WO2004089518A1 - Filtration method using cross-flow film and producing method of acrylamide using the same - Google Patents

Filtration method using cross-flow film and producing method of acrylamide using the same Download PDF

Info

Publication number
WO2004089518A1
WO2004089518A1 PCT/JP2004/004534 JP2004004534W WO2004089518A1 WO 2004089518 A1 WO2004089518 A1 WO 2004089518A1 JP 2004004534 W JP2004004534 W JP 2004004534W WO 2004089518 A1 WO2004089518 A1 WO 2004089518A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
filtration
raw material
cross
storage tank
Prior art date
Application number
PCT/JP2004/004534
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyasu Banba
Kozo Murao
Katsuo Ishii
Original Assignee
Dia-Nitrix Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia-Nitrix Co., Ltd. filed Critical Dia-Nitrix Co., Ltd.
Priority to JP2005505210A priority Critical patent/JPWO2004089518A1/en
Publication of WO2004089518A1 publication Critical patent/WO2004089518A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration

Definitions

  • the present invention relates to a filtration method using a cross-floor type single membrane apparatus having a storage tank for circulating and supplying a concentrate or a concentrated solution containing a suspension, and a method for producing acrylamide using the same. About the method.
  • the raw material liquid is continuously supplied in parallel with the membrane, and the pressure difference between the primary side of the membrane (the side to which the raw material liquid is supplied) and the secondary side (the opposite side of the primary side) is measured. It is used for filtration.
  • the cake deposited on the membrane surface can be peeled off by the action of the shear force generated by flowing the raw material liquid in parallel with the membrane, so that the thickness of the deposited cake can be reduced, Blockage of the membrane can be suppressed. Therefore, it has a feature that a high filtration rate can be obtained for a long time.
  • the filtration by cross-flow type membrane takes advantage of the above-mentioned characteristics, such as final filtration of drinking water in the food field, filtration and purification in the chemical industry field, and separation and concentration of microorganisms and culture fluid in the biochemical field. Very widely used.
  • FIG. 1 is a diagram schematically showing a filtration device provided with a cross-flow type membrane.
  • the filtration device 1 includes a storage tank 3 to which a raw material liquid containing a suspension is supplied via a supply pump 2, a cross-flow type membrane 4 for filtering the raw material liquid, and a raw material liquid from the storage tank 3 to the cross-flow type membrane 4.
  • a filtrate transfer pipe 8 for transferring the filtrate filtered by the cross-flow type membrane 4.
  • the supply pump 2 is connected to a liquid level controller 9 provided in the storage tank 3. More controllable.
  • the feed pipe 5 is provided with a flow meter 10 and a circulating pressure regulator 11 for controlling the circulating pump 7 according to the pressure.
  • the filtrate transfer pipe 8 is provided with a filtrate outlet pressure gauge 12, and the filtrate transfer pipe 8 is further provided with a withdrawal pump 15 controlled by a first filtrate outlet valve 13 and a flow rate indication controller 14. And a second filtrate discharge pipe 18 provided with a second filtrate outlet valve 17.
  • the concentrated solution is supplied from the storage tank 3 to the cross opening type membrane 4 by the circulation pump 7 and continuously filtered, and the filtrate filtered by the cross opening type 4 membrane is passed through the filtrate transfer pipe 8. to recover.
  • the concentrated liquid in which the suspension is concentrated through the primary side of the cross-flow type membrane 4 is returned to the storage tank 3 via the return pipe 6 and circulated. That is, the patch process is a method in which these operations are performed until the amount of liquid in the storage tank 3 decreases to an arbitrary amount to obtain a filtrate and a concentrated solution.
  • the concentrated solution is supplied from the storage tank 3 to the cross opening type membrane 4 by the circulation pump 7 and continuously filtered, and the filtrate filtered through the cross opening type 1 membrane 4 is filtered. Collect via transfer tube 8.
  • the concentrated liquid in which the suspension is concentrated by passing through the primary side of the cross flow type membrane 4, is returned to the storage tank 3 via the return pipe 6 and circulated.
  • the continuous process is performed by operating the liquid level controller 9 installed in the storage tank 3 to control the supply pump 2 and supplying new raw material liquid so that the liquid level in the storage tank 3 becomes constant. This is a method of obtaining a filtrate and a concentrated solution.
  • Japanese Patent Publication No. 05-49273 discloses a dead-end filtration method.
  • Japanese Patent Publication No. 0 0 1—7 8 7 49 discloses a removal method using bubbles.
  • the exhaust valve 19 of FIG. After discharging from the discharge pipe 20 and then regenerating by washing the membrane, the filtration operation is restarted again.
  • the discharged concentrated liquid with a high concentration of suspended solids is collected and reused or discarded.
  • the amount of suspended solids is reduced in order to reduce the amount of waste. It has been demanded that the amount of discharged liquid be reduced by concentrating the solution as high as possible.
  • suspensions are susceptible to physical disruption and chemical or biological metamorphosis, such as microbial cells!
  • the concentrated liquid or the filtrate may be mixed with crushed substances or denatured substances, and may cause quality problems such as coloring and reduced purity.
  • the present invention has been made in view of the above circumstances, and provides a method of filtering with a cross-type mouth-type membrane which increases the concentration of a suspension in a concentrated solution after filtration without increasing the filtration time, and a method for filtering the same.
  • An object of the present invention is to provide a method for producing acrylamide used.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, the filtration step of circulating filtration while continuously supplying the raw material liquid and the supply of the raw material liquid were stopped, and the suspension in the concentrated liquid after the filtration step was stopped. The present inventors have found that the separation from the concentration step of further concentrating the turbid matter is very effective in solving the above-mentioned problems, and have reached the present invention.
  • a first aspect of the present invention is a method for filtering a raw material liquid or a concentrated liquid obtained by concentrating the raw material liquid by a cross-type opening type membrane provided with a storage tank and a circulation pump, the method comprising: A filtration step of continuously filtering the raw material liquid or the concentrated liquid by the cross opening type membrane while supplying a new raw material liquid to the storage tank so that the liquid level in the storage tank is constant; In the state where supply of the new raw material liquid to the storage tank is stopped, filtration is further continued to concentrate while lowering the level of the liquid level in the storage tank, and after the concentration step, the remaining concentrated liquid is removed. And a discharging step for discharging.
  • the concentration of the concentrated liquid after filtration can be increased while shortening the filtration time. Furthermore, since the concentration of the concentrated solution can be increased, continuous filtration can be performed for a long time using a smaller filtration device.
  • the concentration step and the drainage step are performed.
  • a liquid replacement step of supplying a replacement liquid to the storage tank and filtering the replacement liquid may be provided between the discharge step and the storage tank so as to keep the level of the storage tank constant.
  • the cross-flow type membrane is preferably a hollow fiber membrane.
  • the raw material liquid is an aqueous acrylamide solution containing microbial cells. Especially suitable in cases.
  • a second aspect of the present invention is a method for producing acrylamide, which has a separation step including the above-mentioned filtration method using a cross-over type one membrane.
  • FIG. 1 is a diagram schematically illustrating an example of a filtration device provided with a cross-flow type membrane.
  • a filtration method (hereinafter, abbreviated as a filtration method) using a cross-flow type membrane of the present invention will be described with reference to the drawings.
  • the filtering device used in this embodiment is shown in FIG. 1 described above, and the description thereof is omitted here.
  • the “raw material liquid” is a liquid containing a suspension
  • the “concentrated liquid” is a liquid in which the concentration of the suspension is higher than that of the raw material liquid by a filtration operation.
  • the term “filtrate” refers to a liquid that does not contain suspended matter that has flowed out of a crossflow membrane.
  • the supply pump 2 is operated so that the level of the storage tank 3 for circulating and supplying the raw material liquid or the concentrated liquid to the cross-flow type membrane 4 becomes constant.
  • Supply new raw material liquid to 3.
  • the circulating pump 7 installed in the feed pipe 5 is operated to supply the raw material solution or the concentrated solution to the cross-flow type membrane 4, and the first filtrate outlet valve 13 is opened and the withdrawal pump 15 is made. And continuously filter. Further, the concentrated liquid discharged from the cross-flow type membrane 4 is returned to the storage tank 3 via the return pipe 6, and the concentrated liquid is circulated.
  • the supply pump 2 is stopped and the supply of the new raw material liquid to the storage tank 3 is stopped. Then, with the supply stopped, circulate the concentrate further.
  • the suspension in the concentrated solution is further concentrated by lowering the level of the storage tank 3 by filtration through a cross-over type membrane 4.
  • the discharging valve 19 is opened, and the remaining concentrated liquid in which the suspended matter is concentrated is discharged through the discharging pipe 20.
  • the cross-flow type membrane 4 is washed and regenerated. By regenerating the membrane in this way, a high filtration rate can be maintained continuously.
  • the operation of the supply pump 2 is controlled by a liquid level controller 9 in order to keep the liquid level in the storage tank 3 constant. Specifically, when the storage tank 3 is at the predetermined liquid level, the operation of the supply pump 2 is stopped by the liquid level controller 9 installed at a predetermined level of the storage tank 3, and the level of the liquid is controlled from the predetermined liquid level. When it becomes low, the supply pump 2 is operated to supply a new raw material liquid.
  • the liquid level in the storage tank 3 is preferably determined from the filtration time and the characteristics of the filtration device in consideration of a decrease in filtration speed due to an increase in the concentration of suspended solids in the storage tank 3 over time.
  • the viscosity of the concentrated solution increases with the concentration, and the discharge pressure of the circulation pump 7 rises.
  • the flow rate may be adjusted.
  • the cross-flow type membrane 4 of the filtration device 1 that performs this filtration method may be any type such as a flat membrane, a spiral membrane, and a hollow fiber membrane, but is large in filtration area as compared with the size of the device. Hollow fiber membranes are preferred. When a hollow fiber membrane is used, the pressure loss due to circulation is large.To increase the concentration of suspended solids in the concentrated liquid finally discharged, a hollow fiber membrane with a large inner diameter or a hollow fiber with a short length is required. It is preferable to select a thread membrane.
  • Examples of the raw material liquid that can be filtered by this filtration method include drinking water in the food field, industrial products in the chemical industry field, culture liquid in the biochemical field, and reaction liquid in a bioreactor.
  • non-Newtonian fluids whose physical properties such as viscosity change greatly with concentration and in which the suspension to be filtered is a microorganism, specifically, a reaction solution using a microbial catalyst are particularly suitable. ing. Among them, it is suitable for an acrylamide aqueous solution produced by a microbial catalyst.
