WO2004092602A1 - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
WO2004092602A1
WO2004092602A1 PCT/JP2004/005512 JP2004005512W WO2004092602A1 WO 2004092602 A1 WO2004092602 A1 WO 2004092602A1 JP 2004005512 W JP2004005512 W JP 2004005512W WO 2004092602 A1 WO2004092602 A1 WO 2004092602A1
Authority
WO
WIPO (PCT)
Prior art keywords
member according
sliding member
less
sliding
amorphous carbon
Prior art date
Application number
PCT/JP2004/005512
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Takayanagi
Masahito Fujita
Takayuki Shibayama
Original Assignee
Daido Metal Company Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Company Ltd. filed Critical Daido Metal Company Ltd.
Priority to DE112004000651T priority Critical patent/DE112004000651B4/en
Priority to JP2005505486A priority patent/JP4589229B2/en
Priority to GB0521504A priority patent/GB2415753B/en
Publication of WO2004092602A1 publication Critical patent/WO2004092602A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing

Definitions

  • the present invention relates to a sliding member having a sliding layer on a substrate.
  • a sliding member for example, a plain bearing for an engine in an automobile has a configuration in which a sliding layer (overlay) is provided on a base material.
  • Sn-based coating as the sliding layer is widely known as disclosed in Japanese Patent Application Laid-Open No. Sho 53-14614. It is well known that an overlay coating is formed using a soft metal base such as a Pb-based coating in addition to an Sn-based coating.
  • soft metals such as In and Bi have very low anti-seizure properties due to their low adhesion to mating materials such as Fe, so many conventional sliding members have been used. Has been used for sliding layers.
  • Abrasion resistance of the sliding layer ⁇ In order to improve the fatigue resistance, hard particles (for example, S i C, S i 3 N 4 ) were sometimes added by the composite plating technique. However, the hard particles to be added by the multiple plating technique have a large particle size from 0.1 m to several / zm. The distribution of hard particles often fluctuated in the overlay coating. In such a sliding layer, large hard particles or large hard particles are likely to damage the mating material, and the non-seizure property is reduced.
  • the A 1 -based coating is made of an Al—Sn alloy, with A 1 supporting the load, and soft Sn serving as conformability and non-seizure property.
  • the present invention has been made in view of the circumstances described above, and its purpose is to provide Sn,
  • the present invention provides a sliding layer on a substrate, wherein the sliding layer is made of any one of Sn, Pb, Bi, In, and A1 or an alloy based on the metal.
  • the substrate is characterized by adding amorphous carbon to the substrate.
  • the sliding layer can be formed by a dry plating method such as a sputtering method, an ion plating method, and a CVD method.
  • Sn, Pb, Bi, and In are extremely non-seizure due to their low adhesion to mating materials such as Fe. Are better.
  • the non-seizure property can be improved by using an alloy with another soft metal, for example, Sn. Even if the amount of Sn added is increased, A1 and Sn become finer due to the addition of amorphous carbon, resulting in high strength. For this reason, a defect such as a decrease in fatigue resistance does not occur, and a sliding layer excellent in both fatigue resistance and non-seizure properties can be obtained.
  • Amorphous carbon is high in hardness, so it increases mechanical strength and contributes to abrasion resistance and fatigue resistance. Also, the low coefficient of friction contributes to the improvement of non-seizure properties. Moreover, by adding amorphous carbon, the crystallites of the base material of the sliding layer are refined. With this, the mechanical strength of the sliding layer increases, and the wear resistance and fatigue resistance can be further improved.
  • the crystallite is a unit serving as a basis of particles in the sliding layer and a base containing the particles. Refinement of crystallites is, of course, the refinement of the substrate. In addition, as described later, crystallites can be confirmed by X-ray diffraction analysis, and particles can be confirmed by microscopic observation with a scanning electron microscope.
  • DLC diamond-like carbon
  • the crystallite diameter of the substrate measured by X-ray diffraction analysis is 100 nm or less.
  • Sn, Pb, Bi, Al, In, Cu, Sb, Ag, and Cd metals can be added to the base of the sliding layer.
  • Sn, Pb, Bi, In, and Al are metals that can also serve as a base material, and have a function of improving non-seizure, conformability, and corrosion resistance.
  • Cu, Sb, Ag, and Cd have the function of increasing the mechanical strength and hardness of the sliding layer. .
  • the additive metal is at least one of Sn, Pb, Bi, In, and A1
  • the content of each additive metal is 20% by mass or less
  • the total of these additive metals is Is preferably 30% by mass or less.
  • the base material is Sn and Al
  • the cases where the added metals are Al and Sn are excluded. If the content of each of these added metals exceeds 20% by mass or the total content of them exceeds 30% by mass, the melting point of the sliding layer is greatly reduced, and the non-seizure property tends to be reduced. There is.
  • the additional metal is at least one of Cu, Sb, Ag, and Cd
  • the content of each additional metal is 5% by mass or less, and the total content of these additional metals is Is preferably 10% by mass or less.
  • These added metals tend to form hard and brittle compounds with the base material of the sliding layer. Therefore, if the content of each of these added metals exceeds 5% by mass, or if the total content of them exceeds 10% by mass, the compound becomes large and easily falls off. Fatigue fracture and wear progress, and fatigue resistance and wear resistance tend to decrease.
  • A1 is used for the base material of the sliding layer, it is preferable to use an alloy with Sn, and the content thereof is 20 to 80% by mass for 1 and 20 to 80% by mass for Sn. 1.
  • the alloys of A1 and Sn that constitute the sliding layer include Si, Cu, Sb, In, and Ag. Any one or more of these metals can be added. In can improve non-seizure, conformability, and corrosion resistance.
  • Cu, Sb, and Ag increase the mechanical strength and hardness of the sliding layer. Since Si is a hard element, it increases the hardness of the sliding layer and improves fatigue resistance. In addition, Si functions as a hard material and has a function of removing metal adhered to a mating material, thereby improving non-seizure properties.
  • these Si, Cu, Sb, In, and Ag alone are 5% by mass or less, and the total content of the added metals is 10% by mass or less. .
  • each of In and Ag exceeds 5% by mass or the total content thereof exceeds 10% by mass, the melting point of the sliding layer is greatly reduced, and the non-seizure property is reduced.
  • Tend. Cu, Sb, and Ag form hard and brittle compounds with A1 and Sn, and the content of each of the added metals exceeds 5% by mass, or the total content thereof is 1%. If the content exceeds 0% by mass, the compound becomes large, so that it tends to fall off, and fatigue and wear tend to progress.
  • Si hardly forms a compound with A1 or Sn, and when Si is contained in a large amount, Si tends to easily fall off the sliding layer.
  • the Al-Sn alloy is refined by adding amorphous carbon.
  • the degree of the fineness is preferably 1 m or less in terms of the particle diameter of A1 or Sn. When the particle diameter is 1 zm or less, the effects of improving the fatigue resistance and the anti-seizure property are further improved.
  • the particle size is 0.05 or less.
  • the crystallite diameter can be 30 nm. When the crystallite diameter is so fine, more excellent fatigue resistance can be obtained.
  • Amorphous carbon hinders the growth of crystallites and crystallites are refined.
  • the substrate is a single metal such as Sn
  • the refinement can be confirmed by X-ray diffraction analysis, but the difference cannot be confirmed by the presence or absence of amorphous carbon in the cross-sectional structure observation with a scanning electron microscope.
  • Amorphous carbon also hinders growth of A 1 and Sn crystallites, and A 1 and Sn crystallites become finer Is done. This can be confirmed by X-ray diffraction analysis as described above.
  • a 1 and Sn can be observed as their respective phases. If there is a difference in the content of AIS n, the smaller is observed as particles. it can.
  • the crystallites of A1 and Sn become finer, and it becomes extremely difficult to capture the particles of A1 or Sn by cross-sectional structure observation with a scanning electron microscope.
  • a sliding layer made of any one of the above-mentioned metals of Sn, Pb, Bi, In, and A1 or an alloy based on the metal, and adding amorphous carbon to the substrate.
  • the content of amorphous carbon is preferably 0.1 to 8% by mass.
  • the content of the amorphous carbon is 0.1% by mass or more, the crystal of the substrate is sufficiently refined, and the hardness increases. Further, when the content is 8% by mass or less, the hardness is appropriately high, and the non-seizure property can be maintained without impairing the foreign matter embedding property.
  • FIG. 1 is a schematic sectional view of a sliding bearing according to an embodiment of the present invention.
  • Figure 2 is a schematic cross-sectional view showing the crystallites in the overlay
  • Fig. 3 shows the composition of the overlay used in the experiment to show the effect of the present invention and the experimental result.
  • Fig. 4 shows the condition of the fatigue test.
  • Figure 5 is a diagram for explaining the half width Figure 6 shows the measurement data of X-ray diffraction analysis of Comparative Example 1.
  • Figure ⁇ shows the measurement data of the X-ray diffraction analysis of Example 2.
  • FIG. 8 is a diagram showing an overlay configuration and an experimental result used in an experiment showing the effect of the present invention in another embodiment.
  • FIG. 9 shows the seizure test conditions
  • FIG. 10 is a schematic diagram of a structure observed by a scanning electron microscope of Example 12.
  • Fig. 11 is a schematic diagram of the structure observation by scanning electron microscope of Comparative Example 3 ... Best Mode for Carrying Out the Invention
  • FIG. 1 schematically shows a cross section of a sliding bearing as a sliding member.
  • the sliding bearing 1 includes a back metal 2 made of steel, a bearing alloy layer 3 provided on the upper surface of the back metal 2 in the drawing, and a sliding layer provided on the upper surface of the bearing alloy layer 3 in the drawing. It has a three-layer structure with the overlay 4.
  • the back metal 2 and the bearing alloy layer 3 constitute the base material 5, and the overlay 4 is provided on the base material 5.
  • the bearing alloy layer 3 an aluminum alloy or a copper alloy is generally used.
  • the overlay 4 is formed so as to have a thickness of 3 Om or less.
  • FIG. 3 shows the configurations of Examples 1 to 10 of the present invention and Comparative Example 1 for the overlay 4.
  • Sn of Sn, Pb, Bi, In, and Al was used as the base of the overlay 4, and an amorphous force (C) was used.
  • C amorphous force
  • Examples 4 and 8 a Sn-based Sn—Cu alloy is used as a base material, and amorphous carbon (C) is added to the Sn—Cu alloy.
  • a Pb-based Pb-Sn-Cu alloy and a Pb-Sn-In alloy were used, respectively, and amorphous carbon (C) was added to these alloys.
  • Bi and Al were used for the base material, respectively, and amorphous carbon (C) was added thereto.
  • Comparative Example 1 Sn was used alone, and amorphous carbon (C) was not added.
  • Examples 1 to 10 of the present invention and Comparative Example 1 were formed using a magneto opening / closing device.
  • the film forming methods of Examples 1, 3 to 10 and Comparative Example 1 are the same as the film forming method of Example 2.
  • the base material 5 is set in the base material mounting portion of the above-mentioned apparatus, and each target of Sn, which is a raw material of the base material of the overlay, and Graphite (Gr), which is a raw material of the amorphous carbon, is placed in a predetermined position. Attach to the target attachment section of the above device at a ratio
  • a bias voltage of 1000 V is applied, Ar plasma is generated between the substrate 5 and the target, and reverse sputtering is performed for 15 minutes.
  • a voltage is applied so that a current of 2 to 5 A flows to the Sn target and a current of 4 to 7 A flows to the Gr target.
  • the Sn atoms are sputtered by the collision of Ar ions, and a film is formed on the surface of the substrate 5.
  • carbon atoms are sputtered from the Gr target by the collision of Ar ions, and are added as amorphous carbon during the overlay.
  • an overlay 4 in which amorphous carbon is uniformly dispersed is formed in the Sn base.
  • methane (CH 4 ) gas is supplied into the chamber without using a Gr target, thereby adding DLC, which is amorphous carbon containing hydrogen atoms, to the Sn base. be able to.
  • the gas flowing into the device is changed to Ar gas and methane gas,
  • the flow ratio of methane gas to the amount is set to 20 to 50%.
  • Sn atoms are sputtered by Ar ions from the Sn target, and a film is formed on the surface of the substrate 5.
  • the methane gas is decomposed in the plasma and added to the Sn substrate as DLC consisting of C atoms and H atoms.
  • FIG. 2 schematically shows a cross-sectional view of the overlay of Example 2 formed as described above.
  • reference numeral 6 denotes a crystallite of Sn
  • reference numeral 8 denotes DLC.
  • the crystallite diameter of the Sn substrate is 100 nm or less.
  • the half width is a range of 2% where the intensity is higher than 1 p / 2 when the maximum intensity of the peak is lp.
  • X-ray wavelength used for measurement
  • the obtained peak is separated into K or 1 peak and ⁇ 2 peak.
  • FIG. 6 corresponds to Comparative Example 1, and is an example in which the half-value width is obtained from the peak of, for example, the (3 1 2) plane of the overlay of S ⁇ alone, and the crystallite size is obtained.
  • the half width measured and calculated from the ⁇ 1 peak obtained from the (3 12) plane peak was 0.070 °.
  • the crystallite size was 150 nm.
  • Fig. 7 shows a sample corresponding to Example 2 (an example in which 2% by mass of amorphous carbon was added to the Sn base material), in which the peak of the (312) plane of the overlay was observed.
  • This is an example in which the half-width is determined from the above to determine the crystallite size.
  • the half width measured and calculated from the K 1 peak obtained from the (3 12) plane peak was 0.307 °. As a result, the crystallite size was 34 nm.
  • Example 2 the same measurement was performed on Examples 1 and 3 to 10 other than Example 2.
  • the diameter of the crystallites of the base material was 1.0 O nm or less in each case.
  • the diameter of crystallite 1 was 3 O nm or less. chorus.
  • FIG. 3 also shows the measurement results of the hardness of the overlay (sliding layer). .
  • Comparative Example 1 is a case where the bare is Sn alone. In this case, it can be seen that the Vickers hardness is low and the fatigue resistance is poor. On the other hand, in Examples 1 to 10, the Beakers hardness was hardened to 20 or more in all cases, and it was found that the fatigue resistance was superior to that of Comparative Example 1.
  • Examples 1 to 10 will be examined in more detail.
  • Example 1 is relatively low in hardness and particularly excellent in foreign matter embedding property, and Examples 2 and 3 are non-fatigue maximum.
  • the surface pressure is 12 OMPa or more, and the fatigue resistance is particularly excellent.
  • the content of the amorphous carbon (C) is preferably from 0.1 to 8.0% by mass, more preferably from 0.5 to 6% by mass.
  • Example 2 and Example 4 will be compared. Although the content of the amorphous carbon (C) is the same, in Example 4, Cu was added, and the fatigue resistance was higher than in Example 2 in which Cu was not added. This is considered to be because the addition of Cu increases the mechanical strength and hardness of the sliding layer and increases the fatigue resistance.
  • Example 4 and Example 8 will be compared. The content of amorphous carbon (C) is the same, but in Example 4, the content of Cu was 2% by mass, and the content of Cu exceeded 5% by mass from Example 8 Also the fatigue resistance is improved.
  • Pb is used as a base material, and amorphous silicon, Sn. And In are added thereto.
  • A1 was used as a base material, and amorphous carbon was added thereto. Also in this case, it is excellent in fatigue resistance as in the other examples. From the above results, in Examples 1 to 10 of the present invention, any one of Sn, .Pb, Bi, In, and A1 or an alloy based on the metal was overlayed. It can be seen that a sliding member having particularly excellent fatigue resistance can be provided by using the base material.
  • FIG. 8 to 11 show another embodiment of the present invention. This embodiment is directed to a case where the base material of the single valley 4 shown in FIG. 1 is an A1-Sn alloy.
  • FIG. 8 shows the compositions of Examples 11 to 22 and Comparative Examples 2 and 3 of the present invention.
  • Examples 11 to 16 are obtained by adding amorphous carbon to an A1-Sn alloy based on A1, and Examples 17 to 20 are obtained based on Sn.
  • Example 21 is a sample in which Si and amorphous carbon are added to an A 1 -Sn alloy based on A 1
  • Example 22 is an A 1 -S n alloy based on A 1. It is made by adding Cu and amorphous carbon to an alloy.
  • the base material was an A1-Sn alloy based on A1 and no amorphous carbon was added.
  • Film formation of the overlay 4 of Examples 11 to 22 and Comparative Examples 2 and 3 was performed in the same manner as the film formation of Example 2 described above.
  • a single metal of Sn and A1 or an A1-Sn alloy preliminarily alloyed by a structure can be used as a target.
  • FIG. 10 is a schematic diagram of the cross section of the overlay of Example 12 observed with a scanning electron microscope
  • FIG. 11 is a schematic diagram of the cross section of the overlay of Comparative Example 3 observed with a scanning electron microscope. It is. .
  • the particles of Sn in A1 can be captured by a scanning electron microscope, and the particles of Sn have a small particle size, but are generally larger than 1 Atm.
  • Example 12 in which the amorphous carpon was added as shown in FIG. 1.0, the particles of A 1 and Sn were not visible.
  • the reason for this is that the particles in [81] [3] 1 were too small to be detected by the scanning electron microscope used, and similar results were obtained if no particles were present in the overlay.
  • the crystallite size of the overlay of the sample of Example 12 was measured by X-ray diffraction analysis, the crystallite size of A1 was 18 nm, and the crystallite size of Sn was ⁇ 5 nm. Met.
  • FIG. 9 shows the seizure test conditions.
  • the surface pressure was increased by 5 Pa after the running-in operation, and the maximum surface pressure without seizure was determined.
  • FIG. 8 also shows the measurement results of the Beakers hardness of the overlay.
  • DLC is a substance with a small coefficient of friction.As can be understood from the comparison between Example 11 and Comparative Example 2 where the Sn content is the same, if DLC is contained, non-seizure occurs. The performance is improved.
  • the anti-seizure property is improved as the added amount of Sn is increased.
  • the following two reasons are considered for the improvement of non-seizure property with the increase of Sn content.
  • Lubricating oil plays a very important role in sliding. Lubricating oil exists between the two sliding members, and seizure does not occur when an oil film is formed. For this reason, the overlay of the slide bearing is preferably made of a material that can easily form an oil film.
  • the wettability with lubricating oil which is a parameter that indicates the ease with which an oil film is formed, is higher for Sn than for A1. For this reason, the non-seizure property increases as the overlay contains more Sn. This is the first reason.
  • the second reason is as follows. If oil runs out between two sliding members, frictional heat is generated. When the oil film starts to partially break, frictional heat is generated only locally, but when the area ratio at which the oil film breaks increases, the frictional heat increases, and an adhesion reaction occurs between the two members. And burn. However, if a low melting point metal, Sn, is present in the overlay, it will locally melt when the oil slick begins to partially break. Since the latent heat at that time absorbs the frictional heat, the frictional heat is not accumulated, and as a result, seizure is prevented.
  • the improvement of the fatigue resistance and anti-seizure property by adding the Sn content when amorphous carbon is added is not limited to the Al-Sn alloy based on A1, but is shown in Examples 17 to 20.
  • the 8 1-31 1 alloy based on 3] is also improved in non-seizure properties while maintaining excellent fatigue resistance by increasing the Sn content in the same manner. be able to.
  • fatigue resistance can be improved by including Si and Cu, and in particular, Si is included. When it is included, the non-seizure property can be improved at the same time.
  • the overlay 4 is provided directly on the upper surface of the bearing alloy layer 3.However, an intermediate layer such as Ni--Cr or Ti is provided on the upper surface of the bearing alloy layer 3, and this intermediate layer is formed.
  • the overlay 4 may be provided on the upper surface. Further, the overlay 4 may be provided directly on the upper surface of the back metal 2. Further, a conformable layer of a soft metal such as pure Sn or a resin such as PAI may be provided on the upper surface of the overlay 4.
  • the base of the overlay 4 may be made of In. Further, the added metal for increasing the mechanical strength and hardness of the overlay 4 is not limited to 11, but may be any one of Sb, Ag, and Cd, or two or more of them may be used. . Industrial applicability
  • the sliding member according to the present invention is useful as a slide bearing in which a sliding layer having a thickness of 30 zm or less called an overlay is formed on a bearing alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sliding-Contact Bearings (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A sliding member which has a substrate and a sliding layer (overlay), wherein the overlay (sliding layer) (4) comprises a base material of a metal selected from among Sn, Pb, Bi, In and Al or an alloy based on the metal and an amorphous carbon as an additive. The overlay (4) is formed by sputtering. Sn, Pb, Bi or In is excellent in non-seizure property due to its low adhesion to a mating material such as Fe. An amorphous carbon improve wear resistance and fatigue resistance due to its high hardness and also improve non-seizure property due to its low friction coefficient. Further, by the addition of an amorphous carbon, the above base material having finer crystal grains is formed, which results in the enhancement of the mechanical strength and further improvement of the wear resistance and fatigue resistance of the overlay (sliding layer).

Description

明 細 書 摺動部材 技術分野  Description Slides Technical field
この発明は、 基材上に摺動層を備えた摺動部材に関する。 背景技術  The present invention relates to a sliding member having a sliding layer on a substrate. Background art
従来、 摺動部材、 例えば自動車におけるエンジン用のすべり軸受においては、 基材上に摺動層 (オーバレイ) を設けた構成のものがある。  2. Description of the Related Art Conventionally, a sliding member, for example, a plain bearing for an engine in an automobile has a configuration in which a sliding layer (overlay) is provided on a base material.
この摺動層として、 S nベース被膜を用いることは、 特開昭 5 3 - 1 4 6 1 4 号公報に示されているように、 広く知られている。 また、 S nベース被膜の他、 P bベース被膜などの軟質金属の素地を使用してオーバレイ被膜を形成すること は、 良く知られている。  The use of a Sn-based coating as the sliding layer is widely known as disclosed in Japanese Patent Application Laid-Open No. Sho 53-14614. It is well known that an overlay coating is formed using a soft metal base such as a Pb-based coating in addition to an Sn-based coating.
S n、 P bの他、 I n、 B iなどの軟質金属は、 F eなどの相手材への凝着性 の低さから非焼付性に非常に優れるので、 従来から多くの摺動部材の摺動層に使 われてきた。  In addition to Sn and Pb, soft metals such as In and Bi have very low anti-seizure properties due to their low adhesion to mating materials such as Fe, so many conventional sliding members have been used. Has been used for sliding layers.
しかしながら、 これら金属は軟らかいために耐疲労性が悪く、 高面圧のェンジ ンでは、 使用することができないことがしばしばあった。  However, these metals are poor in fatigue resistance because of their softness, and often cannot be used in high surface pressure engines.
この問題を解消するために、例えば、特開 2 0 0 1 — 2 4 7 9 9 5号公報では、 In order to solve this problem, for example, in Japanese Patent Application Laid-Open No. 2000-21049,
S nをベースとした素地に、 C uなどのように、 S nをベースとした素地の硬度 や機械的強度を向上させることができる金属を多く添加してオーバレイ被膜を形 成することが提案されている。 しかしながら、 S nと C uは硬くて脆い化合物を 形成し易く、 また、 エンジンの運転中に発生する熱により、 そのような化合物の 成長が促進され易い。このような硬くて脆い化合物は、相手材を傷つけ易くなり、 非焼付性が低下する。 さらに、 大きく成長した化合物は脱落し易く、 脱落部から 疲労破壊が発生し易くなつて、 耐疲労性が低下するという問題がある。 摺動層の耐摩耗性ゃ耐疲労性を向上させるために、 特開平 7— 2 5 2 6 9 3号 公報にみられるように、 S nまたは S nベースの合金中に硬質粒子 (例えば S i C、 S i 3 N 4 ) を複合めつき技術で添加させる場合があった。 しかしながら、 複 合めつき技術で添加させる硬質粒子は、 粒径が 0 . 1 mから数/ z mと大きく、 また湿式めつきで行うため、 めっき液中での硬質粒子の均一分散が困難であり、 オーバレイ被膜中に硬質粒子の分布がばらつくことがしばしば発生した。 そのよ うな摺動層では、 大きな硬質粒子や、 大きな塊となった硬質粒子が相手材を傷つ け易く、 非焼付性が低下する。 It is proposed to form an overlay coating by adding a large amount of metal, such as Cu, that can improve the hardness and mechanical strength of the Sn-based substrate to the Sn-based substrate. Have been. However, Sn and Cu tend to form hard and brittle compounds, and the heat generated during operation of the engine tends to promote the growth of such compounds. Such a hard and brittle compound easily damages the mating material and reduces non-seizure properties. Furthermore, there is a problem that a compound that has grown large tends to fall off, and it is easy for fatigue fracture to occur from the fallout portion, resulting in a decrease in fatigue resistance. Abrasion resistance of the sliding layer を In order to improve the fatigue resistance, hard particles (for example, S i C, S i 3 N 4 ) were sometimes added by the composite plating technique. However, the hard particles to be added by the multiple plating technique have a large particle size from 0.1 m to several / zm. The distribution of hard particles often fluctuated in the overlay coating. In such a sliding layer, large hard particles or large hard particles are likely to damage the mating material, and the non-seizure property is reduced.
一方、 高荷重が作用するディーゼルエンジンに使用されるすべり軸受では、 耐 疲労性が要求される。 この要求に応えるものとして、 従来からディーゼルェンジ ン用すぺり軸受の摺動層として、 A 1ベース被膜がよく用いられる。 この A 1ベ ース被膜は、 具体的には、 A l— S n合金からなり、 A 1が荷重を支え、 軟質の S nがなじみ性や非焼付性を担う。  On the other hand, sliding bearings used in diesel engines that are subject to high loads require fatigue resistance. To meet this demand, an A1 base coating has been often used as a sliding layer for sliding bearings for diesel engines. Specifically, the A 1 -based coating is made of an Al—Sn alloy, with A 1 supporting the load, and soft Sn serving as conformability and non-seizure property.
従って、 この A 1— S n合金の摺動層において、 S n含有量を増加させると、 非焼付性を向上させることができる。 しかしながら、 軟質の S nが増加すると、 摺動層の硬度が低下することとなるため、 耐疲労性が低下するという問題を生ず. る。 このような事情から、 従来の A 1— S n合金の摺動層では、 S nを通常 2 0 質量%を限度として添加しているが、 非焼付性において満足のゆくものではなか つ Ί乙。  Therefore, when the Sn content is increased in the A1-Sn alloy sliding layer, the non-seizure property can be improved. However, when the soft Sn increases, the hardness of the sliding layer decreases, which causes a problem that fatigue resistance decreases. Under such circumstances, in the conventional A1-Sn alloy sliding layer, Sn is usually added up to a limit of 20% by mass, but it is not satisfactory in non-seizure properties. .
本発明は以上のような事情に鑑みてなされたものであり、 その目的は、 S n、 The present invention has been made in view of the circumstances described above, and its purpose is to provide Sn,
P b、 B i、 I n、 A 1のうちのいずれかの金属またはその金属をペースとした 合金を摺動層の素地としたものにおいて、 耐疲労性を向上させることができ、 ま た、 特に、 A 1— S n合金を摺動層の素地としたものについては、 耐疲労性を損 なうことなく非焼付性を向上させることができる摺動層を備えた摺動部材を提供 することにある。 発明の開示 本発明は、 基材上に摺動層を備え、 前記摺動層は、 S n、 P b、 B i、 I n、 A 1のうちのいずれかの金属またはその金属をベースとした合金を素地とし、 こ の素地にアモルファス力一ボンを添加したことを特徴とする。 When the sliding layer is made of any one of Pb, Bi, In, and A1 or an alloy based on the metal, fatigue resistance can be improved, and In particular, when the sliding layer is made of an A1-Sn alloy, a sliding member provided with a sliding layer capable of improving non-seizure properties without impairing fatigue resistance is provided. It is in. Disclosure of the invention The present invention provides a sliding layer on a substrate, wherein the sliding layer is made of any one of Sn, Pb, Bi, In, and A1 or an alloy based on the metal. The substrate is characterized by adding amorphous carbon to the substrate.
上記摺動層は、乾式めつきであるスパッタリング法、イオンプレーティング法、 C V D法等により形成することができる。  The sliding layer can be formed by a dry plating method such as a sputtering method, an ion plating method, and a CVD method.
摺動層の素地に使用する金属のうち、 A 1を除く S n、 P b、 B i、 I nは、 F eなどの相手材への凝着性の低さから非焼付性に非常に優れている。  Of the metals used for the base material of the sliding layer, Sn, Pb, Bi, and In, excluding A1, are extremely non-seizure due to their low adhesion to mating materials such as Fe. Are better.
また、 摺動層の素地に A 1を使用する場合には、 他の軟質な金属、.例えば S n. との合金とすることによって非焼付性に優れたものとすることができる。そして、 S nの添加量を増加させても、 アモルファスカーボンの添加により A 1、 S nが 微細化して高強度となる。 このため、 耐疲労性の低下をきたすといった不具合は. 生ぜず、 耐疲労性および非焼付性の双方共に優れた摺動層とすることができる。 アモルファス力一ボンは、 高硬度であるため、 機械的強度を高め、 耐摩耗性お よび耐疲労性の向上に寄与する。 また、 摩擦係数も低いため、 非焼付性の向上に も寄与する。 しかも、 アモルファスカーボンを添加することにより、 摺動層の素 地の結晶子が微細化する。 これに伴い、 摺動層の機械的強度が増加し、 耐摩耗性 および耐疲労性を一層向上させることができる。  When A1 is used for the base material of the sliding layer, the non-seizure property can be improved by using an alloy with another soft metal, for example, Sn. Even if the amount of Sn added is increased, A1 and Sn become finer due to the addition of amorphous carbon, resulting in high strength. For this reason, a defect such as a decrease in fatigue resistance does not occur, and a sliding layer excellent in both fatigue resistance and non-seizure properties can be obtained. Amorphous carbon is high in hardness, so it increases mechanical strength and contributes to abrasion resistance and fatigue resistance. Also, the low coefficient of friction contributes to the improvement of non-seizure properties. Moreover, by adding amorphous carbon, the crystallites of the base material of the sliding layer are refined. With this, the mechanical strength of the sliding layer increases, and the wear resistance and fatigue resistance can be further improved.
ここで、 結晶子とは、 摺動層における粒子および該粒子を含む素地の基礎とな る単位である。 結晶子の微細化は、 とりもなおさず素地の微細化となる。 また、 後述するように、 結晶子は X線回折分析で確認し、 粒子は走査電子顕微鏡による 組織観察で確認することができる。  Here, the crystallite is a unit serving as a basis of particles in the sliding layer and a base containing the particles. Refinement of crystallites is, of course, the refinement of the substrate. In addition, as described later, crystallites can be confirmed by X-ray diffraction analysis, and particles can be confirmed by microscopic observation with a scanning electron microscope.
アモルファス力一ボンとしては、 特にダイヤモンドライクカーボン(以下、 D L Cと言う。)が好ましい。 なお、 本明細書中における D L Cには、 非晶質のものの みならず、 微細な結晶を有するものも含まれる。  As the amorphous carbon, diamond-like carbon (hereinafter, referred to as DLC) is particularly preferable. Note that DLC in the present specification includes not only an amorphous material but also a material having fine crystals.
この場合、 X線回折分析で測定した前記素地の結晶子径が 1 0 0 n m以下であ ることが好ましい。 摺動層の素地の結晶がこの程度に微細化することにより、 上 記したように機械的強度が増加し、 耐摩耗性および耐疲労性を一層向上させるこ とができる。 In this case, it is preferable that the crystallite diameter of the substrate measured by X-ray diffraction analysis is 100 nm or less. By making the crystal of the base material of the sliding layer finer to this extent, the mechanical strength is increased as described above, and the wear resistance and fatigue resistance can be further improved. Can be.
摺動層の素地に、 Sn、 Pb、 B i、 Al、 I n、 Cu、 Sb、 Ag、 Cdの うちのいずれか 1種以上の金属を添加することができる。この場合、 S n、 P b、 B i、 I n、 Alは、 ベース側の素地にもなり得る金属で、 非焼付性、 なじみ性、 耐食性を向上させる機能がある。 また、 Cu、 Sb、 Ag、 Cdは、 摺動層の機 械的強度および硬度を高める機能がある。 .  Any one or more of Sn, Pb, Bi, Al, In, Cu, Sb, Ag, and Cd metals can be added to the base of the sliding layer. In this case, Sn, Pb, Bi, In, and Al are metals that can also serve as a base material, and have a function of improving non-seizure, conformability, and corrosion resistance. In addition, Cu, Sb, Ag, and Cd have the function of increasing the mechanical strength and hardness of the sliding layer. .
添加金属が Sn、 Pb、 B i、 I n、 A 1のうちのいずれか 1種以上の金属で あるときは、 各添加金属の含有量は 20質量%以下で、 かつそれら添加金属の合 計の含有量は 30質量%以下であることが好ましい。 但し、 ベース側の素地が S n、 Alであるときは、 添加金属がそれぞれ Al、 Snであるときを除く。 これ ら添加金属のそれそれの含有量が 20質量%を超えるか、 それらの合計の含有量 が 30質量%を超えると、 摺動層の融点が大きく低下し、 非焼付性が低下する傾 向がある。  When the additive metal is at least one of Sn, Pb, Bi, In, and A1, the content of each additive metal is 20% by mass or less, and the total of these additive metals is Is preferably 30% by mass or less. However, when the base material is Sn and Al, the cases where the added metals are Al and Sn are excluded. If the content of each of these added metals exceeds 20% by mass or the total content of them exceeds 30% by mass, the melting point of the sliding layer is greatly reduced, and the non-seizure property tends to be reduced. There is.
また、 添加金属が Cu、 Sb、 Ag、 C dのうちのいずれか 1種以上の金属で あるときは、 各添加金属の含有量は 5質量%以下で、 かつそれら添加金属の合計 の含有量は 1 0質量%以下であることが好ましい。 これらの添加金属は、 摺動層 の素地と硬くて脆い化合物を形成しやすい。 このため、 これら添加金属のそれぞ れの含有量が 5質量%を超えるか、 それらの合計の含有量が 10質量%を超える と、 その化合物が大きくなるため、 脱落し易くなり、 -そこから疲労破壊、 摩耗が 進行し、 耐疲労性、 耐摩耗性が低下する傾向がある。  When the additional metal is at least one of Cu, Sb, Ag, and Cd, the content of each additional metal is 5% by mass or less, and the total content of these additional metals is Is preferably 10% by mass or less. These added metals tend to form hard and brittle compounds with the base material of the sliding layer. Therefore, if the content of each of these added metals exceeds 5% by mass, or if the total content of them exceeds 10% by mass, the compound becomes large and easily falls off. Fatigue fracture and wear progress, and fatigue resistance and wear resistance tend to decrease.
前記摺動層の素地に A 1を使用する場合、 S nとの合金とすることが好ましく、 その含有量は、 1が20~80質量%、 S nが 20〜80質量%とし、 この A 1一 S n合金の素地にアモルファスカーボンを添加する。 この A 1 - S n合金で は、 S nの含有量を多く しても、 アモルファスカーボンの添加により、 Al、 S nの結晶が微細化して機械的強度が高くなるため、 耐摩耗性の低下をきたす恐れ はなく、 耐摩耗性および非焼付性に優れた摺動層とすることができる。  When A1 is used for the base material of the sliding layer, it is preferable to use an alloy with Sn, and the content thereof is 20 to 80% by mass for 1 and 20 to 80% by mass for Sn. 1. Add amorphous carbon to the Sn alloy base. In this A 1 -Sn alloy, even if the content of Sn is increased, the addition of amorphous carbon makes the Al and Sn crystals finer and increases the mechanical strength, resulting in lower wear resistance. It is possible to provide a sliding layer that is excellent in wear resistance and non-seizure properties without causing any danger.
摺動層を構成する A1と S nとの合金には、 S i、 Cu、 Sb、 I n、 Agの うちのいずれか 1種以上の金属を添加することができる。 I nは非焼付性、 なじ み性、 耐食性を向上させることができる。 C u、 S b、 A gは、 摺動層の機械的 強度および硬度を高める。 S iは、 硬質元素であるため、 摺動層の硬度を高め、 耐疲労性を向上させる。 また、 S iは、 硬質物として機能して相手材に凝着した 金属を搔き落とす作用を呈するため、非焼付性を向上させる。これら S i、 C u、S b、 I n、 A gは、 単独で 5質量%以下で、 且つそれら添加金属の合計の.含有 量は 1 0質量%以下であることが好ましい。 . The alloys of A1 and Sn that constitute the sliding layer include Si, Cu, Sb, In, and Ag. Any one or more of these metals can be added. In can improve non-seizure, conformability, and corrosion resistance. Cu, Sb, and Ag increase the mechanical strength and hardness of the sliding layer. Since Si is a hard element, it increases the hardness of the sliding layer and improves fatigue resistance. In addition, Si functions as a hard material and has a function of removing metal adhered to a mating material, thereby improving non-seizure properties. Preferably, these Si, Cu, Sb, In, and Ag alone are 5% by mass or less, and the total content of the added metals is 10% by mass or less. .
I n、 A gのそれそれの含有量が 5質量%を超えるか、 それらの合計の含有量 が 1 0質量%を超えると、 摺動層の融点が大きく低下し、 非焼付性が低下する傾 向がある。 C u、 S b、 A gは、 A 1や S nと硬くて脆い化合物を形成し、 それ ら添加金属のそれそれの含有量が 5質量%を超えるか、 それらの合計の含有量が 1 0質量%を超えると、 その化合物が大きくなるため、 脱落し易く、 疲労、 摩耗 が進行する傾向がある。 また、 S iは、 A 1や S nと化合物を形成し難く、 多く 含有させると摺動層から脱落し易くなる傾向がある。  If the content of each of In and Ag exceeds 5% by mass or the total content thereof exceeds 10% by mass, the melting point of the sliding layer is greatly reduced, and the non-seizure property is reduced. Tend. Cu, Sb, and Ag form hard and brittle compounds with A1 and Sn, and the content of each of the added metals exceeds 5% by mass, or the total content thereof is 1%. If the content exceeds 0% by mass, the compound becomes large, so that it tends to fall off, and fatigue and wear tend to progress. In addition, Si hardly forms a compound with A1 or Sn, and when Si is contained in a large amount, Si tends to easily fall off the sliding layer.
A l— S n合金は、 アモルファスカーボンの添加により、 微細化される。 この 微細化の程度は、 A 1または S nの粒子径で 1 m以下であることが好ましい。 前記粒子径が 1 z m以下であれば、 上記の耐疲労性および非焼付性の向上効果に 一層優れたものとなる。  The Al-Sn alloy is refined by adding amorphous carbon. The degree of the fineness is preferably 1 m or less in terms of the particle diameter of A1 or Sn. When the particle diameter is 1 zm or less, the effects of improving the fatigue resistance and the anti-seizure property are further improved.
前記粒子径は 0 . 0 5 以下であることが更に好ましい。前記粒子の径が 0 . 0 5 / m以下となる程、 結晶が微細化されると、 より一層耐疲労性に優れたもの とすることができる。  More preferably, the particle size is 0.05 or less. The finer the crystal becomes, the smaller the particle diameter becomes to 0.05 / m or less, the more excellent the fatigue resistance becomes.
また、 結晶子径は 3 0 n mとすることができる。 結晶子径がこの程度微細であ ると、 より優れた耐疲労性を得ることができる。  Also, the crystallite diameter can be 30 nm. When the crystallite diameter is so fine, more excellent fatigue resistance can be obtained.
ここで、 アモルファス力一ボンの添加による結晶子の微細化のメカニズムにつ いて述べる。 アモルファスカーボンが結晶子の成長を妨げ、 結晶子が微細化され るのである。  Here, the mechanism of the refinement of crystallites by the addition of amorphous carbon will be described. Amorphous carbon hinders the growth of crystallites and crystallites are refined.
素地が S nのような単金属の場合、 アモルファス力一ボンの添加による結晶子 の微細化は X線回折分析で確認することができるが、 走査電子顕微鏡による断面 組織観察ではアモルファスカーボンの有無で差を確認できない。 When the substrate is a single metal such as Sn, The refinement can be confirmed by X-ray diffraction analysis, but the difference cannot be confirmed by the presence or absence of amorphous carbon in the cross-sectional structure observation with a scanning electron microscope.
A 1— S n合金にアモルファスカーボンを添加してオーバレイを成膜した場合 やはりアモルファスカーボンが A 1および S nの結晶子の.成長を妨げ、 A 1およ び S nの結晶子が微細化される。 これは、 上記と同様に X線回折分析によって確 認することができる。 また、 アモルファスカーボンが無添加の場合に断面組織観 察を行うと、 A 1および S nがそれぞれの相として観測でき、 A I S nの含有 量に差があるときは、. 少ない方が粒子として観測できる。 しかし、 アモルファス カーボンを添加すると、 A 1および S nの結晶子が微細化した結果、 走査電子顕 微鏡による断面組織観察では A 1または S nの粒子を捉えることはきわめて困難 となる。  Addition of amorphous carbon to A 1—Sn alloy to form an overlay Film Amorphous carbon also hinders growth of A 1 and Sn crystallites, and A 1 and Sn crystallites become finer Is done. This can be confirmed by X-ray diffraction analysis as described above. In addition, when the cross-sectional structure is observed when amorphous carbon is not added, A 1 and Sn can be observed as their respective phases. If there is a difference in the content of AIS n, the smaller is observed as particles. it can. However, when amorphous carbon is added, the crystallites of A1 and Sn become finer, and it becomes extremely difficult to capture the particles of A1 or Sn by cross-sectional structure observation with a scanning electron microscope.
以上の S n、 P b、 B i、 I n、 A 1のうちのいずれかの金属またはその金属 をベースとした合金を素地とし、 この素地にアモルファスカーボンを添加してな る摺動層において、 アモルファスカーボンの含有量は 0 . 1〜8質量%であるこ とが好ましい。 アモルファスカーボンの含有量が 0 . 1質量%以上であると、 素 地の結晶が十分に微細化され、また硬さも上昇する。また、その含有量が 8質量% 以下であれば、 硬度が適当に高く、 且つ異物埋収性も損なうことがなく、 優れた 非焼付性を保持できる。  In a sliding layer made of any one of the above-mentioned metals of Sn, Pb, Bi, In, and A1 or an alloy based on the metal, and adding amorphous carbon to the substrate. The content of amorphous carbon is preferably 0.1 to 8% by mass. When the content of the amorphous carbon is 0.1% by mass or more, the crystal of the substrate is sufficiently refined, and the hardness increases. Further, when the content is 8% by mass or less, the hardness is appropriately high, and the non-seizure property can be maintained without impairing the foreign matter embedding property.
また、 摺動層の厚さを 3 0 in以下とすることが好ましい。 3 0 m以下であ ると、 摺動層の内部応力低減に有効であり、 耐疲労性の面で好ましい。 図面の簡単な説明 - 図 1は本発明の一実施形態におけるすべり軸受の模式的な断面図  Further, the thickness of the sliding layer is preferably 30 in or less. When it is 30 m or less, it is effective in reducing the internal stress of the sliding layer, and is preferable in terms of fatigue resistance. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view of a sliding bearing according to an embodiment of the present invention.
図 2はオーバレイの結晶子を示す模式的な断面図 Figure 2 is a schematic cross-sectional view showing the crystallites in the overlay
図 3は本発明の効果を示す実験に用いたオーバレイの組成と実験結果を示す図 図 4は疲労試験条件を示す図 Fig. 3 shows the composition of the overlay used in the experiment to show the effect of the present invention and the experimental result. Fig. 4 shows the condition of the fatigue test.
図 5は半価幅を説明するための図 図 6は比較例 1の X線回折分析の測定データを示す図 Figure 5 is a diagram for explaining the half width Figure 6 shows the measurement data of X-ray diffraction analysis of Comparative Example 1.
図 Ίは実施例 2の X線回折分析の測定デ一夕を示す図 Figure Ί shows the measurement data of the X-ray diffraction analysis of Example 2.
図 8は他の実施形態において、 本発明の効果を示す実験に用いたオーバレイの組 成と実験結果を示す図 FIG. 8 is a diagram showing an overlay configuration and an experimental result used in an experiment showing the effect of the present invention in another embodiment.
図 9は焼付試験条件を示す図 Figure 9 shows the seizure test conditions
図 1 0は実施例 1 2の走査電子顕微鏡による組織観察の模式図 FIG. 10 is a schematic diagram of a structure observed by a scanning electron microscope of Example 12.
図 1 1は比載例 3の走査電子顕微鏡による組織観察の模式図 ... 発明を実施するための最良の形態 Fig. 11 is a schematic diagram of the structure observation by scanning electron microscope of Comparative Example 3 ... Best Mode for Carrying Out the Invention
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 図 1〜図 7は本発明の一実施形態を示す。 まず、 図 1には、 摺動部材としての すべり軸受の断面が模式的に示されている。 このすベり軸受 1は、 鋼からなる裏 金 2と、 この裏金 2の図中上面に設けられた軸受合金層 3と、 この軸受合金層 3 の図中上面に設けられた摺動層としてのオーバレイ 4との三層構造となっている。 この場合、 裏金 2と軸受合金層 3とにより基材 5を構成し、 オーバレイ 4は基材 5上に設けられている。 軸受合金層 3としては、 一般にアルミ系合金または銅系 合金が用いられる。 オーバレイ 4は、 厚さが 3 O ^ m以下となるように成膜され ている。  The present invention will be described in more detail with reference to the accompanying drawings. 1 to 7 show one embodiment of the present invention. First, FIG. 1 schematically shows a cross section of a sliding bearing as a sliding member. The sliding bearing 1 includes a back metal 2 made of steel, a bearing alloy layer 3 provided on the upper surface of the back metal 2 in the drawing, and a sliding layer provided on the upper surface of the bearing alloy layer 3 in the drawing. It has a three-layer structure with the overlay 4. In this case, the back metal 2 and the bearing alloy layer 3 constitute the base material 5, and the overlay 4 is provided on the base material 5. As the bearing alloy layer 3, an aluminum alloy or a copper alloy is generally used. The overlay 4 is formed so as to have a thickness of 3 Om or less.
図 3には、 オーバレイ 4について、 本発明の実施例 1〜 1 0と比較例 1の各組 成が示されている。 この図 3において、 実施例 1〜3、 7は、 オーバレイ 4の素 地に S n、 P b、 B i、 I n、 A lのうちの S nを用い、 これにアモルファス力 一ボン (C ) を添加している。 実施例 4、 8は、 素地に S nベースの S n— C u 合金を用い、 これにアモルファスカーボン (C ) を添加している。 実施例 5、 9 は、それぞれ P bベースの P b - S n— C u合金、 P b - S n - I n合金を用い、 この合金にアモルファスカーボン (C ) を添加している。 実施例 6、 1 0では、 素地にそれそれ B i、 A lを用い、 これにアモルファスカーボン (C ) を添加し ている。 比較例 1は、 S n単体としたもので、 アモルファスカーボン (C) は添加して いない。 FIG. 3 shows the configurations of Examples 1 to 10 of the present invention and Comparative Example 1 for the overlay 4. In FIG. 3, in Examples 1 to 3 and 7, Sn of Sn, Pb, Bi, In, and Al was used as the base of the overlay 4, and an amorphous force (C) was used. ) Is added. In Examples 4 and 8, a Sn-based Sn—Cu alloy is used as a base material, and amorphous carbon (C) is added to the Sn—Cu alloy. In Examples 5 and 9, a Pb-based Pb-Sn-Cu alloy and a Pb-Sn-In alloy were used, respectively, and amorphous carbon (C) was added to these alloys. In Examples 6 and 10, Bi and Al were used for the base material, respectively, and amorphous carbon (C) was added thereto. In Comparative Example 1, Sn was used alone, and amorphous carbon (C) was not added.
ここで、 本発明の実施例 1〜 1 0と比較例 1は、 マグネト口ンスパヅ夕リング 装置を用いて形成するようにした。  Here, Examples 1 to 10 of the present invention and Comparative Example 1 were formed using a magneto opening / closing device.
次に、 実施例 1〜 1 0のうち、 実施例 2のオーバレイ 4を成膜する方法を具体 的に説明する。 なお、 実施例 1、 3~1 0および比較例 1の成膜方法もこの実施 例 2の成膜方法と同様のものである。 まず、 基材 5を上記装置の基材装着部にセ ヅトするとともに、 オーバレイの素地の原料となる S nと、 アモルファスカーボ ンの原料となるグラフアイ ト (Gr) の各ターゲットを所定の割合で上記装置の ターゲット装着部に装着する。  Next, a method for forming the overlay 4 of the second embodiment among the first to tenth embodiments will be specifically described. The film forming methods of Examples 1, 3 to 10 and Comparative Example 1 are the same as the film forming method of Example 2. First, the base material 5 is set in the base material mounting portion of the above-mentioned apparatus, and each target of Sn, which is a raw material of the base material of the overlay, and Graphite (Gr), which is a raw material of the amorphous carbon, is placed in a predetermined position. Attach to the target attachment section of the above device at a ratio
次に、上記装置のチヤンバー内を 1.0 x 10— 6Tひ r rまで,真空引きを行い、 その後チャンバ一内に A rガスを供給し、 チャンバ一内の圧力を 2. 0 X 1 0 -3 T o r rになるように調整する。 Next, in Chiyanba of the device up to 1.0 x 10- 6 T shed rr, perform vacuuming, then supplies the A r gas into the chamber in one, the pressure in the chamber one 2. 0 X 1 0 - 3 Adjust so that it becomes Torr.
そして、 基材 5表面を Arクリーニングするために、 バイアス電圧を 1000 V印加し、 基材 5とターゲットとの間で Arプラズマを発生させて、 1 5分間逆 スパッタリングを行う。  Then, in order to perform Ar cleaning on the surface of the substrate 5, a bias voltage of 1000 V is applied, Ar plasma is generated between the substrate 5 and the target, and reverse sputtering is performed for 15 minutes.
次に、 S nのターゲットにはそれそれ 2〜 5 A、 Grのターゲットには 4〜7 Aの電流が流れるように電圧をかける。  Next, a voltage is applied so that a current of 2 to 5 A flows to the Sn target and a current of 4 to 7 A flows to the Gr target.
すると、 S nのターゲットから、 Arイオンの衝突によって S n原子がスパヅ 夕リングされ、 基材 5の表面に成膜される。 また、 Grのターゲットから、 Ar イオンの衝突によってカーボン原子がスパヅ夕リングされ、 オーバレイ中にァモ ルファスカーボンとして添加される。 これにより、 Snの素地中に、 ァモルファ スカーボンがそれそれ均一に分散されたオーバレイ 4が形成される。  Then, from the Sn target, the Sn atoms are sputtered by the collision of Ar ions, and a film is formed on the surface of the substrate 5. In addition, carbon atoms are sputtered from the Gr target by the collision of Ar ions, and are added as amorphous carbon during the overlay. As a result, an overlay 4 in which amorphous carbon is uniformly dispersed is formed in the Sn base.
なお、 上記した製法において、 Grターゲットを用いずに、 チャンバ一内にメ タン (CH4) ガスを供給することで、 水素原子を含むアモルファスカーボンで ある DLCを、 S nの素地中に添加することができる。 その場合は、 逆スパッ夕 リングを行った後、 装置内に流すガスを Arガスとメタンガスにし、 全ガスの流 量に対するメタンガスの流量割合を 2 0〜5 0 %にする。 In the above-mentioned manufacturing method, methane (CH 4 ) gas is supplied into the chamber without using a Gr target, thereby adding DLC, which is amorphous carbon containing hydrogen atoms, to the Sn base. be able to. In this case, after reverse sputtering, the gas flowing into the device is changed to Ar gas and methane gas, The flow ratio of methane gas to the amount is set to 20 to 50%.
すると、 S nのターゲットから、 Arイオンによって S n原子がスパヅ夕リン グされ、基材 5の表面に成膜される。また、メタンガスはプラズマ中で分解され、 C原子と H原子からなる D L Cとして、 S nの素地中に添加される。  Then, Sn atoms are sputtered by Ar ions from the Sn target, and a film is formed on the surface of the substrate 5. The methane gas is decomposed in the plasma and added to the Sn substrate as DLC consisting of C atoms and H atoms.
図 2には、 以上のようにして成膜した実施例 2のオーバレイの断面図が模式的 に示されている。図 2中、符号 6は S nの結晶子、符号 8は D L Cを示している。 この図 2において.、 S nの素地の結晶子径は、 1 0 0 nm以下となっていること がわかる。  FIG. 2 schematically shows a cross-sectional view of the overlay of Example 2 formed as described above. In FIG. 2, reference numeral 6 denotes a crystallite of Sn, and reference numeral 8 denotes DLC. In FIG. 2, it can be seen that the crystallite diameter of the Sn substrate is 100 nm or less.
次に、 オーバレイの結晶子サイズ (結晶子径) の測定方法について述べる。 こ こでは、 X線回折解析装置を用い、 X線回折分析を行い、 ある結晶面に対応する ピークの半価幅を求め、 下記の Scherrerの式 (( 1 ) 式) に当てはめ、 結晶子サ ィズを求める。 なお、 半価幅とは、 図 5に示すように、 ピークの最大強度を l p としたとき、 1 p/2より強度が高くなる条件の 2 Θの範囲である。  Next, a method for measuring the crystallite size (crystallite diameter) of the overlay will be described. Here, X-ray diffraction analysis was performed using an X-ray diffraction analyzer to determine the half-value width of the peak corresponding to a certain crystal plane, which was applied to the following Scherrer equation (Equation (1)) to obtain the crystallite size. Ask for size. As shown in FIG. 5, the half width is a range of 2% where the intensity is higher than 1 p / 2 when the maximum intensity of the peak is lp.
B = K λ/t - c o s 0 … ( 1 )  B = K λ / t-cos 0… (1)
ただし、 B :結晶子サイズに起因する回折線の拡がり  B: Diffraction line spread due to crystallite size
K :形状因子  K: Form factor
λ :測定に用いた X線の波長  λ: X-ray wavelength used for measurement
ΐ :結晶子サイズ  :: crystallite size
. Θ : 回折線の Bragg角  Θ: Bragg angle of diffraction line
半価幅を求める際に、 得られたピークを K or 1ピークと、 Κ α 2ピークに分離 する。  When obtaining the half width, the obtained peak is separated into K or 1 peak and Κα2 peak.
図 6は、 比較例 1に対応するもので、 S η単体のオーバレイの例えば (3 1 2 ) 面のピークから半価幅を求め、結晶子サイズを求める例である。 (3 1 2 )面のピ ークから求めた Κ α 1ピークから測定計算した半価幅は 0. 0 7 0 ° であった。 その結果、 結晶子サイズは 1 5 0 nmであった。  FIG. 6 corresponds to Comparative Example 1, and is an example in which the half-value width is obtained from the peak of, for example, the (3 1 2) plane of the overlay of S η alone, and the crystallite size is obtained. The half width measured and calculated from the Κα1 peak obtained from the (3 12) plane peak was 0.070 °. As a result, the crystallite size was 150 nm.
これに対して、 図 7は、 実施例 2に対応するもの (S n素地に 2質量%のァモ ルファスカーボンを添加した例) で、 そのオーバレイの (3 1 2 ) 面のピークか ら半価幅を求め、結晶子サイズを求める例である。 (3 12)面のピークから求め た K 1ピークから測定計算した半価幅は 0. 307 ° であった。 その結果、 結 晶子サイズは 34 nmであった。 On the other hand, Fig. 7 shows a sample corresponding to Example 2 (an example in which 2% by mass of amorphous carbon was added to the Sn base material), in which the peak of the (312) plane of the overlay was observed. This is an example in which the half-width is determined from the above to determine the crystallite size. The half width measured and calculated from the K 1 peak obtained from the (3 12) plane peak was 0.307 °. As a result, the crystallite size was 34 nm.
また、実施例 2以外の実施例 1、 3~ 1 0についても同様にして測定した結果、 素地の結晶子の径は、 いずれも 1.0 O nm以下で、 特に実施例 1 0の素地である A 1の結晶子の径は、 3 O nm以下であった。 „ .  In addition, the same measurement was performed on Examples 1 and 3 to 10 other than Example 2. As a result, the diameter of the crystallites of the base material was 1.0 O nm or less in each case. The diameter of crystallite 1 was 3 O nm or less. „.
本発明の効果を確認するため、 上記した実施例 1〜1 0と比較例 1について疲 労試験を行った。 その試験条件を図 4に示す。 この場合、 疲労試験では、 面圧を 5MP aずつ増やしていき、 疲労しない最大面圧を求めた。 その試験結果につい ては、 上記図 3に示している。 なお、 図 3には、 オーバレイ (摺動層) のピツカ ース硬さの測定結果についても示している。 .  In order to confirm the effect of the present invention, a fatigue test was performed on Examples 1 to 10 and Comparative Example 1 described above. Figure 4 shows the test conditions. In this case, in the fatigue test, the surface pressure was increased in increments of 5 MPa, and the maximum surface pressure that did not cause fatigue was determined. The test results are shown in Figure 3 above. FIG. 3 also shows the measurement results of the hardness of the overlay (sliding layer). .
図 3において、 試験結果を検討してみる。 まず、 比較例 1は、 ォ一バレイが S n単体の場合であり、 この場合には、 ビヅカース硬さが低いとともに、 耐疲労性 が悪いことがわかる。 これに対して、 実施例 1〜 1 0の場合には、 すべてにおい てビヅカース硬さは 20以上と硬化し、 耐疲労性も比較例 1よりも優れているこ とがわかる。  Consider the test results in Figure 3. First, Comparative Example 1 is a case where the bare is Sn alone. In this case, it can be seen that the Vickers hardness is low and the fatigue resistance is poor. On the other hand, in Examples 1 to 10, the Beakers hardness was hardened to 20 or more in all cases, and it was found that the fatigue resistance was superior to that of Comparative Example 1.
次に、 実施例 1〜 10について、 さらに詳細に検討してみる。 実施例 1〜 3、 7において、 それらは耐疲労性が優れているのみならず、 実施例 1は比較的低硬 度で、 異物埋収性が特に優れ、 実施例 2, 3は疲労しない最大面圧が 12 OMP a以上となっていて、 耐疲労性が特に優れている。 これらの結果かち、 ァモルフ ァスカーボン (C) の含有量は、 0. 1〜8. 0質量%が好ましく、 より好まし くは 0. 5〜6質量%である。  Next, Examples 1 to 10 will be examined in more detail. In Examples 1 to 3 and 7, not only are they excellent in fatigue resistance, but Example 1 is relatively low in hardness and particularly excellent in foreign matter embedding property, and Examples 2 and 3 are non-fatigue maximum. The surface pressure is 12 OMPa or more, and the fatigue resistance is particularly excellent. Based on these results, the content of the amorphous carbon (C) is preferably from 0.1 to 8.0% by mass, more preferably from 0.5 to 6% by mass.
実施例 2と実施例 4とを比較してみる。 アモルファスカーボン (C) の含有量 は同じであるが、 実施例 4では、 Cuが添加されており、 Cuが添加されていな い実施例 2よりも耐疲労性が高くなつている。 これは、 Cuを添加したことによ り、摺動層の機械的強度および硬度を高められ、耐疲労性が高くなるからである、 と考えられる。 実施例 4と実施例 8とを比較してみる。 アモルファス力一ボン (C ) の含有量 は同じであるが、 実施例 4では、 C uの含有量が 2質量%となっており、 C u含 有量が 5質量%を超える実施例 8よりも耐疲労性が向上している。 Example 2 and Example 4 will be compared. Although the content of the amorphous carbon (C) is the same, in Example 4, Cu was added, and the fatigue resistance was higher than in Example 2 in which Cu was not added. This is considered to be because the addition of Cu increases the mechanical strength and hardness of the sliding layer and increases the fatigue resistance. Example 4 and Example 8 will be compared. The content of amorphous carbon (C) is the same, but in Example 4, the content of Cu was 2% by mass, and the content of Cu exceeded 5% by mass from Example 8 Also the fatigue resistance is improved.
実施例 9は、 P bを素地とし、 これにアモルファス力一ボンと、 S n .と I nと を添加している。 実施例 1 0は、 A 1を素地とし、 これにアモルファスカーボン を添加している。 この場合も、 他の実施例と同様に耐疲労性に優れている。 以上の結果から、 本発明の実施例 1 ~ 1 0においては、 S n、. P b、 B i、 I n、 A 1のうちのいずれかの金属またはその金属をベースとした合金をオーバレ ィの素地としたものにおいて、 特に耐疲労性に優れた摺動部材を提供できること がわかる。  In the ninth embodiment, Pb is used as a base material, and amorphous silicon, Sn. And In are added thereto. In Example 10, A1 was used as a base material, and amorphous carbon was added thereto. Also in this case, it is excellent in fatigue resistance as in the other examples. From the above results, in Examples 1 to 10 of the present invention, any one of Sn, .Pb, Bi, In, and A1 or an alloy based on the metal was overlayed. It can be seen that a sliding member having particularly excellent fatigue resistance can be provided by using the base material.
図 8〜図 1 1は本発明の他の実施形態を示す。 この実施形態は、 図 1に示すォ 一バレイ 4の素地を A 1— S n合金としたものを対象としている。 図 8には、 本 発明の実施例品 1 1 ~ 2 2と比較例 2、 3の各組成が示されでいる。 この図 8に おいて、 実施例 1 1〜 1 6は、 A 1をベースとした A 1— S n合金にァモルファ スカーボンを添加したもの、 実施例 1 7 ~ 2 0は、 S nをベースとした A 1— S n合金にアモルファスカーボンを添加したものである。 また、 実施例 2 1は、 A 1をベースにした A 1— S n合金に、 S iとアモルファスカーボンを添加したも の、 実施例 2 2は、 A 1をベースにした A 1— S n合金に、 C uとアモルファス カーボンを添加したものである。  8 to 11 show another embodiment of the present invention. This embodiment is directed to a case where the base material of the single valley 4 shown in FIG. 1 is an A1-Sn alloy. FIG. 8 shows the compositions of Examples 11 to 22 and Comparative Examples 2 and 3 of the present invention. In FIG. 8, Examples 11 to 16 are obtained by adding amorphous carbon to an A1-Sn alloy based on A1, and Examples 17 to 20 are obtained based on Sn. A 1—Sn alloy with amorphous carbon added. Further, Example 21 is a sample in which Si and amorphous carbon are added to an A 1 -Sn alloy based on A 1, and Example 22 is an A 1 -S n alloy based on A 1. It is made by adding Cu and amorphous carbon to an alloy.
また、 比較例 2、 3は、 素地を A 1ベースの A 1— S n合金とし、 ァモルファ スカーボンを添加しないものである。  Further, in Comparative Examples 2 and 3, the base material was an A1-Sn alloy based on A1 and no amorphous carbon was added.
実施例 1 1〜2 2および比較例 2、 3のオーバレイ 4の成膜は、 先に説明した 実施例 2の成膜と同様の方法にて行った。 この場合、 スパッタリング時、 ターゲ ットとしては、 S nおよび A 1の各単体金属、 または予め錶造により合金化され た A 1— S n合金を用いることができる。  Film formation of the overlay 4 of Examples 11 to 22 and Comparative Examples 2 and 3 was performed in the same manner as the film formation of Example 2 described above. In this case, at the time of sputtering, a single metal of Sn and A1 or an A1-Sn alloy preliminarily alloyed by a structure can be used as a target.
成膜後、 実施例 1 2および比較例 3についてオーバレイの断面を、 走査電子顕 微鏡にて組織観察を行った。 使用した走査電子顕微鏡の倍率は、 3 0 0 0倍のも のである。 After the film formation, the sections of the overlays of Example 12 and Comparative Example 3 were observed for their structures with a scanning electron microscope. The magnification of the scanning electron microscope used was 300 ×. It is.
図 1 0は実施例 1 2のオーバレイの断面を走査電子顕微鏡にて組織観察した模 式図であり、 図 1 1は比較例 3のオーバレイの断面を走査電子顕微鏡にて組織観 察した模式図である。 .  FIG. 10 is a schematic diagram of the cross section of the overlay of Example 12 observed with a scanning electron microscope, and FIG. 11 is a schematic diagram of the cross section of the overlay of Comparative Example 3 observed with a scanning electron microscope. It is. .
図 1 1から明らかなように、アモルファスカーボンを添加しない比較例 3では、 As is clear from FIG. 11, in Comparative Example 3 in which amorphous carbon was not added,
A 1中に S nの粒子を走査電子顕微鏡により捉えることができ、 且つ S nの粒子 径は、 小さな粒子も存在するが、 大体は 1 At m以上の大きさとなっている。 . これに対し、 アモルファスカーポンを添加した実施例 1 2では、 図 1 .0に示す ように、 A 1および S nの粒子は見えていない。 これは、 八 1ぉょぴ3 ]1の粒子 が小さすぎて、 使用した走査電子顕微鏡では、 捉えることができず、 オーバレイ に粒子が存在していないと同様の観察結果となったためである。 ちなみに、 実施 例 1 2の試料のオーバレイについて、 結晶子径を X線回折分析にて測定したとこ ろ、 A 1の結晶子径は 1 8 n mであり、 S nの結晶子径は Ί 5 n mであった。 実施例 1 1〜2 2、 比較例 2、 3について、 疲労試験、 焼付試験を実施し、 そ の結果を図 8に示した。 疲労試験条件は図 4と同様である。 焼付試験条件につい ては、 図 9に示した。 この場合、 焼付試験では、 なじみ運転後、 面圧を 5 P aず つ増加させていき、 焼付ない最大面圧を求めた。 なお、 図 8には、 オーバレイの ビヅカース硬さの測定結果についても表示した。 The particles of Sn in A1 can be captured by a scanning electron microscope, and the particles of Sn have a small particle size, but are generally larger than 1 Atm. On the other hand, in Example 12 in which the amorphous carpon was added, as shown in FIG. 1.0, the particles of A 1 and Sn were not visible. The reason for this is that the particles in [81] [3] 1 were too small to be detected by the scanning electron microscope used, and similar results were obtained if no particles were present in the overlay. Incidentally, when the crystallite size of the overlay of the sample of Example 12 was measured by X-ray diffraction analysis, the crystallite size of A1 was 18 nm, and the crystallite size of Sn was Ί5 nm. Met. Fatigue tests and seizure tests were performed on Examples 11 to 22 and Comparative Examples 2 and 3, and the results are shown in FIG. The fatigue test conditions are the same as in FIG. Fig. 9 shows the seizure test conditions. In this case, in the seizure test, the surface pressure was increased by 5 Pa after the running-in operation, and the maximum surface pressure without seizure was determined. FIG. 8 also shows the measurement results of the Beakers hardness of the overlay.
図 8において、 その試験結果を検討してみるに、 アモルファス力一ポンを添加 していない比較例 2、 3に対し、 アモルファスカーボンを添加した実施例 1 1 ~ 2 2は、オーバレイを構成する金属の結晶子が微細化するため、硬度が高くなり、 耐疲労性が向上する。  In Fig. 8, the test results were examined.Comparative Examples 2 and 3 where no amorphous carbon was added, Examples 11 and 22 where amorphous carbon was added showed that the metal constituting the overlay was Since the crystallites become finer, the hardness becomes higher and the fatigue resistance is improved.
アモルファスカーボンが D L Cである場合、 D L Cは摩擦係数が小さい物質で あるため、 S n含有量が同じ実施例 1 1と比較例 2との比較から理解されるよう に、 D L Cを含有すると、 非焼付性が向上する。  When the amorphous carbon is DLC, DLC is a substance with a small coefficient of friction.As can be understood from the comparison between Example 11 and Comparative Example 2 where the Sn content is the same, if DLC is contained, non-seizure occurs. The performance is improved.
一方、 比較例 2と 3から理解されるように、 A l— S n合金のうち、 S n含有 量を増加させると、 オーバレイの硬度が低下し、 耐疲労性が低下する。 しかしな がら、 実施例 1 2と比較例 3との対比から理解されるように、 アモルファスカー ボンを添加した場合には、 結晶子の微細化によりオーバレイの硬度が高くなるの で、 S n含有量を増加させても、 高い耐疲労性を持つ。 On the other hand, as can be understood from Comparative Examples 2 and 3, when the Sn content of the Al—Sn alloy is increased, the hardness of the overlay is reduced and the fatigue resistance is reduced. But However, as can be understood from a comparison between Example 12 and Comparative Example 3, when the amorphous carbon was added, the hardness of the overlay was increased due to the refinement of crystallites, so the Sn content was reduced. High fatigue resistance even when increased.
実施例 1 2、 1 4、 1 6から明らかなように、 S nの添加量を増加させにつれ て非焼付性が向上する。 S n含有量の増加に伴う非焼付性の向上については、 次 の 2つの理由が考えられている。  As is clear from Examples 12, 14, and 16, the anti-seizure property is improved as the added amount of Sn is increased. The following two reasons are considered for the improvement of non-seizure property with the increase of Sn content.
摺動において、 潤滑油は非常に大きな役割を担っている。 摺動する 2部材の間 に潤滑油が存在し、 油膜が形成されるとき焼付は起きない。 このため、 すべり軸 受のオーバレイは、 油膜を形成させ易い材質のものが好ましい。 油膜の形成し易 さを表すパラメ一夕である潤滑油との濡れ性は、 A 1に比べて S nの方が高い。 このため、 オーバレイに S nが多く含まれているほど非焼付性は高くなる。 これ が第 1の理由である。  Lubricating oil plays a very important role in sliding. Lubricating oil exists between the two sliding members, and seizure does not occur when an oil film is formed. For this reason, the overlay of the slide bearing is preferably made of a material that can easily form an oil film. The wettability with lubricating oil, which is a parameter that indicates the ease with which an oil film is formed, is higher for Sn than for A1. For this reason, the non-seizure property increases as the overlay contains more Sn. This is the first reason.
第 2の理由は次の通りである。 摺動する 2部材の間で油切れが起きた場合、 摩 擦熱が発生する。 油膜が部分的に切れ始めた時点では、 摩擦熱は局所的に発生す るだけであるが、 油膜が切れる面積割合が大きくなると、'摩擦熱が多くなり、 2 部材間で凝着反応が起きて焼付く。 しかし、 低融点金属である S nがオーバレイ 中に存在すると、 油膜が部分的に切れ始めた時点で、 S nが局所的に融解する。 そのときの潜熱が摩擦熱を吸収するため、 摩擦熱が蓄積されず、 その結果、 焼付 きが防止される。  The second reason is as follows. If oil runs out between two sliding members, frictional heat is generated. When the oil film starts to partially break, frictional heat is generated only locally, but when the area ratio at which the oil film breaks increases, the frictional heat increases, and an adhesion reaction occurs between the two members. And burn. However, if a low melting point metal, Sn, is present in the overlay, it will locally melt when the oil slick begins to partially break. Since the latent heat at that time absorbs the frictional heat, the frictional heat is not accumulated, and as a result, seizure is prevented.
このように S n含有量を増加すると、 非焼付性が向上する。 しかも、 ァモルフ ァスカーボンを添加すると、 結晶子の微細化により耐疲労性が向上するので、 耐 疲労性を向上させながら、 非焼付性の向上を図ることができる。  When the Sn content is increased in this manner, the non-seizure property is improved. In addition, when amorphous carbon is added, fatigue resistance is improved due to the refinement of crystallites, so that non-seizure properties can be improved while improving fatigue resistance.
このアモルファスカーボンを添加した場合の S n含有量の增加による耐疲労性 および非焼付性の向上は、 A 1をベースにした A l—S n合金に限られず、 実施 例 1 7 ~ 2 0にみられるように、 3 ] をべ一スにした八 1—3 11合金でも、 同様 に S n含有量を増加させることにより、 優れた耐疲労性を保持しながら、 非焼付 性の向上を図ることができる。 また、 実施例 2 1、 2 2と実施例 1 4との対比から理解されるように、 S i、 C uを含有させることにより、 耐疲労性を向上させることができ、 特に S iを含 有させた場合には、 非焼付性も併せて向上させることができる。 The improvement of the fatigue resistance and anti-seizure property by adding the Sn content when amorphous carbon is added is not limited to the Al-Sn alloy based on A1, but is shown in Examples 17 to 20. As can be seen, the 8 1-31 1 alloy based on 3] is also improved in non-seizure properties while maintaining excellent fatigue resistance by increasing the Sn content in the same manner. be able to. In addition, as can be understood from the comparison between Examples 21 and 22 and Example 14, fatigue resistance can be improved by including Si and Cu, and in particular, Si is included. When it is included, the non-seizure property can be improved at the same time.
尚、 本発明は、 上記した実施例に限定されるものではなく、 例えば次のような 変形が可能である。  Note that the present invention is not limited to the above-described embodiment, and for example, the following modifications are possible.
すべり軸受 1において、 軸受合金層 3の上面に直接オーバレイ 4を設ける構 成としたが、 軸受合金層 3の上面に N i— C rや T iなどの中間層.を設け、 この 中間層の上面にーパレイ 4を設けるようにしても良い。 また、 裏金 2の上面に直 接オーバレイ 4を設けるようにしても良い。 さらに、 オーバレイ 4の上面に、 純 S nなどの軟質金属や P A Iなどの樹脂のなじみ層を設けるようにしても良い。 オーバレイ 4の素地に I nを用いるようにしてもよい。 また、 ォ一バレイ 4の 機械的強度および硬度を高めるための添加金属としては、 11に限らず、 S b、 A g、 C dのいずれかでもよく、 あるいはそれらを 2種類以上用いてもよい。 産業上の利用可能性  In the plain bearing 1, the overlay 4 is provided directly on the upper surface of the bearing alloy layer 3.However, an intermediate layer such as Ni--Cr or Ti is provided on the upper surface of the bearing alloy layer 3, and this intermediate layer is formed. The overlay 4 may be provided on the upper surface. Further, the overlay 4 may be provided directly on the upper surface of the back metal 2. Further, a conformable layer of a soft metal such as pure Sn or a resin such as PAI may be provided on the upper surface of the overlay 4. The base of the overlay 4 may be made of In. Further, the added metal for increasing the mechanical strength and hardness of the overlay 4 is not limited to 11, but may be any one of Sb, Ag, and Cd, or two or more of them may be used. . Industrial applicability
以上のように、 本発明にかかる摺動部材は、 軸受合金上にオーバレイと称され る厚さ 3 0 z m以下の摺動層を形成したすべり軸受として有用である。  As described above, the sliding member according to the present invention is useful as a slide bearing in which a sliding layer having a thickness of 30 zm or less called an overlay is formed on a bearing alloy.

Claims

請 求 の 範 囲 The scope of the claims
1. 基材上に摺動層を備え、 前記摺動層は、 Sn、 P.b、 B i、 I n、 A.1の うちのいずれかの金属またはその金属をベースとした合金を素地とし、 この素地 にアモルファスカーボンを添加したことを特徴とする摺動部材。 1. A sliding layer is provided on a base material, and the sliding layer is made of any one of Sn, Pb, Bi, In, and A.1 or an alloy based on the metal, and A sliding member characterized by adding amorphous carbon to the substrate.
2. 請求項 1記載の摺動部材において、  2. The sliding member according to claim 1,
前記素地の結晶子径が 1 00 nm以下であることを特徴とする。  The base material has a crystallite diameter of 100 nm or less.
3. 請求項 1記載の摺動部材において、  3. The sliding member according to claim 1,
前記素地に、 S n、 Pb、 B i、 I n、 Al、 Cu、 Sb、 Ag、 Cdのうち のいずれか 1種以上の金属を添加したことを特徴とする。  It is characterized in that at least one metal selected from the group consisting of Sn, Pb, Bi, In, Al, Cu, Sb, Ag and Cd is added to the substrate.
4.. 請求項 2記載の摺動部材において、  4. In the sliding member according to claim 2,
前記素地に、 S n、 Pb、 B i、 I n、 Al、 Cu、 Sb、 Ag、 Cdのうち のいずれか 1種以上の金属を添加したことを特徴とする。  It is characterized in that at least one metal selected from the group consisting of Sn, Pb, Bi, In, Al, Cu, Sb, Ag and Cd is added to the substrate.
5. 請求項 3記載の摺動部材において、  5. The sliding member according to claim 3,
前記添加金属が Sn、 Pb、 B i、 I n、 A 1のうちのいずれか 1種以上の金 属であるとき、 各添加金属の含有量は 20質量%以下で、 かつそれら添加金属の 合計の含有量は 30質量%以下であることを特徴とする。  When the additive metal is at least one of Sn, Pb, Bi, In, and A1, the content of each additive metal is 20% by mass or less, and the total of these additive metals is Is not more than 30% by mass.
6. 請求項 4記載の摺動部材において、  6. The sliding member according to claim 4,
前記添加金属が Sn、 Pb、 B i、 I n、 A 1のうちのいずれか 1種以上の金 属であるとき、 各添加金属の含有量は 20質量%以下で、 かつそれら添加金属の 合計の含有量は 30質量%以下であることを特徴とする。  When the additive metal is at least one of Sn, Pb, Bi, In, and A1, the content of each additive metal is 20% by mass or less, and the total of these additive metals is Is not more than 30% by mass.
7. 請求項 3ないし 6のいずれかに記載の摺動部材において、  7. The sliding member according to any one of claims 3 to 6,
前記添加金属が Cu、 Sb、 Ag、 C dのうちのいずれか 1種以上の金属であ るとき、 各添加金属の含有量は 5質量%以下で、 かつそれら添加金属の合計の含 有量は 10質量%以下であることを特徴とする。  When the additive metal is at least one of Cu, Sb, Ag, and Cd, the content of each additive metal is 5% by mass or less, and the total content of these additive metals. Is not more than 10% by mass.
8. 請求項 1記載の摺動部材において、  8. The sliding member according to claim 1,
前記摺動層の素地は、 八1が20〜80質量%、 S nが 20〜80質量%であ る A 1と S nとの合金であり、 この A 1— S n合金の素地にアモルファスカーボ ンを添加したことを特徴とする。 The base material of the sliding layer is as follows: 81 is 20 to 80% by mass and Sn is 20 to 80% by mass. An alloy of A1 and Sn, wherein amorphous carbon is added to the base material of the A1-Sn alloy.
9. 請求項 8記載の摺動部材において、  9. The sliding member according to claim 8,
前記素地を構成する A 1と Snとの合金に、 S i、 Cu、 Sb、 I n、 A g.の うちのいずれか 1種以上の金属を添加したことを特徴とする。  The alloy of A1 and Sn constituting the base is added with at least one metal selected from the group consisting of Si, Cu, Sb, In, and Ag.
10. 請求項 9記載の摺動部材において、  10. The sliding member according to claim 9,
. 前記 S i、 Cu、 Sb、 I n、 A gの含有量は、 .単独で 5質量%以下、 合計で 10質量%以下であることを特徴とする。  The content of Si, Cu, Sb, In, and Ag is characterized by being 5 mass% or less alone and 10 mass% or less in total.
1 1. 請求項 8ないし 1 0のいずれかに記載の摺動部材において、  1 1. The sliding member according to any one of claims 8 to 10,
前記素地中の A 1または S nの粒子径が 1 m以下であることを特徴とする。 The particle diameter of A 1 or Sn in the substrate is 1 m or less.
12. 請求項 8ないし 1 0のいずれかに記載の摺動部材において、 . 12.The sliding member according to any one of claims 8 to 10, wherein
前記素地中の A 1または S nの粒子径が 0. 05 m以下であることを特徴と する。  The particle diameter of A 1 or Sn in the substrate is 0.05 m or less.
13. 請求項 8ないし 1 0記載の摺動部材において、  13. The sliding member according to claims 8 to 10,
前記素地の結晶子径が 30 nm以下であることを特徴とする。  The base material has a crystallite diameter of 30 nm or less.
14. 請求項 1 1記載の摺動部材において、  14. The sliding member according to claim 11,
前記素地の結晶子径が 30 nm以下であることを特徴とする。  The base material has a crystallite diameter of 30 nm or less.
15. 請求項 12記載の摺動部材において、  15. The sliding member according to claim 12,
前記素地の結晶子径が 30 nm以下であることを特徴とする。  The base material has a crystallite diameter of 30 nm or less.
16. 請求項 1ないし 6、 8ないし 10のいずれかに記載の摺動部材におい て、  16. In the sliding member according to any one of claims 1 to 6, and 8 to 10,
前記アモルファスカーボンの含有量は 0. 1〜8質量%であることを特徴とす る。  The content of the amorphous carbon is 0.1 to 8% by mass.
17. 請求項 7記載の摺動部材において、  17. The sliding member according to claim 7,
前記アモルファス力一ボンの含有量は 0. 1〜8質量%であることを特徴とす る。  The content of the amorphous carbon is 0.1 to 8% by mass.
18. 請求項 1 1記載の摺動部材において、 前記アモルファスカーボンの含有量は 0 · 1 〜 8質量%であること 特徴とす る 18. The sliding member according to claim 11, The content of the amorphous carbon is 0.1 to 8% by mass.
1 9 . 請求項 1 2記載の摺動部材において、  19. The sliding member according to claim 12,
前記アモルファスカーボンの含有量は 0 . 1 へ 8質量%であることを特徴とす る  The content of the amorphous carbon is 0.1 to 8% by mass.
2 0 . 請求項 1 3記載の摺動部材において、  20. The sliding member according to claim 13,
前記アモルファスカーボンの含有量は 0 · 1 へ 8質量%であることを特徴とす る  The content of the amorphous carbon is from 8 to 8% by mass.
2 1 . 請求項 1 4記載の摺動部材において、  21. The sliding member according to claim 14,
前記アモルファス力一ボンの含有量は 0 . 1 へ 8質量%であることを特徴とす る。  The content of the amorphous carbon is 0.1 to 8% by mass.
2 2 . 請求項 1 5記載の摺動部材において、  22. The sliding member according to claim 15,
前記アモルファス力一ボンの含有量は 0 . 1 へ 8質量%であることを特徴とす る  The content of the amorphous carbon is 0.1 to 8% by mass.
' 2 3 . 請求項 1ないし 6 、 8ないし 1 0のいずれかに記載の摺動部材におい て、  '23. The sliding member according to any one of claims 1 to 6 and 8 to 10,
前記摺動層の厚さは、 3 O z m以下であることを特徴とする。  The thickness of the sliding layer is 3 Ozm or less.
2 4 . 請求項 7記載の摺動部材において、  24. The sliding member according to claim 7,
前記摺動層の厚さは、 3 0 / m以下であることを特徴とする。  The sliding layer has a thickness of 30 / m or less.
2 5 . 請求項 1 1記載の摺動部材において、  25. The sliding member according to claim 11,
前記摺動層の厚さは、 3 0 m以下であることを特徴とする。  The thickness of the sliding layer is 30 m or less.
2 6 . 請求項 1 2記載の摺動部材において、  26. The sliding member according to claim 12,
前記摺動層の厚さは、 3 0 m以下であることを特徴とする。  The thickness of the sliding layer is 30 m or less.
2 7 . 請求項 1 3記載の摺動部材において、  27. The sliding member according to claim 13,
前記摺動層の厚さは、 3 0 m以下であることを特徴とする。  The thickness of the sliding layer is 30 m or less.
2 8 . 請求項 1 4記載の摺動部材において、  28. The sliding member according to claim 14,
前記摺動層の厚さは、 3 0 / m以下であることを特徴とする。 The sliding layer has a thickness of 30 / m or less.
29. 請求項 15記載の摺動部材において、 29. The sliding member according to claim 15,
前記摺動層の厚さは、 30 /m以下であることを特徴とする。 The sliding layer has a thickness of 30 / m or less.
30. 請求項 1 6記載の摺動部材において、  30. The sliding member according to claim 16,
前記摺動層の厚さは、 3 O m以下であることを特徴とする。 The thickness of the sliding layer is 3 Om or less.
3 1. 請求項 17記載の摺動部材において、  3 1. The sliding member according to claim 17,
前記摺動層の厚さは、 3 O zm以下であることを特徴とする。 . .The thickness of the sliding layer is 3 Ozm or less. .
3.2. 請求項 18記載の摺動部材において、 3.2. The sliding member according to claim 18,
前記摺動層の厚さは、 30〃m以下であることを特徴とする。 The sliding layer has a thickness of 30 μm or less.
33. 請求項 19記載の摺動部材において、  33. The sliding member according to claim 19,
前記摺動層の厚さは、 30 zm以下であることを特徴とする。 The sliding layer has a thickness of 30 zm or less.
34. 請求項 20記載の摺動部材において、  34. The sliding member according to claim 20,
前記摺動層の厚さは、 30 m以下であることを特徴とする。 The thickness of the sliding layer is 30 m or less.
35. 請求項 2 1記載の摺動部材において、  35. The sliding member according to claim 21,
前記摺動層の厚さは、 30 im以下であることを特徴とする。 The sliding layer has a thickness of 30 im or less.
36. 請求項 22記載の摺動部材において、  36. The sliding member according to claim 22,
前記摺動層の厚さは、 30 zm以下であることを特徴とする。  The sliding layer has a thickness of 30 zm or less.
PCT/JP2004/005512 2003-04-17 2004-04-16 Sliding member WO2004092602A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112004000651T DE112004000651B4 (en) 2003-04-17 2004-04-16 Slide
JP2005505486A JP4589229B2 (en) 2003-04-17 2004-04-16 Sliding member
GB0521504A GB2415753B (en) 2003-04-17 2004-04-16 Sliding member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-112803 2003-04-17
JP2003112803 2003-04-17

Publications (1)

Publication Number Publication Date
WO2004092602A1 true WO2004092602A1 (en) 2004-10-28

Family

ID=33296067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005512 WO2004092602A1 (en) 2003-04-17 2004-04-16 Sliding member

Country Status (4)

Country Link
JP (1) JP4589229B2 (en)
DE (1) DE112004000651B4 (en)
GB (1) GB2415753B (en)
WO (1) WO2004092602A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033709A1 (en) * 2005-09-20 2007-03-29 Ks Gleitlager Gmbh Composite antifriction bearing material
JP2007270893A (en) * 2006-03-30 2007-10-18 Daido Metal Co Ltd Sliding member
JP2008540839A (en) * 2005-05-13 2008-11-20 フエデラル―モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Sliding bearing composite material, use and manufacturing method
JP2008540838A (en) * 2005-05-13 2008-11-20 フエデラル―モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Sliding bearing composite material, use and manufacturing method
JP2009264441A (en) * 2008-04-23 2009-11-12 Daido Metal Co Ltd Sliding member
WO2012005325A1 (en) * 2010-07-09 2012-01-12 大同メタル工業株式会社 Sliding member
JP2012246945A (en) * 2011-05-25 2012-12-13 Daido Metal Co Ltd Aluminum alloy bearing
JP2013119633A (en) * 2011-12-06 2013-06-17 Toyota Motor Corp Sliding member
JP2015527535A (en) * 2012-06-13 2015-09-17 マーレ メタル レーベ ソシエダーデ アノニマMAHLE Metal Leve S/A Bearing for internal combustion engine
WO2015159842A1 (en) * 2014-04-15 2015-10-22 大豊工業株式会社 Sliding member and sliding bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108229A (en) * 1992-09-28 1994-04-19 Daido Metal Co Ltd Plain bearing material having overlay excellent in seizing resistance
JP2000119791A (en) * 1998-10-09 2000-04-25 Taiho Kogyo Co Ltd Aluminum alloy for plain bearing and its production
JP2000129280A (en) * 1998-10-26 2000-05-09 Toyota Central Res & Dev Lab Inc Hard amorphous carbon-dispersed composite material
JP2004018979A (en) * 2002-06-19 2004-01-22 Toyota Motor Corp Composite plating film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220336A (en) * 1975-08-08 1977-02-16 Daido Metal Co Ltd Multilayer sliding material and its production method
GB1523665A (en) * 1976-06-23 1978-09-06 Daido Metal Co Ltd Bearing materials
GB8808323D0 (en) * 1988-04-08 1988-05-11 T & N Technology Ltd Improvements in/relating to coating of metal substrates
JPH07252693A (en) * 1994-03-17 1995-10-03 Daido Metal Co Ltd Plain bearing having composite plated film
DE19963385C1 (en) * 1999-12-28 2001-01-25 Federal Mogul Wiesbaden Gmbh Composite material layer for sliding bearings has a sliding layer made of a tin matrix in which tin-copper particles are embedded

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108229A (en) * 1992-09-28 1994-04-19 Daido Metal Co Ltd Plain bearing material having overlay excellent in seizing resistance
JP2000119791A (en) * 1998-10-09 2000-04-25 Taiho Kogyo Co Ltd Aluminum alloy for plain bearing and its production
JP2000129280A (en) * 1998-10-26 2000-05-09 Toyota Central Res & Dev Lab Inc Hard amorphous carbon-dispersed composite material
JP2004018979A (en) * 2002-06-19 2004-01-22 Toyota Motor Corp Composite plating film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540839A (en) * 2005-05-13 2008-11-20 フエデラル―モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Sliding bearing composite material, use and manufacturing method
JP2008540838A (en) * 2005-05-13 2008-11-20 フエデラル―モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Sliding bearing composite material, use and manufacturing method
WO2007033709A1 (en) * 2005-09-20 2007-03-29 Ks Gleitlager Gmbh Composite antifriction bearing material
JP2007270893A (en) * 2006-03-30 2007-10-18 Daido Metal Co Ltd Sliding member
JP4504328B2 (en) * 2006-03-30 2010-07-14 大同メタル工業株式会社 Sliding member
JP2009264441A (en) * 2008-04-23 2009-11-12 Daido Metal Co Ltd Sliding member
JP4695160B2 (en) * 2008-04-23 2011-06-08 大同メタル工業株式会社 Sliding member
US9051967B2 (en) 2010-07-09 2015-06-09 Daido Metal Company Ltd. Sliding member
WO2012005325A1 (en) * 2010-07-09 2012-01-12 大同メタル工業株式会社 Sliding member
GB2500974B (en) * 2010-07-09 2016-07-27 Daido Metal Co Sliding Bearing
GB2500974A (en) * 2010-07-09 2013-10-09 Daido Metal Co Sliding member
JP2012246945A (en) * 2011-05-25 2012-12-13 Daido Metal Co Ltd Aluminum alloy bearing
JP2013119633A (en) * 2011-12-06 2013-06-17 Toyota Motor Corp Sliding member
JP2015527535A (en) * 2012-06-13 2015-09-17 マーレ メタル レーベ ソシエダーデ アノニマMAHLE Metal Leve S/A Bearing for internal combustion engine
WO2015159842A1 (en) * 2014-04-15 2015-10-22 大豊工業株式会社 Sliding member and sliding bearing
JP2015203461A (en) * 2014-04-15 2015-11-16 大豊工業株式会社 Slide member and slide bearing

Also Published As

Publication number Publication date
JPWO2004092602A1 (en) 2006-07-06
JP4589229B2 (en) 2010-12-01
DE112004000651T5 (en) 2006-02-16
GB0521504D0 (en) 2005-11-30
GB2415753A (en) 2006-01-04
GB2415753B (en) 2006-09-13
DE112004000651B4 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
KR101953634B1 (en) Wear resistant lead free alloy sliding element and method of making
KR100814656B1 (en) Free copper alloy sliding material
KR100705728B1 (en) Aluminum alloy for tribologically loaded surfaces
KR940009673B1 (en) Composite material with at least one sliding surface supplied by cathodic sputtering and production method of the material
JP6687322B2 (en) Multi-layer plain bearing
Spalvins Coatings for wear and lubrication
CN1312304C (en) Aluminium wrought alloy
US20010021353A1 (en) Copper alloy sliding material
US20080145554A1 (en) Thermal spray powders for wear-resistant coatings, and related methods
JP2001247995A (en) Multilayer material for slide bearing
WO2004092602A1 (en) Sliding member
US7279227B2 (en) Spraying piston ring
KR102174328B1 (en) Tappet coated low-friction layer and method of fabricating the same
KR100413721B1 (en) Multilayer material
JP6249533B2 (en) Nano composite solid lubricant coating
US9523387B2 (en) Bearing linings
JP2003156045A (en) Sliding member
Xu et al. Tribological behavior of a TiSiCN coating tested in air and coolant
KR102154823B1 (en) Piston ring coated low-friction layer and method of fabricating the same
KR102030456B1 (en) Target for physical vapor deposition, nano composite coating layer using the same and method of fabricating thereof
JP4224338B2 (en) Sliding member
KR102174327B1 (en) Piston pin coated low-friction layer and method of fabricating the same
Sanchez et al. Wear Properties of an In-Situ Processed TiC-Reinforced Bronze
Ono et al. Lead-free bearing material for highly loaded engines
Rincon Romero et al. SiC-YAG composite reinforced Ni-Co alloy coatings produced by HVOF thermal spray: Characterization and wear behaviour at room and high temperature

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505486

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 0521504

Country of ref document: GB

RET De translation (de og part 6b)

Ref document number: 112004000651

Country of ref document: DE

Date of ref document: 20060216

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004000651

Country of ref document: DE

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607