JPS62140609A - Filtration separator - Google Patents

Filtration separator

Info

Publication number
JPS62140609A
JPS62140609A JP28265385A JP28265385A JPS62140609A JP S62140609 A JPS62140609 A JP S62140609A JP 28265385 A JP28265385 A JP 28265385A JP 28265385 A JP28265385 A JP 28265385A JP S62140609 A JPS62140609 A JP S62140609A
Authority
JP
Japan
Prior art keywords
tubular body
filtration
suspension
porous
porous tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28265385A
Other languages
Japanese (ja)
Inventor
Hiroaki Oe
大江 宏明
Keinosuke Isono
啓之介 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP28265385A priority Critical patent/JPS62140609A/en
Publication of JPS62140609A publication Critical patent/JPS62140609A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and efficiently separate concrete components from a suspension contg. high-mol.wt. substances as solutes by filtering the suspension while forming a flow of the suspension parallel to the tubular filter surface. CONSTITUTION:A columnar body 2 is provided in a porous tubular body 1 while keeping a constant clearance with the main tube body, a part of the suspension 3 is filtered to the outside of the tubular body 1 as a filtrate 4 while the suspension flows through the clearance between the tubular body 3 and the columnar body 2, and the suspension flows out as a concentrate 5 from the opposite side. Meanwhile, the outside of the porous tubular body can be used as a filter surface. The thickness of the clearance used as the passage is preferably controlled to 0.1-10mm. Consequently, concrete components can be easily and efficiently separated from the suspension contg. high-mol.wt. substances as solutes. The separator is disassembled after use, various chemicals are added to the clogged tubular body which is then heated, hence the tubular body is regenerated, and then the separator is assembled and can be reutilized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は濾過分離装置に関する。さらに詳しくは各種高
分子量物質を溶質とし、微生物、細胞、その池の做拉子
を含む懸濁液よりこれらの懸濁成分の分離を必要とする
食品、医薬品工業を始めとする各種産業分野て用いられ
る濾過分離装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a filtration separation device. More specifically, it is used in various industrial fields including the food and pharmaceutical industries, which require the separation of suspended components from suspensions containing various high molecular weight substances as solutes, such as microorganisms, cells, and their constituents. The present invention relates to a filtration separation device used.

[従来の技術] 食品、医薬品工業等に於いては発酵槽や培養槽、反応器
等の中で生産された低分子量物質と、微生物や培養細胞
、未反応固形物や異物といった有形、成分との分離が行
われている。逆に生産物としての微生物、細胞を得る場
合にも培地との分離、成育を阻害する老排物除去の目的
で分離が行われている。このような懸濁液すなわち分子
量1000〜20(l 0000の高分子量物質を溶質
として含み、さらに1〜] l) 01)μmの大きさ
の粒子を含む懸濁液よりの各粒子成分の分離方法として
は、遠心分離、深層濾過、精密濾過、限外濾過法等が主
として用いられている。
[Conventional technology] In the food and pharmaceutical industries, low molecular weight substances produced in fermenters, culture tanks, reactors, etc. are combined with tangible substances such as microorganisms, cultured cells, unreacted solids, and foreign substances. separation is taking place. Conversely, when obtaining microorganisms and cells as products, separation is performed for the purpose of separating them from the culture medium and removing waste products that inhibit their growth. A method for separating each particle component from such a suspension, that is, a suspension containing particles with a molecular weight of 1,000 to 20 (l) 0,000 as a solute, and further containing particles with a size of 1 to 1) μm. Mainly used methods include centrifugation, depth filtration, precision filtration, and ultrafiltration.

深層濾過法はアスベストや濾紙、ガラス繊維等から作ら
れる、繊維状シートあるいはマットと厚みを持たせた濾
材とし、懸濁液中の懸濁成分を、1.!村山に捕捉する
ことによって分離を行う。
In the depth filtration method, a thick fibrous sheet or mat made of asbestos, filter paper, glass fiber, etc. is used as a filter medium, and the suspended components in the suspension are divided into 1. ! Separation is performed by trapping in Murayama.

精密濾過法、限外濾過法は主としてフィルター表面で除
去が行われる表層濾過法であり、前者は深層濾過法に比
べてより正確な分離ができる。
The precision filtration method and the ultrafiltration method are surface filtration methods in which removal is mainly performed on the filter surface, and the former allows for more accurate separation than the depth filtration method.

限外濾過は各種ゲル物質等で作られる半透膜を用いて、
圧力を加えて難濾過性のコロイド溶液をat過するもの
である。
Ultrafiltration uses semipermeable membranes made of various gel materials, etc.
A colloidal solution that is difficult to filter is filtered by applying pressure.

[発明が解決しようとする問題点コ 遠心分離法は、このような懸濁液の清澄化には良く用い
られる方法であるが、大量処理には機器がやや大がかり
になること、連続処理システムへの組込みがやっかいで
あり、分離中に汚染を受けやすいといった問題がある。
[Problems to be solved by the invention] Centrifugation is a method often used to clarify such suspensions, but it requires relatively large equipment for large-scale processing, and it is difficult to use a continuous processing system. The problem is that it is cumbersome to incorporate and is susceptible to contamination during separation.

