサメタリン酸塩、 フィチン酸塩等のリン酸塩、 下記一般式 (I I) X 1 (M20) · A 123 · y1 (S i〇2) · w1 (H2〇) (I I) Examples of the inorganic builder include sodium salt, potassium carbonate, sodium bicarbonate, sodium sulfite, sodium sesquicarbonate, sodium silicate, crystalline layered sodium silicate, amorphous layered sodium silicate, and the like, sulfuric acid, and the like. Neutral salts such as sodium, orthophosphates, pyrophosphates, tripolyphosphates, metaphosphates, hexametaphosphates, phosphates such as phytates, the following general formula (II) X 1 (M 20 ) · A 1 23 · y 1 (S i〇 2 ) · w 1 (H 2 〇) (II)
(式中、 Mはナトリウム、 カリウム等のアルカリ金属原子、 X1、 y1及び w1は 各成分のモル数を示し、 一般的には、 X 1は 0. 7〜1. 5、 y1は 0. 8〜6 の数、 w1は任意の正数を示す。 ) (Wherein, M is an alkali metal atom such as sodium, potassium, etc., X 1 , y 1, and w 1 indicate the number of moles of each component, and generally, X 1 is 0.7 to 1.5, y 1 the number of 0. 8~6, w 1 represents any positive number.)
で表される結晶性アルミノ珪酸塩、 下記一般式 (1 1 1) 、 (IV) A crystalline aluminosilicate represented by the following general formulas (1 1 1) and (IV)
X2 (M20) · A 1203 · y2 (S i 02) - w2 (H20) (I I I) (式中、 Mはナトリウム、 カリウム等のアルカリ金属原子、 x2、 y2及び w2は 各成分のモル数を示し、 一般的には、 X2は 0. 7〜1. 2、 y2は 1. 6〜2 . 8、 w2は 0又は任意の正数を示す。 ) X 2 (M 2 0) · A 1 2 0 3 · y 2 (S i 0 2) - w 2 (H 2 0) (III) ( wherein, M is sodium, an alkali metal atom such as potassium, x 2 , Y 2 and w 2 represent the number of moles of each component, and generally, X 2 is 0.7 to 1.2, y 2 is 1.6 to 2.8, w 2 is 0 or any positive number. Indicate the number.)
X3 (M20) · A 1203 · Y 3 (S i 02) - z 3 (P205) - w3 (H20) X 3 (M 2 0) · A 1 2 0 3 · Y 3 (S i 0 2) - z 3 (P 2 0 5) - w 3 (H 2 0)
(I V) (I V)
(式中、 Mはナトリウム、 カリウム等のアルカリ金属原子、 x3、 y3、 z3及び w3は各成分のモル数を示し、 一般的には、 X3は 0. 2〜1. 1、 y3は 0. 2 〜4. 0、 23は0. 001〜0. 8、 w3は 0又は任意の正数を示す。 ) で表される無定形アルミノ珪酸塩等が挙げられる。 無機ビルダーの中では、 炭酸 ナトリウム、 炭酸カリウム、 珪酸ナトリウム、 トリポリリン酸ナトリウム、 アル ミノ珪酸ナトリゥムが好ましい。 (Wherein, M is an alkali metal atom such as sodium or potassium, x 3 , y 3 , z 3 and w 3 represent the number of moles of each component, and generally, X 3 is 0.2 to 1.1. , y 3 from 0.2 to 4.0, 2 3 0. 001-0. 8, w 3 0 or amorphous aluminosilicates and the like represented by any showing a positive number.) can be mentioned. Among the inorganic builders, sodium carbonate, potassium carbonate, sodium silicate, sodium tripolyphosphate, and sodium aluminum silicate are preferred.
(1 -2) 有機ビルダー 有機ビルダーとしては、 例えば二トリ口トリ酢酸塩、 エチレンジアミンテトラ 酢酸塩、 i3—ァラニンジ酢酸塩、 ァスパラギン酸ジ酢酸塩、 メチルグリシンジ酢 酸塩、 イミノジコハク酸塩等のアミノカルボン酸塩;セリンジ酢酸塩、 ヒドロキ シイミノジコハク酸塩、 ヒドロキシェチルエチレンジァミン三酢酸塩、 ジヒドロ キシェチルグリシン塩等のヒドロキシァミノカルボン酸塩;ヒドロキシ酢酸塩、 酒石酸塩、 クェン酸塩、 ダルコン酸塩等のヒドロキシカルボン酸塩; ピロメリッ ト酸塩、 ベンゾポリカルボン酸塩、 シクロペンタンテトラカルボン酸塩等のシク ロカルボン酸塩;カルポキシメチルタルトロネート、 力ルポキシメチルォキシサ クシネート、 ォキシジサクシネート、 酒石酸モノ又はジサクシネート等のエーテ ルカルボン酸塩;ィタコン酸、 フマル酸、 テトラメチレン— 1, 2—ジカルボン 酸、 コハク酸、 ァスパラギン酸等の重合体又は共重合体;デンプン、 セルロース 、 アミロース、 ぺクチン等の多糖類酸化物やカルポキシメチルセルロース等の多 糖類が挙げられる。 (1 -2) Organic builder Examples of the organic builder include aminocarboxylic acid salts such as triacetate triacetate, ethylenediaminetetraacetate, i3-alanine diacetate, aspartate diacetate, methylglycine diacetate, and iminodisuccinate; serine diacetate Hydroxyamino carboxylates such as hydroxyiminodisuccinate, hydroxyethylethylenediamine triacetate, dihydroxysethylglycine; hydroxycarboxylates such as hydroxyacetate, tartrate, citrate and dalconate Cyclocarboxylates such as pyromellitate, benzopolycarboxylate, and cyclopentanetetracarboxylate; carboxymethyl tartronate, carboxymethyloxysuccinate, oxydisuccinate, tartaric acid Ethers such as mono or disuccinate Rubonates; polymers or copolymers such as itaconic acid, fumaric acid, tetramethylene-1,2-dicarboxylic acid, succinic acid, and aspartic acid; polysaccharide oxides such as starch, cellulose, amylose, and pectin; And polysaccharides such as oxymethylcellulose.
これらの有機ビルダーの中では、 クェン酸塩、 ァミノカルボン酸塩、 ヒドロキ シァミノカルボン酸塩、 ポリアクリル酸塩、 アクリル酸一マレイン酸共重合体、 ポリアセタールカルボン酸塩が好ましく、 特に、 ヒドロキシイミノジコハク酸塩 、 重量平均分子量が 1, 000〜 80, 000のァクリル酸ーマレイン酸共重合体 の塩、 ポリアクリル酸塩や特開昭 54— 52196号公報に記載の重量平均分子 量が 800〜1, 000, 000、 好ましくは5, 000〜200, 000のポリグ リオキシル酸等のポリアセ夕ールカルポン酸塩が好適である。  Among these organic builders, preferred are citrate, aminocarboxylate, hydroxyaminocarboxylate, polyacrylate, acrylate-maleic acid copolymer, and polyacetalcarboxylate, and particularly, hydroxyiminodisuccinate. A salt of an acrylic acid-maleic acid copolymer having a weight average molecular weight of 1,000 to 80,000, a polyacrylic acid salt and a weight average molecular weight of 800 to 1,000,000 described in JP-A-54-52196. Suitable are polyacetone carponic acid salts such as 5,000, preferably 5,000 to 200,000 polyglyoxylic acid.
有機ビルダーの配合量は、 (b) 界面活性剤含有粒子中に好ましくは 0. 5〜 20質量%、 より好ましくは 1〜: L 0質量%である。  The blending amount of the organic builder is preferably 0.5 to 20% by mass, more preferably 1 to 0% by mass in the surfactant-containing particles.
また、 洗浄力、 洗濯液中での汚れ分散性を改善する目的から、 クェン酸塩、 ァ ミノカルボン酸塩、 ヒドロキシァミノカルボン酸塩、 ポリアクリル酸塩、 アタリ ル酸ーマレイン酸共重合体、 ポリアセタ一ルカルボン酸塩等の有機ビルダーとゼ ォライ卜等の無機ビルダーとを併用するのが好ましい。  Also, for the purpose of improving detergency and dispersibility of stains in washing liquid, citrate, aminocarboxylate, hydroxyaminocarboxylate, polyacrylate, atalylic acid-maleic acid copolymer, polyaceta It is preferable to use an organic builder such as a monocarboxylate and an inorganic builder such as zeolite in combination.
(2) 溶解促進剤  (2) Dissolution promoter
(b) 界面活性剤含有粒子中に配合される溶解促進剤としては、 例えば、 炭酸 カリウムや、 硫酸アンモニゥム、 塩化アンモニゥム等の無機アンモニゥム塩、 P 一トルエンスルホン酸ナトリウム、 キシレンスルホン酸ナトリウム、 キュメンス ルホン酸ナトリゥム等の炭素数 1〜 5の短鎖アルキルを有するベンゼンスルホン 酸塩、 安息香酸ナトリウム、 ベンゼンスルホン酸ナトリウム、 塩化ナトリウム、 クェン酸、 D—グルコース、 尿素、 蔗糖等の水溶性物質が挙げられる。 (b) Examples of the dissolution promoter to be incorporated into the surfactant-containing particles include, for example, inorganic ammonium salts such as potassium carbonate, ammonium sulfate, and ammonium chloride; Sodium monobenzenesulfonate, sodium xylenesulfonate, sodium benzenesulfonate having 1 to 5 carbon atoms such as sodium cumene sulfonate, sodium benzoate, sodium benzenesulfonate, sodium chloride, citric acid, D- Examples include water-soluble substances such as glucose, urea, and sucrose.
このうち、 炭酸カリウム、 塩化ナトリウムが好ましく、 溶解性向上効果とコス トのバランスから、 特に炭酸力リゥムが好ましい。  Of these, potassium carbonate and sodium chloride are preferable, and carbon dioxide rim is particularly preferable in view of the balance between the solubility improving effect and the cost.
炭酸カリウムを配合する場合、 その配合量は溶解性向上効果の点から、 (b) 界面活性剤含有粒子中に好ましくは 1〜15質量%、 より好ましくは 2〜12質 量%、 さらに好ましくは 5〜10質量%である。  When potassium carbonate is blended, the blending amount is preferably 1 to 15% by mass, more preferably 2 to 12% by mass, more preferably 2 to 12% by mass in the surfactant-containing particles from the viewpoint of the solubility improving effect. It is 5 to 10% by mass.
塩化ナトリウムを配合する場合、 その配合量は溶解性向上効果の点から、 (b When sodium chloride is compounded, the amount of the compound should be as follows: (b)
) 界面活性剤含有粒子中に好ましくは 1〜10質量%、 より好ましくは 2〜8質 量%、 さらに好ましくは 3〜 7質量%である。 ) In the surfactant-containing particles, it is preferably 1 to 10% by mass, more preferably 2 to 8% by mass, and still more preferably 3 to 7% by mass.
(3) 膨潤性水不溶性物質  (3) Swellable water-insoluble substance
(b) 界面活性剤含有粒子中に配合される膨潤性水不溶性物質としては、 粉末 セルロース、 結晶性セルロース、 ベントナイト等が挙げられる。  (b) Examples of the swellable water-insoluble substance to be incorporated in the surfactant-containing particles include powdered cellulose, crystalline cellulose, bentonite, and the like.
(4) 蛍光剤: ビス (トリアジニルアミノスチルベン) ジスルホン酸誘導体 (チ ノパール AMS— GX) 、 ビス (スルホスチリル) ビフエニル塩 [チノパール C BS-X] 等  (4) Fluorescent agent: bis (triazinylaminostilbene) disulfonic acid derivative (Tinopal AMS—GX), bis (sulfostyryl) biphenyl salt [Tinopearl CBS-X], etc.
(5) 帯電防止剤:ジアルキル型 4級アンモニゥム塩等のカチオン界面活性剤等 (5) Antistatic agent: cationic surfactant such as dialkyl-type quaternary ammonium salt
(6) 再汚染防止剤:カルポキシメチルセルロース等のセルロース誘導体等(6) Anti-redeposition agent: Cellulose derivatives such as carboxymethylcellulose
(7) 増量剤:硫酸ナトリウム、 硫酸カリウム等 (7) Extender: sodium sulfate, potassium sulfate, etc.
(8) 還元剤:亜硫酸ナトリウム、 亜硫酸カリウム等  (8) Reducing agent: sodium sulfite, potassium sulfite, etc.
(9) 香料  (9) Fragrance
(10) 色素  (10) Dye
(11) 漂白活性化触媒  (11) Bleaching activation catalyst
漂白活性化触媒は、 銅、 鉄、 マンガン、 ニッケル、 コバルト、 クロム、 バナジ ゥム、 ルテニウム、 ロジウム、 パラジウム、 レニウム、 タングステン、 モリブデ ン等の遷移金属原子と配位子とが、 窒素原子や酸素原子等を介して錯体を形成す るものであって、 含まれる遷移金属としては、 コバルト、 マンガン等が好ましく 、 特にマンガンが好ましい。 Bleaching activation catalysts include transition metal atoms and ligands such as copper, iron, manganese, nickel, cobalt, chromium, vanadium, ruthenium, rhodium, palladium, rhenium, tungsten, and molybdenum, and nitrogen atoms and oxygen. A complex is formed via an atom or the like, and the transition metal contained is preferably cobalt, manganese, or the like. Particularly, manganese is preferred.
(b) 界面活性剤含有粒子の平均粒子径は好ましくは 200〜1500 01、 より好ましくは 250〜 1000 rn, さらに好ましくは 300〜700 mで ある。 また、 嵩密度は好ましくは 0. 4〜1. 2gZcm3、 より好ましくは 0 . 5〜1. 0 gZ cm3である。 平均粒子径及び嵩密度の測定は、 実施例記載の 方法による。 (b) The average particle size of the surfactant-containing particles is preferably from 200 to 150001, more preferably from 250 to 1000 rn, even more preferably from 300 to 700 m. The bulk density is preferably 0. 4~1. 2gZcm 3, more preferably 0. 5~1. 0 gZ cm 3 . The average particle diameter and the bulk density are measured according to the methods described in Examples.
(b) 界面活性剤含有粒子の水分量は溶解性と保存安定性の点から好ましくは 4〜10質量%、 より好ましくは 5〜9質量%、 さらに好ましくは 5〜8質量% である。  (b) The water content of the surfactant-containing particles is preferably 4 to 10% by mass, more preferably 5 to 9% by mass, and still more preferably 5 to 8% by mass from the viewpoint of solubility and storage stability.
(b) 界面活性剤含有粒子は、 以下の造粒方法によって得ることができる。 原 料粉末及びバインダ一成分 (界面活性剤、 水、 液体高分子成分等) を捏和 ·混練 した後、 押し出して造粒する押し出し造粒法、 捏和 ·混線した後、 得られた固形 洗剤を破碎して造粒する捏和,破碎造粒法、 原料粉末にバインダー成分を添加し 撹拌羽根で撹拌して造粒する撹拌造粒法、 原料粉末を転動させつつバインダ一成 分を噴霧して造粒する転動造粒法、 原料粉末を流動化させつつ、 液体バインダー を噴霧し造粒する流動層造粒法等が挙げられる。 これら造粒方法で使用可能な具 体的装置や条件等は特開 2003— 105400号公報、 特開 2003— 238 998号公報、 日本粉体技術協会編及び造粒ハンドブック第一版等に記載の通り である。  (b) The surfactant-containing particles can be obtained by the following granulation method. An extruding granulation method in which the raw material powder and one component of the binder (surfactant, water, liquid polymer component, etc.) are kneaded and kneaded, and then extruded and granulated. Kneading. Kneading, crushing and granulating methods to crush and granulate, stirring granulation method in which a binder component is added to raw material powder and agitating with stirring blades to granulate, spraying one component of binder while rolling raw material powder And a fluidized bed granulation method in which a raw material powder is fluidized while a liquid binder is sprayed and granulated. Specific equipment and conditions that can be used in these granulation methods are described in JP-A-2003-105400, JP-A-2003-238998, edited by the Japan Powder Technology Association and the first edition of the Granulation Handbook. It is as follows.
本発明の粒状洗剤組成物は、 貯蔵時の固化 (ケーキング) を防止する観点から 、 (a) 表面処理水溶性無機化合物粒子と (b) 界面活性剤含有粒子のいずれか 一方、 好ましくは両方を有機又は無機の微粉体で表面処理することが好ましい。 これら微粉体としては 1次粒子径 30 m以下、 好ましくは 0. l〜10 mの 微粉体であれば特に限定されないが、 例としては常温固体の界面活性剤、 長鎖脂 肪酸アルカリ土類金属塩、 アルミノ珪酸塩、 シリカ、 粘土鉱物等が挙げられる。 このうちアルミノ珪酸塩が好ましい。  The granular detergent composition of the present invention comprises, from the viewpoint of preventing solidification (caking) during storage, one of (a) the surface-treated water-soluble inorganic compound particles and (b) the surfactant-containing particles, and preferably both of them. It is preferable to perform a surface treatment with an organic or inorganic fine powder. The fine powder is not particularly limited as long as it is a fine powder having a primary particle diameter of 30 m or less, preferably 0.1 to 10 m. Examples of the fine powder include a room temperature solid surfactant, a long-chain fatty acid alkaline earth, and the like. Examples include metal salts, aluminosilicates, silica, clay minerals, and the like. Of these, aluminosilicates are preferred.
(a) 粒子及び/又は (b) 粒子を微粉体で表面処理する場合、 微粉体の量は 、 粒状洗剤組成物中好ましくは 0. 1〜10質量%、 より好ましくは 0. 3〜5 質量%、 さらに好ましくは 0. 5〜 3質量%である。 本発明の粒状洗剤組成物の水分量は、 溶解性と保存安定性の点から、 好ましく は 10質量%以下、 より好ましくは 4〜9質量%、 さらに好ましくは 5〜8質量When (a) particles and / or (b) particles are surface-treated with fine powder, the amount of the fine powder is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass in the granular detergent composition. %, More preferably 0.5 to 3% by mass. The water content of the granular detergent composition of the present invention is preferably 10% by mass or less, more preferably 4 to 9% by mass, and still more preferably 5 to 8% by mass from the viewpoint of solubility and storage stability.
/6 ある。 / 6
本発明においては、 特に下記条件を満たす (a) 表面処理水溶性無機化合物粒 子及び (b) 界面活性剤含有粒子の組み合わせが好ましい。  In the present invention, a combination of (a) a surface-treated water-soluble inorganic compound particle and (b) a surfactant-containing particle that particularly satisfies the following conditions is preferable.
(a) 粒子の水溶性無機化合物が、 炭酸ナトリウム又は炭酸カリウムであり、 水 溶性高分子化合物がビニル系高分子化合物、 多糖類又はその誘導体及びポリエス テル系高分子化合物から選ばれる 1種又は 2種以上であり、 (a) 粒子中の水難 溶性化合物の配合量が 10質量%未満であり、 かつ (b) 界面活性剤含有粒子中 の界面活性剤配合量が 10〜 50質量%である。  (a) The water-soluble inorganic compound of the particles is sodium carbonate or potassium carbonate, and the water-soluble polymer compound is one or two selected from a vinyl polymer compound, a polysaccharide or a derivative thereof, and a polyester polymer compound. (A) the amount of the poorly water-soluble compound in the particles is less than 10% by mass, and (b) the amount of the surfactant in the surfactant-containing particles is 10 to 50% by mass.
本発明の粒状洗剤組成物には、 (a) 表面処理水溶性無機化合物粒子と (b) 界面活性剤含有粒子以外に、 その他酵素粒子、 漂白剤粒子、 漂白活性化剤粒子等 の粒子を含むことができる。  The granular detergent composition of the present invention contains, in addition to (a) surface-treated water-soluble inorganic compound particles and (b) surfactant-containing particles, other particles such as enzyme particles, bleach particles, and bleach activator particles. be able to.
(1) 酵素粒子  (1) Enzyme particles
