WO2004091793A1 - Microdispositif de transfert collectif d'une pluralite de liquide - Google Patents

Microdispositif de transfert collectif d'une pluralite de liquide Download PDF

Info

Publication number
WO2004091793A1
WO2004091793A1 PCT/FR2004/050155 FR2004050155W WO2004091793A1 WO 2004091793 A1 WO2004091793 A1 WO 2004091793A1 FR 2004050155 W FR2004050155 W FR 2004050155W WO 2004091793 A1 WO2004091793 A1 WO 2004091793A1
Authority
WO
WIPO (PCT)
Prior art keywords
micropipettes
micro
transfer device
liquids
reservoirs
Prior art date
Application number
PCT/FR2004/050155
Other languages
English (en)
Inventor
Frédéric Revol-Cavalier
Henri Blanc
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO2004091793A1 publication Critical patent/WO2004091793A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0838Capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/02Drop detachment mechanisms of single droplets from nozzles or pins
    • B01L2400/027Drop detachment mechanisms of single droplets from nozzles or pins electrostatic forces between substrate and tip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • G01N2035/1037Using surface tension, e.g. pins or wires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices
    • G01N35/1074Multiple transfer devices arranged in a two-dimensional array

Definitions

  • the invention relates to an assembly comprising two parts, said assembly making it possible to carry out transfers of liquids from one part to another of the assembly.
  • the invention also relates, in addition to a method of manufacturing the assembly according to the invention, to methods respectively making it possible to fill, withdraw or store liquids in a part of the assembly according to the invention .
  • Microsystems are increasingly studied in recent years in the fields of mechanical, optical, biological sensors, for medical diagnostics or the food industry.
  • Silicon is an element often used to build microsystems. Indeed, silicon is easily structured. It thus allows to carry out biological microsystems of small dimensions, such as for example microchannels in which the biological fluids will be able to move, or micro-chambers of reactions in which one will be able to carry out biological or chemical reactions with controlled volumes.
  • Silicon and microtechnology techniques also allow these miniaturized devices to be associated with electrical contacts, integrated heating systems or more complex functions such as microelectronic circuits.
  • microtechnologies it is possible to produce components comprising several thousand microreactors per cm 2 , the volume of each microreactor being able to range from a few pL to several tens, even hundreds of nL.
  • microsystems obtained by the techniques of microtechnology must be used.
  • product dispensing robots make it possible to eject drops of liquid of very small volume (a few tens of pL) on flat supports, or even in microreactors if the dispensing is carried out by piezoelectric heads or by a system inkjet.
  • the robots are equipped with multi heads, each of which may contain an identical or different product.
  • such robots cannot simultaneously deposit several hundreds, even several thousand plots only separated by a few tens of micrometers.
  • Multiplot microsystems are known, such as those used for injecting drugs under the skin (see documents [1] and [2] referenced at the end of the description).
  • the needles of these microsystems are used to transfer through the epidermis a product contained in a reservoir, a gel or a patch.
  • its systems made of silicon, glass, plastic or metal using microtechnology techniques are used to inject a single product under the skin: all needles have the same function.
  • the present invention relates to a one-piece transfer device allowing the collective and simultaneous transfer of micro-quantities of liquid.
  • This monobloc transfer device consists of a plate having a front face and a rear face, said plate being structured so that its rear face is bristling with a set of micropipettes, each micropipette being pierced with an axial hole which extends through the plate.
  • the transfer device is a one-piece assembly in which the micropipettes are integral with the plate.
  • the transfer device according to the invention is not a complex device: it does not require the presence of a pump or a pressurized chamber to suck up the micro-quantities of liquids.
  • micro-quantity of liquids is meant a few nanoliters to a few tens, or even a few hundred picoliters of liquids.
  • the micropipettes of the device are arranged on the rear face of the plate in a regular manner.
  • each micropipette of the device is arranged at a constant distance or not from its closest neighbors.
  • the pitch separating the micropipettes is different in the two directions of the plane of the device.
  • each micropipette is separated from its neighbor by a no interpipette between a few tens of micrometers and several hundred micrometers ( ⁇ m).
  • the transfer device comprises between several tens and several thousand micropipettes.
  • the transfer device comprises a density of micropipettes of between 1000 and 30,000 micropipettes per cm 2 of plate.
  • the transfer device comprises a density of micropipettes of approximately 2000 micropipettes per cm 2 of plate.
  • the transfer device comprises a density of micropipettes of approximately 20,000 micropipettes per cm 2 of plate.
  • the transfer device according to the invention is consumable. In other words, the transfer device can be for single use.
  • the device can also be set aside and stored so as to preserve the samples of liquids it contains for a determined period of time. In the latter case, the micropipettes containing the samples to be kept can be separated (cleaved) from the device and stored.
  • the invention also relates to an assembly allowing the collective and simultaneous transfer of micro-quantities of liquid, said assembly comprising:
  • microsystem consisting of a substrate, one face of which has a plurality of micro-reservoirs, each micro-reservoir being able to receive only one micropipette, the plurality of micro-reservoirs being distributed over the face of the substrate so that the micropipettes can be received simultaneously by the same number of micro-reservoirs.
  • Each micropipette is opposite the microreservoir into which it must be introduced to transfer a micro-quantity of liquid, that is to say, as the case may be, injecting or withdrawing said micro-quantity of liquid.
  • the micropipettes are thus arranged so that they fit without problem into said micro-reservoirs of the microsystem. Furthermore, as the micropipettes are received simultaneously by the micro-reservoirs, this supposes that there are at least as many micro-reservoirs as micropipettes. In other words, the number of micropipettes making up the device will be at most equivalent to the number of micro-reservoirs in the microsystem.
  • Another object of the invention relates to the method of manufacturing the transfer device monoblock according to the invention.
  • This process includes several steps. First of all, a substrate of a first material must be provided in order to make the device there. Then, holes are drilled in the thickness of the substrate. Then, a chemical modification of the first material is carried out so that the faces of the substrate as well as the walls of the holes made in the previous step are transformed into a second material. One then chooses one of the faces of the substrate to carry out the etching of the second material there; the etching is continued until the first material of the substrate is revealed. Finally, the first material revealed in the previous step is etched until a level of etching corresponding to the rear face of the device plate is reached. This etching thus produced will leave tubes of second material constituting the micropipettes.
  • the chemical modification of the first material will be an oxidation.
  • the first material is silicon.
  • the thickness of the silicon substrate will advantageously be between a few tens of micrometers and 500 ⁇ m.
  • the second material will be silicon oxide.
  • a device is thus obtained comprising a network of micropipettes made of silicon oxide, which has the advantage of being as close as possible to the structure of the glass capillaries.
  • the manufacturing method according to the invention makes it possible to obtain transparent micropipettes (the micropipettes being made of silicon oxide), which has the advantage that one can visualize the filling of a liquid inside said micropipettes and thus ensure, by a simple visual check, that no pipette is blocked.
  • This manufacturing process also has the advantage of limiting the number of photolithography and deep etching steps of the first material to be produced compared to a process allowing micropipettes to be made from said first material.
  • silicon micropipettes according to the prior art is described in document [3] referenced at the end of this description.
  • the etching steps are carried out using a laser or deep plasma etching.
  • the micropipettes obtained have a height which is a function of the thickness of the substrate of first material in which the device is made.
  • each micropipette is less than the diameter of the micro-reservoir into which it must be introduced to carry out the transfer of a liquid. Note that by liquid transfer means the injection or withdrawal of liquid.
  • the outside diameter of each micropipette will advantageously be between 50 ⁇ m and several hundred ⁇ m.
  • the internal diameter of each micropipette depends on the amount of liquid to be transferred and the height of the device. Indeed, the liquid to be transferred by each micropipette is kept only in the space constituting the interior of the micropipettes.
  • the internal diameter of each micropipette will be from a few tens of ⁇ m to several hundred ⁇ m.
  • a first application of said assembly relates to a collective and simultaneous filling process of the micro-reservoirs of the assembly's microsystem.