深層濾過法は、濾材として広く用いられていたアスベス
l〜の発癌性、濾材の流出、分離精度の悪さ、濾過助材
の必要性がある等といった欠点がある。
The depth filtration method has drawbacks such as the carcinogenicity of asbeth l~, which is widely used as a filter medium, leakage of the filter medium, poor separation accuracy, and the need for filter aids.

精密濾過法、限外濾過法等の濾過分離法は、近年しだい
に応用が広まりつつあり、特に内径0.5mm〜l 、
 Omm程度のキャピラリー状の濾過膜をもちいたちの
は、少ない体積で広い濾過面積が得られ、装置がコンパ
クトになるので有利とされている。
Filtration separation methods such as precision filtration and ultrafiltration have been increasingly used in recent years, especially for internal diameters of 0.5 mm to l,
The use of a capillary-like filtration membrane of about 0 mm is considered advantageous because a large filtration area can be obtained with a small volume and the device can be made compact.

!−かしながら用いられる膜が有機高分子材料に限られ
るために耐熱、耐久性が低く、又膜と膜保持のための1
iI造体とを分解することができないため、濾過膜面の
目づまりを各種薬品や加熱などで除く処理が充分にでき
ず、寿命が短いという欠点がある。又キャピラリーを保
持するための端面加工が材で1によって困難な場合があ
り使用しうる材料が限らhていた。セラミックや金属等
の各種無機材14分用いたフィルターは、極めて高い耐
熱性を持ち、高温で処理することによって、目づまりし
た有機物を完全に焼却除去することができ長い寿命を有
するという利点があるが、上記に示したような細い中空
糸状に加工することができないために、濾過装置として
の効率の悪いものしか得られなかった。
! -However, since the membranes used are limited to organic polymer materials, they have low heat resistance and durability, and
Since the iI structure cannot be decomposed, clogging on the surface of the filtration membrane cannot be sufficiently removed using various chemicals or heating, resulting in a short service life. Furthermore, machining of the end face for holding the capillary may be difficult depending on the material, and the materials that can be used are limited. Filters made of various inorganic materials such as ceramics and metals have extremely high heat resistance, and when treated at high temperatures, clogging organic matter can be completely removed by incineration, which has the advantage of a long lifespan. However, because it could not be processed into the thin hollow fiber shape shown above, only inefficient filtration devices could be obtained.

[問題を解決するための手段] 多孔質管状体を濾過材として用い、以下のように設定す
ることによって、懸濁液の清澄化法に見られる問題点が
解決しろる事が明らかとなった。
[Means for solving the problem] It has become clear that the problems seen in the suspension clarification method can be solved by using a porous tubular body as a filtering medium and setting it as follows. .

すなわち、多孔質管状体の内側あるいは外側に、懸濁液
か移動することが可能な間隙を形成する構造体を設置し
、該間隙を流路として懸濁液を管状体に対し実質的に平
行に流して、該懸濁l夜の一部を多孔質管状体を通過せ
しめて濾過分離を行う。
That is, a structure is installed inside or outside a porous tubular body to form a gap through which the suspension can move, and the suspension is used as a flow path to flow the suspension substantially parallel to the tubular body. A portion of the suspension is passed through a porous tubular body to perform filtration separation.

構造体としては種々のものが考えられるが、例えば柱状
体あるいは筒状体を多孔質管状体の内側ないし外側に間
隔をおいて平行に設置する。多孔質管状体及びこれらの
柱状あるいは筒状の構造体は、各々容易に分解組立てが
可能な構造とし、各種形状の多孔質管状体と柱状体ある
いは筒状体を組み合わせることによって、形成される流
路の厚みを変更しうる機能をもたせる。 このように構
成された濾過分離装置を用いることによって、高分子量
物質を溶質とした懸濁液より有形成分を容易に効率良く
分離することができる。又使用後装置を分解して目づま
りを生じた管状体に各種の薬品、加熱処理を加えて再生
し、再度組み立てることによって再利用することができ
る。
Although various types of structures can be considered, for example, columnar bodies or cylindrical bodies are installed in parallel at intervals on the inside or outside of the porous tubular body. The porous tubular bodies and their columnar or cylindrical structures have structures that can be easily disassembled and assembled, and the flow formed by combining porous tubular bodies of various shapes and columnar or cylindrical bodies. Provides the ability to change the thickness of the road. By using the filtration separation device configured in this way, the formed components can be easily and efficiently separated from a suspension containing a high molecular weight substance as a solute. Further, after use, the device can be disassembled, the clogged tubular body can be regenerated by applying various chemicals and heat treatment, and it can be reused by reassembling it.

[作用] 高分子量物質を溶質として含む懸濁液の濾過分離を行う
には、濾過面に垂直に濾過を行う全濾過法では懸濁粒子
による濾過面の目づまりが急速に生じるので、濾過面に
平行に懸濁液の流れを形成しつつ濾過を行うタロスフロ
ー濾過法が有効である。
[Function] In order to perform filtration separation of a suspension containing a high molecular weight substance as a solute, it is necessary to remove the filtration surface from the filtration surface, since in the total filtration method in which filtration is performed perpendicularly to the filtration surface, the filtration surface is rapidly clogged with suspended particles. The Talos flow filtration method, which performs filtration while forming parallel suspension flows, is effective.