酵素粒子中の酵素は、 現在、 粒状の衣料用洗剤に用いられている市販の酵素粒 子をそのまま使用することができる。 具体的には、 サビナ一ゼ 12T、 カンナ一 ゼ 12Τ、 24Τ、 エバラーゼ 8 T、 D e o z yme等のプロテアーゼ、 リボラ ーゼウルトラ 50 T、 L I ΡΕΧ 50 Τ等のリパーゼ、 ターマミル 100下等の アミラーゼ、 セルザィム 0. 7 Τ等のセルラーゼ (以上、 ノポザィムズ社製) 、 マクサカル 45 G、 マクサぺム 30 G、 プロペラーゼ 1000 E (以上、 ジエネ ンコア社製) 等が挙げられる。  As the enzyme in the enzyme particles, commercially available enzyme particles currently used for granular clothing detergents can be used as they are. Specifically, proteases such as sabinase 12T, kannase 12Τ, 24Τ, evarase 8T, Deozyme, lipases such as revorase ultra 50T, LIΡΕΧ50Τ, etc., amylase such as Termamyl 100, etc., cellzym 0 Cellulase of 7Τ and others (above, manufactured by Nopozymes), Maxacal 45G, Maxam 30G, Properase 1000E (above, manufactured by Diene Core) and the like.
酵素粒子の平均粒子径は、 溶解性及び保存安定性の点から、 200〜1000 mが好ましく、 より好ましくは 300〜700 mである。 平均粒子径の測定 は、 後述する実施例に記載の測定法による。  The average particle size of the enzyme particles is preferably from 200 to 1000 m, more preferably from 300 to 700 m, from the viewpoint of solubility and storage stability. The measurement of the average particle diameter is based on the measuring method described in Examples described later.
酵素粒子の配合量は、 洗浄性能の点から、 粒状洗剤組成物全量に対し好ましく は 0. 1〜5質量%、 より好ましくは 0. 2〜2質量%である。  The amount of the enzyme particles is preferably 0.1 to 5% by mass, more preferably 0.2 to 2% by mass, based on the total amount of the granular detergent composition, from the viewpoint of cleaning performance.
(2) 漂白剤粒子  (2) Bleach particles
漂白剤粒子としては、 過酸化水素又は水に溶解したときに過酸化水素を発生す る過酸化物からなり、 通常、 過炭酸ナトリウム、 過ホウ酸ナトリウムの一方ある いは両方が用いられる。 特に、 経時安定性の点から過炭酸ナトリウムが好ましい 。 これらの過酸化物は、 該過酸化物からなる粒子の表面に、 水分や他の洗浄剤成 分等が接触することによって分解が生じるのを防止するために、 被覆等の処理を 施した形態で用いられる。 被凝が施された粒子形態の酸素系漂白剤は、 種々のも のが提案されており、 例えば特許第 2 9 1 8 9 9 1号公報に記載の漂白剤粒子を 挙げることができる。 この漂白剤粒子は、 流動状態を保った過炭酸ナトリウム粒 子にホウ酸水溶液とケィ酸アルカリ金属塩水溶液とを別々に噴霧して乾燥してな る造粒物である。 上記の他に、 従来知られているキレート剤等の安定化剤を被覆 剤と併用してもよい。 被覆された過炭酸ナトリウム粒子の平均粒子径は、 過炭酸 ナトリウム粒子の安定性及び溶解性の点から、 1 0 0〜2 0 0 0 mが好ましく 、 より好ましくは 2 0 0〜: L 0 0 0 i m、 さらに好ましくは 3 0 0〜 8 0 0 m であり、 このようなものとして三菱瓦斯化学 (株) 製の S P C— Dが挙げられる 漂白剤粒子の配合量は、 漂白性能と効率の点から、 粒状洗剤組成物全量に対し 、 好ましくは 0 . 5〜3 0質量%、 より好ましくは 1〜2 0質量%である。 ( 3 ) 漂白活性化剤粒子 Bleach particles consist of hydrogen peroxide or a peroxide that generates hydrogen peroxide when dissolved in water, usually one of sodium percarbonate and sodium perborate Or both are used. In particular, sodium percarbonate is preferred from the viewpoint of stability over time. These peroxides are treated with a coating or the like in order to prevent decomposition due to contact of water or other detergent components with the surfaces of the particles composed of the peroxide. Used in Various oxygen bleaching agents in the form of particles subjected to coagulation have been proposed, and examples thereof include bleaching agent particles described in Japanese Patent No. 2918991. The bleaching agent particles are granulated products obtained by separately spraying an aqueous boric acid solution and an aqueous solution of an alkali metal silicate onto particles of sodium percarbonate kept in a fluid state, and drying. In addition to the above, a conventionally known stabilizer such as a chelating agent may be used in combination with the coating agent. The average particle diameter of the coated sodium percarbonate particles is preferably from 100 to 200 m, more preferably from 200 to L 00, from the viewpoint of stability and solubility of the sodium percarbonate particles. 0 im, more preferably 300 to 800 m, such as SPC-D manufactured by Mitsubishi Gas Chemical Co., Ltd. The blending amount of the bleaching particles depends on the bleaching performance and efficiency. Therefore, it is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass, based on the total amount of the granular detergent composition. (3) Bleaching activator particles
漂白活性化剤粒子中の漂白活性化剤は、 テトラァセチルエチレンジァミン、 炭 素数 8〜1 2のアルカノィルォキシベンゼンスルホン酸、 炭素数 8〜1 2のアル カノィルォキシ安息香酸又はそれらの塩が挙げられ、 このうち、 4ーデカノィル ォキシ安息香酸、 4—ドデカノィルォキシベンゼンスルホン酸ナトリウム、 4— ノナノィルォキシベンゼンスルホン酸ナトリウムが好ましく、 特に漂白効果の点 から、 4ーデカノィルォキシ安息香酸、 4—ノナノィルォキシベンゼンスルホン 酸ナトリウムがより好ましい。  The bleaching activator in the bleaching activator particles may be tetraacetylethylenediamine, alkanoyloxybenzenesulfonic acid having 8 to 12 carbon atoms, alkanoyloxybenzoic acid having 8 to 12 carbon atoms, or a mixture thereof. Salts are preferred. Of these, 4-decanoyloxybenzoic acid, sodium 4-dodecanolyloxybenzenesulfonate, and sodium 4-nonanoyloxybenzenesulfonate are preferred. Xybenzoic acid and sodium 4-nonanoyloxybenzenesulfonate are more preferred.
漂白活性化剤は P E G # 3 0 0 0〜# 2 0 0 0 0、 好ましくは P E G # 4 0 0 0〜# 6 0 0 0のポリエチレングリコール等の常温で固体のバインダー物質を加 熱溶融した中に漂白活性化剤とォレフィンスルホン酸塩、 アルキルベンゼンスル ホン酸塩、 アルキル硫酸エステル塩等の界面活性剤の粉末を分散後、 押し出して 直径 1 mm程度のヌードル状の漂白活性化剤造粒物を製造し、 その後長さ 0 . 5 〜 3 mm程度に軽く粉砕して配合されることが好ましい。 界面活性剤の粉末とし ては、 アルキル鎖長 14の《—ォレフインスルホン酸塩が好ましい。 The bleach activator is obtained by heating and melting a solid binder material at room temperature, such as polyethylene glycol of PEG # 300 to # 200, preferably PEG # 400 to # 600. After dispersing a bleach activator and powder of surfactant such as olefin sulfonate, alkylbenzene sulfonate, alkyl sulfate, etc., extrude it and extrude noodle-like bleach activator granules of about 1 mm in diameter It is preferable to mix the product after lightly pulverizing it to a length of about 0.5 to 3 mm. Surfactant powder Preferred is a <<-olefin sulfonic acid salt having an alkyl chain length of 14.
造粒物中の漂白活性化剤の配合量は、 好ましくは 30〜95質量%、 より好ま しくは 50〜90質量%である。 配合量がこの範囲外では造粒した効果が充分に 得られ難くなる場合がある。  The blending amount of the bleach activator in the granulated product is preferably 30 to 95% by mass, and more preferably 50 to 90% by mass. If the compounding amount is outside this range, it may be difficult to sufficiently obtain the effect of granulation.
上記バインダー物質の配合量は、 造粒物中に 0. 5〜30質量%、 好ましくは 1〜20質量%、 より好ましくは 5〜20質量%であり、 上記界面活性剤粉末の 配合量は、 造粒物中に好ましくは 0〜50質量%、 より好ましくは 3〜40質量 %、 特に好ましくは 5〜30質量%である。  The compounding amount of the binder substance is 0.5 to 30% by mass, preferably 1 to 20% by mass, more preferably 5 to 20% by mass in the granulated material. The compounding amount of the surfactant powder is It is preferably 0 to 50% by mass, more preferably 3 to 40% by mass, particularly preferably 5 to 30% by mass in the granulated product.
漂白活性化剤粒子の平均粒子径は、 溶解性及び保存安定性の点から、 200〜 1500 mが好ましく、 より好ましくは 300〜; L 000 mである。  The average particle size of the bleach activator particles is preferably from 200 to 1500 m, more preferably from 300 to L000 m, from the viewpoint of solubility and storage stability.
漂白活性化剤粒子の配合量は、 粒状洗剤組成物全量に対し 0. 1〜15質量% が好ましく、 0. 3〜10質量%が特に好ましい。  The blending amount of the bleach activator particles is preferably from 0.1 to 15% by mass, particularly preferably from 0.3 to 10% by mass, based on the total amount of the granular detergent composition.
(a) 表面処理水溶性無機化合物粒子、 (b) 界面活性剤含有粒子、 酵素粒子 、 漂白剤粒子及び漂白活性化剤粒子等は、 表面を染料や顔料で着色してから用い ることができる。 この際着色に用いる染料、 顔料は洗浄時に衣類への染着が起こ らないものを用いる。 この様な染料、 顔料としては、 群青、 コラニルダリーン C G- 130 (C Iナンパ一: 74260) 、 食用色素赤色 102号、 酸性染料ァ シッドイェロー 141等が挙げられる。 これらの染料、 顔料は、 水溶液や分散液 とした後、. (b) 界面活性剤含有粒子の造粒装置と同様な撹拌造粒機や転動造粒 機中で上記粒子を撹拌、 転動しながら、 添加することで着色することができる。 また、 上記粒子をベルトコンベアで移送中に上記水溶液や分散液を上記粒子に噴 霧して着色することもできる。 着色量としては、 着色する粒子に対し 0. 001 〜1質量%が好ましい。  (a) Surface-treated water-soluble inorganic compound particles, (b) Surfactant-containing particles, enzyme particles, bleach particles, bleach activator particles, etc. can be used after the surface is colored with a dye or pigment. . At this time, dyes and pigments used for coloring should not cause dyeing on clothes during washing. Examples of such dyes and pigments include ultramarine, koranildarine CG-130 (CI Nampa 1: 74260), food color red No. 102, acid dye Acid Yellow 141 and the like. These dyes and pigments are converted into an aqueous solution or dispersion, and then the particles are stirred and tumbled in a stirring granulator or a tumbling granulator similar to a granulator for surfactant-containing particles. While adding, it can be colored. In addition, the particles may be colored by spraying the aqueous solution or dispersion liquid onto the particles while the particles are transported on a belt conveyor. The coloring amount is preferably 0.001 to 1% by mass based on the particles to be colored.
また、 香料は (a) 表面処理水溶性無機化合物粒子と (b) 界面活性剤含有粒 子のいずれか一方あるいは両方に賦香した後、 各粒子を混合してもよく、 (a) 表面処理水溶性無機化合物粒子と (b) 界面活性剤含有粒子を混合した後、 賦香 してもよい。 用いられる香料としては、 特開 2002— 146399号公報ゃ特 開 2003— 89800号公報記載の成分を用いることができる。 なお、 香料と は、 香料成分、 溶剤、 香料安定化剤等からなる混合物である。 本発明の粒状洗剤 組成物中、 香料の配合量は、 0. 001〜10質量%が好ましく、 0. 01〜5 質量%がより好ましい。 なお、 香料は実施例の香料に限定されるものではない。 本発明の粒状洗剤組成物の物性値は、 特に制限されるものではないが、 嵩密度 は、 通常 0. 3 g/cm3以上、 好ましくは 0. 5〜: L. 2 g,'cm3、 より好 ましくは 0. 6〜1. 1 gZcm3である。 また、 平均粒子径は、 好ましくは 2 00〜1500 m、 より好ましくは 250〜1000 m、 さらに好ましくは 280〜 700 mである。 平均粒子径が 200 m未満になると粉塵が発生し 易くなつたり、 ハンドリング性が悪化する場合があり、 一方、 1500 mを超 えると本発明が目的とする溶解性が得られ難くなる場合がある。 さらに、 粒状洗 剤組成物の流動性は、 安息角として 60° 以下、 特に 50° 以下が好ましい。 さ らに貯蔵後 (紙容器等の透湿性の高い容器に長期保存された場合等) も流動性が 安息角として好ましくは 60° 以下、 より好ましくは 50° 以下であることが使 用性の点から好ましい。 In addition, the fragrance may be added to one or both of (a) the surface-treated water-soluble inorganic compound particles and (b) the surfactant-containing particles, and then the respective particles may be mixed. After mixing the water-soluble inorganic compound particles and the (b) surfactant-containing particles, fragrance may be applied. As the fragrance used, the components described in JP-A-2002-146399 and JP-A-2003-89800 can be used. The fragrance is a mixture of a fragrance component, a solvent, a fragrance stabilizer and the like. Granular detergent of the present invention In the composition, the amount of the perfume is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass. In addition, a fragrance | flavor is not limited to the fragrance | flavor of an Example. The physical properties of the granular detergent composition of the present invention are not particularly limited, but the bulk density is usually 0.3 g / cm 3 or more, preferably 0.5 to: L. 2 g, 'cm 3 And more preferably 0.6 to 1.1 gZcm 3 . The average particle size is preferably from 200 to 1500 m, more preferably from 250 to 1000 m, and even more preferably from 280 to 700 m. If the average particle size is less than 200 m, dust may be easily generated or the handling property may be deteriorated.On the other hand, if the average particle size exceeds 1500 m, it may be difficult to obtain the solubility intended by the present invention. . Further, the fluidity of the granular detergent composition is preferably 60 ° or less, particularly preferably 50 ° or less as a repose angle. In addition, after storage (for example, when stored in a highly permeable container such as a paper container for a long period of time), the fluidity should preferably be 60 ° or less, more preferably 50 ° or less, as the angle of repose. Preferred from the point.
本発明の粒状洗剤組成物は、 適当な容器に充填して容器入り粒状洗剤物品とす ることができる。 容器の材料としては、 保存安定性の点で透湿度が 30 gZm2 • 24時間 (40°C、 90 %RH) 以下が好ましく、 25 gZm2 · 24時間 ( 40°C、 90%RH) 以下がより好ましい。 これらは一般的な包装材料の組み合 わせや厚みの変化により達成できる。 なお、 本発明における透湿度は、 J I SThe granular detergent composition of the present invention can be filled into a suitable container to form a granular detergent article in a container. As the material of the container, saving permeability in terms of stability humidity 30 gZm 2 • 24 hours preferably (40 ° C, 90% RH ) or less, 25 gZm 2 · 24 hours (40 ° C, 90% RH ) or less Is more preferred. These can be achieved by combining general packaging materials and changing the thickness. The moisture permeability in the present invention is JIS
Z 0208- 1976に規定された方法で測定する。 It is measured by the method specified in Z 0208-1976.
本発明の粒状洗剤組成物は、 さらに崩壊剤等を混合した後圧縮成形して、 タブ レット洗浄剤ゃブリゲット洗浄剤等の圧縮成形洗浄剤としても利用できる。 本発明の粒状洗剤組成物は、 充分な低温溶解性を確保しつつ長期保存後の流動 性や固化性を改善することができるため、 特に短時間洗濯コースの洗濯用、 弱水 流コースの洗濯用、 冷水洗濯用及び洗剤投入口付き洗濯機用といった、 用途又は 目的に好適である。 洗濯方法  The granular detergent composition of the present invention can be further used as a compression detergent such as a tablet detergent and a briguet detergent by compression molding after further mixing a disintegrant and the like. Since the granular detergent composition of the present invention can improve the fluidity and solidification after long-term storage while ensuring sufficient low-temperature solubility, it is particularly suitable for washing in a short-time washing course, and washing in a weak-flow course. It is suitable for applications or purposes, such as for washing, cold water washing, and washing machines with detergent inlets. Washing method
本発明の洗濯方法は、 水溶性無機化合物粒子が有機又は無機水溶性高分子化合 物で表面処理され、 さらにその処理された表面が水難溶性化合物で処理されてな る表面処理水溶性無機化合物粒子を含む洗濯浴と洗濯物とを、 浴比 7〜 1 5 L Z k g、 好ましくは 8〜1 5 L Z k g、 より好ましくは 1 0〜1 3 L/ k gで、 洗 濯温度 5〜1 2 °C、 好ましくは 7〜1 2 °C、 より好ましくは 1 0〜1 2 °Cにて行 う洗濯方法である。 上記範囲の浴比、 洗濯温度で洗濯をする場合に、 低水温及び 低撹拌力の状態で湿潤しても凝集物を形成しないという効果がより顕著に現れる 本発明によれば、 低水温及び低撹拌力の状態で湿潤しても凝集物を形成せず、 且つ洗濯中には優れた溶解性を示し、 流動性に優れ、 製造時の造粒機への付着性 を防止することができる表面処理水溶性無機化合物粒子、 この粒子を配合してな り、 長期保存後の流動性、 非固化性に優れる粉状洗剤組成物を提供することがで さる。 In the washing method of the present invention, the water-soluble inorganic compound particles are surface-treated with an organic or inorganic water-soluble polymer compound, and the treated surface is not treated with a poorly water-soluble compound. Washing the laundry with the surface-treated water-soluble inorganic compound particles at a bath ratio of 7 to 15 LZ kg, preferably 8 to 15 LZ kg, more preferably 10 to 13 L / kg. The washing method is performed at a rinsing temperature of 5 to 12 ° C, preferably 7 to 12 ° C, and more preferably 10 to 12 ° C. According to the present invention, when the washing is performed at the bath ratio and the washing temperature in the above range, the effect of not forming aggregates even when moistened at a low water temperature and a low stirring force is exhibited. Surface that does not form agglomerates even when wet under agitation, exhibits excellent solubility during washing, has excellent fluidity, and prevents adhesion to granulators during manufacturing The treated water-soluble inorganic compound particles, which are blended with the particles, can provide a powdery detergent composition having excellent fluidity and non-solidification properties after long-term storage.
