WO2004093224A1 - Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same - Google Patents

Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same Download PDF

Info

Publication number
WO2004093224A1
WO2004093224A1 PCT/JP2004/004961 JP2004004961W WO2004093224A1 WO 2004093224 A1 WO2004093224 A1 WO 2004093224A1 JP 2004004961 W JP2004004961 W JP 2004004961W WO 2004093224 A1 WO2004093224 A1 WO 2004093224A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
group
battery
electrolyte
positive electrode
Prior art date
Application number
PCT/JP2004/004961
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Otsuki
Yasuo Horikawa
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to JP2005505366A priority Critical patent/JPWO2004093224A1/en
Publication of WO2004093224A1 publication Critical patent/WO2004093224A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte battery provided with the same, and more particularly to a non-aqueous electrolyte having excellent permeability to an electrode and / or a separator.
  • the electrolyte material penetrates poorly into the battery material such as the separator and the battery electrode material, and particularly the electrolyte material penetrates poorly into the separator. After packing the members, the electrolytic solution was injected into the battery can while evacuating the battery can. Therefore, the conventional non-aqueous electrolyte battery had a complicated manufacturing process and low productivity. On the other hand, if the nonaqueous electrolyte is injected without evacuation of the battery can, it is necessary to leave the battery until the nonaqueous electrolyte penetrates into the battery electrode material, etc. Usually required a standing period of about two weeks.
  • the conventional non-aqueous electrolyte has a problem that the internal resistance is large because of poor permeability to the battery electrode material and the separator.
  • the internal resistance of the battery is R
  • the current value that can be taken out of the battery is I
  • the value of the voltage drop is E
  • the voltage drops according to E IR according to Ohm's law.
  • Lithium-ion secondary batteries published by Masayuki Yoshio and Akiya Ozawa, Nikkan Kogyo Shimbun Inc., have been devised in order to reduce the internal resistance of batteries by adding a conductive agent to the electrode material, Control is introduced.
  • battery components such as separators
  • an object of the present invention is to provide a non-aqueous electrolyte capable of solving the above-mentioned problems of the prior art, having excellent permeability to a battery electrode material and / or a separator, and capable of reducing the internal resistance of a battery. It is in.
  • Another object of the present invention is to provide a non-aqueous electrolyte battery having a low internal resistance, comprising the non-aqueous electrolyte.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the power of adding a specific compound to a conventional non-aqueous electrolyte mainly comprises a non-aqueous electrolyte formed from the compound.
  • the present inventors have found that the internal resistance of a nonaqueous electrolyte battery can be reduced by improving the permeability of the electrolyte to the battery electrode material and / or the separator, and have completed the present invention.
  • the first nonaqueous electrolytic solution of the present invention has a time of 0.5 seconds after the nonaqueous electrolytic solution is dropped on the electrode until the contact angle of the nonaqueous electrolytic solution to the electrode becomes 2 ° or less. Less than or equal to.
  • the electrode is a positive electrode
  • an active material of the positive electrode is a lithium-containing composite oxide.
  • the active material of the positive electrode that is L i C O_ ⁇ 2, L i M n 2 ⁇ 4 and L i N I_ ⁇ least one lithium-containing composite oxide selected from the group consisting of 2 More preferred. ⁇
  • the electrode is a positive electrode, it is either the active material of the positive electrode is M n 0 2 and fluorinated graphite.
  • the electrode is a negative electrode
  • the active material of the negative electrode is graphite
  • the non-aqueous electrolyte contains a compound having at least one of phosphorus and nitrogen in a molecule.
  • a compound having phosphorus and nitrogen in the molecule is preferable, and a compound having phosphorus-nitrogen double bond is more preferable.
  • the non-aqueous electrolyte further contains ester carbonate.
  • a first non-aqueous electrolyte battery of the present invention includes the above-mentioned first non-aqueous electrolyte of the present invention, a positive electrode, and a negative electrode.
  • the time until the contact angle of the non-aqueous electrolyte with the separator becomes 25 ° or less is 2 seconds or less. It is characterized.
  • the separator is a porous polymer membrane, and the separator is made of polypropylene (PP), polyethylene (PE), and polyethylene'polypropylene copolymer (P EZ PP). It consists of either.
  • the non-aqueous electrolyte contains a compound having at least one of phosphorus and nitrogen in a molecule.
  • a compound having phosphorus and nitrogen in a molecule is preferable, and a compound having a phosphorus-nitrogen double bond is more preferable.
  • the non-aqueous electrolyte further contains ester carbonate.
  • a second non-aqueous electrolyte battery of the present invention includes the second non-aqueous electrolyte of the present invention, a positive electrode, a negative electrode, and a separator.
  • the non-aqueous electrolyte which is excellent in the permeability to a battery electrode material and / or a separator and which can reduce the internal resistance of a battery can be provided.
  • the non-aqueous electrolyte is provided and the internal resistance is low, a non-aqueous electrolyte battery having excellent pulse discharge characteristics ⁇ large current discharge and charging characteristics can be provided.
  • FIG. 1 is a schematic diagram of a non-aqueous electrolyte dropped on an electrode.
  • FIG. 2 is a schematic diagram of the non-aqueous electrolyte dropped on the separator.
  • FIG. 3 is a graph showing the change over time of the contact angle of the electrolyte of Example 1 with respect to the positive electrode.
  • FIG. 4 is a graph showing the change over time of the contact angle of the electrolyte of Comparative Example 1 with respect to the positive electrode.
  • FIG. 5 is a graph showing the remaining discharge capacity of the batteries of Example 1 and Comparative Example 1.
  • FIG. 6 is a graph showing the change over time of the contact angle of the electrolytic solution of Example 65 with the separator.
  • FIG. 7 is a graph showing the change over time of the contact angle of the electrolytic solution of Comparative Example 9 with the separator.
  • the time until the contact angle ⁇ i of the nonaqueous electrolyte 1 with respect to the electrode 2 becomes 2 ° or less after dropping the nonaqueous electrolyte 1 on the electrode 2 is 0. It is characterized by being less than 5 seconds.
  • the conventional non-aqueous electrolyte had a time of 0.5 seconds or more until the contact angle of the non-aqueous electrolyte with the electrode became 2 ° or less after dropping on the electrode, so the permeability to the electrode was poor.
  • the non-aqueous electrolyte battery provided with the first non-aqueous electrolyte of the present invention has significantly improved pulse discharge characteristics ⁇ large current discharge and charging characteristics as compared with the conventional non-aqueous electrolyte batteries. It is suitable as a large secondary battery for electric vehicles and fuel cell vehicles and a small primary battery for tire internal pressure alarm devices.
  • the first nonaqueous electrolyte of the present invention preferably has a viscosity at 25 ° C of 10 mPa's (10 cP) or less.
  • the non-aqueous electrolyte whose viscosity at 25 ° C exceeds K) mPa's (lOcP) is dropped on the electrode and the time required for the contact angle of the non-aqueous electrolyte to the electrode to become 2 ° or less is 0. It tends to be 5 seconds or longer, and the effect of reducing the internal resistance of the battery is insufficient.
  • the first nonaqueous electrolyte of the present invention more preferably has a viscosity at 25 ° C. of 5 mPa's (5 cP) or less.
  • the first nonaqueous electrolytic solution of the present invention is not particularly limited as long as it satisfies the above-mentioned properties relating to the permeability to the electrode, but includes at least a supporting salt, and contains at least phosphorus and nitrogen in the molecule. It is preferable to include a compound containing one of them. Further, the non-aqueous electrolytic solution may contain a non-protonic organic solvent such as a carbonate ester as necessary.
  • the second nonaqueous electrolytic solution of the present invention was added dropwise nonaqueous electrolyte 1 separator 3 on the contact angle theta 2 of the non-aqueous electrolyte 1 against separator one 3 the time until the 25 ° or less 2 Seconds or less.
  • the conventional non-aqueous electrolyte had a time of 5 seconds or longer until the contact angle of the non-aqueous electrolyte with the separator became 25 ° or less after dropping on the separator, so the permeability to the separator was poor and the internal Although the increase in resistance was caused, the second electrolytic solution of the present invention Since the permeability to the separator is extremely good, the internal resistance of the battery can be kept low. Therefore, the non-aqueous electrolyte battery provided with the second non-aqueous electrolyte of the present invention has significantly improved pulse discharge characteristics ⁇ large current discharge and charging characteristics as compared with the conventional non-aqueous electrolyte battery, and in particular, It is suitable as a large secondary battery for electric vehicles and fuel cell vehicles.
  • the second non-aqueous electrolyte of the present invention preferably has a viscosity at 25 ° C. of 10 mPa ′ S (10 cP) or less.
  • the non-aqueous electrolyte whose viscosity at 25 ° C exceeds lOmPa's (lOcP) is dropped on the separator and the time until the contact angle of the non-aqueous electrolyte with the separator becomes 25 ° or less is 2 seconds. And the effect of reducing the internal resistance of the battery is insufficient.
  • the second nonaqueous electrolytic solution of the present invention more preferably has a viscosity at 25 ° C of 5 mPa's (5 cP) or less.
  • the second nonaqueous electrolytic solution of the present invention is not particularly limited as long as it satisfies the above-mentioned properties relating to permeability to the separator, but includes at least a supporting salt, and contains at least phosphorus and nitrogen in the molecule. It is preferable to include a compound containing one of them.
  • the non-aqueous electrolyte may contain an aprotic organic solvent such as a carbonate ester, if necessary.
  • Examples of the compound having phosphorus in the molecule that can be suitably used in the first and second nonaqueous electrolytes of the present invention include an esterinol phosphate compound, a polyphosphate ester compound, and a condensed phosphate ester compound. .
  • Compounds having nitrogen in the molecule that can be suitably used in the first and second nonaqueous electrolytes of the present invention include cyclic nitrogen-containing compounds such as triazine compounds, guanidine compounds, and pyrrolidine compounds. Is mentioned.
  • phosphazene compounds As the compound having phosphorus and nitrogen in the molecule which can be suitably used in the first and second non-aqueous electrolytes of the present invention, phosphazene compounds, isomers of phosphazene compounds, phosphazene compounds, and A compound having phosphorus in the molecule And the compound exemplified as the compound having nitrogen in the molecule.
  • these compounds having phosphorus and nitrogen in the molecule are naturally examples of the compound having phosphorus in the molecule and the compound having nitrogen in the molecule.
  • compounds having phosphorus and nitrogen in the molecule are preferable from the viewpoint of cycle characteristics.
  • a compound having a phosphorus-nitrogen double bond such as a phosphazene compound is particularly preferable from the viewpoint of improving thermal stability and high-temperature storage characteristics. .
  • phosphazene compound examples include a chain phosphazene compound represented by the following formula (I) and a cyclic phosphazene compound represented by the following formula (II).
  • R 1 R 2 and R 3 each independently represent a monovalent substituent or a halogen element
  • X 1 represents carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic, antimony, bismuth , oxygen, sulfur, selenium, tellurium
  • Polo - represents a substituent containing at least one element selected from the group consisting ⁇ beam
  • Upsilon Upsilon 2 and Upsilon 3 are each independently a divalent linking group, 2 Represents a valence element or a single bond.
  • R 4 represents a monovalent substituent or a halogen element.
  • N represents 3 to 15.
  • the phosphazene compounds represented by the formula (I) or (II) those which are liquid at 25 ° C. (room temperature) are preferable.
  • the occupancy of the liquid phosphazene compound at 25 ° C. is preferably 300 mPa's (300 cP) or less, more preferably 20 mPa's (20 cP) or less, and particularly preferably 5 mPa ⁇ s (5 cP) or less.
  • the viscosity is measured using a viscometer (R type) Viscometer M odel RE 5 0 0 - using SL, Toki Sangyo Co., Ltd.), lrpm, 2rptn, 3rpm, 5rpra, 7rpm, 10rpra, 20rpm, and 5 to 120 seconds Dzu' measured at each rotational speed of Orpm, The rotational speed when the indicated value became 50 to 60% was used as the analysis condition, and the viscosity at that time was measured. If the viscosity at 25 ° C exceeds 3 ⁇ 400 mPa's (300 cP), the supporting salt becomes difficult to dissolve, the wettability to the positive electrode material, negative electrode material, separator, etc.
  • RR 2 and R 3 are not particularly limited as long as they are monovalent substituents or halogen elements.
  • the monovalent substituent include an alkoxy group, an alkyl group, a hydroxyl group, an acyl group, an aryl group, and the like. Among them, an alkoxy group is preferable because the viscosity of the electrolytic solution can be reduced.
  • preferred examples of the halogen element include fluorine, chlorine, and bromine.
  • ⁇ ⁇ ⁇ 3 may be all the same kind of the substituent, may some of them in different kinds of substituents.
  • examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like, and an alkoxy-substituted alkoxy group such as a methoxyethoxy group and a methoxyethoxyethoxy group.
  • R 1 ! ⁇ 3 is preferably a methoxy group, an ethoxy group, a methoxy ethoxy group, or a methoxy ethoxy ethoxy group, and all are methoxy groups from the viewpoint of low viscosity and high dielectric constant. Or an ethoxy group is particularly preferred.
  • alkynole group examples include a methynole group, an ethylenole group, a propyl group, a butyl group, a pentyl group and the like.
  • acyl group examples include a formyl group, an acetyl group, a propioyl group, a butyryl group, an isoptyryl group, and a valeryl group.
  • aryl group include a fuel group, a trinole group, and a naphthyl group.
  • the hydrogen element in these monovalent substituents is preferably substituted with a halogen element.
  • halogen element fluorine, chlorine, and bromine are preferable.
  • fluorine is particularly preferred, followed by chlorine.
  • the effect of improving the cycle characteristics of the secondary battery tends to be greater than that in the case where the hydrogen element is replaced by chlorine.
  • X 1 represents at least one element selected from the group consisting of carbon, silicon, nitrogen, phosphorus, oxygen, and sulfur from the viewpoint of harmfulness and environmental considerations. Substituents containing species are preferred. Among these substituents, a substituent having a structure represented by the following formula ( ⁇ ), (IV) or (V) is more preferable.
  • R 5 to R 9 independently represent a monovalent substituent or a halogen element.
  • Y 5 to Y 9 independently represent a divalent linking group, a divalent element, or a single bond; and ⁇ represents a divalent group or a divalent element.
  • R 5 to R 9 are the same monovalent substituents or halogen elements as described for R ⁇ R 3 in the formula (I). Preferred examples are given. Further, these may be of the same type within the same substituent, or may be of different types. R 5 and R 6 in the formula (III), and R 8 and R 9 in the formula (V) may be bonded to each other to form a ring.
  • Equation (111), (IV), in (V), Y 5 as the group represented by to Y 9, similar divalent linking group as described in the Yi ⁇ Y 3 that put the formula (I) Or a divalent element.
  • a group containing sulfur, Z, or selenium is particularly preferable because the risk of ignition and ignition of the electrolytic solution is reduced. These may be of the same type within the same substituent, or some may be of different types.
  • Z represents, for example, CH 2 , CHR (R represents an alkyl group, an alkoxyl group, a fuel group, etc .; the same applies hereinafter), an NR group, oxygen, sulfur, selenium, Boron, aluminum, scandium, gallium, yttrium, indium, lanthanum, thallium, carbon, silicon, titanium, tin, germanium, zirconium, lead, phosphorus, vanadium, arsenic, jap, antimony, tantalum, bismuth, chromium, molybdenum, tenorenole , polonium, tungsten, iron, cobalt, and a divalent group containing at least one element selected from the group consisting of nickel.
  • a divalent group containing at least one element selected from the group consisting of sulfur and selenium is preferable .
  • Z may be a divalent element such as oxygen, sulfur, and selenium.
  • a phosphorus-containing substituent represented by the formula (III) is particularly preferable, since the risk of ignition and ignition can be particularly effectively reduced. Further, when the substituent is a substituent containing sulfur as represented by the formula (IV), it is particularly preferable in terms of reducing the interface resistance of the electrolytic solution.
  • R 4 is not particularly limited as long as it is a monovalent substituent or a halogen element.
  • the monovalent substituent include an alkoxy group, an alkyl group, a carboxyl group, an acyl group, an aryl group, and the like. Among them, an alkoxy group is preferable because the viscosity of the electrolytic solution can be reduced.
  • the halogen element for example, fluorine, chlorine, bromine and the like are preferably mentioned.
  • the alkoxy group include a methoxy group, an ethoxy group, a methoxetoxy group, a propoxy group, a phenoxy group and the like.
  • a methoxy group, an ethoxy group Groups, n-propoxy groups and phenoxy groups are particularly preferred, and when used in non-aqueous electrolyte secondary batteries, methoxy groups, ethoxy groups, methoxyethoxy groups and phenoxy groups are particularly preferred.
  • the hydrogen element in these monovalent substituents is preferably substituted with a halogen element.
  • the halogen element include fluorine, chlorine, and bromine. Is, for example, a trifluoro mouth ethoxy group.
  • n 3 to 13.
  • the phosphazene compound represented by the formula (VI) is a low-viscosity liquid at room temperature (25 ° C.) and has a freezing point depressing action. Therefore, by adding the phosphazene compound to the electrolytic solution, it is possible to impart excellent low-temperature characteristics to the electrolytic solution, and a low viscosity of the electrolytic solution is achieved, and a low internal resistance and high! / ⁇ It is possible to provide a non-aqueous electrolyte battery having conductivity. Therefore, it is possible to provide a non-aqueous electrolyte battery that exhibits excellent discharge characteristics over a long period of time even when used under low-temperature conditions, particularly in regions and periods when the temperature is low.
  • n is preferably from 3 to 5, more preferably from 3 to 4, because it can impart excellent low-temperature properties to the electrolytic solution and can reduce the viscosity of the electrolytic solution. It is good.
  • the value of n is small, the boiling point is low, and the ignition prevention characteristics at the time of flame contact can be improved.
  • the value of n increases, so that it can be used stably even at high temperatures. It is also possible to select and use multiple phosphazenes in a timely manner to obtain the desired performance using the above properties.
  • n in the formula (VI) By appropriately selecting the value of n in the formula (VI), it becomes possible to prepare an electrolyte having more favorable viscosity, solubility suitable for mixing, low-temperature characteristics, and the like.
  • These phosphazene compounds may be used alone or in a combination of two or more.
  • the viscosity of the phosphazene compound represented by the formula (VI) is not particularly limited as long as it is 20 mPa's (20 cP) or less, but from the viewpoint of improving conductivity and improving low-temperature characteristics, it is 10 mPa's (10 cP). ) Or less, more preferably 5 mPa's (5 cP) or less.
  • phosphazene compounds of the formula (II) a phosphazene compound represented by the following formula (VII) is preferable from the viewpoint of improving the deterioration resistance and safety of the electrolytic solution.
  • R 1G each independently represents a monovalent substituent or fluorine, at least one of all R 1D is a monovalent substituent containing fluorine or fluorine, and n is 3 to 8 Represents However, not all R 10 is fluorine.
  • the electrolyte can be provided with excellent self-extinguishing properties or flame retardancy to improve the safety of the electrolyte.
  • All R 1 .
  • at least one of them contains a phosphazene compound which is a monovalent substituent containing fluorine, it is possible to impart more excellent safety to the electrolytic solution.
  • a phosphazene compound represented by the formula (VII) and at least one of all R 1Q is fluorine is contained, more excellent safety can be provided.
  • a phosphazene compound represented by the formula (VII) in which at least one of all R 10 is a monovalent substituent containing fluorine or fluorine is more difficult to burn the electrolytic solution. This can provide more excellent safety to the electrolytic solution.
  • Examples of the monovalent substituent in the formula (VII) include an alkoxy group, an alkyl group, an acyl group, an aryl group, a carboxyl group, and the like.
  • the alkoxy group is particularly excellent in improving the safety of the electrolytic solution. It is suitable.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, a butoxy group, and an alkoxy-substituted alkoxy group such as a methoxyethoxy group.
  • a methoxy group, an ethoxy group, and an n-propoxy group are particularly preferable in terms of excellent improvement. Further, a methoxy group is preferable from the viewpoint of reducing the viscosity of the electrolytic solution.
  • n is preferably from 3 to 5, more preferably from 3 to 4, from the viewpoint that excellent safety can be imparted to the electrolytic solution.
  • the monovalent substituent is preferably substituted with fluorine.
  • R 1Q in the formula (VII) is not fluorine, at least one monovalent substituent contains fluorine.
  • the content of the fluorine in the phosphazene compound is preferably from 3 to 70% by weight, and more preferably from 7 to 45% by weight. When the content is within the above range, “excellent safety” can be particularly suitably imparted to the electrolytic solution.
  • the molecular structure of the phosphazene compound represented by the formula (VII) may contain a halogen element such as chlorine and bromine in addition to the above-mentioned fluorine. Most preferably, fluorine is followed by chlorine. Those containing fluorine tend to have a greater effect of improving the cycle characteristics of the secondary battery than those containing chlorine.
  • the viscosity of the phosphazene compound represented by the formula (VII) is not particularly limited as long as it is 20 mPa's (20 cP) or less, but from the viewpoint of improving conductivity and improving low-temperature characteristics, the viscosity is preferably 10 raPa-s (lOcP ) Or less, and more preferably 5 raPa-s (5 cP) or less.
  • the phosphazene compound is a solid at 25 ° C. (room temperature)
  • a phosphazene compound represented by the following formula (VI 11) is also preferable.
