JPH10304868A - Process for separating microbial cell - Google Patents

Process for separating microbial cell

Info

Publication number
JPH10304868A
JPH10304868A JP13287597A JP13287597A JPH10304868A JP H10304868 A JPH10304868 A JP H10304868A JP 13287597 A JP13287597 A JP 13287597A JP 13287597 A JP13287597 A JP 13287597A JP H10304868 A JPH10304868 A JP H10304868A
Authority
JP
Japan
Prior art keywords
membrane
cells
water
microbial cells
valuable materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13287597A
Other languages
Japanese (ja)
Inventor
Tsuneyasu Adachi
恒康 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP13287597A priority Critical patent/JPH10304868A/en
Publication of JPH10304868A publication Critical patent/JPH10304868A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a process for the separation of microbial cells and the recovery of valuable materials from cultured liquid of microorganism without generating noncombustible waste and enabling the automation and labor-saving modification by coagulating the microbial cells with a polymeric coagulant and filtering the liquid containing the valuable materials by a membrane- filtration method. SOLUTION: Valuable materials and microbial cells are separated from a cultured liquid of microorganism, e.g. a cultured liquid containing the microbial cells and the valuable materials and generated in the microbial production of enzymes, amino acids, peptides, constituent substances, etc., by coagulating the microbial cells with a polymeric coagulant and filtering the liquid containing the valuable materials by a membrane-filtration method. The polymeric coagulant to be used in the coagulation process is preferably a cationic or ampholytic polymeric coagulant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、菌体分離方法に関
する。さらに詳しくは、本発明は、不燃性廃棄物が発生
することなく、自動化、省力化が可能であり、微生物培
養液の菌体分離と有価物の回収を効率的に行うことがで
きる菌体分離方法に関する。
[0001] The present invention relates to a method for separating cells. More specifically, the present invention provides a method for separating cells which can be automated and labor-saving without generating non-combustible waste, and which can efficiently separate cells of a microorganism culture solution and recover valuable resources. About the method.

【0002】[0002]

【従来の技術】微生物培養によって、有価物を生産した
場合、有価物と菌体を分離する工程が必要である。従
来、微生物培養液の菌体分離においては、ドラムフィル
ターやプレスフィルターが用いられていたが、ろ過性が
悪いため、多量の珪藻土をろ過助剤やプリコート剤とし
て使用していた。この方法では、珪藻土を含む菌体の廃
棄の問題や、珪藻土の発ガン性の問題があった。珪藻土
を用いない菌体分離方法として、特公平4−6345号
公報には、菌体を凝集処理したのち、重力ろ過、圧搾に
より菌体を分離する方法が提案されている。しかし、微
生物培養液は、繊維分が少なく粘質物を多く含むため
に、凝集物は含水率、粘性とも高く、ろ布の目詰まりが
起きて実用上適用は難しい。また、微生物培養液の精密
ろ過法による処理も研究されてはいるが、菌体が膜に目
詰まりを起こすために、実用上十分な透過流束が得られ
ないという問題がある。
2. Description of the Related Art When valuable resources are produced by culturing microorganisms, a step of separating valuable cells from cells is required. Conventionally, a drum filter or a press filter has been used in separating cells from a microorganism culture solution. However, since the filterability is poor, a large amount of diatomaceous earth has been used as a filter aid or a precoat agent. In this method, there were a problem of disposing of cells containing diatomaceous earth and a problem of carcinogenicity of diatomaceous earth. As a method for separating cells without using diatomaceous earth, Japanese Patent Publication No. 4-6345 proposes a method for separating cells by gravity filtration and pressing after coagulation of the cells. However, since the microbial culture solution has a low fiber content and contains a lot of viscous substances, the aggregates have a high moisture content and a high viscosity, and clogging of the filter cloth occurs, which makes practical application difficult. In addition, although treatment by a microfiltration method of a microorganism culture solution has been studied, there is a problem that a permeation flux sufficient for practical use cannot be obtained because cells are clogged in a membrane.

【0003】[0003]

【発明が解決しようとする課題】本発明は、不燃性廃棄
物が発生することなく、自動化、省力化が可能であり、
微生物培養液の菌体分離と有価物の回収を効率的に行う
ことができる菌体分離方法を提供することを目的として
なされたものである。
SUMMARY OF THE INVENTION According to the present invention, automation and labor saving are possible without generating non-combustible waste.
It is an object of the present invention to provide a method for separating cells which can efficiently separate cells from a microorganism culture solution and recover valuable resources.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意研究を重ねた結果、微生物培養液から
高分子凝集剤により菌体を凝集させたのち、膜ろ過法に
よって有価物を含む液をろ過することにより、高い膜透
過流束を維持して、効率的に有価物を回収し得ることを
見いだし、この知見に基づいて本発明を完成するに至っ
た。すなわち、本発明は、(1)微生物培養液から有価
物と菌体を分離する工程において、高分子凝集剤により
菌体を凝集させたのち、膜ろ過法により有価物を含む液
をろ過することを特徴とする菌体分離方法、を提供する
ものである。さらに、本発明の好ましい態様として、
(2)高分子凝集剤による菌体の凝集物を沈降させ、そ
の上澄み液を膜ろ過法によりろ過する第(1)項記載の菌
体分離方法、(3)膜ろ過法が、クロスフローろ過であ
る第(1)項記載の菌体分離方法、及び、(4)クロスフ
ローろ過における通水方法が、間欠通水である第(3)項
記載の菌体分離方法、を挙げることができる。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, after agglutinating cells from a microorganism culture solution with a polymer coagulant, valuable cells were obtained by membrane filtration. It has been found that by filtering a liquid containing a substance, a high membrane permeation flux can be maintained and a valuable substance can be efficiently recovered, and the present invention has been completed based on this finding. That is, in the present invention, in the step of (1) separating valuable resources and bacterial cells from a microorganism culture solution, after the bacterial cells are aggregated with a polymer flocculant, the liquid containing the valuable resources is filtered by a membrane filtration method. And a method for separating bacterial cells, characterized in that: Further, as a preferred embodiment of the present invention,
(2) The bacterial cell separation method according to (1), wherein the aggregate of bacterial cells caused by the polymer flocculant is precipitated, and the supernatant is filtered by a membrane filtration method. And (4) the method for separating cells according to item (3), wherein the method of passing water in the cross-flow filtration is intermittent water flow. .

【0005】[0005]

【発明の実施の形態】本発明方法は、微生物培養液、例
えば、菌体による酵素、アミノ酸、ペプチド、抗生物質
などの生産の際に発生する菌体と有価物とを含む培養液
より、生産された有価物を菌体から分離して回収する工
程に適用することができる。本発明方法において、微生
物培養液の凝集処理に用いる高分子凝集剤には特に制限
はないが、通常はカチオン性高分子凝集剤又は両性高分
子凝集剤を好適に使用することができる。使用するカチ
オン性高分子凝集剤には特に制限はなく、例えば、ポリ
エチレンイミン、ポリビニルアミン、ポリビニルアミジ
ン、ポリ(メタ)アリルアミン、ハロゲン化ポリジアリル
アンモニウム、ポリアミノアルキルメタクリレート、キ
トサンなどを挙げることができる。使用する両性高分子
凝集剤には特に制限はなく、例えば、上記のカチオン性
高分子凝集剤に、さらにアニオン性基、例えば、カルボ
キシル基、スルホン基などが導入された構造を有する両
性高分子凝集剤などを挙げることができる。本発明方法
においては、カチオン性高分子凝集剤又は両性高分子凝
集剤により形成された菌体凝集フロックの粗大化を目的
として、さらにアニオン性高分子凝集剤を添加すること
ができる。使用するアニオン性高分子凝集剤には特に制
限はなく、例えば、ポリアクリル酸ナトリウム、カルボ
キシメチルセルロースなどを挙げることができる。微生
物培養液に高分子凝集剤を添加して菌体を凝集処理する
ことにより、菌体の分離が容易になるとともに、膜の透
過流束を維持、向上することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method of the present invention comprises producing a microorganism from a culture broth, for example, a culture broth containing cells and valuables generated during production of enzymes, amino acids, peptides, antibiotics and the like by the cells. It can be applied to the step of separating and recovering the valuable resources from the cells. In the method of the present invention, the polymer flocculant used for the flocculation treatment of the microorganism culture solution is not particularly limited, but usually, a cationic polymer flocculant or an amphoteric polymer flocculant can be suitably used. The cationic polymer flocculant to be used is not particularly limited, and examples thereof include polyethyleneimine, polyvinylamine, polyvinylamidine, poly (meth) allylamine, polydiallylammonium halide, polyaminoalkyl methacrylate, and chitosan. The amphoteric polymer flocculant to be used is not particularly limited. For example, the amphoteric polymer flocculant having a structure in which an anionic group such as a carboxyl group or a sulfone group is further introduced into the above-described cationic polymer flocculant. Agents and the like. In the method of the present invention, an anionic polymer flocculant can be further added for the purpose of coarsening the cell flocculent formed by the cationic polymer flocculant or the amphoteric polymer flocculant. The anionic polymer flocculant used is not particularly limited, and examples thereof include sodium polyacrylate and carboxymethyl cellulose. By adding a polymer flocculant to the microorganism culture solution and performing the flocculation treatment of the cells, the separation of the cells can be facilitated, and the permeation flux of the membrane can be maintained and improved.

【0006】本発明方法において、使用する多孔質分離
膜には特に制限はなく、例えば、細孔径が0.05〜1
μmである精密ろ過(MF)膜、細孔径が0.002〜
0.1μmである限外ろ過膜などを挙げることができ
る。分離膜の材質には特に制限はなく、例えば、ポリエ
チレン、ポリプロピレン、酢酸セルロース、ポリアミ
ド、ポリカーボネート、ポリアクリロニトリル、ポリス
ルホン、ポリテトラフルオロエチレンなどを挙げること
ができる。分離膜の形状には特に制限はなく、例えば、
平膜、中空糸、スパイラル巻き、管、板などを挙げるこ
とができる。本発明方法においては、高分子凝集剤によ
り菌体を凝集させたのち、凝集物を沈降してその大部分
を分離し、上澄液の部分を膜ろ過法によりろ過すること
が好ましい。凝集物の全量を含んだまま膜に供給する
と、凝集物の一部のフロックが破壊し、生成した微粒子
が膜面を閉塞したり、汚染して、透過流束を低下させる
おそれがあるが、上澄液を膜に供給することにより、膜
の閉塞、汚染のおそれがなく、安定して高い透過流束が
得られ、膜による分離性を向上することができる。凝集
物の大部分を分離するためには、沈殿や遠心分離で分離
することができるが、上澄液には凝集物の一部が含まれ
ていても支障は少ないので、クロスフロー方式の膜ろ過
において、循環ラインの循環槽の内部にスクリーンを設
け、スクリーンより下部に凝集した培養液を導入し凝集
物を沈降させたのち、スクリーンより上部から上澄液を
ポンプで膜装置に供給することが好ましい。膜分離した
濃縮液は循環ラインを通って循環槽、膜へと循環する
が、凝集物の大部分はスクリーンで阻止され、循環槽内
に保持される。循環槽内に保持された凝集物は、循環水
と必要に応じて供給される新鮮な水とにより洗浄を繰り
返され、凝集物の間隙中に保持された有価物が洗い出さ
れ、膜に供給されるので、有価物の回収率を高めること
ができる。
In the method of the present invention, there is no particular limitation on the porous separation membrane to be used.
μm microfiltration (MF) membrane, pore size 0.002-
An ultrafiltration membrane having a thickness of 0.1 μm can be used. The material of the separation membrane is not particularly limited, and examples thereof include polyethylene, polypropylene, cellulose acetate, polyamide, polycarbonate, polyacrylonitrile, polysulfone, and polytetrafluoroethylene. There is no particular limitation on the shape of the separation membrane, for example,
Flat membranes, hollow fibers, spiral windings, tubes, plates and the like can be mentioned. In the method of the present invention, it is preferred that after the cells are aggregated with a polymer flocculant, the aggregates are sedimented, most of them are separated, and the supernatant is filtered by a membrane filtration method. If supplied to the membrane while containing the entire amount of aggregates, some of the flocs of the aggregates will be broken, and the generated fine particles may block or contaminate the membrane surface, reducing the permeation flux, By supplying the supernatant to the membrane, a high permeation flux can be obtained stably without the risk of clogging and contamination of the membrane, and the separation property by the membrane can be improved. To separate most of the aggregates, they can be separated by sedimentation or centrifugation.However, even if a portion of the aggregates is contained in the supernatant, there is little problem. In the filtration, a screen is provided inside the circulation tank of the circulation line, a culture solution that has been aggregated is introduced below the screen to settle the aggregates, and then the supernatant is supplied from above the screen to the membrane device by a pump. Is preferred. The concentrate separated by the membrane is circulated through the circulation line to the circulation tank and the membrane, but most of the aggregates are blocked by the screen and retained in the circulation tank. Agglomerates held in the circulation tank are repeatedly washed with circulating water and fresh water supplied as needed, and valuable materials held in the gaps of the aggregates are washed out and supplied to the membrane. As a result, the recovery rate of valuable resources can be increased.

【0007】本発明方法においては、膜ろ過法をクロス
フローろ過とすることが好ましい。クロスフローろ過の
運転条件に特に制限はないが、膜表面の線流速が0.5
〜5m/sであることが好ましく、1〜3m/sである
ことがより好ましい。膜表面の線流速が遅いと膜面にゲ
ル層が過剰に堆積したり、膜を汚染したりして、透過流
束が低下するおそれがある。膜表面の線流速が早すぎる
と、消費エネルギーに見合う透過流束が得られ難くなる
おそれがある。また、操作圧力は、通常は0.2〜10k
g/cm2であり、ろ過膜の細孔径や液の濃度に応じて適宜
選定することができる。クロスフローろ過において、膜
装置へ供給した原液の内、ろ液は有価物回収タンクに移
し、濃縮液は原液タンクに戻る循環ろ過系統を組む。こ
のとき、有価物含有液の回収率を上げるために、適時濃
縮液に加水することができる。膜装置への液の供給は、
凝集処理した微生物培養液の上澄み液を吸引して行い、
濃縮液は、沈降した凝集物内に戻すことが好ましい。ク
ロスフローによる膜分離操作中、沈降した凝集物が、循
環水の対流により再分散することを防ぐために、沈降し
た凝集物と上澄液の間に、目開き0.1〜5mm程度のス
クリーンを設け、沈降した凝集物が上澄液側に移行する
ことを防ぐことが好ましい。
[0007] In the method of the present invention, it is preferable that the membrane filtration method is cross-flow filtration. There are no particular restrictions on the operating conditions of the cross-flow filtration, but the linear flow velocity on the membrane surface is 0.5.
It is preferably from 5 to 5 m / s, more preferably from 1 to 3 m / s. If the linear flow velocity on the membrane surface is low, there is a possibility that the gel layer will be excessively deposited on the membrane surface or the membrane will be contaminated, and the permeation flux will be reduced. If the linear flow velocity on the membrane surface is too fast, it may be difficult to obtain a permeation flux corresponding to the energy consumption. The operating pressure is usually 0.2 to 10 k
g / cm 2 , and can be appropriately selected depending on the pore size of the filtration membrane and the concentration of the liquid. In the cross-flow filtration, of the stock solution supplied to the membrane device, a filtrate is transferred to a valuable resource recovery tank, and a concentrated solution is returned to a stock solution tank to form a circulation filtration system. At this time, in order to increase the recovery rate of the valuables-containing liquid, the concentrate can be appropriately watered. The supply of liquid to the membrane device
Aspirating the supernatant of the agglomerated microorganism culture,
Preferably, the concentrate is returned into the sedimented sediment. During the membrane separation operation by cross-flow, a screen having an opening of about 0.1 to 5 mm is provided between the settled aggregate and the supernatant to prevent the settled aggregate from being redispersed by convection of circulating water. It is preferable to prevent the settled aggregate from migrating to the supernatant liquid.

【0008】本発明方法において、クロスフローろ過に
おける通水方法を、間欠通水とすることが好ましい。間
欠通水においては、膜装置に一定時間通水したのち、い
ったん通水を停止し、ふたたび通水を再開する操作を繰
り返す。1回の通水時間は30秒〜30分であることが
好ましく、1〜5分であることがより好ましい。また、
1回の通水の停止時間は、0.5〜10秒であることが
好ましい。通水方法を間欠通水とすることにより、膜の
透過流束を高い状態で維持し、効率を格段に向上させる
ことができる。通水停止により、膜面に形成されるゲル
層の圧密化が緩和されるとともに、過剰のゲル層が再通
水時に剥離し、透過流束が高く維持されるものと考えら
れる。間欠通水は、ポンプの発停により行うことがで
き、あるいは、流路の切り替えにより行うこともでき
る。多くの場合、流路の切り替えによる間欠通水の方が
制御が容易である。図1は、本発明方法の実施の一態様
の工程系統図である。本態様においては、処理は回分方
式で行われる。微生物培養液に高分子凝集剤を添加して
菌体を凝集させたのち、スクリーン1を設けた循環槽2
に下部より仕込む。凝集した菌体3は循環槽内で沈降
し、液中のスクリーンにより上澄液中への浮上が防止さ
れる。ポンプ4により、循環槽内の上澄液を流量計5を
経由して、クロスフロー方式の膜セル6に送る。膜セル
には、圧力計7を設ける。膜セルからのろ液は、有価物
回収タンク8に貯蔵する。膜セルより流出する濃縮液
を、循環ライン9を経由して、循環槽に返送することに
より、膜セル内における必要な線流速を確保する。循環
ラインには、三方コック10とバイパス11を設け、時
間設定をした三方コックの切り替えにより、膜セルへの
間欠通水を可能とする。循環槽には給水ラインを付設
し、循環槽内の液面計と連動するポンプ12により水を
追加する。本発明方法によれば、微生物培養液の菌体分
離と有価物の回収を効率よく行うことができ、菌体分離
の自動化、省力化が可能になる。また、本発明方法によ
れば、珪藻土などの不燃性廃棄物を発生することなく、
菌体を分離することができる。
In the method of the present invention, it is preferable that the water flow in the cross-flow filtration is intermittent water flow. In the intermittent water supply, after the water is passed through the membrane device for a certain period of time, the operation of stopping the water supply and restarting the water supply is repeated. The time for one water passage is preferably 30 seconds to 30 minutes, and more preferably 1 to 5 minutes. Also,
It is preferable that the stop time of one flow of water is 0.5 to 10 seconds. By setting the water passing method to intermittent water passing, the permeation flux of the membrane can be maintained in a high state, and the efficiency can be significantly improved. It is considered that by stopping the flow of water, the consolidation of the gel layer formed on the membrane surface is reduced, and the excess gel layer is separated at the time of re-flowing water, so that the permeation flux is maintained at a high level. The intermittent water supply can be performed by starting and stopping a pump, or by switching a flow path. In many cases, the intermittent water flow by switching the flow path is easier to control. FIG. 1 is a process flow chart of an embodiment of the method of the present invention. In this embodiment, the processing is performed in a batch mode. After adding a polymer flocculant to the microbial culture solution to flocculate the cells, a circulation tank 2 provided with a screen 1
From the bottom. The aggregated bacterial cells 3 settle down in the circulation tank, and floating in the supernatant liquid is prevented by the screen in the liquid. The supernatant liquid in the circulation tank is sent to the cross flow type membrane cell 6 via the flow meter 5 by the pump 4. A pressure gauge 7 is provided in the membrane cell. The filtrate from the membrane cell is stored in a valuable resource recovery tank 8. The required linear flow rate in the membrane cell is ensured by returning the concentrated liquid flowing out of the membrane cell to the circulation tank via the circulation line 9. A three-way cock 10 and a bypass 11 are provided in the circulation line, and intermittent water flow to the membrane cell is enabled by switching the three-way cock whose time is set. A water supply line is attached to the circulation tank, and water is added by a pump 12 interlocked with a liquid level gauge in the circulation tank. ADVANTAGE OF THE INVENTION According to the method of this invention, microbial cell isolation of a microorganism culture solution and collection | recovery of a valuable resource can be performed efficiently, and automation of microbial cell isolation and labor saving become possible. Further, according to the method of the present invention, without generating non-combustible waste such as diatomaceous earth,
The cells can be separated.

【0009】[0009]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 固形分濃度11重量%、pH6.2、電気伝導度4.3mS
/cmの蛋白質含有微生物培養液10リットルを、容量2
5リットルの膜ろ過装置のタンクに移し、10重量%ポ
リエチレンイミン水溶液0.2リットルを加えて30秒
間撹拌した。次に、0.2重量%ポリアクリル酸ナトリ
ウム水溶液1リットルを加えて撹拌し、菌体凝集フロッ
クを形成させ、さらにイオン交換水10リットルを加え
て撹拌したのち、菌体凝集フロックを沈降させた。沈降
した凝集フロックと上澄み液の間に、目開き0.5mmの
金網を設けた。金網の設置位置は、タンク水位の水面か
ら2/3の位置とした。膜ろ過装置とタンクとを接続
し、膜ろ過装置の濃縮液が、再びタンクに戻るようにし
た。なお、膜ろ過装置に液を供給するポンプ吸引口は上
澄み液内に設置し、濃縮液の戻り口はタンク下部に設置
し、加水口もタンク下部に設置した。膜ろ過装置の運転
は、平膜セルを用い、液温10℃、ろ過圧0.5kg/c
m2、膜表面の線速度2.0m/sで行った。平膜は、孔
径0.4μm、寸法4cm×30cmのポリオレフィン膜
[日東電工(株)製]を用いた。ろ液10リットルを回収
した時点で、イオン交換水10リットルをタンクに加え
た。さらに、ろ液10リットルを回収した時点で、イオ
ン交換水10リットルをタンクに加えた。膜透過流束
は、処理開始直後が831リットル/m2/hr、1時間
後が84リットル/m2/hr、2時間後が71リットル
/m2/hr、3時間後が67リットル/m2/hrであっ
た。膜ろ過により、ろ液を合計27リットル回収した。
ろ液中の総蛋白質回収率は、92.8重量%であった。 実施例2 実施例1と同じ微生物培養液を、実施例1と同様に凝集
処理し、膜ろ過装置にセットした。膜ろ過装置の運転
は、実施例1と同じ平膜セルを用い、液温10℃、ろ過
圧0.5kg/cm2、膜表面の線速度2.0m/sで行っ
た。実施例1では連続的に通水したのに対して、本実施
例では、ポンプ通水を1分間行い、5秒間停止する間欠
通水を繰り返して行った。ろ液10リットルを回収した
時点で、イオン交換水10リットルをタンクに加えた。
さらに、ろ液10リットルを回収した時点で、イオン交
換水10リットルをタンクに加えた。膜透過流束は、処
理開始直後が837リットル/m2/hr、1時間後が6
79リットル/m2/hr、2時間後が663リットル/
2/hr、3時間後が665リットル/m2/hrであっ
た。膜ろ過により、ろ液を合計27リットル回収した。
ろ液中の総蛋白質回収率は、93.2重量%であった。 比較例1 実施例1と同じ微生物培養液を、凝集処理することなく
膜ろ過を行った。微生物培養液10リットルに対して、
イオン交換水10リットルを加えて、実施例1と同じ精
密ろ過装置にセットした。ただし、凝集フロックの分散
を抑えるための金網は必要がないので取り除いた。膜ろ
過装置の運転は、実施例1と同じ平膜セルを用い、液温
10℃、ろ過圧0.5kg/cm2、膜表面の線速度2.0m
/sで行った。膜透過流束は、処理開始直後が54リッ
トル/m2/hr、1時間後が31リットル/m2/hr、2
時間後が22リットル/m2/hr、3時間後が12リッ
トル/m2/hrであった。本比較例においては、運転中
のイオン交換水の追加と回収蛋白質の測定は行わなかっ
た。実施例1、2及び比較例1の運転中の膜透過流束の
変化を、第1表及び図2に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 Solid content concentration 11% by weight, pH 6.2, electric conductivity 4.3 mS
/ Liter of a protein-containing microbial culture solution containing 2 l / cm
The solution was transferred to a 5 liter tank of a membrane filtration device, 0.2 liter of a 10% by weight aqueous solution of polyethyleneimine was added, and the mixture was stirred for 30 seconds. Next, 1 liter of a 0.2% by weight aqueous solution of sodium polyacrylate was added and stirred to form a flocculent floc. Further, 10 liters of ion-exchanged water was added and stirred, and the flocculant was sedimented. . A wire mesh having an aperture of 0.5 mm was provided between the settled floc and the supernatant. The wire mesh was installed at a position 2/3 from the water level of the tank water level. The membrane filtration device and the tank were connected, and the concentrated liquid of the membrane filtration device was returned to the tank again. The pump suction port for supplying the liquid to the membrane filtration device was provided in the supernatant, the return port for the concentrated liquid was provided at the lower part of the tank, and the water supply port was also provided at the lower part of the tank. The operation of the membrane filtration device is performed using a flat membrane cell at a liquid temperature of 10 ° C and a filtration pressure of 0.5 kg / c.
m 2 , and the linear velocity of the film surface was 2.0 m / s. As the flat membrane, a polyolefin membrane [manufactured by Nitto Denko Corporation] having a pore diameter of 0.4 μm and a size of 4 cm × 30 cm was used. When 10 liters of the filtrate was collected, 10 liters of ion-exchanged water was added to the tank. Further, when 10 liters of the filtrate was collected, 10 liters of ion-exchanged water was added to the tank. The membrane permeation flux was 831 l / m 2 / hr immediately after the start of the treatment, 84 l / m 2 / hr after 1 hour, 71 l / m 2 / hr after 2 hours, and 67 l / m after 3 hours. 2 / hr. A total of 27 liters of filtrate was collected by membrane filtration.
The total protein recovery in the filtrate was 92.8% by weight. Example 2 The same microorganism culture solution as in Example 1 was subjected to a coagulation treatment in the same manner as in Example 1, and set in a membrane filtration device. The operation of the membrane filtration device was performed using the same flat membrane cell as in Example 1 at a liquid temperature of 10 ° C., a filtration pressure of 0.5 kg / cm 2 , and a linear velocity of the membrane surface of 2.0 m / s. In Example 1, while water was continuously supplied, in this example, pump water was supplied for 1 minute, and intermittent water supply for 5 seconds was repeated. When 10 liters of the filtrate was collected, 10 liters of ion-exchanged water was added to the tank.
Further, when 10 liters of the filtrate was collected, 10 liters of ion-exchanged water was added to the tank. The membrane permeation flux was 837 liters / m 2 / hr immediately after the start of treatment and 6 hours after 1 hour.
79 l / m 2 / hr, 663 l / h after 2 hours
m 2 / hr, 665 l / m 2 / hr after 3 hours. A total of 27 liters of filtrate was collected by membrane filtration.
The total protein recovery in the filtrate was 93.2% by weight. Comparative Example 1 The same microbial culture solution as in Example 1 was subjected to membrane filtration without agglutination treatment. For 10 liters of microbial culture,
10 liters of ion-exchanged water was added, and set in the same microfiltration apparatus as in Example 1. However, a wire mesh for suppressing the dispersion of the flocculated floc was not necessary, and was removed. The operation of the membrane filtration device was performed using the same flat membrane cell as in Example 1, a liquid temperature of 10 ° C., a filtration pressure of 0.5 kg / cm 2 , and a linear velocity of the membrane surface of 2.0 m.
/ S. The membrane permeation flux was 54 l / m 2 / hr immediately after the start of the treatment, 31 l / m 2 / hr after 1 hour, and 2 l / m 2 / hr.
The time was 22 liters / m 2 / hr after 3 hours and 12 liters / m 2 / hr after 3 hours. In this comparative example, addition of ion-exchanged water during operation and measurement of the recovered protein were not performed. Changes in the membrane permeation flux during the operation of Examples 1 and 2 and Comparative Example 1 are shown in Table 1 and FIG.

【0010】[0010]

【表1】 [Table 1]

【0011】第1表及び図2に見られるように、蛋白質
含有微生物培養液を凝集処理することにより、膜ろ過に
おける透過流束を向上させることができる。特に、間欠
通水を行った実施例2においては、処理開始時に比べて
透過流束の低下が少なく、透過流束が飛躍的に向上して
いる。
As can be seen from Table 1 and FIG. 2, the permeation flux in membrane filtration can be improved by aggregating the protein-containing microorganism culture solution. In particular, in Example 2 in which the intermittent water flow was performed, the permeation flux was less reduced and the permeation flux was dramatically improved as compared with the time when the processing was started.

【0012】[0012]

【発明の効果】本発明方法によれば、微生物培養液の菌
体分離と有価物の回収を効率よく行うことができる。ま
た、本発明方法によれば、菌体分離の自動化、省力化が
可能になり、さらに、珪藻土などの不燃性廃棄物が発生
しない。
According to the method of the present invention, it is possible to efficiently separate cells from a microorganism culture solution and recover valuable resources. Further, according to the method of the present invention, it becomes possible to automate the cell separation and save labor, and further, non-combustible waste such as diatomaceous earth is not generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明方法の実施の一態様の工程系統
図である。
FIG. 1 is a process flow chart of an embodiment of the method of the present invention.

【図2】図2は、運転中の膜透過流束の変化を示すグラ
フである。
FIG. 2 is a graph showing changes in membrane permeation flux during operation.

【符号の説明】[Explanation of symbols]

1 スクリーン 2 循環槽 3 凝集した菌体 4 ポンプ 5 流量計 6 膜セル 7 圧力計 8 有価物回収タンク 9 循環ライン 10 三方コック 11 バイパス 12 ポンプ DESCRIPTION OF SYMBOLS 1 Screen 2 Circulation tank 3 Aggregated bacteria 4 Pump 5 Flow meter 6 Membrane cell 7 Pressure gauge 8 Valuables recovery tank 9 Circulation line 10 Three-way cock 11 Bypass 12 Pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】微生物培養液から有価物と菌体を分離する
工程において、高分子凝集剤により菌体を凝集させたの
ち、膜ろ過法により有価物を含む液をろ過することを特
徴とする菌体分離方法。
In the step of separating valuable resources and cells from a microorganism culture solution, the method comprises the steps of: aggregating the cells with a polymer flocculant; and filtering the liquid containing the valuable substances by a membrane filtration method. Cell separation method.
JP13287597A 1997-05-07 1997-05-07 Process for separating microbial cell Pending JPH10304868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13287597A JPH10304868A (en) 1997-05-07 1997-05-07 Process for separating microbial cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13287597A JPH10304868A (en) 1997-05-07 1997-05-07 Process for separating microbial cell

Publications (1)

Publication Number Publication Date
JPH10304868A true JPH10304868A (en) 1998-11-17

Family

ID=15091606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13287597A Pending JPH10304868A (en) 1997-05-07 1997-05-07 Process for separating microbial cell

Country Status (1)

Country Link
JP (1) JPH10304868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065821A (en) * 2009-09-16 2011-03-31 Kurita Water Ind Ltd Microorganism power generation method and microorganism power generation device
JP2019017355A (en) * 2017-07-21 2019-02-07 合同酒精株式会社 Enzyme manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065821A (en) * 2009-09-16 2011-03-31 Kurita Water Ind Ltd Microorganism power generation method and microorganism power generation device
JP2019017355A (en) * 2017-07-21 2019-02-07 合同酒精株式会社 Enzyme manufacturing method

Similar Documents

Publication Publication Date Title
US4751003A (en) Crossflow microfiltration process for the separation of biotechnologically produced materials
EP2253594A2 (en) Water purification apparatus and method for using pressure filter and pore-control fiber filter
CN103582517B (en) For filtering the method and system formed with cake layer
JP2007033353A (en) Microorganism detecting system
CN1116448C (en) Method for treating waste liquor from final water washing tank used in cation electrodeposition painting
JPH10304868A (en) Process for separating microbial cell
JPH07963A (en) Pretreatment of ultrahigh treatment of water and device therefor
CN105439347B (en) A kind of mother liquor treatment process and system for the concentration of clopyralid feed separation
JP2000317273A (en) Membrane separation method
JP2000263063A (en) Method and apparatus for treating fluorine-containing waste liquid
JP7403387B2 (en) Coagulation membrane filtration system and coagulation membrane filtration method
JP4895642B2 (en) Microbial separation method
Michaels Fifteen years of ultrafiltration: problems and future promises of an adolescent technology
JPS5918088B2 (en) Method for purifying valuable substances in liquid
CN109879492A (en) A kind of water purification machine membrane filtration system with desalter
JPS5922608A (en) Electrodialysis method
JP3880036B2 (en) Protein concentration method
JPH0499483A (en) Method for perfusion culture of animal cell
JP3494053B2 (en) Apparatus and method for separating bacterial cells
CN209652005U (en) A kind of rubber chemicals CBS production wastewater treatment reclaiming system
JP4956235B2 (en) Method for separation and concentration of microorganisms in water
CN102897936B (en) Treatment method and apparatus for printing and dyeing desizing waste water
CN105418807A (en) Method for removing impurities in crude heparin sodium by using ceramic membrane
US20120241386A1 (en) Multi-function water treatment
CN207210127U (en) The processing system of electrodeposited cobalt raffinate waste water

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511