以下に、 実施例及び比較例により本発明をより具体的に説明するが、 本発明は これらの例によって何ら限定されるものではない。 なお、 下記の例において特に 明記のない場合の組成は、 「%」 は質量%、 表中の各成分の量は表 1〜4の (a ) 表面処理水溶性無機化合物粒子と表 5の (b ) 界面活性剤含有粒子の組成につ いては、 純分としての配合量を示し、 その他の表は記載成分の配合量で示した。 実施例及び比較例  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In addition, in the following examples, unless otherwise specified, the composition is “%” by mass%, and the amount of each component in the table is (a) surface-treated water-soluble inorganic compound particles in Tables 1 to 4 and ( b) Regarding the composition of the surfactant-containing particles, the compounding amount as a pure component is shown, and other tables show the compounding amounts of the listed components. Examples and comparative examples
[実施例 a 1〜 a 2 8、 比較例 a 2 9〜 a 3 5 ]  [Examples a1 to a28, Comparative examples a29 to a35]
表面処理水溶性無機化合物粒子の製造方法 1 (撹拌造粒 1 ) Method for producing surface-treated water-soluble inorganic compound particles 1 (stirring granulation 1)
第 1工程  1st step
下記表 1〜 4に示す組成成分のうち、 水溶性無機化合物核粒子を鋤刃状ショベ ルを具備し、 ショベル一壁面間クリアランスが 5 mmのプロ一シェア一ミキサー (大平洋機ェ (株) に投入し (充填率 3 0容積%) 、 主軸 1 5 0 r p mの撹拌を 開始した (チヨッパ一回転数: 1 0 1 5 r p m、 ブレード先端速度 (周速) : 6 . 9 m/ s ) 。 撹拌開始後 1 0秒後に水溶性高分子化合物水溶液 (濃度は後記の 原料欄に記載、 以下同じ) を噴霧角 1 1 5度の加圧ノズル (フラットノズル) で 1 8 0秒噴霧添加し、 造粒 ·被覆操作を行った。 なお、 水溶性高分子化合物水溶 液は表 1〜4に記載の温度で予め 1 0日間保存して使用した。 また、 第 1工程で 調製された粒子全量に対する水分量が 10%を超えていた場合には、 上記装置に 熱風を導入して乾燥し、 水分量を表 1〜4の量に調整した。 Among the components shown in Tables 1 to 4 below, a water-soluble inorganic compound core particle is equipped with a plow-blade shovel, and the clearance between the shovel and the wall is 5 mm. Then, stirring at a spindle speed of 150 rpm was started (chopper rotation speed: 115 rpm, blade tip speed (peripheral speed): 6.9 m / s). 10 seconds after the start of stirring, an aqueous solution of a water-soluble polymer compound (concentration is described in the raw material column described below, the same applies hereinafter) was spray-added for 180 seconds using a pressurized nozzle (flat nozzle) with a spray angle of 115 degrees. The granulation and coating operations were performed, and the aqueous solution of the water-soluble polymer compound was stored for 10 days at the temperatures shown in Tables 1 to 4 before use. If the water content relative to the total amount of the prepared particles exceeded 10%, the device was dried by introducing hot air into the above device, and the water content was adjusted to the values shown in Tables 1 to 4.
第 2工程  2nd step
引き続きプロ一シェア一ミキサーの撹拌を継続しつつ、 表 1〜4に示した水難 溶性化合物を噴霧角 60度の加圧ノズル (フルコーンノズル) で 180秒噴霧添 加し、 被覆操作を行った。 最後に必要に応じて微粉体を添加し、 30秒間撹拌を 続け粒子を得た。 なお、 被覆操作終了直後の粒子温度が表;!〜 4に記載の温度と なるように、 第 1工程及び第 2工程を通じて適宜ミキサーのジャケットに温水を 通水して上記被覆操作を行った。  The coating operation was carried out by spraying the poorly water-soluble compounds shown in Tables 1 to 4 with a spray nozzle with a spray angle of 60 ° (full cone nozzle) for 180 seconds while continuing to stir with a professional mixer. . Finally, fine powder was added as needed, and stirring was continued for 30 seconds to obtain particles. The coating operation was performed by appropriately passing warm water through the mixer jacket through the first and second steps so that the particle temperature immediately after the completion of the coating operation was as shown in Tables:! To 4.
第 3工程  3rd step
次いで、 得られた粒子を、 流動層 (G 1 a t t—POWREX、 型番 FD— W RT— 20、 (株) パゥレックス製) に充填し、 充填後 15°Cの風 (空気) を流 動層内に送り、 粒子の冷却操作を行い、 20°Cまで冷却された粒子を得た。 流動 層内風速は流動化状態を確認しながら 0. 2〜10. Om/sの範囲で調整した 。 得られた粒子を目開き 2000 mの篩を用いて分級し、 目開き 2000 m の篩を通過する表面処理水溶性無機化合物粒子 (平均粒子径、 安息角、 嵩密度は 表 1〜4に記載) を得た。 表面処理水溶性無機化合物粒子の製造方法 2 (撹拌造粒 2 )  Next, the obtained particles are filled in a fluidized bed (G 1 att-POWREX, model number FD-WRT-20, manufactured by Parex Co., Ltd.), and after filling, air (air) at 15 ° C is filled in the fluidized bed. And cooled the particles to obtain particles cooled to 20 ° C. The wind speed in the fluidized bed was adjusted in the range of 0.2 to 10. Om / s while checking the fluidized state. The obtained particles are classified using a sieve with an aperture of 2000 m, and the surface-treated water-soluble inorganic compound particles that pass through a sieve with an aperture of 2000 m (the average particle diameter, angle of repose, and bulk density are described in Tables 1 to 4. ) Got. Method for producing surface-treated water-soluble inorganic compound particles 2 (stirring granulation 2)
第 1工程  1st step
下記表 1〜4に示す組成成分のうち、 容積 10L相当分の水溶性無機化合物核 粒子をフオルバーグミキサー (F— 20型、 日本ニューマチック工業 (株) 製) に投入し (充填率 50容積%) 、 パドル周速 1. 4HL Sで撹拌を開始した (チ ョッパーは停止) 。 撹拌開始 5秒後に、 水溶性高分子水溶液を噴霧角度 70° の 2流体ホロ一コーンノズルを用いて 100 gZm i nで噴霧添加し、 造粒 ·被覆 操作を行った。  Of the components shown in Tables 1 to 4 below, 10 L of water-soluble inorganic compound core particles corresponding to a volume of 10 L were charged into a Folberg mixer (F-20, manufactured by Nippon Pneumatic Industries, Ltd.) (filling rate: 50%). (Volume%), paddle peripheral speed 1.4 Agitation was started at 4HLS (chopper stopped). Five seconds after the start of stirring, a water-soluble polymer aqueous solution was spray-added at 100 gZmin using a two-fluid hollow cone nozzle with a spray angle of 70 °, and granulation and coating operations were performed.
第 2工程  2nd step
弓 Iき続きフオルバーグミキサーの撹拌操作を継続しつつ、 表 1〜4に示す水難 溶性化合物を、 同様の 2流体ホロ一コーンノズルを用いて 100 gZm i nで噴 霧添加し、 被覆操作を行った。 最後に必要に応じて微粉体を添加し、 30秒間撹 拌操作を続け粒子を得た。 Bow I Inject the water-insoluble compounds shown in Tables 1-4 at 100 gZmin using the same two-fluid holo-cone nozzle while continuing the stirring operation of the Folberg mixer. A fog was added and a coating operation was performed. Finally, if necessary, fine powder was added, and stirring was continued for 30 seconds to obtain particles.
第 3工程  3rd step
第 2工程終了後、 上記の表面処理水溶性無機化合物粒子の製造方法 1の第 3ェ 程と同様の操作にて、 表面処理水溶性無機化合物粒子 (平均粒子径、 安息角、 嵩 密度は表 1〜4に記載) を得た。 表面処理水溶性無機化合物粒子の製造方法 3 (転動造粒)  After the completion of the second step, the surface-treated water-soluble inorganic compound particles (the average particle diameter, the angle of repose, and the bulk density are determined in the same manner as in step 3 of the above-described method 1 for producing the surface-treated water-soluble inorganic compound particles). 1-4) were obtained. Method for producing surface-treated water-soluble inorganic compound particles 3 (rolling granulation)
第 1工程  1st step
下記表 1〜 4に示す組成成分のうち、 水溶性無機化合物核粒子を水平円筒型転 動混合機 (円筒直径 585mm、 円筒長さ 490mm、 容器 131. 7Lのドラ ム内部壁面に内部壁面とのクリアランス 20mm、 高さ 45 mmの邪魔板を 2枚 有するもの) に投入し (充填率 20容積%) 、 回転数 22 r pmで転動操作を開 始した。 転動開始 30秒後に、 水溶性高分子水溶液を噴霧角度 70° の 2流体ホ ローコーンノズルを用いて 100 gZm i nで噴霧添加し、 造粒 ·被覆操作を行 つた。  Of the composition components shown in Tables 1 to 4 below, the water-soluble inorganic compound core particles were mixed with a horizontal cylindrical tumbling mixer (cylinder diameter: 585 mm, cylinder length: 490 mm, container: 131.7 L). (With two baffles with a clearance of 20 mm and a height of 45 mm) (filling rate: 20% by volume), and the rolling operation was started at a rotation speed of 22 rpm. Thirty seconds after the start of rolling, a water-soluble polymer aqueous solution was spray-added at 100 gZmin using a two-fluid hollow cone nozzle with a spray angle of 70 °, and granulation and coating operations were performed.
第 2工程  2nd step
弓 Iき続き水平円筒混合機の転動操作を継続しつつ、 表 1〜4に示した水難溶性 化合物を同様の 2流体ホロ一コーンノズルを用いて 100 g/mi nで噴霧添加 し被覆操作を行った。 最後に必要に応じて微粉体を添加し、 60秒間転動操作を 続け粒子を得た。  Bow I Continuing the rolling operation of the horizontal cylindrical mixer, spray coating the poorly water-soluble compounds shown in Tables 1-4 at 100 g / min using the same two-fluid hollow cone nozzle. Was done. Finally, fine powder was added as needed, and the rolling operation was continued for 60 seconds to obtain particles.
第 3工程  3rd step
次いで、 流動層 (G 1 a t t— P〇WREX、 型番 FD—WRT— 20 (株) パゥレックス製、 ) に充填し、 充填後 15°Cの風 (空気) を流動層内に送り、 粒 子の冷却操作を行った。 流動層内風速は流動化状態を確認しながら 0. 2〜10 . Om/sの範囲で調整した。 これにより、 20°Cまで冷却された粒子を得た。 得られた粒子を目開き 250 m及び目開き 2000 mの篩を用いて分級し 、 目開き 250 mを通過せず、 目開き 2000 mの篩を通過する表面処理水 溶性無機化合物粒子 (平均粒子径、 安息角、 嵩密度は表 1〜4に記載) を得た。 表面処理水溶性無機化合物粒子の製造方法 4 (流動層造粒) Next, the fluidized bed (G 1 att—P atWREX, Model No. FD—WRT—20 manufactured by Parex Co., Ltd.) is filled, and after filling, a wind (air) at 15 ° C. is sent into the fluidized bed, and the particle size is reduced. A cooling operation was performed. The wind speed in the fluidized bed was adjusted in the range of 0.2 to 10. Om / s while checking the fluidized state. As a result, particles cooled to 20 ° C were obtained. The obtained particles are classified by using a sieve having a mesh size of 250 m and a mesh size of 2000 m, and pass through a sieve having a mesh size of 2000 m without passing through the mesh size of 250 m. The diameter, angle of repose, and bulk density are shown in Tables 1-4. Method for producing surface-treated water-soluble inorganic compound particles 4 (fluidized bed granulation)
第 1工程  1st step
下記表 1〜4に示す組成成分のうち、 水溶性無機化合物核粒子を流動層 ( (株 ) パゥレックス製、 G I a t t— P〇WREX、 型番 FD— WRT— 20) に、 静置時の粉体層厚が 200mmになる質量を添加した。 その後、 50°Cの風 (空 気) を流動層内に送り、 粉体が流動化したことを確認した後に水溶性高分子水溶 液を流動化している粉体層に向け上部より噴霧した。 流動層内風速は流動化状態 を確認しながら 0. 2〜 10. Om/sの範囲で調整しながら造粒 ·被覆操作を 行った。 水溶性高分子水溶液を噴霧するためのノズルは噴霧角度 70° の 2流体 ホロ一コーンノズルを使用した。 噴霧速度は約 100 gZmi nで行った。 第 2工程  Of the composition components shown in Tables 1 to 4 below, water-soluble inorganic compound core particles were placed in a fluidized bed (PAREX Co., Ltd., GI att—PWREX, model number FD—WRT—20), and the powder was left standing. A mass that gives a layer thickness of 200 mm was added. Then, a 50 ° C air (air) was sent into the fluidized bed, and after confirming that the powder had fluidized, the water-soluble polymer aqueous solution was sprayed from above onto the fluidized powder bed. The granulation and coating operations were performed while adjusting the wind speed in the fluidized bed in the range of 0.2 to 10. Om / s while checking the fluidized state. A two-fluid hollow cone nozzle with a spray angle of 70 ° was used for spraying the water-soluble polymer aqueous solution. The spray speed was about 100 gZmin. 2nd step
引き続き流動層内での流動化状態を維持しつつ、 表 1〜4に示した水難溶性化 合物を同様の 2流体ホロ一コーンノズルを用いて 100 gZmi nで噴霧添加し 被覆操作を行った。  While maintaining the fluidized state in the fluidized bed, the coating operation was performed by spraying the poorly water-soluble compounds shown in Tables 1 to 4 at 100 gZmin using the same two-fluid hollow cone cone nozzle. .
この時、 水分が 10質量%を超えるものについては、 引き続き 50°Cの風 (空 気) を流動層内に送りながら、 水分が 8質量%になるまで粉体を流動させた。 最後に必要に応じて微粉体を添加する場合は流動層より造粒物を排出し、 転動 ドラム (直径 0. 6m、 長さ 48m、 厚さ 1 mmX幅 12 c mX長さ 48 c mの邪魔板 4枚付き、 回転数 2 O r pm) 内で造粒物と微粉体を 60秒間混合し た。  At this time, when the water content exceeded 10% by mass, the powder was flowed while the wind (air) at 50 ° C was continuously fed into the fluidized bed until the water content became 8% by mass. Finally, when adding fine powder as required, the granulated material is discharged from the fluidized bed, and a rolling drum (0.6 m in diameter, 48 m in length, 1 mm in thickness, 12 cm in width, 12 cm in length and 48 cm in length) The granulated material and the fine powder were mixed for 60 seconds at a rotation speed of 2 Orpm with 4 plates.
第 3工程  3rd step
第 2工程終了後、 上記表面処理水溶性無機化合物粒子の製造方法 1 (撹拌造粒 1) の第 3工程と同様な操作にて、 表面処理水溶性無機化合物粒子 (平均粒子径 、 安息角、 嵩密度は表 1〜4に記載) を得た。 表面処理水溶性無機化合物粒子の製造方法 5 (撹拌造粒 +転動造粒)  After the completion of the second step, the surface-treated water-soluble inorganic compound particles (average particle diameter, angle of repose, The bulk densities are shown in Tables 1-4). Production method of surface-treated water-soluble inorganic compound particles 5 (stirring granulation + tumbling granulation)
第 1工程  1st step
下記表 1〜4に示す組成のうち、 水溶性無機化合物核粒子を、 鋤刃状ショベル を具備し、 ショベル一壁面間クリアランスが 5 mmのレーディゲミキサー ( (株 ) マツポー製、 M 2 0型) に投入し (充填率 3 0容積%) 、 主軸 2 0 0 r p mの 撹拌を開始した (チョッパーは停止) 撹拌開始後 1 0秒後に水溶性高分子水溶 液を 3 0秒で添加し、 造粒 ·被覆操作を行った。 Of the compositions shown in Tables 1-4 below, water-soluble inorganic compound core particles were Into a Reedige mixer (M20 type, manufactured by Matsupo Corporation) with a clearance of 5 mm between the excavator and the wall (filling ratio: 30% by volume), and start stirring at 200 rpm at the main shaft. (The chopper was stopped.) 10 seconds after the start of stirring, an aqueous solution of a water-soluble polymer was added in 30 seconds, and granulation and coating operations were performed.
第 2工程  2nd step
得られた造粒物をレーディゲミキサーから排出し、 水平円筒型転動混合機 (円 筒直径 5 8 5 mm、 円筒長さ 4 9 0 mm、 容器 1 3 1 . 7 Lのドラム内部壁面に 内部壁面とのクリアランス 2 0 mm、 高さ 4 5 mmの邪魔板を 2枚有するもの) に投入し、 回転数 2 2 r p mで転動操作を開始した。 転動開始後 3 0秒後に表 1 〜 4に示した水難溶性化合物を噴霧角度 7 0 ° の 2流体ホロ一コーンノズルを用 いて 1 0 0 g Zm i nで噴霧添加し、 被覆操作を行った。  The obtained granules are discharged from the Lodige mixer, and are fed into a horizontal cylindrical rolling mixer (cylinder diameter: 585 mm, cylinder length: 490 mm, container: 31.7 L, drum inner wall surface) (With two baffles with a clearance of 20 mm from the inner wall and a height of 45 mm)) and started rolling at a rotation speed of 22 rpm. Thirty seconds after the start of rolling, the poorly water-soluble compounds shown in Tables 1 to 4 were spray-added at 100 g Zmin using a two-fluid holo-cone nozzle with a spray angle of 70 °, and coating was performed. .
最後に必要に応じて微粉体を添加し、 6 0秒間転動操作を続け表面処理水溶性 無機化合物粒子を得た。  Finally, fine powder was added as needed, and the rolling operation was continued for 60 seconds to obtain surface-treated water-soluble inorganic compound particles.
第 3工程  3rd step
次いで、 上記表面処理水溶性無機化合物粒子の製造方法 3 (転動造粒) の第 3 工程と同様の操作にて、 表面処理水溶性無機化合物粒子 (平均粒子径、 安息角、 嵩密度は表 1〜4に記載) を得た。  Then, the surface-treated water-soluble inorganic compound particles (average particle diameter, angle of repose, and bulk density are shown in Table 3) by the same operation as in the third step of the above-mentioned method 3 for producing the surface-treated water-soluble inorganic compound particles (rolling granulation). 1-4) were obtained.