  • This process includes several steps. First of all, the micropipettes of the transfer device are filled by depositing a determined quantity of liquid on the front face of the transfer device. The liquid will thus enter the micropipettes.
  • the filling of the micropipettes can be carried out by capillary action. Then, remove the excess liquid on the front of the transfer device.
  • the micropipettes are placed in the micro-reservoirs of the microsystem which they must fill and the liquid included in the micropipettes is transferred to the micro-reservoirs.
  • the liquid intended to fill the micropipettes can be introduced into the micropipettes through the front face of the device as we have just seen, but also through the rear face of the device.
  • the transfer of the liquid included in the micropipettes will be done using a technique chosen from blowing, soaking, diffusion of the liquid, shocking or the application of an electric field.
  • an electrode may be placed at each end of the micropipettes.
  • a second application of the assembly according to the invention consists of a method of simultaneous and collective sampling of micro-quantity of liquids, different or not, present in the micro-reservoirs of the microsystem of the assembly, said sampling being carried out at using the transfer device of the assembly according to the invention.
  • This process includes different steps. The first step is to place the micropipettes of the transfer device in the micro-reservoirs of the microsystem containing the liquids to be sampled. Then, the micropipettes are filled. In the end, each micropipette collects at least part of the liquid contained in the micro-reservoir in which it was immersed.
  • the filling of the micropipettes will be by capillarity.
  • the removal method further comprises the steps of moving the transfer device monobloc of the assembly according to the invention above a receiving support and injecting liquid onto the new support by blowing, by soaking, by diffusion, by shocking or by application of an electric field.
  • the application of an electric field can be achieved by placing an electrode at each end of the micropipettes.
  • the receiving medium on which the liquids withdrawn are deposited will be a microsystem consisting of a substrate, one face of which has a plurality of micro-reservoirs, each micro-reservoir being able to receive only one micropipette , the plurality of micro-reservoirs being distributed over the face of the substrate so that the micropipettes can be received simultaneously by the same number of micro-reservoirs.
  • This support could be a microsystem identical to that included in the assembly according to the invention. It may also include more or less micro-reservoirs than the microsystem of the assembly, the important thing being that there are enough micro-reservoirs to simultaneously receive all the micropipettes of the device of the assembly according to the invention.
  • the reception support will be chosen from a gel, a blotter or a membrane making it possible to absorb the liquids retained in the micropipettes.
  • the injection of the liquids onto the reception support will be carried out by capillary action.
  • Another application of the assembly according to the invention is a method for preserving microquantities of liquids. This method comprises a step of sampling the micro-quantities of liquids to be preserved according to the sampling method seen above, a step of storing, in a preservation medium, the transfer device whose micropipettes contain the liquids collected, and a step of recovery, if necessary, of the liquid contained in one or more micropipettes.
  • This preservation process is particularly advantageous because it makes it possible to withdraw and then store a quantity of reaction product originating from the micro-reservoirs of a microsystem at different stages of the course of said reaction.
  • the transfer device and in particular the assembly comprising the transfer device and the microsystem according to the invention has numerous applications. For example, it can be used whenever you need to do analyzes or reactions that require multiple feeding and parallelized with a small volume of liquid. Likewise, each time we want to store, duplicate or transfer part of the liquids contained in a system with microcavities in another system with microcavities or on any other medium allowing the continuation of a reaction or analysis of this reaction.
  • the term “other support” means a slide of glass, silicon, plastic, etc., or a gel, a membrane or a blotter, whether or not soaked with a compound allowing the reaction to continue or the reaction to be analyzed.
  • This assembly can for example be used for duplicating a DNA chip or depositing DNA samples on any support such as a glass plate. Said assembly can also be used to produce DNA chips or substrate chips, and in particular to produce an idiosyncratic imprint of an enzymatic sample.
  • This set could also be used in the field of protein chips for the collective distribution of a protein partner on a protein chip in order to detect a protein / protein interaction.
  • FIG. 1a is a diagram of the device for transferring the assembly seen from the side along the cutting axis XX of FIG. 1b,
  • FIG. 1b is a diagram of the transfer device of the assembly seen from below
  • FIGS. 2a to 2d illustrate the stages of the process for manufacturing the transfer device
  • FIG. 3 illustrates the successive stages of the collective and simultaneous filling process of the micro-reservoirs of the whole microsystem
  • FIG. 4 illustrates the successive stages of the process of collective and simultaneous sampling of micro-quantity of liquids using the assembly according to the invention
  • FIG. 5a and 5b illustrate the steps of the method for preserving micro-quantities of liquids according to the invention.
  • the transfer device 1 of the assembly according to the invention has a plate which has a front face 2 and a rear face 3, micropipettes 4 which are spiked on the rear face 3 of the plate and each micropipette is pierced with an axial hole 5 which extends through the plate.
  • the micropipettes have a height 6, an outside diameter 7 and an inside diameter 8, said inside diameter depending on the amount of liquid to be transferred by the micropipette and on the height 9 of the device.
  • the micropipettes are arranged on the rear face of the plate with an interpipette pitch 10 in the direction of the axis XX and with a different pitch 11 in the direction orthogonal to the axis XX.
  • FIG. 2a a silicon substrate 20
  • FIG. 2b a silicon substrate 20
  • This step of oxidizing the substrate can be carried out in an oxidation oven.
  • the microsystem 30 being ready, we follow the steps of FIG. 3.
  • the micropipettes are then placed in the micro-reservoirs 31 of the microsystem 30 which they have to fill and the liquid included in the micropipettes is transferred to the micro-reservoirs by blowing.
  • FIG. 4 presents the case where it is desired to take different liquids present in the micro-reservoirs 31 of the microsystem 30 of the assembly according to the invention.
  • the micropipettes 4 of the device 1 are placed in the micro-reservoirs 31 of the microsystem 30 containing the liquids to be sampled.
  • the micropipettes are filled by capillarity.
  • Each micropipette will recover at least part of the liquid contained in the microreservoir in which it will be immersed.
  • the device 1 is removed from the microsystem on which it has been placed, there is thus found in each micropipette a sample of the liquid contained in the micro-reservoir in which it will have been soaked.
  • the device 1 can be moved to another support and the liquid contained in the micropipettes can then be injected into the new support. We can do this to fill the micro-reservoirs of the microsystem in the preliminary step of Figure 3.
  • the transfer of liquids using the transfer device according to the invention is a discrete transfer in the sense that the volume withdrawn is limited by the volume of sample that each micropipette can contain. If you want to take a larger quantity of liquid, you will have to reposition the micropipettes of the device in the micro-reservoirs of the microsystem containing the liquids to be sampled then release the liquids sampled in the new support, and this as many times as necessary. Finally, using the transfer device, it is possible to take liquids present in the micro-reservoirs of the microsystem of the assembly, said liquids undergoing a determined reaction, and then store these devices. The samples of the reaction liquids can be taken at different times of the reaction.
  • liquids are placed in the micro-tanks of the micro-system.
  • These liquids can be liquids of different concentrations (ex: concentration range of a chemical compound entering into the reaction studied, or range of concentrations of "Primers” (DNA primers for example) or enzymes for the realization of 'a PCR reaction (“Polymerase Chain Reaction”) or different liquids (eg comparison of different enzymes in a biological process, or comparison of different chemical oxidants for a studied chemical reaction).
  • the liquids present in the micro-reservoirs 31 of the microsystem 30 are sampled using the transfer device 1
  • FIG. 5a and storing said device 1.
  • This device can for example be stored in the freezer. Note that this sampling and storage operation can be repeated at different stages of the reaction taking place in the microreservoirs.
  • the liquids present in the micro-reservoirs 31 of the microsystem are observed and it is determined whether an interesting reaction has taken place and if so, in which microreservoir. It will then be possible to find the liquid which gave rise to the interesting reaction in the determined micro-reservoir by removing the stored transfer device or devices and recovering the micropipette 4 containing the interesting information.
  • Figure 5b To recover the liquid contained in said micropipette, it is possible, for example, to separate the micropipette containing the liquid of interest from the device or else use a blowing system (for example a capillary) to eject the liquid.
  • a blowing system for example a capillary