  • R 11 each independently represents a monovalent substituent or a halogen element; n represents 3 to 6.
  • the phosphazene compound represented by the formula (VIII) is solid at room temperature (25 ° C.), when it is added to an electroconductive solution, it is dissolved in the electrolytic solution and the viscosity of the electrolytic solution increases. However, if the addition amount is a predetermined amount, a nonaqueous electrolyte battery having a low rate of increase in the viscosity of the electrolyte, a low internal resistance, and a high conductivity is obtained. In addition, since the phosphazene compound represented by the formula (VIII) dissolves in the electrolyte, the electrolyte has excellent long-term stability.
  • R 11 is not particularly limited as long as it is a monovalent substituent or a halogen element.
  • the monovalent substituent include an alkoxy group, an alkyl group and a carboxy group.
  • aryl groups, aryl groups and aryl groups are examples of the monovalent substituent.
  • the halogen element for example, a halogen element such as fluorine, chlorine, bromine, and iodine is preferably exemplified.
  • an alkoxy group is particularly preferred, since it can suppress an increase in the viscosity of the electrolytic solution.
  • the alkoxy group is preferably a methoxy group, an ethoxy group, a methoxetoxy group, a propoxy group (isopropoxy group, n-propoxy group), a phenoxy group, a trifluoroethoxy group or the like, which suppresses an increase in the viscosity of the electrolytic solution.
  • a methoxy group, an ethoxy group, a propoxy group (isopropoxy group, n-propoxy group), a phenoxy group, a trifluoroethoxy group, and the like are more preferable.
  • the monovalent substituent preferably contains the halogen element described above.
  • n is particularly preferably 3 or 4 from the viewpoint that the increase in the viscosity of the electrolytic solution can be suppressed.
  • the phosphazene compound represented by (VIII) for example, the formula (VI II) to your stomach structure a R 11 turtles butoxy group and n is 3, R 11 turtles preparative In formula (VIII) A structure wherein at least one of an xy group and a phenoxy group and n is 4, a structure wherein R 11 is an ethoxy group and n is 4 in the formula (VIII), and a structure wherein R 11 is isopropoxy in the formula (VII I) A structure in which n is 3 or 4; a structure in which R 11 is an n-propoxy group in the formula (VI ⁇ ) and n is 4; and a compound in which R 11 is a trifluoroethoxy group in the formula (VI II) And n is 3 or 4, and in the formula (VI 11), R 11 is a phenoxy group and n is 3 or 4, particularly in that it can suppress an increase in the viscosity of the electrolyte. preferable.
  • the isomer of the phosphazene compound include a compound represented by the following formula (IX).
  • the compound of the formula (IX) is an isomer of a phosphazene compound represented by the following formula (X). 0 R 14
  • R 12 , R 13 and R ′′ each independently represent a monovalent substituent or a halogen element
  • X 2 represents carbon, silicon, germanium, tin, nitrogen
  • Li down represents arsenic, antimony, bismuth, oxygen, sulfur, selenium, a substituent containing at least one element selected from the group consisting of tellurium ⁇ Pi polonium
  • Y 12 and Y 13 are each independently Represents a divalent linking group, a divalent element or a single bond.
  • R 12 , R 13 and R 14 in the formula (IX) are not particularly limited as long as they are monovalent substituents or halogen elements, and are the same as those described for Ri R 3 in the above formula (I). Both a valent substituent and a halogen element are preferably exemplified.
  • Te formula (IX) smell, the divalent linking group or a bivalent element represented by Y 12 and Y 13, similar to that described in ⁇ ⁇ ⁇ 3 that put the formula (I) A divalent linking group, a divalent element, and the like are all preferably exemplified.
  • the substituent represented by X 2 any of the same substituents as those described for X 1 in the formula (I) are preferably exemplified.
  • the isomer of the phosphazene compound represented by the formula (IX) and the formula (X), when added to the electrolyte, allows the electrolyte to exhibit extremely excellent low-temperature characteristics. Can be improved in deterioration resistance and safety.
  • the isomer represented by the formula (IX) is an isomer of the phosphazene compound represented by the formula (X).
  • the degree of vacuum and / or It can be produced by adjusting the temperature, and the content (% by volume) of the isomer can be measured by the following measuring method.
  • the peak area of the sample is determined by Geno Permeation Chromatography (GPC) or High Performance Liquid Chromatography, and the peak area is compared with the previously determined area per mole of the isomer. It can be measured by obtaining the molar ratio and converting the volume taking into account the specific gravity.
  • GPC Geno Permeation Chromatography
  • High Performance Liquid Chromatography High Performance Liquid Chromatography
  • the phosphoric acid ester examples include alkynolephosphates such as trifuninolephosphate, tripaw / rephosphate, tris (fluorenetinole) phosphate, tris (trifluoroneopentinole) phosphate, alkoxyphosphate and alkoxyphosphate. These derivatives may be mentioned.
  • a supporting salt serving as a lithium ion ion source is preferable.
  • the supporting salt is not particularly limited, for example, L i C 10 4, L i BF 4, L i PF 6, L i CF 3 S_ ⁇ 3, ⁇ Pi, L i A s F 6, L i Lithium salts such as C 4 F 9 S ⁇ 3 , Li (CF 3 S ⁇ 2 ) 2 N, and Li (C 2 F 5 S 0 2 ) 2 N are preferred. These may be used alone or in combination of two or more.
  • the concentration of the supporting salt in the electrolyte is preferably from 0.2 to 1.5 mol / L (M), more preferably from 0.5 to 1 mol / L (M). If the concentration of the supporting salt is less than 0.2 mol / L (M), sufficient conductivity of the electrolyte cannot be secured, which may impair the charge / discharge characteristics of the battery. ), The viscosity of the electrolyte increases, and sufficient mobility of lithium ions cannot be secured.Therefore, sufficient conductivity of the electrolyte cannot be secured as described above, and the discharge and charge characteristics of the battery are hindered. May occur.
  • the first and second non-aqueous electrolytes of the present invention in addition to the above-described compound containing at least one of phosphorus and nitrogen in the molecule and the supporting salt, also have a viscosity of the electrolyte without reacting with the negative electrode. From the viewpoint of keeping the content low, it is preferable to contain an aprotic organic solvent.
  • aprotic organic solvent specifically, dimethyl carbonate (DMC), ethynolecarbonate (DEC), dipheninolecarbonate, ethynolemethinolecarbonate (EMC), ethylene carbonate (EC), Propylene carbonate (PC),
  • DMC dimethyl carbonate
  • DEC ethynolecarbonate
  • EMC ethynolemethinolecarbonate
  • EC ethylene carbonate
  • PC Propylene carbonate
  • carbonates such as y-butyrolactone (GBL) and ⁇ -valerolatatotone
  • ethers such as 1,2-dimethoxetane (DME) and tetrahydrofuran (THF).
  • DME 1,2-dimethoxetane
  • THF tetrahydrofuran
  • Cyclic carbonates are preferred in that they have a high relative dielectric constant and are excellent in the solubility of the supporting salt, while chain-like carbonates have a low viscosity, so that the viscosity of the electrolytic solution is reduced. It is suitable. These may be used alone or in combination of two or more.
  • the content of the compound containing at least one of phosphorus and nitrogen in the molecule at night is preferably 0.1 vol% or more, More preferably, it is at least volume%. Further, from the viewpoint of improving the safety of the electrolyte, the content is preferably 3% by volume or more, more preferably 5% by volume or more. On the other hand, the content of the compound containing at least one of phosphorus and nitrogen in the molecule in the second nonaqueous electrolyte of the present invention is preferably 0.1% by volume or more from the viewpoint of improving the permeability of the electrolyte to the separator. It is preferably at least 0.5% by volume. Further, from the viewpoint of improving the safety of the electrolyte, the content is preferably 3% by volume or more, more preferably 5% by volume or more.
  • a first non-aqueous electrolyte battery of the present invention includes the above-described first non-aqueous electrolyte of the present invention, a positive electrode, and a negative electrode. If necessary, a non-aqueous electrolyte battery such as a separator is provided. Equipped with components commonly used in the technical field.
  • a second non-aqueous electrolyte battery of the present invention includes the above-described second non-aqueous electrolyte of the present invention, a positive electrode, a negative electrode, and a separator. It has members commonly used in the technical field.
  • the positive electrode active materials of the first and second nonaqueous electrolyte batteries of the present invention are partially different between the primary battery and the secondary battery.
  • fluorinated graphite is used as the positive electrode active material of the nonaqueous electrolyte primary battery.
  • Mn0 2 even electrochemical synthesis may be chemical synthesis
  • V 2 0 5 Mo_ ⁇ 3, Ag. C R_ ⁇ 4, CuO, Cu S, F e S 2, S_ ⁇ . ⁇ , S ⁇ C 1 2 , Ti S 2
  • MnO 2 and fluorinated graphite are preferred among them because of their high capacity, high safety, and high discharge potential and excellent electrolyte wettability. These materials may be used alone or in combination of two or more.
  • V 2 0 5, V 6 0 13, Mn0 2, Mn 0 metal oxides such as 3, L i C O_ ⁇ 2, L i N i 0 2, L i Mn 2 ⁇ 4, L i F e 0 2 and L i F e P0 4 such as a lithium-containing composite Sani ⁇ of, T i S 2, Mo S metal sulfides such as 2, Poria diphosphate etc.
  • the lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and Ni.
  • L i C O_ ⁇ 2 L i N i 0 2
  • L i Mn 2 ⁇ 4 is particularly preferred. These materials may be used alone or in combination of two or more.
  • the negative electrode active materials of the first and second nonaqueous electrolyte batteries of the present invention are partially different between the primary battery and the secondary battery.
  • the negative electrode active material of the nonaqueous electrolyte primary battery is lithium metal itself.
  • a lithium alloy examples of the metal that forms an alloy with lithium include Sn, Pb, Al, Au, Pt, In, Zn, Cd, Ag, and Mg. Among them, A1, Zn, and Mg are preferable from the viewpoint of large reserves and toxicity. These materials may be used alone or in combination of two or more.
  • negative electrode active materials for nonaqueous electrolyte secondary batteries include lithium metal itself, alloys of lithium with Al, In, Pb or Zn, and carbon materials such as black holes doped with lithium.
  • carbon materials such as graphite are preferable, and graphite is particularly preferable, in view of higher safety and excellent wettability of the electrolytic solution.
  • examples of graphite include natural graphite, artificial graphite, mesophase carbon microbeads (MCM B), and the like, and broadly graphitizable carbon and non-graphitizable carbon. These materials The materials may be used alone or in combination of two or more.
  • the positive electrode and the negative electrode can be mixed with a conductive agent and a binder as needed.
  • the conductive agent include acetylene black and the like.
  • the binder polyvinylidene fluoride (PVDF) is used. , Polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used in the same mixing ratio as in the past.
  • the mass ratio of the positive electrode active material: the binder: the conductive agent is 8: 1. : 0.2 to 8: 1: 1.
  • the mass ratio of active material: binder: conductive agent is preferably 94: 3: 3:
  • the shapes of the positive electrode and the negative electrode are not particularly limited, and may be appropriately selected from known shapes as electrodes. For example, a sheet shape, a column shape, a plate shape, a spiral shape and the like can be mentioned.
  • the separator used in the second nonaqueous electrolyte battery of the present invention is disposed between the positive and negative electrodes, and prevents a short circuit of current due to contact between both electrodes.
  • a material of the separator a material capable of reliably preventing contact between the two electrodes and capable of passing or containing an electrolyte, for example, polypropylene (PP), polyethylene (PE), polyethylene-polypropylene copolymer Suitable examples include nonwoven fabrics made of synthetic resins such as (PE / PP), polytetrafluoroethylene, cellulosic, polybutylene terephthalate, and polyethylene terephthalate, and porous polymer films.
  • porous polymer membranes made of polyolefin such as polypropylene, polyethylene and polyethylene-polypropylene copolymer having a thickness of about 20 to 50 zm are particularly preferred.
  • the separator 1 can be used for the first nonaqueous electrolyte battery of the present invention.
  • first and second nonaqueous electrolyte batteries of the present invention known members usually used for nonaqueous electrolyte batteries can be suitably used.
  • first and second nonaqueous electrolyte batteries of the present invention There are no particular restrictions on the form of the first and second nonaqueous electrolyte batteries of the present invention described above.
  • Various known forms, such as a cylindrical battery having a monolithic structure, are preferably exemplified.
  • a nonaqueous electrolyte battery can be manufactured by preparing a sheet-shaped positive electrode and a negative electrode, and sandwiching a separator between the positive electrode and the negative electrode.
  • a nonaqueous electrolyte battery is manufactured by forming a sheet-shaped positive electrode, sandwiching a current collector, and stacking and winding a sheet-shaped negative electrode. Can be made.
  • L IMN 2 0 4 (positive electrode active material) 94 parts by mass of acetylene black (conductive agent) and 3 parts by mass of polyvinylidene fluoride (binder) and 3 parts by mass of an organic solvent (acetic Echiru 50/50 mass% mixed solvent with ethanol), apply the kneaded material to a 25 ⁇ thick aluminum foil (current collector) with a doctor blade, and dry with hot air (100 to 120 ° C) Thus, a positive electrode sheet having a thickness of 80 im was produced.
  • the safety of the above electrolyte was evaluated based on the combustion behavior of a flame ignited in an atmospheric environment by a method arranging the UL (Underwriting Laboratory) standard UL 94 HB method. At that time, ignitability, flammability, carbide formation, and the phenomenon during secondary ignition were also observed. Specifically, based on UL test standards, a non-combustible quartz fiber was impregnated with 1.OmL of the above electrolytic solution to prepare a 127 mm x 12.7 mm test piece.
  • the case where the test flame does not ignite the test piece is “non-flammable”, the case where the ignited flame does not reach the 25 hidden line and the ignition of the falling object is not recognized. If the flame is ⁇ flame retardant '', the ignited flame extinguishes in the 25-100 mm line and no ignition is found on the falling object, ⁇ self-extinguishing '', if the ignited flame exceeds the lOOnm line The combination was evaluated as “flammability”. Table 1 shows the results.
  • a lithium metal foil with a thickness of 150 / zm is overlaid on the above-mentioned positive electrode sheet via a separator (microporous film: made of polypropylene) with a thickness of 25 ⁇ ⁇ , and rolled up. Produced.
  • the length of the positive electrode of the cylindrical electrode was about 260 mm.
  • the electrolytic solution was injected into the cylindrical electrode and sealed to prepare an AA lithium battery (a non-aqueous electrolytic solution secondary battery).
  • FIG. 4 shows the change over time of the contact angle of the electrolyte of Comparative Example 1 with respect to the positive electrode.
  • L i C o 0 2 instead of L i M n 2 ⁇ 4 as a cathode active material, in Example 4 and Comparative Example 3, L i N i 0 2 was used to prepare a positive electrode, and the permeability to the positive electrode was tested.
  • Table 1 You. In Table 1, DMC indicates dimethyl carbonate, and Li BETI indicates Li (C 2 F 5 S ⁇ 2 ) 2 N.
  • the cyclic phosphazene B is a compound of the formula (II) in which n is 3, one of six R 4 is an ethoxy group, and five are fluorine (viscosity at 25 ° C .: 1.2 mPa-s (l .2cP)) is a compound of the formula (II) wherein n is 4, one of eight R 4 is an ethoxy group, and seven are fluorine (viscosity at 25 ° C .: 1 lmPa's (L IcP)); cyclic phosphazene D is represented by the formula (II), wherein n is 3 and one of the six R 4 is a methoxyethoxyethoxyethoxy group (CH 3 OC 2 H 4 OC in 2 H 4 OC 2 H 4 ⁇ I), compound 5 is a fluorine: a (viscosity at 25 ° C .5mPa's (4.5cP) ).
  • X 1 is a substituent represented by the formula (III) in the formula (I) and 1 , Y 2 R 2 , Y 3 R 3 , Y 5 R 5 and Y 6 R 6 Among them, three are an ethoxy group, two are fluorine, and Z is 0 (oxygen) (viscosity at 25 ° C: 4.7 mPa's (4.7 cP));
  • the chain phosphazene F is a compound represented by the following formula (XI) (viscosity at 25 ° C .: 4.9 mPa-s (4.9 cP));
  • the chain phosphazene G is a compound represented by the following formula (XII) (viscosity at 25 ° C: 2.8 mPa-s (2.8 cP));
  • the chain phosphazene H is a compound represented by the following formula (XIII) (viscosity at 25 ° C: 3.9 mPa-s (3.9 cP)).
  • the phosphate ester X is a compound represented by the following formula (XIV) (viscosity at 25 ° C .: 2.5 mPa's (2.5 cP)).
  • phosphazane Y is a compound represented by the following formula (XV) (viscosity at 25 ° C .: 5.0 mPa-s (5.0 cP)).
  • 0C 2 H 5 0C 2 H 5 triazine Z is a compound represented by the following formula (XVI) (viscosity at 25 ° C .: 2. ImPa-s (2.lcP)).
  • Example 3 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the above-mentioned electrolyte, and the 2 C capacity was measured. Table 1 shows the results.
  • Example 3 and Comparative Example 2 the L IMN 2 ⁇ Yore , examples L i CO0 2 instead of 4 4 and Comparative Example 3 as the positive electrode active material, using L i N i 0 2 .
  • Example 1 the residual capacity of the batteries produced in Example 1 and Comparative Example 1 was measured when the batteries were discharged at a rate of 0.125C, 0.2C, 0.5C, 1.0C, 2.0C, and 3.0C.
  • Fig. 5 shows the results.
  • the battery of Example 1 has a higher remaining capacity at each discharge rate than the battery of Comparative Example 1.
  • the battery of Example 1 has a higher capacity remaining ratio when subjected to a high rate discharge than the battery of Comparative Example 1, and is excellent in large current discharge characteristics. ⁇ Permeability of electrolyte to negative electrode of secondary battery>
  • Graphite [GD A-K 2 manufactured by Mitsui Mining & Smelting Co., Ltd.] (carbon material) 94 parts by mass, 3 parts by mass of acetylene black (conductive agent) and 3 parts by mass of polyvinylidene fluoride (binder) The mixture is kneaded with an organic solvent (50/50 mass% mixed solvent of ethyl acetate and ethanol), and the kneaded product is coated on a 25 ⁇ thick aluminum foil (current collector) with a doctor blade. Then, hot-air drying (100 to 120 ° C) was performed to produce a 150-zm-thick negative electrode sheet. 5 ⁇ L of the same electrolytic solution as in Example 1 was dropped on the negative electrode sheet, and the contact angle between the droplet of the electrolytic solution and the negative electrode sheet was measured in the same manner as in Example 1. Table 2 shows the results.
  • a 25 im-thick separator (microporous film: made of polypropylene) was interposed on the same positive electrode sheet as in Example 1, and the negative electrode sheets prepared as described above were stacked and rolled up to produce a cylindrical electrode. .
  • the length of the positive electrode of the cylindrical electrode was about 260 mm.
  • the electrolytic solution was injected into the cylindrical electrode and sealed, and an AA lithium battery (non-aqueous electrolyte secondary battery) was prepared, and the 2C capacity was measured. Table 2 shows the results.
  • Examples 23 to 49 and Comparative Examples 6 to 7 An electrolytic solution having the formulation shown in Table 2 was prepared, the permeability of the electrolytic solution to the negative electrode was evaluated in the same manner as in Example 22, and the safety of the electrolytic solution was evaluated in the same manner as in Example 1.
  • a negative electrode was prepared using mesophase carbon microbeads (MCMB) [Nikki Carbon two-stroke beads] instead of graphite as the carbon material, and the permeability to the negative electrode was also tested.
  • MCMB mesophase carbon microbeads
  • MCMB mesophase carbon microbeads
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 22 using the electrolyte, and the 2 C capacity was measured. Table 2 shows the results.
  • Mn 2 positive electrode active material
  • acetylene black conductive agent
  • polyvinylidene fluoride binder
  • PC propylene carbonate
  • DME dimethoxyethane E Tan
  • n 3
  • a cyclic phosphazene compound in which one of six R 4 is a phenoxy group (PhO_), and five are fluorine, viscosity at 25 ° 0: 1.71111′′5 ( 1.70?)) 10% by volume was added, and Li BF 4 (supporting salt) was dissolved at a concentration of 0.75 mol / L (M) to prepare an electrolytic solution.
  • An electrolytic solution having the formulation shown in Table 3 was prepared, the permeability of the electrolytic solution to the positive electrode was evaluated in the same manner as in Example 51, and the safety of the electrolytic solution was evaluated in the same manner as in Example 1. Also, a non-aqueous electrolyte primary battery was prepared in the same manner as in Example 51 using the electrolyte, and the number of pulse discharges was measured. Table 3 shows the results.
  • Non-toning supporting salt Additive Discharge Active material Penetration time Evaluation Safety Organic solvent (M) (% by mass) Number of times
  • Example 50 Less than 0.1 second
  • Example 51 Mn0 2 Less than 0.1 second
  • Example 52 Mn0 2 Less than 0.1 second
  • Example 53 Mn0 2 Less than 0.1 second
  • Example 54 Mn0 2 Less than 0.1 second
  • Example 56 Mn0 2 Less than 0.1 second
  • Example 60 Mn0 2 Less than 0.1 second
  • a non-aqueous secondary battery was manufactured as follows. First, L i CO0 2 against [Nippon Chemical Industrial Co., Ltd.] (positive electrode active material) 100 parts by weight of acetylene black (conductive agent) 10 parts by weight, Teflon (R) Vine After adding 10 parts by mass of a binder (binder) and kneading with an organic solvent (50/50% by mass mixed solvent of ethyl acetate and ethanol), roll-rolled to form a thin layer with a thickness of 100 ⁇ and a width of 40 mm. A positive electrode sheet was produced.
  • L i CO0 2 against [Nippon Chemical Industrial Co., Ltd.] positive electrode active material 100 parts by weight of acetylene black (conductive agent) 10 parts by weight, Teflon (R) Vine After adding 10 parts by mass of a binder (binder) and kneading with an organic solvent (50/50% by mass mixed solvent of ethyl acetate and ethanol), roll
  • a negative electrode sheet made of graphite with a thickness of 150 ⁇ was used as the negative electrode.
  • the separator was sandwiched between one positive electrode sheet and one negative electrode sheet and rolled up to produce a cylindrical electrode.
  • the length of the positive electrode of the cylindrical electrode was about 260.
  • the above-mentioned electrolytic solution was injected into the cylindrical electrode and sealed, to prepare an AA lithium battery (non-aqueous electrolyte secondary battery), and the internal resistance (DC resistance of the battery) was measured according to a conventional method. It was measured. As a result, the internal resistance of the battery was 0.10 ⁇ .
  • FIG. 7 shows the change over time of the contact angle of the electrolytic solution of Comparative Example 9 with the separator.
  • a polypropylene separator (porous polymer membrane, thickness 25 / ra, Celgard) was used instead of a polyethylene separator.
  • polyethylene # polypropylene copolymer separator (porous polymer membrane, thickness 25 / zm, Celgard # 35 04) was used. Table 4 shows the results.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 65 using the electrolyte and the separator shown in Table 4, and the internal resistance was measured. Table 4 shows the results.
  • Example 70 PP Kaman (Q) Self-extinguishing 0.07
  • Example 72 PP wood