なお、 上記表面処理水溶性無機化合物粒子の製造方法 1〜 5のいずれの方法に おいても、 水難溶性化合物は融点以上の液体状態で添加した。 また、 上記表面処 理水溶性無機化合物粒子の製造方法 1〜 5の分級工程で発生した表面処理水溶性 無機化合物粒子として用いない篩上品の粗粒子はフィッッミル (ホソカワミクロ ン (株) 製、 D KA— 3 ) を用いて粉碎し (スクリーン穴径 1 . 2 mm、 回転数 : 4 7 0 0 r p m) 、 次の造粒時に水溶性無機化合物と共に造粒機に投入し再利 用した。 また、 分級操作によって表面処理水溶性無機化合物粒子として用いない 篩下品の微粒子が発生する際には微粒子も次の造粒時に水溶性無機化合物と共に 造粒機に投入し再利用した。  In each of the methods 1 to 5 for producing the surface-treated water-soluble inorganic compound particles, the poorly water-soluble compound was added in a liquid state having a melting point or higher. In addition, coarse particles of surface-treated water-soluble inorganic compound particles which are not used as the surface-treated water-soluble inorganic compound particles generated in the classification process of the surface-treated water-soluble inorganic compound particles 1 to 5 are manufactured by Fimill (Hosokawa Micron Co., Ltd.) The mixture was ground using KA-3) (screen hole diameter: 1.2 mm, number of revolutions: 470 rpm), and put into a granulator together with a water-soluble inorganic compound at the next granulation and reused. Also, when fine particles of the sieved product not used as the surface-treated water-soluble inorganic compound particles were generated by the classification operation, the fine particles were also put into a granulator together with the water-soluble inorganic compound at the next granulation and reused.
なお、 比較例 a 3 0、 a 3 1、 a 3 3においては水難溶性化合物、 a 3 2、 a 3 4、 a 3 5においては水溶性高分子化合物の添加は行わなかった。 また比較例 a 2 9は水溶性高分子化合物と水難溶性化合物の両方の添加は行わず、 原料であ る炭酸ナトリウム (粒灰) をそのまま使用した。 In Comparative Examples a30, a31, and a33, a poorly water-soluble compound was not added, and in a32, a34, and a35, a water-soluble polymer compound was not added. In Comparative Example a29, neither the water-soluble polymer compound nor the poorly water-soluble compound was added, and Sodium carbonate (grain ash) was used as it was.
得られた表面処理水溶性無機化合物粒子につき、 各表面処理部の溶解熱と表面 処理水溶性無機化合物粒子の湿潤発熱量、 及び表面処理部表面のぬれ速度を下記 方法により測定 ·評価した。 結果を表 1〜4に併記する。  With respect to the obtained surface-treated water-soluble inorganic compound particles, the heat of dissolution of each surface-treated portion, the amount of heat generated by wetting of the surface-treated water-soluble inorganic compound particles, and the wetting rate of the surface-treated portion were measured and evaluated by the following methods. The results are shown in Tables 1-4.
( 1 ) 表面処理部の溶解 ·分散熱測定  (1) Measurement of heat of dissolution and dispersion of surface treatment
内径 l c m、 長さ約 4 c mのアンプル管に、 得られた表面処理水溶性無機化合 物粒子 (比較例 a 2 9では炭酸ナトリゥム粒子) 0 . 1 gを測り取つて封入する とともに、 空のアンプル管も封入してブランクとした。  0.1 g of the obtained surface-treated water-soluble inorganic compound particles (sodium carbonate particles in Comparative Example a29) was measured and sealed in an ampoule tube having an inner diameter of lcm and a length of about 4 cm. Tubes were also enclosed to make blanks.
これらを双子型熱量測定装置 (マルチマイクロカロリメ一夕一 MM C— 5 1 1 1型、 (株) 東京理工製、 ) に設置し、 水 2 5 mLを入れたセル中で、 温度 2 5 °C、 6 0 r p mの撹拌条件下で、 熱平衡化させた。 ベースラインの安定を確認し た後、 装置内のハンマーでアンプル管を割って水と接触させ、 表面処理水溶性無 機化合物粒子の溶解 ·分散に伴う熱量変化を測定し、 表面処理水溶性無機化合物 粒子の溶解 ·分散時の発熱量 (Q) を得た。  These were installed on a twin calorimeter (Multi-Micro Calorime Ichiichi MM C-51-111, manufactured by Tokyo Riko Co., Ltd.), and stored in a cell containing 25 mL of water. Thermal equilibration was performed under stirring conditions of 60 ° C. and 60 ° C. After confirming the stability of the baseline, break the ampoule tube with the hammer in the device and bring it into contact with water.Measure the change in the amount of heat associated with the dissolution and dispersion of the surface-treated water-soluble inorganic compound particles. The heat value (Q) during dissolution and dispersion of the compound particles was obtained.
同様に、 水溶性無機化合物核粒子の発熱量 (QA) 、 第 1表面処理部のみの発 熱量 (QB) を測定した。 水への溶解 ·分散過程での発熱する第 1表面処理部と は、 Q B— QA< 0を満たす処理部を意味する。 水への溶解 ·分解過程での吸熱 する第 2表面処理部とは、 Q— QB> 0を満たす処理部を意味する。 また、 表面 処理部全体における溶解 ·分散過程での吸熱とは、 Q— QA> 0の状態を意味す る。 なお、 Q、 0 及び<33は、 いずれも発熱 (すなわち、 負の値) であった。Similarly, the calorific value (Q A ) of the water-soluble inorganic compound core particles and the calorific value (Q B ) of only the first surface treatment section were measured. The first surface treatment unit for heat generation in the solution or dispersion process in water, Q B - means processing section that satisfies Q A <0. The second surface treatment part that absorbs heat in the melting-decomposition process in water, refers to processing unit which satisfies the Q- Q B> 0. In addition, the endothermic in the dissolution / dispersion process in the entire surface treatment section means a state of Q−Q A > 0. Incidentally, Q, 0 and <3 3 were both exothermic (i.e., a negative value).
( 2 ) 湿潤発熱量の測定 (2) Measurement of wet calorific value
内径 3 c m、 高さ 5 c mの目皿つきガラスフィルターに、 得られた表面処理水 溶性無機化合物粒子 (比較試験例 a 2 9では炭酸ナトリゥム粒子) 1 0 gを入れ 、 次いでリポン状温度センサーをおいた後に、 さらに 1 0 gの試料を入れた。 こ れをニ口フラスコ上部ジョイントに設置し、 側面のジョイントには、 ァスピレー ターを接続した。 これに 2 5での水 1 0 gをのせ、 直ちに 1 0秒間減圧とするこ とで、 水を全て通過させ、 表面処理水溶性無機化合物粒子表面を湿潤させた。 そ の後、 温度センサ一が検知した温度の時間変化を測定し、 水和反応によって生じ た最大温度を求めた。 湿潤による発熱量は、 湿潤前温度 (湿潤前の表面処理水溶 性無機化合物粒子温度) と、 湿潤後の最大温度から、 以下の式による最大温度上 昇度を求めた。 10 g of the obtained surface-treated water-soluble inorganic compound particles (sodium carbonate particles in Comparative Test Example a29) were put into a glass filter with a 3 cm inside diameter and a 5 cm height plate, and then a Ripon-shaped temperature sensor was mounted. After placing, an additional 10 g of sample was placed. This was installed on the upper joint of the two-necked flask, and an aspirator was connected to the side joint. 10 g of water at 25 was placed on this, and the pressure was immediately reduced for 10 seconds to allow all the water to pass through and wet the surface of the surface-treated water-soluble inorganic compound particles. After that, the time change of the temperature detected by the temperature sensor 1 was measured, and the maximum temperature caused by the hydration reaction was determined. The amount of heat generated by wetting depends on the temperature before wetting (the surface treatment aqueous solution before wetting) Of the inorganic inorganic compound particles) and the maximum temperature after wetting, the maximum temperature rise was determined by the following equation.
最大温度上昇度 (°c) = (湿潤後の最大温度 (°c) ) 一 (湿潤前温度 (°c) ) 得られた表面処理水溶性無機化合物粒子の表面処理部の溶解 ·分散時の吸熱量 (Q - QA) と、 湿潤発熱量の測定による最大温度上昇度の関係は、 第 1図に示 すように相関関係が見られた。 このことは、 溶解吸熱量が髙いと湿潤による発熱 量が抑制されことを示す。 比較試験例 a 2 9の炭酸ナトリゥム粒子の最大温度上 昇度は 3 1 . 6 °Cであるのに対し、 表面処理部の溶解熱量が 3 0〜8 0 J Z gの 範囲にある表面処理水溶性無機化合物粒子は、 1 5 °C〜6 °Cの温度上昇度に抑制 される。 Maximum temperature rise (° c) = (maximum temperature after wetting (° c)) -1 (temperature before wetting (° c)) Dissolution and dispersion of the obtained surface-treated water-soluble inorganic compound particles in the surface-treated part endotherm - and (Q Q a), the relationship of the maximum degree of temperature increase due to the measurement of wet heating value, correlation was seen shows Suyo in Figure 1. This indicates that a large amount of heat absorbed by the dissolution reduces the amount of heat generated by wetting. Comparative Test Example a29 Although the maximum temperature rise of sodium carbonate particles in 29 is 31.6 ° C, the surface treatment aqueous solution whose heat of solution in the surface treatment part is in the range of 30 to 80 JZ g The temperature of the conductive inorganic compound particles is suppressed to a degree of temperature rise of 15 ° C to 6 ° C.
得られた最大温度上昇度を、 下記評価基準に基づいて評価した。  The obtained maximum temperature rise was evaluated based on the following evaluation criteria.
く評価基準〉  Evaluation criteria>
◎:最大温度上昇度が 9〜 1 2 °C  ◎: Maximum temperature rise is 9 to 12 ° C
〇:最大温度上昇度が 6〜 9 °C又は 1 2〜 1 5 °C  〇: Maximum temperature rise 6 to 9 ° C or 12 to 15 ° C
△:最大温度上昇度が 6 °C未満  △: Maximum temperature rise is less than 6 ° C
X:最大温度上昇度が 1 5 °C以上  X: Maximum temperature rise is 15 ° C or more
( 3 ) 表面処理水溶性無機化合物粒子表面の濡れ速度の評価 (ノ ッシュノ ン法リ (3) Evaluation of the wetting rate on the surface of the surface-treated water-soluble inorganic compound particles (Noshnon method
3 5 5〜5 0 0 mに篩分けした表面処理水溶性無機化合物粒子 (比較例 a 2 9では炭酸ナトリウム粒子) 0 . 5 gを、 底部にガラスフィル夕一をつけた内径 1 c mの目盛り付きガラス管に充填し、 表面処理水溶性無機化合物粒子が充填さ れた最底部から高さ 0 . 6 c mまでを 5 °Cの水に浸漬した後に、 充填された表面 処理水溶性無機化合物粒子の上端まで水が浸透するまでの時間を測定した。 得ら れた浸透時間は、 下記評価基準に基づいて評価した。 0.5 g of surface-treated water-soluble inorganic compound particles (sodium carbonate particles in Comparative Example a29) sieved to 355 to 500 m, with a 1 cm inner diameter scale with a glass fill at the bottom Filled in a glass tube, immersed in water at 5 ° C up to a height of 0.6 cm from the bottom where the surface-treated water-soluble inorganic compound particles are filled, and then filled with the surface-treated water-soluble inorganic compound particles The time until water permeated to the top of the was measured. The obtained penetration time was evaluated based on the following evaluation criteria.
〈評価基準〉 <Evaluation criteria>
◎ :浸透時間が 3 0 0〜 4 0 0分間  ◎: Permeation time is 300 to 400 minutes
〇〜◎:浸透時間が 2 0 0〜 3 0 0分間  〇 to ◎: Permeation time is 200 to 300 minutes
〇 :浸透時間が 1 0 0〜 2 0 0分間  〇: Permeation time is 100 to 200 minutes
X :浸透時間が 1 0 0分間未満又は 4 0 0分間超  X: Permeation time is less than 100 minutes or more than 400 minutes
( 4 ) 装置付着性評価 表面処理水溶性無機化合物粒子を調製後、 この粒子を造粒した装置内壁の付着 物の形成状況を下記評価基準に基づいて評価した。 (4) Evaluation of device adhesion After preparing the surface-treated water-soluble inorganic compound particles, the state of formation of deposits on the inner wall of the device where the particles were granulated was evaluated based on the following evaluation criteria.
く評価基準〉 Evaluation criteria>
◎:ほとんど付着物が無い  A: Almost no deposits
〇:付着物があるが問題ないレベル  〇: There is no problem with attached matter
△:付着物が目立つ  △: noticeable deposits
X :ほぼ全面に付着物がある。  X: Deposits are present on almost the entire surface.
なお、 表 1〜4には、 上記評価結果に加えて、 使用した水溶性無機化合物核粒 子、 水溶性高分子化合物、 水難溶性化合物の使用時温度と、 各製造方法における 第 2工程終了後の表面処理水溶性無機化合物粒子の温度、 各表面処理水溶性無機 化合物粒子を調製する際に用いた製造方法について併記した。 Tables 1 to 4 show, in addition to the above evaluation results, the temperatures at which the used water-soluble inorganic compound core particles, water-soluble polymer compounds and poorly water-soluble compounds were used, and the temperatures after the second step in each production method. The temperature of the surface-treated water-soluble inorganic compound particles and the production method used for preparing each surface-treated water-soluble inorganic compound particle are also described.
[表 1] [table 1]
Figure imgf000049_0001
Figure imgf000049_0001
[表 2 ] [Table 2]
実方  Real way
組成 [%]  Composition [%]
all al2 al3 al4 al5 al6 al7 al8 al9 a20 水溶性 炭酸ナトリウム 82.0 82.0 84.0 84.0 84.0 87.0 81.0 82.0 83.0 80.0 無機化合物炭酸カリウム  all al2 al3 al4 al5 al6 al7 al8 al9 a20 Water-soluble sodium carbonate 82.0 82.0 84.0 84.0 84.0 87.0 81.0 82.0 83.0 80.0 Inorganic compound potassium carbonate
核粒十 重炭酸ナトリウム Sodium bicarbonate
セスキ炭酸ナトリウム  Sodium sesquicarbonate
水溶性 HPC - - 1.0 一 - - 一 - - - 高分子 MA1 3.0 3.0 - 一 - - 一 - - - 化合物 MA2 - - - 3.0 - - - - - -Water-soluble HPC--1.0 One--One---Polymer MA1 3.0 3.0-One--One---Compound MA2---3.0------
MA3 一 ― 一 - 3.0 一 - 一 - -MA3 one-one-3.0 one-one--
PAS - 一 - 一 - 3.0 - - 一 -PAS-one-one-3.0--one-
AG - 一 - 一 ― - 0.5 - - -AG-one-one--0.5---
CMC - - - - - - - 1.0 一 -CMC--------1.0 One-
PAP - - - - ― - - - 3.0 一 珪酸塩 PAP--------3.0 Monosilicate
SRC 3.0 水難溶性 ラウリン酸 一 6.0 3.0 一 5.0 5.0 6.0 5.0 - 5.0 化合物 ミリスチン酸 6.0  SRC 3.0 Poorly water-soluble Lauric acid 1 6.0 3.0 1 5.0 5.0 6.0 5.0-5.0 Compound Myristic acid 6.0
ハ。ルミチン酸 - - 一 5.0 一 一 - 一 ― - ステアリン酸 - - - - 一 一 - - 5.0 一 ハ。ルミチン酸メチルエステル  C. Lumitic acid--5.0-1-1--Stearic acid----1--5.0 1 C. Lumitic acid methyl ester
ァシ'ピン酸  Asi'pic acid
ステアリルアルコール - - - - - - - - - - 微粉体 タルク 3.0  Stearyl alcohol----------Fine powder Talc 3.0
ASiセ'オライト - 3.0 4.0 一 - - 4.0 4.0 4.0 4.0 水分その他成分 残部 残部 残部 残部 残部 残部 残部 残部 残部 残部 口き+丁 100.0  ASi Ceolite-3.0 4.0 One--4.0 4.0 4.0 4.0 Moisture and other components Remaining Remaining Remaining Remaining Remaining Remaining Remaining Remaining Remaining Remaining Opening 100.0
製造方法 1 3 4 4 4 5 4 4 2 5 水溶性無機化合物核粒子温度 [°c] 55 44 45 60 44 46 44 44 70 45 水溶性高分子化合物温度 [°c] 45 51 45 50 50 50 50 50 65 50 水難溶性化合物温度 [°c] 60 51 50 63 60 61 58 57 70 60 第 2工程終了後の表面処理 Production method 1 3 4 4 4 5 4 4 2 5 Temperature of water-soluble inorganic compound core particle [° c] 55 44 45 60 44 46 44 44 70 45 Temperature of water-soluble polymer compound [° c] 45 51 45 50 50 50 50 50 65 50 Temperature of poorly water-soluble compound [° c ] 60 51 50 63 60 61 58 57 70 60 Surface treatment after 2nd step
水溶性無機化合物粒子の温度 [°C] 60 50 52 65 54 56 55 54 80 54 湿潤発熱量の最大温度上昇度 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ バッシュバン法浸透時間 [分] ◎ ◎ 〇 ◎ ◎ ◎ 〇 ◎ ◎ ◎ 装置付着性 ◎ ◎ 〇 ◎ O O ◎ ◎ 〇 〇 粒子の平均粒子径 [ μ πι] 340 340 400 400 380 385 550 500 420 580 粒子の安息角 [° ] 40 40 45 35 30 30 45 45 45 45 粒子の嵩密度 [ ein3] 1.07 1.07 1.03 1.05 1.08 1.07 0.92 0.94 1.00 0.90 Temperature of water-soluble inorganic compound particles [° C] 60 50 52 65 54 56 55 54 80 54 Maximum temperature rise of heat generation value of moistening ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ Permeation time of Bash bang method [min] ◎ ◎ 〇 ◎ ◎ ◎ 〇 ◎ ◎ ◎ Equipment adhesion ◎ ◎ 〇 ◎ OO ◎ ◎ 〇 平均 Average particle diameter of particles [μπι] 340 340 400 400 380 385 550 500 420 580 Particle repose angle [°] 40 40 45 35 30 30 45 45 45 45 Bulk density of particles [ein 3 ] 1.07 1.07 1.03 1.05 1.08 1.07 0.92 0.94 1.00 0.90
[表 3] [Table 3]
Figure imgf000051_0001
Figure imgf000051_0001
[表 4] [Table 4]
Figure imgf000052_0001
Figure imgf000052_0001
[調製例 b l〜b 7] [Preparation examples b1 to b7]
下記製造方法により、 界面活性剤含有粒子 b 1〜b 7を得た。  Surfactant-containing particles b1 to b7 were obtained by the following production method.
界面活性剤含有粒子の調製方法 1 Preparation method of surfactant-containing particles 1