Landscapes

  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

L'invention a trait à un dispositif de transfert monobloc permettant le transfert collectif et simultané de micro-quantités de liquide, ledit dispositif étant constitué d'une plaque possédant une face avant et une face arrière, la face arrière étant hérissée d'un ensemble de micropipettes, chaque micropipette étant percée d'un trou axial qui se prolonge au travers de la plaque. L'invention concerne également un ensemble permettant le transfert collectif et simultané de micro-quantités de liquide, ledit ensemble comprenant un dispositif de transfert monobloc selon l'invention et un microsystème comprenant une pluralité de micro­ reservoirs. L'invention concerne aussi un procédé de fabrication dudit dispositif de transfert, ainsi que des procédés de prélèvement, de remplissage et de conservation de liquides à l'aide de l'ensemble selon l'invention.

Description

MICRODISPOSITIF DE TRMîSFERT COLLECTIF D'UNE PLUR .ITE DE LIQUIDE
DESCRIPTION
DOMAINE TECHNIQUE
L'invention se rapporte à un ensemble comportant deux parties, ledit ensemble permettant d'effectuer des transferts de liquides d'une partie à une autre de l'ensemble.
L'invention se rapporte également, outre à un procédé de fabrication de l'ensemble selon l'invention, à des procédés permettant respectivement de réaliser le remplissage, le prélèvement ou la conservation de liquides dans une partie de l'ensemble selon l'invention.
ETAT DE LA TECHNIQUE ANTERIEURE
Les microsystèmes sont de plus en plus étudiés ces dernières années dans les domaines des capteurs mécaniques, optiques, biologiques, pour le diagnostique médical ou l'industrie agroalimentaire.
Ils permettent notamment la réalisation de micromoteurs, de capteurs, de puces à ADN, mais également de systèmes fluidiques plus complexes, tels que ceux réalisés dans les laboratoires intégrés sur une puce ou « lab on chip » en anglais .
Le silicium est un élément souvent utilisé pour construire des microsystèmes. En effet, le silicium est facilement structurable. Il permet ainsi de réaliser des microsystèmes biologiques de petites dimensions, comme par exemple des microcanaux dans lesquels les fluides biologiques vont pouvoir se déplacer, ou des microchambres de réactions dans lesquelles on va pouvoir réaliser des réactions biologiques ou chimiques avec des volumes contrôlés.
Le silicium et les techniques de la microtechnologie permettent aussi d'associer à ces dispositifs miniaturisés des contacts électriques, des systèmes de chauffage intégrés ou des fonctions plus complexes comme des circuits microélectroniques.
On peut, grâce aux microtechnologies, réaliser des composants comprenant plusieurs milliers de microréacteurs par cm2, le volume de chaque microréacteur pouvant aller de quelques pL à plusieurs dizaines, voire centaines de nL.
Pour remplir ou transférer des liquides dans ces microréacteurs, on doit utiliser des microsystèmes obtenus par les techniques de la microtechnologie. Par exemple, les robots de dispense de produits permettent d'éjecter des gouttes de liquide de tout petit volume (quelques dizaines de pL) sur des supports plans, voire dans des microréacteurs si la dispense est effectuée par des têtes piezo électriques ou par un système de jet d'encre. Pour délivrer simultanément des gouttes sur un support, les robots sont équipés de multi têtes, chacune pouvant contenir un produit identique ou non. Mais de tels robots ne peuvent toutefois pas déposer simultanément plusieurs centaines, voire plusieurs milliers de plots seulement séparés de quelques dizaines de micromètres.
Lorsque l'on désire prélever du liquide dans un microréacteur contenant quelques nL de liquide, il est possible d'utiliser un robot de dispense muni d'une pipette adaptée à la géométrie et au volume du microréacteur. Mais lorsque l'on désire réaliser cette opération sur des centaines de microréacteurs, aucun robot sur le marché ne peut le réaliser de manière collective.
Par ailleurs, pour certaines applications, notamment de type biologique, il est important de pouvoir dispenser et prélever rapidement le liquide dans le microréacteur, avant que celui-ci ne s'évapore. Or, à l'échelle du nanolitre, l' evaporation se fait en quelques secondes. Cela exclut donc l'utilisation des robots actuellement disponibles sur le marché.
On connaît des microsystèmes multiplots tels que ceux utilisés pour l'injection de médicaments sous la peau (voir les documents [1] et [2] référencés à la fin de la description) . Les aiguilles de ces microsystèmes servent à transférer à travers l'epiderme un produit contenu dans un réservoir, un gel ou un patch. Cependant, ses systèmes réalisés en silicium, en verre, en plastique ou en métal à l'aide de techniques de microtechnologie sont utilisés pour injecter un produit unique sous la peau : toutes les aiguilles ont la même fonction. EXPOSE DE L' INVENTION
La présente invention concerne un dispositif de transfert monobloc permettant le transfert collectif et simultané de micro-quantités de liquide. Ce dispositif de transfert monobloc est constitué d'une plaque possédant une face avant et une face arrière, ladite plaque étant structurée de sorte que sa face arrière soit hérissée d'un ensemble de micropipettes, chaque micropipette étant percée d'un trou axial qui se prolonge au travers de la plaque.
Le dispositif de transfert est un ensemble monobloc dans lequel les micropipettes sont d'un seul tenant avec la plaque.
Le dispositif de transfert selon l'invention n'est pas un dispositif complexe : il ne nécessite pas la présence d'une pompe ou d'une chambre pressurisée pour aspirer les micro-quantités de liquides. Par micro-quantité de liquides, on entend quelques nanolitres à quelques dizaines, voir quelques centaines de picolitres de liquides.
Avantageusement, les micropipettes du dispositif sont agencées sur la face arrière de la plaque de manière régulière. On pourra ainsi avoir la configuration où chaque micropipette du dispositif est disposée à une distance constante ou pas de ses plus proches voisines. On peut également avoir la configuration dans laquelle le pas séparant les micropipettes est différent selon les deux directions du plan du dispositif. Selon un mode de réalisation particulier, chaque micropipette est séparée de sa voisine par un pas interpipette compris entre quelques dizaines de micromètres et plusieurs centaines de micromètres (μm) .
Selon une première variante, le dispositif de transfert comprend entre plusieurs dizaines et plusieurs milliers de micropipettes.