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

A nonaqueous electrolyte solution is disclosed which has an excellent permeability through an electrode material and/or a separator and enables to reduce the internal resistance of a battery. A mode of such a nonaqueous electrolyte solution is characterized in that a contact angle (θ1) of a nonaqueous electrolyte solution (1) to an electrode (2) becomes 2° or less within less than 0.5 second after dropping the nonaqueous electrolyte solution (1) on the electrode (2). Another mode of such a nonaqueous electrolyte solution is characterized in that a contact angle (θ2) of the nonaqueous electrolyte solution (1) to a separator (3) becomes 25° or less within 2 seconds after dropping the nonaqueous electrolyte solution (1) on the separator (3).

Description

明 細 書 非水電解液及びそれを備えた非水電解液電池 技術分野  Description Non-aqueous electrolyte and non-aqueous electrolyte battery provided with the same
本発明は、 非水電解液及びそれを備えた非水電解液電池に関し、 特に電極及び /又はセパレータ一への浸透性に優れた非水電解液に関するものである。 背景技術  The present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte battery provided with the same, and more particularly to a non-aqueous electrolyte having excellent permeability to an electrode and / or a separator. Background art
従来、 非水電解液電池においては、 セパレーター等の電池部材ゃ電池極材への 電解液の浸透性が悪く、 特に電解液のセパレーターへの浸透性が悪いため、 電池 缶に電池極材及び電池部材を詰めた後、 該電池缶を真空にしながら、 電池缶に電 解液を注入していた。 そのため、 従来の非水電解液電池は、 製造工程が複雑で、 生産性が低かった。 一方、 電池缶を真空にすることなく、 非水電解液を注入した 場合、 電池極材等に非水電解液が浸透するまで電池を放置する必要があり、 特に、 電解液をセパレーターに浸透させるには通常 2週間程の放置期間を要していた。 また、 従来の非水電解液は、 電池極材及ぴセパレーターへの浸透性が悪いため、 内部抵抗が大きいという問題もあった。 ここで、 電池の内部抵抗 :を Rとし、 電 池から取り出せる電流値を Iとし、 電圧降下の値を Eとすると、 オームの法則に 従って E = I Rに相当する分、 電圧が低下する。 即ち、 電池の内部抵抗を抑える ことで、 電池の電圧降下を抑制でき、 電池から取り出せる容量を増大させて電池 を長寿命化できることに加え、 電池のパルス放電特性ゃ大電流放電特性も向上さ せることができる。  Conventionally, in non-aqueous electrolyte batteries, the electrolyte material penetrates poorly into the battery material such as the separator and the battery electrode material, and particularly the electrolyte material penetrates poorly into the separator. After packing the members, the electrolytic solution was injected into the battery can while evacuating the battery can. Therefore, the conventional non-aqueous electrolyte battery had a complicated manufacturing process and low productivity. On the other hand, if the nonaqueous electrolyte is injected without evacuation of the battery can, it is necessary to leave the battery until the nonaqueous electrolyte penetrates into the battery electrode material, etc. Usually required a standing period of about two weeks. Further, the conventional non-aqueous electrolyte has a problem that the internal resistance is large because of poor permeability to the battery electrode material and the separator. Here, assuming that the internal resistance of the battery is R, the current value that can be taken out of the battery is I, and the value of the voltage drop is E, the voltage drops according to E = IR according to Ohm's law. In other words, by suppressing the internal resistance of the battery, the voltage drop of the battery can be suppressed, the capacity that can be taken out of the battery can be increased, and the battery life can be prolonged. be able to.
一方、 芳尾真幸, 小沢昭弥著, 日刊工業新聞社発行の 「リチウムイオン二次電 池」 には、 電池の内部抵抗を減少させるために、 電極材では導電剤添加の工夫、 極材粒径の制御などが紹介されている。 また、 セパレーター等の電池部材におい ても電解液の濡れ性が電池特性を出すための重要な要因であるとして、 セパレー ター細孔の制御などについて部材の最適化の観点からの様々な開発が紹介されて いる力 電解液そのものを改良して、 濡れ性を向上させようとする取り組みにつ いての記述はない。 発明の開示 On the other hand, “Lithium-ion secondary batteries” published by Masayuki Yoshio and Akiya Ozawa, Nikkan Kogyo Shimbun Inc., have been devised in order to reduce the internal resistance of batteries by adding a conductive agent to the electrode material, Control is introduced. In addition, battery components such as separators However, since the wettability of the electrolyte is an important factor in achieving battery characteristics, various developments, such as control of separator pores, are introduced from the viewpoint of optimizing components. There is no mention of efforts to improve and improve wettability. Disclosure of the invention
これに対して、 昨今、 非水電解液電池の諸特性を改善すべく、 その内部抵抗を 低減する技術が要望されている。 特に、 電気自動車や燃料電池自動車の主電源若 しくは補助電源として要望される大型 2次電池にぉレヽては、 ノ、°ルス放電特性ゃ大 電流放電及び充電特性が極めて重要であり、 これらの特性を向上させるベく、 電 池の内部抵抗を低下させる技術が、 切に要望されている。  On the other hand, in recent years, there has been a demand for a technology for reducing the internal resistance of a nonaqueous electrolyte battery in order to improve various characteristics thereof. In particular, for large rechargeable batteries that are required as a main power source or an auxiliary power source for electric vehicles and fuel cell vehicles, the following characteristics are extremely important. There is an urgent need for a technology to reduce the internal resistance of the battery in order to improve the characteristics of the battery.
また、 タイヤ内圧警報装置に用いられる 1次電池は、 常時、 パルス放電状態に さらされるため、 内部抵抗が低いことに加え、 パルス放電特性に優れる必要があ る。  In addition, primary batteries used in tire internal pressure warning devices are constantly exposed to pulse discharge, so they must have low internal resistance and excellent pulse discharge characteristics.
そこで、 本発明の目的は、 上記従来技術の問題を解決し、 電池極材及び/又は セパレーターへの浸透性に優れ、 電池の内部抵抗を小さくすることが可能な非水 電解液を提供することにある。 また、 本発明の他の目的は、 該非水電解液を備え た、 内部抵抗の小さい非水電解液電池を提供することにある。  Therefore, an object of the present invention is to provide a non-aqueous electrolyte capable of solving the above-mentioned problems of the prior art, having excellent permeability to a battery electrode material and / or a separator, and capable of reducing the internal resistance of a battery. It is in. Another object of the present invention is to provide a non-aqueous electrolyte battery having a low internal resistance, comprising the non-aqueous electrolyte.
本発明者らは、 上記目的を達成するために鋭意検討した結果、 従来の非水電解 液に特定の化合物を添加する力 主に該化合物から非水電解液を構成することに より、 非水電解液の電池極材及び/又はセパレーターへの浸透性を向上させて、 非水電解液電池の内部抵抗を低減し得ることを見出し、 本発明を完成させるに至 つた。  The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the power of adding a specific compound to a conventional non-aqueous electrolyte mainly comprises a non-aqueous electrolyte formed from the compound. The present inventors have found that the internal resistance of a nonaqueous electrolyte battery can be reduced by improving the permeability of the electrolyte to the battery electrode material and / or the separator, and have completed the present invention.
即ち、 本発明の第 1の非水電解液は、 非水電解液を電極上に滴下後、 電極に対 する非水電解液の接触角が 2° 以下になるまでの時間が 0. 5秒未満であることを 特徴とする。 本発明の第 1の非水電解液の好適例においては、 前記電極が正極であって、 該 正極の活物質がリチウム含有複合酸化物である。 ここで、 該正極の活物質は、 L i C o〇2、 L i M n 24及び L i N i〇2からなる群から選択される少なくとも 一種のリチウム含有複合酸化物であるのが更に好ましい。 · That is, the first nonaqueous electrolytic solution of the present invention has a time of 0.5 seconds after the nonaqueous electrolytic solution is dropped on the electrode until the contact angle of the nonaqueous electrolytic solution to the electrode becomes 2 ° or less. Less than or equal to. In a preferred example of the first nonaqueous electrolyte according to the present invention, the electrode is a positive electrode, and an active material of the positive electrode is a lithium-containing composite oxide. Here, the active material of the positive electrode, that is L i C O_〇 2, L i M n 24 and L i N I_〇 least one lithium-containing composite oxide selected from the group consisting of 2 More preferred. ·
本発明の第 1の非水電解液の他の好適例においては、 前記電極が正極であって、 該正極の活物質が M n 02及びフッ化黒鉛の何れかである。 In another preferable embodiment of the first non-aqueous electrolyte solution of the present invention, the electrode is a positive electrode, it is either the active material of the positive electrode is M n 0 2 and fluorinated graphite.
本発明の第 1の非水電解液の他の好適例においては、 前記電極が負極であって、 該負極の活物質が黒鉛である。  In another preferred embodiment of the first nonaqueous electrolyte of the present invention, the electrode is a negative electrode, and the active material of the negative electrode is graphite.
本発明の第 1の非水電解液の他の好適例においては、 前記非水電解液が、 分子 中にリン及び窒素の少なくとも一方を有する化合物を含有する。 ここで、 該化合 物としては、 分子中にリン及ぴ窒素を有する化合物が好ましく、 リン一窒素間二 重結合を有する化合物が更に好ましい。 また、 該非水電解液は、 更に炭酸エステ ルを含有するのが好ましい。  In another preferred example of the first non-aqueous electrolyte of the present invention, the non-aqueous electrolyte contains a compound having at least one of phosphorus and nitrogen in a molecule. Here, as the compound, a compound having phosphorus and nitrogen in the molecule is preferable, and a compound having phosphorus-nitrogen double bond is more preferable. It is preferable that the non-aqueous electrolyte further contains ester carbonate.
また、 本発明の第 1の非水電解液電池は、 上記本発明の第 1の非水電解液と、 正極と、 負極とを備えることを特徴とする。  Further, a first non-aqueous electrolyte battery of the present invention includes the above-mentioned first non-aqueous electrolyte of the present invention, a positive electrode, and a negative electrode.
一方、 本発明の第 2の非水電解液は、 非水電解液をセパレーター上に滴下後、 セパレーターに対する非水電解液の接触角が 25° 以下になるまでの時間が 2秒以 下であることを特徴とする。  On the other hand, in the second non-aqueous electrolyte of the present invention, after the non-aqueous electrolyte is dropped on the separator, the time until the contact angle of the non-aqueous electrolyte with the separator becomes 25 ° or less is 2 seconds or less. It is characterized.
本発明の第 2の非水電解液の好適例においては、 前記セパレーターが多孔質ポ リマー膜で、 ポリプロピレン(P P)、 ポリエチレン(P E)及びポリエチレン 'ポ リプロピレン共重合体(P EZ P P)の何れかよりなる。  In a preferred example of the second non-aqueous electrolyte according to the present invention, the separator is a porous polymer membrane, and the separator is made of polypropylene (PP), polyethylene (PE), and polyethylene'polypropylene copolymer (P EZ PP). It consists of either.
本発明の第 2の非水電解液の他の好適例においては、 前記非水電解液が、 分子 中にリン及び窒素の少なくとも一方を有する化合物を含有する。 ここで、 該化合 物としては、 分子中にリン及び窒素を有する化合物が好ましく、 リン一窒素間二 重結合を有する化合物が更に好ましい。 また、 該非水電解液は、 更に炭酸エステ ルを含有するのが好ましい。 また、 本発明の第 2の非水電解液電池は、 上記本発明の第 2の非水電解液と、 正極と、 負極と、 セパレーターとを備えることを特徴とする。 In another preferred embodiment of the second non-aqueous electrolyte according to the present invention, the non-aqueous electrolyte contains a compound having at least one of phosphorus and nitrogen in a molecule. Here, as the compound, a compound having phosphorus and nitrogen in a molecule is preferable, and a compound having a phosphorus-nitrogen double bond is more preferable. It is preferable that the non-aqueous electrolyte further contains ester carbonate. Further, a second non-aqueous electrolyte battery of the present invention includes the second non-aqueous electrolyte of the present invention, a positive electrode, a negative electrode, and a separator.
本発明によれば、 電池極材及び/又はセパレーターへの浸透性に優れ、 電池の 内部抵抗を小さくすることが可能な非水電解液を提供することができる。 また、 該非水電解液を備え、 内部抵抗が小さいため、 パルス放電特性ゃ大電流放電及び 充電特性に優れた非水電解液電池を提供することができる。 図面の簡単な説明  ADVANTAGE OF THE INVENTION According to this invention, the non-aqueous electrolyte which is excellent in the permeability to a battery electrode material and / or a separator and which can reduce the internal resistance of a battery can be provided. In addition, since the non-aqueous electrolyte is provided and the internal resistance is low, a non-aqueous electrolyte battery having excellent pulse discharge characteristics ゃ large current discharge and charging characteristics can be provided. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 電極上に滴下された非水電解液の模式図である。  FIG. 1 is a schematic diagram of a non-aqueous electrolyte dropped on an electrode.
図 2は、 セパレーター上に滴下された非水電解液の模式図である。  FIG. 2 is a schematic diagram of the non-aqueous electrolyte dropped on the separator.
図 3は、 正極に対する実施例 1の電解液の接触角の経時変化を示すグラフであ る。  FIG. 3 is a graph showing the change over time of the contact angle of the electrolyte of Example 1 with respect to the positive electrode.
図 4は、 正極に対する比較例 1の電解液の接触角の経時変化を示すグラフであ る。  FIG. 4 is a graph showing the change over time of the contact angle of the electrolyte of Comparative Example 1 with respect to the positive electrode.
図 5は、 実施例 1及び比較例 1の電池の放電容量残存率を示すダラフである。 図 6は、 セパレーターに対する実施例 6 5の電解液の接触角の経時変化を示す グラフである。  FIG. 5 is a graph showing the remaining discharge capacity of the batteries of Example 1 and Comparative Example 1. FIG. 6 is a graph showing the change over time of the contact angle of the electrolytic solution of Example 65 with the separator.
図 7は、 セパレーターに対する比較例 9の電解液の接触角の経時変化を示すグ ラフである。 発明を実施するための最良の態様  FIG. 7 is a graph showing the change over time of the contact angle of the electrolytic solution of Comparative Example 9 with the separator. BEST MODE FOR CARRYING OUT THE INVENTION
<非水電解液 > <Non-aqueous electrolyte>
以下に、 本発明の第 1の非水電解液を図 1を参照しつつ詳細に説明する。 本発 明の第 1の非水電解液は、 非水電解液 1を電極 2上に滴下後、 電極 2に対する非 水電解液 1の接触角 Θ iが 2° 以下になるまでの時間が 0. 5秒未満であることを特 徴とする。 従来の非水電解液は、 電極上に滴下後、 電極に対する非水電解液の接触角が2 ° 以下になるまでの時間が 0. 5秒以上であったため、 電極への浸透性が悪く、 内 部抵抗の増大を招いていたが、 本発明の第 1の電解液は、 電極に対する浸透性が 極めて良好なため、 電池の内部抵抗を低く抑えることができる。 そのため、 本発 明の第 1の非水電解液を備えた非水電解液電池は、 パルス放電特性ゃ大電流放電 及び充電特性が従来の非水電解液電池よりも大幅に向上しており、 電気自動車や 燃料電池自動車用の大型 2次電池及びタイャの内圧警報装置用の小型 1次電池と して好適である。 Hereinafter, the first nonaqueous electrolytic solution of the present invention will be described in detail with reference to FIG. In the first nonaqueous electrolyte of the present invention, the time until the contact angle Θi of the nonaqueous electrolyte 1 with respect to the electrode 2 becomes 2 ° or less after dropping the nonaqueous electrolyte 1 on the electrode 2 is 0. It is characterized by being less than 5 seconds. The conventional non-aqueous electrolyte had a time of 0.5 seconds or more until the contact angle of the non-aqueous electrolyte with the electrode became 2 ° or less after dropping on the electrode, so the permeability to the electrode was poor. Although the internal resistance has been increased, the first electrolytic solution of the present invention has extremely good permeability to the electrodes, so that the internal resistance of the battery can be kept low. Therefore, the non-aqueous electrolyte battery provided with the first non-aqueous electrolyte of the present invention has significantly improved pulse discharge characteristics ゃ large current discharge and charging characteristics as compared with the conventional non-aqueous electrolyte batteries. It is suitable as a large secondary battery for electric vehicles and fuel cell vehicles and a small primary battery for tire internal pressure alarm devices.
本発明の第 1の非水電解液は、 25°Cにおける粘度が 10mPa' s (10cP)以下である のが好ましい。 25°Cにおける粘度が K)mPa' s (lOcP)を超えた非水電解液は、 電極 上に滴下後、 電極に対する該非水電解液の接触角が 2° 以下になるまでの時間が 0. 5秒以上になる傾向があり、 電池の内部抵抗を低減する効果が不充分である。 電極に対する浸透性を更に向上させる観点から、 本発明の第 1の非水電解液は、 25°Cにおける粘度が 5mPa' s (5cP)以下であるのが更に好ましい。  The first nonaqueous electrolyte of the present invention preferably has a viscosity at 25 ° C of 10 mPa's (10 cP) or less. The non-aqueous electrolyte whose viscosity at 25 ° C exceeds K) mPa's (lOcP) is dropped on the electrode and the time required for the contact angle of the non-aqueous electrolyte to the electrode to become 2 ° or less is 0. It tends to be 5 seconds or longer, and the effect of reducing the internal resistance of the battery is insufficient. From the viewpoint of further improving the permeability to the electrode, the first nonaqueous electrolyte of the present invention more preferably has a viscosity at 25 ° C. of 5 mPa's (5 cP) or less.
本発明の第 1の非水電解液は、 上述した電極への浸透性に関する物性を満たす 限り、 特に制限されるものではないが、 少なくとも支持塩を含有し、 分子中にリ ン及び窒素の少なくとも一方を含む化合物を含有するのが好ましい。 また、 該非 水電解液は、 必要に応じて、 炭酸エステル等の非プロ トン性有機溶媒を含有して ちょい。  The first nonaqueous electrolytic solution of the present invention is not particularly limited as long as it satisfies the above-mentioned properties relating to the permeability to the electrode, but includes at least a supporting salt, and contains at least phosphorus and nitrogen in the molecule. It is preferable to include a compound containing one of them. Further, the non-aqueous electrolytic solution may contain a non-protonic organic solvent such as a carbonate ester as necessary.
次に、 本発明の第 2の非水電解液を図 2を参照しつつ詳細に説明する。 本発明 の第 2の非水電解液は、 非水電解液 1をセパレーター 3上に滴下後、 セパレータ 一 3に対する非水電解液 1の接触角 Θ 2が 25° 以下になるまでの時間が 2秒以下で あることを特徴とする。 Next, the second nonaqueous electrolyte of the present invention will be described in detail with reference to FIG. The second nonaqueous electrolytic solution of the present invention, was added dropwise nonaqueous electrolyte 1 separator 3 on the contact angle theta 2 of the non-aqueous electrolyte 1 against separator one 3 the time until the 25 ° or less 2 Seconds or less.
従来の非水電解液は、 セパレーター上に滴下後、 セパレーターに対する非水電 解液の接触角が 25° 以下になるまでの時間が 5秒以上であったため、 セパレータ 一への浸透性が悪く、 内部抵抗の増大を招いていたが、 本発明の第 2の電解液は、 セパレーターに対する浸透性が極めて良好なため、 電池の内部抵抗を低く抑える ことができる。 そのため、 本発明の第 2の非水電解液を備えた非水電解液電池は、 パルス放電特性ゃ大電流放電及び充電特性が従来の非水電解液電池よりも大幅に 向上しており、 特に電気自動車や燃料電池自動車用の大型 2次電池として好適で める。 The conventional non-aqueous electrolyte had a time of 5 seconds or longer until the contact angle of the non-aqueous electrolyte with the separator became 25 ° or less after dropping on the separator, so the permeability to the separator was poor and the internal Although the increase in resistance was caused, the second electrolytic solution of the present invention Since the permeability to the separator is extremely good, the internal resistance of the battery can be kept low. Therefore, the non-aqueous electrolyte battery provided with the second non-aqueous electrolyte of the present invention has significantly improved pulse discharge characteristics ゃ large current discharge and charging characteristics as compared with the conventional non-aqueous electrolyte battery, and in particular, It is suitable as a large secondary battery for electric vehicles and fuel cell vehicles.
本発明の第 2の非水電解液は、 25°Cにおける粘度が 10mPa' S (10cP)以下である のが好ましい。 25°Cにおける粘度が lOmPa' s (lOcP)を超えた非水電解液は、 セパ レーター上に滴下後、 セパレーターに対する該非水電解液の接触角が 25° 以下 になるまでの時間が 2秒を超える傾向があり、 電池の内部抵抗を低減する効果が 不充分である。 セパレーターに対する浸透性を更に向上させる観点から、 本発明 の第 2の非水電解液は、 25°Cにおける粘度が 5mPa' s (5cP)以下であるのが更に好 ましい。 The second non-aqueous electrolyte of the present invention preferably has a viscosity at 25 ° C. of 10 mPa ′ S (10 cP) or less. The non-aqueous electrolyte whose viscosity at 25 ° C exceeds lOmPa's (lOcP) is dropped on the separator and the time until the contact angle of the non-aqueous electrolyte with the separator becomes 25 ° or less is 2 seconds. And the effect of reducing the internal resistance of the battery is insufficient. From the viewpoint of further improving the permeability to the separator, the second nonaqueous electrolytic solution of the present invention more preferably has a viscosity at 25 ° C of 5 mPa's (5 cP) or less.
本発明の第 2の非水電解液は、 上述したセパレーターへの浸透性に関する物性 を満たす限り、 特に制限されるものではないが、 少なくとも支持塩を含有し、 分 子中にリン及び窒素の少なくとも一方を含む化合物を含有するのが好ましい。 ま た、 該非水電解液は、 必要に応じて、 炭酸エステル等の非プロトン性有機溶媒を 含有してもよい。  The second nonaqueous electrolytic solution of the present invention is not particularly limited as long as it satisfies the above-mentioned properties relating to permeability to the separator, but includes at least a supporting salt, and contains at least phosphorus and nitrogen in the molecule. It is preferable to include a compound containing one of them. In addition, the non-aqueous electrolyte may contain an aprotic organic solvent such as a carbonate ester, if necessary.
本発明の第 1及ぴ第 2の非水電解液に好適に用いることができる分子中にリン を有する化合物としては、 リン酸エステノレ化合物、 ポリリン酸エステル化合物、 縮合リン酸エステル化合物等が挙げられる。  Examples of the compound having phosphorus in the molecule that can be suitably used in the first and second nonaqueous electrolytes of the present invention include an esterinol phosphate compound, a polyphosphate ester compound, and a condensed phosphate ester compound. .
また、 本発明の第 1及び第 2の非水電解液に好適に用いることができる分子中 に窒素を有する化合物としては、 トリアジン化合物、 グァ-ジン化合物、 ピロリ ジン化合物等の環状含窒素化合物等が挙げられる。  Compounds having nitrogen in the molecule that can be suitably used in the first and second nonaqueous electrolytes of the present invention include cyclic nitrogen-containing compounds such as triazine compounds, guanidine compounds, and pyrrolidine compounds. Is mentioned.