下記表 5に示す組成に従って、 以下の手順で界面活性剤含有粒子 b 1を調製し た。 まず、 撹拌装置を具備したジャケット付き混合槽に水を入れ、 温度を 60°C に調整した。 これに α— SF—Naとノニオン界面活性剤を除く界面活性剤、 及 び PEG# 6000を添加し、 10分間撹拌した。 続いて MA1 (アクリル酸お マレイン酸コポリマーナトリウム塩) と蛍光剤とを添加した。 さらに 10分間撹 拌した後、 粉末 A型ゼオライトの一部 (2. 0%相当量 (対各粒子、 以下同じ) の捏和時添加用、 3. 2%相当量の粉碎助剤用、 1. 5%相当量の表面被覆用の 各 A型ゼォライトを除く) 、 炭酸ナトリウム、 炭酸力リゥム及び亜硫酸ナトリウ ムを添加した。 さらに 20分間撹拌して水分 38%の噴霧乾燥用スラリーを調製 した後、 向流式噴霧乾燥塔を用いて熱風温度 280°Cの条件で噴霧乾燥し、 平均 粒子径 320 ^ m、 嵩密度 0. 30 g Z c m 3、 水分 5 %の噴霧乾燥粒子を得た 一方、 原料の脂肪酸エステルをスルホン化し、 中和して得られた α— SF—N aの水性スラリー (水分濃度 25%) に、 ノニオン界面活性剤の一部 (Q!— SF —Naに対して 25%) を添加し、 水分を 1 1 %になるまで薄膜式乾燥機で減圧 濃縮して、 一 S F— N aとノニオン界面活性剤の混合濃縮物を得た。 According to the composition shown in Table 5 below, surfactant-containing particles b1 were prepared in the following procedure. First, water was poured into a jacketed mixing tank equipped with a stirrer, and the temperature was adjusted to 60 ° C. To this, a surfactant excluding α-SF-Na and a nonionic surfactant, and PEG # 6000 were added and stirred for 10 minutes. Then MA1 (acrylic acid (Maleic acid copolymer sodium salt) and a fluorescent agent. After stirring for an additional 10 minutes, a portion of powdered zeolite A (2.0% equivalent (to each particle, the same applies hereinafter)) is added during kneading, 3.2% equivalent of a milling aid, .5% of each type A zeolite for surface coating), sodium carbonate, carbonated lime and sodium sulfite. After stirring for another 20 minutes to prepare a slurry for spray drying with a water content of 38%, the slurry was spray-dried using a countercurrent spray drying tower at a hot air temperature of 280 ° C to obtain an average particle diameter of 320 ^ m and a bulk density of 0 Spray-dried particles with 30 g Z cm 3 and 5% moisture were obtained, while the fatty acid ester of the raw material was sulfonated and neutralized to obtain an aqueous slurry of α-SF-Na (water concentration 25%). Then, a part of nonionic surfactant (Q! —SF—25% based on Na) is added, and the water content is reduced under reduced pressure with a thin film dryer to 11%, and one SF—Na and nonion are added. A mixed concentrate of surfactant was obtained.
上述の噴霧乾燥粒子、 この混合濃縮物、 2. 0%相当量の A型ゼオライト、 0 . 5 %相当量の噴霧添加用を除く残りのノ二オン界面活性剤及び水を連続二一ダ ― ( (株) 栗本鐡ェ所製、 KRC— S 4型) に投入し、 捏和能力 120 kgZh r、 温度 60°Cの条件で捏和し、 界面活性剤含有混練物を得た。 この界面活性剤 含有混練物を穴径 10mmのダイスを具備したペレツ夕一ダブル (不二パゥダル (株) 製、 EXDF J S— 100型) を用いて押し出しつつ、 カッターで切断し (カッター周速は 5m s) 長さ 5〜30mm程度のペレツト状界面活性剤含有 成型物を得た。  The spray-dried particles described above, this mixed concentrate, 2.0% equivalent of zeolite A, 0.5% equivalent of the remaining nonionic surfactant and water except for spray addition are continuously added in a continuous manner. (KRC-S4 type, manufactured by Kurimoto Tetsusho Co., Ltd.) and kneaded under conditions of a kneading capacity of 120 kgZhr and a temperature of 60 ° C to obtain a surfactant-containing kneaded product. This surfactant-containing kneaded material is extruded using a Pellet Yuichi Double (manufactured by Fuji Padal Co., Ltd., EXDF JS-100 type) equipped with a die with a hole diameter of 10 mm, and cut with a cutter (the peripheral speed of the cutter is 5 ms) A pellet-like surfactant-containing molded product having a length of about 5 to 30 mm was obtained.
次いで、 得られたペレツト状界面活性剤含有成型物に粉碎助剤としての粒子状 A型ゼォライ卜 (平均粒子径 180 m) を 3. 2%相当量添加し、 冷風 (10 °C、 1 5mZs) 共存下で直列 3段に配置したフィッツミル (ホソカワミクロン (株) 製、 DKA— 3) を用いて粉砕した (スクリーン穴径: 1段目 Z2段目 3段目 = 12mm/6mmZ3mm、 回転数: 1段目 / 2段目 3段目いずれも 4700 r pm) 。 最後に水平円筒型転動混合機 (円筒直径 585mm、 円筒長 さ 490mm、 容器 13 1. 7 Lのドラム内部壁面に内部壁面とのクリアランス 20mm、 高さ 45 mmの邪魔板を 2枚有するもの) で、 充填率 30容積%、 回 転数 22 r pm、 25°Cの条件で 1. 5 %相当量の微粉 A型ゼオライトを加え、 0. 5%相当量のノニオン界面活性剤と香料を噴霧しつつ、 1分間転動し表面改 質して粒子を得た。 Next, 3.2% equivalent of particulate A-type zeolite (average particle size: 180 m) as a grinding aid was added to the obtained pellet-like surfactant-containing molded product, and cooled air (10 ° C, 15 mZs) was added. ) Pulverized using a Fitz mill (manufactured by Hosokawa Micron Co., Ltd., DKA-3) arranged in three stages in coexistence (screen hole diameter: 1st stage Z2 stage 3rd stage = 12mm / 6mmZ3mm, rotation speed: 1st stage / 2nd stage All 3rd stages are 4700 rpm). Finally, a horizontal cylindrical tumbling mixer (cylinder diameter: 585 mm, cylinder length: 490 mm, container: 131.7 L drum inner wall with 20 mm clearance from the inner wall and two baffles 45 mm high) Under the conditions of a filling rate of 30% by volume, a rotation speed of 22 rpm, and 25 ° C, 1.5% equivalent of fine powder type A zeolite was added. While spraying 0.5% equivalent of nonionic surfactant and perfume, it was tumbled for 1 minute to modify the surface to obtain particles.
得られた粒子の一部を着色するために、 界面活性剤含有粒子をベルトコンベア で 0. 5 mZ sの速度で移送しつつ (ベル卜コンベア上の界面活性剤含有粒子層 の高 30mm、 層幅 300mm) その表面に色素の 20 %水分散液を噴霧し、 界 面活性剤含有粒子 b l (平均粒子径 550 zm、 嵩密度 0. 84g/cm3) を 得た。 In order to color some of the obtained particles, the surfactant-containing particles were transported on a belt conveyor at a speed of 0.5 mZ s (the height of the surfactant-containing particle layer on the belt conveyor was 30 mm, and the A 20% aqueous dispersion of the dye was sprayed on the surface to obtain surfactant-containing particles bl (average particle diameter 550 zm, bulk density 0.84 g / cm 3 ).
界面活性剤含有粒子 b 1の調製方法と同様にして、 界面活性剤含有粒子 b 2、 b 3 (平均粒子径、 嵩密度は表 5に記載) を得た。 界面活性剤含有粒子の調製方法 2  Surfactant-containing particles b2 and b3 (average particle diameter and bulk density are described in Table 5) were obtained in the same manner as the method for preparing surfactant-containing particles b1. Preparation method of surfactant-containing particles 2
下記表 5に示す組成に従つて、 以下の手順で界面活性剤含有粒子 b 4を調製し た。 下記表 5に示す組成成分のうち、 界面活性剤、 表面被覆に用いる 5. 0%相 当量の P型ゼォライ卜、 色素、 香料を除くすべての成分 (温度 25°C) を鋤刃状 ショベルを具備し、 ショベル一壁面間クリアランスが 5 mmのレーディゲミキサ ― ( (株) マツポー製、 M20型) に投入 (充填率 50容積%) し、 主軸 200 r pm、 チヨッパ一 200 r pmの撹拌を開始した。 撹拌開始後 30秒後に界面 活性剤混合物 (ノニオン界面活性剤とァニオン界面活性剤を予め 60°Cに加熱し て均一混合したもの) 及び水 (温度 60°C) を 2分で添加して、 ジャケット温度 30°Cの条件で撹拌造粒を平均粒子径 400 になるまで継続した。 最後に 5 . 0%相当量の P型ゼォライトを添加して 30秒撹拌して表面改質して粒子を得 た。  According to the composition shown in Table 5 below, surfactant-containing particles b4 were prepared in the following procedure. Of the components shown in Table 5 below, all components (temperature 25 ° C) except for surfactants and 5.0% equivalent of P-type zeolite, pigments, and fragrances used for surface coating were subjected to a plow blade excavator. Equipped with an excavator and a clearance meter between the excavator and the wall with a clearance of 5 mm (a filling ratio of 50% by volume, manufactured by Matsupo Co., Ltd., M20), and agitated the main spindle at 200 rpm and the chopper at 200 rpm. . 30 seconds after the start of stirring, a surfactant mixture (a mixture of a nonionic surfactant and an anionic surfactant preliminarily heated to 60 ° C and uniformly mixed) and water (temperature 60 ° C) were added in 2 minutes, Agitation granulation was continued at a jacket temperature of 30 ° C. until the average particle diameter reached 400. Finally, 5.0% equivalent of P-type zeolite was added and stirred for 30 seconds to modify the surface to obtain particles.
得られた粒子の一部を着色するために、 界面活性剤含有粒子の調製方法 1と同 様の方法で色素の 20%水分散液を噴霧し、 界面活性剤含有粒子 b 4 (平均粒子 径 400 m、 嵩密度 0. 80 gZcm3) を得た。 界面活性剤含有粒子の調製方法 3 In order to color some of the obtained particles, a 20% aqueous dispersion of the pigment is sprayed in the same manner as in the method 1 for preparing the surfactant-containing particles, and the surfactant-containing particles b 4 (average particle diameter 400 m and a bulk density of 0.80 gZcm 3 ) were obtained. Preparation method of surfactant-containing particles 3
下記表 5に示す組成に従って、 以下の手順で界面活性剤含有粒子 b 5を調製し た。 下記表 5に示す組成のうち、 ノニオン界面活性剤、 粉末 A型ゼオライト (ゼ オライト A) の一部 (2. 0%相当量 (対各粒子、 以下同じ) の捏和時添加用、 3. 2%相当量の粉碎助剤用、 1. 5%相当量の表面被覆用の各 A型ゼオライト を除く) 、 色素及び香料を除く成分を、 水に溶解もしくは分散させた水分 38% のスラリーを調製した後、 向流式噴霧乾燥塔を用いて熱風温度 300 の条件で 噴霧乾燥し、 平均粒子径 330 wm、 嵩密度 0. 30 gZcm3、 水分 3%の噴 霧乾燥粒子を得た。 この乾燥粒子と共に、 2. 0%相当量の A型ゼオライト、 0 . 5%相当量の噴霧添加用を除くノニオン界面活性剤及び水を連続二一ダ一 ( ( 株) 栗本鐡ェ所製、 KRC— S4型) に投入し、 捏和能力 120 kg/h r、 温 度 60°Cの条件で捏和し、 界面活性剤含有混練物を得た。 According to the composition shown in Table 5 below, surfactant-containing particles b5 were prepared by the following procedure. Among the compositions shown in Table 5 below, nonionic surfactants, powdered zeolite A (zeolite) For kneading a part of Olite A) (2.0% equivalent (each particle, same hereafter)) during kneading, 3.2% equivalent for milling aid, 1.5% equivalent for surface coating After excluding the A-type zeolite of the above), components other than pigments and perfumes are dissolved or dispersed in water to prepare a slurry with a water content of 38%, and then sprayed using a countercurrent spray-drying tower at a hot air temperature of 300. It was dried to obtain spray-dried particles having an average particle diameter of 330 wm, a bulk density of 0.30 gZcm 3 and a water content of 3%. Along with the dried particles, 2.0% equivalent of zeolite A, 0.5% equivalent of nonionic surfactant and water other than for spray addition were continuously added to the powder by Kurimoto Tetsusho Co., Ltd. (KRC-S4 type) and kneaded under the conditions of a kneading capacity of 120 kg / hr and a temperature of 60 ° C to obtain a surfactant-containing kneaded product.
この界面活性剤含有混練物を穴径 10mmのダイスを具備したペレツ夕一ダブ ル (不二パゥダル (株) 製、 EXDF J S— 100型) を用いて押し出しつつ、 カッターで切断し (カツ夕一周速は 5m/ s) 、 長さ 5〜 30mm程度のペレツ 卜状界面活性剤含有成型物を得た。  The surfactant-containing kneaded material was extruded using a pellet doubler (EXDF JS-100, manufactured by Fuji Padal Co., Ltd.) equipped with a die with a hole diameter of 10 mm, and was cut with a cutter (one round of cutlery). A pellet-like surfactant-containing molded product having a speed of 5 m / s) and a length of about 5 to 30 mm was obtained.
次いで、 得られたペレツト状界面活性剤含有成型物を界面活性剤含有粒子の調 製方法 1と同様の方法で粉砕、 次いで表面改質して粒子を得た。 得られた粒子の 一部を着色するために、 界面活性剤含有粒子の調製方法 1と同様の方法で色素の 20%水分散液を噴霧し、 界面活性剤含有粒子 b 5 (平均粒子径 540 m、 嵩 密度 77 gZcm3) を得た。 Next, the obtained pellet-like surfactant-containing molded product was pulverized by the same method as in the method 1 for preparing surfactant-containing particles, and then subjected to surface modification to obtain particles. In order to color some of the obtained particles, a 20% aqueous dispersion of the pigment is sprayed in the same manner as in the method 1 for preparing the surfactant-containing particles, and the surfactant-containing particles b 5 (average particle diameter 540 m and a bulk density of 77 gZcm 3 ).
界面活性剤含有粒子 b 5の調製方法と同様にして、 界面活性剤含有粒子 b 7 ( 平均粒子径、 嵩密度は表 5に記載) を得た。 界面活性剤含有粒子の調製方法 4  Surfactant-containing particles b7 (average particle diameter and bulk density are described in Table 5) were obtained in the same manner as the method for preparing surfactant-containing particles b5. Preparation method of surfactant-containing particles 4
下記表 5に示す組成に従って、 以下の手順で界面活性剤含有粒子 b 6を調製し た。 まず、 撹拌装置を具備したジャケット付き混合槽に水を入れ、 温度を 50°C に調整した。 これに硫酸ナトリウム及び蛍光剤を添加し、 10分間撹拌した。 続 いて、 炭酸ナトリウムを添加した後に、 PAS (ポリアクリル酸ナトリウム塩) を添加し、 さらに 10分間撹拌した後、 塩ィ匕ナトリウム及び粉末 A型ゼオライト の一部を添加した。 さらに、 30分間撹拌して噴霧乾燥用スラリーを調製した。 得られた噴霧乾燥用スラリーの温度は 50°Cであった。 このスラリ一を、 圧力 ノズルを具備した向流式噴霧乾燥装置で噴霧乾燥を行い、 水分 3%、 嵩密度が 0According to the composition shown in Table 5 below, surfactant-containing particles b6 were prepared in the following procedure. First, water was charged into a jacketed mixing tank equipped with a stirrer, and the temperature was adjusted to 50 ° C. Sodium sulfate and a fluorescent agent were added thereto, and the mixture was stirred for 10 minutes. Subsequently, after sodium carbonate was added, PAS (sodium polyacrylate) was added, and the mixture was further stirred for 10 minutes, and then sodium salt and a part of powdered A-type zeolite were added. Further, the mixture was stirred for 30 minutes to prepare a slurry for spray drying. The temperature of the obtained slurry for spray drying was 50 ° C. This slurry is pressure Spray drying is carried out with a counter-current spray dryer equipped with a nozzle, with a water content of 3% and a bulk density of 0
. 50 gZcm3、 平均粒子径が 250 mの噴霧乾燥粒子を得た。 Spray-dried particles having a particle size of 50 gZcm 3 and an average particle size of 250 m were obtained.
これとは別に、 ノニオン界面活性剤、 PEG#6000、 ァニオン界面活性剤 を、 80°Cの温度条件で混合して、 含水量 10%の界面活性剤組成物を調製した 。 L A S— N aは水酸化ナトリゥム水溶液で中和した溶液状で使用した。  Separately, a nonionic surfactant, PEG # 6000, and anionic surfactant were mixed at a temperature of 80 ° C. to prepare a surfactant composition having a water content of 10%. LAS—Na was used in the form of a solution neutralized with an aqueous sodium hydroxide solution.
そして、 得られた噴霧乾燥粒子を、 鋤刃状ショベルを具備し、 ショベル一壁面 間クリアランスが 5mmのレーディゲミキサ一 ( (株) マツポー製、 M20型) に投入 (充填率 50容積%) し、 ジャケットには 80°Cの温水を 10LZ分の流 量で流しながら、 主軸 (150 r pm) とチヨッパー (4000 r pm) の撹拌 を開始した。 そこに上記で調製した界面活性剤組成物を 2分間かけて投入し、 そ の後に 5分間撹拌した後、 層状珪酸塩 (SKS_6、 平均粒子径 5 /m) 及び粉 末 A型ゼオライトの一部 (10%相当量) を投入して 2分間撹拌することによつ て粒子を得た。  The obtained spray-dried particles are charged (filling rate 50% by volume) into a Reedige mixer (M20 type, manufactured by Matsupo Co., Ltd.) equipped with a plow blade-shaped shovel and having a clearance between the shovel and the wall of 5 mm, and a jacket Then, stirring of the spindle (150 rpm) and the chopper (4000 rpm) was started while flowing hot water at 80 ° C at a flow rate of 10 LZ. The surfactant composition prepared above was added thereto over 2 minutes, and then stirred for 5 minutes. Then, the layered silicate (SKS_6, average particle size 5 / m) and a part of powder A zeolite were used. (Equivalent to 10%) and stirred for 2 minutes to obtain particles.
得られた粒子と、 粉末 A型ゼオライトの一部 (2%相当量) を Vプレンダ一で 混合し、 香料を噴霧した後、 界面活性剤含有粒子の一部を着色するために、 界面 活性剤含有粒子の調製方法 1と同様の方法で色素の 20 %水分散液を噴霧し、 界 面活性剤含有粒子 b 6 (平均粒子径 300 / m、 嵩密度 0. 75 g/cm3) を 得た。 The obtained particles and a part of powder A-type zeolite (equivalent to 2%) are mixed with a V blender, and after spraying a fragrance, a surfactant is used to color some of the surfactant-containing particles. It was sprayed with a 20% aqueous dispersion of the dye in the same manner as in preparation method 1 containing particles, give the interfacial active agent-containing particles b 6 (average particle size 300 / m, the bulk density 0. 75 g / cm 3) Was.