これは濾過面にそって流れを形成することにより、懸濁
粒子の堆積を軽減する効果があられれる為で、濾過面に
対する流速が速いほど即ち墾田断速度が大きいほどこの
効果が高い。
This is because forming a flow along the filter surface has the effect of reducing the accumulation of suspended particles, and the faster the flow velocity with respect to the filter surface, that is, the higher the cross-sectional velocity, the higher this effect.

この速度を上げるには単位時間あたりの流量を増大させ
るか、流路厚を小さくすることが有効である。しかしこ
れまでは多孔質管状体を濾材として用いたものでこの点
が考慮された構造を有するものはなかった。
In order to increase this speed, it is effective to increase the flow rate per unit time or to decrease the channel thickness. However, until now, there has been no structure that takes this point into consideration using a porous tubular body as a filter medium.

第1図aは多孔質管状体の内側を濾過面とじて用いた場
合の本発明の基本概念を示したものである。多孔質管状
体1内に管状体より一定の間隙を保持するように柱状体
2を設置し、懸濁液3はこの管状体1と柱状体2の間隙
を流れる間に一部が濾液4として管状体1の外側に濾過
され、懸濁液は濃縮液5として反対側より流出する。b
は、外側を濾過面として用いたもので、管状体1の外面
と、外側に設置した筒状体6との間隙に懸濁液3が流さ
れ、管状体1の内側に濾液4が流出する。
FIG. 1a shows the basic concept of the present invention when the inside of a porous tubular body is used as a filtration surface. A columnar body 2 is installed in the porous tubular body 1 so as to maintain a constant gap from the tubular body, and while the suspension 3 flows through the gap between the tubular body 1 and the columnar body 2, a part of the suspension 3 becomes a filtrate 4. The suspension is filtered to the outside of the tubular body 1 and flows out as a concentrated liquid 5 from the opposite side. b
In this case, the outside is used as the filtering surface, and the suspension 3 is flowed into the gap between the outside of the tubular body 1 and the cylindrical body 6 installed on the outside, and the filtrate 4 flows into the inside of the tubular body 1. .

流路として用いられる間隙の厚みは、0.1 mm−1
0mm望ましくは、0.511111〜5 nuaが好
ましい。
The thickness of the gap used as a flow path is 0.1 mm-1
0 mm, preferably 0.511111 to 5 nua.

前述したごとく、この流路厚はより薄いほうが濾過面の
目づまり防止効果は高いが、0.1111m以下になる
と懸濁粒子が流路につまる可能性が高くなり、前処理が
必要となる。又流路抵抗が大きくなるので送液圧が高く
なり好ましくない。10 mm以上になると高い流速を
得るのに必要な送液量が多くなるため、送液に必要な動
力コストが大きくなり、濾過の効率が悪くなってしまう
As mentioned above, the thinner the channel thickness, the higher the effect of preventing clogging of the filter surface, but when it is less than 0.1111 m, there is a high possibility that suspended particles will clog the channel, and pretreatment is required. Moreover, since the flow path resistance becomes large, the liquid feeding pressure becomes high, which is not preferable. When the diameter is 10 mm or more, the amount of liquid required to feed to obtain a high flow rate increases, so the power cost required for liquid feeding increases, and the efficiency of filtration deteriorates.

濾過される各種の懸濁液は種々の性状を有しており、よ
り効果的な濾過を行うには墾田断速度と濾過に関与する
圧力、即ち隔膜圧差を適切に設定することが望ましい。
Various types of suspensions to be filtered have various properties, and in order to achieve more effective filtration, it is desirable to appropriately set the rupture speed and the pressure involved in filtration, that is, the diaphragm pressure difference.

これらの設定範囲としては、墾田断速度は 100〜1
0000 sec  、隔膜圧差すなわち濾過分離装置
の懸濁液流入圧Pi、懸濁液流出圧Po、濾液流出圧F
oの関係が(Pi十P o ) / 2− F o≦2
.0 Kg/ cm”であることが好ましい。墾田断速
度が11〕θ以下であると粒子のけ着防止効果が得られ
ず、l l) 000以上では懸濁液に細胞成分か含ま
れる場合、この破壊が生じる可能性があり好ましくない
。隔膜圧差が2゜OK g/ c m”以上であると、
膜面への懸濁粒子の1寸着力が大きくなり目づまりが生
じやすくなる。流路厚が可変であることはこの設定を容
易とし、広範囲な懸濁液への応用が可能となる。上記の
効果をより有効ならしめるためには、平均孔径が0 、
01〜lOμm、空孔率15〜80%の多孔質管状体を
用いることが好ましい。平均孔径が0.01μm以下あ
るいは空孔率が15%以下であると濾過速度が低下して
実用的でなく、又10μm以上になると粒子の除去精度
が悪くなる。又空孔率が80%以上であると多孔質体の
強度が低下して好ましくない。
As for these setting ranges, the cutting speed is 100 to 1
0000 sec, diaphragm pressure difference, that is, suspension inflow pressure Pi of the filtration separation device, suspension outflow pressure Po, filtrate outflow pressure F
The relationship between o is (Pi + P o ) / 2- F o≦2
.. 0 Kg/cm" is preferable. If the shear velocity is less than 11]θ, the effect of preventing particles from sticking will not be obtained; if it is more than 000, if the suspension contains cellular components, This is undesirable as it may cause destruction.If the diaphragm pressure difference is 2°OK g/cm" or more,
The adhesion force of the suspended particles to the membrane surface becomes large, making clogging more likely to occur. The fact that the channel thickness is variable facilitates this setting and allows application to a wide range of suspensions. In order to make the above effect more effective, the average pore size should be 0,
It is preferable to use a porous tubular body having a diameter of 01 to 10 μm and a porosity of 15 to 80%. When the average pore diameter is 0.01 μm or less or the porosity is 15% or less, the filtration rate decreases and is not practical, and when it is 10 μm or more, particle removal accuracy deteriorates. Moreover, if the porosity is 80% or more, the strength of the porous body decreases, which is not preferable.

なおここでの孔径は粒径が均一なポリスチレンラテック
スビーズ(ダウケミカル社″ユニフォームラテックスパ
ーティクルズ°′)の捕捉効率より求めたものである。
Note that the pore size here was determined from the trapping efficiency of polystyrene latex beads with uniform particle size (Uniform Latex Particles°' by Dow Chemical Company).

即ち、固形分濃度0.1wt′gに希釈した液を 10
01  通過させ、次式より捕捉効率を求める。
That is, a solution diluted to a solid content concentration of 0.1 wt'g is 10
01 to pass through and find the capture efficiency using the following formula.

捕捉効率(%)=(Cf−Cp)/CfxlOOCf:
原液のラテックス濃度 Cp:濾液のラテックス濃度 。
Capture efficiency (%) = (Cf-Cp)/CfxlOOCf:
Latex concentration of stock solution Cp: Latex concentration of filtrate.

粒径の小さい物よりこの捕捉効率を求めていき、この値
が100%になった時の粒径をもって孔径とする。 又
空孔率は、以下の式によって求めた。
This trapping efficiency is determined starting from particles with a smaller particle size, and the particle size when this value reaches 100% is taken as the pore size. Moreover, the porosity was determined by the following formula.

空孔率(%)=空孔容f/多孔体容績×I00多孔質管
状体の素材としては、フッソ系、オレフィン系を始めと
する有機高分子材料や、酸化アルミニウム、窒化ケイ素
等のセラミック、ステンレス等の金属といった無機質材
料、あるいは両者の混合材料からなる多孔質体であれば
どのようならのでも良いが、本発明の濾過分離装置にお
いては、セラミックや金属等の無機質材料のものが特に
有効である。これは、これらの無機質材料を用いたフィ
ルターは、有機高分子材料のもので見られるような、細
い中空糸状に成形することかできないため濾過効率の悪
いものしか得られなかったからである。本発明によって
、この欠点を解決した効率が良く耐熱、耐久性に優れた
フィルターを得ることが可能となった。
Porosity (%) = pore volume f / porous body volume × I00 Materials for the porous tubular body include organic polymer materials such as fluorine-based and olefin-based materials, and ceramics such as aluminum oxide and silicon nitride. Any porous material may be used as long as it is made of an inorganic material such as a metal such as stainless steel, or a mixture of both materials, but in the filtration separation device of the present invention, an inorganic material such as a ceramic or a metal is particularly suitable. It is valid. This is because filters using these inorganic materials can only be formed into thin hollow fibers like those seen with organic polymer materials, resulting in poor filtration efficiency. The present invention has made it possible to obtain a filter that overcomes these drawbacks and is efficient, heat resistant, and durable.

各構成部分を容易に分解できることは、濾材部分の熱や
薬品処理を充分に行うことが可能となり、生じた目づま
りを除去し濾材を再生することが容易となる。酸、アル
カリ等の薬品に対する耐久性という点ではフッソ系の有
機高分子材料が優れてはいるが長期にわたる使用では、
劣化は避けられない。セラミックはこの点耐久性能に優
れ、1000°C以上の高温にも十分耐えるので、目づ
まりを起こした有機物質を完全に焼却除去することがて
き極めて有用である。
Being able to easily disassemble each component makes it possible to sufficiently heat and chemically treat the filter medium, making it easy to remove clogging and regenerate the filter medium. Although fluorine-based organic polymer materials are superior in terms of durability against chemicals such as acids and alkalis, they cannot be used for long periods of time.
Deterioration is inevitable. Ceramic has excellent durability in this respect and can withstand high temperatures of 1000°C or higher, making it extremely useful for completely incinerating and removing organic substances that have caused clogging.

濾過面への懸濁粒子の付着防止効果をより高めるために
多孔質管状体あるいは柱状体、筒状体の表面に凹凸を形
成させることも好ましい。これは流れの中に乱流を発生
させてこれによる粒子のj11離効果を利用するもので
、例えは高さ 1)05〜1゜0mm、間隔0.05〜
1.Ommの均一な凸部を形成させたり、同様な高さの
螺旋状の凹部を形成させるのも有効である。
In order to further enhance the effect of preventing suspended particles from adhering to the filtration surface, it is also preferable to form irregularities on the surface of the porous tubular body, columnar body, or cylindrical body. This generates turbulence in the flow and utilizes the j11 separation effect of particles due to this.
1. It is also effective to form uniform convex portions of 0 mm or to form spiral concave portions of similar height.

濾材の多孔質管状体を多重管となるように設置したり、
多孔質管状体の内外に粒状の構造物を充填することも濾
過効率を高めるうえで好ましい。
The porous tubular body of the filter medium can be installed in multiple tubes,
It is also preferable to fill the inside and outside of the porous tubular body with granular structures in order to increase the filtration efficiency.

又以上に述べてきたこれらの管状体を複数本並列に束ね
て、より大量処理の可能な装置を設定することもできる
Furthermore, by bundling a plurality of these tubular bodies described above in parallel, it is also possible to set up an apparatus capable of processing a larger amount.

以下に本発明を実施例によりさらに詳細に説明するが、
実施例は本発明を限定するものではない。
The present invention will be explained in more detail by examples below.
The examples are not intended to limit the invention.

[実施例] 第2図は円管状の多孔質体を用い、その内側に懸濁液を
流す濾過分離装置の実施例を示したしので、多孔質管1
1の両端に固定パツキン12をはめ、両端にネジを切っ
た内管13を止めネジ14にて固定パツキン12の外側
より止めて多孔管11内に保持し、流路15を形成した
ものを外筒16にセットしたものである。濾過原液であ
る懸濁’<’& 17は、入すロポ−1・18より導入
され、止めネジ14に設けられたスリット部19より多
孔質管11内部に入り流路15を平行に流れて反対側よ
り流出する。流路15を流れている間に濾過か行われ、
多孔質管11の外側に生じた濾液は濾液出口20より流
出する。流路15の厚みは内管13の外径を変えること
により容易に変更することができる。
[Example] Figure 2 shows an example of a filtration separation device that uses a circular tubular porous body and flows a suspension inside the porous body.
A fixing gasket 12 is fitted on both ends of the tube 1, and an inner tube 13 with threads cut at both ends is fixed from the outside of the fixing gasket 12 with a set screw 14 to hold it inside the porous tube 11, and the tube with a flow path 15 formed therein is removed. It is set in the tube 16. The suspension '<'& 17, which is the filtration stock solution, is introduced from the input port 1.18, enters the inside of the porous tube 11 through the slit 19 provided in the set screw 14, and flows in parallel through the channel 15. It flows out from the opposite side. Filtration is performed while flowing through the channel 15,
The filtrate generated outside the porous tube 11 flows out from the filtrate outlet 20. The thickness of the flow path 15 can be easily changed by changing the outer diameter of the inner tube 13.

第3図は同様に円管状の多孔質体を用い、外側に懸濁液
を流す装置の実施例を示したものである。
FIG. 3 similarly shows an embodiment of an apparatus that uses a circular tubular porous body and allows a suspension to flow outside.

多孔質管21の両端に固定パツキン22をセラI・し、
スペーサー23を介して止めネジ24で外筒管25にセ
ットする。この外筒管25と円管21の間隙が流路とな
る。外筒管25にはこの管の接線方向に入りロボート2
6と出口ポー1へ27か設置され、懸濁液は26より円
管21に討して接線方向に導入され、流路28を円管表
面に添って螺旋状に流れながら移動し出口ボート27よ
り流出する。この間懸濁液の一部が円管を通って濾過さ
れ、清澄化した濾液が濾液ボート29より得られる。
Fixing gaskets 22 are attached to both ends of the porous tube 21,
It is set in the outer cylindrical tube 25 with a set screw 24 via a spacer 23. The gap between the outer cylindrical tube 25 and the circular tube 21 becomes a flow path. The robot 2 enters the outer tube 25 in the tangential direction of this tube.
6 and 27 are installed in the outlet port 1, and the suspension is introduced into the circular tube 21 from 26 in the tangential direction, moves through the flow path 28 while flowing spirally along the surface of the circular tube, and then passes through the outlet port 27. More leakage. During this time, a portion of the suspension is filtered through the circular tube, and a clarified filtrate is obtained from the filtrate boat 29.

次に本発明の効果を確認するため行った実験例を示す。Next, an example of an experiment conducted to confirm the effects of the present invention will be shown.

実験例 1 平均孔径0.5μm、内径15m+n 、外径19mm
で長さ250mmのセラミック製多孔質田管の内側に、
外径13mmの円筒を設置して第1図に示した構造の濾
過分離装置を(ヤ製した。この濾過装置を用いて第4図
の様な実験回路を組み、循還実験を行った。試験懸濁液
は、懸濁液貯留槽31よ))循環ポンプ32によりデス
1−濾過装置33に導入され、ここ通過して再び31に
返還される。濾過装置の入り口、出口及び濾液側にはそ
れぞれ圧力計35が設置され、調節バルブ36及び濾液
ポンプ34をコントロールすることによって、濾過条件
を設定する。懸濁液貯留槽31内の懸濁液は、磁気攪拌
器37によって攪拌を行った。得られな濾液は再び31
に返還されるが、切り替えバルブ38を切り替えること
によって、濾液採取口3つより計量器40に採取され、
各時間毎の濾過量が計測される。懸濁液として、グルコ
ース20gr、ペプトン20g「、酵母エキス10gr
を水1リットルに溶かした培地に酒精酵母を培養したも
のを用いた。濾jυ条件は、循環流量300m1.隔膜
圧子0 、3 K g / c m2とした。尚、菌体
重量は5%(湿重量)となるように調整した。同様に多
孔質円管内に円筒を入れないものを組み立て比較例とし
た。
Experimental example 1 Average pore diameter 0.5μm, inner diameter 15m+n, outer diameter 19mm
Inside a ceramic porous pipe with a length of 250 mm,
A filtration and separation device having the structure shown in FIG. 1 was prepared by installing a cylinder with an outer diameter of 13 mm. Using this filtration device, an experimental circuit as shown in FIG. 4 was constructed and a circulation experiment was conducted. The test suspension is introduced from the suspension storage tank 31) by a circulation pump 32 into a dess 1-filtration device 33, through which it is returned to 31 again. Pressure gauges 35 are installed at the inlet, outlet, and filtrate sides of the filtration device, and filtration conditions are set by controlling the regulating valve 36 and filtrate pump 34. The suspension in the suspension storage tank 31 was stirred by a magnetic stirrer 37. The obtained filtrate is again 31
However, by switching the switching valve 38, the filtrate is collected from the three filtrate collection ports into the measuring device 40,
The amount of filtration is measured each time. As a suspension, glucose 20g, peptone 20g, yeast extract 10g
Alcohol yeast was cultured in a medium prepared by dissolving the following in 1 liter of water. The filtration conditions are a circulation flow rate of 300 m1. The diaphragm indenter was set at 0 and 3 K g/cm2. In addition, the bacterial weight was adjusted to 5% (wet weight). Similarly, a comparative example was assembled in which no cylinder was placed inside the porous circular tube.

実験例 2 平均孔径0.1μm、内径20mm 、外径23mm、
長さ 150mm  のセラミック製多孔質円管を濾材
として用い、内径24mmの外筒に第2図のごとく設置
した濾過装置を作製した。実験例1と同様な回路及び懸
濁液を用い、循環流量80m1/min 、隔膜圧子 
0,04にg / c m”  として実験を行った。
Experimental example 2 Average pore diameter 0.1 μm, inner diameter 20 mm, outer diameter 23 mm,
A filtration device was prepared using a ceramic porous circular tube with a length of 150 mm as a filter medium and installed in an outer cylinder with an inner diameter of 24 mm as shown in FIG. 2. Using the same circuit and suspension as in Experimental Example 1, circulation flow rate 80 m1/min, diaphragm indenter
The experiment was carried out at 0.04 g/cm".

比較例として、同様な管の片端を密閉し、もう片端に濾
液流出口を形成したものを作製し、直接懸濁液貯留槽に
設置して濾過を行った。尚この比較例では一定圧で連続
して濾過をする方法と、約10分毎に1分間逆方向に圧
力をかけて逆洗浄を行う操作を繰り返した場合の二種類
の方法を用いた。
As a comparative example, a similar tube with one end sealed and a filtrate outlet formed at the other end was prepared, and was directly placed in a suspension storage tank to perform filtration. In this comparative example, two methods were used: one in which filtration was carried out continuously at a constant pressure, and the other in which backwashing was repeated by applying pressure in the opposite direction for 1 minute every 10 minutes.

実験結果 第5図に実験例1の結果を示す。実施例に於いては、濾
過実験開始後20時間後でも濾過流量に変化がなく、安
定して濾過が行われているが、比較例ではしだいに濾過
量が減少し、濾過面の目づまりが生じていることが予想
される。
Experimental Results Figure 5 shows the results of Experimental Example 1. In the example, there was no change in the filtration flow rate even 20 hours after the start of the filtration experiment, and filtration was performed stably, but in the comparative example, the filtration rate gradually decreased and the filtration surface became clogged. It is expected that

実験例2に於いてはこの差は特に顕著で、第6図に示し
たように、実施例では濾過開始後5日後でも初期流量の
75%、約3ml/minを維持していたが、連続濾過
を行った比較例では急速につまりが生じて濾液がほとん
ど得られなくなった。逆洗浄を行った場合も2日目には
初期流量の半分以下となった。
This difference was particularly remarkable in Experimental Example 2, and as shown in Figure 6, in the example, 75% of the initial flow rate, or approximately 3 ml/min, was maintained even 5 days after the start of filtration, but continuous In the comparative example in which filtration was performed, clogging occurred rapidly and almost no filtrate could be obtained. Even when backwashing was performed, the flow rate was less than half of the initial flow rate on the second day.

又図には示さなかったが、実験例1に於いて実験後濾過
装置を分解し、多孔質管を1200℃の電気炉で処理再
生した後同様な実験を10回繰り返したか、初期濾過量
に変[ヒは見られなかった。
Also, although not shown in the figure, in Experimental Example 1, after the experiment, the filtration device was disassembled, the porous tube was treated and regenerated in an electric furnace at 1200°C, and the same experiment was repeated 10 times, or the initial filtration rate was No strange [Hi] was seen.

[発明の効果] 以上述べたように、本発明による濾過分離装置は以下に
示した利点を有している。
[Effects of the Invention] As described above, the filtration separation device according to the present invention has the following advantages.

(D 多孔質管状体の濾過表面からの流路厚を規制する
ので濾過の効率か改善され、目づまりが生じすらく、懸
濁液の精密濾過を長時間行うことができる。
(D) Since the thickness of the flow path from the filtration surface of the porous tubular body is regulated, the efficiency of filtration is improved, clogging is less likely to occur, and precision filtration of suspensions can be performed for a long time.

(■ 濾過装置の構成部分の分解、組み立てが容易てあ
り、流路を懸濁液の性状に応じて適切に設定できる。
(■ The components of the filtration device are easy to disassemble and assemble, and the flow path can be appropriately set according to the properties of the suspension.

■ 濾過装置の構成部分の分解、組み立てが容易である
ので、目づまりか生じた濾材を薬品、熱といった各種の
処理を行うことによって再生することができる。
(2) Since the components of the filtration device are easy to disassemble and assemble, clogged or clogged filter media can be regenerated by performing various treatments such as chemicals and heat.

■ 濾過される原液の条件に応じて各種の素材の多孔質
管状体を用いることが可能である。
(2) Porous tubular bodies made of various materials can be used depending on the conditions of the stock solution to be filtered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a及びbは本発明の基本概念を示したもので、第
2図、第3図は実施例の部分断面図である。第4図は実
験回路を、第5図、第6図はその結果を示したものであ
る。 I・・・多孔質管状体   2・・・柱状体3・・・懸
濁液      4・・・濾液5・・・濃縮液    
  6・・・筒状体11・・・多孔質管     12
・・・固定パツキン13・・・内管       14
・・・止めネジ15・・・流路       16・・
・外筒17・・・懸濁液      18・・・入すロ
ボーl〜19・・・スリブI・部    20・・・瀘
液出口21・・・多孔質管     22・・・固定パ
ツキン23・・・スペーサー    24・・・止めネ
ジ25・・・外筒管      26・・・入りロボー
ト27・・・出口ボート    28・・・流路29・
・・濾液ポート
FIGS. 1a and 1b show the basic concept of the present invention, and FIGS. 2 and 3 are partial sectional views of the embodiment. FIG. 4 shows an experimental circuit, and FIGS. 5 and 6 show the results. I...Porous tubular body 2...Columnar body 3...Suspension liquid 4...Filtrate 5...Concentrate liquid
6... Cylindrical body 11... Porous tube 12
... Fixed gasket 13 ... Inner pipe 14
... Set screw 15 ... Channel 16 ...
・Outer cylinder 17...Suspension liquid 18...Lobo l to 19...Sleeve I section 20...Filtrate outlet 21...Porous tube 22...Fixed gasket 23...・Spacer 24... Set screw 25... Outer tube 26... Inlet boat 27... Outlet boat 28... Channel 29.
・・Filtrate port

Claims (8)

【特許請求の範囲】[Claims] (1)多孔質管状体と、その内側あるいは外側に該管状
体との間に流体が移動することが可能な間隙を形成する
構造体より成り、該間隙を流路として流体を該管状体に
対して実質的に平行に流し、少なくともその一部を多孔
質管状体を通過させて濾過分離を行なうことを特徴とす
る濾過分離装置。
(1) Consisting of a porous tubular body and a structure that forms a gap inside or outside of the tubular body through which fluid can move, and uses the gap as a flow path to direct fluid to the tubular body. A filtration separation device characterized in that the flow is substantially parallel to a porous tubular body, and at least a portion of the flow is passed through a porous tubular body to perform filtration separation.
(2)該間隙の厚さが0.1mm〜10mmである特許
請求の範囲第1項記載の濾過分離装置。
(2) The filtration separation device according to claim 1, wherein the gap has a thickness of 0.1 mm to 10 mm.
(3)構造体が、多孔質管状体の内側あるいは外側に間
隙をおいて平行に設置された柱状体もしくは筒状体であ
る特許請求の範囲第1項及び第2項記載の濾過分離装置
(3) The filtration separation device according to claims 1 and 2, wherein the structure is a columnar body or a cylindrical body installed in parallel with a gap inside or outside the porous tubular body.
(4)多孔質管状体とその内側あるいは外側に、間隙を
おいて平行に設置された柱状体あるいは筒状体が、各々
容易に交換、組み立てを行うことができ、該間隙の厚さ
が可変である事を特徴とする特許請求の範囲第1項ない
し第3項記載の濾過分離装置。
(4) A porous tubular body and a columnar body or a cylindrical body installed in parallel with a gap inside or outside the porous tubular body can be easily replaced or assembled, and the thickness of the gap is variable. A filtration separation device according to any one of claims 1 to 3, characterized in that:
(5)柱状体あるいは筒状体の表面に凹凸が形成されて
いることを特徴とする特許請求の範囲第1項ないし第4
項記載の濾過分離装置。
(5) Claims 1 to 4 characterized in that the columnar body or the cylindrical body has irregularities formed on its surface.
The filtration separation device described in Section 1.
(6)多孔質管状体の表面に凹凸が形成されていること
を特徴とする特許請求の範囲第1項ないし第5項記載の
濾過分離装置。
(6) The filtration and separation device according to any one of claims 1 to 5, wherein the porous tubular body has irregularities formed on its surface.
(7)多孔質管状体の平均孔径が0.01〜10μmで
ある特許請求の範囲第1項ないし第6項記載の濾過分離
装置。
(7) The filtration separation device according to any one of claims 1 to 6, wherein the porous tubular body has an average pore diameter of 0.01 to 10 μm.
(8)多孔質管状体が無機質材料からなることを特徴と
する特許請求の範囲第1項ないし第7項記載の濾過分離
装置。
(8) The filtration separation device according to any one of claims 1 to 7, wherein the porous tubular body is made of an inorganic material.
JP28265385A 1985-12-16 1985-12-16 Filtration separator Pending JPS62140609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28265385A JPS62140609A (en) 1985-12-16 1985-12-16 Filtration separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28265385A JPS62140609A (en) 1985-12-16 1985-12-16 Filtration separator

Publications (1)

Publication Number Publication Date
JPS62140609A true JPS62140609A (en) 1987-06-24

Family

ID=17655311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28265385A Pending JPS62140609A (en) 1985-12-16 1985-12-16 Filtration separator

Country Status (1)

Country Link
JP (1) JPS62140609A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351905A (en) * 1986-08-20 1988-03-05 Toshiba Ceramics Co Ltd Ceramic filter
JPH01119303A (en) * 1987-10-30 1989-05-11 Harima Chem Inc Annular liquid-liquid extraction system apparatus
JPH01139107A (en) * 1987-11-25 1989-05-31 Toshiba Ceramics Co Ltd Oil-water separator
JPH02147633A (en) * 1988-08-29 1990-06-06 Soken Kagaku Kk Purification of polymer particle
JPH1119480A (en) * 1997-06-27 1999-01-26 Hitachi Metals Ltd Precision filter
JP2002052303A (en) * 2000-08-10 2002-02-19 Koki Tokumoto Separation device
JP2004027905A (en) * 2002-06-24 2004-01-29 Tacmina Corp Fluid feeding system
JP2004130253A (en) * 2002-10-11 2004-04-30 Nippon Mykrolis Kk Filtration apparatus with function of preventing clogging
JP6129389B1 (en) * 2016-07-26 2017-05-17 株式会社リテラ Filtration device
WO2018207407A1 (en) * 2017-05-10 2018-11-15 株式会社リテラ Bobbin filter and filtering module
JP2019084473A (en) * 2017-11-02 2019-06-06 日本精線株式会社 Hydrogen separation membrane module and hydrogen generation device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351905A (en) * 1986-08-20 1988-03-05 Toshiba Ceramics Co Ltd Ceramic filter
JPH01119303A (en) * 1987-10-30 1989-05-11 Harima Chem Inc Annular liquid-liquid extraction system apparatus
JPH01139107A (en) * 1987-11-25 1989-05-31 Toshiba Ceramics Co Ltd Oil-water separator
JPH02147633A (en) * 1988-08-29 1990-06-06 Soken Kagaku Kk Purification of polymer particle
JPH1119480A (en) * 1997-06-27 1999-01-26 Hitachi Metals Ltd Precision filter
JP2002052303A (en) * 2000-08-10 2002-02-19 Koki Tokumoto Separation device
JP2004027905A (en) * 2002-06-24 2004-01-29 Tacmina Corp Fluid feeding system
JP2004130253A (en) * 2002-10-11 2004-04-30 Nippon Mykrolis Kk Filtration apparatus with function of preventing clogging
JP6129389B1 (en) * 2016-07-26 2017-05-17 株式会社リテラ Filtration device
WO2018207407A1 (en) * 2017-05-10 2018-11-15 株式会社リテラ Bobbin filter and filtering module
JP2018187581A (en) * 2017-05-10 2018-11-29 株式会社リテラ Bobbin filter and filtration module
JP2019084473A (en) * 2017-11-02 2019-06-06 日本精線株式会社 Hydrogen separation membrane module and hydrogen generation device

Similar Documents

Publication Publication Date Title
Hong et al. Fouling control in activated sludge submerged hollow fiber membrane bioreactors
JP3577460B2 (en) Rotating disk type filtration device equipped with means for reducing axial force
EP0902723A1 (en) Immersible rotary disc filtration device
US5221479A (en) Filtration system
US4062771A (en) Apparatus and process for membrane filtration
CN101785973B (en) Ultrafiltration and microfiltration membrane assembly for tubular composite membrane
Williams et al. Membrane fouling and alternative techniques for its alleviation
JPS62140609A (en) Filtration separator
Kumar et al. Fouling behaviour, regeneration options and on-line control of biomass-based power plant effluents using microporous ceramic membranes
CN103663624A (en) Purification method for oilfield reinjection water
CN207667447U (en) Ceramic membrane filter component and separation of fermentative broth processing system
Ripperger Microfiltration
Kuruzovich et al. Yeast cell microfiltration: optimization of backwashing for delicate membranes
Schneider et al. The concentration of suspensions by means of crossflow-microfiltration
CN201719980U (en) Tubular composite membrane ultrafiltration and microfiltration assembly
CN104828929A (en) An anti-pollution multifunctional ceramic flat sheet membrane
KR20180114820A (en) Antifouling Hollow fiber membrane module, Method for preparing the same and Uses thereof
JPS6397207A (en) Filtration separator
CN219050918U (en) Dead-end filtration membrane reaction unit
JPS62160103A (en) Filter separation device
Polyakov Membrane separation in deadend hollow fiber filters at constant transmembrane pressure
JPH01203004A (en) Filter system
CN219603595U (en) Alternating tangential flow perfusion system
WO2022038971A1 (en) Flat ceramic membrane
WO2022038970A1 (en) Ceramic flat membrane