  • aqueous acrylamide solutions produced using unimmobilized microbial catalysts Contains microorganisms that are not immobilized, that is, suspensions on the order of microns, and it is preferable to use a cross-flow membrane as a method for separating the microorganisms. Therefore, the method of the present invention is useful.
  • the term “unimmobilized microbial catalyst” refers to a catalyst in which the microbial cell membrane comes into direct contact with the reaction solution, and includes comprehensive immobilization, that is, polyacrylamide, polyvinyl alcohol, carrageenan, agar, gelatin, and alginic acid. These catalysts are high molecular substances, etc., which have not been subjected to the method of entrapping and immobilizing the cells.
  • a microorganism method in which the microorganisms are cultured and, if necessary, washed, etc., or the microbial cells are crosslinked or aggregated with a substance having a polyfunctional group such as daltalaldehyde, It includes those immobilized by non-inclusive methods such as the carrier binding method in which the body is chemically bonded to glass beads, resin, silica gel, etc.
  • microbial catalysts capable of producing acrylamide.
  • Bacillus, Bacteridium, Micrococcus, and Brevibacterimn Japanese Patent Publication 62) — 21519
  • the genus Corynebacterium Nocardia see JP-B-56-17918
  • the genus Pseudomonas see JP-B-59-37951) Genus
  • Microbacterium see JP-B-4-1873
  • Rhodococcus see JP-B-4-14873, JP-B-6-55148, JP-B-7-40948
  • acromopac Microbial species such as genus Achromobacter (see JP-A-6-225780) and genus Pseudonocardia (see JP-A-9-175978) are preferred.
  • bacteria belonging to the genus Rhodococcus are more preferred.
  • the nitrile hydratase gene derived from the microorganism described above may be obtained, and the gene may be introduced into any host as it is or artificially improved.
  • Escherichia coli MT 10770 transformed with nitroni rehydratase of the genus Achromobacter (see Japanese Patent Application Laid-Open No. 8-266277), and nitrino rehydraters of the genus Pseudonocardia Escherichia coli MT 10822 (FERM BP-5785) transformed with W
  • Microorganisms transformed with nitrile hydratase of the species Rhodococcus rhodochrous can be used. .
  • acrylonitrile which is a raw material
  • a microbial catalyst may be added.
  • the reaction method, mode, etc. may be performed under conditions that are optimized for the purpose of production and for each microbial catalyst!
  • a concentration step is provided after the filtration step.
  • filtration is performed without supplying a new raw material liquid, so that the suspension in the concentrated liquid can be concentrated in a short time. Can be concentrated. Therefore, the concentration of the concentrated solution after filtration can be increased while shortening the filtration time.
  • the filtration time in the present invention is the total time required for the filtration step and the concentration step.
  • a liquid replacement step may be provided between the concentration step and the discharge step, in which a replacement liquid such as pure water is supplied to the storage tank and filtered to keep the level of the storage tank constant. If there is a liquid replacement step between the concentration step and the discharge step, reduce the amount of components in the concentrated liquid discharged in the discharge step, that is, the amount of acrylamide when the raw material liquid is an aqueous acrylamide solution As a result, the amount of waste can be reduced and the yield of acrylamide recovered in the filtrate can be increased. In the present invention, when the liquid is replaced, the amount of the replacement liquid can be reduced because the amount of the concentrated liquid is reduced by the concentration step.
  • the concentrated liquid after the liquid replacement can be further concentrated before the discharge step.
  • the replacement liquid a liquid containing no or very few suspensions is used.In consideration of post-treatment, etc., one of the solvents constituting the raw material liquid, a mixture thereof, or a solution is usually used. Used. If water is available, it is more economical and safer.
  • the filtrate is adjusted by adjusting the valve provided in the filtrate transfer pipe without using a liquid level controller.
  • the level of the reservoir may be kept constant by adjusting the discharge rate.
  • the filtration device has a single mouth-and-mouth type one membrane, but two or more cross-flow type membranes may be installed in parallel. If two or more cross-flow type membranes are installed in parallel, it is possible to switch between a cross-flow type membrane that performs a filtration step and a concentration step and a cross-flow type membrane that performs a membrane regeneration step. Continuous filtration becomes possible.
  • Rhodococcus rhodochrous Jl (F ERM BP-1478) (described in Japanese Patent Publication No. 6-55148) having nitrile hydratase activity was used as the raw material water.
  • the amount of the microbial catalyst used at that time was 50 g in terms of the dry cell mass, and the concentration of the microbial catalyst in the 50% by mass acrylamide aqueous solution was 0.01 mass% (100 p. pm).
  • the cross opening type membrane used in this example has the following specifications.
  • Hollow fiber length 1m Number of hollow fibers (module): 126
  • the first filtrate outlet valve 13 was opened, the extraction pump 15 was operated, and the flow rate of the filtrate was adjusted so as to be 10 kgZ hours, and filtration was started.
  • the liquid level controller 9 of the storage tank 3 was activated to control the supply pump 2, and the raw material liquid was supplied so that the liquid level of the storage tank 3 was constant.
  • the circulating pressure (the pressure indicated by the circulating pressure controller 11) was about 0.14 MPa immediately after the start of the filtration, and increased to about 0.23 MPa at the end of the filtration.
  • the filtrate outlet pressure (the pressure indicated by the filtrate outlet pressure gauge 12) is changing from 0.03MPa to 0.02MPa, and is hardly sucked by the withdrawal pump 15, and there is still room for the filtration speed.
  • the circulation pressure controller 11 was automatically adjusted to start the concentration step.
  • the second filtration outlet valve 17 was fully opened to discharge the furnace liquid.
  • the circulation pump 7 was stopped, and the concentrated liquid concentrated through the discharge pipe 20 was discarded.
  • the amount of discarded concentrate is 1.7 kg, and the concentration of microbial catalyst in the concentrate is about 2.9 mass. /. Met.
  • the circulation flow rate in the concentration step was 100 kgZ hours immediately after the start of concentration, but dropped to about 30 kgZ hours immediately before the end of concentration.
  • the microbial catalyst concentration could be increased to about 2.9% by mass in 48 hours and 20 minutes.
  • Table 1 shows a comparison between Example 1 and Example 2 and Comparative Examples shown below.
  • “ ⁇ ” is attached to each of the preferred values of Example 1 and Example 2
  • “X” is compared to the corresponding example in each comparative example. Each is attached to an inappropriate value.
  • the raw material liquid was filtered in the same manner as in Example 1 except that the concentration step of (4) was not performed.
  • the first filtrate outlet valve 13 was opened, and the extraction pump 15 was operated to adjust the flow rate of the filtrate to 10 kg / hour, and filtration was started.
  • the liquid level controller 9 of the storage tank 3 was activated, and the raw material liquid was supplied so that the liquid level of the storage tank 3 was constant.
  • the filtrate outlet pressure was almost atmospheric pressure (less than 0.1 MPa), so the second filtrate outlet valve 17 was fully opened, and the subsequent filtration speed was achieved.
  • the concentrated liquid was circulated by automatically adjusting the flow rate of the circulating pump 7 using the circulating pressure controller 11 so that the circulating pressure did not exceed 0.25 MPa. After about 85 hours, the filtration of the 480 kg raw material liquid was completed.
  • the filtration rate after 20 hours from the start of filtration gradually decreased from 10 kgZ hours, and decreased to about 3 kgZ hours immediately before the end of filtration.
  • the concentration of the microbial catalyst in the storage tank 3 was concentrated to 2.9% by mass as in Example 1, but the filtration time was significantly longer.
  • the filtrate obtained was transparent but slightly reddish.
  • Example 2 After further concentrating the concentrated solution in the same manner as in Example i, the solution was replaced with pure water, and the concentrated solution 'was discarded.
  • the set level of the liquid level controller 9 is set to the level after the concentration, and the liquid level controller 9 controls the pure water supply pump (not shown).
  • the second filtrate outlet valve 17 is fully opened, and the flow rate of the circulation pump 7 is automatically adjusted using the circulation pressure controller 11 so that the circulation pressure does not exceed 0.25 MPa. The liquid replacement was started.
  • the liquid replacement was terminated, and subsequently, the concentrated liquid after the liquid replacement was discarded.
  • the amount of the concentrate was 1.7 kg, and the concentration of the microbial catalyst in the suspension was about 2.9% by mass.
  • the acrylamide concentration in the concentrate was about 3% by mass.
  • the raw material liquid was filtered in the same manner as in Example 2 except that the concentrated liquid obtained in the same manner as in Comparative Example 1 was subjected to liquid replacement as described below.
  • the liquid level controller 9 was switched to control the pure water supply pump while the set level of the liquid level controller 9 was kept as it was.
  • the first filtrate outlet valve 13 was fully opened, and the liquid was replaced by adjusting the flow rate of the filtrate to be 10 kg Z hours using the withdrawal pump 15.
  • the solution was replaced with 5 kg of pure water, and the concentrated solution was discarded.
  • the amount of the concentrate was 5.0 kg, and the concentration of the microbial catalyst in the suspension was about 1.0% by mass.
  • the acrylamide concentration in the concentrate was about 19% by mass.
  • the liquid replacement was terminated, and subsequently, the concentrated liquid after the liquid replacement was discarded.
  • the amount of the concentrate was 1.7 kg, and the concentration of the microbial catalyst in the concentrate was about 2.9% by mass. Also, the concentration of acrylamide in the concentrate It was about 3% by mass.
  • the filtrate obtained was transparent but slightly reddish.
  • Example 2 Since Examples 1 and 2 had a concentration step, the concentrated solution could be concentrated to a high concentration in a short time. Furthermore, in Example 2, the liquid was replaced, so that the acrylamide concentration in the discarded concentrated solution was low, the burden on waste disposal was small, and the acrylamide loss was small, resulting in a very economically efficient process. .
  • Comparative Example 1 did not have a concentration step, the amount of concentrated liquid discarded was large, the concentration of microorganisms therein was low, and the acrylamide content was high. In other words, the burden on waste disposal is large, and the loss of acrylamide is also large.
  • Comparative Example 2 although the amount of waste disposal was kept low, the filtration time required to reach the concentrated liquid amount as in Example 1 was long, and the filtrate was slightly colored, and the quality of acrylamide was deteriorated.
  • Comparative Example 3 since the liquid was replaced without having a concentration step, the amount of the concentrated liquid discarded was large, and the concentration of the microbial catalyst therein was low. Furthermore, the concentration of acrylamide in the discarded concentrate was high, which resulted in economically unfavorable results.
  • Comparative Example 4 the filtration time required to reach the concentration of the concentrated solution as in Example 1 was long, and the filtrate was slightly colored, and the quality of acrylamide was deteriorated. Industrial potential
  • the filtration method using a cross-flow type membrane of the present invention is a filtration method using a cross-flow type membrane provided with a storage tank and a circulation pump for circulating and supplying a raw material liquid or a concentrated liquid obtained by concentrating the raw material liquid, A filtration step of continuously filtering the raw material liquid or the concentrated liquid by the cross-flow type membrane while supplying new raw material liquid to the storage tank so that the liquid level in the storage tank is constant.