5] Five]
Figure imgf000057_0001
Figure imgf000057_0001
[漂白活性化剤造粒物の調製例] [Example of preparation of granulated bleach activator]
漂白活性化剤造粒物 Aの調製方法 Preparation method of bleach activator granule A
漂白活性化剤として 4ーデカノィルォキシ安息香酸 (三井化学 (株) 製) を 7 0質量部、 PEG# 6000を 20質量部、 AO S— N a粉末品を 5質量部の割 合になるようにホソカワミクロン (株) 製ェクストルード 'ォーミックス EM— 6型に供給し、 混練押し出し (混練温度 60°C) し、 径が 0. 8mm<i)のヌード ル状の押し出し品を得た。 この押し出し品 (冷風により 20°Cに冷却) を、 ホソ カヮミクロン (株) 製フィッツミル DKA— 3型に導入し、 また助剤として A型 ゼォライト粉末 5質量部を同様に供給し、 粉碎して平均粒子径約 700 amの漂 白活性化剤造粒物 Aを得た。 漂白活性化剤造粒物 Bの調製方法 漂白活性化剤として 4ードデカノィルォキシベンゼンスルホン酸ナトリウムを 用いた他は、 漂白活性化剤造粒物 Aと同様にして漂白活性化剤造粒物 Bを調製し た。 漂白活性化剤造粒物 Cの調製方法 70 parts by weight of 4-decanoyloxybenzoic acid (manufactured by Mitsui Chemicals, Inc.), 20 parts by weight of PEG # 6000, and 5 parts by weight of AOS-Na powder as bleach activator The product was supplied to Extrude® OMICS EM-6 manufactured by Hosokawa Micron Corp., kneaded and extruded (kneading temperature 60 ° C) to obtain a noodle extruded product with a diameter of 0.8 mm <i). The extruded product (cooled to 20 ° C by cold air) is introduced into Fitzmill DKA-3 manufactured by Hoso Kamicron Co., Ltd. In addition, 5 parts by mass of A-type zeolite powder is supplied as an auxiliary in the same manner, and ground. A bleach activator granule A having an average particle diameter of about 700 am was obtained. Preparation method of bleach activator granulated product B A bleach activator granule B was prepared in the same manner as the bleach activator granule A, except that sodium 4-dodecanoyloxybenzenesulfonate was used as the bleach activator. Preparation method of granulated bleach activator C
漂白活性化剤として 4ーノナノィルォキシベンゼンスルホン酸ナトリウムを用 いた他は、 漂白活性化剤造粒物 Aと同様にして漂白活性化剤造粒物 Cを調製した  A bleach activator granule C was prepared in the same manner as the bleach activator granule A, except that sodium 4-nonanoyloxybenzenesulfonate was used as the bleach activator.
[実施例 1〜3 5、 比較例 1〜4 ] [Examples 1-35, Comparative Examples 1-4]
下記表 6〜1 0に記載の組成に従い、 粒状洗剤組成物を下記方法で調製し、 溶 解性 (低温凝集率) 、 固化性 (固化率) 、 流動性を評価した。 結果を表 6〜1 0 に併記する。 粒状洗剤組成物の調製  According to the compositions shown in Tables 6 to 10 below, a granular detergent composition was prepared by the following method, and the solubility (low-temperature aggregation rate), the solidification property (solidification rate), and the fluidity were evaluated. The results are shown in Tables 6 to 10. Preparation of granular detergent composition
水平円筒型転動混合機 (円筒直径 5 8 5 mm、 円筒長さ 4 9 0 mm、 容器 1 3 1 . 7 Lのドラム内部壁面に内部壁面とのクリアランス 2 0 mm、 高さ 4 5 mm の邪魔板を 2枚有するもの) で、 充填率 3 0容積%、 回転数 2 2 r p m、 2 5 °C の条件で、 表 1〜4に記載の (a ) 表面処理水溶性無機化合物粒子、 表 5に記載 の (b ) 界面活性剤含有粒子、 及びその他の成分を表 6〜1 0に示す組成に従つ て 5分間混合し粒状洗剤組成物を得た。 得られた粒状洗剤組成物の平均粒子径及 び嵩密度を表 6〜 1 0に記載した。  Horizontal cylindrical tumbling mixer (cylinder diameter 585 mm, cylinder length 490 mm, vessel 1 31.7 L drum inner wall clearance 20 mm, height 45 mm (With two baffles) at a filling rate of 30% by volume, a rotation speed of 22 rpm, and a temperature of 25 ° C. (a) surface-treated water-soluble inorganic compound particles described in Tables 1 to 4; The surfactant-containing particles (b) described in 5 and other components were mixed for 5 minutes according to the compositions shown in Tables 6 to 10 to obtain a granular detergent composition. Tables 6 to 10 show the average particle size and bulk density of the obtained granular detergent composition.
( 1 ) 溶解性 (低温凝集率) の評価  (1) Evaluation of solubility (low-temperature aggregation rate)
粒状洗剤組成物 5 gを 5 の水 8 0 m Lの入ったシャーレ中に静かに注ぎ 5分 間静置した。 静置後、 シャーレごと水を目開き 3 3 6 0 の篩を通し、 篩上に 残つた洗剤組成物を 6 0 °Cで 2時間乾燥する。 乾燥後の質量を測定し下記式を用 いて低温凝集率%を求めた。  5 g of the granular detergent composition was gently poured into a Petri dish containing 80 mL of 5 water and allowed to stand for 5 minutes. After standing, water is passed through a sieve with openings of 3360 together with the petri dishes, and the detergent composition remaining on the sieve is dried at 60 ° C for 2 hours. The mass after drying was measured, and the low-temperature agglomeration rate% was determined using the following equation.
篩上に残つた洗剤組成物の乾燥質量  Dry mass of detergent composition left on sieve
低温凝集率 ( % ) = X 1 0 0  Low-temperature aggregation rate (%) = X100
篩に入れた粒状洗剤組成物質量 上記で求めた低温凝集率と使用性の関係を以下に示す。 家庭における使用性を 考慮すると、 洗剤組成物としては低温凝集率 20%未満が好ましい。 Amount of granular detergent composition put in sieve The relationship between the low-temperature aggregation rate and the usability determined above is shown below. Considering the usability at home, the detergent composition preferably has a low-temperature aggregation rate of less than 20%.
良い:低温凝集率が 5 %未満  Good: Low-temperature aggregation rate is less than 5%
普通:低温凝集率が 5 20 %未満  Normal: Low-temperature aggregation rate of less than 520%
悪い:低温凝集率が 20 40 %未満  Poor: Low-temperature aggregation rate is less than 20 40%
非常に悪い:低温凝集率が 40 %以上  Very bad: Low-temperature coagulation rate of 40% or more
(2) 固化性 (固化率) の評価  (2) Evaluation of solidification (solidification rate)
外側からコートポール紙 (坪量: 350 g/m2) 、 ワックスサンド紙 (坪量 : 30 g/m2) 、 クラフトパルプ紙 (坪量: 70 g/m2) の 3層からなる紙 容器 (透湿度 25 gZm2 * 24時間 (40°C 90 RH) ) を用いて、 長さ 15 cmX巾 9. 3 cmX高さ 18. 5 cmの箱を作製した。 この箱に粒状洗剤 組成物 1. 2 kgを入れ、 25°C (65%RH 8時間) 、 45°C (85 %RH 16時間) のリサイクル恒温恒湿室中に 30日間保存して、 経時固化性試験用 サンプルを得た。 経時保存後、 洗剤を静かに目開き 4mmの篩に移し篩上に固化 して残った洗剤の質量を量り、 下記式により固化率を求めた。 篩上に残つた洗剤組成物の質量 Paper container consisting of three layers of coated pole paper (basis weight: 350 g / m 2 ), wax sand paper (basis weight: 30 g / m 2 ), and kraft pulp paper (basis weight: 70 g / m 2 ) from the outside Using (moisture permeability 25 gZm 2 * 24 hours (40 ° C 90 RH)), a box having a length of 15 cm, a width of 9.3 cm and a height of 18.5 cm was prepared. Put 1.2 kg of the granular detergent composition in this box, store in a recycle constant temperature and humidity room at 25 ° C (65% RH for 8 hours) and 45 ° C (85% RH for 16 hours) for 30 days, A sample for solidification test was obtained. After storage over time, the detergent was gently transferred to a sieve having an opening of 4 mm, solidified on the sieve, the remaining detergent was weighed, and the solidification rate was determined by the following formula. Mass of detergent composition left on sieve
化 (y< = X丄 00 (Y < = X 丄 00
箱に入れた粒状洗剤組成物質量 上記で求めた固化率と使用性の関係を以下に示す。 家庭における使用性を考慮 すると、 洗剤組成物としては固化率 20%未満が好ましい。  The relationship between the solidification rate and the usability determined above is shown below. Considering the usability at home, the detergent composition preferably has a solidification rate of less than 20%.
良い:固化率が 5%未満  Good: Solidification rate is less than 5%
普通:固化率が 5 20%未満  Normal: Solidification rate less than 5-20%
悪い:固化率が 20 40 %未満  Bad: solidification rate less than 20 40%
非常に悪い:固化率が 40 %以上  Very bad: solidification rate of 40% or more
(3) 流動性の評価  (3) Evaluation of liquidity
上記固化性の評価を行った後の粒状洗剤組成物を用いて、 後述の安息角の測定 方法により安息角を測定した。 結果を下記評価基準で評価した。 家庭における使 用性を考慮すると、 洗剤組成物としては安息角 60° 以下が好ましい。 く評価基準〉 The angle of repose was measured by the below-described method of measuring the angle of repose using the granular detergent composition after the evaluation of the solidification property. The results were evaluated according to the following evaluation criteria. Considering the usability at home, the detergent composition preferably has a repose angle of 60 ° or less. Evaluation criteria>
〇:安息角が 50° 以下  〇: Angle of repose is 50 ° or less
△:安息角が 50。 を超えて 60 ° 以下 .  Δ: Angle of repose is 50. Over 60 ° or less.
X:安息角が 60° を超える  X: Angle of repose exceeds 60 °
本発明中の平均粒子径、 嵩密度及び安息角は以下の方法で測定した。  The average particle diameter, bulk density and angle of repose in the present invention were measured by the following methods.
(4) 平均粒子径の測定  (4) Measurement of average particle size
各サンプル及びその混合物について、 目開き 1680 fim, 1410 xm、 1 190 urn, 1000 m、 7 10 / m、 500 ^m、 350 τη, 250 ^m 、 149 rn, の 9段の篩と受け皿を用いて分級操作を行った。 分級操作は、 受 け皿に目開きの小さな篩から目開きの大きな篩の順に積み重ね、 最上部の 1 68 0 mの篩の上から 100 g/回のベ一スサンプルを入れ、 蓋をしてロータップ 型篩い振盪機 ( (株) 飯田製作所製、 タッピング: 1 56回ノ分、 ローリング: 290回/分) に取り付け、 10分間振動させた後、 それぞれの篩及び受け皿上 に残留したサンプルを篩目ごとに回収して、 サンプルの質量を測定した。  For each sample and its mixture, use a 9-stage sieve and pan of 1680 fim, 1410 xm, 1 190 urn, 1000 m, 710 / m, 500 ^ m, 350 τη, 250 ^ m, 149 rn, To perform a classification operation. Classification is performed by stacking small sieves with large sieves in a tray in the order of the sieves, putting 100 g / base sample from the top of the top 168 m sieve, and closing the lid. After being attached to a low-tap type sieve shaker (Iida Seisakusho Co., Ltd., tapping: 156 times, rolling: 290 times / minute), and vibrated for 10 minutes, the sample remaining on each sieve and tray was removed. The sample was collected for each sieve and the mass of the sample was measured.
受け皿と各篩との質量頻度を積算していくと、 積算の質量頻度が、 50%以上 となる最初の篩の目開きを a mとし、 a mよりも一段大きい篩の目開きを b mとし、 受け皿から a mの篩までの質量頻度の積算を c %、 また a mの篩 上の質量頻度を d%として、 次式により平均粒子径 (重量 50%) を求めた。  When the mass frequency of the saucer and each sieve is integrated, the opening of the first sieve at which the integrated mass frequency is 50% or more is defined as am, and the opening of the sieve one step larger than am is defined as bm. The average particle diameter (weight 50%) was determined by the following formula, where the integration of the mass frequency from the sieve to the am sieve was c%, and the mass frequency on the am sieve was d%.
(50-(c-d/(logb-l oga) X 1 ogb) )/(d/(logb-loga)) 平均粒子径 (重量 50%) = 10 (50- (c-d / (logb-loga) X 1 ogb)) / (d / (logb-loga)) Average particle size (weight 50%) = 10
(5) 嵩密度の測定  (5) Measurement of bulk density
嵩密度は J I S K3362- 1998に準じて測定した。  The bulk density was measured according to JIS K3362-1998.
(6) 安息角の測定  (6) Measurement of angle of repose
筒井理化学器械 (株) 製、 ターンテーブル形安息角測定器を用いて安息角を測 定した。 [表 6 ] The angle of repose was measured using a turntable type angle of repose meter manufactured by Tsutsui Physical and Chemical Instruments Co., Ltd. [Table 6]
Figure imgf000061_0001
Figure imgf000061_0001
[表 7 ] [Table 7]
実施例  Example
組成 [%]  Composition [%]
8 9 10 11 12 13 14 a粒子 種類 a9 a9 a9 a9 a9 a6 a6 配合量 10.0 15.0 20.0 30.0 40.0 10.0 20.0 b粒子 bl [%] 一 - 一 - - - - b2 [%] 83.8 78.8 73.8 63.8 53.8 83.8 73.8 b3 [%] - - - 一 一 - 一 8 9 10 11 12 13 14 a Particle type a9 a9 a9 a9 a9 a6 a6 Blending amount 10.0 15.0 20.0 30.0 40.0 10.0 20.0 b Particle bl [%] One-one----b2 [%] 83.8 78.8 73.8 63.8 53.8 83.8 73.8 b3 [%]---one one-one
M [%] - - - 一 一 一 - b5 [%] - - - 一 一 - - b6 [%] 一 - 一 - 一 一 - b7 [%] - - 一 一 一 一 - 酵素粒子 A 0.2 0.2 0.2 0.2 0.2 0.2 0.2 酵素粒子 B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 過炭酸ナトリウム 4.0 4.0 4.0 4.0 4.0 4.0 4.0 漂白活性化剤 種類 A A A A A C C 造粒物 配合量 1.0 1.0 1.0 1.0 1.0 1.0 1.0 合計 L%」 100.0 M [%]---1-1-b5 [%]---1--b6 [%] 1-1-1-b7 [%]--1-1-1-Enzyme particles A 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Enzyme particles B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Sodium percarbonate 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Bleaching activator Type AAAAACC Granulated compounding amount 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Total L% '' 100.0
平均粒子径 [/ m] 538 527 516 494 472 538 516 嵩密度「g/cm3l 0.87 0.88 0.90 0.93 0.96 0.87 0.90 低温凝集率 [%] 0 0 0 0 0 0 0 固化率 [%] 0 0 0 0 5 0 0 流動性 〇 〇 〇 〇 〇 〇 〇 [表 8]
Figure imgf000062_0002
Average particle size [/ m] 538 527 516 494 472 538 516 Bulk density `` g / cm 3 l 0.87 0.88 0.90 0.93 0.96 0.87 0.90 Low-temperature aggregation rate [%] 0 0 0 0 0 0 0 Solidification rate [%] 0 0 0 0 5 0 0 Liquidity 〇 〇 〇 〇 〇 〇 〇 [Table 8]
Figure imgf000062_0002
[表 9]
Figure imgf000062_0001
[表 1 0 ]
[Table 9]
Figure imgf000062_0001
[Table 10]
Figure imgf000063_0001
Figure imgf000063_0001
[実施例 3 6〜5 2 ] [Examples 36 to 52]
実施例 1〜1 7において界面活性剤含有粒子の調製時に噴霧する、 香料、 ノニ オン界面活性剤のいずれかあるいは両方を、 表面処理水溶性無機化合物粒子、 界 面活性剤含有粒子及びその他の粒子成分を水平円筒型転動混合機内で粉体混合す る時に噴霧し、 粒状洗剤組成物 (実施例 3 6〜 5 2 ) を得た。 この粒状洗剤組成 物においても、 実施例 1〜 1 7と同様の評価結果を得た。  Spraying at the time of preparing surfactant-containing particles in Examples 1 to 17, either or both of a fragrance and a nonionic surfactant, surface-treated water-soluble inorganic compound particles, surfactant-containing particles and other particles The components were sprayed when powder was mixed in a horizontal cylindrical tumbling mixer to obtain a granular detergent composition (Examples 36 to 52). Also in this granular detergent composition, the same evaluation results as in Examples 1 to 17 were obtained.
[実施例 5 3〜 6 9 ]  [Example 53 to 69]
実施例 1〜 1 7において界面活性剤含有粒子の調製時に噴霧する色素水分散液 を、 表面処理水溶性無機化合物粒子、 界面活性剤含有粒子及びその他の粒子成分 を水平円筒型転動混合機内で粉体混合した後、 界面活性剤含有粒子の調製方法 1 に記載の方法と同様の方法により噴霧して粒状洗剤組成物 (実施例 5 3〜6 9 ) を得た。 この粒状洗剤組成物においても、 実施例 1〜 1 7と同様の評価結果を得 た。  In Examples 1 to 17, the dye aqueous dispersion sprayed at the time of preparing the surfactant-containing particles was subjected to surface-treated water-soluble inorganic compound particles, surfactant-containing particles, and other particle components in a horizontal cylindrical tumbling mixer. After powder mixing, the mixture was sprayed by the same method as described in Method 1 for preparing surfactant-containing particles to obtain a granular detergent composition (Examples 53 to 69). Also in this granular detergent composition, the same evaluation results as in Examples 1 to 17 were obtained.
[実施例 7 0〜 8 3 ]  [Examples 70 to 83]
実施例 4において、 表面処理水溶性無機化合物粒子である a 9粒子を a l〜a 3、 a 1 2、 a 1 6粒子の各粒子に変更した以外は実施例 4と同様に調製し、 粒 状洗剤組成物 (実施例 7 0〜 7 4 ) を得た。 この粒状洗剤組成物においても、 実 施例 4と同様な評価結果を得た。 In Example 4, the surface-treated water-soluble inorganic compound particles a 9 Except having changed to 3, a12, and a16 particles, it prepared similarly to Example 4 and obtained the granular detergent composition (Examples 70-74). With this granular detergent composition, the same evaluation results as in Example 4 were obtained.
また、 実施例 3 0において、 表面処理水溶性無機化合物粒子である a 1 8粒子 を a l l、 a 1 3〜a 1 5、 a 2 0〜 a 2 4粒子の各粒子に変更した以外は実施 例 3 0と同様に調製し、 粒状洗剤組成物 (実施例 7 5〜8 3 ) を得た。 この粒状 洗剤組成物においても、 実施例 3 0と同様な評価結果を得た。  Further, in Example 30, except that the a18 particles, which are the surface-treated water-soluble inorganic compound particles, were changed to all, a13 to a15, and a20 to a24 particles. Preparation was performed in the same manner as in Example 30 to obtain a granular detergent composition (Examples 75 to 83). The same evaluation results as in Example 30 were obtained with this granular detergent composition.
実施例 4の粒状洗剤組成物と比較例 2の粒状洗剤組成物 4 0 gを、 三菱電機 ( 株) 製、 全自動洗濯機 「MAW— V 8 T P」 のパルセ一夕一の 6分割された扇状 の窪みの 1つの外周に近い部分に、 円錐状の集合状態で置いた。 洗剤組成物の集 合状態を崩さないように衣料 3 k g (木綿肌着 5 0 %、 ポリエステル Z綿混紡ヮ ィシャツ 5 0質量%) を洗濯槽に投入した。 洗剤に直接水が当らないように 1 0 °Cの水道水を 1 0 LZ分の流量で 3 8 L注水した。 「さっと洗い」 コースという 短時間洗濯するコースで洗濯した。 洗濯工程 (3分) 終了後に排水し、 衣料及び 洗濯槽に残留する洗剤組成物の状態を目視判定した。 比較例 2では洗剤組成物の 凝集物が多量に残留していたのに対し、 実施例 4では洗剤組成物が残らなかつた 実施例 4の粒状洗剤組成物と比較例 3の粒状洗剤組成物 4 0 gを、 三洋電機 ( 株) 製、 全自動洗濯機 「A S W— Z R 7 5 0」 のパルセーターの 5分割された扇 状の窪みの 1つの外周に近い部分に、 円錐状の集合状態で置いた。 洗剤組成物を 崩さないように衣料 3 k g (木綿肌着 5 0質量%、 ポリエステルノ綿混紡ワイシ ャッ 5 0質量%) を洗濯槽に投入した。 洗剤組成物に直接水が当らないように 1 0 °Cの水道水を 1 0 L/分の流量で 3 9 L注水し、 「弱洗いコース」 という撹拌 力の弱い弱水流で洗濯するコースで洗濯した。 洗濯工程 (8分) 終了後に排水し 、 衣料及び洗濯槽に残留する洗剤の状態を目視判定した。 比較例 3では洗剤組成 物の凝集物が多量に残留していたのに対し、 実施例 4では洗剤組成物が残らなか つた。  40 g of the granular detergent composition of Example 4 and 40 g of the granular detergent composition of Comparative Example 2 were divided into six parts each of a pulse of a fully automatic washing machine “MAW-V8TP” manufactured by Mitsubishi Electric Corporation. It was placed in a conical cluster near the outer periphery of one of the fan-shaped depressions. 3 kg of clothing (50% of cotton underwear, 50% by weight of polyester Z cotton blended shirt) was put into a washing tub so as not to disturb the state of aggregation of the detergent composition. 38 L of tap water at 10 ° C was injected at a flow rate of 10 LZ so that water did not directly hit the detergent. We washed in the "wash quickly" course, a short-time washing course. After completion of the washing process (3 minutes), drainage was performed, and the state of the detergent composition remaining in clothing and the washing tub was visually determined. In Comparative Example 2, a large amount of aggregates of the detergent composition remained, whereas in Example 4, no detergent composition remained. The granular detergent composition of Example 4 and the granular detergent composition 4 of Comparative Example 3 did not. 0 g of the pulsator of the fully automatic washing machine “ASW-ZR750” manufactured by Sanyo Electric Co., Ltd. placed. 3 kg of clothing (50% by mass of cotton underwear, 50% by mass of polyester cotton blend) was put into a washing tub so as not to destroy the detergent composition. 39 L of 10 ° C tap water is injected at a flow rate of 10 L / min so that water does not directly hit the detergent composition. Washed. After the washing process (8 minutes), the drainage was carried out, and the state of the clothes and the detergent remaining in the washing tub was visually judged. In Comparative Example 3, a large amount of aggregates of the detergent composition remained, whereas in Example 4, no detergent composition remained.
実施例 4の粒状洗剤組成物と比較例 3の粒状洗剤組成物について、 洗剤投入口 付きドラム式洗濯機 (シャープ (株) 製、 E S— E 6 1 ) を使用して、 投入口に 粒状洗剤組成物 40 gを投入して標準コースで洗濯した (水温 10°C、 水量 30 L、 衣料 3 kg (木綿肌着 50質量%、 ポリエステル /綿混紡ワイシャツ 50質 量%) ) 。 この洗濯を 1日 1回、 30日間繰り返したところ、 比較例 3では投入 口に洗剤組成物の溶け残りが残存した (約 10 g) のに対し、 実施例 4では洗剤 組成物が残らなかった。 About the granular detergent composition of Example 4 and the granular detergent composition of Comparative Example 3, using a drum type washing machine with a detergent inlet (manufactured by Sharp Corp., ES-E61), the inlet was used. 40 g of the granular detergent composition was added and washed on a standard course (water temperature 10 ° C, water volume 30 L, clothing 3 kg (cotton underwear 50% by mass, polyester / cotton blended shirt 50% by mass)). When this washing was repeated once a day for 30 days, the detergent composition remained undissolved at the inlet in Comparative Example 3 (about 10 g), whereas the detergent composition did not remain in Example 4 .
実施例中で用いた原料を下記に示す。  The raw materials used in the examples are shown below.
(水溶性無機化合物核粒子)  (Water-soluble inorganic compound core particles)
•炭酸ナトリウム:粒灰 (旭硝子 (株) 製、 平均粒子径 320 m、 嵩密度 1. 07 gノ cm3) • Sodium carbonate: Tsubuhai (Asahi Glass Co., Ltd., average particle size 320 m, bulk density 1. 07 g Roh cm 3)
·セスキ炭酸ナトリウム: S e s Q U i TM S o d i um S e s qu i c a r b o n a t e (米国 FMC社製、 平均粒子径 290 zm、 嵩密度 0. 75 g / c m3) · Sodium sesquicarbonate: Ses QUi TM Sodium Ses qu icarbonate (FMC, USA, average particle size 290 zm, bulk density 0.75 g / cm 3 )
•炭酸力リゥム:炭酸力リゥム (粉末) (旭硝子 (株) 製、 平均粒子径 49 0 m、 嵩密度 1. 30 g/cm3) • Carbonated rim: Carbonated rim (powder) (manufactured by Asahi Glass Co., Ltd., average particle diameter 490 m, bulk density 1.30 g / cm 3 )
·重炭酸ナトリウム:重炭酸ナトリゥム ェ重 (旭硝子 (株) 製)  · Sodium bicarbonate: sodium bicarbonate (made by Asahi Glass Co., Ltd.)
•硫酸ナトリウム:中性無水芒硝 (日本化学工業 (株) 製)  • Sodium sulfate: neutral anhydrous sodium sulfate (Nippon Chemical Industry Co., Ltd.)
•亜硫酸ナトリウム:無水亜硫酸曹達 (神州化学 (株) 製)  • Sodium sulfite: Anhydrous sodium sulfite (Shinshu Chemical Co., Ltd.)
•塩化ナトリウム: 日精のやき塩 C (日本製塩 (株) 製)  • Sodium chloride: Nissei no Yaki salt C (manufactured by Nippon Salt Co., Ltd.)
•層状珪酸塩:結晶性層状ゲイ酸ナトリウム、 SKS— 6 (クラリアントジャパ ン (株) 製)  • Layered silicate: crystalline layered sodium gateate, SKS-6 (manufactured by Clariant Japan Co., Ltd.)
(水溶性高分子化合物)  (Water-soluble polymer compound)
• HPC: ヒドロキシプロピルセルロース (日本曹達 (株) 製 HPC、 S SLT yp e) 純分 5%となるように水で希釈したもの  • HPC: Hydroxypropylcellulose (HPC, S SLT yp e, manufactured by Nippon Soda Co., Ltd.) Diluted with water to a pure content of 5%
• MA1 :アクリル酸/マレイン酸コポリマー N a塩、 アクアリック TL— 40 0 (日本触媒 (株) 製) (純分 40%水溶液)  • MA1: Acrylic / maleic acid copolymer Na salt, Aquaric TL-400 (Nippon Shokubai Co., Ltd.) (40% pure water solution)
• MA2 :アクリル酸ノマレイン酸コポリマー N a塩:アクアリック TL一 40 0 (日本触媒 (株) 製) を純分 20 %となるように水で希釈したもの  • MA2: acrylic acid-nomaleic acid copolymer Na salt: Aqualic TL-1400 (manufactured by Nippon Shokubai Co., Ltd.) diluted with water to a pure content of 20%
• MA3 :アクリル酸/マレイン酸コポリマー N a塩: S o k a l an CP 4 5 (BASF社製) を純分 20%となるように水で希釈したもの • PAS :ポリアクリル酸 Na塩、 アクアリック DL— 40 (日本触媒 (株) 製 ) の純分 40 %水溶液) • MA3: Acrylic acid / maleic acid copolymer Na salt: Sokal an CP45 (manufactured by BASF) diluted with water to a pure content of 20% • PAS: Polyacrylic acid Na salt, Aquaric DL-40 (Nippon Shokubai Co., Ltd.) 40% pure solution
• AG:アルギン酸 Na、 ダックアルギン NSPLL ( (株) 紀文フードケミフ ァ製) の純分 4%水溶液  • AG: 4% pure aqueous solution of sodium alginate and duck algin NSPLL (manufactured by Kibun Food Chemifa Corporation)
· CMC:力ルポキシメチルセルロース N a、 CMCダイセル 1 105 (ダイセ ル化学工業 (株) 製) の純分 5%水溶液  · CMC: Ripoxymethylcellulose Na, 5% pure solution of CMC Daicel 1105 (manufactured by Daicel Chemical Industries, Ltd.)
• PVA:ポリビニルアルコール、 クラレポバール PVA— 105 ( (株) クラ レ製) の純分 5%水溶液  • PVA: Polyvinyl alcohol, Kuraray Poval PVA-105 (Kuraray Co., Ltd.) 5% pure solution
• PAP :ポリアスパラギン酸 Na、 B aypu r e DS 100/40% (B a y e r製、 純分 40 %水溶液)  • PAP: Polyaspartic acid sodium, Baypure DS 100/40% (manufactured by Bayer, pure 40% aqueous solution)
•珪酸塩: 日本化学工業製 1号珪酸ナトリウム (45 %水溶液)  • Silates: Nippon Kagaku Kogyo No. 1 sodium silicate (45% aqueous solution)
• PEG# 6000 : ライオン (株) 製ポリエチレングリコール、 商品名 PEG • PEG # 6000: polyethylene glycol manufactured by Lion Corporation, trade name PEG
• 6000M • 6000M
• S RC: クラリアントジャパン (株) ソィルリリースポリマ一、 Texc a r e SRN— 325、 25 %水溶液  • S RC: Clariant Japan Co., Ltd. Soil Release Polymer, Texc a re SRN— 325, 25% aqueous solution
(水難溶性化合物)  (Poorly water-soluble compound)
• ラウリン酸: 日本油脂 (株) 製、 NAA— 122、 融点 43°C  • Lauric acid: manufactured by NOF Corporation, NAA-122, melting point 43 ° C
•ミリスチン酸:新日本理化 (株) 製、 ミリスチン酸、 融点 52°C  • Myristic acid: Myristic acid, manufactured by Shin Nippon Rika Co., Ltd., melting point 52 ° C
•パルミチン酸:新日本理化 (株) 製、 パルミチン酸 P、 融点 58°C  • Palmitic acid: Nippon Rika Co., Ltd., palmitic acid P, melting point 58 ° C
'ステアリン酸:新日本理化 (株) 製、 雪印ステアリン酸 5000、 融点 65°C 'パルミチン酸メチルエステル: ライオン (株) 製、 パステル M— 16、 融点 3 0°C  'Stearic acid: Nippon Rika Co., Ltd., Snow Brand Stearic acid 5000, melting point 65 ° C' Palmitic acid methyl ester: Lion Co., Ltd., Pastel M-16, melting point 30 ° C
-アジピン酸:住友化学 (株) 製、 融点 151°C  -Adipic acid: Sumitomo Chemical Co., Ltd., melting point 151 ° C
•ステアリルアルコール:新日本理化 (株) 製、 コノール 3 O S S、 融点 57°C (微粉体)  • Stearyl alcohol: manufactured by Shin Nippon Rika Co., Ltd., Conol 3 O S S, melting point 57 ° C (fine powder)
• A型ゼォライト :シルトン B (水澤化学 (株) 製、 純分 80%)  • A-type zeolite: Shilton B (manufactured by Mizusawa Chemical Co., Ltd., 80% pure)
• P型ゼォライト : D〇UC I L A24 (イネォスシリカ社製)  • P-type zeolite: D〇UC I L A24 (Ineso Silica)
•タルク : ミクロエース LG (日本タルク (株) 製)  • Talc: Micro Ace LG (Nippon Talc Co., Ltd.)
(界面活性剤) - α-SF-Na:炭素数 14 :炭素数 16 = 18 : 82のひ—スルホ脂肪酸メ チルエステルのナトリウム塩 (ライオン (株) 製、 AI =70%、 残部は未反応 脂肪酸メチルエステル、 硫酸ナトリウム、 メチルサルフェート、 過酸化水素、 水 等) (Surfactant) -α-SF-Na: 14 carbon atoms: 16 = 18: 82 sodium salt of methyl sulfo fatty acid methyl ester (manufactured by Lion Corporation, AI = 70%, the remainder is unreacted fatty acid methyl ester, sodium sulfate) , Methyl sulfate, hydrogen peroxide, water, etc.)
• LAS -K:直鎖アルキル (炭素数 10〜14) ベンゼンスルホン酸 (ライポ >LH- 200 (ライオン (株) 製) LAS— H純分 96%) を界面活性剤組成 物調製時に 48%水酸化カリウム水溶液で中和する) 。 表 5中の配合量は、 LA S— Kとしての質量%を示す。  • LAS-K: Linear alkyl (10-14 carbon atoms) benzenesulfonic acid (Lipo> LH-200 (Lion Co., Ltd.) LAS-H pure content 96%) was added to 48% water at the time of preparing the surfactant composition. Neutralize with potassium oxide solution). The blending amounts in Table 5 indicate mass% as LASK.
• LAS— N a :直鎖アルキル (炭素数 10〜14) ベンゼンスルホン酸 (ライ オン (株) 製ライボン LH— 200 (LAS— H純分 96%) を界面活性剤組成 物調製時に 48%水酸化ナトリウム水溶液で中和する) 。 表 5中の配合量は、 L A S— N aとしての質量%を示す。  • LAS-Na: linear alkyl (10-14 carbon atoms) Benzenesulfonic acid (Lybon LH-200 (LAS-H pure content 96%) manufactured by Lion Co., Ltd.) was added to 48% water at the time of preparing the surfactant composition. Neutralize with aqueous sodium oxide). The blending amounts in Table 5 indicate mass% as LAS-Na.
• AOS—K:炭素数 14〜18のアルキル基をもつ —ォレフインスルホン酸 カリウム (ライオン (株) 製)  • AOS—K: having an alkyl group with 14 to 18 carbon atoms—potassium olefin sulfonate (manufactured by Lion Corporation)
• AOS— Na :炭素数 14の α—才レフインスルホン酸ナトリウム粉末品 (商 品名リポラン P J— 400、 ライオン (株) 製)  • AOS—Na: powdered sodium alpha-leufine sulfonate having 14 carbon atoms (trade name: Lipolan P J-400, manufactured by Lion Corporation)
•石鹼:炭素数 12〜: L 8の脂肪酸ナトリゥム (ライオン (株) 製、 純分: 67 %、 タイター: 40〜45°C、 脂肪酸組成: C12 : l l. 7%、 C14: 0. 4 %、 C16: 29. 2%、 C18F 0 (ステアリン酸) : 0. 7%、 C18F 1 (ォ レイン酸) : 56. 8%、 C18F 2 (リノール酸) : 1. 2%、 分子量: 28 9) • stone鹼: carbon atoms 12: fatty acids L 8 Natoriumu (Lion Co., Ltd., purity: 67%, titer: 40 to 45 ° C, fatty acid composition: C 12:. L l 7 %, C 14: 0. 4%, C 16: 29. 2%, C 18 F 0 ( stearic): 0. 7%, C 18 F 1 ( O maleic acid): 56. 8%, C 18 F 2 ( linoleic acid) : 1.2%, molecular weight: 28 9)
• AS— Na :炭素数 10〜18のアルキル基を持つアルキル硫酸ナトリウム塩 (三洋化成工業 (株) 製サンデット LNM)  • AS—Na: Sodium alkyl sulfate having an alkyl group with 10 to 18 carbon atoms (Sandet LNM manufactured by Sanyo Chemical Industries, Ltd.)
•ノニオン界面活性剤 A:ダイヤドール 13 (三菱化学 (株) 製) の酸化工チレ ン平均 8モル付加体 (純分 90%)  • Nonionic surfactant A: Oxidized styrene averaged 8 mol adduct of Diadol 13 (manufactured by Mitsubishi Chemical Corporation) (90% pure content)
•ノニオン界面活性剤 B: ECOROL 26 (E COGRE EN社製炭素数 12 〜 16のアルキル基をもつアルコール) の酸化エチレン平均 15モル付加体 (純 分 90 %)  • Nonionic surfactant B: ECOROL 26 (alcohol with alkyl group having 12 to 16 carbon atoms, manufactured by E COGRE EN), average 15 mol ethylene oxide adduct (90% pure)
(色素) •色素 A:群青 (大日精化工業 (株) 製、 U 1 t r ama r i n e B l ue)(Dye) • Dye A: Ultramarine (Dainichi Seika Kogyo Co., Ltd., U1 tramarine Blue)
•色素 B: P i gme n t Gr e e n 7 (大日精化工業 (株) 製)• Dye B: Pigment Green 7 (Dainichi Seika Kogyo Co., Ltd.)
•色素 C:アクリロニトリル/スチレン/アクリル酸を構成モノマ一とし、 水分 散系におけるラジカル乳化重合にて得られる平均粒子径 0. 35 xmの球状樹脂 粒子に、 樹脂分に対して約 1 %の C. I . BAS I C RED- 1を重合樹脂懸 濁液に加え加熱処理して得られる桃色の蛍光顔料水分散体。 • Dye C: Acrylonitrile / styrene / acrylic acid as the constituent monomer. Spherical resin particles with an average particle diameter of 0.35 xm obtained by radical emulsion polymerization in a water dispersion system. I. BAS IC RED-1 is an aqueous dispersion of a pink fluorescent pigment obtained by adding the polymerized resin suspension to a suspension and subjecting it to heat treatment.
(香料)  (Fragrance)
•香料 A:特開 2002— 146399号公報 [表 11 ] 〜 [表 18 ] に示す香 料組成物 A  • Perfume A: Perfume composition A shown in JP-A-2002-146399 [Table 11] to [Table 18]
·香料 B:特開 2002— 146399号公報 [表 11 ] 〜 [表 18] に示す香 料組成物 B  · Fragrance B: Fragrance composition B shown in JP-A-2002-146399 [Table 11] to [Table 18]
•香料 C:特開 2002— 146399号公報 [表 11 ] 〜 [表 18] に示す香 料組成物 C  • Fragrance C: Fragrance composition C shown in JP-A-2002-146399 [Table 11] to [Table 18]
•香料 D:特開 2002— 146399号公報 [表 1 1 ] 〜 [表 18 ] に示す香 料組成物 D  • Perfume D: Perfume composition D shown in JP-A-2002-146399 [Table 11] to [Table 18]
(酵素)  (Enzyme)
•酵素粒子 A:カンナ一ゼ 12 T (ノポザィムズ製) ZL I PEX50T (ノポ ザィムズ製) Zターマミル 60T (ノポザィムズ製) /セルザィム 0. 7T (ノ ポザィムズ製) =5Z2Zl/2 (質量比) の混合物  • Enzyme particles A: Kannaze 12 T (Nopozymes) ZL I PEX50T (Nopozymes) Z Termamil 60T (Nopozymes) / Selzym 0.7T (Nopozymes) = 5Z2Zl / 2 (mass ratio)
·酵素粒子 B:エバラーゼ 8T (ノポザィムズ製) ZL I PEX50T (ノポザ ィムズ製) 夕ーマミル 60T (ノポザィムズ製) /セルザィム 0. 7T (ノポ ザィムズ製) =5Z2Zl/2 (質量比) の混合物  · Enzyme particles B: Evarase 8T (Nopozims) ZL I PEX50T (Nopozims) Evenmamil 60T (Nopozims) / Selzym 0.7T (Nopozims) = 5Z2Zl / 2 (mass ratio)
(その他)  (Other)
•蛍光剤:チノパール CBS— X (チバスペシャルティケミカルズ) /チノパー ル AMS— GX (チバスペシャルティケミカルズ) =3Z1 (質量比) の混合物 •過炭酸ナトリウム:三菱瓦斯化学 (株) 製、 SPC—D、 有効酸素量 13. 2 %、 平均粒子径 760 m  • Fluorescent agent: Tinopearl CBS—X (Ciba Specialty Chemicals) / Tinopar AMS—GX (Ciba Specialty Chemicals) = 3Z1 (mass ratio) mixture • Sodium percarbonate: Mitsubishi Gas Chemical, SPC—D, Effective Oxygen content 13.2%, average particle size 760 m

Claims

請求 の 範 囲 The scope of the claims
1 . 水溶性無機化合物核粒子が第 1表面処理剤である有機又は無機水溶性高分子 化合物で表面処理され、 さらにその処理された表面が第 2表面処理剤である水難 溶性化合物で処理されてなる表面処理水溶性無機化合物粒子。  1. The water-soluble inorganic compound core particles are subjected to a surface treatment with an organic or inorganic water-soluble polymer compound as a first surface treatment agent, and the treated surface is treated with a second water-insoluble compound as a second surface treatment agent. Surface-treated water-soluble inorganic compound particles.
2 . 水溶性無機化合物核粒子と、 この粒子表面上の一部又は全面に形成された水 溶性高分子化合物を含む第 1表面処理部と、 第 1表面処理部表面上の一部又は全 面に形成された水難溶性化合物を含む第 2表面処理部とを有する請求項 1記載の 表面処理水溶性無機化合物粒子。  2. A water-soluble inorganic compound core particle, a first surface treatment portion containing a water-soluble polymer compound formed on a part or the whole surface of the particle surface, and a part or the whole surface of the first surface treatment portion surface 2. The surface-treated water-soluble inorganic compound particles according to claim 1, further comprising a second surface-treated portion containing a poorly water-soluble compound formed on the surface.
3 . 前記第 1表面処理部が水への溶解又は分散過程で発熱性を示し、 前記第 2表 面処理部が水への溶解又は分散過程で吸熱性を示し、 第 1表面処理部と第 2表面 処理部からなる全表面処理部が水への溶解又は分散過程で吸熱性を示すことを特 徵とする請求の範囲第 2項記載の表面処理水溶性無機化合物粒子。  3. The first surface treatment section exhibits exothermicity in the process of dissolving or dispersing in water, the second surface treatment section exhibits endothermicity in the process of dissolving or dispersing in water, 3. The surface-treated water-soluble inorganic compound particles according to claim 2, wherein all the surface-treated portions comprising the surface-treated portion exhibit endothermic properties in a process of dissolving or dispersing in water.
4. 水溶性無機化合物核粒子が、 炭酸ナトリウム又は炭酸カリウムであることを 特徴とする請求の範囲第 1〜 3のいずれか 1項記載の表面処理水溶性無機化合物 粒子。  4. The surface-treated water-soluble inorganic compound particles according to any one of claims 1 to 3, wherein the water-soluble inorganic compound core particles are sodium carbonate or potassium carbonate.
5 . 水溶性高分子化合物がビニル系高分子化合物、 多糖類、 その誘導体及びポリ エステル系高分子化合物から選ばれる 1種又は 2種以上であることを特徴とする 請求の範囲第 1〜 4のいずれか 1項記載の表面処理水溶性無機化合物粒子。 5. The water-soluble polymer compound is one or more selected from a vinyl polymer compound, a polysaccharide, a derivative thereof, and a polyester polymer compound. 2. The surface-treated water-soluble inorganic compound particles according to claim 1.
6 . 水溶性高分子化合物が力ルポキシル基を有する化合物であることを特徴とす る請求の範囲第 1〜 4のいずれか 1項記載の表面処理水溶性無機化合物粒子。6. The surface-treated water-soluble inorganic compound particles according to any one of claims 1 to 4, wherein the water-soluble polymer compound is a compound having a hydroxyl group.
7 . 水溶性高分子化合物が水ガラスであることを特徴とする請求の範囲第 1〜 4 のいずれか 1項記載の表面処理水溶性無機化合物粒子。 7. The surface-treated water-soluble inorganic compound particles according to any one of claims 1 to 4, wherein the water-soluble polymer compound is water glass.
8 . 水難溶性化合物がァニオン界面活性剤酸前駆体及び/又はその塩であること を特徴とする請求の範囲第 1〜 7のいずれか 1項記載の表面処理水溶性無機化合 物粒子。  8. The surface-treated water-soluble inorganic compound particles according to any one of claims 1 to 7, wherein the poorly water-soluble compound is an anionic surfactant acid precursor and / or a salt thereof.
9 . ァニオン界面活性剤酸前駆体が脂肪酸であることを特徴とする請求の範囲第 9. The anionic surfactant acid precursor is a fatty acid,
8項記載の表面処理水溶性無機化合物粒子。 Item 8. The surface-treated water-soluble inorganic compound particles according to item 8.
1 0 . 粒状洗剤組成物配合用のアルカリ剤であることを特徴とする請求の範囲第 1〜 9のいずれか 1項記載の表面処理水溶性無機化合物粒子。 10. The surface-treated water-soluble inorganic compound particles according to any one of claims 1 to 9, which is an alkaline agent for blending a granular detergent composition.
11. 下記第 1工程及び第 2工程を含む表面処理水溶性無機化合物粒子の製造方 法。 11. A method for producing surface-treated water-soluble inorganic compound particles including the following first step and second step.
第 1工程:水溶性無機化合物核粒子に水溶性高分子化合物水溶液を添加し、 水溶 性高分子化合物で水溶性無機化合物核粒子を表面処理する工程。 First step: a step of adding an aqueous solution of a water-soluble polymer compound to the core particles of the water-soluble inorganic compound and treating the surface of the core particles of the water-soluble inorganic compound with the water-soluble polymer compound.
第 2工程:第 1工程で処理された水溶性無機化合物核粒子に水難溶性化合物を添 加し、 前記粒子を表面処理する工程。 Second step: a step of adding a poorly water-soluble compound to the water-soluble inorganic compound core particles treated in the first step, and subjecting the particles to a surface treatment.
12. 水難溶性化合物がァニオン界面活性剤酸前駆体であることを特徴とする請 求の範囲第 11項記載の製造方法。  12. The production method according to claim 11, wherein the poorly water-soluble compound is an anionic surfactant acid precursor.
13. 第 2工程終了直後における表面処理水溶性無機化合物粒子の温度が、 ァニ オン界面活性剤酸前駆体の融点以上であることを特徴とする請求の範囲第 12項 記載の製造方法。  13. The production method according to claim 12, wherein the temperature of the surface-treated water-soluble inorganic compound particles immediately after the completion of the second step is equal to or higher than the melting point of the anionic surfactant acid precursor.
14. (a) 請求の範囲第 1〜 10のいずれか 1項記載の表面処理水溶性無機化 合物粒子と、 ( b ) 界面活性剤及び無機化合物を含む界面活性剤含有粒子とを含 有することを特徴とする粒状洗剤組成物。  14. (a) The surface-treated water-soluble inorganic compound particles according to any one of claims 1 to 10, and (b) surfactant-containing particles containing a surfactant and an inorganic compound. A granular detergent composition comprising:
15. (b) 界面活性剤含有粒子中に、 水溶性高分子化合物を含むことを特徴と する請求の範囲第 14項記載の粒状洗剤組成物。  15. The granular detergent composition according to claim 14, wherein (b) the surfactant-containing particles contain a water-soluble polymer compound.
16. (a) 表面処理水溶性無機化合物粒子中の水難溶性化合物の配合量が 10 質量%未満であり、 かつ (b) 界面活性剤含有粒子中の界面活性剤配合量が 10 〜50質量%であることを特徴とする請求の範囲第 14又は 15項記載の粒状洗 剤組成物。  16. (a) The compounding amount of the poorly water-soluble compound in the surface-treated water-soluble inorganic compound particles is less than 10% by mass, and (b) the compounding amount of the surfactant in the surfactant-containing particles is 10 to 50% by mass. 16. The granular detergent composition according to claim 14, wherein the composition is:
17. 請求の範囲第 1〜 10のいずれか 1項記載の表面処理水溶性無機化合物粒 子を含む洗濯浴と洗濯物とを、 浴比 7〜15LZkg、 洗濯温度 5〜12°Cにて 行う洗濯方法。  17. A washing bath containing the surface-treated water-soluble inorganic compound particles according to any one of claims 1 to 10 and a laundry are performed at a bath ratio of 7 to 15 LZ kg and a washing temperature of 5 to 12 ° C. Washing method.
PCT/JP2004/005910 2003-04-24 2004-04-23 Surface-treated particle of water-soluble inorganic compound, process for producing the same, and particulate detergent composition WO2004094313A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005505805A JP4753021B2 (en) 2003-04-24 2004-04-23 Surface-treated water-soluble inorganic compound particles, production method thereof, and granular detergent composition
KR1020057019167A KR101102273B1 (en) 2003-04-24 2004-04-23 Surface-treated particle of water-soluble inorganic compound, process for producing the same, and particulate detergent composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-120223 2003-04-24
JP2003120223 2003-04-24
JP2003181372 2003-06-25
JP2003-181372 2003-06-25
JP2003426697 2003-12-24
JP2003-426697 2003-12-24

Publications (1)

Publication Number Publication Date
WO2004094313A1 true WO2004094313A1 (en) 2004-11-04

Family

ID=33314028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005910 WO2004094313A1 (en) 2003-04-24 2004-04-23 Surface-treated particle of water-soluble inorganic compound, process for producing the same, and particulate detergent composition

Country Status (4)

Country Link
JP (1) JP4753021B2 (en)
KR (1) KR101102273B1 (en)
MY (1) MY146571A (en)
WO (1) WO2004094313A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006003988A1 (en) * 2004-06-30 2008-04-17 ライオン株式会社 High bulk density granular detergent composition and method for producing the same
JP2008545841A (en) * 2005-06-02 2008-12-18 ノボザイムス アクティーゼルスカブ Blends of inert particles and active particles
WO2011129432A1 (en) * 2010-04-16 2011-10-20 ライオン株式会社 Granulated detergent composition
JP2014005367A (en) * 2012-06-25 2014-01-16 Lion Corp Granular detergent
JP2016069394A (en) * 2014-09-26 2016-05-09 ライオン株式会社 Granular detergent, method for producing the same and detergent product
JP2016523803A (en) * 2013-06-26 2016-08-12 ソルヴェイ(ソシエテ アノニム) Method for producing alkali metal bicarbonate particles
JP2022106336A (en) * 2021-01-07 2022-07-20 花王株式会社 Granular detergent composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505834A (en) * 1996-07-23 2000-05-16 ザ、プロクター、エンド、ギャンブル、カンパニー Detergent component or composition with protective coating
JP2001081498A (en) * 1999-09-14 2001-03-27 Lion Corp Granulated detergent composition and its manufacture
JP2002266000A (en) * 2001-03-12 2002-09-18 Lion Corp High bulk density detergent composition and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19704634A1 (en) * 1997-02-07 1998-08-27 Henkel Kgaa pH-controlled release of detergent components

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505834A (en) * 1996-07-23 2000-05-16 ザ、プロクター、エンド、ギャンブル、カンパニー Detergent component or composition with protective coating
JP2001081498A (en) * 1999-09-14 2001-03-27 Lion Corp Granulated detergent composition and its manufacture
JP2002266000A (en) * 2001-03-12 2002-09-18 Lion Corp High bulk density detergent composition and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006003988A1 (en) * 2004-06-30 2008-04-17 ライオン株式会社 High bulk density granular detergent composition and method for producing the same
JP2008545841A (en) * 2005-06-02 2008-12-18 ノボザイムス アクティーゼルスカブ Blends of inert particles and active particles
WO2011129432A1 (en) * 2010-04-16 2011-10-20 ライオン株式会社 Granulated detergent composition
JP5758380B2 (en) * 2010-04-16 2015-08-05 ライオン株式会社 Granular detergent composition
JP2014005367A (en) * 2012-06-25 2014-01-16 Lion Corp Granular detergent
JP2016523803A (en) * 2013-06-26 2016-08-12 ソルヴェイ(ソシエテ アノニム) Method for producing alkali metal bicarbonate particles
US10308517B2 (en) * 2013-06-26 2019-06-04 Solvay Sa Method for preparing alkali metal bicarbonate particles
JP2019206474A (en) * 2013-06-26 2019-12-05 ソルヴェイ(ソシエテ アノニム) Method for preparing alkali metal bicarbonate particles
JP2016069394A (en) * 2014-09-26 2016-05-09 ライオン株式会社 Granular detergent, method for producing the same and detergent product
JP2022106336A (en) * 2021-01-07 2022-07-20 花王株式会社 Granular detergent composition
JP7368399B2 (en) 2021-01-07 2023-10-24 花王株式会社 Granular detergent composition

Also Published As

Publication number Publication date
KR101102273B1 (en) 2012-01-03
JPWO2004094313A1 (en) 2006-07-13
MY146571A (en) 2012-08-30
JP4753021B2 (en) 2011-08-17
KR20060006915A (en) 2006-01-20

Similar Documents

Publication Publication Date Title
JP2918991B2 (en) Bleach detergent composition
JPH0759719B2 (en) Method for producing granular detergent composition having high bulk density
JPH0798960B2 (en) High bulk density granular detergent composition and method for producing the same
JPH04501129A (en) Method for producing surfactant-containing granules
WO2004099357A1 (en) Bleach composition and bleaching detergent composition
WO2004094313A1 (en) Surface-treated particle of water-soluble inorganic compound, process for producing the same, and particulate detergent composition
WO2009141203A1 (en) Manufacture of detergent granules by dry neutralisation
JP2009046635A (en) High bulk density granular detergent composition and process for producing the same
WO2000077148A1 (en) Granules for carrying surfactant and method for producing the same
JP3991231B2 (en) Detergent additive particles and detergent composition
JP2001003094A (en) Detergent composition
JP6735188B2 (en) Granular detergent and method for producing the same
JP3720632B2 (en) Base granule group
JP4058640B2 (en) Granular detergent composition
JP4591704B2 (en) Granular detergent composition and method for producing the same
JP3516636B2 (en) Granular detergent composition
JP4381505B2 (en) Washing method
JP2013170260A (en) Granular detergent and method for producing the same
JP2018065973A (en) Granular detergent
CN100348489C (en) Surface-treated particle of water-soluble inorganic compound, process for producing the same, and particulate detergent composition
JP6991035B2 (en) Granular detergent
TWI287573B (en) Amylase-containing granular detergent composition
JP4667730B2 (en) Method for treating crystalline alkali metal silicate
JP3422728B2 (en) High bulk density detergent composition
JP2004115791A (en) Detergent particle group

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505805

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057019167

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048108449

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057019167

Country of ref document: KR

122 Ep: pct application non-entry in european phase