Selon une deuxième variante, le dispositif de transfert comprend une densité de micropipettes comprise entre 1000 et 30000 micropipettes par cm2 de plaque . Avantageusement, le dispositif de transfert comprend une densité de micropipettes d'environ 2000 micropipettes par cm2 de plaque. Par exemple, avec un pas interpipettes de 200 micromètres, on obtient une densité de micropipettes de 2000 par cm2. Avantageusement, le dispositif de transfert comprend une densité de micropipettes d'environ 20000 micropipettes par cm2 de plaque. Par exemple, avec un pas interpipettes de 20 micromètres, on obtient une densité de micropipettes de 20000 par cm2. Avantageusement, le dispositif de transfert selon l'invention est consommable. En d'autres mots, le dispositif de transfert peut être à usage unique. Il peut ainsi être jeté après avoir servi à réaliser le transfert des liquides qu'il contient. Cela évite par exemple d'avoir à nettoyer le dispositif de transfert après son utilisation et éviter les risques de contamination avec d'autres liquides d'échantillons. Le dispositif peut aussi être mis de côté et stocké de façon à conserver pendant une durée déterminée les échantillons intéressant de liquides qu'il contient. Dans ce dernier cas, les micropipettes contenant les échantillons à conserver peuvent être séparées (clivées) du dispositif et stockées.
L' invention concerne également un ensemble permettant le transfert collectif et simultané de micro-quantités de liquide, ledit ensemble comprenant :
- un dispositif de transfert monobloc selon 1' invention,
- un microsystème constitué d'un substrat dont une face présente une pluralité de micro-réservoirs, chaque micro-réservoir n'étant apte à recevoir qu'une seule micropipette, la pluralité de micro-réservoirs étant répartie sur la face du substrat de façon à ce que les micropipettes puissent être reçues simultanément par un même nombre de micro-réservoirs.
Chaque micropipette est en regard du microréservoir dans lequel elle doit être introduite pour transférer une micro-quantité de liquide, c'est à dire selon le cas injecter ou prélever ladite micro-quantité de liquide. Les micropipettes sont ainsi disposées de sorte qu'elles s'emboîtent sans problème dans lesdits micro-réservoirs du microsystème. Par ailleurs, comme les micropipettes sont reçues simultanément par les micro-réservoirs, cela suppose qu'il y ait au moins autant de micro-réservoirs que de micropipettes. En d'autres termes, le nombre de micropipettes composant le dispositif sera au plus équivalent au nombre de micro-réservoirs du microsystème.
Un autre objet de l'invention concerne le procédé de fabrication du dispositif de transfert monobloc selon l'invention. Ce procédé comprend plusieurs étapes. Tout d'abord, on doit fournir un substrat d'un premier matériau afin d'y réaliser le dispositif. Puis, on perce des trous dans l'épaisseur du substrat. Ensuite, on réalise une modification chimique du premier matériau afin que les faces du substrat ainsi que les parois des trous réalisés à l'étape précédente se transforment en un deuxième matériau. On choisit ensuite l'une des faces du substrat pour y réaliser la gravure du deuxième matériau ; on continue la gravure jusqu'à révéler le premier matériau du substrat. Enfin, on procède à la gravure du premier matériau révélé à l'étape précédente jusqu'à atteindre un niveau de gravure correspondant à la face arrière de la plaque du dispositif. Cette gravure ainsi réalisée va laisser subsister des tubes de deuxième matériau constituant les micropipettes .
Selon un mode de réalisation particulier, la modification chimique du premier matériau sera une oxydation.
Selon un cas particulier, le premier matériau est le silicium. Dans ce cas, l'épaisseur du substrat de silicium sera avantageusement comprise entre quelques dizaines de micromètres et 500 μm. Avantageusement, si le premier matériau est le silicium et si on réalise une oxydation, le deuxième matériau sera l'oxyde de silicium. Au final, on obtient ainsi un dispositif comprenant un réseau de micropipettes en oxyde de silicium, ce qui a l'avantage d'être le plus proche possible de la structure des capillaires en verre. Le procédé de fabrication selon l'invention permet d'obtenir des micropipettes transparentes (les micropipettes étant en oxyde de silicium) , ce qui a pour intérêt que l'on peut visualiser le remplissage d'un liquide à l'intérieur desdites micropipettes et de s'assurer ainsi, par un simple contrôle visuel, qu'aucune pipette n'est bouchée.
Ce procédé de fabrication a également l'avantage de limiter le nombre d'étape de photolithographie et de gravure profonde du premier matériau à réaliser par rapport à un procédé permettant de réaliser des micropipettes en ledit premier matériau. Par exemple, un mode de réalisation de micropipettes en silicium selon l'art antérieur est décrit dans le document [3] référencé à la fin de cette description.
Avantageusement, les étapes de gravure sont effectuées à l'aide d'un laser ou d'une gravure plasma profonde. Les micropipettes obtenues ont une hauteur qui est fonction de l'épaisseur du substrat de premier matériau dans lequel le dispositif est réalisé.
Le diamètre extérieur de chaque micropipette est inférieur au diamètre du micro- réservoir dans lequel elle doit être introduite pour réaliser le transfert d'un liquide. Notons que par transfert de liquide, on entend l'injection ou le prélèvement de liquide. Le diamètre extérieur de chaque micropipette sera avantageusement compris entre 50 μm et plusieurs centaines de μm. Le diamètre intérieur de chaque micropipette dépend quant à lui de la quantité de liquide à transférer et de la hauteur du dispositif. En effet, le liquide à transférer par chaque micropipette est conservé uniquement dans l'espace constituant l'intérieur des micropipettes. Avantageusement, le diamètre intérieur de chaque micropipette sera de quelques dizaines de μm à plusieurs centaines de μm.
A partir de l'ensemble de transfert selon l'invention, on peut réaliser de nombreuses applications .
Une première application dudit ensemble concerne un procédé de remplissage collectif et simultané des micro-réservoirs du microsystème de l'ensemble. Ce procédé comprend plusieurs étapes. Tout d'abord, on remplit les micropipettes du dispositif de transfert en déposant une quantité déterminée de liquide sur la face avant du dispositif de transfert. Le liquide va ainsi pénétrer dans les micropipettes. Avantageusement, le remplissage des micropipettes peut être réalisé par capillarité. Puis, on élimine l'excès de liquide se trouvant sur la face avant du dispositif de transfert. On place les micropipettes dans les micro-réservoirs du microsystème qu'elles doivent remplir et on transfère le liquide compris dans les micropipettes dans les micro-réservoirs. On notera que le liquide destiné à remplir les micropipettes peut être introduit dans les micropipettes par la face avant du dispositif comme on vient de le voir, mais également par la face arrière du dispositif. Avantageusement, le transfert du liquide compris dans les micropipettes se fera à l'aide d'une technique choisie parmi le soufflage, le trempage, la diffusion du liquide, le choquage ou l'application d'un champ électrique. Pour l'application d'un champ électrique, on pourra disposer une électrode à chaque extrémité des micropipettes .
L'utilisation de ce procédé permet de distribuer collectivement dans chaque micro-réservoir un volume de liquide très précis et identique sans risque de contamination inter micro-réservoirs.
Une deuxième application de l'ensemble selon l'invention consiste en un procédé de prélèvement simultané et collectif de micro-quantité de liquides, différents ou non, présents dans les micro-réservoirs du microsystème de l'ensemble, ledit prélèvement étant effectué à l'aide du dispositif de transfert de l'ensemble selon l'invention. Ce procédé comprend différentes étapes. La première étape consiste à placer les micropipettes du dispositif de transfert dans les micro-réservoirs du microsystème contenant les liquides à prélever. Puis, on effectue le remplissage des micropipettes. Au final, chaque micropipette récupère au moins une partie du liquide contenu dans le micro- réservoir dans lequel elle a été plongée.
Avantageusement, le remplissage des micropipettes se fera par capillarité.
Selon un mode de réalisation particulier, le procédé de prélèvement comprend en outre les étapes consistant à déplacer le dispositif de transfert monobloc de l'ensemble selon l'invention au-dessus d'un support de réception et d'injecter du liquide sur le nouveau support par soufflage, par trempage, par diffusion, par choquage ou par application d'un champ électrique. De même que précédemment, l'application d'un champ électrique pourra être réalisé en disposant une électrode à chaque extrémité des micropipettes.
Selon un premier cas, le support de réception sur lequel sont déposés les liquides prélevés sera un microsystème constitué d'un substrat dont une face présente une pluralité de micro-réservoirs, chaque micro-réservoir n'étant apte à recevoir qu'une seule micropipette, la pluralité de micro-réservoirs étant répartie sur la face du substrat de façon à ce que les micropipettes puissent être reçues simultanément par un même nombre de micro-réservoirs. Ce support pourra être un microsystème identique à celui compris dans l'ensemble selon l'invention. Il pourra également comprendre plus ou moins de micro-réservoirs que le microsystème de l'ensemble, l'important étant qu'il y ait suffisamment de micro-réservoirs pour recevoir simultanément toutes les micropipettes du dispositif de l'ensemble selon l'invention.
Selon un autre cas, le support de réception sera choisi parmi un gel, un buvard ou une membrane permettant d'absorber les liquides retenus dans les micropipettes .
Avantageusement, l'injection des liquides sur le support de réception sera effectuée par capillarité. Une autre application de l'ensemble selon l'invention est un procédé de conservation de microquantités de liquides . Ce procédé comprend une étape de prélèvement des micro-quantités de liquides à conserver selon le procédé de prélèvement vu précédemment, une étape de stockage, dans un milieu de conservation, du dispositif de transfert dont les micropipettes contiennent les liquides prélevés, et une étape de récupération, si besoin, du liquide contenu dans une ou plusieurs micropipettes.
Ce procédé de conservation est particulièrement intéressant car il permet de prélever puis de stocker une quantité de produit de réaction issue des micro-réservoirs d'un microsystème à différents stades de déroulement de ladite réaction.
On peut ainsi sélectionner et stocker l'ensemble des échantillons prélevés en conservant le dispositif de transfert dans son entier. Mais on peut également sélectionner et stocker un ou des échantillons spécifiques parmi les échantillons prélevés en sélectionnant la ou les micropipettes particulières contenant l'échantillon intéressant que l'on souhaite conserver, par exemple en clivant la ou les micropipettes en question.
En résumé, le dispositif de transfert, et en particulier l'ensemble comprenant le dispositif de transfert et le microsystème selon l'invention possède de nombreuses applications. Par exemple, il peut être utilisé à chaque fois qu'on doit faire des analyses ou des réactions qui nécessitent une alimentation multiple et parallélisée d'un faible volume de liquide. De même, à chaque fois que l'on veut stocker, dupliquer ou transférer une partie des liquides contenus dans un système présentant des microcavités dans un autre système présentant des microcavités ou sur tous autres supports permettant la poursuite d'une réaction ou l'analyse de cette réaction. On entend par autre support une lame de verre, de silicium, de plastique etc., ou un gel, une membrane ou un buvard, imbibé ou non d'un composé permettant la poursuite de la réaction ou de l'analyse de la réaction.
Les domaines d'utilisation de cet ensemble sont la chimie fine, la parfumerie, la pharmacologie, la biologie et la microfluidique. Cet ensemble pourra par exemple être utilisé pour la duplication d'une puce à ADN ou le dépôt d' échantillons ADN sur un support quelconque telle qu'une plaque de verre. Ledit ensemble pourra également être utilisé pour réaliser des puces à ADN ou des puces à substrats, et notamment pour réaliser une empreinte idiosyncrasique d'un échantillon enzymatique. Cet ensemble pourra également être utilisé dans le domaine des puces à protéines pour la distribution collective d'un partenaire protéique sur une puce à protéines dans le but de détecter une interaction protéine/protéine.
BRÈVE DESCRIPTION DES DESSINS
L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :
- la figure la est un schéma du dispositif de transfert de l'ensemble vu de côté selon l'axe de coupe XX de la figure lb,
- la figure lb est un schéma du dispositif de transfert de l'ensemble vu de dessous,
- les figures 2a à 2d illustrent les étapes du procédé de fabrication du dispositif de transfert, - la figure 3 illustre les étapes successives du procédé de remplissage collectif et simultané des micro-réservoirs du microsystème de l'ensemble,
- la figure 4 illustre les étapes successives du procédé de prélèvement collectif et simultané de micro- quantité de liquides à l'aide de l'ensemble selon 1' invention,
- les figures 5a et 5b illustrent quant à elles les étapes du procédé de conservation de micro-quantités de liquides selon l'invention.
EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERS
D'après les figures la et lb, le dispositif de transfert 1 de l'ensemble selon l'invention possède une plaque qui a une face avant 2 et une face arrière 3, des micropipettes 4 qui sont hérissées sur la face arrière 3 de la plaque et chaque micropipette est percée d'un trou axial 5 qui se prolonge au travers de la plaque. Les micropipettes ont une hauteur 6, un diamètre extérieur 7 et un diamètre intérieur 8, ledit diamètre intérieur dépendant de la quantité de liquide à transférer par la micropipette et de la hauteur 9 du dispositif. Les micropipettes sont disposées sur la face arrière de la plaque avec un pas interpipette 10 dans la direction de l'axe XX et avec un pas 11 différent selon la direction orthogonale à l'axe XX.
Comme exemple de réalisation, nous allons fabriquer un dispositif de transfert ayant des micropipettes en oxyde de silicium. Les différentes étapes de fabrication de ce dispositif de transfert sont illustrées dans les figures 2a à 2d. On commence par réaliser des trous 25 dans l'épaisseur d'un substrat de silicium 20 (figure 2a) . Ces trous traversants 25 peuvent être réalisé à l'aide d'un laser, d'une gravure plasma profonde ou de toute autre technique similaire. Puis, on réalise l'oxydation du substrat de silicium 20 afin d'obtenir une couche d'oxyde de silicium 21 sur les parois des trous et sur les faces du substrat de silicium (figure 2b) . Cette étape d'oxydation du substrat peut être réalisée dans un four d'oxydation. Puis on effectue la gravure chimique ou plasma d'une des faces du substrat afin d'opter la couche d'oxyde de silicium 21 formée à l'étape précédente sur ladite face (figure 2c). Enfin, on réalise la gravure chimique du silicium 20 révélé à l'étape précédente de façon à dégager des tubes qui vont constituer les micropipettes 24 (figure 2d) . La gravure du silicium se prolonge jusqu'à ce qu'on atteigne une hauteur 26 de micropipette satisfaisante. Au final, on obtient un dispositif ayant des micropipettes en oxyde de silicium. Supposons que l'on veuille injecter simultanément et collectivement une quantité précise et constante de liquide dans les micro-réservoirs d'un microsystème afin d'étudier une réaction de dosage d'un produit chimique ou biologique. Avant de suivre les étapes de la figure 3, on commence par disposer dans les micro-réservoirs 31 d'un microsystème 30 des liquides de différentes concentrations ou des liquides différents, par exemple en utilisant le procédé de transfert qui sera décrit dans le prochain paragraphe. Le microsystème 30 étant prêt, on suit les étapes de la figure 3. On commence par remplir les micropipettes 4 du dispositif de transfert 1 en déposant une goutte de liquide sur la face avant 2 de la plaque du dispositif de transfert. Au bout d'une durée déterminée, les micropipettes 4 se sont remplies de liquide (par exemple par capillarité) , et on peut éliminer si besoin l'excès de liquide se trouvant sur la face avant 2 de la plaque du dispositif de transfert. On place ensuite les micropipettes dans les micro-réservoirs 31 du microsystème 30 qu'elles doivent remplir et on effectue le transfert du liquide compris dans les micropipettes dans les micro-réservoirs par soufflage.
La figure 4 présente le cas où l'on désire prélever des liquides différents présents dans les micro-réservoirs 31 du microsystème 30 de l'ensemble selon l'invention. On commence par placer les micropipettes 4 du dispositif 1 dans les micro- réservoirs 31 du microsystème 30 contenant les liquides à prélever. Le remplissage des micropipettes s'effectue par capillarité. Chaque micropipette va récupérer au moins une partie du liquide contenu dans le microréservoir dans lequel elle va être plongée. Lorsque le dispositif 1 est retiré du microsystème sur lequel il a été posé, on retrouve ainsi dans chaque micropipette un échantillon du liquide contenu dans le micro-réservoir dans lequel elle aura été trempée. Ainsi, une fois que les micropipettes sont remplies, le dispositif 1 peut être déplacé sur un autre support et le liquide contenu dans les micropipettes peut alors être injecté dans le nouveau support. On peut procéder ainsi pour remplir les micro-réservoirs du microsystème dans l'étape préliminaire de la figure 3.
Le transfert de liquides à l'aide du dispositif de transfert selon l'invention est un transfert discret dans le sens où le volume prélevé est limité par le volume d'échantillon que peut contenir chaque micropipette. Si l'on désire prélever une quantité plus importante de liquide, on devra repositionner les micropipettes du dispositif dans les micro-réservoirs du microsystème contenant les liquides à prélever puis effectuer le relarguage des liquides prélevés dans le nouveau support, et cela autant de fois que nécessaire. Enfin, on peut effectuer, à l'aide du dispositif de transfert, des prélèvements de liquides présents dans les micro-réservoirs du microsystème de l'ensemble, lesdits liquides subissant une réaction déterminée, pour ensuite stocker ces dispositifs. Les prélèvements des liquides de réaction peuvent être effectués à différents moments de la réaction. On peut ainsi stocker un ou plusieurs dispositifs dont les micropipettes sont remplies de liquides, pour ensuite pouvoir les récupérer et les étudier. Pour cela, on dispose différents liquides dans les micro-réservoirs du micro-système. Ces liquides peuvent être des liquides de différentes concentrations (ex : gamme de concentration d'un composé chimique rentrant dans la réaction étudiée, ou gamme de concentrations de « Primers » (amorces d'ADN par exemple) ou d'enzymes pour la réalisation d'un réaction PCR (« Polymerase Chain Reaction » en anglais) ) ou des liquides différents (ex : comparaison de différents enzymes d'un procédé biologique, ou comparaison de différents oxydants chimiques pour une réaction chimique étudiée) . En début de réaction, on procède à un prélèvement des liquides présents dans les micro-réservoirs 31 du microsystème 30 à l'aide du dispositif de transfert 1
(figure 5a) et on stocke ledit dispositif 1. Ce dispositif pourra par exemple être stocké au congélateur. Notons que cette opération de prélèvement et de stockage pourra être renouvelée à différents stades de la réaction se déroulant dans les microréservoirs. A la fin de la réaction, on observe les liquides présents dans les micro-réservoirs 31 du microsystème et on détermine si une réaction intéressante a eu lieu et si oui, dans quel microréservoir. Il sera alors possible de retrouver le liquide ayant donné lieu à la réaction intéressante dans le micro-réservoir déterminé en ressortant le ou les dispositifs de transfert stockés et en récupérant la micropipette 4 contenant l'information intéressante (figure 5b) . Pour récupérer le liquide contenu dans ladite micropipette, on pourra par exemple séparer la micropipette contenant le liquide intéressant du dispositif ou bien utiliser un système soufflant (par exemple un capillaire) pour éjecter le liquide.
BIBLIOGRAPHIE
[1] Microneedle array for transdermal bio-fluid sampling and drug delivery, E. MUKERJEE and al., Micro Total Analysis Systems, 379-380, (2001) .
[2] Fluid injection through out of plane microneedles, B. STOBER, Prof. D. LIEPMANN.
[3] Three dimentional hollo microneedle and microtube arrays, D. V. McALLISTER and al., Transducters 99, 1098/1101.

Claims

REVENDICATIONS
1. Dispositif de transfert monobloc (1) permettant le transfert collectif et simultané de micro-quantités de liquide, ledit dispositif de transfert monobloc (1) étant constitué d'une plaque possédant une face avant (2) et une face arrière (3) , ladite plaque étant structurée de sorte que sa face arrière soit hérissée d'un ensemble de micropipettes, chaque micropipette (4,24) étant percée d'un trou axial (5,25) qui se prolonge au travers de la plaque.
2. Dispositif de transfert monobloc (1) selon la revendication 1, caractérisé en ce que les micropipettes (4,24) dudit dispositif (1) sont agencées sur la face arrière (3) de la plaque de manière régulière .
3. Dispositif de transfert monobloc (1) selon la revendication précédente, caractérisé en ce que chaque micropipette (4,24) est séparée de sa voisine par un pas interpipette (10,11) compris entre quelques dizaines de μm et plusieurs centaines de μm.
4. Dispositif de transfert monobloc (1) selon la revendication 1, caractérisé en ce qu'il comprend entre plusieurs dizaines et plusieurs milliers de micropipettes (4,24).
5. Dispositif de transfert monobloc (1) selon la revendication 1, caractérisé en ce qu'il comprend une densité de micropipettes comprise entre 1000 et 30000 micropipettes par cm2 de plaque
6. Dispositif de transfert monobloc (1) selon la revendication 5, caractérisé en ce qu'il comprend une densité de micropipettes d'environ 2000 micropipettes par cm2 de plaque.
7. Dispositif de transfert monobloc (1) selon la revendication 5, caractérisé en ce qu'il comprend une densité de micropipettes d'environ 20000 micropipettes par cm2 de plaque.
8. Dispositif de transfert monobloc (1) selon la revendication 1, caractérisé en ce qu'il est consommable .
9. Ensemble permettant le transfert collectif et simultané de micro-quantités de liquide, ledit ensemble comprenant :
- un dispositif de transfert monobloc (1) selon l'une quelconque des revendications précédentes,
- un microsystème (30) constitué d'un substrat dont une face présente une pluralité de micro-réservoirs (31) , chaque micro-réservoir (31) n'étant apte à recevoir qu'une seule micropipette (4,24), la pluralité de micro-réservoirs étant répartie sur la face du substrat de façon à ce que les micropipettes (4,24) puissent être reçues simultanément par un même nombre de micro- réservoirs.
10. Procédé de fabrication du dispositif de transfert monobloc (1) selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend : - la fourniture d'un substrat d'un premier matériau (20),
- le perçage de trous (5,25) dans l'épaisseur dudit substrat,
- la modification chimique du premier matériau (20) pour que les faces du substrat et les parois des trous réalisés soient dans un deuxième matériau (21) ,
- la gravure du deuxième matériau (21) recouvrant l'une des faces du substrat jusqu'à révéler le premier matériau (20) du substrat, - la gravure du premier matériau (20) révélé à l'étape précédente jusqu'à atteindre un niveau de gravure correspondant à la face arrière (3) de la plaque, la gravure laissant subsister des tubes de deuxième matériau (21) constituant les micropipettes (4,24).
11. Procédé de fabrication selon la revendication précédente, caractérisé en ce que la modification chimique est une oxydation.
12. Procédé de fabrication selon la revendication 10, caractérisé en ce que le premier matériau (20) est le silicium.
13. Procédé de fabrication selon les revendications 11 et 12, caractérisé en ce que le deuxième matériau (21) est l'oxyde de silicium.
14. Procédé de fabrication selon la revendication 10, caractérisé en ce que la gravure est effectuée à l'aide d'un laser ou d'une gravure plasma profonde.
15. Procédé de remplissage collectif et simultané des micro-réservoirs (31) du microsystème (30) de l'ensemble selon la revendication 9, ledit procédé comprenant les étapes suivantes :
- remplissage des micropipettes (4,24) du dispositif de transfert par dépôt d'une quantité déterminée de liquide sur la face avant (2) du dispositif de transfert, - élimination de l'excès de liquide se trouvant sur la face avant (2) du dispositif de transfert,
- placement des micropipettes (4,24) dans les microréservoirs (31) du microsystème (30) qu'elles doivent remplir, - transfert du liquide compris dans les micropipettes (4,24) dans les micro-réservoirs (31) .
16. Procédé de remplissage selon la revendication précédente, caractérisé en ce que le remplissage des micropipettes (4,24) est réalisé par capillarité.
17. Procédé de remplissage selon la revendication précédente, caractérisé en ce que le transfert du liquide compris dans les micropipettes (4,24) se fait à l'aide d'une technique choisie parmi le soufflage, le trempage, la diffusion du liquide, le choquage ou l'application d'un champ électrique.
18. Procédé de prélèvement simultané et collectif de micro-quantité de liquides, différents ou non, présents dans les micro-réservoirs (31) du microsystème (30) de l'ensemble à l'aide du dispositif de transfert de l'ensemble selon la revendication 9, caractérisé en ce qu'il comprend les étapes suivantes : - placement des micropipettes (4,24) du dispositif de transfert monobloc (1) dans les micro-réservoirs (31) du microsystème (30) contenant les liquides à prélever,
- remplissage des micropipettes (4,24).
19. Procédé de prélèvement selon la revendication précédente, caractérisé en ce que le remplissage des micropipettes (4,24) est réalisé par capillarité.
20. Procédé de prélèvement selon la revendication 18, caractérisé en qu'il comprend en outre les étapes suivantes :
- déplacement du dispositif de transfert monobloc (1) de l'ensemble selon la revendication 9 au-dessus d'un support de réception,
- injection du liquide sur le nouveau support par soufflage, par trempage, par diffusion, par choquage ou par application d'un champ électrique.
21. Procédé de prélèvement selon la revendication précédente, caractérisé en que le support de réception sur lequel sont déposés les liquides prélevés est un microsystème constitué d'un substrat dont une face présente une pluralité de microréservoirs, chaque micro-réservoir n'étant apte à recevoir qu'une seule micropipette, la pluralité de micro-réservoirs étant répartie sur la face du substrat de façon à ce que les micropipettes (4,24) puissent être reçues simultanément par un même nombre de microréservoirs .
22. Procédé de prélèvement selon la revendication 20, caractérisé en ce que le support de réception est choisi parmi un gel, un buvard ou une membrane permettant d'absorber les liquides retenus dans les micropipettes.
23. Procédé de prélèvement selon la revendication précédente, caractérisé en ce que l'injection des liquides sur le support de réception est effectuée par capillarité.
24. Procédé de conservation de microquantités de liquides, caractérisé en ce qu'il comprend les étapes suivantes : - prélèvement des micro-quantités de liquides à conserver selon la revendication 18,
- stockage, dans un milieu de conservation, du dispositif de transfert monobloc (1) dont les micropipettes (4,24) contiennent les liquides prélevés, - récupération, si besoin, du liquide contenu dans une ou plusieurs micropipettes (4,24).
PCT/FR2004/050155 2003-04-11 2004-04-09 Microdispositif de transfert collectif d'une pluralite de liquide WO2004091793A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350100 2003-04-11
FR0350100A FR2853565A1 (fr) 2003-04-11 2003-04-11 Microdispositif de transfert collectif d'une pluralite de liquide

Publications (1)

Publication Number Publication Date
WO2004091793A1 true WO2004091793A1 (fr) 2004-10-28

Family

ID=33042049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/050155 WO2004091793A1 (fr) 2003-04-11 2004-04-09 Microdispositif de transfert collectif d'une pluralite de liquide

Country Status (2)

Country Link
FR (1) FR2853565A1 (fr)
WO (1) WO2004091793A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109847818A (zh) * 2019-03-08 2019-06-07 北京理工大学 一种高通量微阵列检测芯片及其制备方法、应用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695762A3 (fr) * 2005-02-02 2007-03-28 Agilent Technologies, Inc. Support pour remplir conjointement des tubes capillaires

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560811A (en) * 1995-03-21 1996-10-01 Seurat Analytical Systems Incorporated Capillary electrophoresis apparatus and method
WO1999015888A1 (fr) * 1997-09-19 1999-04-01 Aclara Biosciences, Inc. Appareil et procede d'electrofluidite capillaire
GB2353093A (en) * 1999-08-13 2001-02-14 Glaxo Group Ltd Liquid sample handling or transferring device
US20020006359A1 (en) * 1998-11-25 2002-01-17 Affymetrix, Inc. Microplate sample and reagent loading system
WO2002049763A2 (fr) * 2000-12-18 2002-06-27 Institut für Physikalische Hochtechnologie e.V. Dispositif d'extraction et d'emission de substances liquides
US20020121529A1 (en) * 2000-06-15 2002-09-05 Moussa Hoummady High-performance system for the parallel and selective dispensing of micro-droplets, transportable cartridge as well as dispensing kit, and applications of such a system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560811A (en) * 1995-03-21 1996-10-01 Seurat Analytical Systems Incorporated Capillary electrophoresis apparatus and method
WO1999015888A1 (fr) * 1997-09-19 1999-04-01 Aclara Biosciences, Inc. Appareil et procede d'electrofluidite capillaire
US20020006359A1 (en) * 1998-11-25 2002-01-17 Affymetrix, Inc. Microplate sample and reagent loading system
GB2353093A (en) * 1999-08-13 2001-02-14 Glaxo Group Ltd Liquid sample handling or transferring device
US20020121529A1 (en) * 2000-06-15 2002-09-05 Moussa Hoummady High-performance system for the parallel and selective dispensing of micro-droplets, transportable cartridge as well as dispensing kit, and applications of such a system
WO2002049763A2 (fr) * 2000-12-18 2002-06-27 Institut für Physikalische Hochtechnologie e.V. Dispositif d'extraction et d'emission de substances liquides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109847818A (zh) * 2019-03-08 2019-06-07 北京理工大学 一种高通量微阵列检测芯片及其制备方法、应用方法

Also Published As

Publication number Publication date
FR2853565A1 (fr) 2004-10-15

Similar Documents

Publication Publication Date Title
EP1386657B1 (fr) Dispositif d'injection et de mélange de micro-gouttes liquides
EP2903738B1 (fr) Procédé microfluidique de traitement et d'analyse d'une solution contenant un matériel biologique, et circuit microfluidique correspondant
CN108602066B (zh) 液体存储输送机构以及方法
EP1827694B1 (fr) Dispositif de dispense de gouttes
EP1181450B1 (fr) Dispositif de formation, de deplacement et de diffusion de petites quantites calibrees de liquides
FR2866493A1 (fr) Dispositif de controle du deplacement d'une goutte entre deux ou plusieurs substrats solides
EP3347128B1 (fr) Ensemble comportant un substrat de support d'échantillon liquide et son utilisation
US7258253B2 (en) Method and system for precise dispensation of a liquid
EP3085444B1 (fr) Dispositif microfluidique de contrôle d'écoulement d'un fluide
FR2812306A1 (fr) Systeme d'amplification en chaine par polymerse de sequences nucleiques cibles
WO2010004014A1 (fr) Procede et dispositif de manipulation et d'observation de gouttes de liquide
WO2006134307A1 (fr) Dispositif de pompage par electromouillage et application aux mesures d'activite electrique
WO2006131679A2 (fr) Dispositif planaire avec adressage de puits automatise par electromouillage dynamique
EP2350677B1 (fr) Dispositif de préparation et/ou de traitement d'un échantillon biologique
EP1356303B1 (fr) Procede et systeme permettant de realiser en flux continu un protocole biologique, chimique ou biochimique.
EP3059300A1 (fr) Dispositif de manipulation de cellules biologiques au moyen d'un support vibrant
FR2890975A1 (fr) Plaque de tests a puits.
FR2811588A1 (fr) Tete d'injection et de dosage thermique, son procede de fabrication et systeme de fonctionnalisation ou d'adressage la comprenant
WO2004091793A1 (fr) Microdispositif de transfert collectif d'une pluralite de liquide
EP1677914A1 (fr) Procede de repartition de gouttes d un liquide d interet sur une surface
FR2776389A1 (fr) Dispositif automatique de realisation d'echantillons en vue de la mise en oeuvre de reactions chimiques ou biologiques en milieu liquide
EP2182212B1 (fr) Micropompe à actionnement par gouttes
Moerman et al. A coverslip method for controlled parallel sample introduction into arrays of (sub) nanoliter wells for quantitative analysis
WO2003033147A1 (fr) Dispositif micro-fluidique pour la manipulation d'un liquide non magnetique.
WO2006027532A1 (fr) Dispositif de transfert d'elements contenus dans un liquide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase