JPH0499483A - Method for perfusion culture of animal cell - Google Patents

Method for perfusion culture of animal cell

Info

Publication number
JPH0499483A
JPH0499483A JP2215213A JP21521390A JPH0499483A JP H0499483 A JPH0499483 A JP H0499483A JP 2215213 A JP2215213 A JP 2215213A JP 21521390 A JP21521390 A JP 21521390A JP H0499483 A JPH0499483 A JP H0499483A
Authority
JP
Japan
Prior art keywords
culture
medium
cells
animal cells
culture solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2215213A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kawahara
川原 弘之
Shinjiro Mitsuda
満田 伸二郎
Eitaro Kumazawa
熊沢 栄太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP2215213A priority Critical patent/JPH0499483A/en
Publication of JPH0499483A publication Critical patent/JPH0499483A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To culture animal cells in a high density for a long period by taking out a suspensible animal cell-suspending culture solution, separating the cells from the culture solution with a flat plate filtering membrane intermittently washed and having a specific pore diameter and subsequently returning the Separated cells together with a fresh medium to a culture tank for the continuous exchange of the medium. CONSTITUTION:In a method for perfusion-culturing animal cells by charging a medium in a stirring culture tank BR, adding the animal cells in the medium, aerating the medium with air containing 5% of CO2, simultaneously stirring the culture tank slowly for culturing the cells, taking out a part of the culture solution suspending the suspensible animal cells, separating the animal cells from the culture solution by a filtering system equipped with a flat plate filter membrane having pores of 0.2-0.8mu and subsequently returning the animal cells together with a fresh medium to the culture tank BR for the continuous exchange of the medium, the flat plate filter membrane is intermittently washed with the medium in the same direction as the circulation direction of the culture solution, thereby permitting to subject the suspensible animal cells to a continuous perfusion culture for a long period.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、浮遊性の動物細胞を長期間高密度で培養する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for culturing planktonic animal cells at high density for a long period of time.

[従来の技術] 動物細胞は、リンパ球系の細胞のように、浮遊状態で増
殖する細胞と、培養容器表面やコラーゲンマトリックス
などに付着して増殖する細胞とに、生育上の性質から分
類できる。浮遊性の細胞としては、ハイブリドーマなど
物質生産上有用な細胞が多いため大量培養の方法が多数
考案されている。
[Prior art] Animal cells can be classified based on their growth characteristics into cells that proliferate in suspension, such as lymphoid cells, and cells that proliferate by adhering to the surface of culture vessels or collagen matrices. . Since there are many floating cells such as hybridomas that are useful for material production, many methods for mass culturing have been devised.

−船釣には細胞培養は、培養液1d当りの密度をどの程
度まであげることができるかが最大の課題である。通常
の培養条件では動物細胞の場合は、培養液1I21!当
り105〜106個程度である。このために培養液を定
期的に交換し、また、ガス置換を行うことにより、10
6〜10″の細胞密度を達成することが可能となること
が知られている。
-The biggest challenge in cell culture for boat fishing is how high the density can be raised per 1 d of culture solution. Under normal culture conditions, in the case of animal cells, culture solution 1I21! It is about 105 to 106 pieces per serving. For this purpose, by periodically exchanging the culture solution and performing gas replacement,
It is known that it is possible to achieve cell densities of 6-10''.

このために連続的に培養液を交換するための方法として
、培養液を常時循環潅流し、この循環回路において培養
液を交換し、また培地中に生産された有用物質をあわせ
て回収する方法が開発されている。当初この技術は、微
生物の高密度培養に使用されたのが始まりである0例え
ば特開昭61−8872号公報(特公昭63−6319
3号公報)には、乳酸菌の高密度培養方法が開示されて
いる。この方法によれば乳酸菌の培養槽より、培養液を
抜き出し、ホローファイバー濾過膜により低分子物質と
菌体とを分離し、菌体は新鮮培地とともに培養槽に戻し
、またホローファイバー濾過膜を定期的に逆洗浄するこ
とを特徴としている。この方法を浮遊性の動物細胞に応
用した例として、特開昭61−257181号公報には
、抗体生産ハイブリドーマを培養し、ホローファイバー
濾過膜を使用し、培地交換を行い、又ホローファイバー
に濾過膜を無血清培地により定期的に逆洗する方法が開
示されている。この方法によれば22日間ハイブリドー
マを培養し、培養液1111当り1.3X10’個の細
胞密度に到達したと述べている。このように浮遊性細胞
培養においては培養液の潅流とホローファイバー膜によ
る培地の交換、ホローファイバー膜の逆洗浄は、高密度
培養におけるポイントとも言える。 しかしこのような
ホローファイバー膜を使用する方法は、装置の膜面積を
上げる上では、有効ではあるが、細胞を含む培養液が、
ホローファイバーの細管内を流れるため、細胞に強い剪
断力が加わり細胞破砕の原因となることが指摘されてい
る。また濾過面に細胞が付着し、めづまりをおこし、長
期培養が困難となる事例がしばしば発生している。この
ため逆洗浄による効果を発揮させるために膜の孔サイズ
は、分子量10,000以下カツトの能力を有するよう
な小孔の濾過膜を使用することが一般的とされていた。
For this purpose, a method for continuously exchanging the culture medium is to constantly circulate and perfuse the culture medium, exchange the culture medium in this circulation circuit, and also collect useful substances produced in the medium. being developed. Initially, this technology was used for high-density culture of microorganisms.
Publication No. 3) discloses a method for high-density culture of lactic acid bacteria. According to this method, the culture solution is extracted from a lactic acid bacteria culture tank, low-molecular substances and bacterial cells are separated using a hollow fiber filtration membrane, and the bacterial cells are returned to the culture tank together with a fresh medium. It is characterized by backwashing. As an example of applying this method to planktonic animal cells, JP-A-61-257181 describes culturing antibody-producing hybridomas, using a hollow fiber filtration membrane, exchanging the medium, and filtering through the hollow fibers. A method is disclosed in which the membrane is periodically backwashed with serum-free medium. According to this method, hybridomas were cultured for 22 days and a cell density of 1.3 x 10' cells per 1111 culture fluids was reached. In this way, in planktonic cell culture, perfusion of the culture medium, exchange of the medium with a hollow fiber membrane, and backwashing of the hollow fiber membrane can be said to be important points in high-density culture. However, although this method of using hollow fiber membranes is effective in increasing the membrane area of the device, the culture medium containing cells
It has been pointed out that because it flows through the tubules of hollow fibers, strong shearing force is applied to cells, causing cell disruption. In addition, cells often adhere to the filter surface, causing clogging, making long-term culture difficult. For this reason, in order to achieve the effect of backwashing, it has been common practice to use a filtration membrane with small pores that have the ability to cut molecular weights of 10,000 or less.

しかし、このようなサイズの孔を有する膜を使用した場
合は培養液中に分泌生産される蛋白質や抗体など、高分
子物質の分離・回収は効率よくできないなどの問題点が
指摘されていた。
However, when membranes with pores of this size are used, problems have been pointed out, such as the inability to efficiently separate and recover polymeric substances such as proteins and antibodies secreted into the culture medium.

ちなみに抗体の代表的なサブクラスであるIgGは、M
W146,000 t−PAは69.000など有用物
質には分子量の高いものが多い。
By the way, IgG, which is a typical subclass of antibodies, is M
Many useful substances have high molecular weights, such as W146,000 and 69,000 for t-PA.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者らは浮遊性動物細胞の、長期連続培養方法と物
質生産について検討を行って来たところ、ホローファイ
バーによる濾過の欠点を改良した新しい培地交換と濾過
膜の最適な組合わせを見出し、本発明を完成するにいた
った。
The present inventors have investigated long-term continuous culture methods and material production for planktonic animal cells, and have discovered an optimal combination of a new medium exchange and filtration membrane that improves the drawbacks of hollow fiber filtration. This led to the completion of the present invention.

従って本発明は、濾過膜を使用し浮遊性細胞を長期間連
続培養する場合の最適な培養方法を従供することを課題
とする。
Therefore, an object of the present invention is to provide an optimal culture method for continuously culturing planktonic cells for a long period of time using a filtration membrane.

〔課題を解決するための手段〕[Means to solve the problem]

本発明においては浮遊性動物細胞を長期連続培養するに
当り、細胞の浮遊する培養液の1部をぬきとり、培養液
と細胞を濾過膜を介して分離し、細胞を新鮮培地ととも
に培養槽に戻して連続的に培地交換を行う培養方法であ
って、 ■ 細胞の分離に0.2μm〜0.8μmの孔を有する
平板濾過膜を使用し、 ■ 該平板濾過膜を無血清基礎培地で間歇的に、培養液
の循環方向と同方向より洗浄する操作を行うことにより
目的とする細胞を高密度でかつ長期間培養することが可
能であることが判明した。
In the present invention, when continuously culturing planktonic animal cells for a long period of time, a part of the culture solution in which the cells are suspended is removed, the culture solution and cells are separated through a filtration membrane, and the cells are placed in a culture tank together with a fresh medium. This is a culture method in which the culture medium is continuously exchanged by returning the cells, and (1) using a flat filter membrane with pores of 0.2 μm to 0.8 μm for cell separation; Specifically, it has been found that it is possible to culture target cells at high density for a long period of time by performing a washing operation in the same direction as the circulation direction of the culture solution.

本発明の方法により培養を行うためには、第1図に示す
機能を有する培養装置を例示することができる。
In order to perform culture according to the method of the present invention, a culture apparatus having the functions shown in FIG. 1 can be used as an example.

BRで示される培養槽においてスターラ−(Sll)に
より、浮遊性の動物細胞は、ゆるやかに撹拌培養される
。細胞浮遊液は、Llで示されるラインを通り、定常的
にPlで示されるポンプを通り濾過システム(FM)に
導入される。そして、この中に設置されている平板II
t18膜によって培養濾液と細胞を含んだ培養濃縮液と
に濾過分離される。
In a culture tank indicated by BR, floating animal cells are gently stirred and cultured using a stirrer (Sll). The cell suspension is introduced into the filtration system (FM) through a line designated Ll and constantly through a pump designated Pl. And the flat plate II installed inside this
The culture filtrate and the culture concentrate containing cells are separated by filtration using the T18 membrane.

細胞を含んだ培養濃縮液は、ラインL2を通り撹拌培養
槽(BR)に戻される。また撹拌培養槽(BR)から抜
き出された培養液は、液面計(LS)により検知され、
減少量だけポンプ(B2)を通り供給培地(SM)から
供給され撹拌培養槽(BR)内において常に定常を維持
される。撹拌培養1(BR)中のpH,O□濃度は、溶
存酸素計(DO)pHコントローラーにより検知され、
常に定常値に制御される。
The culture concentrate containing cells is returned to the stirred culture tank (BR) through line L2. In addition, the culture solution extracted from the stirred culture tank (BR) is detected by a liquid level gauge (LS).
A decreasing amount of the medium is supplied from the supply medium (SM) through the pump (B2) and kept constant in the stirred culture tank (BR). The pH and O□ concentration in the stirred culture 1 (BR) are detected by a dissolved oxygen meter (DO) pH controller,
Always controlled to a steady value.

細胞と培養液の分離に使用する濾過システムとしては平
面の濾過膜を備えてるものであればどのようなものでも
使用できる。濾過面の孔のサイズとしては浮遊性動物細
胞を通過させず高分子の蛋白質を通過させるような膜を
備えたものが好ましい、この点から孔サイズとしては、
0.2μm〜0.8μmが特に好ましい。
As a filtration system for separating cells and culture fluid, any system can be used as long as it is equipped with a flat filtration membrane. The pore size of the filtration surface is preferably one that has a membrane that does not allow floating animal cells to pass through but allows macromolecular proteins to pass through.From this point of view, the pore size is as follows:
Particularly preferred is 0.2 μm to 0.8 μm.

潅流時はポンプ(B3)により吸引し濾過後培養液はラ
イン(LS)を通り回収培地槽(RM)に回収され、必
要に応じ精製回収工程へまわされる。
During perfusion, the culture solution is sucked by the pump (B3) and after filtration is collected in the recovery medium tank (RM) through the line (LS), and sent to the purification and recovery step as required.

濾過膜表面は循環方向と同方向より定期的(間歇的)に
洗浄を行う、従来のホローファイバーを使用した濾過装
置においては、膜表面を洗浄することは困難であり、ま
た中空繊維内のつまりを除くために循環方向と逆方向の
洗浄が必要であったが、本発明の平膜による濾過方法で
は、1日1回循環方向と同方向に培養液と同成分の基礎
培地で洗浄することにより長期間の連続培養を維持でき
ることがわかった。
In conventional filtration devices using hollow fibers, where the surface of the filtration membrane is cleaned periodically (intermittently) in the same direction as the circulation direction, it is difficult to clean the membrane surface, and clogging inside the hollow fibers occurs. However, in the flat membrane filtration method of the present invention, washing should be performed once a day in the same direction as the circulation direction with a basal medium containing the same components as the culture solution. It was found that continuous culture could be maintained for a long period of time.

洗浄に当ってはポンプ(PI)、(B3)を停止し、バ
ルブ(B2)、(B3)を洗浄ラインに切り変え、ポン
プ(B4)を駆動し、洗浄液槽(CM)より洗浄液を潅
流流量の50〜100倍量の流速で10〜60秒間送っ
て洗浄し、次いで循環流路にパルプ(B2)、(B3)
を切り替え、ポンプ(Pi)、(B3)を駆動させて潅
流を再開すればよい。このような方法を採ることで、浮
遊性の動物細胞の長期間高密度培養と培養液の回収が可
能となる。
For cleaning, stop the pumps (PI) and (B3), switch the valves (B2) and (B3) to the cleaning line, drive the pump (B4), and increase the perfusion flow rate of the cleaning liquid from the cleaning liquid tank (CM). Pulp (B2), (B3)
What is necessary is to switch the pumps (Pi) and (B3) and restart perfusion. By adopting such a method, long-term, high-density culture of planktonic animal cells and recovery of the culture medium become possible.

本発明における平板濾過膜は、ミクロ濾過膜(10−’
11−30〜50μ園濾過能力を有する)をフィルター
形状に、単層、もしくは多層とし、シート状に成形され
たものでミリポアフィルタ−(ミリポア社)、ウルトラ
フィルター、アイオプレート(アミコン社)などが例示
できる。またこれらのフィルターをセットした濾過シス
テムとしてミニタン(ミリポア社)、セルプロセンサー
(アミコン社)、アイオプレートシステム(アミコン社
)などをあげることができる、これを使用することによ
ってホローファイバーを使用したときのように洗浄液を
逆洗する必要がなく洗浄を容易に行うことができ、また
細胞の破砕、膜面の目づまり等を防止することができる
The flat plate filtration membrane in the present invention is a microfiltration membrane (10-'
11-30 to 50 micron filtration capacity) in the form of a single layer or multi-layer and formed into a sheet, such as Millipore filter (Millipore), Ultra filter, Ioplate (Amicon), etc. I can give an example. In addition, examples of filtration systems that include these filters include Minitan (Millipore), Cellprosensor (Amicon), Ioplate System (Amicon), etc. When using hollow fibers, It is not necessary to backwash the cleaning solution as in the above method, and cleaning can be easily performed, and cell crushing, membrane surface clogging, etc. can be prevented.

また、本発明は、FM3A、リンパ球、ナマルバ細胞、
ハイブリドーマ等の動物細胞の培養に使用され、これら
の生産する生理活性物質等を効率よく採取することがで
きる。
The present invention also provides FM3A, lymphocytes, Namalva cells,
It is used to culture animal cells such as hybridomas, and the physiologically active substances produced by these cells can be efficiently collected.

以下に本発明の方法を実施例を挙げてさらに具体的に説
明する。
The method of the present invention will be explained in more detail below with reference to Examples.

実施例 第1図に示した培養装置を用い浮遊性細胞FM3Aを培
養した例を示す。
Example An example in which floating cells FM3A were cultured using the culture apparatus shown in FIG. 1 is shown.

FM3Aは小山らにより樹立されたマウス由来の細胞株
で我国では癌研究振興財団リサーチ リソースバンクに
JCRBO701として登録されており、容易に入手可
能である。
FM3A is a mouse-derived cell line established by Koyama et al. In Japan, it is registered as JCRBO701 in the Cancer Research Foundation Research Resource Bank and is easily available.

撹拌培養槽(BR)(容量11のものを使用)に5%仔
牛血清を含むDMEM (Dulbecco modi
fiedEagie 5edius)500−を入れ、
これにFM3Aを初期細胞密度lXl0’/dとなるよ
うに加え、培養を開始した。5%CO2を含む空気を液
面に通気しなから40rp−で培養槽をゆるやかに撹拌
しながら培養を行った。
DMEM (Dulbecco modi) containing 5% calf serum in a stirred culture tank (BR) (used with a capacity of 11).
fiedEagie 5edius) 500-,
FM3A was added to this so that the initial cell density was 1X10'/d, and culture was started. Culture was carried out while gently agitating the culture tank at 40 rpm while air containing 5% CO2 was passed through the liquid surface.

培養液は700〜800 d/hrの速度で循環させ、
また培養液の濾過システムによる透過回収は60d/h
rの量であった。培養液の減少量をレベルセンサー(L
S)により検知し、ライン(B4)より自動的に5%C
3含有DMEMを供給した。
The culture solution was circulated at a rate of 700-800 d/hr.
In addition, the permeation collection by the culture solution filtration system is 60 d/h.
The amount was r. The level sensor (L) detects the decrease in the culture solution.
5%C is detected automatically from line (B4).
3-containing DMEM was supplied.

培養開始24時間ごとにラインをバルブ(B2)。Valve the line (B2) every 24 hours after starting culture.

(B3)により洗浄ラインに切りかえポンプ(Pl)、
(B3)を停止し、ポンプ(B4)を駆動して無血清D
?lEMを450d使用し、1000d/5in(循環
流速の50〜100倍)の速度で潅流と同方向で濾過シ
ステムを洗浄した。
Switch to the cleaning line by (B3) and pump (Pl),
(B3) and drive the pump (B4) to remove serum-free D.
? The filtration system was cleaned using 1EM for 450 d at a rate of 1000 d/5 in (50-100 times the circulation flow rate) in the same direction as the perfusion.

本実施例において使用した濾過システムは、ミリボア社
製ミニタン(0,65μmの孔サイズ)を使用した。こ
のような方法を採用して培養を行ったところ、第2図(
−0−○−)に示すように細胞密度は最高3X10’を
超え、32日以上の長期間培養が可能であった。比較例
として、本装置を使用し膜面の洗浄を行なわず新鮮培地
の供給のみを行った場合の培養結果を示した(−ローロ
ー)。
The filtration system used in this example was Minitan manufactured by Millibore (pore size of 0.65 μm). When cultured using this method, the results shown in Figure 2 (
-0-○-), the maximum cell density exceeded 3×10′, and long-term culture of 32 days or more was possible. As a comparative example, the culture results were shown when this device was used and only fresh culture medium was supplied without washing the membrane surface (-low-low).

この場合は短期間(10日間)、10’/dの細胞密度
に到達したが細胞は以後ゆるやかに死滅し、15日間し
か維持できなかった。
In this case, a cell density of 10'/d was reached for a short period of time (10 days), but the cells slowly died thereafter and could only be maintained for 15 days.

また、Tフラスコにより行った回分培養の結果を(−△
−△−)で示した。培地は5%C8を含むDMBMを使
用し5%CO8雰囲気下のインキュベータ中で培養を行
った。細胞密度は2X10’/dにしか達せず、しかも
培養は8日間しか維持できなかった。
In addition, the results of batch culture performed in T-flasks (-△
−△−). DMBM containing 5% C8 was used as a medium, and culture was performed in an incubator under a 5% CO8 atmosphere. The cell density reached only 2×10′/d, and the culture could only be maintained for 8 days.

このように、本発明方法により長期間高密度に浮遊細胞
を培養できることを確認した。また培養液は、はぼ毎日
1500af回収することができた。
Thus, it was confirmed that floating cells could be cultured at high density for a long period of time by the method of the present invention. In addition, 1,500 af of culture fluid could be collected every day.

〔発明の効果〕〔Effect of the invention〕

本発明の実施により浮遊性動物細胞の高密度、潅流培養
が可能となった。本方法によれば培地交換と回収が連続
的にでき、また従来問題となっていた濾過孔のめづまり
や、細胞の破砕もなく良好な状態で細胞培養を行うこと
ができた。
By implementing the present invention, high-density, perfusion culture of planktonic animal cells has become possible. According to this method, culture medium can be exchanged and recovered continuously, and cells can be cultured in good conditions without clogging of filter holes or crushing of cells, which were conventional problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法の工程を概略図で示す。 第2図は、本発明の方法による浮遊性細胞FM3Aを長
期間培養した結果を示す。また参考として従来法による
培養結果2例を示す。 図中、−〇−〇〜は本発明方法による培養結果を、−口
〜ローは従来法(循環培養法)による培養結果を、−△
−△−は従来法(回分培養法)による培養結果をそれぞ
れ示す。 細胞密度[cells/ml]
FIG. 1 schematically shows the steps of the method of the invention. FIG. 2 shows the results of long-term culture of floating cells FM3A according to the method of the present invention. Two examples of culture results obtained using conventional methods are also shown for reference. In the figure, −〇−〇~ indicates the culture results according to the method of the present invention, - ~low indicates the culture results according to the conventional method (circular culture method), and -△
-△- indicates the culture results by the conventional method (batch culture method). Cell density [cells/ml]

Claims (2)

【特許請求の範囲】[Claims] (1)浮遊性動物細胞の浮遊する培養液の1部をぬきと
り、培養液と動物細胞とを濾過膜によって分離し、動物
細胞を新鮮培地とともに培養槽に戻して連続的に培地交
換を行う長期連続培養方法において、 [1]細胞の分離に0.2μm〜0.8μmの孔を有す
る平板濾過膜を使用し、 [2]該平板濾過膜を培地で間歇的に、培養液の循環方
向と同方向より洗浄する ことを特徴とする、浮遊性動物細胞の長期連続潅流培養
方法。
(1) Remove a portion of the culture solution in which planktonic animal cells are floating, separate the culture solution and animal cells using a filtration membrane, return the animal cells to the culture tank along with the fresh medium, and continuously exchange the medium. In the long-term continuous culture method, [1] a plate filtration membrane having pores of 0.2 μm to 0.8 μm is used for cell separation, and [2] the plate filtration membrane is intermittently passed through the culture medium in the direction of circulation of the culture solution. A method for long-term continuous perfusion culture of planktonic animal cells, which is characterized by washing from the same direction.
(2)浮遊性動物細胞がFM3A細胞である請求項(1
)記載の浮遊性動物細胞の長期連続潅流培養方法。
(2) Claim (1) wherein the planktonic animal cells are FM3A cells.
) Long-term continuous perfusion culture method of planktonic animal cells.
JP2215213A 1990-08-14 1990-08-14 Method for perfusion culture of animal cell Pending JPH0499483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215213A JPH0499483A (en) 1990-08-14 1990-08-14 Method for perfusion culture of animal cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215213A JPH0499483A (en) 1990-08-14 1990-08-14 Method for perfusion culture of animal cell

Publications (1)

Publication Number Publication Date
JPH0499483A true JPH0499483A (en) 1992-03-31

Family

ID=16668572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215213A Pending JPH0499483A (en) 1990-08-14 1990-08-14 Method for perfusion culture of animal cell

Country Status (1)

Country Link
JP (1) JPH0499483A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357694A (en) * 2003-05-15 2004-12-24 Yukie Iwamoto Method for producing tissue plug
JP2016131538A (en) * 2015-01-20 2016-07-25 富士フイルム株式会社 Cell culture apparatus and cell culture method
WO2018186426A1 (en) * 2017-04-07 2018-10-11 オリンパス株式会社 Culture medium exchange device and culture system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357694A (en) * 2003-05-15 2004-12-24 Yukie Iwamoto Method for producing tissue plug
JP2016131538A (en) * 2015-01-20 2016-07-25 富士フイルム株式会社 Cell culture apparatus and cell culture method
WO2016117615A1 (en) * 2015-01-20 2016-07-28 富士フイルム株式会社 Cell culture apparatus and cell culture method
US10479971B2 (en) 2015-01-20 2019-11-19 Fujifilm Corporation Cell culture device and cell culture method
WO2018186426A1 (en) * 2017-04-07 2018-10-11 オリンパス株式会社 Culture medium exchange device and culture system
JPWO2018186426A1 (en) * 2017-04-07 2019-04-11 オリンパス株式会社 Medium changing device and culture system

Similar Documents

Publication Publication Date Title
US20220325708A1 (en) Alternating tangential flow rapid harvesting
JP2777385B2 (en) Biological cell culture method, culture system and culture device
Feder et al. The large-scale cultivation of mammalian cells
US4751003A (en) Crossflow microfiltration process for the separation of biotechnologically produced materials
US5221479A (en) Filtration system
JP6227562B2 (en) Perfusion bioreactor system and operating method thereof
JP2728469B2 (en) Continuous equipment for cell dispersion, culture and material recovery
JPS61257181A (en) Culture of animal cell
JP2661848B2 (en) Culture method and culture device
JPH0499483A (en) Method for perfusion culture of animal cell
Michaels Fifteen years of ultrafiltration: problems and future promises of an adolescent technology
US5151362A (en) Apparatus containing a septum which impedes cell permeation for cell culture and method of use
KR20060007978A (en) Assembly and method for culturing an organism
JPH0728723B2 (en) Cell culture method and device
JP2997491B2 (en) Cell culture method and cell culture device
JPH02200176A (en) Cell culture method and system therefor
JPH06133765A (en) Method for supplying oxygen and culture device used therefor
JP2810140B2 (en) Cell culture method and device
JPH10304868A (en) Process for separating microbial cell
JP2000032977A (en) Cultivation of cell and device therefor
JPH10127270A (en) Culture, reaction and system for microorganism, cell or immobilized enzyme
JPH0557149A (en) Filter system
JPH04260419A (en) Filtration system
JPH04190835A (en) Cross-flow type filter
JPS6212990B2 (en)