更に、 本発明の第 1及び第 2の非水電解液に好適に用いることができる分子中 にリン及び窒素を有する化合物としては、 ホスファゼン化合物、 ホスファゼン化 合物の異性体、 ホスファザン化合物、 及び上記分子中にリンを有する化合物とし て例示した化合物と分子中に窒素を有する化合物として例示した化合物との複合 化合物等が挙げられる。 なお、 これら分子中にリン及び窒素を有する化合物は、 当然に上記分子中にリンを有する化合物及び分子中に窒素を有する化合物の一例 でもある。 , 上記分子中にリン及び窒素の少なくとも一方を含む化合物の中でも、 サイクノレ 特性の観点から、 分子中にリン及び窒素を有する化合物が好ましい。 また、 上記 分子中にリン及び窒素を有する化合物の中でも、 熱安定性の向上及び高温保存特 性の向上の観点から、 ホスファゼン化合物等のリン一窒素間二重結合を有する化 合物が特に好ましい。 Further, as the compound having phosphorus and nitrogen in the molecule which can be suitably used in the first and second non-aqueous electrolytes of the present invention, phosphazene compounds, isomers of phosphazene compounds, phosphazene compounds, and A compound having phosphorus in the molecule And the compound exemplified as the compound having nitrogen in the molecule. Note that these compounds having phosphorus and nitrogen in the molecule are naturally examples of the compound having phosphorus in the molecule and the compound having nitrogen in the molecule. Among the compounds containing at least one of phosphorus and nitrogen in the molecule, compounds having phosphorus and nitrogen in the molecule are preferable from the viewpoint of cycle characteristics. Further, among the above compounds having phosphorus and nitrogen in the molecule, a compound having a phosphorus-nitrogen double bond such as a phosphazene compound is particularly preferable from the viewpoint of improving thermal stability and high-temperature storage characteristics. .
上記ホスファゼン化合物として、 具体的には、 下記式 (I)で表される鎖状ホス ファゼン化合物及ぴ下記式 (II)で表される環状ホスファゼン化合物が挙げられる。  Specific examples of the phosphazene compound include a chain phosphazene compound represented by the following formula (I) and a cyclic phosphazene compound represented by the following formula (II).
R2Y2— Ρ = N— X1 … ( I ) R 2 Y 2 — Ρ = N— X 1 … (I)
Y3R3 Y 3 R 3
(式中、 R1 R2及び R3は、 夫々独立して一価の置換基又はハロゲン元素を表し ; X1は、 炭素、 ケィ素、 ゲルマニウム、 スズ、 窒素、 リン、 ヒ素、 アンチモン、 ビスマス、 酸素、 硫黄、 セレン、 テルル及びポロ-ゥムからなる群から選ばれる 元素の少なくとも 1種を含む置換基を表し; Υ Υ2及び Υ3は、 夫々独立して2 価の連結基、 2価の元素又は単結合を表す。 ) (Wherein R 1 R 2 and R 3 each independently represent a monovalent substituent or a halogen element; X 1 represents carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic, antimony, bismuth , oxygen, sulfur, selenium, tellurium and Polo - represents a substituent containing at least one element selected from the group consisting © beam; Upsilon Upsilon 2 and Upsilon 3 are each independently a divalent linking group, 2 Represents a valence element or a single bond.
(N P R 2) n · ■ ■ (II) (NPR 2 ) n · ■ ■ (II)
(式中、 R4は、 一価の置換基又はハロゲン元素を表す。 nは 3〜1 5を表す。(In the formula, R 4 represents a monovalent substituent or a halogen element. N represents 3 to 15.
) )
式(I)又は式(II)で表されるホスファゼン化合物の中でも、 25°C (室温) にお いて液体であるものが好ましい。 該液状ホスファゼン化合物の 25°Cにおける 占度 は、 300mPa' s (300cP)以下が好ましく、 20mPa' s (20cP)以下が更に好ましく、 5mPa •s (5cP)以下が特に好ましい。 なお、 本発明において粘度は、 粘度測定計 (R型 粘度計 M o d e l R E 5 0 0 - S L、 東機産業(株)製) を用い、 lrpm、 2rptn、 3rpm、 5rpra、 7rpm, 10rpra、 20rpm、 及び5 Orpmの各回転速度で 120秒間づっ測定し、 指示値が 50〜60%となった時の回転速度を分析条件とし、 その際の粘度を測定す ることによって求めた。 25°Cにおける粘度力 ¾00mPa ' s (300cP)を超えると、 支持 塩が溶解し難くなり、 正極材料、 負極材料、 セパレーター等への濡れ性が低下し、 電解液の粘性抵抗の増大によりイオン導電性が著しく低下し、 特に、 永点以下等 の低温条件下での使用において性能不足となる。 また、 これらのホスファゼン化 合物は、 液状であるため、 通常の液状電解質と同等の導電性を有し、 二次電池の 電解液に使用した場合、 優れたサイクル特性を示す。 Among the phosphazene compounds represented by the formula (I) or (II), those which are liquid at 25 ° C. (room temperature) are preferable. The occupancy of the liquid phosphazene compound at 25 ° C. is preferably 300 mPa's (300 cP) or less, more preferably 20 mPa's (20 cP) or less, and particularly preferably 5 mPa · s (5 cP) or less. In the present invention, the viscosity is measured using a viscometer (R type) Viscometer M odel RE 5 0 0 - using SL, Toki Sangyo Co., Ltd.), lrpm, 2rptn, 3rpm, 5rpra, 7rpm, 10rpra, 20rpm, and 5 to 120 seconds Dzu' measured at each rotational speed of Orpm, The rotational speed when the indicated value became 50 to 60% was used as the analysis condition, and the viscosity at that time was measured. If the viscosity at 25 ° C exceeds ¾00 mPa's (300 cP), the supporting salt becomes difficult to dissolve, the wettability to the positive electrode material, negative electrode material, separator, etc. decreases, and the ionic conductivity increases due to the increase in the viscous resistance of the electrolyte. The performance is remarkably reduced, and the performance becomes insufficient especially when used under low temperature conditions such as below the permanent point. In addition, since these phosphazene compounds are liquid, they have the same conductivity as ordinary liquid electrolytes, and exhibit excellent cycle characteristics when used in electrolytes of secondary batteries.
式(I)において、 R R2及び R3としては、 一価の置換基又はハロゲン元素で あれば特に制限はない。 一価の置換基としては、 アルコキシ基、 アルキル基、 力 ルポキシル基、 ァシル基、 ァリール基等が挙げられ、 これらの中でも、 電解液を 低粘度化し得る点で、 アルコキシ基が好ましい。 一方、 ハロゲン元素としては、 フッ素、 塩素、 臭素等が好適に挙げられる。 Ι^〜Ι 3は、 総て同一の種類の置換 基でもよく、 それらのうちのいくつかが異なる種類の置換基でもよい。 In the formula (I), RR 2 and R 3 are not particularly limited as long as they are monovalent substituents or halogen elements. Examples of the monovalent substituent include an alkoxy group, an alkyl group, a hydroxyl group, an acyl group, an aryl group, and the like. Among them, an alkoxy group is preferable because the viscosity of the electrolytic solution can be reduced. On the other hand, preferred examples of the halogen element include fluorine, chlorine, and bromine. Ι ^ ~Ι 3 may be all the same kind of the substituent, may some of them in different kinds of substituents.
ここで、 アルコキシ基としては、 例えばメ トキシ基、 エトキシ基、 プロポキシ 基、 ブトキシ基等や、 メ トキシエトキシ基、 メ トキシエトキシエトキシ基等のァ ルコキシ置換アルコキシ基等が挙げられる。 これらの中でも、 R 1 !^ 3として は、 総てがメトキシ基、 エトキシ基、 メ トキシェトキシ基、 又はメトキシェトキ シエトキシ基が好適であり、 低粘度 '高誘電率の観点から、 総てがメ トキシ基又 はエトキシ基であるのが特に好適である。 アルキノレ基としては、 メチノレ基、 ェチ ノレ基、 プロピル基、 ブチル基、 ペンチル基等が挙げられる。 ァシル基としては、 ホルミル基、 ァセチル基、 プロピオ-ル基、 プチリル基、 イソプチリル基、 バレ リル基等が挙げられる。 ァリール基としては、 フエュル基、 トリノレ基、 ナフチル 基等が挙げられる。 これらの一価の置換基中の水素元素は、 ハロゲン元素で置換 されているのが好ましく、 ハロゲン元素としては、 フッ素、 塩素、 臭素が好適で ある力 この中でもフッ素が特に好ましく、 次いで塩素が好ましい。 一価の置換 基中の水素元素がフッ素で置換されているものは、 塩素で置換されているものに 比べて 2次電池のサイクル特性を向上させる効果が大きい傾向がある。 Here, examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like, and an alkoxy-substituted alkoxy group such as a methoxyethoxy group and a methoxyethoxyethoxy group. Among them, R 1 ! ^ 3 is preferably a methoxy group, an ethoxy group, a methoxy ethoxy group, or a methoxy ethoxy ethoxy group, and all are methoxy groups from the viewpoint of low viscosity and high dielectric constant. Or an ethoxy group is particularly preferred. Examples of the alkynole group include a methynole group, an ethylenole group, a propyl group, a butyl group, a pentyl group and the like. Examples of the acyl group include a formyl group, an acetyl group, a propioyl group, a butyryl group, an isoptyryl group, and a valeryl group. Examples of the aryl group include a fuel group, a trinole group, and a naphthyl group. The hydrogen element in these monovalent substituents is preferably substituted with a halogen element. As the halogen element, fluorine, chlorine, and bromine are preferable. A certain force Of these, fluorine is particularly preferred, followed by chlorine. When the hydrogen element in the monovalent substituent is replaced by fluorine, the effect of improving the cycle characteristics of the secondary battery tends to be greater than that in the case where the hydrogen element is replaced by chlorine.
式(I)において、 Y Υ2及び Υ3で表される 2価の連結基としては、 例えば、 C H2基のほか、 酸素、 硫黄、 セレン、 窒素、 ホウ素、 ァノレミ -ゥム、 スカンジ ゥム、 ガリゥム、 イツトリゥム、 インジウム、 ランタン、 タリゥム、 炭素、 ケィ 素、 チタン、 スズ、 ゲルマニウム、 ジルコニウム、 鉛、 リン、 バナジウム、 ヒ素、 ニオブ、 アンチモン、 タンタノレ、 ビスマス、 クロム、 モリブデン、 テノレノレ、 ポロ ユウム、 タングステン、 鉄、 コバノレト、 ニッケルからなる群から選ばれる元素の 少なくとも 1種を含む 2価の連結基が挙げられ、 これらの中でも、 C H2基、 及 び、 酸素、 硫黄、 セレン、 窒素からなる群から選ばれる元素の少なくとも 1種を 含む 2価の連結基が好ましく、 硫黄及び Z又はセレンの元素を含む 2価の連結基 が特に好ましい。 また、 Y Υ2及び Υ3は、 酸素、 硫黄、 セレン等の 2価の元素、 又は単結合であってもよい。 Υ1〜Υ3は総て同一種類でもよく、 いくつかが互い に異なる種類でもよい。 In the formula (I), the divalent linking group represented by Y Upsilon 2 and Upsilon 3, for example, addition of CH 2 group, oxygen, sulfur, selenium, nitrogen, boron, Anoremi - © beam, scandium © beam , Gallium, ittrium, indium, lanthanum, talmium, carbon, silicon, titanium, tin, germanium, zirconium, lead, phosphorus, vanadium, arsenic, niobium, antimony, tantalle, bismuth, chromium, molybdenum, tungsten, tungsten, tungsten , iron, Kobanoreto, include a divalent linking group containing at least one element selected from the group consisting of nickel, among these, CH 2 group,及beauty, oxygen, sulfur, selenium, from the group consisting of nitrogen A divalent linking group containing at least one of the selected elements is preferable, and a divalent linking group containing elements of sulfur and Z or selenium is preferred. Valent linking groups are particularly preferred. Y 2 and 3 may be a divalent element such as oxygen, sulfur, selenium, or a single bond. Υ 1 to Υ 3 may be all the same type, or some may be different types.
式 (I)において、 X1としては、 有害性、 環境等への配慮の観点からは、 炭素、 ケィ素、 窒素、 リン、 酸素、 及び、 硫黄からなる群から選ばれる元素の少なくと も 1種を含む置換基が好ましい。 これらの置換基の内、 次式(ΠΙ)、 (IV)又は(V) で表される構造を有する置換基がより好ましい。 In the formula (I), X 1 represents at least one element selected from the group consisting of carbon, silicon, nitrogen, phosphorus, oxygen, and sulfur from the viewpoint of harmfulness and environmental considerations. Substituents containing species are preferred. Among these substituents, a substituent having a structure represented by the following formula (ΠΙ), (IV) or (V) is more preferable.
Y5R5 Y 5 R 5
? ニ … (! Π)  ? D ... (! Π)
γθρο  γθρο
— S— Y 7' ηR7 (IV) Y8R8 — S— Y 7 'ηR7 (IV) Y 8 R 8
/  /
— N · · (V)  — N · · (V)
ヽ 9  ヽ 9
伹し、 式 (111)、 (IV)、 (V)において、 R5〜R9は、 独立に一価の置換基又はハ ロゲン元素を表す。 Y5〜Y9は、 独立に 2価の連結基、 2価の元素、 又は単結合 を表し、 Ζは 2価の基又は 2価の元素を表す。 In the formulas (111), (IV), and (V), R 5 to R 9 independently represent a monovalent substituent or a halogen element. Y 5 to Y 9 independently represent a divalent linking group, a divalent element, or a single bond; and Ζ represents a divalent group or a divalent element.
式(111)、 (IV)ヽ (V)において、 R5〜R9としては、 式 (I)における R^ R3で述 ベたのと同様の一価の置換基又はハロゲン元素がいずれも好適に挙げられる。 又、 これらは、 同一置換基内において、 それぞれ同一の種類でもよく、 いくつかが互 いに異なる種類でもよい。 式(III)の R 5と R6とは、 及び式 (V)の R8と R9とは、 互いに結合して環を形成していてもよい。 In the formulas (111) and (IV) ヽ (V), R 5 to R 9 are the same monovalent substituents or halogen elements as described for R ^ R 3 in the formula (I). Preferred examples are given. Further, these may be of the same type within the same substituent, or may be of different types. R 5 and R 6 in the formula (III), and R 8 and R 9 in the formula (V) may be bonded to each other to form a ring.
式(111)、 (IV) , (V)において、 Y5〜Y9で表される基としては、 式 (I)におけ る Yi〜Y3で述べたのと同様の 2価の連結基又は 2価の元素等が挙げられ、 同様 に、 硫黄及び Z又はセレンの元素を含む基である場合には、 電解液の発火 '引火 の危険性が低減するため特に好ましい。 これらは、 同一置換基内において、 それ ぞれ同一の種類でもよく、 いくつかが互いに異なる種類でもよい。 Equation (111), (IV), in (V), Y 5 as the group represented by to Y 9, similar divalent linking group as described in the Yi~Y 3 that put the formula (I) Or a divalent element. Similarly, a group containing sulfur, Z, or selenium is particularly preferable because the risk of ignition and ignition of the electrolytic solution is reduced. These may be of the same type within the same substituent, or some may be of different types.
式(III)において、 Zとしては、 例えば、 C H2基、 C H R (Rは、 アルキル基、 アルコキシル基、 フエエル基等を表す。 以下同様。 ) 基、 N R基のほか、 酸素、 硫黄、 セレン、 ホウ素、 アルミニウム、 スカンジウム、 ガリウム、 イットリウム、 インジウム、 ランタン、 タリウム、 炭素、 ケィ素、 チタン、 スズ、 ゲルマニウム、 ジルコニウム、 鉛、 リン、 バナジウム、 ヒ素、 ェォプ、 アンチモン、 タンタル、 ビスマス、 クロム、 モリブデン、 テノレノレ、 ポロニウム、 タングステン、 鉄、 コバ ルト、 ニッケルからなる群から選ばれる元素の少なくとも 1種を含む 2価の基等 が挙げられ、 これらの中でも、 C H2基、 C H R基、 N R基のほか、 酸素、 硫黄、 セレンからなる群から選ばれる元素の少なくとも 1種を含む 2価の基が好ましい。 特に、 硫黄及び/又はセレンの元素を含む2価の基の場合には、 電解液の発火 - 引火の危険性が低減するため好ましい。 また、 Zは、 酸素、 硫黄、 セレン等の 2 価の元素であってもよい。 In the formula (III), Z represents, for example, CH 2 , CHR (R represents an alkyl group, an alkoxyl group, a fuel group, etc .; the same applies hereinafter), an NR group, oxygen, sulfur, selenium, Boron, aluminum, scandium, gallium, yttrium, indium, lanthanum, thallium, carbon, silicon, titanium, tin, germanium, zirconium, lead, phosphorus, vanadium, arsenic, jap, antimony, tantalum, bismuth, chromium, molybdenum, tenorenole , polonium, tungsten, iron, cobalt, and a divalent group containing at least one element selected from the group consisting of nickel. among them, CH 2 group, CHR group, in addition to NR group, oxygen , A divalent group containing at least one element selected from the group consisting of sulfur and selenium is preferable . Particularly, in the case of a divalent group containing sulfur and / or selenium, the ignition of the electrolyte - It is preferable because the risk of ignition is reduced. Z may be a divalent element such as oxygen, sulfur, and selenium.
これら置換基としては、 特に効果的に発火 ·引火の危険性を低減し得る点で、 式 (III)で表されるようなリンを含む置換基が特に好ましい。 また、 置換基が式 (IV)で表されるような硫黄を含む置換基である場合には、 電解液の小界面抵抗化 の点で特に好ましい。  As these substituents, a phosphorus-containing substituent represented by the formula (III) is particularly preferable, since the risk of ignition and ignition can be particularly effectively reduced. Further, when the substituent is a substituent containing sulfur as represented by the formula (IV), it is particularly preferable in terms of reducing the interface resistance of the electrolytic solution.
式(II)において、 R4としては、 一価の置換基又はハロゲン元素であれば特に 制限はない。 一価の置換基としては、 アルコキシ基、 アルキル基、 カルボキシル 基、 ァシル基、 ァリール基等が挙げられ、 これらの中でも、 電解液を低粘度化し 得る点で、 アルコキシ基が好ましい。 一方、 ハロゲン元素としては、 例えば、 フ ッ素、 塩素、 臭素等が好適に挙げられる。 アルコキシ基としては、 例えば、 メト キシ基、 エトキシ基、 メ トキシェトキシ基、 プロポキシ基、 フエノキシ基等が挙 げられ、 これらの中でも、 非水電解液 1次電池に使用する場合は、 メトキシ基、 エトキシ基、 n -プロポキシ基、 フエノキシ基が特に好ましく、 非水電解液 2次 電池に使用する場合は、 メトキシ基、 エトキシ基、 メトキシェトキシ基、 フエノ キシ基が特に好ましい。 これらの一価の置換基中の水素元素は、 ハロゲン元素で 置換されているのが好ましく、 ハロゲン元素としては、 フッ素、 塩素、 臭素等が 好適に挙げられ、 フッ素原子で置換された置換基としては、 例えば、 トリフルォ 口エトキシ基が挙げられる。 In the formula (II), R 4 is not particularly limited as long as it is a monovalent substituent or a halogen element. Examples of the monovalent substituent include an alkoxy group, an alkyl group, a carboxyl group, an acyl group, an aryl group, and the like. Among them, an alkoxy group is preferable because the viscosity of the electrolytic solution can be reduced. On the other hand, as the halogen element, for example, fluorine, chlorine, bromine and the like are preferably mentioned. Examples of the alkoxy group include a methoxy group, an ethoxy group, a methoxetoxy group, a propoxy group, a phenoxy group and the like. Among them, when used in a nonaqueous electrolyte primary battery, a methoxy group, an ethoxy group Groups, n-propoxy groups and phenoxy groups are particularly preferred, and when used in non-aqueous electrolyte secondary batteries, methoxy groups, ethoxy groups, methoxyethoxy groups and phenoxy groups are particularly preferred. The hydrogen element in these monovalent substituents is preferably substituted with a halogen element. Examples of the halogen element include fluorine, chlorine, and bromine. Is, for example, a trifluoro mouth ethoxy group.
式 (I)〜(V)における!^1〜!^9、 Y1〜Y3、 Υ5〜Υ9、 Ζを適宜選択することによ り、 より好適な粘度、 添加'混合に適する溶解性等を有する電解液の調製が可能 となる。 これらホスファゼン化合物は、 1種単独で使用してもよく、 2種以上を 併用してもよい。 In equations (I) to (V)! By selecting ^ 1 to! ^ 9 , Y 1 to Y 3 , Υ 5 to Υ 9 , 適宜 as appropriate, it is possible to prepare an electrolyte having more suitable viscosity, solubility suitable for addition and mixing, etc. It becomes. These phosphazene compounds may be used alone or in a combination of two or more.
前記式 (II)のホスファゼン化合物の中でも、 電解液を低粘度化して電池の低温 特性を向上させ、 更に電解液の耐劣化性及び安全性を向上させる観点からは、 次 式 (VI)で表されるホスファゼン化合物が好ましい。 (N P F2) n · · ■ (VI) Among the phosphazene compounds of the formula (II), from the viewpoint of improving the low-temperature characteristics of the battery by lowering the viscosity of the electrolyte and further improving the resistance to deterioration and safety of the electrolyte, the following formula (VI) is used. Phosphazene compounds are preferred. (NPF 2 ) n · · ■ (VI)
(式中、 nは 3〜 1 3を表す。 )  (In the formula, n represents 3 to 13.)
式 (VI)で表されるホスファゼン化合物は室温 (25°C) で低粘度の液体であり、 かつ、 凝固点降下作用を有する。 このため、 該ホスファゼン化合物を電解液に添 加することにより、 電解液に優れた低温特性を付与することが可能となり、 また、 電解液の低粘度化が達成され、 低内部抵抗及び高!/ヽ導電率を有する非水電解液電 池を提供することが可能となる。 このため、 特に気温の低い地方や時期において、 低温条件下で使用しても、 長時間に渡って優れた放電特性を示す非水電解液電池 を提供することが可能となる。  The phosphazene compound represented by the formula (VI) is a low-viscosity liquid at room temperature (25 ° C.) and has a freezing point depressing action. Therefore, by adding the phosphazene compound to the electrolytic solution, it is possible to impart excellent low-temperature characteristics to the electrolytic solution, and a low viscosity of the electrolytic solution is achieved, and a low internal resistance and high! / ヽ It is possible to provide a non-aqueous electrolyte battery having conductivity. Therefore, it is possible to provide a non-aqueous electrolyte battery that exhibits excellent discharge characteristics over a long period of time even when used under low-temperature conditions, particularly in regions and periods when the temperature is low.
式 (VI)において、 nとしては、 電解液に優れた低温特性を付与し得、 電解液の 低粘度化が可能な点で、 3〜5が好ましく、 3〜4が更に好ましく、 3が特に好 ましい。 nの値が小さい場合には沸点が低く、 接炎時の着火防止特性を向上させ ることができる。 一方、 nの値が大きくなるにつれて、 沸点が高くなるため、 高 温でも安定に使用することができる。 上記性質を利用して目的とする性能を得る ために、 複数のホスファゼンを適時選択し、 使用することも可能である。  In the formula (VI), n is preferably from 3 to 5, more preferably from 3 to 4, because it can impart excellent low-temperature properties to the electrolytic solution and can reduce the viscosity of the electrolytic solution. It is good. When the value of n is small, the boiling point is low, and the ignition prevention characteristics at the time of flame contact can be improved. On the other hand, as the value of n increases, the boiling point increases, so that it can be used stably even at high temperatures. It is also possible to select and use multiple phosphazenes in a timely manner to obtain the desired performance using the above properties.
式 (VI)における n値を適宜選択することにより、 より好適な粘度、 混合に適す る溶解性、 低温特性等を有する電解液の調製が可能となる。 これらのホスファゼ ン化合物は、 1種単独で使用してもよく、 2種以上を併用してもよい。  By appropriately selecting the value of n in the formula (VI), it becomes possible to prepare an electrolyte having more favorable viscosity, solubility suitable for mixing, low-temperature characteristics, and the like. These phosphazene compounds may be used alone or in a combination of two or more.
式 (VI)で表されるホスファゼン化合物の粘度としては、 20mPa' s (20cP)以下で あれば特に制限はないが、 導電性の向上及び低温特性の向上の観点からは、 10mPa' s (10cP)以下が好ましく、 5mPa' s (5cP)以下がより好ましい。  The viscosity of the phosphazene compound represented by the formula (VI) is not particularly limited as long as it is 20 mPa's (20 cP) or less, but from the viewpoint of improving conductivity and improving low-temperature characteristics, it is 10 mPa's (10 cP). ) Or less, more preferably 5 mPa's (5 cP) or less.
前記式 (II)のホスファゼン化合物の中でも、 電解液の耐劣化性及び安全性を向 上させる観点からは、 次式 (VI I)で表されるホスファゼン化合物が好ましい。  Among the phosphazene compounds of the formula (II), a phosphazene compound represented by the following formula (VII) is preferable from the viewpoint of improving the deterioration resistance and safety of the electrolytic solution.
(N P R10 2) n ' ■ - (VII) (NPR 10 2 ) n '--(VII)
(式中、 R1Gは夫々独立して一価の置換基又はフッ素を表し、 全 R1Dのうち少な くとも 1っはフッ素を含む一価の置換基又はフッ素であり、 nは 3〜 8を表す。 但し、 総ての R10がフッ素であることはない。 ) (Wherein, R 1G each independently represents a monovalent substituent or fluorine, at least one of all R 1D is a monovalent substituent containing fluorine or fluorine, and n is 3 to 8 Represents However, not all R 10 is fluorine. )
上記式 (II)のホスファゼン化合物を含有すれば、 電解液に優れた自己消火性な いし難燃性を付与して電解液の安全性を向上させることができるが、 式 (VII)で 表され、 全 R1。のうち少なくとも 1つがフッ素を含む一価の置換基であるホスフ ァゼン化合物を含有すれば、 電解液により優れた安全性を付与することが可能と なる。 更に、 式 (VII)で表され、 全 R1Qのうち少なくとも 1つがフッ素であるホ スファゼン化合物を含有すれば、 更に優れた安全性を付与することが可能となる。 即ち、 フッ素を含まないホスファゼン化合物に比べ、 式 (VII)で表され、 全 R 10 のうち少なくとも 1つがフッ素を含む一価の置換基又はフッ素であるホスファゼ ン化合物は、 電解液をより燃え難くする効果があり、 電解液に対し更に優れた安 全性を付与することができる。 When the phosphazene compound of the formula (II) is contained, the electrolyte can be provided with excellent self-extinguishing properties or flame retardancy to improve the safety of the electrolyte. , All R 1 . When at least one of them contains a phosphazene compound which is a monovalent substituent containing fluorine, it is possible to impart more excellent safety to the electrolytic solution. Further, when a phosphazene compound represented by the formula (VII) and at least one of all R 1Q is fluorine is contained, more excellent safety can be provided. That is, compared to a phosphazene compound containing no fluorine, a phosphazene compound represented by the formula (VII) in which at least one of all R 10 is a monovalent substituent containing fluorine or fluorine is more difficult to burn the electrolytic solution. This can provide more excellent safety to the electrolytic solution.
なお、 式 (VII)において、 全 R1。がフッ素であり、 かつ nが 3である環状のホ スファゼン化合物自体は不燃性であり、 炎が近づいた際の着火を防止する効果は 大きいが、 沸点が非常に低いことから、 それらが総て揮発してしまうと残された 非プロトン性有機溶媒等が燃焼してしまう。 In the formula (VII), all R 1 . Is a non-flammable ring phosphazene compound in which n is 3 and has a great effect of preventing ignition when a flame approaches, but all of them have a very low boiling point because of their extremely low boiling point. If it evaporates, the remaining aprotic organic solvent will burn.
式 (VII)における一価の置換基としては、 アルコキシ基のほか、 アルキル基、 ァシル基、 ァリール基、 カルボキシル基等が挙げられ、 電解液の安全性の向上に 特に優れる点で、 アルコキシ基が好適である。 該アルコキシ基としては、 メトキ シ基、 エトキシ基、 n -プロポキシ基、 i -プロポキシ基、 ブトキシ基等のほか、 メトキシエトキシ基等のアルコキシ基置換アルコキシ基等が挙げられ、 電解液の 安全性の向上に優れる点で、 メトキシ基、 エトキシ基、 n -プロポキシ基が特に 好ましい。 また、 電解液の低粘度化の点ではメ トキシ基が好ましい。  Examples of the monovalent substituent in the formula (VII) include an alkoxy group, an alkyl group, an acyl group, an aryl group, a carboxyl group, and the like.The alkoxy group is particularly excellent in improving the safety of the electrolytic solution. It is suitable. Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, a butoxy group, and an alkoxy-substituted alkoxy group such as a methoxyethoxy group. A methoxy group, an ethoxy group, and an n-propoxy group are particularly preferable in terms of excellent improvement. Further, a methoxy group is preferable from the viewpoint of reducing the viscosity of the electrolytic solution.
式 (VII)において、 nとしては、 電解液に優れた安全性を付与し得る点で、 3 〜 5が好ましく、 3 ~ 4が更に好ましい。  In the formula (VII), n is preferably from 3 to 5, more preferably from 3 to 4, from the viewpoint that excellent safety can be imparted to the electrolytic solution.
前記一価の置換基は、 フッ素で置換されているのが好ましく、 式 (VII)の R 1Q がーつもフッ素でない場合は、 少なくとも一つの一価の置換基はフッ素含む。 前記フッ素のホスファゼン化合物における含有量としては、 3〜70重量%が好 ましく、 7〜45重量%がより好ましい。 含有量が前記数 範囲内であれば、 電解 液に 「優れた安全性」 を特に好適に付与することができる。 The monovalent substituent is preferably substituted with fluorine. When R 1Q in the formula (VII) is not fluorine, at least one monovalent substituent contains fluorine. The content of the fluorine in the phosphazene compound is preferably from 3 to 70% by weight, and more preferably from 7 to 45% by weight. When the content is within the above range, “excellent safety” can be particularly suitably imparted to the electrolytic solution.
式 (VII)で表されるホスファゼン化合物の分子構造としては、 前述のフッ素以 外にも塩素、 臭素等のハロゲン元素を含んでいてもよい。 伹し、 フッ素が最も好 ましく、 次いで塩素が好ましい。 フッ素を含むものは、 塩素を含むものに比べて 2次電池のサイクル特性を向上させる効果が大きレ、傾向がある。  The molecular structure of the phosphazene compound represented by the formula (VII) may contain a halogen element such as chlorine and bromine in addition to the above-mentioned fluorine. Most preferably, fluorine is followed by chlorine. Those containing fluorine tend to have a greater effect of improving the cycle characteristics of the secondary battery than those containing chlorine.
式 (VII)における Rw及び n値を適宜選択することにより、 より好適な安全性、 粘度、 混合に適する溶解性等を有する電解液の調製が可能となる。 これらのホス ファゼン化合物は、 1種単独で使用してもよく、 2種以上を併用してもよい。 式 (VII)で表されるホスファゼン化合物の粘度としては、 20mPa' s (20cP)以下で あれば特に制限はないが、 導電性の向上及び低温特性の向上の観点からは、 10raPa- s (lOcP)以下が好ましく、 5raPa- s (5cP)以下がより好ましい。 By appropriately selecting the values of R w and n in the formula (VII), it is possible to prepare an electrolyte having more suitable safety, viscosity, solubility suitable for mixing, and the like. These phosphazene compounds may be used alone or in a combination of two or more. The viscosity of the phosphazene compound represented by the formula (VII) is not particularly limited as long as it is 20 mPa's (20 cP) or less, but from the viewpoint of improving conductivity and improving low-temperature characteristics, the viscosity is preferably 10 raPa-s (lOcP ) Or less, and more preferably 5 raPa-s (5 cP) or less.
前記式 (Π)のホスファゼン化合物の中でも、 電解液の粘度上昇を抑制しつつ、 電解液の耐劣化性及び安全性を向上させる観点からは、 25°C (室温) において固 体であって、 下記式 (VI 11)で表されるホスファゼン化合物も好ましい。  Among the phosphazene compounds of the formula (Π), from the viewpoint of improving the resistance to deterioration and safety of the electrolyte while suppressing the increase in the viscosity of the electrolyte, the phosphazene compound is a solid at 25 ° C. (room temperature), A phosphazene compound represented by the following formula (VI 11) is also preferable.
(N P Rn 2) n · · ■ (VIII) (NPR n 2 ) n · · ■ (VIII)
(式中、 R11は夫々独立して一価の置換基又はハロゲン元素を表し; nは 3〜6 を表す。 ) (Wherein, R 11 each independently represents a monovalent substituent or a halogen element; n represents 3 to 6.)
式 (VIII)で表されるホスファゼン化合物は室温(25°C)で固体であるため、 電角军 液に添加すると電解液中で溶解して電解液の粘度が上昇する。 しカゝし、 所定の添 加量であれば電解液の粘度上昇率が低く、 低内部抵抗及び高い導電率を有する非 水電解液電池となる。 加えて、 式 (VIII)で表されるホスファゼン化合物は電解液 中で溶解するため、 電解液の長期安定性に優れる。  Since the phosphazene compound represented by the formula (VIII) is solid at room temperature (25 ° C.), when it is added to an electroconductive solution, it is dissolved in the electrolytic solution and the viscosity of the electrolytic solution increases. However, if the addition amount is a predetermined amount, a nonaqueous electrolyte battery having a low rate of increase in the viscosity of the electrolyte, a low internal resistance, and a high conductivity is obtained. In addition, since the phosphazene compound represented by the formula (VIII) dissolves in the electrolyte, the electrolyte has excellent long-term stability.
式 (VIII)において、 R11としては、 一価の置換基又はハロゲン元素であれば特 に制限はなく、 一価の置換基としては、 アルコキシ基、 アルキル基、 カルボキシ ル基、 ァシル基、 ァリール基等が挙げられる。 また、 ハロゲン元素としては、 例 えば、 フッ素、 塩素、 臭素、 ヨウ素等のハロゲン元素が好適に挙げられる。 これ らの中でも、 特に電解液の粘度上昇を抑制し得る点で、 アルコキシ基が好ましい。 該アルコキシ基としては、 メ トキシ基、 エトキシ基、 メ トキシェトキシ基、 プロ ポキシ基 (イソプロポキシ基、 n -プロポキシ基) 、 フエノキシ基、 トリフルォ 口エトキシ基等が好ましく、 電解液の粘度上昇を抑制し得る点で、 メ トキシ基、 エトキシ基、 プロポキシ基 (イソプロポキシ基、 n -プロポキシ基) 、 フエノキ シ基、 トリフルォロエトキシ基等がより好ましい。 前記一価の置換基は、 前述の ハロゲン元素を含むのが好ましい。 In the formula (VIII), R 11 is not particularly limited as long as it is a monovalent substituent or a halogen element. Examples of the monovalent substituent include an alkoxy group, an alkyl group and a carboxy group. And aryl groups, aryl groups and aryl groups. Further, as the halogen element, for example, a halogen element such as fluorine, chlorine, bromine, and iodine is preferably exemplified. Among these, an alkoxy group is particularly preferred, since it can suppress an increase in the viscosity of the electrolytic solution. The alkoxy group is preferably a methoxy group, an ethoxy group, a methoxetoxy group, a propoxy group (isopropoxy group, n-propoxy group), a phenoxy group, a trifluoroethoxy group or the like, which suppresses an increase in the viscosity of the electrolytic solution. From the viewpoint of obtaining, a methoxy group, an ethoxy group, a propoxy group (isopropoxy group, n-propoxy group), a phenoxy group, a trifluoroethoxy group, and the like are more preferable. The monovalent substituent preferably contains the halogen element described above.
式 (VI I I)において、 nとしては、 電解液の粘度上昇を抑制し得る点で、 3又は 4が特に好ましい。  In the formula (VIII), n is particularly preferably 3 or 4 from the viewpoint that the increase in the viscosity of the electrolytic solution can be suppressed.
式 (VIII)で表されるホスファゼン化合物としては、 例えば、 前記式 (VI II)にお いて R 11がメ トキシ基であって nが 3である構造、 式 (VIII)において R 11がメ ト キシ基及びフエノキシ基の少なくとも何れかであって nが 4である構造、 式 (VIII)において R 11がエトキシ基であって nが 4である構造、 式 (VII I)において R 11がイソプロポキシ基であって nが 3又は 4である構造、 式 (VI Π)において R 11が n -プロポキシ基であって nが 4である構造、 式 (VI II)において R 11がトリフ ルォ口エトキシ基であって nが 3又は 4である構造、 式 (VI 11)において R 11がフ ェノキシ基であつて nが 3又は 4である構造が、 電解液の粘度上昇を抑制し得る 点で、 特に好ましい。 Wherein the phosphazene compound represented by (VIII), for example, the formula (VI II) to your stomach structure a R 11 turtles butoxy group and n is 3, R 11 turtles preparative In formula (VIII) A structure wherein at least one of an xy group and a phenoxy group and n is 4, a structure wherein R 11 is an ethoxy group and n is 4 in the formula (VIII), and a structure wherein R 11 is isopropoxy in the formula (VII I) A structure in which n is 3 or 4; a structure in which R 11 is an n-propoxy group in the formula (VI Π) and n is 4; and a compound in which R 11 is a trifluoroethoxy group in the formula (VI II) And n is 3 or 4, and in the formula (VI 11), R 11 is a phenoxy group and n is 3 or 4, particularly in that it can suppress an increase in the viscosity of the electrolyte. preferable.
式 (VI I I)における各置換基及び n値を適宜選択することにより、 より好適な粘 度、 混合に適する溶解性等を有する電解液の調製が可能となる。 これらのホスフ ァゼン化合物は、 1種単独で使用してもよく、 2種以上を併用してもよい。  By appropriately selecting each substituent and the value of n in the formula (VIII), it becomes possible to prepare an electrolyte having more suitable viscosity, solubility suitable for mixing, and the like. These phosphazene compounds may be used alone or in a combination of two or more.
上記ホスファゼン化合物の異性体として、 具体的には、 下記式(IX)で表される 化合物を挙げることができる。 なお、 式 (IX)の化合物は、 下記式 (X)で表される ホスファゼン化合物の異性体である。 0 R14 Specific examples of the isomer of the phosphazene compound include a compound represented by the following formula (IX). The compound of the formula (IX) is an isomer of a phosphazene compound represented by the following formula (X). 0 R 14
II I  II I
2 γ12. P— N— X  2 γ12. P— N— X
γ 13 ^13  γ 13 ^ 13
0R , 14 0R, 14
 "
R12 Y12— — X2 (X)R 12 Y 12 — — X 2 (X)
Figure imgf000017_0001
Figure imgf000017_0001
(式(IX)及び (X)において、 R12、 R13及び R"は、 夫々独立して一価の置換基又 はハロゲン元素を表し; X2は、 炭素、 ケィ素、 ゲルマニウム、 スズ、 窒素、 リ ン、 ヒ素、 アンチモン、 ビスマス、 酸素、 硫黄、 セレン、 テルル及ぴポロニウム からなる群より選ばれる元素の少なくとも 1種を含む置換基を表し; Y12及び Y 13は、 夫々独立して 2価の連結基、 2価の元素又は単結合を表す。 ) (In the formulas (IX) and (X), R 12 , R 13 and R ″ each independently represent a monovalent substituent or a halogen element; X 2 represents carbon, silicon, germanium, tin, nitrogen, Li down represents arsenic, antimony, bismuth, oxygen, sulfur, selenium, a substituent containing at least one element selected from the group consisting of tellurium及Pi polonium; Y 12 and Y 13 are each independently Represents a divalent linking group, a divalent element or a single bond.
式 (IX)における R12、 R13及び R14としては、 一価の置換基又はハロゲン元素で あれば特に制限はなく、 上述した式 (I)における Ri R3で述べたのと同様の一 価の置換基及びハロゲン元素がいずれも好適に挙げられる。 また、 式 (IX)におい て、 Y12及び Y13で表される 2価の連結基又は 2価の元素としては、 式 (I)におけ る ΥΣ〜Υ3で述べたのと同様の 2価の連結基又は 2価の元素等がいずれも好適に 挙げられる。 更に、 式 (IX)において、 X2で表される置換基としては、 式 (I)にお ける X1で述べたのと同様の置換基がいずれも好適に挙げられる。 R 12 , R 13 and R 14 in the formula (IX) are not particularly limited as long as they are monovalent substituents or halogen elements, and are the same as those described for Ri R 3 in the above formula (I). Both a valent substituent and a halogen element are preferably exemplified. Moreover, Te formula (IX) smell, the divalent linking group or a bivalent element represented by Y 12 and Y 13, similar to that described in Υ Σ ~Υ 3 that put the formula (I) A divalent linking group, a divalent element, and the like are all preferably exemplified. Further, in the formula (IX), as the substituent represented by X 2 , any of the same substituents as those described for X 1 in the formula (I) are preferably exemplified.
式(IX)で表され、 式 (X)で表されるホスファゼン化合物の異性体は、 電解液に 添加されると、 電解液に極めて優れた低温特性を発現させることができ、 更に電 解液の耐劣化性及び安全性を向上させることができる。  The isomer of the phosphazene compound represented by the formula (IX) and the formula (X), when added to the electrolyte, allows the electrolyte to exhibit extremely excellent low-temperature characteristics. Can be improved in deterioration resistance and safety.
式(IX)で表される異性体は、 式 (X)で表されるホスファゼン化合物の異性体で あり、 例えば、 式 (X)で表されるホスファゼン化合物を生成する際の真空度及び /又は温度を調節することで製造でき、 該異性体の含有量 (体積%) は、 下記測 定方法により測定することができる。  The isomer represented by the formula (IX) is an isomer of the phosphazene compound represented by the formula (X). For example, the degree of vacuum and / or It can be produced by adjusting the temperature, and the content (% by volume) of the isomer can be measured by the following measuring method.
[測定方法] ゲノレパーミエーシヨンクロマトグラフィー(G P C)又は高速液体クロマトグラ フィ一によつて試料のピーク面積を求め、 該ピーク面積を、 予め求めておいた前 記異性体のモルあたりの面積と比較することでモル比を得、 更に比重を考慮して 体積換算することで測定できる。 [Measuring method] The peak area of the sample is determined by Geno Permeation Chromatography (GPC) or High Performance Liquid Chromatography, and the peak area is compared with the previously determined area per mole of the isomer. It can be measured by obtaining the molar ratio and converting the volume taking into account the specific gravity.
上記リン酸エステルとして、 具体的には、 トリフエ二ノレホスフェート等のアル キノレホスフェート、 トリクレジ/レホスフェート、 トリス(フルォロェチノレ)ホスフ エート、 トリス(トリフルォロネオペンチノレ)ホスフェート、 アルコキシホスフエ 一ト及びこれらの誘導体等を挙げることができる。  Specific examples of the phosphoric acid ester include alkynolephosphates such as trifuninolephosphate, tricrezi / rephosphate, tris (fluorenetinole) phosphate, tris (trifluoroneopentinole) phosphate, alkoxyphosphate and alkoxyphosphate. These derivatives may be mentioned.
本発明の第 1及び第 2の非水電解液に含有させる支持塩としては、 リチウムィ オンのイオン源となる支持塩が好ましい。 該支持塩としては、 特に制限はないが、 例えば、 L i C 104、 L i BF4、 L i PF6、 L i CF3S〇3、 及ぴ、 L i A s F6、 L i C4F9S〇3、 L i (CF3S〇2)2N、 L i (C2F5 S 02)2N等のリチウム 塩が好適に挙げられる。 これらは、 1種単独で使用してもよく、 2種以上を併用 してもよい。 As the supporting salt contained in the first and second non-aqueous electrolytes of the present invention, a supporting salt serving as a lithium ion ion source is preferable. As the supporting salt is not particularly limited, for example, L i C 10 4, L i BF 4, L i PF 6, L i CF 3 S_〇 3,Pi, L i A s F 6, L i Lithium salts such as C 4 F 9 S〇 3 , Li (CF 3 S〇 2 ) 2 N, and Li (C 2 F 5 S 0 2 ) 2 N are preferred. These may be used alone or in combination of two or more.
電解液中の支持塩の濃度としては、 0.2〜1.5mol/L(M)が好ましく、 0.5〜 lmol/L(M)がより好ましい。 支持塩の濃度が 0.2mol/L(M)未満では、 電解液の充分 な導電性を確保することができず、 電池の充放電特性に支障をきたすことがある 一方、 1.5mol/L(M)を超えると、 電解液の粘度が上昇し、 リチウムイオンの充分 な移動度が確保できないため、 前述と同様に電解液の充分な導電性を確保できず、 電池の放電特性及び充電特性に支障をきたすことがある。  The concentration of the supporting salt in the electrolyte is preferably from 0.2 to 1.5 mol / L (M), more preferably from 0.5 to 1 mol / L (M). If the concentration of the supporting salt is less than 0.2 mol / L (M), sufficient conductivity of the electrolyte cannot be secured, which may impair the charge / discharge characteristics of the battery. ), The viscosity of the electrolyte increases, and sufficient mobility of lithium ions cannot be secured.Therefore, sufficient conductivity of the electrolyte cannot be secured as described above, and the discharge and charge characteristics of the battery are hindered. May occur.
本発明の第 1及び第 2の非水電解液は、 上述した分子中にリン及び窒素の少な くとも一方を含む化合物及び支持塩の他に、 負極と反応することなく電解液の粘 度を低く抑える観点から、 非プロトン性有機溶媒を含有するのが好ましい。 該非 プロトン性有機溶媒として、 具体的には、 ジメチルカーポネート(DMC)、 ジェ チノレカーボネート(DEC)、 ジフエ二ノレカーボネート、 ェチノレメチノレカーボネー ト(EMC)、 エチレンカーボネート(E C)、 プロピレンカーボネート(P C)、 y-ブチロラク トン(GB L)、 γ-バレロラタ トン等の炭酸エステル、 1, 2-ジメ トキシェタン(DME)、 テトラヒドロフラン(THF)等のエーテルが好適に挙げ られる。 これらの中でも、 炭酸エステルが好ましい。 なお、 環状の炭酸エステル は、 比誘電率が高く支持塩の溶解性に優れる点で好適であり、 一方、 鎖状の炭酸 エステルは、 低粘度であるため、 電解液の低粘度化の点で好適である。 これらは 1種単独で使用してもよく、 2種以上を併用してもよい。 The first and second non-aqueous electrolytes of the present invention, in addition to the above-described compound containing at least one of phosphorus and nitrogen in the molecule and the supporting salt, also have a viscosity of the electrolyte without reacting with the negative electrode. From the viewpoint of keeping the content low, it is preferable to contain an aprotic organic solvent. As the aprotic organic solvent, specifically, dimethyl carbonate (DMC), ethynolecarbonate (DEC), dipheninolecarbonate, ethynolemethinolecarbonate (EMC), ethylene carbonate (EC), Propylene carbonate (PC), Preferable examples include carbonates such as y-butyrolactone (GBL) and γ-valerolatatotone, and ethers such as 1,2-dimethoxetane (DME) and tetrahydrofuran (THF). Of these, carbonate esters are preferred. Cyclic carbonates are preferred in that they have a high relative dielectric constant and are excellent in the solubility of the supporting salt, while chain-like carbonates have a low viscosity, so that the viscosity of the electrolytic solution is reduced. It is suitable. These may be used alone or in combination of two or more.
本発明の第 1の非水電 夜中の上記分子中にリン及び窒素の少なくとも一方を 含む化合物の含有量は、 電解液の電極材に対する浸透性を改善する観点から、 0.1体積%以上が好ましく、 0.5体積%以上が更に好ましい。 また、 電解液の安全 性を向上させる観点から、 3体積%以上が好ましく、 5体積%以上が更に好ましい。 一方、 本発明の第 2の非水電解液中の上記分子中にリン及び窒素の少なくとも 一方を含む化合物の含有量は、 電解液のセパレーターに対する浸透性を改善する 観点から、 0.1体積%以上が好ましく、 0.5体積%以上が更に好ましい。 また、 電 解液の安全性を向上させる観点から、 3体積%以上が好ましく、 5体積%以上が更 に好ましい。  From the viewpoint of improving the permeability of the electrolyte to the electrode material, the content of the compound containing at least one of phosphorus and nitrogen in the molecule at night is preferably 0.1 vol% or more, More preferably, it is at least volume%. Further, from the viewpoint of improving the safety of the electrolyte, the content is preferably 3% by volume or more, more preferably 5% by volume or more. On the other hand, the content of the compound containing at least one of phosphorus and nitrogen in the molecule in the second nonaqueous electrolyte of the present invention is preferably 0.1% by volume or more from the viewpoint of improving the permeability of the electrolyte to the separator. It is preferably at least 0.5% by volume. Further, from the viewpoint of improving the safety of the electrolyte, the content is preferably 3% by volume or more, more preferably 5% by volume or more.
ぐ非水電解液電池 > Non-aqueous electrolyte battery>
次に、 本発明の非水電解液電池を詳細に説明する。 本発明の第 1の非水電解液 電池は、 上述の本発明の第 1の非水電解液と、 正極と、 負極とを備え、 必要に応 じて、 セパレーター等の非水電解液電池の技術分野で通常使用されている部材を 備える。 一方、 本発明の第 2の非水電解液電池は、 上述の本発明の第 2の非水電 解液と、 正極と、 負極と、 セパレーターとを備え、 必要に応じて非水電解液電池 の技術分野で通常使用されている部材を備える。  Next, the nonaqueous electrolyte battery of the present invention will be described in detail. A first non-aqueous electrolyte battery of the present invention includes the above-described first non-aqueous electrolyte of the present invention, a positive electrode, and a negative electrode. If necessary, a non-aqueous electrolyte battery such as a separator is provided. Equipped with components commonly used in the technical field. On the other hand, a second non-aqueous electrolyte battery of the present invention includes the above-described second non-aqueous electrolyte of the present invention, a positive electrode, a negative electrode, and a separator. It has members commonly used in the technical field.
本発明の第 1及び第 2の非水電解液電池の正極活物質は 1次電池と 2次電池で 一部異なり、 例えば、 非水電解液 1次電池の正極活物質としては、 フッ化黒鉛(( CFx)n), Mn02 (電気化学合成であっても化学合成であってもよい) 、 V205、 Mo〇3、 Ag。C r〇4、 CuO、 Cu S、 F e S2、 S〇。·、 S〇 C 12、 T i S2 等が好適に挙げられ、 これらの中でも、 高容量で安全性が高く、 更には放電電位 が高く電解液の濡れ性に優れる点で、 Mn02、 フッ化黒鉛が好ましい。 これら の材料は、 1種単独で使用してもよく、 2種以上を併用してもよい。 The positive electrode active materials of the first and second nonaqueous electrolyte batteries of the present invention are partially different between the primary battery and the secondary battery. For example, as the positive electrode active material of the nonaqueous electrolyte primary battery, fluorinated graphite is used. ((CF x) n), Mn0 2 ( even electrochemical synthesis may be chemical synthesis), V 2 0 5, Mo_〇 3, Ag. C R_〇 4, CuO, Cu S, F e S 2, S_〇. ·, S〇 C 1 2 , Ti S 2 Among these, MnO 2 and fluorinated graphite are preferred among them because of their high capacity, high safety, and high discharge potential and excellent electrolyte wettability. These materials may be used alone or in combination of two or more.
一方、 非水電解液 2次電池の正極活物質としては、 V205、 V6013、 Mn02、 Mn 03等の金属酸化物、 L i C o〇2、 L i N i 02、 L i Mn24、 L i F e 02 及び L i F e P04等のリチウム含有複合酸ィ匕物、 T i S2、 Mo S2等の金属硫化 物、 ポリア二リン等の導電性ポリマー等が好適に挙げられる。 上記リチウム含有 複合酸化物は、 F e、 Mn、 C o及び N iからなる群から選択される 2種又は 3 種の遷移金属を含む複合酸化物であってもよく、 この場合、 該複合酸化物は、 L i F exC oyN i (1-x-y)02 (式中、 0≤χ< 1、 0≤y < 1 0< x + y≤ l) 、 あるいは L iMnxF ey2_x_y等で表される。 これらの中でも、 高容量で安全性 が高く、 更には電解液の濡れ性に優れる点で、 L i C o〇2、 L i N i 02、 L i Mn24が特に好適である。 これらの材料は、 1種単独で使用してもよく、 2種 以上を併用してもよい。 On the other hand, as the positive electrode active material of the nonaqueous electrolyte secondary battery, V 2 0 5, V 6 0 13, Mn0 2, Mn 0 metal oxides such as 3, L i C O_〇 2, L i N i 0 2, L i Mn 24, L i F e 0 2 and L i F e P0 4 such as a lithium-containing composite Sani匕物of, T i S 2, Mo S metal sulfides such as 2, Poria diphosphate etc. And the like. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and Ni. Object is L i F e x C o y N i (1 - x - y) 0 2 (where 0≤χ <1, 0≤y <1 0 <x + y≤ l) or L iMn x It is represented by F e y2 _ x _ y or the like. Among these, high safety in high capacity, even from the viewpoint of excellent wettability of the electrolytic solution, L i C O_〇 2, L i N i 0 2 , L i Mn 2 〇 4 is particularly preferred. These materials may be used alone or in combination of two or more.
本発明の第 1及び第 2の非水電解液電池の負極活物質は 1次電池と 2次電池で 一部異なり、 例えば、 非水電解液 1次電池の負極活物質としては、 リチウム金属 自体の他、 リチウム合金等が挙げられる。 リチウムと合金をつくる金属としては、 Sn、 Pb、 A l、 Au、 P t、 I n、 Zn、 C d、 Ag、 Mg等が挙げられる。 これらの中でも、 埋蔵量の多さ、 毒性の観点から A 1、 Zn、 Mgが好ましい。 これらの材料は、 1種単独で使用してもよく、 2種以上を併用してもよい。  The negative electrode active materials of the first and second nonaqueous electrolyte batteries of the present invention are partially different between the primary battery and the secondary battery. For example, the negative electrode active material of the nonaqueous electrolyte primary battery is lithium metal itself. And a lithium alloy. Examples of the metal that forms an alloy with lithium include Sn, Pb, Al, Au, Pt, In, Zn, Cd, Ag, and Mg. Among them, A1, Zn, and Mg are preferable from the viewpoint of large reserves and toxicity. These materials may be used alone or in combination of two or more.
一方、 非水電解液 2次電池の負極活物質としては、 リチウム金属自体、 リチウ ムと A l、 I n、 Pb又は Zn等との合金、 リチウムをドープした黒口、等の炭素 材料等が好適に挙げられ、 これらの中でも安全性がより高く、 電解液の濡れ性に 優れる点で、 黒鉛等の炭素材料が好ましく、 黒鉛が特に好ましい。 ここで、 黒鉛 としては、 天然黒鉛、 人造黒鉛、 メソフェーズカーボンマイクロビーズ (MCM B)等、 広くは易黒鉛化カーボンや難黒鉛化カーボンが挙げられる。 これらの材 料は、 1種単独で使用してもよく、 2種以上を併用してもよい。 On the other hand, negative electrode active materials for nonaqueous electrolyte secondary batteries include lithium metal itself, alloys of lithium with Al, In, Pb or Zn, and carbon materials such as black holes doped with lithium. Among these, carbon materials such as graphite are preferable, and graphite is particularly preferable, in view of higher safety and excellent wettability of the electrolytic solution. Here, examples of graphite include natural graphite, artificial graphite, mesophase carbon microbeads (MCM B), and the like, and broadly graphitizable carbon and non-graphitizable carbon. These materials The materials may be used alone or in combination of two or more.
上記正極及び負極には、 必要に応じて導電剤、 結着剤を混合することができ、 導電剤としてはアセチレンブラック等が挙げられ、 結着剤としてはポリフッ化ビ 二リデン(P VD F )、 ポリテトラフルォロエチレン(P T F E)、 スチレン ·ブタ ジェンゴム(S B R)、 カルボキシメチルセルロース(CMC)等が挙げられる。 こ れらの添加剤は、 従来と同様の配合割合で用いることができ、 具体的には、 1次 電池の正極の場合、 正極活物質:結着剤:導電剤の質量比が 8: 1: 0. 2〜8: 1: 1 であるのが好ましく、 2次電池の正極及び負極の場合、 活物質:結着剤:導電剤 の質量比が 94: 3: 3であるのが好ましい。  The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as needed. Examples of the conductive agent include acetylene black and the like. As the binder, polyvinylidene fluoride (PVDF) is used. , Polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used in the same mixing ratio as in the past. Specifically, in the case of a positive electrode of a primary battery, the mass ratio of the positive electrode active material: the binder: the conductive agent is 8: 1. : 0.2 to 8: 1: 1. In the case of a positive electrode and a negative electrode of a secondary battery, the mass ratio of active material: binder: conductive agent is preferably 94: 3: 3:
また、 上記正極及び負極の形状としては、 特に制限はなく、 電極として公知の 形状の中から適宜選択することができる。 例えば、 シート状、 円柱形状、 板状形 状、 スパイラル形状等が挙げられる。  The shapes of the positive electrode and the negative electrode are not particularly limited, and may be appropriately selected from known shapes as electrodes. For example, a sheet shape, a column shape, a plate shape, a spiral shape and the like can be mentioned.
本発明の第 2の非水電解液電池に使用するセパレーターは、 正負極間に配置さ れ、 両極の接触による電流の短絡を防止する。 セパレーターの材質としては、 両 極の接触を確実に防止し得、 力つ、 電解液を通したり含んだりできる材料、 例え ば、 ポリプロピレン(P P)、 ポリエチレン(P E)、 ポリエチレン■ポリプロピレ ン共重合体(P E/ P P)、 ポリテトラフルォロエチレン、 セルロース系、 ポリブ チレンテレフタレート、 ポリエチレンテレフタレート等の合成樹脂製の不織布、 多孔質ポリマー膜等が好適に挙げられる。 これらの中でも、 厚さ 20〜50 z m程度 のポリプロピレン、 ポリエチレン及びポリエチレン■ポリプロピレン共重合体等 のポリオレフイン製の多孔質ポリマー膜が特に好適である。 なお、 該セパレータ 一は、 本発明の第 1の非水電解液電池に用いることができる。  The separator used in the second nonaqueous electrolyte battery of the present invention is disposed between the positive and negative electrodes, and prevents a short circuit of current due to contact between both electrodes. As a material of the separator, a material capable of reliably preventing contact between the two electrodes and capable of passing or containing an electrolyte, for example, polypropylene (PP), polyethylene (PE), polyethylene-polypropylene copolymer Suitable examples include nonwoven fabrics made of synthetic resins such as (PE / PP), polytetrafluoroethylene, cellulosic, polybutylene terephthalate, and polyethylene terephthalate, and porous polymer films. Among these, porous polymer membranes made of polyolefin such as polypropylene, polyethylene and polyethylene-polypropylene copolymer having a thickness of about 20 to 50 zm are particularly preferred. The separator 1 can be used for the first nonaqueous electrolyte battery of the present invention.
本発明の第 1及び第 2の非水電解液電池には、 通常、 非水電解液電池に使用さ れている公知の各部材を好適に使用できる。  For the first and second nonaqueous electrolyte batteries of the present invention, known members usually used for nonaqueous electrolyte batteries can be suitably used.
以上に説明した本発明の第 1及び第 2の非水電解液電池の形態としては、 特に 制限はなく、 コインタイプ、 ボタンタイプ、 ペーパータイプ、 角型又はスパイラ ル構造の円筒型電池等、 種々の公知の形態が好適に挙げられる。 ボ: There are no particular restrictions on the form of the first and second nonaqueous electrolyte batteries of the present invention described above. A coin type, a button type, a paper type, a square type, or a spiral type Various known forms, such as a cylindrical battery having a monolithic structure, are preferably exemplified. Bo:
場合は、 シート状の正極及び負極を作製し、 該正極及び負極でセパレーターを挟 む等して、 非水電解液電池を作製することができる。 また、 スパイラル構造の場 合は、 例えば、 シート状の正極を作製して集電体を挟み、 これに、 シート状の負 極を重ね合わせて卷き上げる等して、 非水電解液電池を作製することができる。 以下に、 実施例を挙げて本発明を更に詳しく説明するが、 本発明は下記の実施 例に何ら限定されるものではない。 In this case, a nonaqueous electrolyte battery can be manufactured by preparing a sheet-shaped positive electrode and a negative electrode, and sandwiching a separator between the positive electrode and the negative electrode. In the case of a spiral structure, for example, a nonaqueous electrolyte battery is manufactured by forming a sheet-shaped positive electrode, sandwiching a current collector, and stacking and winding a sheet-shaped negative electrode. Can be made. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
< 2次電池の正極に対する電解液の浸透性 > <Permeability of electrolyte solution to positive electrode of secondary battery>
(実施例 1 )  (Example 1)
L iMn204 (正極活物質) 94質量部に対して、 アセチレンブラック (導電剤 ) 3質量部と、 ポリフッ化ビニリデン (結着剤) 3質量部とを添加し、 有機溶媒 ( 酢酸ェチルとエタノールとの 50/50質量%混合溶媒) で混練した後、 該混練物を 厚さ 25 μηιのアルミニウム箔 (集電体) にドクターブレードで塗工した後、 熱風 乾燥(100〜120°C)して、 厚さ 80 imの正極シートを作製した。 Against L IMN 2 0 4 (positive electrode active material) 94 parts by mass of acetylene black (conductive agent) and 3 parts by mass of polyvinylidene fluoride (binder) and 3 parts by mass of an organic solvent (acetic Echiru 50/50 mass% mixed solvent with ethanol), apply the kneaded material to a 25 μηι thick aluminum foil (current collector) with a doctor blade, and dry with hot air (100 to 120 ° C) Thus, a positive electrode sheet having a thickness of 80 im was produced.
また、 エチレンカーボネート (EC) 及びジェチルカーボネート (DEC) の 混合溶液 (非プロトン性有機溶媒, 体積比: ECZDEC=1/1) 90体積%に、 環状ホスファゼン A (式(II)において、 nが 3であって、 6つの R4のうち 1つ がフエノキシ基 (PhO_) 、 5つがフッ素である環状ホスファゼン化合物、 25 °Cにおける粘度: 1.7mPa's(L7cP)) 10体積%を加え、 L i PF6 (支持塩) を lmol/L (M)の濃度で溶解させて電解液を調製した。 In a mixed solution of ethylene carbonate (EC) and getyl carbonate (DEC) (aprotic organic solvent, volume ratio: ECZDEC = 1/1), 90% by volume of cyclic phosphazene A (in formula (II)) 3, a cyclic phosphazene compound in which one of six R 4 is a phenoxy group (PhO_) and five is fluorine, viscosity at 25 ° C .: 1.7 mPa's (L7cP)) 6 (supporting salt) was dissolved at a concentration of 1 mol / L (M) to prepare an electrolytic solution.
室温で上記正極シートに上記電解液 5 μ Lを滴下し、 電解液が正極シートに浸透 する様子を解像度 360フレーム/秒の CCDカメラによりモニタリングし、 電 解液の液滴と正極シートとの接触角を測定した。 なお、 接触角の測定には、 d a t a p hy s i c s社製自動接触角測定装置 OCA 20を用いた。 正極に対する 電解液の接触角の経時変化を図 3に示す。 その結果、 正極シートに対する電解液 の接触角が 2° 以下になるまでの時間は、 0.1秒、未満であった。 また、 上記電解液の安全性を、 U L (アンダーライティングラボラトリー) 規 格の U L 9 4 H B法をアレンジした方法で、 大気環境下において着火した炎の燃 焼挙動から評価した。 その際、 着火性、 燃焼性、 炭化物の生成、 二次着火時の現 象についても観察した。 具体的には、 U L試験基準に基づき、 不燃性石英フアイ バーに上記電解液 1. OmLを染み込ませて、 127mm X 12. 7mmの試験片を作製して行 つた。 ここで、 試験炎が試験片に着火しない (燃焼長: 0瞧) 場合を 「不燃性」 、 着火した炎が 25隱ラインまで到達せず、 かつ、 落下物にも着火が認められない場 合を 「難燃性」 、 着火した炎が 25〜100瞧ラインで消火し、 かつ、 落下物にも着 火が認められない場合を 「自己消火性」 、 着火した炎が lOOnmラインを超えた場 合を 「燃焼性」 と評価した。 結果を表 1に示す。 At room temperature, 5 μL of the above electrolytic solution was dropped onto the above positive electrode sheet, and the state of penetration of the electrolytic solution into the positive electrode sheet was monitored using a CCD camera with a resolution of 360 frames / sec. The corner was measured. The contact angle was measured using an automatic contact angle measuring device OCA20 manufactured by dataphysics. Figure 3 shows the change over time in the contact angle of the electrolyte with the positive electrode. As a result, the time required for the contact angle of the electrolyte with the positive electrode sheet to be 2 ° or less was less than 0.1 second. In addition, the safety of the above electrolyte was evaluated based on the combustion behavior of a flame ignited in an atmospheric environment by a method arranging the UL (Underwriting Laboratory) standard UL 94 HB method. At that time, ignitability, flammability, carbide formation, and the phenomenon during secondary ignition were also observed. Specifically, based on UL test standards, a non-combustible quartz fiber was impregnated with 1.OmL of the above electrolytic solution to prepare a 127 mm x 12.7 mm test piece. Here, the case where the test flame does not ignite the test piece (combustion length: 0 瞧) is “non-flammable”, the case where the ignited flame does not reach the 25 hidden line and the ignition of the falling object is not recognized. If the flame is `` flame retardant '', the ignited flame extinguishes in the 25-100 mm line and no ignition is found on the falling object, `` self-extinguishing '', if the ignited flame exceeds the lOOnm line The combination was evaluated as “flammability”. Table 1 shows the results.
次に、 上記正極シートに、 厚さ 25 ^ πιのセパレーター (微孔性フィルム :ポリ プロピレン製) を介して、 厚さ 150 /z mのリチウム金属箔を重ね合わせて卷き上げ、 円筒型電極を作製した。 該円筒型電極の正極長さは約 260mmであった。 該円筒型 電極に、 前記電解液を注入して封口し、 単三型リチウム電池 (非水電解液 2次電 池) を作製した。  Next, a lithium metal foil with a thickness of 150 / zm is overlaid on the above-mentioned positive electrode sheet via a separator (microporous film: made of polypropylene) with a thickness of 25 ^ πι, and rolled up. Produced. The length of the positive electrode of the cylindrical electrode was about 260 mm. The electrolytic solution was injected into the cylindrical electrode and sealed to prepare an AA lithium battery (a non-aqueous electrolytic solution secondary battery).
上記電池について、 2 Cレート放電 (30分で全容量が放電する条件) した際の 放電容量 (A) と、 0. 2 Cレート放電 (5時間で全容量が放電する条件) した際の 放電容量 (B ) とを測定した。 これらの測定値と下記の式から 2 C容量 (°/0)を算 出し、 表 1に示す結果を得た。 For the above batteries, the discharge capacity (A) when discharging at 2 C rate (the condition where the whole capacity is discharged in 30 minutes) and the discharge when discharging at 0.2 C rate (the condition where the whole capacity is discharged in 5 hours) The capacity (B) was measured. The 2 C capacity (° / 0 ) was calculated from these measured values and the following formula, and the results shown in Table 1 were obtained.
式: 2 C容量 = AZB X 100 (%)  Formula: 2 C capacity = AZB X 100 (%)
(実施例 2〜 2 1及び比較例 1〜 6 )  (Examples 2 to 21 and Comparative Examples 1 to 6)
表 1に示す配合処方の電解液を調製し、 実施例 1と同様にして電解液の正極に 対する浸透性及ぴ安全性を評価した。 正極に対する比較例 1の電解液の接触角の 経時変化を図 4に示す。 伹し、 実施例 3及び比較例 2では、 正極活物質として L i M n 24の代わりに L i C o 02を用い、 実施例 4及び比較例 3では、 L i N i 02を用いて正極を作製し、 該正極に対する浸透性を試験した。 結果を表 1に示 す。 なお、 表 1中、 DMCはジメチルカーボネートを示し、 L i BET Iは L i (C2F5S〇2)2Nを示す。 An electrolytic solution having the formulation shown in Table 1 was prepared, and the permeability and safety of the electrolytic solution to the positive electrode were evaluated in the same manner as in Example 1. FIG. 4 shows the change over time of the contact angle of the electrolyte of Comparative Example 1 with respect to the positive electrode. And伹In Example 3 and Comparative Example 2, using L i C o 0 2 instead of L i M n 24 as a cathode active material, in Example 4 and Comparative Example 3, L i N i 0 2 Was used to prepare a positive electrode, and the permeability to the positive electrode was tested. The results are shown in Table 1. You. In Table 1, DMC indicates dimethyl carbonate, and Li BETI indicates Li (C 2 F 5 S〇 2 ) 2 N.
また、 環状ホスファゼン Bは、 式(II)において、 nが 3であり、 6つの R4の うち 1つがエトキシ基で、 5つがフッ素である化合物 (25°Cにおける粘度: 1.2mPa-s(l.2cP)) であり ;環状ホスファゼン Cは、 式(II)において、 nが 4で あり、 8つの R4のうち 1つがエトキシ基で、 7つがフッ素である化合物 (25°C における粘度: 1. lmPa's(L IcP))であり ;環状ホスファゼン Dは、 式(II)におい て、 nが 3であり、 6つの R4のうち 1つがメ トキシエトキシエトキシエトキシ 基 (CH3OC2H4OC2H4OC2H4〇一) で、 5つがフッ素である化合物 (25°C における粘度: .5mPa's(4.5cP))である。 The cyclic phosphazene B is a compound of the formula (II) in which n is 3, one of six R 4 is an ethoxy group, and five are fluorine (viscosity at 25 ° C .: 1.2 mPa-s (l .2cP)) is a compound of the formula (II) wherein n is 4, one of eight R 4 is an ethoxy group, and seven are fluorine (viscosity at 25 ° C .: 1 lmPa's (L IcP)); cyclic phosphazene D is represented by the formula (II), wherein n is 3 and one of the six R 4 is a methoxyethoxyethoxyethoxy group (CH 3 OC 2 H 4 OC in 2 H 4 OC 2 H 4 〇 I), compound 5 is a fluorine: a (viscosity at 25 ° C .5mPa's (4.5cP) ).
また、 鎖状ホスファゼン Eは、 式(I)において、 X1が式(III)で表される置換 基で、 1、 Y2R2、 Y3R3、 Y5R5及び Y6R6の内、 3つがエトキシ基で、 2つ がフッ素で、 Zが 0(酸素)である化合物 (25°Cにおける粘度: 4.7mPa's(4.7cP) ) であり ; In the chain phosphazene E, X 1 is a substituent represented by the formula (III) in the formula (I) and 1 , Y 2 R 2 , Y 3 R 3 , Y 5 R 5 and Y 6 R 6 Among them, three are an ethoxy group, two are fluorine, and Z is 0 (oxygen) (viscosity at 25 ° C: 4.7 mPa's (4.7 cP));
鎖状ホスファゼン Fは、 下記式 (XI)で表される化合物 (25°Cにおける粘度: 4.9mPa-s(4.9cP)) であり ;  The chain phosphazene F is a compound represented by the following formula (XI) (viscosity at 25 ° C .: 4.9 mPa-s (4.9 cP));
Figure imgf000024_0001
鎖状ホスファゼン Gは、 下記式 (XII)で表される化合物 (25°Cにおける粘度 2.8mPa-s(2.8cP)) であり ;
Figure imgf000024_0001
The chain phosphazene G is a compound represented by the following formula (XII) (viscosity at 25 ° C: 2.8 mPa-s (2.8 cP));
F 0  F 0
F P N S CH, (ΧΠ) F P N S CH, (ΧΠ)
F 0 鎖状ホスファゼン Hは、 下記式 (XIII)で表される化合物 (25°Cにおける粘度 3.9mPa-s(3.9cP)) である。 F 0 The chain phosphazene H is a compound represented by the following formula (XIII) (viscosity at 25 ° C: 3.9 mPa-s (3.9 cP)).
F CH2C00CH3 F— P = N —— P = 0 · · '(ΧΙΠ) F CH 2 C00CH 3 F— P = N —— P = 0 · · '(ΧΙΠ)
F F 更に、 リン酸エステル Xは、 下記式 (XIV)で表される化合物 (25°Cにおける粘 度: 2.5mPa's(2.5cP)) である。 F F Further, the phosphate ester X is a compound represented by the following formula (XIV) (viscosity at 25 ° C .: 2.5 mPa's (2.5 cP)).
0 0
II  II
P― 0C2H5 ' ' ' (XIV) P― 0C 2 H 5 '''(XIV)
/ \  / \
F F また更に、 ホスファザン Yは、 下記式 (XV)で表される化合物 (25°Cにおける粘 度: 5.0mPa-s(5.0cP)) で、  F F Further, phosphazane Y is a compound represented by the following formula (XV) (viscosity at 25 ° C .: 5.0 mPa-s (5.0 cP)).
0 C2H5 0 0 C 2 H 5 0
II I II  II I II
C2H50—— P N P— 0C2H5 · · · (XV) C 2 H 5 0—— PNP— 0 C 2 H 5 · · · (XV)
0C2H5 0C2H5 トリアジン Zは、 下記式 (XVI)で表される化合物 (25°Cにおける粘度: 2. ImPa- s(2. lcP)) である。
Figure imgf000025_0001
0C 2 H 5 0C 2 H 5 triazine Z is a compound represented by the following formula (XVI) (viscosity at 25 ° C .: 2. ImPa-s (2.lcP)).
Figure imgf000025_0001
(XVI)  (XVI)
N N N N
C C
F また、 上記電解液を用いて実施例 1と同様に非水電解液 2次電池を作製し、 2 C容量を測定した。 結果を表 1に示す。 なお、 実施例 3及び比較例 2では、 正極 活物質として L iMn24の代わりに L i Co02を用レ、、 実施例 4及び比較例 3 では、 L i N i 02を用いた。 F A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the above-mentioned electrolyte, and the 2 C capacity was measured. Table 1 shows the results. In Example 3 and Comparative Example 2, the L IMN 2 〇 Yore ,, examples L i CO0 2 instead of 4 4 and Comparative Example 3 as the positive electrode active material, using L i N i 0 2 .
Figure imgf000027_0001
表 1から、 正極上に滴下後、 正極に対する非水電解液の接触角が 2° 以下にな るまでの時間が 0.5秒未満である非水電解液を用いた実施例の電池は、 電解液と 正極間での電圧降下が小さいため、 2C容量が大きく、 大電流放電特性が優れて いた。 一方、 従来の非水電解液を用いた比較例の電池は、 電解液と正極間での電 圧降下が大きいため、 2C容量が小さく、 大電流放電特性が劣っていた。
Figure imgf000027_0001
From Table 1, it can be seen that the batteries of Examples using the non-aqueous electrolyte in which the time until the contact angle of the non-aqueous electrolyte with the Since the voltage drop between the and positive electrode was small, the 2C capacity was large and the large current discharge characteristics were excellent. On the other hand, the battery of the comparative example using the conventional non-aqueous electrolyte had a large 2C capacity due to a large voltage drop between the electrolyte and the positive electrode, and was inferior in large-current discharge characteristics.
また、 実施例 1及び比較例 1で作製した電池に対し、 0.125C、 0.2C、 0.5C、 1.0 C、 2.0C、 3.0Cレート放電した際の放電容量残存率を測定した。 結果を図 5に示す。  In addition, the residual capacity of the batteries produced in Example 1 and Comparative Example 1 was measured when the batteries were discharged at a rate of 0.125C, 0.2C, 0.5C, 1.0C, 2.0C, and 3.0C. Fig. 5 shows the results.
図 5より、 実施例 1の電池は、 比較例 1の電池よりも各放電レートでの容量残 存率が高いことが分かる。 特に、 実施例 1の電池は、 比較例 1の電池に比べてハ ィレート放電した際の容量残存率が高く、 大電流放電特性に優れることが分かる。 < 2次電池の負極に対する電解液の浸透性〉  From FIG. 5, it can be seen that the battery of Example 1 has a higher remaining capacity at each discharge rate than the battery of Comparative Example 1. In particular, it can be seen that the battery of Example 1 has a higher capacity remaining ratio when subjected to a high rate discharge than the battery of Comparative Example 1, and is excellent in large current discharge characteristics. <Permeability of electrolyte to negative electrode of secondary battery>
(実施例 22)  (Example 22)
黒鉛 [三井金属鉱業社製 GD A— K 2] (炭素材料) 94質量部に対して、 ァセ チレンブラック (導電剤) 3質量部と、 ポリフッ化ビニリデン (結着剤) 3質量部 とを添加し、 有機溶媒 (酢酸ェチルとエタノールとの 50/50質量%混合溶媒) で 混練した後、 該混練物を厚さ 25μηιのアルミニウム箔 (集電体) にドクターブレ ードで塗工した後、 熱風乾燥 (100〜120°C)して、 厚さ 150 zmの負極シートを作製 した。 該負極シートに実施例 1と同じ電解液 5 μ Lを滴下し、 電解液の液滴と負極 シートとの接触角を実施例 1と同様にして測定した。 結果を表 2に示す。  Graphite [GD A-K 2 manufactured by Mitsui Mining & Smelting Co., Ltd.] (carbon material) 94 parts by mass, 3 parts by mass of acetylene black (conductive agent) and 3 parts by mass of polyvinylidene fluoride (binder) The mixture is kneaded with an organic solvent (50/50 mass% mixed solvent of ethyl acetate and ethanol), and the kneaded product is coated on a 25 μηι thick aluminum foil (current collector) with a doctor blade. Then, hot-air drying (100 to 120 ° C) was performed to produce a 150-zm-thick negative electrode sheet. 5 μL of the same electrolytic solution as in Example 1 was dropped on the negative electrode sheet, and the contact angle between the droplet of the electrolytic solution and the negative electrode sheet was measured in the same manner as in Example 1. Table 2 shows the results.
実施例 1と同じ正極シートに、 厚さ 25 imのセパレーター (微孔性フィルム: ポリプロピレン製) を介在させ、 上記のようにして作製した負極シートを重ね合 わせて巻き上げ、 円筒型電極を作製した。 該円筒型電極の正極長さは約 260mmで あった。 該円筒型電極に、 上記電解液を注入して封口し、 単三型リチウム電池 ( 非水電解液二次電池) を作製し、 2C容量を測定した。 結果を表 2に示す。  A 25 im-thick separator (microporous film: made of polypropylene) was interposed on the same positive electrode sheet as in Example 1, and the negative electrode sheets prepared as described above were stacked and rolled up to produce a cylindrical electrode. . The length of the positive electrode of the cylindrical electrode was about 260 mm. The electrolytic solution was injected into the cylindrical electrode and sealed, and an AA lithium battery (non-aqueous electrolyte secondary battery) was prepared, and the 2C capacity was measured. Table 2 shows the results.
(実施例 23〜 49及び比較例 6〜 7 ) 表 2に示す配合処方の電解液を調製し、 実施例 2 2と同様にして電解液の負極 に対する浸透性を評価し、 実施例 1と同様にして電解液の安全性を評価した。 ま た、 炭素材料として黒鉛に代えてメソフェーズカーボンマイクロビーズ (M CM B ) [日本カーボン製二力ビーズ] を用いて負極を作製し、 該負極に対する浸透 性も試験した。 更に、 該電解液を用いて実施例 2 2と同様に非水電解液 2次電池 を作製し、 2 C容量を測定した。 これらの結果を表 2に示す。 (Examples 23 to 49 and Comparative Examples 6 to 7) An electrolytic solution having the formulation shown in Table 2 was prepared, the permeability of the electrolytic solution to the negative electrode was evaluated in the same manner as in Example 22, and the safety of the electrolytic solution was evaluated in the same manner as in Example 1. In addition, a negative electrode was prepared using mesophase carbon microbeads (MCMB) [Nikki Carbon two-stroke beads] instead of graphite as the carbon material, and the permeability to the negative electrode was also tested. Further, a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 22 using the electrolyte, and the 2 C capacity was measured. Table 2 shows the results.
Figure imgf000030_0001
表 2から、 負極上に滴下後、 負極に対する非水電解液の接触角が 2° 以下にな るまでの時間が 0.5秒未満である非水電解液を用いた実施例の電池は、 電解液と 負極間での電圧降下が小さいため、 2C容量が大きく、 大電流放電特性が優れて いた。 一方、 従来の非水電解液を用いた比較例の電池は、 電解液と負極間での電 圧降下が大きいため、 2C容量が小さく、 大電流放電特性が劣っていた。
Figure imgf000030_0001
From Table 2, it can be seen that the battery of the example using the non-aqueous electrolyte in which the time required for the contact angle of the non-aqueous electrolyte to the Since the voltage drop between the negative electrode and the negative electrode was small, the 2C capacity was large and the large current discharge characteristics were excellent. On the other hand, the battery of the comparative example using the conventional non-aqueous electrolyte had a small 2C capacity and inferior high-current discharge characteristics due to a large voltage drop between the electrolyte and the negative electrode.
< 1次電池の正極に対する電解液の浸透性 > <Permeability of electrolyte to the positive electrode of primary battery>
(実施例 50)  (Example 50)
Mn〇2 (正極活物質) と、 アセチレンブラック (導電剤) と、 ポリフッ化ビ 二リデン (結着剤) とを 8: 1: 1の割合 (質量比) で混合■混鍊した後、 該混練 物を厚さ 25μηιのニッケル箔 (集電体) に圧着 ·ぺレッ ト化した後、 加熱乾燥 (100〜120°C)して、 厚さ 500 μπιの正極ペレツトを作製した。 After mixing and mixing Mn 2 (positive electrode active material), acetylene black (conductive agent), and polyvinylidene fluoride (binder) in a ratio of 8: 1: 1 (mass ratio), The kneaded material was pressed and pelletized on a nickel foil (current collector) having a thickness of 25 μηι, and then heated and dried (100 to 120 ° C) to produce a positive electrode pellet having a thickness of 500 μπι.
また、 プロピレンカーボネート (PC) 及ぴ 1, 2 -ジメトキシェタン(DME) の混合溶液 (非プロトン性有機溶媒, 体積比: P C/DME =1/1) 90体積0 /0 に、 環状ホスファゼン A (式(II)において、 nが 3であって、 6つの R4のうち 1つがフエノキシ基 (PhO_) 、 5つがフッ素である環状ホスファゼン化合物、 25°0にぉける粘度:1.71111¾'5(1.70?)) 10体積%を加え、 L i BF4 (支持塩) を 0.75mol/L(M)の濃度で溶解させて電解液を調製した。 Further, propylene carbonate (PC)及Pi 1, 2 - a mixed solution of dimethoxyethane E Tan (DME) (aprotic organic solvent, a volume ratio: PC / DME = 1/1) to 90 volume 0/0, the cyclic phosphazene A (In the formula (II), n is 3, a cyclic phosphazene compound in which one of six R 4 is a phenoxy group (PhO_), and five are fluorine, viscosity at 25 ° 0: 1.71111′′5 ( 1.70?)) 10% by volume was added, and Li BF 4 (supporting salt) was dissolved at a concentration of 0.75 mol / L (M) to prepare an electrolytic solution.
上記正極ぺレットに上記電解液 5 μ Lを滴下し、 電解液の液滴と正極ぺレットと の接触角を実施例 1と同様にして測定した。 また、 上記電解液の安全性を実施例 1と同様にして評価した。 結果を表 3に示す。 '  5 μL of the electrolytic solution was dropped on the positive electrode pellet, and the contact angle between the droplet of the electrolytic solution and the positive electrode pellet was measured in the same manner as in Example 1. Further, the safety of the above electrolyte was evaluated in the same manner as in Example 1. Table 3 shows the results. '
次に、 上記正極ペレッ トを φ 16瞧に打ち抜いたものを正極とし、 リチウム箔( 厚み 0.5mra)を (Μ6瞧に打ち抜いたものを負極とし、 セルロースセパレーター (日 本高度紙工業社製 TF4030) を介して上記正負極を対座させ、 上記電解液を 注入して封口し、 C R 2016型の非水電解液 1次電池 (リチウム 1次電池) を 作製した。 得られた電池のパルス放電回数を下記の方法で測定した。 結果を表 3 に示す。 一パルス放電回数一 Next, a positive electrode one punched out from the positive electrode pellet to phi 16瞧, one punched out lithium foil (thickness 0.5Mra) to (Micromax 6瞧a negative electrode, a cellulose separator (Japan advanced paper Industry Co. TF4030 ), The positive and negative electrodes were opposed to each other, the above-mentioned electrolyte was injected and sealed, to produce a CR 2016 type non-aqueous electrolyte primary battery (lithium primary battery). Was measured by the following method: The results are shown in Table 3. One pulse discharge
放電深度 0%の電池を用いて、 電池の電圧が 1. 8Vになるまで、 (i) 3raA— 3秒間 の放電、 及び(ii) 27秒間の停止を繰り返し、 可能な放電回数をカウントした。 (実施例 5 1〜 6 4及び比較例 8 )  Using a battery with a discharge depth of 0%, (i) 3raA—discharge for 3 seconds and (ii) stop for 27 seconds were repeated until the battery voltage reached 1.8 V, and the number of possible discharges was counted. (Examples 51 to 64 and Comparative Example 8)
表 3に示す配合処方の電解液を調製し、 実施例 5 1と同様にして電解液の正極 に対する浸透性を評価し、 実施例 1と同様にして電解液の安全性を評価した。 ま た、 該電解液を用いて実施例 5 1と同様に非水電解液 1次電池を作製し、 パルス 放電回数を測定した。 これらの結果を表 3に示す。 An electrolytic solution having the formulation shown in Table 3 was prepared, the permeability of the electrolytic solution to the positive electrode was evaluated in the same manner as in Example 51, and the safety of the electrolytic solution was evaluated in the same manner as in Example 1. Also, a non-aqueous electrolyte primary battery was prepared in the same manner as in Example 51 using the electrolyte, and the number of pulse discharges was measured. Table 3 shows the results.
電解液 浸透性 ハ。ルス 正極 電解液の Electrolyte permeability c. Luth positive electrode Electrolyte
非 口トン性 支持塩 添加物 放電 活物質 浸透時間 評価 安全性 有機溶媒 (M) (質量%) 回数 Non-toning supporting salt Additive Discharge Active material Penetration time Evaluation Safety Organic solvent (M) (% by mass) Number of times
PC/DME LiBF4 PC / DME LiBF 4
Mn02 環状ホスファセ 'ン A Mn0 2 cyclic phosphasene A
実施例 50 0.1秒未満 Example 50 Less than 0.1 second
(1/1) (0. 0体積%) ◎ 不燃性 1512 (1/1) (0.0% by volume) ◎ Non-flammable 1512
75M) (1  75M) (1
PC/DME UBF4 環状ホスファセ 'ン A PC / DME UBF 4 cyclic phosphasenes A
実施例 51 Mn02 0.1秒未満 Example 51 Mn0 2 Less than 0.1 second
(1/1) 難燃性 1573 (0.75M) (5体積%) ◎  (1/1) Flame retardant 1573 (0.75M) (5% by volume) ◎
PC/DME LiBF4 環状ホスファセ 'ン A PC / DME LiBF 4 cyclic phosphasene A
実施例 52 Mn02 0.1秒未満 Example 52 Mn0 2 Less than 0.1 second
(1/1) 自己  (1/1) self
(0.75M) (3体積%) ◎ 消火性 1589 (0.75M) (3% by volume) ◎ Fire extinguishing 1589
PC/DME LiBF4 環状ホスファセ 'ン B PC / DME LiBF 4 cyclic phosphasen B
実施例 53 Mn02 0.1秒未満 Example 53 Mn0 2 Less than 0.1 second
(1/1) (0.75M) (10体積%) ◎ 不燃性 1535 (1/1) (0.75M) (10% by volume) ◎ Non-flammable 1535
PC/DME LiBF4 環状ホスファセ 'ン C PC / DME LiBF 4 cyclic phosphasen C
実施例 54 Mn02 0.1秒未満 Example 54 Mn0 2 Less than 0.1 second
(1/1) ◎ 不燃性 1568 (0.75M) (5体積%)  (1/1) ◎ Non-flammable 1568 (0.75M) (5% by volume)
PC/DME LiBF4 環状ホスファセ 'ン C PC / DME LiBF 4 cyclic phosphasen C
実施例 55 n02 0.1秒未満 Example 55 n0 2 Less than 0.1 second
(1/1) (3体積%) 6 (0.75M) ◎ 難燃性 158 (1/1) (3% by volume) 6 (0.75M) ◎ Flame retardant 158
PC/DME LiBF4 環状ホスファセ 'ン D PC / DME LiBF 4 cyclic phosphasen D
実施例 56 Mn02 0.1秒未満 Example 56 Mn0 2 Less than 0.1 second
(1/1) (0J5M) (10体積%) ◎ 不燃性 1635 (1/1) (0J5M) (10% by volume) ◎ Non-flammable 1635
PC/DME LiBF4 鎖状ホスファセ 'ン E PC / DME LiBF 4- chain phosphasene E
実施例 57 n02 0.1秒未満 Example 57 n0 2 Less than 0.1 second
(1/1) (0.75M) (10体積%) ◎ 不燃性 1654 (1/1) (0.75M) (10% by volume) ◎ Non-flammable 1654
PC/DME LiBF4 鎖状ホスファセ 'ン E PC / DME LiBF 4- chain phosphasene E
実施例 58 Mn02 0.1秒未満 Example 58 Mn0 2 Less than 0.1 second
(1/1) 不燃性  (1/1) Nonflammable
(0J5M) (5体積 °/。) ◎ 1664 (0J5M) (5 volumes ° /.) ◎ 1664
PC/DME LiBF4 鎖状ホスファセ 'ン F PC / DME LiBF 4- chain phosphasen F
実施例 59 Mn02 0.1秒未満 Example 59 Mn0 2 Less than 0.1 second
(1/1) 不燃性 1602 (075M) (10体積%) ◎  (1/1) Nonflammable 1602 (075M) (10% by volume) ◎
PC/DME LiBF4 鎖状ホスファセ 'ン G PC / DME LiBF 4- chain phosphasene G
実施例 60 Mn02 0.1秒未満 Example 60 Mn0 2 Less than 0.1 second
(1/1) (0J5M) (10体積 %) ◎ 不燃性 1623 (1/1) (0J5M) (10% by volume) ◎ Non-flammable 1623
PC/DME LiBF4 鎖状ホスファセ 'ン H PC / DME LiBF 4- chain phosphasene H
実施例 61 Mn02 0.1秒未満 不燃性 1590 Example 61 Mn0 2 Less than 0.1 second Nonflammable 1590
(1/1) (0.75M) (10体積 ¾ ◎  (1/1) (0.75M) (10 volumes ¾ ◎
PC/DME LiBF4 リン酸:!:ス亍ル X PC / DME LiBF 4 -phosphate :! : Tool X
実施例 62 Mn02 0.1秒未満 不燃性 1501 Example 62 Mn0 2 Less than 0.1 second Non-flammable 1501
(1/1) (0.75M) (10体積 %) ◎  (1/1) (0.75M) (10% by volume) ◎
PC/DME LiBF4 PC / DME LiBF 4
Mn02 ホスフアサ'ン Y Mn0 2 Phosphora Y
実施例 63 0.1秒未満 Example 63 Less than 0.1 second
(1/1) (0J5M) (10体積 %) ◎ 不燃性 1542 (1/1) (0J5M) (10% by volume) ◎ Non-flammable 1542
PC/DME LiBF4 トリァシ'ン Z PC / DME LiBF 4 Triass Z
実施例 64 Mn02 0.1秒未満 燃性 1527 Example 64 MnO 2 Less than 0.1 second Flammability 1527
0/1) (0.75M) 。0体積0/。) ◎ 不 0/1) (0.75M). 0 volume 0 /. ◎ ◎ not
PC/DME LiBF4 PC / DME LiBF 4
比較例 8 Mn02 0.5秒以上 X 燃焼性 1374 Comparative Example 8 Mn0 2 0.5 seconds or more X Flammability 1374
(1/1) (0.75M) 表 3から、 正極上に滴下後、 正極に対する非水電解液の接触角が 2° 以下にな るまでの時間が 0.5秒未満である非水電解液を用いた実施例の電池は、 電解液と 正極間での電圧降下が小さいため、 パルス放電回数が多く、 パルス放電特性が優 れていた。 一方、 従来の非水電解液を用いた比較例の電池は、 電解液と正極間で の電圧降下が大きいため、 パルス放電回数が少なく、 パルス放電特性が劣ってい た。 . (1/1) (0.75M) From Table 3, it can be seen that the battery of the example using the non-aqueous electrolyte in which the time until the contact angle of the non-aqueous electrolyte with the Since the voltage drop between the and positive electrodes was small, the number of pulse discharges was large and the pulse discharge characteristics were excellent. On the other hand, the battery of the comparative example using the conventional nonaqueous electrolyte had a large voltage drop between the electrolyte and the positive electrode, so the number of pulse discharges was small and the pulse discharge characteristics were poor. .
くセパレーターに対する電解液の浸透性 > Electrolyte permeability to separator>
(実施例 65)  (Example 65)
エチレンカーボネート (EC) 及びジェチルカーボネート (DEC) の混合溶 液 (炭酸エステル, 体積比: E C/D EC=1/1) 90体積%に、 環状ホスファ ゼン A (式(II)において、 nが 3であって、 6つの R4のうち 1つがフエノキシ 基 (PhO— ) 、 5つがフッ素である環状ホスファゼン化合物、 25°Cにおける粘 度:1.7!^&'3(1.7。?)) 10体積0 /0を加え、 L i PF6 (支持塩) を lmol/L(M)の濃度 で溶解させて電解液を調製した。 In a mixed solution of ethylene carbonate (EC) and getyl carbonate (DEC) (carbonic acid ester, volume ratio: EC / D EC = 1/1), 90% by volume of cyclic phosphazene A (in the formula (II), n a 3, six one of phenoxy groups among R 4 (PhO-), 5 single although cyclic phosphazene compound is a fluorine, viscosity at 2 5 ° C of: (? 1.7) 1.7 ^ &'3) 10 volume 0/0 was added and the electrolyte solution was prepared by L i PF 6 (the supporting salt) dissolved at a concentration of i mol / L (M).
室温でポリエチレン製の多孔質ポリマー膜よりなる厚さ 25 mのセパレーター [東燃化学社製 SETELA] に上記電解液 5 / Lを滴下し、 電解液がセパレータ 一に浸透する様子を解像度 360フレーム Z秒の CCDカメラによりモニタリン グし、 電解液の液滴とセパレーターとの接触角を測定した。 なお、 接触角の測定 には、 d a t a p h y s i c s社製自動接触角測定装置 O C A 20を用いた。 セ パレーターに対する電解液の接触角の経時変化を図 6に示す。 その結果、 セパレ 一ターに対する電解液の接触角が 25° 以下になるまでの時間は、 2秒未満であつ た。 また、 上記電解液の安全性を、 実施例 1と同様にして評価した。 結果を表 4 に示す。  At room temperature, 5 / L of the above electrolyte is dropped on a 25 m-thick separator made of polyethylene porous polymer membrane [SETELA manufactured by Tonen Chemical Co., Ltd.]. The contact angle between the electrolyte droplet and the separator was measured using a CCD camera. The contact angle was measured using an automatic contact angle measuring device OCA20 manufactured by dataphysics. Figure 6 shows the change over time in the contact angle of the electrolyte with the separator. As a result, it took less than 2 seconds for the contact angle of the electrolyte to the separator to become 25 ° or less. Further, the safety of the electrolytic solution was evaluated in the same manner as in Example 1. Table 4 shows the results.
次に、 上記電解液及びセパレーターを用いて、 下記のようにして非水電角 夜 2 次電池を作製した。 まず、 L i Co02 [日本化学工業社製] (正極活物質) 100 質量部に対して、 アセチレンブラック (導電剤) 10質量部、 テフロン(R)バイン ダー (結着剤) 10質量部を添加し、 有機溶媒 (酢酸ェチルとエタノールとの 50/50質量%混合溶媒) で混練した後、 ロール圧延により厚さ 100 μπι、 幅 40瞧の 薄層状の正極シートを作製した。 一方、 負極には、 厚さ 150 μηιの黒鉛製の負極シ 一トを使用した。 上記正極シート 1枚と負極シート 1枚の間に上記セパレーター を挟み込んで巻き上げ、 円筒型電極を作製した。 該円筒型電極の正極長さは約 260隱であった。 次に、 該円筒型電極に、 上記電解液を注入して封口し、 単三型 リチウム電池 (非水電解液 2次電池) を作製し、 その内部抵抗 (電池の直流抵抗 ) を常法に従って測定した。 その結果、 該電池の内部抵抗は 0.10Ωであった。 Next, using the electrolyte solution and the separator, a non-aqueous secondary battery was manufactured as follows. First, L i CO0 2 against [Nippon Chemical Industrial Co., Ltd.] (positive electrode active material) 100 parts by weight of acetylene black (conductive agent) 10 parts by weight, Teflon (R) Vine After adding 10 parts by mass of a binder (binder) and kneading with an organic solvent (50/50% by mass mixed solvent of ethyl acetate and ethanol), roll-rolled to form a thin layer with a thickness of 100 μπι and a width of 40 mm. A positive electrode sheet was produced. On the other hand, a negative electrode sheet made of graphite with a thickness of 150 μηι was used as the negative electrode. The separator was sandwiched between one positive electrode sheet and one negative electrode sheet and rolled up to produce a cylindrical electrode. The length of the positive electrode of the cylindrical electrode was about 260. Next, the above-mentioned electrolytic solution was injected into the cylindrical electrode and sealed, to prepare an AA lithium battery (non-aqueous electrolyte secondary battery), and the internal resistance (DC resistance of the battery) was measured according to a conventional method. It was measured. As a result, the internal resistance of the battery was 0.10Ω.
(実施例 66〜 83及び比較例 9〜: L 1 )  (Examples 66 to 83 and Comparative Examples 9 to: L 1)
表 4に示す配合処方の電解液を調製し、 実施例 65と同様にして電解液のセパ レーターに対する浸透性を評価し、 実施例 1と同様にして電解液の安全性を評価 した。 セパレーターに対する比較例 9の電解液の接触角の経時変化を図 7に示す。 なお、 実施例 66、 68〜70、 72、 74、 75、 77〜82、 比較例 10に ついては、 ポリエチレン製セパレーターに代えて、 ポリプロピレン製セパレータ 一 (多孔質ポリマー膜, 厚さ 25/ ra, セルガード社製 # 2400) を用い、 実施 例 67、 73、 83、 比較例 1 1については、 ポリエチレン 'ポリプロピレン共 重合体製セパレーター (多孔質ポリマー膜, 厚さ 25/zm, セルガード社製 # 35 04) を用いた。 これらの結果を表 4に示す。  An electrolytic solution having the formulation shown in Table 4 was prepared, the permeability of the electrolytic solution into the separator was evaluated in the same manner as in Example 65, and the safety of the electrolytic solution was evaluated in the same manner as in Example 1. FIG. 7 shows the change over time of the contact angle of the electrolytic solution of Comparative Example 9 with the separator. In Examples 66, 68 to 70, 72, 74, 75, 77 to 82, and Comparative Example 10, a polypropylene separator (porous polymer membrane, thickness 25 / ra, Celgard) was used instead of a polyethylene separator. For Example 67, 73, 83 and Comparative Example 11 using polyethylene # polypropylene copolymer separator (porous polymer membrane, thickness 25 / zm, Celgard # 35 04) Was used. Table 4 shows the results.
また、 表 4に示す電解液とセパレーターを用いて実施例 65と同様に非水電解 液 2次電池を作製し、 その内部抵抗を測定した。 結果を表 4に示す。 Further, a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 65 using the electrolyte and the separator shown in Table 4, and the internal resistance was measured. Table 4 shows the results.
¾ ¾
電解液 浸透性 電池の  Electrolyte permeable battery
¾J牛液の  ¾J
セハ。レーター 炭酸 支持塩 添加物 , 明 内部抵抗  Serra. Lator carbonate support salt additive, light internal resistance
5十 1四 安全性 エステル ( ) (体積 %) (Ω) 51 14 Safety ester () (% by volume) (Ω)
EC/DEC LiPF6 環状ホスファセ 'ン A EC / DEC LiPF 6 cyclic phosphasen A
実施例 65 PE ク J、 、 不燃性 Example 65 PE C J, non-flammable
(1/1) (1M) (10体積 %) 0.10 (1/1) (1M) (10% by volume) 0.10
EC/DEC LiPF6 環状ホスファセ 'ン A EC / DEC LiPF 6 cyclic phosphasen A
実施例 66 PP Z个少不 /陶 不燃性 Example 66 PP Z
(1/1) (1M) (10体積 %) 0.09 (1/1) (1M) (10% by volume) 0.09
EC/DEC LiPF6 環状ホスファセ 'ン A EC / DEC LiPF 6 cyclic phosphasen A
実施例 67 PE/PP !禾 /両 (2) 不燃性 Example 67 PE / PP!
(1/1) (1M) (10体積 %) 0.09 (1/1) (1M) (10% by volume) 0.09
EC/DEC LiPF6 環状ホスファセ "ン A EC / DEC LiPF 6 cyclic phosphasen A
実施例 68 PP 禾満 (Q) Example 68 PP Kaman (Q)
積 %) 難燃性 0.07 (1/1) (1M) (5体  %) Flame retardance 0.07 (1/1) (1M) (5
EC/DEC LiPF6 環状ホスファセ 'ン A EC / DEC LiPF 6 cyclic phosphasen A
実施例 69 PP 2杪术満 (Q) 自己消火性 0.07 Example 69 PP 2 mushrooms (Q) Self-extinguishing 0.07
(1/1) (1M) (3体積 %)  (1/1) (1M) (3% by volume)
EC/DEC LiPF6 環状ホスファ ン A EC / DEC LiPF 6 cyclic phosphane A
実施例 70 PP 禾満 (Q) 自己消火性 0.07 Example 70 PP Kaman (Q) Self-extinguishing 0.07
(1/1) (1M) (1体積 %)  (1/1) (1M) (1% by volume)
EC/DEC LiPF6 環状ホスファセ 'ン B EC / DEC LiPF 6 cyclic phosphasene B
実施例 71 PE 禾満 不燃性 Example 71 PE Kaman Incombustibility
(1/1) (1M) (10体積 %) 0.10 (1/1) (1M) (10% by volume) 0.10
EC/DEC LiPF6 環状ホスファセ "ン B EC / DEC LiPF 6 cyclic phosphasene B
実施例 72 PP 木 不燃性 Example 72 PP wood
(1/1) (1M) (10体積 %) 0.11 (1/1) (1M) (10% by volume) 0.11
EC/DEC LiPF6 環状ホスファセ 'ン B EC / DEC LiPF 6 cyclic phosphasene B
実施例 73 PE/PP 禾 /両 不燃性 Example 73 PE / PP
(1/1) (1M) (10体積 %) 0.10 (1/1) (1M) (10% by volume) 0.10
EC/DEC LiPF6 環状ホスファセ 'ン C EC / DEC LiPF 6 cyclic phosphase C
実施例 74 PP Ι禾 (0 不燃性 Example 74 PP
(1/1) (1M) (10体積 %) 0.10 (1/1) (1M) (10% by volume) 0.10
EC/DEC LiPF6 環状ホスファセ 'ン C EC / DEC LiPF 6 cyclic phosphase C
実施例 75 PP ^秒禾満 難燃性 Example 75 PP ^ sec Kaman Flame Retardancy
(1/1) (1M) (3体積 %) 0.07 (1/1) (1M) (3% by volume) 0.07
EC/DEC LiPF6 環状ホスファセ 'ン D EC / DEC LiPF 6 cyclic phosphasen D
実施例 76 PE ^秒禾満 不燃性 Example 76 PE ^ sec.
(1/1) (1M) (10体積 %) 0.10 (1/1) (1M) (10% by volume) 0.10
EC/DEC LiPF6 ί景:!犬ホスファセ D EC / DEC LiPF 6 View:! Phosphaase D
実施例 77 PP 2秒术満 不燃性 Example 77 PP 2 sec.
(1/1) (1M) (10体積 %) 0.11 (1/1) (1M) (10% by volume) 0.11
EC/DEC LiPF6 鎖状ホスファセ 'ン E EC / DEC LiPF 6- chain phosphasene E
実施例 78 PP 2杪术満 不燃性 Example 78 PP
(1/1) (1M) (10体積 %) 0.09 (1/1) (1M) (10% by volume) 0.09
EC/DEC LiPF6 鎖状ホスファセ 'ン F EC / DEC LiPF 6- chain phosphasen F
実施例 79 PP 2抄术満 不燃性 Example 79 PP 2 sheets
(1/1) (1M) (10体積 %) 0.08 (1/1) (1M) (10% by volume) 0.08
EC/DEC LiPF6 鎖状ホスファセ 'ン G EC / DEC LiPF 6- chain phosphasene G
実施例 80 PP 禾満 不燃性 Example 80 PP
(1/1) (1M) (10体積 %) 0.08 (1/1) (1M) (10% by volume) 0.08
EC/DEC LiPF6 鎖状ホスファセ 'ン H EC / DEC LiPF 6- chain phosphasene H
実施例 81 PP (Q) 不燃性 Example 81 PP (Q) Nonflammable
(1/1) (1M) (10体積 %) 0.09 (1/1) (1M) (10% by volume) 0.09
EC/DEC LiPF6 リン酸 Iステル X EC / DEC LiPF 6 Phosphate I Steal X
実施例 82 PP 术 /両 不燃性 Example 82 PP 术 / both nonflammable
(1/1) (1M) (10体積!) 0.08 (1/1) (1M) (10 volumes!) 0.08
EC/DEC LiPF6 ホスフアサ"ン Y EC / DEC LiPF 6 Phosphora "Y
実施例 83 PE/PP ク ί小 ,' S 不燃性 Example 83 PE / PP small, 'S non-flammable
(1/1) (1M) (10体積 %) 0.09 (1/1) (1M) (10% by volume) 0.09
EC/DEC LiPF6 EC / DEC LiPF 6
比較例 9 PE 5秒以上 X 燃焼性 Comparative Example 9 PE 5 seconds or more X Flammability
(1/1) (1M) 0.18 (1/1) (1M) 0.18
EC/DEC LiPF6 EC / DEC LiPF 6
比較例 10 PP 5秒以上 X 燃焼性 Comparative Example 10 PP 5 seconds or more X Flammability
(1/1) (1M) 0.19 (1/1) (1M) 0.19
EC/DEC LiPF6 EC / DEC LiPF 6
比較例 11 PE/PP 5秒以上 X 燃焼性 Comparative Example 11 PE / PP 5 seconds or more X Flammability
(1/1) (1M) 0.18 表 4から、 セパレーター上に滴下後、 セパレーターに対する非水電解液の接触 角が 25° 以下になるまでの時間力 ¾秒以下の非水電解液を用いた実施例の電池は、 セパレーターでの電圧降下が小さいため、 電池の内部抵抗が小さかった。 一方、 従来の非水電解液を用いた比較例の電池は、 セパレーターでの電圧降下が大きい ため、 電池の内部抵抗が大きかった。 (1/1) (1M) 0.18 From Table 4, the time required for the contact angle of the non-aqueous electrolyte to the separator to drop to 25 ° or less after dropping on the separator The battery of the example using the non-aqueous electrolyte of ¾ seconds or less has the voltage at the separator. Due to the small drop, the internal resistance of the battery was small. On the other hand, the battery of the comparative example using the conventional non-aqueous electrolyte had a large internal resistance of the battery due to a large voltage drop at the separator.

Claims

請 求 の 範 囲 非水電解液を電極上に滴下後、 電極に対する非水電解液の接触角が 2° 以 下になるまでの時間が 0. 5秒未満であることを特徴とする非水電解液。 前記電極が正極であつて、 該正極の活物質がリチウム含有複合酸化物であ ることを特徴とする請求項 1に記載の非水電解液。 Scope of the claim The non-aqueous electrolyte characterized in that the time required for the contact angle of the non-aqueous electrolyte to the electrode to become 2 ° or less after the non-aqueous electrolyte is dropped on the electrode is less than 0.5 seconds. Electrolyte. 2. The non-aqueous electrolyte according to claim 1, wherein the electrode is a positive electrode, and the active material of the positive electrode is a lithium-containing composite oxide.
前記電極が正極であって、 該正極の活物質が L i C o 02、 L i M n 24及 び L i N i 02からなる群から選択される少なくとも一種のリチウム含有複 合酸化物であることを特徴とする請求項 2に記載の非水電 液。 The electrode is a positive electrode, at least one lithium-containing double case of the active material of the positive electrode is selected from L i C o 0 2, L i M n 2 〇 4及beauty L i N i 0 2 consists of the group 3. The non-aqueous electrolyte according to claim 2, wherein the non-aqueous electrolyte is an oxide.
前記電極が正極であって、 該正極の活物質が M n 02及びフッ化黒鉛の何 れかであることを特徴とする請求項 1に記載の非水電解液。 2. The non-aqueous electrolyte according to claim 1, wherein the electrode is a positive electrode, and the active material of the positive electrode is one of Mn02 and fluorinated graphite.
前記電極が負極であって、 該負極の活物質が黒鉛であることを特徴とする 請求項 1に記載の非水電解液。  2. The non-aqueous electrolyte according to claim 1, wherein the electrode is a negative electrode, and the active material of the negative electrode is graphite.
前記非水電解液が、 分子中にリンを有する化合物を含有することを特徴と する請求項 1に記載の非水電解液。  2. The non-aqueous electrolyte according to claim 1, wherein the non-aqueous electrolyte contains a compound having phosphorus in a molecule.
前記非水電解液が、 分子中に窒素を有する化合物を含有することを特徴と する請求項 1に記載の非水電解液。  2. The non-aqueous electrolyte according to claim 1, wherein the non-aqueous electrolyte contains a compound having nitrogen in a molecule.
前記非水電解液が、 分子中にリン及ぴ窒素を有する化合物を含有すること を特徴とする請求項 1に記載の非水電解液。  2. The non-aqueous electrolyte according to claim 1, wherein the non-aqueous electrolyte contains a compound having phosphorus and nitrogen in a molecule.
前記分子中にリン及び窒素を有する化合物がリン一窒素間二重結合を有す ることを特徴とする請求項 8に記載の非水電解液。  9. The non-aqueous electrolyte according to claim 8, wherein the compound having phosphorus and nitrogen in the molecule has a phosphorus-nitrogen double bond.
. 前記非水電解液が、 更に炭酸エステルを含有することを特徴とする請求 項 6〜 8の何れかに記載の非水電解液。The non-aqueous electrolyte according to any one of claims 6 to 8, wherein the non-aqueous electrolyte further contains a carbonate ester.
. 非水電 液をセパレーター上に滴下後、 セパレーターに対する非水電角 液の接触角が 25° 以下になるまでの時間が 2秒以下であることを特徴とする 非水電解液。 A non-aqueous electrolyte characterized in that the time required for the contact angle of the non-aqueous electrolyte to the separator to become 25 ° or less after the non-aqueous electrolyte is dropped on the separator is 2 seconds or less.
. 前記セ,パレーターが多孔質ポリマー膜で、 ポリプロピレン、 ポリエチレ ン及びポリエチレン'ポリプロピレン共重合体の何れかよりなることを特徴 とする請求項 1 1に記載の非水電解液。 21. The non-aqueous electrolyte according to claim 11, wherein the separator is a porous polymer membrane and is made of any of polypropylene, polyethylene, and a polyethylene-polypropylene copolymer.
. 前言己非水電解液が、 分子中にリンを有する化合物を含有することを特徴 とする請求項 1 1に記載の非水電解液。 The non-aqueous electrolyte according to claim 11, wherein the non-aqueous electrolyte contains a compound having phosphorus in a molecule.
. 前記非水電解液が、 分子中に窒素を有する化合物を含有することを特徴 とする請求項 1 1に記載の非水電解液。 The non-aqueous electrolyte according to claim 11, wherein the non-aqueous electrolyte contains a compound having nitrogen in a molecule.
. 前記非水電解液が、 分子中にリン及び窒素を有する化合物を含有するこ とを特徴とする請求項 1 1に記載の非水電解液。 12. The non-aqueous electrolyte according to claim 11, wherein the non-aqueous electrolyte contains a compound having phosphorus and nitrogen in a molecule.
. 前記分子中にリン及び窒素を有する化合物がリンー窒素間二重結合を有 することを特徴とする請求項 1 5に記載の非水電解液。 16. The non-aqueous electrolyte according to claim 15, wherein the compound having phosphorus and nitrogen in the molecule has a phosphorus-nitrogen double bond.
. 前記非水電解液が、 更に炭酸エステルを含有することを特徴とする請求 項 1 3〜 1 5の何れかに記載の非水電解液。 The non-aqueous electrolyte according to any one of claims 13 to 15, wherein the non-aqueous electrolyte further contains a carbonate ester.
. 請求項 1〜 1 0の何れかに記載の非水電解液と、 正極と、 負極とを備え た非水電解液電池。 A non-aqueous electrolyte battery comprising the non-aqueous electrolyte according to claim 1, a positive electrode, and a negative electrode.
. 請求項 1 1〜 1 7の何れかに記載の非水電解液と、 正極と、 負極と、 セ パレーターとを備えた非水電解液電池。 A non-aqueous electrolyte battery comprising the non-aqueous electrolyte according to any one of claims 11 to 17, a positive electrode, a negative electrode, and a separator.
PCT/JP2004/004961 2003-04-11 2004-04-06 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same WO2004093224A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505366A JPWO2004093224A1 (en) 2003-04-11 2004-04-06 Non-aqueous electrolyte and non-aqueous electrolyte battery including the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003108089 2003-04-11
JP2003-108089 2003-04-11
JP2003108079 2003-04-11
JP2003-108079 2003-04-11
JP2003308902 2003-09-01
JP2003-308902 2003-09-01

Publications (1)

Publication Number Publication Date
WO2004093224A1 true WO2004093224A1 (en) 2004-10-28

Family

ID=33303686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004961 WO2004093224A1 (en) 2003-04-11 2004-04-06 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same

Country Status (2)

Country Link
JP (1) JPWO2004093224A1 (en)
WO (1) WO2004093224A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168241A (en) * 2012-02-14 2013-08-29 Sumitomo Chemical Co Ltd Negative electrode material for sodium secondary battery, electrode for sodium secondary battery, and sodium secondary battery
WO2019054418A1 (en) * 2017-09-12 2019-03-21 セントラル硝子株式会社 Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102088A (en) * 1999-07-29 2001-04-13 Bridgestone Corp Non-aqueous electrolyte cell
JP2001217006A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
WO2002021629A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021630A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102088A (en) * 1999-07-29 2001-04-13 Bridgestone Corp Non-aqueous electrolyte cell
JP2001217006A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
WO2002021629A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021630A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168241A (en) * 2012-02-14 2013-08-29 Sumitomo Chemical Co Ltd Negative electrode material for sodium secondary battery, electrode for sodium secondary battery, and sodium secondary battery
WO2019054418A1 (en) * 2017-09-12 2019-03-21 セントラル硝子株式会社 Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte battery
JP2019053984A (en) * 2017-09-12 2019-04-04 セントラル硝子株式会社 Additive agent for nonaqueous electrolyte solution, nonaqueous electrolyte solution, and nonaqueous electrolyte battery
JP7223221B2 (en) 2017-09-12 2023-02-16 セントラル硝子株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and non-aqueous electrolyte battery
US11757130B2 (en) 2017-09-12 2023-09-12 Central Glass Co., Ltd. Additive for non-aqueous electrolyte solution, non-aqueous electrolyte solution, and non-aqueous electrolyte solution battery

Also Published As

Publication number Publication date
JPWO2004093224A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
EP2230711B1 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte secondary power supply comprising the same
US8257870B2 (en) Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same
JP5738011B2 (en) Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
US20080020276A1 (en) Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same
JP2008300126A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
WO2013090417A1 (en) Low temperature electrolyte for high capacity lithium based batteries
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
EP2157656B1 (en) Nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery comprising the same
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
JP2008041413A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2010050021A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP5738010B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP5093992B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2008300125A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2006286570A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP2010015720A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2010050026A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP2008052988A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2008041308A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
JP2010050023A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
WO2004093224A1 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
JP2009021040A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte battery equipped with it

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505366

Country of ref document: JP

122 Ep: pct application non-entry in european phase