Abstract

A filtration method using a cross-flow film has a storage vessel and a circulation pump that are used for circulating and feeding a raw material liquid or a concentrate liquid that is obtained by concentrating the raw material liquid. The method has a step of continuously filtering the raw material liquid or the concentrate liquid by the cross-flow film while additionally feeding the raw material liquid into the storage vessel so as to maintain the level of the liquid in the vessel constant, a step of concentrating a liquid while further continuing the filtration to lower the liquid level with the additional feeding of the raw material liquid to the storage vessel stopped, and a step of discharging a remaining concentrate liquid after the concentration step.

Description

明 細 書 クロスフロー型膜による濾過方法及ぴそれを用いたアクリルアミドの製造方法 技術分野  Description Filtration method using cross-flow type membrane and method for producing acrylamide using the same
本発明は、 懸濁物を含有する原科液もしくは濃縮液を循環供給するための貯槽 と循環ポンプとを有したクロスフ口一型膜装置による濾過方法、 さらには、 それ を用いたアクリルアミドの製造方法に関する。  The present invention relates to a filtration method using a cross-floor type single membrane apparatus having a storage tank for circulating and supplying a concentrate or a concentrated solution containing a suspension, and a method for producing acrylamide using the same. About the method.
本願は、 2 0 0 3年 4月 4日に出願された特願 2 0 0 3 - 1 0 1 8 3 2号に対 し優先権を主張し、 その内容をここに援用する。 背景技術  Priority is claimed on Japanese Patent Application No. 2003-108183, filed on April 4, 2003, the content of which is incorporated herein by reference. Background art
クロスフロー型膜は、その膜と平行に原料液を連続的に供給し、膜の一次側(原 料液が供給される側) と二次側 (一次側の反対側) との差圧を利用して濾過する ものである。 このような濾過では、 膜と平行に原料液を流動させることで生じる 剪断力の作用により、 膜表面に堆積したケーキを引き剥がすことができるので、 堆積したケーキの厚みを薄くすることができ、 膜の閉塞を抑制できる。 したがつ て、 長時間に渡って高い濾過速度が得られるという特徴を有する。  In a cross-flow type membrane, the raw material liquid is continuously supplied in parallel with the membrane, and the pressure difference between the primary side of the membrane (the side to which the raw material liquid is supplied) and the secondary side (the opposite side of the primary side) is measured. It is used for filtration. In such a filtration, the cake deposited on the membrane surface can be peeled off by the action of the shear force generated by flowing the raw material liquid in parallel with the membrane, so that the thickness of the deposited cake can be reduced, Blockage of the membrane can be suppressed. Therefore, it has a feature that a high filtration rate can be obtained for a long time.
そして、 クロスフロー型膜による濾過は、 上記の特徴を生かして、 食品分野に おける飲料水などの最終濾過、 化学工業分野における濾過精製、 生化学分野にお ける微生物と培養液の分離や濃縮など非常に幅広く採用されている。  The filtration by cross-flow type membrane takes advantage of the above-mentioned characteristics, such as final filtration of drinking water in the food field, filtration and purification in the chemical industry field, and separation and concentration of microorganisms and culture fluid in the biochemical field. Very widely used.
図 1は、 クロスフロー型膜を備えた濾過装置を模式的に示す図である。  FIG. 1 is a diagram schematically showing a filtration device provided with a cross-flow type membrane.
この濾過装置 1は、 懸濁物を含む原料液が供給ポンプ 2を介して供給される貯 槽 3と、 原料液を濾過するクロスフロー型膜 4と、 貯槽 3からクロスフロー型膜 4に原料液を移送するための送り管 5と、 クロスフ口一型膜 4の一次側から排出 された濃縮液を貯槽 3に移送するための戻り管 6と、 送り管 5に備えられた循環 ポンプ 7と、 クロスフロー型膜 4で濾過された濾液を移送するための濾液移送管 8とを有して概略構成される。  The filtration device 1 includes a storage tank 3 to which a raw material liquid containing a suspension is supplied via a supply pump 2, a cross-flow type membrane 4 for filtering the raw material liquid, and a raw material liquid from the storage tank 3 to the cross-flow type membrane 4. A feed pipe 5 for transferring the liquid, a return pipe 6 for transferring the concentrated liquid discharged from the primary side of the cross opening type membrane 4 to the storage tank 3, and a circulation pump 7 provided in the feed pipe 5. And a filtrate transfer pipe 8 for transferring the filtrate filtered by the cross-flow type membrane 4.
この濾過装置 1において、 供給ポンプ 2は貯槽 3に設けられた液面調節計 9に より制御可能になっている。 送り管 5には、 流量計 1 0と、 圧力に応じて循環ポ ンプ 7を制御する循環圧力調節計 1 1とが設置されている。 濾液移送管 8には濾 液出口圧力計 1 2が設置されており、 さらに、 濾液移送管 8は、 第 1の濾液出口 弁 1 3と流量指示調節計 1 4により制御される抜出しポンプ 1 5とが設置された 第 1の濾液排出管 1 6と、 第 2の濾液出口弁 1 7が設置された第 2の濾液排出管 1 8とに分かれている。 In the filtration device 1, the supply pump 2 is connected to a liquid level controller 9 provided in the storage tank 3. More controllable. The feed pipe 5 is provided with a flow meter 10 and a circulating pressure regulator 11 for controlling the circulating pump 7 according to the pressure. The filtrate transfer pipe 8 is provided with a filtrate outlet pressure gauge 12, and the filtrate transfer pipe 8 is further provided with a withdrawal pump 15 controlled by a first filtrate outlet valve 13 and a flow rate indication controller 14. And a second filtrate discharge pipe 18 provided with a second filtrate outlet valve 17.
この濾過装置 1を用いた従来の濾過方法としては、 パッチプロセスと連続プロ セスが知られている。 バッチプロセスでは、 循環ポンプ 7により濃縮液を貯槽 3 からクロスフ口一型膜 4に供給して連続的に濾過し、 クロスフ口一型膜 4で濾過 された濾液を、 濾液移送管 8を介して回収する。 それとともに、 クロスフロー型 膜 4の一次側を通過して懸濁物が濃縮された濃縮液を、 戻り管 6を介して貯槽 3 に戻して循環する。 すなわち、 パッチプロセスは、 これらの操作を貯槽 3の液量 が任意の量にまで低下するまで実施し、 濾液と濃縮液を得る方法である。  As a conventional filtration method using the filtration device 1, a patch process and a continuous process are known. In the batch process, the concentrated solution is supplied from the storage tank 3 to the cross opening type membrane 4 by the circulation pump 7 and continuously filtered, and the filtrate filtered by the cross opening type 4 membrane is passed through the filtrate transfer pipe 8. to recover. At the same time, the concentrated liquid in which the suspension is concentrated through the primary side of the cross-flow type membrane 4 is returned to the storage tank 3 via the return pipe 6 and circulated. That is, the patch process is a method in which these operations are performed until the amount of liquid in the storage tank 3 decreases to an arbitrary amount to obtain a filtrate and a concentrated solution.
連続プロセスでは、 パッチプロセスと同様に循環ポンプ 7により濃縮液を貯槽 3からクロスフ口一型膜 4に供給して連続的に濾過し、 クロスフ口一型膜 4で濾 過された濾液を、 濾液移送管 8を介して回収する。 それとともに、 クロスフロー 型膜 4の一次側を通過して懸濁物が濃縮された濃縮液を、 戻り管 6を介して貯槽 3に戻して循環する。 連続プロセスは、 その際、 貯槽 3に設置された液面調節計 9を作動させて供給ポンプ 2を制御して、 貯槽 3の液レベルが一定になるように 新たな原料液を供給することで、 濾液と濃縮液を得る方法である。  In the continuous process, as in the patch process, the concentrated solution is supplied from the storage tank 3 to the cross opening type membrane 4 by the circulation pump 7 and continuously filtered, and the filtrate filtered through the cross opening type 1 membrane 4 is filtered. Collect via transfer tube 8. At the same time, the concentrated liquid, in which the suspension is concentrated by passing through the primary side of the cross flow type membrane 4, is returned to the storage tank 3 via the return pipe 6 and circulated. At that time, the continuous process is performed by operating the liquid level controller 9 installed in the storage tank 3 to control the supply pump 2 and supplying new raw material liquid so that the liquid level in the storage tank 3 becomes constant. This is a method of obtaining a filtrate and a concentrated solution.
これまでは、 連続プ口セスの後にパツチプロセスを組み合わせた複合的な濾過 方法の試みについては、 全く提唱されていなかった。  Until now, no attempt has been made to attempt a combined filtration method that combines a continuous process followed by a patching process.
このような濾過装置では、 濾過時間が長くなるにつれて、 クロスフロー型膜に 形成された細孔が閉塞していく。 この細孔の閉塞の程度は、 懸濁物の粒径や分子 量分布などの特性により異なるので、 通常では、 閉塞を抑制することを目的とし て、 懸濁物や原料液に適した細孔径を有する膜が選定されている。 さらに、 濾過 初期の濾過膜細孔の閉塞を抑制し、 高い濾過速度を得る濾過方法として、 例えば 、 特許第 3 3 1 2 9 6 4号には、 濾過工程開始前に膜の二次側を液体で封止する 方法が示されている。 また、 微生物触媒を用いて製造された反応液からの微生物菌体の除去方法につ いては、 特公平 0 5— 4 9 2 7 3号公報にはデッドエンド濾過方法が、 また、 特 開 2 0 0 1— 7 8 7 4 9号公報には気泡を用いた除去方法がそれぞれ示されてい る。 In such a filtration device, pores formed in the cross-flow type membrane are closed as the filtration time becomes longer. The degree of pore blockage varies depending on characteristics such as the particle size and molecular weight distribution of the suspension. Therefore, usually, the pore size suitable for the suspension or the raw material liquid is used for the purpose of suppressing blockage. Is selected. Furthermore, as a filtration method for suppressing the clogging of the filtration membrane pores at the initial stage of filtration and obtaining a high filtration rate, for example, Japanese Patent No. 3129644 discloses a method in which the secondary side of the membrane is started before the filtration step is started. A method of sealing with a liquid is shown. Regarding a method for removing microbial cells from a reaction solution produced by using a microbial catalyst, Japanese Patent Publication No. 05-49273 discloses a dead-end filtration method. Japanese Patent Publication No. 0 0 1—7 8 7 49 discloses a removal method using bubbles.
ところで、 従栾技術のように、 原料液もしくは濃縮液を単に循環させながらク 口スフ口一型膜で濾過を継続する方法では、 濾過が進行するにつれて濃縮液中の 懸濁物濃度が大幅に上昇する。 ここで、 懸濁物濃度が上昇すると、 循環する濃縮 液の粘度が上昇し、 その結果、 濃縮液を循環させる際の圧力損失が増大する。 圧 力損失が増大した際に循環速度を一定にするためには、 循環ポンプの吐出圧力を 高める必要があるが、 膜には使用最大耐圧差があり、 通常、 その耐圧差を超えな いように圧力が制限されている。 したがって、 圧力損失が増大した場合には、 濃 縮液の循環速度が低下し、 濾過時間が長くなるのが実情である。 循環速度が低下 した場合には、 膜上の濃縮液の流動速度が遅くなるので、 クロスフロー型膜の特 徴である膜面への懸濁物粒子の堆積防止効果が生かせなくなり、 益々循環速度が 低下する悪循環に陥る。 したがって、 長時間に渡って高い濾過速度を得ることが 困難になる。  By the way, as in the prior art, in a method in which the raw material liquid or the concentrated liquid is simply circulated and the filtration is continued through a mouth-and-mouth type one membrane, the concentration of the suspended solids in the concentrated liquid is greatly increased as the filtration proceeds. To rise. Here, as the concentration of the suspension increases, the viscosity of the circulating concentrate increases, and as a result, the pressure loss when circulating the concentrate increases. In order to keep the circulation speed constant when the pressure loss increases, it is necessary to increase the discharge pressure of the circulating pump. Pressure is limited. Therefore, when the pressure loss increases, the circulation speed of the concentrated liquid decreases and the filtration time becomes longer. When the circulation speed decreases, the flow speed of the concentrate on the membrane becomes slower, and the effect of preventing the accumulation of suspended particles on the membrane surface, which is a characteristic of the cross-flow type membrane, cannot be utilized. Into a vicious circle. Therefore, it is difficult to obtain a high filtration rate for a long time.
そのため、 上記濾過方法では、 濃縮液中の懸濁物濃度が所定の条件に達したと きに、 図 1の排出弁 1 9を開放して循環している懸濁物濃度が高い濃縮液を排出 管 2 0から排出し、 次いで膜を洗浄するなどして再生した後、 改めて濾過操作を 再開する方法が採用されている。 ここで、 排出された懸濁物濃度が高い濃縮液は 回収されて再利用あるいは廃棄されるが、 エネルギー使用量あるレヽは廃棄物量を 削減するため、 いずれの場合であっても、 懸濁物をできるだけ高濃度に濃縮する ことで排出する液量を低減することが求められていた。 要求されている濃度にま で懸濁物を高濃度化するためには、 連続濾過時間をさらに長くすることが考えら れるが、 その場合には濾過速度が極めて遅くなるという経済効率上の問題点があ つた。 更に、 懸濁物が微生物菌体などのように、 物理的な破碎や、 化学的もしく は生物学的な変成を受けやす!/、ものの場合は、 濃縮液あるいは濾過液に破砕物、 変成物などの混入をまねき、 着色や純度低下などの品質上の問題を引き起こすこ ともある。 W Therefore, in the above-mentioned filtration method, when the concentration of the suspension in the concentrate reaches a predetermined condition, the exhaust valve 19 of FIG. After discharging from the discharge pipe 20 and then regenerating by washing the membrane, the filtration operation is restarted again. Here, the discharged concentrated liquid with a high concentration of suspended solids is collected and reused or discarded.However, in the case of energy consumption, the amount of suspended solids is reduced in order to reduce the amount of waste. It has been demanded that the amount of discharged liquid be reduced by concentrating the solution as high as possible. In order to increase the concentration of the suspension to the required concentration, it is conceivable to further increase the continuous filtration time, but in that case, the filtration speed becomes extremely slow, which is an economic efficiency problem. There is a point. In addition, suspensions are susceptible to physical disruption and chemical or biological metamorphosis, such as microbial cells! In the case of /, in the case of the concentrate, the concentrated liquid or the filtrate may be mixed with crushed substances or denatured substances, and may cause quality problems such as coloring and reduced purity. W
4  Four
また、 環境面から、 廃棄される濃縮液の量や、 濾過器内の洗浄や液置換する場 合には洗浄液、 置換液の使用量、 液置換後の懸濁物濃度の高い濃縮液の量などの 削減をはかることが求められている。 このことからも廃棄する濃縮液中の懸濁物 をできるだけ高濃度化し廃棄濃縮液の量を削減する必要がある。 しかし、 これま でには、 特許第 3 3 1 2 9 6 4号のように、 濾過速度を高くする方法は開示され ていたものの、 連続濾過時の濾過速度を落とすことなく即ち必要な濾過液を得る ための時間を増大させること無く、 濾過後の濃縮液中の懸濁物を高濃度化する濾 過方法は開示されていなかった。 発明の開示  Also, from the environmental point of view, the amount of concentrated solution to be discarded, the amount of washing solution and replacement solution used when washing or replacing the inside of the filter, and the amount of concentrated solution with a high concentration of suspended solids after solution replacement It is required to reduce such factors. For this reason, it is necessary to reduce the amount of waste concentrate by increasing the concentration of the suspension in the concentrate to be discarded as much as possible. However, until now, as disclosed in Japanese Patent No. 3312964, a method for increasing the filtration rate has been disclosed, but the required filtrate can be obtained without reducing the filtration rate during continuous filtration. No filtration method has been disclosed for increasing the concentration of the suspension in the concentrated solution after filtration without increasing the time for obtaining the same. Disclosure of the invention
本発明は、 前記事情を鑑みてなされたものであり、 濾過時間を増大させること なく、 濾過後の濃縮液中の懸濁物を高濃度化するクロスフ口一型膜による濾過方 法及びそれを用いたアクリルアミドの製造方法を提供することを目的とする。 本発明者らは上記課題を解決すベく鋭意検討を行つた結果、 連続的に原料液を 供給しながら循環濾過を行う濾過工程と原料液の供給を止め濾過工程後の濃縮液 中の懸濁物を更に濃縮する濃縮工程とを分けると、 上記課題の解決に対して非常 に有効であることを見出し、 本発明に到達した。  The present invention has been made in view of the above circumstances, and provides a method of filtering with a cross-type mouth-type membrane which increases the concentration of a suspension in a concentrated solution after filtration without increasing the filtration time, and a method for filtering the same. An object of the present invention is to provide a method for producing acrylamide used. The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, the filtration step of circulating filtration while continuously supplying the raw material liquid and the supply of the raw material liquid were stopped, and the suspension in the concentrated liquid after the filtration step was stopped. The present inventors have found that the separation from the concentration step of further concentrating the turbid matter is very effective in solving the above-mentioned problems, and have reached the present invention.
本発明の第 1の態様は、 原料液もしくは該原料液が濃縮された濃縮液を循環供 給するための、 貯槽と循環ポンプとを備えたクロスフ口一型膜による濾過方法で あって、 前記貯槽内における液面のレベルが一定になるように、 前記貯槽に新た な前記原料液を供給しながら、 前記クロスフ口一型膜により前記原料液もしくは 濃縮液を連続的に濾過する濾過工程と、 前記貯槽への新たな原料液の供給を止め た状態で、 更に、 濾過を継続して前記貯槽内における液面のレベルを下げながら 濃縮する濃縮工程と、 前記濃縮工程後に、 残存する濃縮液を排出する排出工程と を有する。  A first aspect of the present invention is a method for filtering a raw material liquid or a concentrated liquid obtained by concentrating the raw material liquid by a cross-type opening type membrane provided with a storage tank and a circulation pump, the method comprising: A filtration step of continuously filtering the raw material liquid or the concentrated liquid by the cross opening type membrane while supplying a new raw material liquid to the storage tank so that the liquid level in the storage tank is constant; In the state where supply of the new raw material liquid to the storage tank is stopped, filtration is further continued to concentrate while lowering the level of the liquid level in the storage tank, and after the concentration step, the remaining concentrated liquid is removed. And a discharging step for discharging.
この態様によれば、 濾過時間を短縮しつつ、 濾過後の濃縮液を高濃度化できる 。 さらに、 濃縮液を高濃度化できることから、 より小型の濾過装置にて長時間連 続的に濾過できる。  According to this aspect, the concentration of the concentrated liquid after filtration can be increased while shortening the filtration time. Furthermore, since the concentration of the concentrated solution can be increased, continuous filtration can be performed for a long time using a smaller filtration device.
本発明のクロスフ口一型膜による濾過方法においては、 前記濃縮工程と前記排 出工程との間に、 貯槽のレベルを一定に保つように、 置換液を貯槽に供給しつつ 濾過する液置換工程を有してもよい。 In the filtration method using a cross mouth type membrane according to the present invention, the concentration step and the drainage step are performed. A liquid replacement step of supplying a replacement liquid to the storage tank and filtering the replacement liquid may be provided between the discharge step and the storage tank so as to keep the level of the storage tank constant.
また、 本発明のクロスフロー型膜による濾過方法においては、 クロスフロー型 膜が中空糸膜であることが好ましい。  In the filtration method using a cross-flow type membrane of the present invention, the cross-flow type membrane is preferably a hollow fiber membrane.
本発明のクロスフ口一型膜による濾過方法は、 クロスフ口一型膜で濾過される 原料液中の懸濁物が微生物である場合、 更には原料液が微生物菌体を含むァクリ ルアミド水溶液である場合にとりわけ適している。  In the filtration method using a cross mouth type membrane according to the present invention, when the suspension in the raw material solution filtered by the cross mouth type membrane is a microorganism, the raw material liquid is an aqueous acrylamide solution containing microbial cells. Especially suitable in cases.
本発明の第 2の態様は、 アクリルアミドの製造方法であって、 上記のクロスフ 口一型膜による濾過方法を含む分離工程を有するものである。 図面の簡単な説明  A second aspect of the present invention is a method for producing acrylamide, which has a separation step including the above-mentioned filtration method using a cross-over type one membrane. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 クロスフロー型膜を備えた濾過装置の一例を模式的に示す図である。 発明を実施するための最良の形態  FIG. 1 is a diagram schematically illustrating an example of a filtration device provided with a cross-flow type membrane. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のクロスフロー型膜による濾過方法 (以下、 濾過方法と略す) の一実施 形態例について図面を参照して説明する。 なお、 この実施形態例で使用される濾 過装置は、 前述の図 1に示されるものであり、 ここではその説明を省略する。 ここでいう 「原料液」 とは、懸濁物を含んだ液体であり、 「濃縮液」 とは、濾過 操作により原料液よりも懸濁物濃度が増加した液である。 また、 「濾液」 とは、.ク ロスフロー膜より流出した懸濁物を含まない液体をさす。  One embodiment of a filtration method (hereinafter, abbreviated as a filtration method) using a cross-flow type membrane of the present invention will be described with reference to the drawings. The filtering device used in this embodiment is shown in FIG. 1 described above, and the description thereof is omitted here. Here, the “raw material liquid” is a liquid containing a suspension, and the “concentrated liquid” is a liquid in which the concentration of the suspension is higher than that of the raw material liquid by a filtration operation. The term “filtrate” refers to a liquid that does not contain suspended matter that has flowed out of a crossflow membrane.
この濾過方法では、 まず、 濾過工程において、 クロスフロー型膜 4へ原料液も しくは濃縮液を循環供給するための貯槽 3のレベルが一定になるように、 供給ポ ンプ 2を作動させて貯槽 3に新たな原料液を供給する。 それと同時に、 送り管 5 に設置された循環ポンプ 7を作動させて原料液もしくは濃縮液をクロスフロー型 膜 4に供給し、 第 1の濾液出口弁 1 3を開放するとともに抜出しポンプ 1 5を作 動させて、 連続的に濾過'する。 さらに、 クロスフロー型膜 4から排出された濃縮 液を、 戻り管 6を介して貯槽 3に戻して濃縮液を循環させる。  In this filtration method, first, in the filtration step, the supply pump 2 is operated so that the level of the storage tank 3 for circulating and supplying the raw material liquid or the concentrated liquid to the cross-flow type membrane 4 becomes constant. Supply new raw material liquid to 3. At the same time, the circulating pump 7 installed in the feed pipe 5 is operated to supply the raw material solution or the concentrated solution to the cross-flow type membrane 4, and the first filtrate outlet valve 13 is opened and the withdrawal pump 15 is made. And continuously filter. Further, the concentrated liquid discharged from the cross-flow type membrane 4 is returned to the storage tank 3 via the return pipe 6, and the concentrated liquid is circulated.
次いで、 濃縮工程において、 供給ポンプ 2を停止して貯槽 3への新たな原料液 の供給を止める。 そして、 供給を停止したままの状態で更に濃縮液を循環させて クロスフ口一型膜 4で濾過して貯槽 3のレベルを下げて濃縮液中の懸濁物を更に 濃縮する。 Next, in the concentration step, the supply pump 2 is stopped and the supply of the new raw material liquid to the storage tank 3 is stopped. Then, with the supply stopped, circulate the concentrate further. The suspension in the concentrated solution is further concentrated by lowering the level of the storage tank 3 by filtration through a cross-over type membrane 4.
次いで、 排出工程において、 排出弁 1 9を開き、 排出管 2 0を介して、 懸濁物 が濃縮された残存する濃縮液を排出する。  Next, in the discharging step, the discharging valve 19 is opened, and the remaining concentrated liquid in which the suspended matter is concentrated is discharged through the discharging pipe 20.
濃縮液 出後には、 クロスフロー型膜 4を洗浄して再生する。 このように膜を 再生することで、 継続的に高い濾過速度を維持できる。  After discharging the concentrated liquid, the cross-flow type membrane 4 is washed and regenerated. By regenerating the membrane in this way, a high filtration rate can be maintained continuously.
濾過工程においては、 貯槽 3の液レベルを一定に制御するために、 液面調節計 9によって供給ポンプ 2の作動を制御している。 具体的には、 貯槽 3の所定のレ ベルに設置した液面調節計 9により、 貯槽 3が所定の液レベルになっているとき には供給ポンプ 2の作動を停止させ、 所定の液面より低くなつたときには供給ポ ンプ 2を作動させて新たな原料液を供給するようになっている。  In the filtration step, the operation of the supply pump 2 is controlled by a liquid level controller 9 in order to keep the liquid level in the storage tank 3 constant. Specifically, when the storage tank 3 is at the predetermined liquid level, the operation of the supply pump 2 is stopped by the liquid level controller 9 installed at a predetermined level of the storage tank 3, and the level of the liquid is controlled from the predetermined liquid level. When it becomes low, the supply pump 2 is operated to supply a new raw material liquid.
なお、 貯槽 3の液レベルは、 貯槽 3内での経時的な懸濁物濃度増加による濾過 速度低下を考慮し、 濾過時間や濾過装置の特性から決定することが好ましい。 濃縮工程においては、 濃縮に伴って濃縮液の粘度が上昇し、 循環ポンプ 7の吐 出圧力が上昇するが、 クロスフ口一型膜 4の使用最大耐圧差を超えないように循 環ポンプ 7の流量を調節すればよい。  The liquid level in the storage tank 3 is preferably determined from the filtration time and the characteristics of the filtration device in consideration of a decrease in filtration speed due to an increase in the concentration of suspended solids in the storage tank 3 over time. In the concentration step, the viscosity of the concentrated solution increases with the concentration, and the discharge pressure of the circulation pump 7 rises. The flow rate may be adjusted.
この濾過方法を行う濾過装置 1のクロスフロー型膜 4としては、 平膜、 スパイ ラル膜、 中空糸膜などいずれの種類であってもよいが、 装置サイズに対して濾過 面積を大きく取れる点で中空糸膜が好ましい。 中空糸膜を用いた場合、 循環によ る圧力損失が大きいので、 最終的に排出される濃縮液中の懸濁物濃度をより高く したいときには、 内径の大きな中空糸膜又は長さの短い中空糸膜を選択すること が好ましい。  The cross-flow type membrane 4 of the filtration device 1 that performs this filtration method may be any type such as a flat membrane, a spiral membrane, and a hollow fiber membrane, but is large in filtration area as compared with the size of the device. Hollow fiber membranes are preferred. When a hollow fiber membrane is used, the pressure loss due to circulation is large.To increase the concentration of suspended solids in the concentrated liquid finally discharged, a hollow fiber membrane with a large inner diameter or a hollow fiber with a short length is required. It is preferable to select a thread membrane.
この濾過方法で濾過できる原料液としては、 例えば、 食品分野における飲料水 、 化学工業分野における工業製品、 生化学分野における培養液、 バイオリアクタ 一の反応液などが挙げられる。 これらの中でも、 非ニュートン流体で、 濃縮に伴 つて粘性などの物性が大きく変化するものであり、 濾過される懸濁物が微生物で あるもの、 具体的には、 微生物触媒による反応液がとりわけ適している。 中でも 微生物触媒によつて製造されたァクリルアミ ド水溶液に好適である。  Examples of the raw material liquid that can be filtered by this filtration method include drinking water in the food field, industrial products in the chemical industry field, culture liquid in the biochemical field, and reaction liquid in a bioreactor. Among these, non-Newtonian fluids whose physical properties such as viscosity change greatly with concentration and in which the suspension to be filtered is a microorganism, specifically, a reaction solution using a microbial catalyst are particularly suitable. ing. Among them, it is suitable for an acrylamide aqueous solution produced by a microbial catalyst.
特に、 固定化していない微生物触媒を用いて製造されたアクリルアミド水溶液 には、 固定ィ匕していない微生物、 即ちミクロンオーダーの懸濁物が含まれており 、 その分離方法として、 クロスフロー膜を用いることが好ましいため、 本発明の 方法が有用である。 In particular, aqueous acrylamide solutions produced using unimmobilized microbial catalysts Contains microorganisms that are not immobilized, that is, suspensions on the order of microns, and it is preferable to use a cross-flow membrane as a method for separating the microorganisms. Therefore, the method of the present invention is useful.
ここで、 「固定化していない微生物触媒」 とは、微生物の菌体膜が直接反応液に 接触するような触媒であり、 包括固定化、 即ちポリアクリルアミド、 ポリビニル アルコール、 カラギーナン、 寒天、 ゼラチン、 アルギン酸等の高分子物質で、 菌 体を包み込む包括固定化方法を行っていない触媒を意味する。  Here, the term “unimmobilized microbial catalyst” refers to a catalyst in which the microbial cell membrane comes into direct contact with the reaction solution, and includes comprehensive immobilization, that is, polyacrylamide, polyvinyl alcohol, carrageenan, agar, gelatin, and alginic acid. These catalysts are high molecular substances, etc., which have not been subjected to the method of entrapping and immobilizing the cells.
即ち、 微生物を培養し、 必要に応じて洗浄等を施した微生物菌体そのもの、 あ るいは微生物菌体をダルタルアルデヒドなどの多官能基を有する物質により架橋 あるいは凝集させた架橋法、 または菌体をガラスビーズや樹脂、 シリカゲル等に 化学的に結合させた担体結合法等の包括法ではない固定化方法で固定化したもの も含む。  That is, a microorganism method in which the microorganisms are cultured and, if necessary, washed, etc., or the microbial cells are crosslinked or aggregated with a substance having a polyfunctional group such as daltalaldehyde, It includes those immobilized by non-inclusive methods such as the carrier binding method in which the body is chemically bonded to glass beads, resin, silica gel, etc.
アクリルアミドを製造し得る微生物触媒には種種あるが、 例えば、 バチルス ( Bacillus)属、ノ クテリジューム (Bacteridium)属、ミクロコッカス (Micrococcus ) 属およぴブレビパクテリゥム (Brevibacterimn) 属 (特公昭 62— 21 51 9 号参照)、コリネバクテリゥム(Corynebacterium)属ぉょぴノカルジァ(Nocardia ) 属 (特公昭 56 - 1 791 8号参照)、 シユードモナス (Pseudomonas) 属 ( 特公昭 59— 37951号参照)、 ミクロパクテリゥム (Microbacterium) 属 ( 特公平 4一 4873号参照)、 ロドコッカス (Rhodococcus) 属 (特公平 4一 48 73号、特公平 6— 55148号、特公平 7— 40948号参照)、ァクロモパク ター (Achromobacter)属 (特開平 6— 225780号参照)、 シユードノカルディ ァ (Pseudonocardia)属 (特開平 9一 275978号参照) 等の微生物種が好まし い。 さらには、 ロドコッカス (Rhodococcus) 属細菌がより好ましい。  There are various types of microbial catalysts capable of producing acrylamide. For example, Bacillus, Bacteridium, Micrococcus, and Brevibacterimn (Japanese Patent Publication 62) — 21519), the genus Corynebacterium Nocardia (see JP-B-56-17918), the genus Pseudomonas (see JP-B-59-37951) Genus, Microbacterium (see JP-B-4-1873), Rhodococcus (see JP-B-4-14873, JP-B-6-55148, JP-B-7-40948), acromopac Microbial species such as genus Achromobacter (see JP-A-6-225780) and genus Pseudonocardia (see JP-A-9-175978) are preferred. Furthermore, bacteria belonging to the genus Rhodococcus are more preferred.
また、 上記した微生物由来の二トリルヒドラターゼ遺伝子を取得し、 そのまま 、 あるいは人為的に改良し、 任意の宿主に該遺伝子を導入しても良い。  Alternatively, the nitrile hydratase gene derived from the microorganism described above may be obtained, and the gene may be introduced into any host as it is or artificially improved.
例えば、 ァクロモパクタ一 (Achromobacter)属のニトリノレヒドラターゼで形質 転換した大腸菌 MT 10770 (FERM P— 14756) (特開平 8— 266 277号参照)、シユードノカルディア (Pseudonocardia)属のニトリノレヒドラター ゼで形質転換した大腸菌 MT 10822 (FERM BP— 5785) (特開平 9 W For example, Escherichia coli MT 10770 (FERM P-14756) transformed with nitroni rehydratase of the genus Achromobacter (see Japanese Patent Application Laid-Open No. 8-266277), and nitrino rehydraters of the genus Pseudonocardia Escherichia coli MT 10822 (FERM BP-5785) transformed with W
8  8
- 2 7 5 9 7 8号参照)又はロ ドコッカス ロ ドクロウス (Rhodococcus rhodochrous) 種の二トリルヒドラターゼ (特開平 4一 2 1 1 3 7 9号参照) で 形質転換した微生物等を挙げることができる。  Microorganisms transformed with nitrile hydratase of the species Rhodococcus rhodochrous (see Japanese Patent Application Laid-Open No. 411,739) can be used. .
微生物触媒を用いてァクリルァミ ドを製造する方法についても、 種々考えられ るが、 水性溶媒中にて原料であるァクリロ二トリノレを溶解させ、 前記微生物触媒 を添加すればよい。 反応方法、 様式等は、 その製造目的や微生物触媒各々により 最適化した条件で行えばよ!/、。  Various methods for producing acrylamide using a microbial catalyst are also conceivable, but acrylonitrile, which is a raw material, is dissolved in an aqueous solvent, and the microbial catalyst may be added. The reaction method, mode, etc. may be performed under conditions that are optimized for the purpose of production and for each microbial catalyst!
以上説明した濾過方法では、 濾過工程後に濃縮工程を有しており、 この濃縮ェ 程では新たな原料液を供給せずに濾過するから、 短時間で濃縮液中の懸濁物を高 濃度に濃縮できる。 したがって、 濾過時間を短縮しつつ、 濾過後の濃縮液を高濃 度化できる。 ここで、 本発明における濾過時間とは、 濾過工程および濃縮工程で 要した時間の総和である。  In the filtration method described above, a concentration step is provided after the filtration step. In this concentration step, filtration is performed without supplying a new raw material liquid, so that the suspension in the concentrated liquid can be concentrated in a short time. Can be concentrated. Therefore, the concentration of the concentrated solution after filtration can be increased while shortening the filtration time. Here, the filtration time in the present invention is the total time required for the filtration step and the concentration step.
なお、 本発明は、 上述した実施形態例に限定されない。 例えば、 濃縮工程と排 出工程との間に、 貯槽のレベルを一定に保つように純水などの置換液を貯槽に供 給しつつ濾過する液置換工程を有してもよレ、。 濃縮工程と排出工程との間に液置 換工程を有していれば、 排出工程で排出される濃縮液中の成分、 即ち原料液がァ クリルァミド水溶液である場合にはァクリルァミドの量を低減することができ、 廃棄物量の低減をはかると共に、 濾液中に回収されるアクリルアミド収率の増大 をはかることができる。 また、 本発明において液置換した場合には、 濃縮工程に より濃縮液の量が低減されているため、 置換液量を削減できる。  Note that the present invention is not limited to the above embodiment. For example, a liquid replacement step may be provided between the concentration step and the discharge step, in which a replacement liquid such as pure water is supplied to the storage tank and filtered to keep the level of the storage tank constant. If there is a liquid replacement step between the concentration step and the discharge step, reduce the amount of components in the concentrated liquid discharged in the discharge step, that is, the amount of acrylamide when the raw material liquid is an aqueous acrylamide solution As a result, the amount of waste can be reduced and the yield of acrylamide recovered in the filtrate can be increased. In the present invention, when the liquid is replaced, the amount of the replacement liquid can be reduced because the amount of the concentrated liquid is reduced by the concentration step.
液置換工程を有する場合には、 排出工程前に、 液置換した濃縮液をさらに濃縮 することもできる。  When a liquid replacement step is provided, the concentrated liquid after the liquid replacement can be further concentrated before the discharge step.
置換液としては、 懸濁物を含まないか懸濁物が極めて少ない液体が用いられる 力 後処理等を考慮すると、 通常は原料液を構成する溶媒の 1種あるいはその混 合物、 溶液などが用いられる。 水が使用できれば経済性や安全面からより好まし い。  As the replacement liquid, a liquid containing no or very few suspensions is used.In consideration of post-treatment, etc., one of the solvents constituting the raw material liquid, a mixture thereof, or a solution is usually used. Used. If water is available, it is more economical and safer.
また、 濾過工程において、 新たな原料液が一定速度で貯槽に供給されている場 合には、 液面調節計を用いずに、 濾液移送管に設けられた弁を調節するなどして 濾液の排出速度を調節することで、 貯槽のレベルを一定に保つてもよい。 また、 上述した濾過方法の具体例では、 濾過装置はク口スフ口一型膜が 1つで あつたが、 クロスフロー型膜が並列に 2つ以上設置されてもよい。 クロスフロー 型膜が並列に 2つ以上設置されていれば、 濾過工程及ぴ濃縮工程を行うクロスフ ロー型膜と、 膜再生工程を行うクロスフロー型膜とを切り替えて使用できるので 、 長期間の連続濾過が可能になる。 Also, in the filtration process, when new raw material liquid is supplied to the storage tank at a constant rate, the filtrate is adjusted by adjusting the valve provided in the filtrate transfer pipe without using a liquid level controller. The level of the reservoir may be kept constant by adjusting the discharge rate. Further, in the specific example of the above-mentioned filtration method, the filtration device has a single mouth-and-mouth type one membrane, but two or more cross-flow type membranes may be installed in parallel. If two or more cross-flow type membranes are installed in parallel, it is possible to switch between a cross-flow type membrane that performs a filtration step and a concentration step and a cross-flow type membrane that performs a membrane regeneration step. Continuous filtration becomes possible.
更には、 本発明を用いると懸濁液濃度がより低い状態で短時間に連続濾過でき るため、 懸濁物が微生物触媒である場合、 微生物に与えるストレスが少なくなり 、 結果として、 微生物から発生し濾液に混入してしまう不純物の量が低減でき、 得られる濾液の品質が向上するという特筆すべき結果も得られた。  Furthermore, when the present invention is used, continuous filtration can be performed in a short time at a lower suspension concentration, so that when the suspension is a microbial catalyst, the stress applied to the microbes is reduced, and as a result, the microbes are generated from the microbes. The remarkable result that the amount of impurities mixed in the filtrate was reduced and the quality of the obtained filtrate was improved was obtained.
以下、 本発明を実施例により更に具体的に説明するが、 本発明は、 これらの実 施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.
(実施例 1 )  (Example 1)
(1) 原料液の調製  (1) Preparation of raw material liquid
微生物触媒として、 二トリルヒドラターゼ活性を有する口ドコッカス 口ドク ロス J— 1株 (Rhodococcus rhodochrous J-l(F ERM BP— 1478)) ( 特公平 6— 55148号公報に記載) を用い、 原料である水とアクリロニトリル とを反応させて、 50質量%のアクリルアミド水溶液を 500 k g調製し、 これ を原料液とした。  As a microbial catalyst, Rhodococcus rhodochrous Jl (F ERM BP-1478) (described in Japanese Patent Publication No. 6-55148) having nitrile hydratase activity was used as the raw material water. Was reacted with acrylonitrile to prepare 500 kg of a 50% by mass aqueous solution of acrylamide, which was used as a raw material liquid.
その際に使用した微生物触媒の量は乾燥菌体の質量換算で 50 gであり、 50 質量%アクリルアミド水溶液中の微生物触媒の濃度は、 乾燥菌体の質量換算で 0 . 01質量% (100 p pm) であった。  The amount of the microbial catalyst used at that time was 50 g in terms of the dry cell mass, and the concentration of the microbial catalyst in the 50% by mass acrylamide aqueous solution was 0.01 mass% (100 p. pm).
(2) クロスフロー型膜  (2) Cross-flow type membrane
この例で使用したクロスフ口一型膜は以下の仕様のものである。  The cross opening type membrane used in this example has the following specifications.
株式会社クラレ製、 内圧式中空糸膜モジュール (ラボモジュール)  Internal pressure type hollow fiber membrane module (lab module) manufactured by Kuraray Co., Ltd.
エレメント形式: MLE 7101  Element type: MLE 7101
中空糸内径ノ外径: 1. OmmZO. 6mm  Hollow fiber inside diameter outside diameter: 1. OmmZO. 6mm
分離特性 ( 90 %カット) : 0. 02 μ m  Separation characteristics (90% cut): 0.02 μm
最高膜内外差圧 (使用最大耐圧差) : 294 k P a  Maximum transmembrane pressure difference (operating maximum pressure difference): 294 kPa
中空糸長さ : 1m 中空糸本数 (モジュール) : 126本 Hollow fiber length: 1m Number of hollow fibers (module): 126
有効膜面積: 0. 24 m2  Effective membrane area: 0.24 m2
(3) 濾過工程  (3) Filtration process
上述したクロスフロー型膜を備えた図 1に示す濾過装置 1を用い、 まず、 原料 液 5 k gを貯槽 3に導入し、 次に、 原料液を循環しながら循環流量が 100 k g /時間になるように循環ポンプ 7の流量を調節した。 この調節の際、 第 1の濾液 出口弁 1 3および第 2の濾液出口弁 17を閉じておいて濾液が排出しないように した。 また、 この時の貯槽 3の液レベルに液面調節計 9を設定した。  First, 5 kg of the raw material liquid is introduced into the storage tank 3 using the filtration device 1 shown in FIG. 1 equipped with the cross-flow type membrane described above, and then, while circulating the raw material liquid, the circulation flow rate becomes 100 kg / hour. The flow rate of the circulation pump 7 was adjusted as described above. During this adjustment, the first filtrate outlet valve 13 and the second filtrate outlet valve 17 were closed to prevent the filtrate from being discharged. In addition, the liquid level controller 9 was set to the liquid level of the storage tank 3 at this time.
次に、 第 1の濾液出口弁 1 3を開け、 抜出しポンプ 15を作動させて濾液の流 量が 1 O k gZ時間になるように調節して濾過を開始した。 それと同時に、 貯槽 3の液面調節計 9を起動させて供給ポンプ 2を制御し、 貯槽 3の液レベルが一定 になるように原料液を供給した。  Next, the first filtrate outlet valve 13 was opened, the extraction pump 15 was operated, and the flow rate of the filtrate was adjusted so as to be 10 kgZ hours, and filtration was started. At the same time, the liquid level controller 9 of the storage tank 3 was activated to control the supply pump 2, and the raw material liquid was supplied so that the liquid level of the storage tank 3 was constant.
そして、 48時間で原料液を 480 k g濾過した後、 一旦濾過を停止した。 こ の濾過によって、 貯槽 3内の微生物触媒濃度は 1質量%まで濃縮された。 循環圧 力 (循環圧力調節計 1 1が指示する圧力) は、 濾過開始直後は約 0. 14MP a であり、 濾過終了時には約 0. 23 M P aまで増加した。 濾液出口圧力 (濾液出 口圧力計 12が指示する圧力) は 0. 03MP aから 0. 02MP aで推移して おり、 抜出しポンプ 15によって殆ど吸引されておらず、 濾過速度にはまだ余裕 があった。  Then, after 480 kg of the raw material liquid was filtered in 48 hours, the filtration was temporarily stopped. By this filtration, the concentration of the microbial catalyst in the storage tank 3 was reduced to 1% by mass. The circulating pressure (the pressure indicated by the circulating pressure controller 11) was about 0.14 MPa immediately after the start of the filtration, and increased to about 0.23 MPa at the end of the filtration. The filtrate outlet pressure (the pressure indicated by the filtrate outlet pressure gauge 12) is changing from 0.03MPa to 0.02MPa, and is hardly sucked by the withdrawal pump 15, and there is still room for the filtration speed. Was.
(4) 濃縮工程、 排出工程  (4) Concentration process, discharge process
貯槽 3の液面調節計 9を停止させて新たな原料液の供給を停止するとともに、 循環圧力調節計 1 1を用いて循環圧力が 0. 25MP aを超えないように循環ポ ンプ 7の流量を自動調節させて濃縮工程を開始した。 この時、 第 2の濾過出口弁 1 7を全開にして爐液を 出した。  Stop the liquid level controller 9 in the storage tank 3 to stop supplying new raw material liquid, and use the circulation pressure controller 11 to adjust the flow rate of the circulation pump 7 so that the circulation pressure does not exceed 0.25 MPa. Was automatically adjusted to start the concentration step. At this time, the second filtration outlet valve 17 was fully opened to discharge the furnace liquid.
20分後、 循環ポンプ 7を停止し、 排出管 20を介して濃縮された濃縮液を廃 棄した。 廃棄した濃縮液の量は 1. 7 k gであり、 濃縮液中の微生物触媒濃度は 約 2. 9質量。/。であった。 なお、 濃縮工程における循環流量は、 濃縮開始直後は 100 k gZ時間であつたが、 濃縮終了直前では約 30 k gZ時間にまで低下し た。 この例では、 4 8時間 2 0分という時間で微生物触媒濃度を約 2 . 9質量%ま で高濃度化できた。 After 20 minutes, the circulation pump 7 was stopped, and the concentrated liquid concentrated through the discharge pipe 20 was discarded. The amount of discarded concentrate is 1.7 kg, and the concentration of microbial catalyst in the concentrate is about 2.9 mass. /. Met. The circulation flow rate in the concentration step was 100 kgZ hours immediately after the start of concentration, but dropped to about 30 kgZ hours immediately before the end of concentration. In this example, the microbial catalyst concentration could be increased to about 2.9% by mass in 48 hours and 20 minutes.
また、 得られた濾液は、 無色透明であった。  Further, the obtained filtrate was colorless and transparent.
表 1は、 実施例 1と、 以下に示す実施例 2及び各比較例との比較を示している 。 なお、 表中の 「〇」 は、 好適な値である実施例 1および実施例 2の各値にそれ ぞれ付し、 「X」 は、各比較例において、対応する実施例と比較して不適な値にそ れぞれ付している。  Table 1 shows a comparison between Example 1 and Example 2 and Comparative Examples shown below. In the table, “〇” is attached to each of the preferred values of Example 1 and Example 2, and “X” is compared to the corresponding example in each comparative example. Each is attached to an inappropriate value.
Figure imgf000013_0001
Figure imgf000013_0001
(比較例 1 ) (Comparative Example 1)
( 4 ) の濃縮工程を行わなかつた と以外は、 実施例 1と同様にして原料液を 濾過した。  The raw material liquid was filtered in the same manner as in Example 1 except that the concentration step of (4) was not performed.
( 4 ' ) 排出工程 貯槽 3の液面調節計 9を停止させて新たな原料液の供給を停止するとともに、 循環ポンプ 7を停止し、 排出管 20を介して濃縮された濃縮液を廃棄した。 廃棄 した濃縮液の量は 5. 0 k gであり、 濃縮液中の微生物触媒濃度は約 1. 0質量 %であった。 (4 ') Discharge process The liquid level controller 9 of the storage tank 3 was stopped to stop supplying new raw material liquid, the circulation pump 7 was stopped, and the concentrated liquid concentrated through the discharge pipe 20 was discarded. The amount of the discarded concentrate was 5.0 kg, and the concentration of the microbial catalyst in the concentrate was about 1.0% by mass.
なお、 得られた濾液は、 無色透明であった。  In addition, the obtained filtrate was colorless and transparent.
(比較例 2 )  (Comparative Example 2)
(3) 濾過工程を以下のようにし、 濃縮工程を省略したこと以外は、 実施例 1 と同様にして原料液を濾過した。  (3) The raw material liquid was filtered in the same manner as in Example 1 except that the filtration step was as follows, and the concentration step was omitted.
(3 ') 濾過工程  (3 ') Filtration process
まず、 原料液 1. 7 k gを貯槽 3に張込み、 次に、 原料液を循環しながら循環 流量が 100k gZ時間になるように循環ポンプ 7の流量を調節した。 この調節 の際、 第 1の濾液出口弁 13および第 2の濾液出口弁 17を閉じておいて濾液が 排出しないようにした。 また、 この時の貯槽 3內の液レベルを液面調節計 9に設 定した。  First, 1.7 kg of the raw material liquid was charged into the storage tank 3, and then the flow rate of the circulation pump 7 was adjusted while circulating the raw material liquid so that the circulation flow rate became 100 kgZ hours. During this adjustment, the first filtrate outlet valve 13 and the second filtrate outlet valve 17 were closed so that the filtrate was not discharged. At this time, the liquid level in the storage tank 3 內 was set in the liquid level controller 9.
次に、 第 1の濾液出口弁 13を開け、 抜出しポンプ 15を作動させて濾液の流 量が 10 k g/時間になるように調節して濾過を開始した。 それと同時に、 貯槽 3の液面調節計 9を起動させて、 貯槽 3の液レベルが一定になるように原料液を 供給した。  Next, the first filtrate outlet valve 13 was opened, and the extraction pump 15 was operated to adjust the flow rate of the filtrate to 10 kg / hour, and filtration was started. At the same time, the liquid level controller 9 of the storage tank 3 was activated, and the raw material liquid was supplied so that the liquid level of the storage tank 3 was constant.
約 20時間後、 濾液出口圧力がほぼ大気圧 (0. O lMP a以下) となったた め、 第 2の濾液出口弁 17を全開にし、 これ以降の濾過速度は成り行きにした。 次に、 循環圧力調節計 1 1を用いて循環圧力が 0. 25 MP aを超えないように 循環ポンプ 7の流量を自動調節させて濃縮液を循環させた。 そして、 約 85時間 後に 480 k gの原料液の濾過を終了した。  After about 20 hours, the filtrate outlet pressure was almost atmospheric pressure (less than 0.1 MPa), so the second filtrate outlet valve 17 was fully opened, and the subsequent filtration speed was achieved. Next, the concentrated liquid was circulated by automatically adjusting the flow rate of the circulating pump 7 using the circulating pressure controller 11 so that the circulating pressure did not exceed 0.25 MPa. After about 85 hours, the filtration of the 480 kg raw material liquid was completed.
この濾過工程では、 濾過開始から 20時間以降の濾過速度は 10 k gZ時間か ら徐々に減少し、 濾過終了直前では約 3 k gZ時間にまで低下した。  In this filtration step, the filtration rate after 20 hours from the start of filtration gradually decreased from 10 kgZ hours, and decreased to about 3 kgZ hours immediately before the end of filtration.
貯槽 3内の微生物触媒濃度は実施例 1と同様に 2. 9質量%まで濃縮されたも のの、 濾過時間は大幅に長くなつた。  The concentration of the microbial catalyst in the storage tank 3 was concentrated to 2.9% by mass as in Example 1, but the filtration time was significantly longer.
なお、 得られた濾液は、 透明であつたが、 やや赤く着色していた。  The filtrate obtained was transparent but slightly reddish.
(実施例 2) 実施例 iと同様にして濃 ϋ液を更に濃縮した後、 純水で液置換してから、 濃縮 液'を廃棄した。 (Example 2) After further concentrating the concentrated solution in the same manner as in Example i, the solution was replaced with pure water, and the concentrated solution 'was discarded.
その際の液置換においては、 まず、 濃縮停止後、 液面調節計 9の設定レベルを 濃縮後のレベルに設定し、 この液面調節計 9が純水供給ポンプ (図示せず) を制 御するように切り替えた。 次に、 第 2の濾液出口弁 1 7を全開にするとともに、 循環圧力調節計 1 1を用いて循環圧力が 0 . 2 5 M P aを超えないように循環ポ ンプ 7の流量を自動調節させて液置換を開始した。  In the liquid replacement at that time, first, after the concentration is stopped, the set level of the liquid level controller 9 is set to the level after the concentration, and the liquid level controller 9 controls the pure water supply pump (not shown). Switched to Next, the second filtrate outlet valve 17 is fully opened, and the flow rate of the circulation pump 7 is automatically adjusted using the circulation pressure controller 11 so that the circulation pressure does not exceed 0.25 MPa. The liquid replacement was started.
そして、 5 k gの純水を貯槽 3へ供給した時点で液置換を終了し、 続いて、 液 置換された濃縮液を廃棄した。 濃縮液の量は 1 . 7 k gであり、 懸濁液中の微生 物触媒濃度は約 2 . 9質量%であった。 また、 濃縮液中のアクリルアミド濃度は 約 3質量%であった。  Then, when 5 kg of pure water was supplied to the storage tank 3, the liquid replacement was terminated, and subsequently, the concentrated liquid after the liquid replacement was discarded. The amount of the concentrate was 1.7 kg, and the concentration of the microbial catalyst in the suspension was about 2.9% by mass. The acrylamide concentration in the concentrate was about 3% by mass.
なお、 得られた濾液は、 無色透明であった。  In addition, the obtained filtrate was colorless and transparent.
(比較例 3 )  (Comparative Example 3)
比較例 1と同様にして得られた濃縮液を、 液置換を以下のようにしたこと以外 は、 実施例 2と同様にして原料液を濾過した。  The raw material liquid was filtered in the same manner as in Example 2 except that the concentrated liquid obtained in the same manner as in Comparative Example 1 was subjected to liquid replacement as described below.
その際の液置換においては、 まず、 濾過終了後、 液面調節計 9の設定レベルは そのままで、 液面調節計 9が純水供給ポンプを制御するように切り替えた。 次に 、 第 1の濾液出口弁 1 3を全開にするとともに、 抜出しポンプ 1 5を用いて濾液 の流量が 1 0 k g Z時間になるように調節して液置換した。  In the liquid replacement at that time, first, after the filtration was completed, the liquid level controller 9 was switched to control the pure water supply pump while the set level of the liquid level controller 9 was kept as it was. Next, the first filtrate outlet valve 13 was fully opened, and the liquid was replaced by adjusting the flow rate of the filtrate to be 10 kg Z hours using the withdrawal pump 15.
5 k gの純水にて液置換し、 濃縮液を廃棄した。 濃縮液の量は 5 . O k gであ り、 懸濁液中の微生物触媒濃度は約 1 . 0質量%であった。 また、 濃縮液中のァ クリルアミド濃度は約 1 9質量%であった。  The solution was replaced with 5 kg of pure water, and the concentrated solution was discarded. The amount of the concentrate was 5.0 kg, and the concentration of the microbial catalyst in the suspension was about 1.0% by mass. The acrylamide concentration in the concentrate was about 19% by mass.
なお、 得られた濾液は、 無色透明であった。  In addition, the obtained filtrate was colorless and transparent.
(比較例 4 )  (Comparative Example 4)
比較例 2と同様にして得られた濃縮液を、 実施例 2と同様にして原料液を濾過 した。  The concentrated liquid obtained in the same manner as in Comparative Example 2 was filtered from the raw material liquid in the same manner as in Example 2.
そして、 5 k gの純水を貯槽 3へ供給した時点で液置換を終了し、 続いて、 液 置換された濃縮液を廃棄した。 濃縮液の量は 1 . 7 k gであり、 濃縮液中の微生 物触媒濃度は約 2 . 9質量%であった。 また、 濃縮液中のアクリルアミド濃度は 約 3質量%であった。 ' Then, when 5 kg of pure water was supplied to the storage tank 3, the liquid replacement was terminated, and subsequently, the concentrated liquid after the liquid replacement was discarded. The amount of the concentrate was 1.7 kg, and the concentration of the microbial catalyst in the concentrate was about 2.9% by mass. Also, the concentration of acrylamide in the concentrate It was about 3% by mass. '
なお、 得られた濾液は、 透明であつたが、 やや赤く着色していた。  The filtrate obtained was transparent but slightly reddish.
実施例 1, 2は、 濃縮工程を有していたので、 短時間で濃縮液を高濃度に濃縮 できた。 さらに、 実施例 2では、 液置換したので、 廃棄した濃縮液中のァクリル アミド濃度が低く、 廃棄物処理負担が少なく且つァクリルァミ ド損出も少ない経 済的に非常に効率が良いプロセスとなった。  Since Examples 1 and 2 had a concentration step, the concentrated solution could be concentrated to a high concentration in a short time. Furthermore, in Example 2, the liquid was replaced, so that the acrylamide concentration in the discarded concentrated solution was low, the burden on waste disposal was small, and the acrylamide loss was small, resulting in a very economically efficient process. .
—方、 比較例 1は、 濃縮工程を有していなかつたので、 廃棄した濃縮液量が多 く、 その中の微生物濃度は低く、 アクリルアミド含量は高かった。 即ち、 廃棄物 処理負担が大きく、 アクリルアミ ド損出も大きい。 比較例 2では廃棄物処理量は 低く押さえたものの、 濃縮液量を実施例 1と同様にまで達するのに要した濾過時 間が長く、 かつ濾液がやや着色し、 アクリルアミドの品質が低下した。  On the other hand, since Comparative Example 1 did not have a concentration step, the amount of concentrated liquid discarded was large, the concentration of microorganisms therein was low, and the acrylamide content was high. In other words, the burden on waste disposal is large, and the loss of acrylamide is also large. In Comparative Example 2, although the amount of waste disposal was kept low, the filtration time required to reach the concentrated liquid amount as in Example 1 was long, and the filtrate was slightly colored, and the quality of acrylamide was deteriorated.
また、 比較例 3は、 濃縮工程を有さずに液置換をしたので、 廃棄した濃縮液量 が多くまた、 その中の微生物触媒濃度も低かった。 更に廃棄した濃縮液中のァク リルアミド濃度が高かく、 経済的にも好ましくない結果となった。 比較例 4では 、 濃縮液量を実施例 1と同様にまで達するのに要した濾過時間が長く、 かつ濾液 がやや着色し、 アクリルアミ ドの品質が低下した。 産業上の利用の可能性  In Comparative Example 3, since the liquid was replaced without having a concentration step, the amount of the concentrated liquid discarded was large, and the concentration of the microbial catalyst therein was low. Furthermore, the concentration of acrylamide in the discarded concentrate was high, which resulted in economically unfavorable results. In Comparative Example 4, the filtration time required to reach the concentration of the concentrated solution as in Example 1 was long, and the filtrate was slightly colored, and the quality of acrylamide was deteriorated. Industrial potential
本発明のクロスフロー型膜による濾過方法は、 原料液もしくは該原料液が濃縮 された濃縮液を循環供給するための、 貯槽と循環ポンプとを備えたクロスフロー 型膜による濾過方法であって、 前記貯槽内における液面のレベルが一定になるよ うに、 前記貯槽に新たな前記原料液を供給しながら、 前記クロスフロー型膜によ り前記原料液もしくは濃縮液を連続的に濾過する濾過工程と、 前記貯槽への新た な原料液の供給を止めた状態で、 更に、 濾過を継続して前記貯槽内における液面 のレベルを下げながら濃縮する濃縮工程と、 前記濃縮工程後に、 残存する濃縮液 を排出する排出工程とを有するので、 濾過時間を短縮しつつ、 濾過後の濃縮液を 高濃度化できる。 さらに、 濃縮液を高濃度化できることから、 より小型の濾過装 置にて長時間連続的に濾過できる。  The filtration method using a cross-flow type membrane of the present invention is a filtration method using a cross-flow type membrane provided with a storage tank and a circulation pump for circulating and supplying a raw material liquid or a concentrated liquid obtained by concentrating the raw material liquid, A filtration step of continuously filtering the raw material liquid or the concentrated liquid by the cross-flow type membrane while supplying new raw material liquid to the storage tank so that the liquid level in the storage tank is constant. A concentration step in which, while the supply of the new raw material liquid to the storage tank is stopped, the filtration is further continued to concentrate while lowering the liquid level in the storage tank; and a concentration remaining after the concentration step Since it has a discharge step of discharging the liquid, the concentration of the concentrated liquid after the filtration can be increased while shortening the filtration time. Furthermore, since the concentration of the concentrated solution can be increased, continuous filtration can be performed for a long time using a smaller filtration device.

Claims

請求の範囲 The scope of the claims
1 . 原料液もしくは該原料液が濃縮された濃縮液を循環供給するための、 貯槽と 循環ポンプとを備えたクロスフ口一型膜による濾過方法であって、 1. A filtration method using a cross-floor type membrane provided with a storage tank and a circulation pump for circulating and supplying a raw material liquid or a concentrated liquid obtained by concentrating the raw material liquid,
前記貯槽内における液面のレベルが一定になるように、 前記貯槽に新たな前記 原料液を供給しながら、 前記クロスフ口一型膜により前記原料液もしくは濃縮液 を連続的に濾過する濾過工程と、  A filtration step of continuously filtering the raw material liquid or the concentrated liquid through the cross opening type membrane while supplying new raw material liquid to the storage tank so that the liquid level in the storage tank becomes constant. ,
前記貯槽への新たな原料液の供給を止めた状態で、 更に、 濾過を継続して前記 貯槽内における液面のレベルを下げながら濃縮する濃縮工程と、  A state in which the supply of the new raw material liquid to the storage tank is stopped, and further, a concentration step of continuing filtration to concentrate while lowering a liquid level in the storage tank;
前記濃縮工程後に、 残存する濃縮液を排出する排出工程と、 を有する。  Discharging the remaining concentrated liquid after the concentration step.
2 . 請求項 1記載のクロスフロー型膜による濾過方法であって、 さらに、2. The method for filtration using a cross-flow type membrane according to claim 1, further comprising:
. 前記濃縮工程と前記排出工程との間に、 前記貯槽内における液面のレベルを一 定に保つように、 置換液を貯槽に供給しつつ濾過する液置換工程を有する。 A liquid replacement step is provided between the concentration step and the discharge step, in which the replacement liquid is supplied to the storage tank and filtered so as to keep the liquid level in the storage tank constant.
3 . 請求項 1記載のクロスフ口一型膜による濾過方法であつて、 3. A method for filtration using a cross mouth type membrane according to claim 1,
前記クロスフロー型膜は、 中空糸膜である。  The cross-flow type membrane is a hollow fiber membrane.
4 . 請求項 1記載のクロスフ口一型膜による濾過方法であって、 4. A filtration method using a cross mouth type membrane according to claim 1,
前記クロスフロー型膜で濾過される原料液中の懸濁物は、 微生物である。  The suspension in the raw material liquid filtered by the cross-flow type membrane is a microorganism.
5 . 請求項 1記載のクロスフ口一型膜による濾過方法であって、 5. A method for filtration with a cross mouth type membrane according to claim 1,
前記原料液は、 微生物菌体を含むアクリルアミ ド水溶液である。  The raw material liquid is an aqueous acrylamide solution containing microbial cells.
6 . アクリルアミドの製造方法であって、 6. A method for producing acrylamide,
請求項 5記載のクロスフ口一型膜による濾過方法を含む分離工程を有する。 a l A separation step including a filtration method using a cross opening type membrane according to claim 5 is provided. al
処理液貯槽 Processing liquid storage tank
濾液  Filtrate
PCT/JP2004/004534 2003-04-04 2004-03-30 Filtration method using cross-flow film and producing method of acrylamide using the same WO2004089518A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505210A JPWO2004089518A1 (en) 2003-04-04 2004-03-30 Filtration method using cross flow membrane and method for producing acrylamide using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-101832 2003-04-04
JP2003101832 2003-04-04

Publications (1)

Publication Number Publication Date
WO2004089518A1 true WO2004089518A1 (en) 2004-10-21

Family

ID=33156781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004534 WO2004089518A1 (en) 2003-04-04 2004-03-30 Filtration method using cross-flow film and producing method of acrylamide using the same

Country Status (2)

Country Link
JP (1) JPWO2004089518A1 (en)
WO (1) WO2004089518A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094585A (en) * 2008-10-14 2010-04-30 Ngk Insulators Ltd Separation device of liquid mixture, and separation method of liquid mixture
JP2011504999A (en) * 2007-11-27 2011-02-17 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Multi-component transducer assembly
US8569012B2 (en) 2008-03-14 2013-10-29 Mitsubishi Rayon Co., Ltd. Method for stabilization of aqueous acrylamide solution
WO2017167803A1 (en) 2016-03-29 2017-10-05 Basf Se Process for producing a polyacrylamide solution with increased viscosity
JP2022000051A (en) * 2013-12-04 2022-01-04 ポカード・ディアグノスティクス・リミテッドPocared Diagnostics, Ltd. Method and device for processing and analyzing particles extracted by tangential filtering

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471172B (en) * 2020-10-23 2023-04-28 中国石油化工股份有限公司 Method for manufacturing high-quality acrylamide aqueous solution

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119180A (en) * 1984-11-14 1986-06-06 Kirin Brewery Co Ltd Preparation of beer having low alcoholic content
EP0188068A2 (en) * 1984-11-16 1986-07-23 Nitto Chemical Industry Co., Ltd. Method for purifying reaction solution obtained by using microbial cell, immobilized microbial cell, or immobilized enzyme
JPH1028592A (en) * 1996-07-12 1998-02-03 Rengo Co Ltd Production of acrylamide by bacterium of genus rhizobium
JPH1157710A (en) * 1997-08-27 1999-03-02 Kurita Water Ind Ltd Device for treating waste water with membrane
JP2000317273A (en) * 1999-05-07 2000-11-21 Kurita Water Ind Ltd Membrane separation method
JP2002034571A (en) * 2000-07-27 2002-02-05 Asahi Breweries Ltd Nucleic acid probe for detecting megasphaera cerevisiae, and method for detecting bacterial substance that gives turbidity in beer
JP2002336659A (en) * 2001-05-17 2002-11-26 Mitsubishi Heavy Ind Ltd Hollow fiber membrane module, water treating method and method for prolonging service life of the module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119180A (en) * 1984-11-14 1986-06-06 Kirin Brewery Co Ltd Preparation of beer having low alcoholic content
EP0188068A2 (en) * 1984-11-16 1986-07-23 Nitto Chemical Industry Co., Ltd. Method for purifying reaction solution obtained by using microbial cell, immobilized microbial cell, or immobilized enzyme
JPH1028592A (en) * 1996-07-12 1998-02-03 Rengo Co Ltd Production of acrylamide by bacterium of genus rhizobium
JPH1157710A (en) * 1997-08-27 1999-03-02 Kurita Water Ind Ltd Device for treating waste water with membrane
JP2000317273A (en) * 1999-05-07 2000-11-21 Kurita Water Ind Ltd Membrane separation method
JP2002034571A (en) * 2000-07-27 2002-02-05 Asahi Breweries Ltd Nucleic acid probe for detecting megasphaera cerevisiae, and method for detecting bacterial substance that gives turbidity in beer
JP2002336659A (en) * 2001-05-17 2002-11-26 Mitsubishi Heavy Ind Ltd Hollow fiber membrane module, water treating method and method for prolonging service life of the module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504999A (en) * 2007-11-27 2011-02-17 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Multi-component transducer assembly
US8652322B2 (en) 2007-11-27 2014-02-18 Ge Healthcare Bio-Sciences Ab Multi-component part transducer assembly and a method for determining the pressure of a fluid using the transducer
US8569012B2 (en) 2008-03-14 2013-10-29 Mitsubishi Rayon Co., Ltd. Method for stabilization of aqueous acrylamide solution
JP2010094585A (en) * 2008-10-14 2010-04-30 Ngk Insulators Ltd Separation device of liquid mixture, and separation method of liquid mixture
JP2022000051A (en) * 2013-12-04 2022-01-04 ポカード・ディアグノスティクス・リミテッドPocared Diagnostics, Ltd. Method and device for processing and analyzing particles extracted by tangential filtering
WO2017167803A1 (en) 2016-03-29 2017-10-05 Basf Se Process for producing a polyacrylamide solution with increased viscosity
US10975177B2 (en) 2016-03-29 2021-04-13 Solenis Technologies, L.P. Process for producing a polyacrylamide solution with increased viscosity

Also Published As

Publication number Publication date
JPWO2004089518A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
CN101269298B (en) Membrane filtration method and device for polarization of concentration biomacromolecule with concentration
KR102539167B1 (en) Alternating tangential flow rapid harvesting
US4751003A (en) Crossflow microfiltration process for the separation of biotechnologically produced materials
US8679778B2 (en) Method for producing a biopolymer (e.g. polypeptide) in a continuous fermentation process
US5221479A (en) Filtration system
JP2002504415A (en) Rotating disk type filtration device provided with means for reducing axial force
CN113788513B (en) Filtering and separating device and application thereof
Shimizu et al. Cross-flow microfiltration of activated sludge using submerged membrane with air bubbling
JPS61122227A (en) Purification of reaction liquid produced by using microbial cell, immobilized microbial cell or immobilized enzyme
WO2004089518A1 (en) Filtration method using cross-flow film and producing method of acrylamide using the same
CN212713178U (en) Treatment device for wastewater generated in vitamin B2 fermentation process
JPS62140609A (en) Filtration separator
JP2009148661A (en) Filtration apparatus of solution containing impurities and filtration method
CN203075844U (en) Dynamic disc film device applied to recovery of superfine solid catalyst
CN111792730B (en) Method for controlling membrane pollution of anaerobic membrane bioreactor with low energy consumption
JP2515008B2 (en) Polymer particle purification method
SU1639717A1 (en) Method of filtering of liquids
US20230019509A1 (en) Methods and apparatus for removing contaminants from an aqueous material
JPH04145929A (en) Cross-flow filter
JPH022342A (en) Method for culturing biological cell having ph regulating and ammonia removing function and apparatus therefor
JPH0499483A (en) Method for perfusion culture of animal cell
JPH04260419A (en) Filtration system
JPS63126511A (en) Cross flow type precision filtering method
JPH04265126A (en) Filtration system
JPH0557149A (en) Filter system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005505210

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase