JP2010050023A - Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same - Google Patents

Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same Download PDF

Info

Publication number
JP2010050023A
JP2010050023A JP2008215181A JP2008215181A JP2010050023A JP 2010050023 A JP2010050023 A JP 2010050023A JP 2008215181 A JP2008215181 A JP 2008215181A JP 2008215181 A JP2008215181 A JP 2008215181A JP 2010050023 A JP2010050023 A JP 2010050023A
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
group
general formula
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008215181A
Other languages
Japanese (ja)
Inventor
Yasuo Horikawa
泰郎 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008215181A priority Critical patent/JP2010050023A/en
Publication of JP2010050023A publication Critical patent/JP2010050023A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte for a battery capable of giving high charge and discharge efficiency and high safety to the battery. <P>SOLUTION: The nonaqueous electrolyte for a battery includes a ring phosphazen compound expressed by formula (I) of (NPR<SP>1</SP><SB>2</SB>)<SB>n</SB>, a nonaqueous solvent, an aniline dielectric expressed by formula (II), and supporting salt. Here, R<SP>1</SP>each independently shows fluorine, alkoxy, or aryloxy; and n shows 3-4. R<SP>2</SP>in formula (II) is each independently hydrogen, methyl, or methoxy. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電池用非水電解液及びそれを備えた非水電解液二次電池に関し、特には、不燃性を有する電池用非水電解液、及び高い充放電効率と高い安全性を有する非水電解液二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte for a battery and a non-aqueous electrolyte secondary battery including the same, and in particular, a non-aqueous electrolyte for a battery having nonflammability, and a non-aqueous electrolyte having high charge / discharge efficiency and high safety. The present invention relates to a water electrolyte secondary battery.

非水電解液は、リチウム電池やリチウムイオン二次電池、電気二重層キャパシタ等の電解質として使用されており、これらデバイスは、高電圧、高エネルギー密度を有することから、パソコン及び携帯電話等の駆動電源として広く用いられている。そして、これら非水電解液としては、一般にエステル化合物及びエーテル化合物等の非プロトン性有機溶媒に、LiPF6等の支持塩を溶解させたものが用いられている。しかしながら、非プロトン性有機溶媒は、可燃性であるため、上記デバイスから漏液した際に引火・燃焼する可能性があり、安全面での問題を有している。 Non-aqueous electrolytes are used as electrolytes for lithium batteries, lithium-ion secondary batteries, electric double layer capacitors, etc., and these devices have high voltage and high energy density, so they drive personal computers and mobile phones. Widely used as a power source. As these nonaqueous electrolytic solutions, generally used are solutions in which a supporting salt such as LiPF 6 is dissolved in an aprotic organic solvent such as an ester compound and an ether compound. However, since the aprotic organic solvent is flammable, it may ignite and burn when it leaks from the device, and has a safety problem.

この問題に対して、非水電解液を難燃化する方法が検討されており、例えば、非水電解液にリン酸トリメチル等のリン酸エステル類を用いたり、非プロトン性有機溶媒にリン酸エステル類を添加したりする方法が提案されている(特許文献1〜3参照)。しかしながら、これらリン酸エステル類は、耐還元性が低く、負極で還元分解されるため、電池の不可逆容量が大きくなり、充放電効率が著しく悪化する問題がある。   To solve this problem, methods for making non-aqueous electrolytes flame-retardant have been studied. For example, phosphoric acid esters such as trimethyl phosphate are used for non-aqueous electrolytes, or phosphoric acid is used for aprotic organic solvents. Methods for adding esters have been proposed (see Patent Documents 1 to 3). However, these phosphate esters have low reduction resistance and are reductively decomposed at the negative electrode, so that there is a problem that the irreversible capacity of the battery is increased and charge / discharge efficiency is remarkably deteriorated.

また、特開平6−13108号公報(特許文献4)には、非水電解液に難燃性を付与するために、非水電解液にホスファゼン化合物を添加する方法が開示されている。該ホスファゼン化合物は、高い難燃性を示すものの、その種類、構造、または用いる電池極材種や他の非水電解液成分種によっては、電池の不可逆容量が大きくなり、充放電効率が低下することがある。   Japanese Patent Application Laid-Open No. 6-13108 (Patent Document 4) discloses a method of adding a phosphazene compound to a nonaqueous electrolytic solution in order to impart flame retardancy to the nonaqueous electrolytic solution. Although the phosphazene compound exhibits high flame retardancy, the irreversible capacity of the battery increases and charge / discharge efficiency decreases depending on the type, structure, or battery electrode material type and other non-aqueous electrolyte component types used. Sometimes.

近年、電池デバイスはより高容量化が求められており、上記のような不可逆容量は放電に関与しないため、電池の高容量化の観点からは小さい方が好ましく、また、充放電効率は高い方が好ましいが、この点で従来技術は必ずしも十分に満足できるレベルに達しているとはいえない。
特開平4−184870号公報 特開平8−22839号公報 特開2000−182669号公報 特開平6−13108号公報
In recent years, battery devices have been required to have higher capacities, and irreversible capacities such as those described above are not involved in discharge, and are therefore preferably smaller from the viewpoint of higher capacities of batteries, and have higher charge / discharge efficiency. However, in this respect, it cannot be said that the prior art has reached a sufficiently satisfactory level.
JP-A-4-184870 JP-A-8-22839 JP 2000-182669 A JP-A-6-13108

そこで、本発明の目的は、上記従来技術の問題を解決し、不燃性を有する電池用非水電解液と、該電池用非水電解液を備え、高い充放電効率と高い安全性を有する非水電解液二次電池を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a non-flammable non-aqueous electrolyte for a battery and a non-aqueous electrolyte for the battery, which has high charge / discharge efficiency and high safety. The object is to provide a water electrolyte secondary battery.

本発明者は、上記目的を達成するために鋭意検討した結果、特定の環状ホスファゼン化合物と非水溶媒に、さらに特定のアニリン誘導体を組み合わせて非水電解液を構成することにより、電解液に高い難燃性を付与することができ、また、該電解液を用いた非水電解液二次電池が、不可逆容量の小さい、優れた充放電効率を示すことを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventor has a high electrolyte solution by configuring a non-aqueous electrolyte by combining a specific cyclic phosphazene compound and a non-aqueous solvent with a specific aniline derivative. It has been found that a non-aqueous electrolyte secondary battery using the electrolyte can impart flame retardancy and exhibits excellent charge / discharge efficiency with a small irreversible capacity, leading to the completion of the present invention. It was.

即ち、本発明の電池用非水電解液は、
・下記一般式(I):
(NPR1 2)n ・・・ (I)
[式中、R1は、それぞれ独立してフッ素、アルコキシ基又はアリールオキシ基を表し;nは3〜4を表す]で表される環状ホスファゼン化合物と、
・非水溶媒と、
・下記一般式(II):

Figure 2010050023
[式中、R2は、それぞれ独立して水素、メチル基又はメトキシ基である]で表されるアニリン誘導体と、
・支持塩と
を含むことを特徴とする。 That is, the non-aqueous electrolyte for a battery of the present invention is
-The following general formula (I):
(NPR 1 2 ) n ... (I)
[Wherein R 1 independently represents a fluorine, an alkoxy group or an aryloxy group; n represents 3 to 4], and a cyclic phosphazene compound represented by:
A non-aqueous solvent,
-The following general formula (II):
Figure 2010050023
Wherein R 2 is independently hydrogen, methyl group or methoxy group; and
-It is characterized by including supporting salt.

本発明の電池用非水電解液は、更に、ビニレンカーボネートを含むことが好ましい。ここで、該ビニレンカーボネートの含有量は、電池用非水電解液全体の0.5〜1.0質量%の範囲が好ましい。なお、式(I)で表される環状ホスファゼン化合物、非水溶媒、式(II)で表されるアニリン誘導体、ビニレンカーボネート及び支持塩のみからなる電池用非水電解液は、本発明の電池用非水電解液の好適一態様である。   The non-aqueous electrolyte for a battery of the present invention preferably further contains vinylene carbonate. Here, the content of the vinylene carbonate is preferably in the range of 0.5 to 1.0% by mass of the whole battery non-aqueous electrolyte. In addition, the non-aqueous electrolyte for a battery consisting only of the cyclic phosphazene compound represented by the formula (I), the non-aqueous solvent, the aniline derivative represented by the formula (II), vinylene carbonate and the supporting salt is used for the battery of the present invention. This is a preferred embodiment of the non-aqueous electrolyte.

本発明の電池用非水電解液において、前記環状ホスファゼン化合物としては、前記一般式(I)において、R1のうち少なくとも4つがフッ素である化合物が好ましい。 In the non-aqueous electrolyte for a battery of the present invention, the cyclic phosphazene compound is preferably a compound in which at least four of R 1 in the general formula (I) are fluorine.

本発明の電池用非水電解液の好適例においては、前記一般式(I)で表される環状ホスファゼン化合物の含有量が電池用非水電解液全体の10〜60体積%である。   In a preferred example of the battery non-aqueous electrolyte of the present invention, the content of the cyclic phosphazene compound represented by the general formula (I) is 10 to 60% by volume of the whole battery non-aqueous electrolyte.

本発明の電池用非水電解液の他の好適例においては、前記一般式(II)で表されるアニリン誘導体の含有量が電池用非水電解液全体の0.01〜0.05質量%である。   In another preferred embodiment of the battery non-aqueous electrolyte of the present invention, the content of the aniline derivative represented by the general formula (II) is 0.01 to 0.05% by mass of the whole battery non-aqueous electrolyte.

また、本発明の電池用非水電解液の他の好適例においては、前記非水溶媒が、非プロトン性有機溶媒であり、該非プロトン性有機溶媒としてエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)及びプロピオン酸メチルからなる群から選択される少なくとも1種を含むことが更に好ましい。   In another preferred embodiment of the non-aqueous electrolyte for a battery of the present invention, the non-aqueous solvent is an aprotic organic solvent, and the aprotic organic solvent includes ethylene carbonate (EC), ethyl methyl carbonate (EMC). And at least one selected from the group consisting of methyl propionate.

また、本発明の非水電解液二次電池は、上記電池用非水電解液と、正極と、負極とを備えることを特徴とする。   Moreover, the non-aqueous electrolyte secondary battery of the present invention comprises the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode.

本発明によれば、非水溶媒に特定の環状ホスファゼン化合物を加え、好ましくは10体積%以上加えることにより高い難燃性を有し、さらに特定のアニリン誘導体を組み合わせて用いることにより、非水電解液二次電池に使用した際に不可逆容量が小さく、高い充放電効率を示す非水電解液を提供することができる。また、該非水電解液を備えた、高い安全性と優れた電池特性を有する非水電解液二次電池を提供することができる。   According to the present invention, a specific cyclic phosphazene compound is added to a non-aqueous solvent, and preferably has a high flame retardancy by adding 10% by volume or more, and further by using a specific aniline derivative in combination, When used in a liquid secondary battery, it is possible to provide a nonaqueous electrolytic solution that has a small irreversible capacity and exhibits high charge / discharge efficiency. Moreover, the nonaqueous electrolyte secondary battery provided with this nonaqueous electrolyte and having high safety and excellent battery characteristics can be provided.

本発明の電池用非水電解液においては、環状ホスファゼン化合物の反応、熱分解により生じる高不燃性ガス成分が、高い難燃性を発現するものと考えられる。また、理由は必ずしも明らかではないが、上記環状ホスファゼン化合物とアニリン誘導体との2つの化合物の相乗効果により、電極表面に薄くて高効率な皮膜がすばやく生じ、これが電解液の過剰な分解を抑制するため、不可逆容量を小さくできるものと考えられる。   In the non-aqueous electrolyte for batteries of the present invention, it is considered that a highly incombustible gas component produced by reaction and thermal decomposition of a cyclic phosphazene compound exhibits high flame retardancy. Although the reason is not necessarily clear, the synergistic effect of the two compounds, the cyclic phosphazene compound and the aniline derivative, quickly produces a thin and highly efficient film on the electrode surface, which suppresses excessive decomposition of the electrolyte. Therefore, it is considered that the irreversible capacity can be reduced.

<電池用非水電解液>
以下に、本発明の電池用非水電解液を詳細に説明する。本発明に係る電池用非水電解液は、上記一般式(I)で表される環状ホスファゼン化合物と、非水溶媒と、上記一般式(II)で表されるアニリン誘導体とを含むことを特徴とし、更に、ビニレンカーボネートを含むことが好ましく、また、非水溶媒として、非プロトン性有機溶媒を含有することが好ましい。
<Non-aqueous electrolyte for batteries>
Below, the non-aqueous electrolyte for batteries of the present invention will be described in detail. A nonaqueous electrolytic solution for a battery according to the present invention includes a cyclic phosphazene compound represented by the general formula (I), a nonaqueous solvent, and an aniline derivative represented by the general formula (II). Furthermore, it is preferable to contain vinylene carbonate, and it is preferable to contain an aprotic organic solvent as the non-aqueous solvent.

本発明の電池用非水電解液に含まれる環状ホスファゼン化合物は、上記一般式(I)で表される。式(I)中のR1は、それぞれ独立してフッ素、アルコキシ基又はアリールオキシ基を表し、nは3〜4を表す。 The cyclic phosphazene compound contained in the nonaqueous electrolytic solution for batteries of the present invention is represented by the above general formula (I). R 1 in formula (I) each independently represent fluorine, an alkoxy group or an aryloxy radical, n represents 3-4.

式(I)のR1におけるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等や、二重結合を含むアリルオキシ基等、またはメトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられる。更に、R1におけるアリールオキシ基としては、フェノキシ基、メチルフェノキシ基、キシレノキシ基(即ち、キシリルオキシ基)、メトキシフェノキシ基等が挙げられる。上記アルコキシ基及びアリールオキシ基中の水素元素は、ハロゲン元素で置換されていてもよく、フッ素で置換されていることが好ましい。また、式(I)中のR1は他のR1と連結していてもよく、この場合、2つのR1は、互いに結合して、アルキレンジオキシ基、アリーレンジオキシ基又はオキシアルキレンアリーレンオキシ基を形成し、かかる二価の基としては、エチレンジオキシ基、プロピレンジオキシ基、フェニレンジオキシ基等が挙げられる。 Examples of the alkoxy group in R 1 of the formula (I) include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an allyloxy group containing a double bond, or an alkoxy-substituted alkoxy such as a methoxyethoxy group and a methoxyethoxyethoxy group. Groups and the like. Furthermore, examples of the aryloxy group in R 1 include a phenoxy group, a methylphenoxy group, a xylenoxy group (that is, a xylyloxy group), a methoxyphenoxy group, and the like. The hydrogen element in the alkoxy group and aryloxy group may be substituted with a halogen element, and is preferably substituted with fluorine. R 1 in formula (I) may be linked to other R 1, and in this case, two R 1 are bonded to each other to form an alkylenedioxy group, an aryleneoxy group or an oxyalkylene arylene. Examples of the divalent group that forms an oxy group include an ethylenedioxy group, a propylenedioxy group, and a phenylenedioxy group.

上記一般式(I)中のR1は、同一でも異なってもよい。また、式(I)のR1は、不燃性及び低粘性の両立の点で、R1のうち4つ以上がフッ素であることが好ましい。 R 1 in the general formula (I) may be the same or different. Further, R 1 in the formula (I) is preferably 4 or more of R 1 in terms of both nonflammability and low viscosity.

また、式(I)のnは、3〜4であり、上記環状ホスファゼン化合物は、1種単独で使用してもよいし、2種以上を混合して用いてもよい。   Moreover, n of Formula (I) is 3-4, The said cyclic phosphazene compound may be used individually by 1 type, and may mix and use 2 or more types.

本発明の電池用非水電解液において、上記環状ホスファゼン化合物の含有量は、電池用非水電解液全体の5〜70体積%であることが好ましく、安全性と電池特性のバランスの観点から、10〜60体積%の範囲が更に好ましい。環状ホスファゼン化合物の含有量が70体積%を超えると、電池の容量や負荷特性が低下してしまうため好ましくなく、一方、5体積%未満では、引火点の低い有機溶媒を電解液に使用した場合に、不燃性を発現できないことがある。   In the battery non-aqueous electrolyte of the present invention, the content of the cyclic phosphazene compound is preferably 5 to 70% by volume of the whole battery non-aqueous electrolyte, from the viewpoint of the balance between safety and battery characteristics, A range of 10 to 60% by volume is more preferable. When the content of the cyclic phosphazene compound exceeds 70% by volume, the battery capacity and load characteristics are deteriorated, which is not preferable. In addition, incombustibility may not be exhibited.

本発明の電池用非水電解液は、更に上記一般式(II)で表わされるアニリン誘導体を含むことを特徴とする。式(II)において、R2は、水素、メチル基又はメトキシ基であり、各R2は、同一でも異なってもよい。 The non-aqueous electrolyte for a battery according to the present invention further includes an aniline derivative represented by the above general formula (II). In the formula (II), R 2 is hydrogen, methyl group or methoxy group, and each R 2 may be the same or different.

式(II)のアニリン誘導体の具体例としては、N,N-ジメチルアニリン、2-メチル-N,N-ジメチルアニリン、3-メチル-N,N-ジメチルアニリン、4-メチル-N,N-ジメチルアニリン、2-メトキシ-N,N-ジメチルアニリン、3-メトキシ-N,N-ジメチルアニリン、4-メトキシ-N,N-ジメチルアニリン、N,N,3,5-テトラメチルアニリン、3,5-ジメトキシ-N,N-ジメチルアニリン、2,4-ジメトキシ-N,N-ジメチルアニリン等が挙げられる。これらの中でも、3-メチル-N,N-ジメチルアニリン、N,N,3,5-テトラメチルアニリン、3-メトキシ-N,N-ジメチルアニリンが好ましい。これらアニリン誘導体は、1種単独で使用してもよく、2種以上を混合して使用してもよい。   Specific examples of aniline derivatives of formula (II) include N, N-dimethylaniline, 2-methyl-N, N-dimethylaniline, 3-methyl-N, N-dimethylaniline, 4-methyl-N, N- Dimethylaniline, 2-methoxy-N, N-dimethylaniline, 3-methoxy-N, N-dimethylaniline, 4-methoxy-N, N-dimethylaniline, N, N, 3,5-tetramethylaniline, 3, 5-Dimethoxy-N, N-dimethylaniline, 2,4-dimethoxy-N, N-dimethylaniline and the like. Among these, 3-methyl-N, N-dimethylaniline, N, N, 3,5-tetramethylaniline, and 3-methoxy-N, N-dimethylaniline are preferable. These aniline derivatives may be used alone or in combination of two or more.

上記アニリン誘導体の含有量は、電池用非水電解液全体の0.01〜0.1質量%の範囲が好ましく、電池性能のバランスの観点から、0.01〜0.05質量%の範囲が更に好ましく、0.02〜0.05質量%の範囲がより一層好ましい。   The content of the aniline derivative is preferably in the range of 0.01 to 0.1% by mass of the whole non-aqueous electrolyte for batteries, more preferably in the range of 0.01 to 0.05% by mass from the viewpoint of balance of battery performance, and 0.02 to 0.05% by mass. The range of is more preferable.

また、本発明の電池用非水電解液は、電池容量を向上させられる点で、更にビニレンカーボネートを含むことが好ましい。該ビニレンカーボネートの含有量は、電池用非水電解液全体の0.2〜2.0質量%の範囲が好ましく、アニリン誘導体との相乗効果の観点から、0.5〜1.0質量%の範囲が更に好ましい。   Moreover, it is preferable that the non-aqueous electrolyte for batteries of the present invention further contains vinylene carbonate in that the battery capacity can be improved. The content of the vinylene carbonate is preferably in the range of 0.2 to 2.0% by mass of the whole battery non-aqueous electrolyte, and more preferably in the range of 0.5 to 1.0% by mass from the viewpoint of the synergistic effect with the aniline derivative.

本発明の電池用非水電解液において、非水溶媒としては、本発明の目的を損なわない範囲で従来より二次電池用非水電解液に使用されている種々の非プロトン性有機溶媒を使用することができる。なお、非水溶媒の含有量は、電池用非水電解液全体の30〜95体積%であることが好ましく、安全性と電池特性のバランスの観点から、40〜90体積%の範囲が更に好ましい。   In the non-aqueous electrolyte for batteries of the present invention, various non-protonic organic solvents conventionally used in non-aqueous electrolytes for secondary batteries are used as the non-aqueous solvent as long as the object of the present invention is not impaired. can do. The content of the non-aqueous solvent is preferably 30 to 95% by volume of the entire non-aqueous electrolyte for batteries, and more preferably in the range of 40 to 90% by volume from the viewpoint of the balance between safety and battery characteristics. .

上記非プロトン性有機溶媒として具体的には、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジフェニルカーボネート、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の飽和カーボネート類、酢酸メチル、プロピオン酸メチル、酪酸メチル等のカルボン酸エステル類、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、ジエチルエーテル(DEE)等のエーテル類、γ-ブチロラクトン(GBL)、γ-バレロラクトン等のラクトン類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホン類、エチレンスルフィド等のスルフィド類等が挙げられる。これらの中でも、環状ホスファゼン化合物との相溶性、および電池性能のバランスの点で、炭酸エステル類、カルボン酸エステル類を用いることが好ましく、中でもエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、プロピオン酸メチルを用いることがより好ましい。これら非プロトン性有機溶媒は、1種単独で使用してもよく、2種以上を混合して用いてもよい。   Specific examples of the aprotic organic solvent include saturated carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), diphenyl carbonate, ethyl methyl carbonate (EMC), ethylene carbonate (EC), and propylene carbonate (PC). Carboxylic acid esters such as methyl acetate, methyl propionate and methyl butyrate, ethers such as 1,2-dimethoxyethane (DME), tetrahydrofuran (THF) and diethyl ether (DEE), γ-butyrolactone (GBL), γ -Lactones such as valerolactone, nitriles such as acetonitrile, amides such as dimethylformamide, sulfones such as dimethyl sulfoxide, sulfides such as ethylene sulfide, and the like. Among these, it is preferable to use carbonic acid esters and carboxylic acid esters from the viewpoint of compatibility with the cyclic phosphazene compound and battery performance. Among them, ethylene carbonate (EC), ethyl methyl carbonate (EMC), propion are preferable. More preferably, methyl acid is used. These aprotic organic solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.

本発明の電池用非水電解液に用いる支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiBC48、LiPF6、LiCF3SO3、LiAsF6、LiC49SO3、Li(FSO2)2N、Li(CF3SO2)2N及びLi(C25SO2)2N等のリチウム塩が好適に挙げられる。これらの中でも、不燃性および電池性能に優れる点で、LiPF6、Li(FSO2)2N、Li(CF3SO2)2N、Li(C25SO2)2Nがより好ましい。これら支持塩は、1種単独で使用してもよく、2種以上を組み合わせて用いてもよい。 As the supporting salt used in the non-aqueous electrolyte for a battery of the present invention, a supporting salt serving as a lithium ion source is preferable. The supporting salt is not particularly limited. For example, LiClO 4 , LiBF 4 , LiBC 4 O 8 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (FSO 2 ) 2 N Suitable examples include lithium salts such as Li (CF 3 SO 2 ) 2 N and Li (C 2 F 5 SO 2 ) 2 N. Among these, LiPF 6 , Li (FSO 2 ) 2 N, Li (CF 3 SO 2 ) 2 N, and Li (C 2 F 5 SO 2 ) 2 N are more preferable in terms of excellent nonflammability and battery performance. These supporting salts may be used alone or in combination of two or more.

上記非水電解液中の支持塩の総濃度としては、0.3〜2.5 mol/L(M)が好ましく、0.8〜2.0 mol/L(M)が更に好ましい。支持塩の総濃度が0.3 mol/L未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、2.5 mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。   The total concentration of the supporting salt in the non-aqueous electrolyte is preferably 0.3 to 2.5 mol / L (M), more preferably 0.8 to 2.0 mol / L (M). If the total concentration of the supporting salt is less than 0.3 mol / L, the conductivity of the electrolyte cannot be sufficiently secured, which may hinder battery discharge characteristics and charge characteristics. As the viscosity of the electrolyte increases and the mobility of lithium ions cannot be sufficiently secured, the conductivity of the electrolyte cannot be sufficiently secured in the same manner as described above, which may hinder battery discharge characteristics and charge characteristics. is there.

また、非水電解液二次電池の形成に際して、本発明の電池用非水電解液は、そのまま用いることも可能であるが、例えば、適当なポリマーや多孔性支持体、或いはゲル状物質に含浸させる等して保持させる方法等で用いることもできる。   Further, when forming a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte for a battery of the present invention can be used as it is. For example, an appropriate polymer, a porous support, or a gel material is impregnated. It can also be used by a method of holding it.

<非水電解液二次電池>
次に、本発明の非水電解液二次電池を詳細に説明する。本発明の非水電解液二次電池は、上述の電池用非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の非水電解液二次電池の技術分野で通常使用されている他の部材を備える。なお、本発明の非水電解液二次電池には、非水電解液二次電池の他に、正極に分極性炭素電極、負極に予めリチウムイオンを吸蔵し、リチウムイオンを可逆的に吸蔵・脱離し得る非分極性炭素電極を用いた電気二重層キャパシタ(リチウムイオンキャパシタ又はハイブリッドキャパシタ)も含まれる。
<Nonaqueous electrolyte secondary battery>
Next, the nonaqueous electrolyte secondary battery of the present invention will be described in detail. The non-aqueous electrolyte secondary battery of the present invention includes the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode, and is usually used in the technical field of a non-aqueous electrolyte secondary battery such as a separator as necessary. It includes other members that are used. In addition to the non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery of the present invention includes a polarizable carbon electrode in the positive electrode and lithium ions in the negative electrode in advance and reversibly occludes lithium ions. An electric double layer capacitor (lithium ion capacitor or hybrid capacitor) using a nonpolarizable carbon electrode that can be detached is also included.

本発明の非水電解液二次電池の正極活物質としては、V25、V613、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー、活性炭等の炭素材料等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co、Al及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiMnxCoyNi(1-x-y)2[式中、0≦x<1、0≦y<1、0<x+y≦1]、LiMnxNi(1-x)2[式中、0≦x<1]、LiMnxCo(1-x)2[式中、0≦x<1]、LiCoxNi(1-x)2[式中、0≦x<1]、LiCoxNiyAl(1-x-y)2[式中、0≦x<1、0≦y<1、0<x+y≦1]、LiFexCoyNi(1-x-y)2[式中、0≦x<1、0≦y<1、0<x+y≦1]、或いはLiMnxFey2-x-y等で表される。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。また、本発明においては、特にMnを含む正極活物質に対して効果が高い。 As the positive electrode active material of the non-aqueous electrolyte secondary battery of the present invention, metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , MnO 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO Preferred examples include lithium-containing composite oxides such as 2 and LiFePO 4 , metal sulfides such as TiS 2 and MoS 2 , conductive polymers such as polyaniline, and carbon materials such as activated carbon. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, Al, and Ni. In this case, the composite oxide LiMn x Co y Ni (1-xy) O 2 [where 0 ≦ x <1, 0 ≦ y <1, 0 <x + y ≦ 1], LiMn x Ni (1-x) O 2 [wherein , 0 ≦ x <1], LiMn x Co (1-x) O 2 [where 0 ≦ x <1], LiCo x Ni (1-x) O 2 [where 0 ≦ x <1], LiCo x Ni y Al [wherein, 0 ≦ x <1,0 ≦ y <1,0 <x + y ≦ 1] (1-xy) O 2, LiFe x Co y Ni (1-xy) O 2 [ wherein , 0 ≦ x <1, 0 ≦ y <1, 0 <x + y ≦ 1], or LiMn x Fe y O 2 -xy . These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together. In the present invention, the effect is particularly high for a positive electrode active material containing Mn.

本発明の非水電解液二次電池の負極活物質としては、リチウム金属自体、リチウムとAl、In、Sn、Si、Pb又はZn等との合金、リチウムイオンをドープしたTiO2等の金属酸化物、TiO2−P24等の金属酸化物複合材料、黒鉛等の炭素材料等が好適に挙げられる。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the negative electrode active material of the non-aqueous electrolyte secondary battery of the present invention, lithium metal itself, an alloy of lithium and Al, In, Sn, Si, Pb, Zn or the like, metal oxide such as TiO 2 doped with lithium ions And metal oxide composite materials such as TiO 2 —P 2 O 4 , carbon materials such as graphite, and the like. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。   The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black, and the binder includes polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.

本発明の非水電解液二次電池に使用できる他の部材としては、非水電解液二次電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらは、単体でも、混合物でも、共重合体でもよい。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常二次電池に使用されている公知の各部材が好適に使用できる。   Other members that can be used in the non-aqueous electrolyte secondary battery of the present invention include a separator interposed in the non-aqueous electrolyte secondary battery between positive and negative electrodes to prevent current short-circuit due to contact between both electrodes. It is done. As the material of the separator, it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc. Preferred examples include resin non-woven fabrics and thin layer films. These may be a single substance, a mixture or a copolymer. Of these, polypropylene or polyethylene microporous films having a thickness of about 20 to 50 μm, cellulose-based films, polybutylene terephthalate, polyethylene terephthalate, and the like are particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in secondary batteries can be suitably used.

以上に説明した本発明の非水電解液二次電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液二次電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これにシート状の負極を重ね合わせて巻き上げる等して、非水電解液二次電池を作製することができる。   The form of the non-aqueous electrolyte secondary battery of the present invention described above is not particularly limited, and various known forms such as a coin type, a button type, a paper type, a square type or a spiral type cylindrical battery are available. Preferably mentioned. In the case of the button type, a non-aqueous electrolyte secondary battery can be manufactured by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. In the case of a spiral structure, for example, a non-aqueous electrolyte secondary battery is manufactured by, for example, preparing a sheet-like positive electrode, sandwiching a current collector, and superimposing and winding up the sheet-like negative electrode on the current collector. Can do.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
上記一般式(I)においてnが3であって、全R1のうち1つがトリフルオロエトキシ基で、5つがフッ素である環状ホスファゼン化合物 10体積%と、エチレンカーボネート 13体積%と、ジエチルカーボネート 37体積%と、プロピオン酸メチル 40体積%とからなる混合溶媒に、LiBETTI[Li(C25SO2)2N]を1.0 mol/Lになるように溶解させて、これに3-メチル-N,N-ジメチルアニリン 0.01質量%を添加して非水電解液を調製した。次に、得られた非水電解液の難燃性を下記の方法で評価し、表1に示す結果を得た。
Example 1
In the above general formula (I), n is 3 and one of all R 1 is a trifluoroethoxy group and 5 is fluorine. 10% by volume of cyclic phosphazene compound, 13% by volume of ethylene carbonate, 37% of diethyl carbonate LiBETTI [Li (C 2 F 5 SO 2 ) 2 N] was dissolved at 1.0 mol / L in a mixed solvent consisting of volume% and methyl propionate 40 volume%, and 3-methyl- A non-aqueous electrolyte was prepared by adding 0.01% by mass of N, N-dimethylaniline. Next, the flame retardancy of the obtained non-aqueous electrolyte was evaluated by the following method, and the results shown in Table 1 were obtained.

(1)難燃性の評価
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼長及び燃焼時間を測定・評価した。具体的には、UL試験基準に基づき、127 mm×12.7 mmのSiO2シートに上記電解液1.0 mLを染み込ませて試験片を作製して評価を行った。以下に不燃性・難燃性・自己消火性・燃焼性の評価基準を示す。
<不燃性の評価>試験炎を点火しても全く着火しなかった場合(燃焼長:0 mm)を不燃性ありと評価した。
<難燃性の評価>着火した炎が、装置の25 mmラインまで到達せず且つ網からの落下物にも着火が認められなかった場合を難燃性ありと評価した。
<自己消火性の評価>着火した炎が25〜100 mmラインで消火し且つ網からの落下物にも着火が認められなかった場合を自己消火性ありと評価した。
<燃焼性の評価>着火した炎が、100 mmラインを超えた場合を燃焼性と評価した。
(1) Flame Retardancy Evaluation The combustion length and combustion time of a flame ignited in an atmospheric environment were measured and evaluated by a method in which the UL94HB method of UL (Underwriting Laboratory) standard was arranged. Specifically, based on the UL test standard, a 127 mm × 12.7 mm SiO 2 sheet was impregnated with 1.0 mL of the electrolytic solution, and a test piece was prepared and evaluated. The evaluation criteria for nonflammability, flame retardancy, self-extinguishing properties, and flammability are shown below.
<Evaluation of nonflammability> When the test flame was ignited, it was not ignited at all (burning length: 0 mm).
<Evaluation of Flame Retardancy> The case where the ignited flame did not reach the 25 mm line of the apparatus and the fallen object from the net was not ignited was evaluated as flame retardant.
<Evaluation of self-extinguishing property> When the ignited flame was extinguished on the 25 to 100 mm line and no ignition was observed on the falling object from the net, it was evaluated as having self-extinguishing property.
<Evaluation of flammability> The case where the ignited flame exceeded the 100 mm line was evaluated as flammability.

(2)電池の作製
正極活物質としてLiMn0.9Co0.12を用い、該酸化物と、導電剤であるアセチレンブラックと、結着剤であるポリフッ化ビニリデンとを、質量比94:3:3で混合し、これをN-メチルピロリドンに分散させてスラリーとしたものを、正極集電体としてのアルミニウム箔に塗布した後、乾燥・プレスを施すことで、厚さ70μmの正極シートを得た。これを矩形(4 cm×50 cm)に切り取り、アルミニウム箔の集電タブを溶接して正極を作製した。また、負極活物質として人造グラファイトを用い、該人造グラファイトと、結着剤であるポリフッ化ビニリデンとを質量比90:10で混合し、これを有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)に分散させてスラリーとしたものを、負極集電体としての銅箔に塗布した後、乾燥・プレスを施すことで、厚さ50μmの負極シートを得た。これを矩形(4 cm×50 cm)に切り取り、ニッケル箔の集電タブを溶接して負極を作製した。次いで、セパレーター(微孔性フィルム:ポリエチレン製)を矩形(4 cm×50 cm)に切り取り、これを正極と負極とを介して挟み込み、4 cm×3 cmのスペーサーをベースに平巻きにした後、熱融着アルミラミネートフィルム(ポリエチレンテレフタレート/アルミニウム/ポリプロピレン)からなる外装材の中に挿入し、電解液を注入後、真空にしてすばやくヒートシールすることにより平板状ラミネート電池(非水電解液二次電池)を作製した。
(2) Production of Battery Using LiMn 0.9 Co 0.1 O 2 as a positive electrode active material, the oxide, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are in a mass ratio of 94: 3: 3 The slurry was dispersed in N-methylpyrrolidone and applied to an aluminum foil as a positive electrode current collector, followed by drying and pressing to obtain a positive electrode sheet having a thickness of 70 μm. . This was cut into a rectangle (4 cm × 50 cm), and an aluminum foil current collecting tab was welded to produce a positive electrode. Further, artificial graphite is used as the negative electrode active material, and the artificial graphite and polyvinylidene fluoride as a binder are mixed at a mass ratio of 90:10, and this is mixed with an organic solvent (50/50 mass of ethyl acetate and ethanol). % Mixed solvent) was applied to a copper foil as a negative electrode current collector, followed by drying and pressing to obtain a negative electrode sheet having a thickness of 50 μm. This was cut into a rectangle (4 cm × 50 cm), and a nickel foil current collecting tab was welded to produce a negative electrode. Next, the separator (microporous film: made of polyethylene) is cut into a rectangle (4 cm x 50 cm), sandwiched between the positive electrode and the negative electrode, and flattened using a 4 cm x 3 cm spacer as a base Inserted into a heat-sealed aluminum laminate film (polyethylene terephthalate / aluminum / polypropylene) exterior material, injected the electrolyte, vacuumed and quickly heat-sealed to obtain a flat laminate battery (non-aqueous electrolyte 2 Secondary battery).

(3)充放電効率評価
上記のようにして作製したラミネート電池を用い、20℃の環境下で、上限電圧4.2V、下限電圧3.0V、0.25 mA/cm2の電流密度による充放電サイクルを行い、初回充電時の容量と初回放電時の容量を既知の正極重量より除することにより初回充電容量(mAh/g)と初回放電容量(mAh/g)をそれぞれ求め、下記の式:
初回放電効率=初回放電容量/初回充電容量×100(%)
に従って初回放電効率を算出し、充放電効率の指標とした。結果を表1に示す。
(3) Charging / discharging efficiency evaluation Using the laminated battery prepared as described above, a charging / discharging cycle was performed at an upper limit voltage of 4.2 V, a lower limit voltage of 3.0 V, and a current density of 0.25 mA / cm 2 in an environment of 20 ° C. The initial charge capacity (mAh / g) and the initial discharge capacity (mAh / g) are determined by dividing the initial charge capacity and initial discharge capacity from the known positive electrode weight, respectively.
Initial discharge efficiency = initial discharge capacity / initial charge capacity x 100 (%)
The initial discharge efficiency was calculated according to the above and used as an index of charge / discharge efficiency. The results are shown in Table 1.

(4)過充電安全性試験
上記と同じラミネート電池を作製し、過充電条件による電池安全性試験を行った。過充電試験の方法は、20℃の環境下で、4.2〜3.0Vの電圧範囲で、0.25 mA/cm2の電流密度による充放電サイクルを2回繰り返し、さらに4.2Vまで充電を行った後、該電池を温度調節機能つき電池ホルダー(ステンレス製)上に置き、20℃の電池温度条件で5.0 mA/cm2の電流密度により12.0Vまで充電を行い、同電圧でさらに0.25 mA/cm2の電流密度になるまで充電を継続し、破裂、発火の有無を調べた。結果を表1に示す。
(4) Overcharge safety test The same laminated battery as the above was produced, and the battery safety test by overcharge conditions was conducted. In the overcharge test method, a charge / discharge cycle with a current density of 0.25 mA / cm 2 was repeated twice in a voltage range of 4.2 to 3.0 V in an environment of 20 ° C., and further charged to 4.2 V. Place the cell on temperature control with battery holders (stainless steel), 20 by the current density of the battery temperature 5.0 mA / cm 2 of ℃ was charged to 12.0 V, yet 0.25 mA / cm 2 at the same voltage Charging was continued until the current density reached, and the presence or absence of rupture or ignition was examined. The results are shown in Table 1.

(実施例2)
上記一般式(I)においてnが3であって、全R1のうち1つがアリルオキシ基で、5つがフッ素である環状ホスファゼン化合物 5体積%と、上記一般式(I)においてnが3であって、全R1のうち2つがメトキシ基で、4つがフッ素である環状ホスファゼン化合物 25体積%と、エチレンカーボネート 14体積%と、エチルメチルカーボネート 56体積%とからなる混合溶媒に、LiPF6を1.0 mol/Lになるように溶解させて、これにN,N,3,5-テトラメチルアニリン 0.05質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電効率評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 2)
In the above general formula (I), n is 3, and 5% by volume of the cyclic phosphazene compound in which one of all R 1 is an allyloxy group and 5 is fluorine, and in the above general formula (I), n is 3. Then, LiPF 6 is added to a mixed solvent composed of 25% by volume of a cyclic phosphazene compound in which two of the total R 1 are methoxy groups and four are fluorines, 14% by volume of ethylene carbonate, and 56% by volume of ethyl methyl carbonate. Dissolve it to mol / L, add 0.05% by mass of N, N, 3,5-tetramethylaniline to this to prepare a non-aqueous electrolyte, and flame retardant of the resulting non-aqueous electrolyte Was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and charge / discharge efficiency evaluation and the overcharge safety test were each implemented. The results are shown in Table 1.

(実施例3)
上記一般式(I)においてnが3であって、全R1のうち1つがブトキシ基で、5つがフッ素である環状ホスファゼン化合物 40体積%と、エチレンカーボネート 10体積%と、エチルメチルカーボネート 50体積%とからなる混合溶媒に、LiPF6を1.0 mol/Lになるように溶解させて、これにN,N,3,5-テトラメチルアニリン 0.02質量%とビニレンカーボネート 0.5質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電効率評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 3)
In the above general formula (I), n is 3, cyclic phosphazene compound 40% by volume of ethylene, 10% by volume of ethylene carbonate, 50% by volume of ethyl methyl carbonate, one of which is butoxy group and 5 is fluorine. LiPF 6 is dissolved in a mixed solvent consisting of 0.1% by weight to 1.0 mol / L, and 0.02% by mass of N, N, 3,5-tetramethylaniline and 0.5% by mass of vinylene carbonate are added thereto to add non- A water electrolyte was prepared, and the flame retardancy of the obtained nonaqueous electrolyte was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and charge / discharge efficiency evaluation and the overcharge safety test were each implemented. The results are shown in Table 1.

(実施例4)
上記一般式(I)においてnが4であって、全R1のうち1つがエトキシ基で、7つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、プロピオン酸メチル 35体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これに3-メトキシ-N,N-ジメチルアニリン 0.02質量%とビニレンカーボネート 1質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電効率評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
Example 4
In the above general formula (I), n is 4, cyclic phosphazene compound in which one of R 1 is ethoxy group and seven is fluorine, 60% by volume, ethylene carbonate 5% by volume, methyl propionate 35% by volume % Of LiPF 6 is dissolved in 1.0 mol / L and LiTFSI [Li (CF 3 SO 2 ) 2 N] is dissolved in 1.0 mol / L, and 3-methoxy-N, N is dissolved therein. -Dimethylaniline 0.02 mass% and vinylene carbonate 1 mass% were added, the non-aqueous electrolyte solution was prepared, and the flame retardance of the obtained non-aqueous electrolyte solution was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and charge / discharge efficiency evaluation and the overcharge safety test were each implemented. The results are shown in Table 1.

(比較例1)
エチレンカーボネート 20体積%と、ジエチルカーボネート 40体積%と、プロピオン酸メチル 40体積%とからなる混合溶媒に、LiBETTI[Li(C25SO2)2N]を1.0 mol/Lになるように溶解させて、これに3-メチル-N,N-ジメチルアニリン 0.01質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電効率評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Comparative Example 1)
LiBETTI [Li (C 2 F 5 SO 2 ) 2 N] is adjusted to 1.0 mol / L in a mixed solvent composed of 20% by volume of ethylene carbonate, 40% by volume of diethyl carbonate and 40% by volume of methyl propionate. After dissolving, 0.01% by mass of 3-methyl-N, N-dimethylaniline was added thereto to prepare a nonaqueous electrolytic solution, and the flame retardancy of the obtained nonaqueous electrolytic solution was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and charge / discharge efficiency evaluation and the overcharge safety test were each implemented. The results are shown in Table 1.

(比較例2)
上記一般式(I)においてnが4であって、全R1のうち1つがエトキシ基で、7つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、プロピオン酸メチル 35体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電効率評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Comparative Example 2)
In the above general formula (I), n is 4, cyclic phosphazene compound in which one of R 1 is ethoxy group and seven is fluorine, 60% by volume, ethylene carbonate 5% by volume, methyl propionate 35% by volume % Of LiPF 6 and 1.0% of LiTFSI [Li (CF 3 SO 2 ) 2 N] are dissolved in a mixed solvent of 1.0% by weight to obtain a non-aqueous electrolyte. The non-aqueous electrolyte was evaluated for flame retardancy. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and charge / discharge efficiency evaluation and the overcharge safety test were each implemented. The results are shown in Table 1.

(実施例5)
上記一般式(I)においてnが3であって、全R1のうち1つがトリフルオロエトキシ基で、5つがフッ素である環状ホスファゼン化合物 4体積%と、エチレンカーボネート 14体積%と、ジエチルカーボネート 42体積%と、プロピオン酸メチル 40体積%とからなる混合溶媒に、LiBETTI[Li(C25SO2)2N]を1.0 mol/Lになるように溶解させて、これに3-メチル-N,N-ジメチルアニリン 0.01質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電効率評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 5)
In the above general formula (I), n is 3 and one of all R 1 is trifluoroethoxy group and 5 is fluorine. 4% by volume of cyclic phosphazene compound, 14% by volume of ethylene carbonate, 42% of diethyl carbonate LiBETTI [Li (C 2 F 5 SO 2 ) 2 N] was dissolved at 1.0 mol / L in a mixed solvent consisting of volume% and methyl propionate 40 volume%, and 3-methyl- A non-aqueous electrolyte was prepared by adding 0.01% by mass of N, N-dimethylaniline, and the flame retardancy of the obtained non-aqueous electrolyte was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and charge / discharge efficiency evaluation and the overcharge safety test were each implemented. The results are shown in Table 1.

(実施例6)
上記一般式(I)においてnが3であって、全R1のうち1つがブトキシ基で、5つがフッ素である環状ホスファゼン化合物 75体積%と、エチルメチルカーボネート 25体積%とからなる混合溶媒に、LiPF6を0.8 mol/Lになるように溶解させて、これにN,N,3,5-テトラメチルアニリン 0.02質量%とビニレンカーボネート 0.5質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電効率評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 6)
In the above general formula (I), a mixed solvent consisting of 75% by volume of a cyclic phosphazene compound in which n is 3 and one of all R 1 is a butoxy group and 5 is fluorine, and 25% by volume of ethyl methyl carbonate. , LiPF 6 was dissolved to 0.8 mol / L, and 0.02% by mass of N, N, 3,5-tetramethylaniline and 0.5% by mass of vinylene carbonate were added thereto to prepare a non-aqueous electrolyte. The flame retardancy of the obtained non-aqueous electrolyte was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and charge / discharge efficiency evaluation and the overcharge safety test were each implemented. The results are shown in Table 1.

(実施例7)
上記一般式(I)においてnが4であって、全R1のうち1つがエトキシ基で、7つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、プロピオン酸メチル 35体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これに3-メトキシ-N,N-ジメチルアニリン 0.005質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電効率評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 7)
In the above general formula (I), n is 4, cyclic phosphazene compound in which one of R 1 is ethoxy group and seven is fluorine, 60% by volume, ethylene carbonate 5% by volume, methyl propionate 35% by volume % Of LiPF 6 is dissolved in 1.0 mol / L and LiTFSI [Li (CF 3 SO 2 ) 2 N] is dissolved in 1.0 mol / L, and 3-methoxy-N, N is dissolved therein. -Dimethylaniline 0.005 mass% was added, the nonaqueous electrolyte solution was prepared, and the flame retardance of the obtained nonaqueous electrolyte solution was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and charge / discharge efficiency evaluation and the overcharge safety test were each implemented. The results are shown in Table 1.

(実施例8)
上記一般式(I)においてnが4であって、全R1のうち1つがエトキシ基で、7つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、プロピオン酸メチル 35体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これに3-メトキシ-N,N-ジメチルアニリン 0.2質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電効率評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 8)
In the above general formula (I), n is 4, cyclic phosphazene compound in which one of R 1 is ethoxy group and seven is fluorine, 60% by volume, ethylene carbonate 5% by volume, methyl propionate 35% by volume % Of LiPF 6 is dissolved in 1.0 mol / L and LiTFSI [Li (CF 3 SO 2 ) 2 N] is dissolved in 1.0 mol / L, and 3-methoxy-N, N is dissolved therein. -Dimethylaniline 0.2 mass% was added, the nonaqueous electrolyte solution was prepared, and the flame retardance of the obtained nonaqueous electrolyte solution was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and charge / discharge efficiency evaluation and the overcharge safety test were each implemented. The results are shown in Table 1.

(実施例9)
上記一般式(I)においてnが4であって、全R1のうち1つがエトキシ基で、7つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、プロピオン酸メチル 35体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これに3-メトキシ-N,N-ジメチルアニリン 0.02質量%とビニレンカーボネート 0.1質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電効率評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
Example 9
In the above general formula (I), n is 4, cyclic phosphazene compound in which one of R 1 is ethoxy group and seven is fluorine, 60% by volume, ethylene carbonate 5% by volume, methyl propionate 35% by volume % Of LiPF 6 is dissolved in 1.0 mol / L and LiTFSI [Li (CF 3 SO 2 ) 2 N] is dissolved in 1.0 mol / L, and 3-methoxy-N, N is dissolved therein. -Dimethylaniline 0.02 mass% and vinylene carbonate 0.1 mass% were added, the non-aqueous electrolyte was prepared, and the flame retardance of the obtained non-aqueous electrolyte was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and charge / discharge efficiency evaluation and the overcharge safety test were each implemented. The results are shown in Table 1.

(実施例10)
上記一般式(I)においてnが4であって、全R1のうち1つがエトキシ基で、7つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、プロピオン酸メチル 35体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これに3-メトキシ-N,N-ジメチルアニリン 0.02質量%とビニレンカーボネート 3質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電効率評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 10)
In the above general formula (I), n is 4, cyclic phosphazene compound in which one of R 1 is ethoxy group and seven is fluorine, 60% by volume, ethylene carbonate 5% by volume, methyl propionate 35% by volume % Of LiPF 6 is dissolved in 1.0 mol / L and LiTFSI [Li (CF 3 SO 2 ) 2 N] is dissolved in 1.0 mol / L, and 3-methoxy-N, N is dissolved therein. -Dimethylaniline 0.02 mass% and vinylene carbonate 3 mass% were added, the nonaqueous electrolyte solution was prepared, and the flame retardance of the obtained nonaqueous electrolyte solution was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and charge / discharge efficiency evaluation and the overcharge safety test were each implemented. The results are shown in Table 1.

Figure 2010050023
Figure 2010050023

表1の実施例1〜4に示すように、式(I)の化合物と式(II)のアニリン誘導体を含む非水電解液が不燃性を示すと共に、該非水電解液を用いた電池は、不可逆容量が小さく充放電効率が高いことが分かる。また、該非水電解液を用いた電池は、過充電安全性試験において高い安全性を示すことが分かる。このように、本発明の非水電解液により、不燃性を発現しつつ、高い充放電効率及び安全性に優れた非水電解液二次電池が得られることが確認された。   As shown in Examples 1 to 4 in Table 1, a non-aqueous electrolyte containing a compound of formula (I) and an aniline derivative of formula (II) is non-flammable, and a battery using the non-aqueous electrolyte is It can be seen that the irreversible capacity is small and the charge / discharge efficiency is high. Moreover, it turns out that the battery using this non-aqueous electrolyte shows high safety | security in an overcharge safety test. Thus, it was confirmed that the nonaqueous electrolyte solution of the present invention can provide a nonaqueous electrolyte secondary battery that exhibits high non-flammability and is excellent in high charge / discharge efficiency and safety.

また、実施例3及び4に示すように、式(I)の化合物と式(II)のアニリン誘導体にさらにビニレンカーボネートを併用することにより、より高容量の電池が得られることが分かる。   Further, as shown in Examples 3 and 4, it can be seen that a battery having a higher capacity can be obtained by further using vinylene carbonate in combination with the compound of formula (I) and the aniline derivative of formula (II).

なお、比較例2に示すように、式(II)のアニリン誘導体を添加しない場合においては、実施例4と比較して、不可逆容量が大きく充放電効率が低いことが分かる。   As shown in Comparative Example 2, it can be seen that when the aniline derivative of the formula (II) is not added, the irreversible capacity is large and the charge / discharge efficiency is low as compared with Example 4.

更に、実施例5に示すように、式(I)で表される化合物の含有量が5体積%未満では、不燃性が発現されず、過充電安全性試験においても破裂を抑制できなかった。   Furthermore, as shown in Example 5, when the content of the compound represented by the formula (I) was less than 5% by volume, nonflammability was not exhibited, and rupture could not be suppressed even in the overcharge safety test.

一方、実施例6に示すように、式(I)で表される化合物の含有量が70体積%を超える場合には、不燃性や電池安全性に問題はないものの、ビニレンカーボネートを併用しても電池容量が小さくなる傾向が認められた。従って、式(I)の環状ホスファゼン化合物の含有量は、10〜60体積%が好ましいことが分かる。   On the other hand, as shown in Example 6, when the content of the compound represented by formula (I) exceeds 70% by volume, although there is no problem in nonflammability and battery safety, vinylene carbonate is used in combination. Also, a tendency for the battery capacity to decrease was observed. Therefore, it can be seen that the content of the cyclic phosphazene compound of the formula (I) is preferably 10 to 60% by volume.

また、実施例7に示すように、式(II)で表されるアニリン化合物の添加量が0.01質量%未満の場合には、充放電効率の改善効果が小さく、実施例8に示すように、0.1質量%を超える場合には、初期容量、充放電効率ともに大幅に低下する傾向が認められた。従って、式(II)で表されるアニリン化合物の添加量は、0.01〜0.05質量%程度が好ましく、0.02〜0.05質量%程度が更に好ましいことが分かる。   Further, as shown in Example 7, when the amount of the aniline compound represented by the formula (II) is less than 0.01% by mass, the effect of improving the charge / discharge efficiency is small, and as shown in Example 8, When it exceeded 0.1% by mass, the initial capacity and charge / discharge efficiency tended to decrease significantly. Therefore, it can be seen that the amount of the aniline compound represented by the formula (II) is preferably about 0.01 to 0.05% by mass, more preferably about 0.02 to 0.05% by mass.

更に、実施例9に示すように、アニリン化合物と併用するビニレンカーボネートの添加量が0.2質量%未満の場合には、実施例4と比較して電池容量の改善効果がほとんど認められず、実施例10に示すように、2質量%を超える場合には、実施例4と比較して充放電効率の改善効果が鈍化する傾向が認められた。従って、アニリン化合物と併用するビニレンカーボネートの添加量は、0.5〜1質量%程度が好ましいことが分かる。   Further, as shown in Example 9, when the amount of vinylene carbonate used in combination with the aniline compound is less than 0.2% by mass, the effect of improving the battery capacity is hardly recognized as compared with Example 4, and Example As shown in FIG. 10, in the case of exceeding 2% by mass, the effect of improving the charge / discharge efficiency was observed to be slow compared with Example 4. Therefore, it is understood that the amount of vinylene carbonate used in combination with the aniline compound is preferably about 0.5 to 1% by mass.

以上の結果から、式(I)で表される環状ホスファゼン化合物と式(II)で表されるアニリン誘導体を含有することを特徴とする非水電解液を用いることにより、高い充放電効率と高い安全性能を両立させた非水電解液二次電池を提供できることが分かる。   From the above results, by using a non-aqueous electrolyte characterized by containing a cyclic phosphazene compound represented by formula (I) and an aniline derivative represented by formula (II), high charge and discharge efficiency and high It can be seen that a non-aqueous electrolyte secondary battery having both safety performance can be provided.

Claims (9)

下記一般式(I):
(NPR1 2)n ・・・ (I)
[式中、R1は、それぞれ独立してフッ素、アルコキシ基又はアリールオキシ基を表し;nは3〜4を表す]で表される環状ホスファゼン化合物と、非水溶媒と、下記一般式(II):
Figure 2010050023
[式中、R2は、それぞれ独立して水素、メチル基又はメトキシ基である]で表されるアニリン誘導体と、支持塩とを含むことを特徴とする電池用非水電解液。
The following general formula (I):
(NPR 1 2 ) n ... (I)
[Wherein R 1 independently represents fluorine, an alkoxy group or an aryloxy group; n represents 3 to 4], a non-aqueous solvent, the following general formula (II ):
Figure 2010050023
A non-aqueous electrolyte for a battery comprising an aniline derivative represented by the formula: wherein R 2 is independently hydrogen, a methyl group or a methoxy group, and a supporting salt.
更に、ビニレンカーボネートを含むことを特徴とする請求項1に記載の電池用非水電解液。   Furthermore, vinylene carbonate is included, The non-aqueous electrolyte for batteries of Claim 1 characterized by the above-mentioned. 前記一般式(I)において、R1のうち少なくとも4つがフッ素であることを特徴とする請求項1に記載の電池用非水電解液。 2. The battery non-aqueous electrolyte according to claim 1, wherein in the general formula (I), at least four of R 1 are fluorine. 前記一般式(I)で表される環状ホスファゼン化合物の含有量が前記電池用非水電解液全体の10〜60体積%であることを特徴とする請求項1に記載の電池用非水電解液。   2. The nonaqueous electrolytic solution for a battery according to claim 1, wherein the content of the cyclic phosphazene compound represented by the general formula (I) is 10 to 60% by volume of the entire nonaqueous electrolytic solution for the battery. . 前記一般式(II)で表されるアニリン誘導体の含有量が前記電池用非水電解液全体の0.01〜0.05質量%であることを特徴とする請求項1に記載の電池用非水電解液。   2. The battery non-aqueous electrolyte according to claim 1, wherein the content of the aniline derivative represented by the general formula (II) is 0.01 to 0.05 mass% of the whole battery non-aqueous electrolyte. 前記ビニレンカーボネートの含有量が前記電池用非水電解液全体の0.5〜1質量%であることを特徴とする請求項2に記載の電池用非水電解液。   The battery non-aqueous electrolyte according to claim 2, wherein the content of the vinylene carbonate is 0.5 to 1% by mass of the whole battery non-aqueous electrolyte. 前記非水溶媒が非プロトン性有機溶媒であることを特徴とする請求項1に記載の電池用非水電解液。   The battery nonaqueous electrolyte solution according to claim 1, wherein the nonaqueous solvent is an aprotic organic solvent. 前記非プロトン性有機溶媒が、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)及びプロピオン酸メチルからなる群から選択される少なくとも1種を含むことを特徴とする請求項7に記載の電池用非水電解液。   8. The non-battery for a battery according to claim 7, wherein the aprotic organic solvent includes at least one selected from the group consisting of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and methyl propionate. Water electrolyte. 請求項1〜8のいずれかに記載の電池用非水電解液と、正極と、負極とを備えた非水電解液二次電池。   A nonaqueous electrolyte secondary battery comprising the battery nonaqueous electrolyte solution according to claim 1, a positive electrode, and a negative electrode.
JP2008215181A 2008-08-25 2008-08-25 Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same Withdrawn JP2010050023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008215181A JP2010050023A (en) 2008-08-25 2008-08-25 Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215181A JP2010050023A (en) 2008-08-25 2008-08-25 Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same

Publications (1)

Publication Number Publication Date
JP2010050023A true JP2010050023A (en) 2010-03-04

Family

ID=42066927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215181A Withdrawn JP2010050023A (en) 2008-08-25 2008-08-25 Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same

Country Status (1)

Country Link
JP (1) JP2010050023A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183769A1 (en) * 2012-06-08 2013-12-12 日本電気株式会社 Lithium-ion secondary battery
JP2015050280A (en) * 2013-08-30 2015-03-16 旭化成株式会社 Nonaqueous lithium type storage device
US10892522B2 (en) 2016-12-27 2021-01-12 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolytic solution and lithium secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183769A1 (en) * 2012-06-08 2013-12-12 日本電気株式会社 Lithium-ion secondary battery
JPWO2013183769A1 (en) * 2012-06-08 2016-02-01 日本電気株式会社 Lithium ion secondary battery
US9847551B2 (en) 2012-06-08 2017-12-19 Nec Corporation Lithium-ion secondary battery
JP2015050280A (en) * 2013-08-30 2015-03-16 旭化成株式会社 Nonaqueous lithium type storage device
US10892522B2 (en) 2016-12-27 2021-01-12 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolytic solution and lithium secondary battery

Similar Documents

Publication Publication Date Title
JP5314885B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same
US8257870B2 (en) Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same
JP2008053212A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2008300126A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
WO2006038614A1 (en) Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
JP4911888B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
EP2157656B1 (en) Nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery comprising the same
WO2006109443A1 (en) Nonaqueous electrolyte solution for battery and nonaqueous electrolyte secondary battery comprising same
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2008041413A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP2010050021A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
KR101515315B1 (en) Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
JP5093992B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
JP4458841B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2010050026A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP2006286570A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP2010015720A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2008300125A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2006286277A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it
JP2008052988A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2010050023A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111101