WO2004088741A1 - Wafer transportation system - Google Patents

Wafer transportation system Download PDF

Info

Publication number
WO2004088741A1
WO2004088741A1 PCT/JP2004/003929 JP2004003929W WO2004088741A1 WO 2004088741 A1 WO2004088741 A1 WO 2004088741A1 JP 2004003929 W JP2004003929 W JP 2004003929W WO 2004088741 A1 WO2004088741 A1 WO 2004088741A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
tunnel
reticle
transfer
processing
Prior art date
Application number
PCT/JP2004/003929
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Naito
Original Assignee
Hirata Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirata Corporation filed Critical Hirata Corporation
Priority to JP2005504171A priority Critical patent/JPWO2004088741A1/en
Publication of WO2004088741A1 publication Critical patent/WO2004088741A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67294Apparatus for monitoring, sorting or marking using identification means, e.g. labels on substrates or labels on containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67769Storage means

Definitions

  • a system of the present invention comprises a tunnel for transporting a substrate and a reticle between a plurality of processing apparatuses for processing a substrate, and a control unit for controlling transport of the substrate and the reticle in the tunnel. And characterized in that:
  • a stocker for stocking the reticle conveyed in the tunnel is further provided, and the control means controls the unloading of the reticle from the stocking force to the tunnel and the transfer of the reticle from the tunnel to the stocking force.
  • the apparatus further includes a stock force for stocking the substrate and the reticle conveyed in the tunnel. It is characterized by control.
  • the stocker is provided with information reading means for reading information attached to the reticle or the substrate.
  • the stocker is characterized by comprising: a multi-stage table on which a reticle or a substrate is placed; and rotating means for independently rotating each of the tables.
  • a stocker includes: a multi-stage table on which a substrate, a reticle, or a substrate storage force set is placed; and a rotating unit that rotates the table for each stage.
  • the storage force and the substrate or reticle or substrate storage force set placed on the table are taken out and moved to the transport path, and the transport path has been transported.
  • FIG. 1A is a perspective view showing the appearance of the substrate transfer system according to the first embodiment of the present invention.
  • FIG. 1B is a diagram showing an arrangement of the interface device according to the first embodiment of the present invention.
  • FIG. 2A and FIG. 2B are diagrams showing the internal configuration of the tunnel and interface device according to the first embodiment of the present invention.
  • FIGS. 3A and 3B are views showing a connection portion between the tunnel and the interface device according to the first embodiment of the present invention.
  • FIG. 3C is a perspective view showing the internal configuration of the tunnel according to the first embodiment of the present invention.
  • 4A and 4B are diagrams showing a configuration of the substrate transport vehicle according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a substrate transfer operation of the substrate transfer device according to the first embodiment of the present invention.
  • FIG. 6 is a view for explaining a substrate transfer operation of the substrate transfer apparatus according to the first embodiment of the present invention.
  • FIG. 7A and 7B are diagrams showing another example of the interface device according to the present invention.
  • FIG. 8A is a diagram for explaining the overall layout of the substrate transfer system according to the first embodiment of the present invention.
  • FIG. 8B is a diagram for explaining the overall layout of the substrate transfer system according to the first embodiment of the present invention.
  • 9A to 9E are diagrams showing various layout patterns of the tunnel and the processing device according to the first embodiment of the present invention.
  • FIG. 10 is a top view showing an internal configuration of a transfer device having no function of stocking a substrate.
  • -4-Fig. 11A is a top view showing the internal configuration of the transfer device having the function of stocking substrates.
  • FIG. 11B is a side sectional view showing an internal configuration of the transfer device having a function of stocking a substrate.
  • FIG. 11C and FIG. 11D are diagrams showing another example of a transfer device having a function of stocking a substrate.
  • FIG. 12A is a top view showing the internal configuration of the transfer device provided with the reading device. '
  • FIG. 12B is a side sectional view showing the internal configuration of the transfer device provided with the reading device.
  • FIG. 13 is a diagram for explaining the configuration and operation of the interface device according to the second embodiment of the present invention.
  • FIG. 14 is a diagram for explaining the configuration and operation of the interface device according to the second embodiment of the present invention.
  • FIG. 15 is a diagram for explaining the configuration and operation of the interface device according to the second embodiment of the present invention.
  • FIG. 16 is a diagram for explaining the configuration and operation of the interface device according to the second embodiment of the present invention.
  • FIG. 17 is a diagram for explaining the configuration and operation of the interface device according to the second embodiment of the present invention.
  • FIG. 18 is a diagram for explaining the configuration and operation of the interface device according to the second embodiment of the present invention.
  • FIG. 19 is a diagram showing a modified example of the interface device according to the second embodiment of the present invention.
  • FIG. 20A and FIG. 20B are schematic diagrams showing the internal configuration of the tunnel according to the third embodiment of the present invention.
  • FIG. 21 shows a tunnel and an interface according to the fourth embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the internal configuration of the device.
  • FIGS. 22A to 22E are views for explaining a rail switching operation in the tunnel according to the fifth embodiment of the present invention.
  • FIGS. 23A and 23B are diagrams illustrating a rail slide mechanism in a tunnel according to a fifth embodiment of the present invention.
  • FIGS. 24A to 24D are views showing layouts in a tunnel according to another embodiment of the present invention.
  • FIG. 25A to FIG. 25C are views showing examples of the distal end shape of an arm according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a layout of a part of the substrate transfer system 100 according to the first embodiment of the present invention.
  • 101 is a tunnel
  • 102 is a processing device for processing a substrate
  • 103 is an interface for transferring a substrate between the tunnel 101 and the processing device 1 2.
  • Device is a tunnel
  • the tunnel 101 is laid out so as to connect the plurality of processing devices 102. Also, the tunnel 101 and the processing device 102 are not directly connected, and the interface device 103 is interposed. That is, the tunnel 101 is connected to the interface device 103 on the lower surface, and the interface device 103 is connected to the processing device 102 on the side surface.
  • -6-Tunnel 101 is unitized for each width approximately equal to the width of interface device 103, and each unit is removed so that maintenance is possible. Further, a combination of the tunnel 101 and the interface device 103 can be used as one unit.
  • one interface device 103 is provided for each of the plurality of processing devices 102.
  • a transport mechanism for transporting the substrate (wafer) is provided inside the tunnel 101, and the substrate transported in the tunnel is transferred to the interface device 103 and then further transferred to the interface device 103. It is transported from the interface device 103 to the processing device 102.
  • FIG. 1B is a diagram showing the layout of the present substrate transfer system 100 from another angle.
  • the upper diagram in FIG. 1A is a diagram of the present substrate transport system 100 as viewed from above, and the lower diagram of FIG. IB is a schematic cross-sectional diagram as viewed from the longitudinal direction of the tunnel.
  • a series of processing equipment 102 required to complete a wafer such as an etcher, asher, wet station, sputter, CMP, stepper, etc.
  • a tunnel 101 as shown in the upper part of FIG. 1B.
  • the height of the substrate delivery unit 102a may be different in each processing apparatus 102. Since the height of the tunnel 101 is basically constant, the length of the communication portion 104 between the tunnel 101 and the interface device 103 is changed according to the processing device 102, and the processing is performed.
  • the interface device 103 is installed at a height corresponding to the device 102.
  • the interface device 103 is installed low for the processing device 1 ⁇ 2 with a relatively low substrate transfer section 102a,
  • the interface apparatus 103 is installed at a high level as shown in the lower right diagram of FIG. 1B.
  • the interface device is configured to be compatible with a plurality of types of processing devices. Note that, here, the description will focus on the transfer of the substrate, but the transfer mechanism of the system 100 will be described. -7-Not only normal wafers but also other types of wafers such as reticles, monitor wafers, and dummy wafers can be mixed and transported.
  • a controller that comprehensively controls the transport of the substrate and the reticle in the tunnel.
  • this controller can be used to change the reticle to a predetermined processing device, such as a stepper, from the reticle storage unit.
  • the reticle is mounted on the transport vehicle and transported, and the transport of the substrate transport vehicle and the interface device are comprehensively controlled so that the reticle is loaded into the specified processing equipment that requires the reticle.
  • FIG. 2A is a schematic diagram showing the inside of the tunnel 101 and the interface device 103.
  • FIG. 2B is an external view of the tunnel 101 and the interface device 103 when viewed in the direction of the arrow from the A side in FIG. 1A.
  • two rails 201a and 201b are provided on the inner side wall of the tunnel 101 in parallel in the vertical direction.
  • Each of these two rails 201a and 201b can support a plurality of substrate transport vehicles 202, and the substrate transport vehicles 202 are driven by motors to drive the rails 201 Drive along a or level 201b.
  • the tunnel 101 has therein a first transport path for transporting the substrate and a second transport path for transporting the substrate above the first transport path.
  • the substrate transport vehicle 202 includes a C-shaped tray 202 a on which the substrate S can be placed, and a force 200 traveling along the rail 201 while supporting the tray 202 a. 2b.
  • C in FIG. 2A is an enlarged view near the root of the rail 201.
  • a feed element 203 is partially provided on the inner surface of the tunnel 101.
  • the power supply element 203 is disposed at a position where the substrate transport vehicle 202 stops to load or unload the substrate into or from the processing apparatus 102, and the substrate transport vehicle 202 supplies power during the stop.
  • Substrate transport by contacting element 203 -8-Power is supplied to the battery (not shown) in the car 202. Then, the motor is driven by using the electric power stored in the battery to travel on the rail.
  • a cleaning unit 301 equipped with an air cleaning filter (ULPA (Ultra Low Penetration Air) filter) is provided in the tunnel 101.
  • ULPA Ultra Low Penetration Air
  • a pipe 302 is connected to the cleaning unit 301, and the air flowing from the pipe 302 is purified through the air cleaning filter of the cleaning unit 301, and is indicated by an arrow. As shown, the air is sent from the exhaust duct 303 to the air exhaust unit 304 through the inside of the tunnel 101.
  • the pipe 302 is connected to each unit of the tunnel 101 as shown in FIG. 2B. That is, the substrate transport system 100 includes a large-sized air supply unit (not shown), and a pipe 302 is laid from the air supply unit along a tunnel 101, and along the tunnel. It branches and is connected to the clean unit 301 provided in each unit of the tunnel 101.
  • the cleaning unit 301 is configured to be detachable for maintenance.
  • the cleaning unit 301 has a ULPA filter, but the present invention is not limited to this, and the HEPA (High Efficiency Part iculate Air)
  • a clean filter such as a filter may be provided.
  • An opening 101 a is provided on the bottom surface of the tunnel 101 to carry out the substrate to the interface device 103 and to carry in the substrate from the interface device 103. Further, a shirt 204 for opening and closing the opening 101a is provided.
  • the communication part 104 has a certain hermetic seal to prevent dust and dirt from adhering to the board when transferring the board between the tunnel 101 and the interface device 103.
  • -9-A shielding wall 700 is provided for the purpose of ensuring the property.
  • the shielding wall 70 1 may have a function of damping the vibration so that the transmission of the vibration does not occur between the tunnel 101 and the interface device 103.
  • the shielding wall 700 is a member that freely expands and contracts, for example, a bellows member.
  • the shielding wall 700 is not limited to a configuration that allows communication between the tunnel 101 and the interface device 103. For example, as shown in FIGS.
  • the interface device 103 is disposed below the tunnel 101 at a height corresponding to the substrate receiving port of the processing device 102.
  • the interface device 103 includes a chamber 501 capable of forming a closed space, a slide unit 401 for transporting a substrate in the channel 501, and a slide unit 400 from the substrate transport vehicle 202. And a substrate elevating unit 600 for transferring the substrate to 1.
  • the substrate lifting unit 600 has a function of transferring the substrate to the tunnel 101 in the vertical direction.
  • the chamber 501 has an opening 501a and an opening 501b on the tunnel 101 side and the processing side, respectively, and gate valves 502 and 503 as opening and closing doors, respectively. It can be opened and closed freely.
  • the slide unit 401 includes a slide arm 401a, a slide base 401b, and a slider drive 401c, and the slider drive 401c transmits power to the slide base 401b.
  • the slide arm 401 a attached to the slide base 401 moves back and forth in the direction of the processing device 102.
  • the substrate placed on the slide arm 401a is slid to the left in FIG. 2A and transported into the processing apparatus 102.
  • -10-FIG. 3C is a perspective view showing the inside of the tunnel 101. As shown in FIG. 3C, the cleaning unit 301 can be removed for replacement or maintenance.
  • windows 101a and 101b in which transparent plates are fitted are provided on the ceiling and side surfaces of the tunnel 101, so that the inside of the tunnel 101 can be visually recognized. As a result, it is possible to instantly discover the state of the substrate in the tunnel and troubles that have occurred in the tunnel.
  • 4A and 4B are schematic configuration diagrams showing the internal structure of the substrate transport vehicle 202.
  • FIG. 4A shows an internal configuration when the substrate transport vehicle 202 is viewed from above.
  • FIG. 4B shows an internal configuration when the substrate transport vehicle 202 is viewed from below in FIG. 4A.
  • the tray 202a is C-shaped, and has a gap G at a part of the outer periphery.
  • three chucking ports 211 for holding the substrate by suction are provided on the upper surface of the tray 202a, and all these chucking ports 211 are force-splitting. It is connected to the pump unit 2 1 2 in 2 0 2 b.
  • the substrate is sucked to the tray 202a by driving the pump unit 212 with the substrate placed on the tray 202a and drawing air from the chucking port 211.
  • the tray 202a is provided with a groove 317 for mounting the substrate, and the substrate is fitted into the groove 317, and is sucked by the chucking port 211. As a result, the substrate is fixed without shifting or falling during transport.
  • the power unit 202 b controls the pump unit 212 for driving the power unit 202 b, the pump unit 212 and the drive unit 212 in addition to the pump unit 212.
  • a control unit 2 14 controls the pump unit 212 for driving the power unit 202 b, the pump unit 212 and the drive unit 212 in addition to the pump unit 212.
  • the driving unit 2 13 includes a motor 2 13 a, a gear 2 13 b, a 2 13 c, and a driving roller 2 13 d inside thereof, and a rotating force of the motor 2 13 a is provided. And transmitted to the drive roller 2 13 d via the gears 2 13 b and 2 13 c, -11-
  • the cart 202 b has a horizontal rail between the guide roller 2 15 for holding the rail 201 in the vertical direction and the drive roller 2 13. And a guide roller 216 for holding the nip. With these guide rollers, the cart 202b can run stably on the rail 201.
  • FIGS. 5 (a) and 5 (e) show the position of the substrate carrier 202 in the tunnel 101, and show the ceiling of the tunnel 101 from above the tunnel.
  • FIGS. 5B and 6B and 6F show partial appearances when the interface device 103 is viewed from the tunnel 101 side.
  • c, d, f, g, and a, c, d, e, and g in FIG. 6 show the inside of the tunnel 101 and the interface device 103, as in FIG. 2A.
  • the substrate transport vehicle 202 on which the substrate S is mounted travels along the rail 201 and stops at the upper part of the interface device 103.
  • the shirt 204 at the bottom of the tunnel 101 and the gate valve 502 at the top of the interface are opened.
  • the arm connects the support shaft provided on the upper surface of the interface device 103 with the center axis of the disk-shaped gate valve 502. Then, by performing an opening operation of rotating the arm about the support shaft, the gate valve 502 moves from a position where the opening portion 501a is closed to a position where it is opened.
  • the board elevating unit 601 When the gate valve 502 and the shirt 204 open, the board elevating unit 601 operates as shown in d, and the push-up port 601 a rises and the tray 1 Push up the substrate S on 0 2 a. -12-When the lifting of the substrate S is completed, the substrate carrier 202 moves in the direction without the gap G (downward in the figure) as shown in e. That is, the substrate transport vehicle 202 is moved so that the push-up rod 601a passes through the gap G.
  • the substrate elevating unit 601 When the substrate carrier 202 retreats completely from the substrate delivery position, the substrate elevating unit 601 operates as shown in ⁇ , and the ejection port 601 a descends while the substrate S is mounted. I do.
  • the system temporarily stops near the top plate of the interface device 103, rotates the push-up rod 61a, and aligns the orientation flat of the substrate S.
  • the orientation flat alignment means that a broken portion provided on a part of the substrate S is directed in a predetermined direction.
  • Some types of processing apparatus 102 require that the substrate be carried in a specific direction. Therefore, when a substrate is carried into such a processing apparatus 102, the substrate lifting / lowering unit 601 functions as a direction adjusting means for adjusting the direction of the substrate. Specifically, a broken portion of the substrate S is detected by an optical sensor (not shown) provided on an upper surface of the top plate of the interface device 103.
  • the push-up rod 61a is further lowered as shown in FIG. 6A, and the substrate is placed on the slide arm 401a. Then, in this state, as shown in b and c, the shirt 204 at the bottom of the tunnel 101 and the gate valve 502 at the top of the interface device 103 move to the closed position. Also, after confirming that the gate valve 502 of the interface device 103 is completely closed according to the type of the processing device 102, the pressure inside the chamber 501 of the interface device 103 is reduced. I do. That is, when the processing apparatus 102 is of a type that performs processing under low pressure, the pressure in the chamber 501 is reduced accordingly.
  • the processing device 102 is a device that performs processing under a high vacuum
  • an interface is provided as shown in FIG. 7A and FIG.
  • a low-vacuum pump 801 and a high-vacuum pump 802 are further connected to the vacuum apparatus 103.
  • processing equipment If the device 102 requires a low vacuum, only the low vacuum pump 801 needs to be connected to the interface device 103.
  • the gate valve 503 provided on the processing side of the interface device is opened as shown in FIG. Then, the slider drive 401c is operated to slide the slide arm 401a attached to the slide base 401b in the direction of the processing device 102, as shown in e.
  • the processing apparatus 102 receives the substrate S mounted on the fork-shaped tip of the slide arm 401a, and enters the state of f and g. After that, the slide arm 401 a is retracted into the chamber 501 and returned to the position d. Then, when the processing of the substrate is completed in the processing apparatus 102, the slide arm 410a is again slid, and waits in the state of f and g. Next, the substrate S is placed on the slide arm 401 a on the processing apparatus 102 side, and when the state of e is reached, d in FIG. 6—b & c in FIG. 6 ⁇ a in FIG. The state changes in the order of f ⁇ d in Fig. 5 ⁇ c in Fig. 5.
  • the slide arm 401 a retreats, takes the substrate S into the chamber 501 (d in FIG. 6), closes the gate valve 503, and reduces the pressure in the chamber 501. Return to atmospheric pressure (c in Figure 6).
  • a substrate unloading request is issued to the substrate carrier 202, and the substrate carrier 202 is made to stand by in front of the substrate receiving position above the interface device 103, and the shirt 204 and the gate valve 5 are set.
  • 0 2 opens (a in Fig. 6).
  • the push-up rod 600a rises and pushes up the substrate S on the slide arm 401a, and further rises and stops (f in FIG. 5).
  • the substrate transport vehicle 202 that has been waiting at the standby position moves so that the push-up rod 601a passes through the gap G and waits at the receiving position (d in FIG. 5).
  • the push-up rod 60a descends and transfers the substrate S to the tray 202a of the substrate carrier 202.
  • the substrate transporter 202 transports the substrate S to the next processing device, and at the same time, the shirt 204 -14-Close the valve 502.
  • FIG. 8A is a diagram showing the relationship between the main transport path and the sub transport path.
  • the substrate transfer system 100 includes a main transfer path 901 and a sub-transfer path 902, and a tunnel 101 of the main transfer path 901 and a tunnel 1001 of the sub-transfer path 902. And are connected by a transfer device 903.
  • the transfer device 903 is a device that transfers a substrate transferred in the tunnel 101 of the main transfer path 901 to the tunnel 101 of the sub transfer path 902. Since the tunnel 101 included in the sub-transport path 902 is straight and has no end, the substrate transferred from the main transport path 901 to the sub-transport path 902 is The processing is performed by the processing device 102 while reciprocating in the tunnel 101 of the sub-transport path 902. At this time, the wafer is transported from the tunnel 101 to the processing device 102 by the interface device 103.
  • the substrate that has been processed in the sub-transport path 902 is transferred to the main transport path 901 again and sent to the next step.
  • FIG. 8B is a diagram showing a layout example of the overall substrate transfer system.
  • a container warehouse 905 is connected to an end of the main transport path 901.
  • the container warehouse 905 stocks the containers containing the substrates sent from the substrate manufacturing plant, takes out the substrates one by one from the containers, and carries them into the main transfer path 901.
  • the sub-transport path 902 is a linear pattern similar to that described with reference to FIG. 8A, but the sub-transport path 905 has an endless tunnel 101, and By transporting the substrate in one direction within 905, the same process can be repeated many times.
  • the main transport path 9 0 1 A processing apparatus group 906 to which the substrate is directly transferred without passing through the sub-transport path is connected to the sub-transport path. Substrates that have been transported through the main transport path 901 and subjected to a series of processing are collected in a container storage device 907, stored in containers every predetermined number, and transported to another factory or a post-process. .
  • FIG. 9A to 9E are diagrams showing various layout patterns of the tunnel 101 and the processing device 102.
  • FIG. 9A to 9E are diagrams showing various layout patterns of the tunnel 101 and the processing device 102.
  • FIG. 9A shows a layout in which a processing apparatus 102 is disposed on both sides of a transport path including one straight tunnel 101.
  • an interface device 103 (not shown here) that transports the substrate from the tunnel 101 to the processing device 102 requires the ability to transport the substrate to both sides of the tunnel. It is necessary to have. With this arrangement on both sides, the installation area of the plurality of processing equipment is reduced as a whole, and the space in the substrate processing plant can be effectively used, and the cost of the factory can be reduced.
  • FIG. 9B shows a layout in which processing devices 102 are arranged on both sides of a transport path including a loop-shaped tunnel 101.
  • the transport path has a transfer device 903 in part.
  • the transfer device 903 can convey the substrate returned after the series of processing to the conveyance path again or stock it in the transfer device 903.
  • FIG. 9C shows a layout in which a processing apparatus 102 is arranged on both sides of a transport path including two straight tunnels 101. Also here, the transfer path has a transfer device 903 partially.
  • the transfer device 903 can transfer the substrate that has returned after completing a series of processing in one tunnel 10. 1 to the other tunnel 101. Further, maintenance of each processing apparatus 102 can be easily performed from the side of the passage sandwiched between the tunnels 101.
  • FIG. 9D shows a layout in which a processing device 102 is arranged on one side of a transport path including one straight tunnel 101.
  • Figure 9E shows a straight tunnel -16-
  • FIG. 10 is a top view showing the internal configuration of the transfer device 903 having no function of stocking substrates.
  • the transfer device 903 is a device for transferring the substrate S between the main transport path 901 and the sub transport path 902a or 902b.
  • a continuous rail 201a from within the tunnel 101 of the main transport path 901 and continuous rails 201b, 201 from within the tunnel 101 of the secondary transport paths 902a, 902b. c is provided.
  • the transfer device 903 and the substrate transport vehicle 202 traveling in the tunnel 101 of each transport path 901 can enter and exit.
  • push-up tables 1001a, 1001b, and 1001c the same number as the number of rails, and a transfer robot 1002 are provided.
  • the substrate carrier 202 which has transported each of the rails 201a, 201b, 201c, stops above the push-up tables 1001a, 1001b, 1001c, the push-up tables 1001a, 1001b, 10 01c pushes up the substrate S transported by the substrate transport vehicle 202 from below.
  • FIG. 11A is a top view showing the internal configuration of a transfer device 903 having a function of stocking a substrate.
  • FIG. 11B is a side sectional view thereof.
  • the transfer device 903 is used to transfer a substrate between the main transport path 901, and the sub-transport path 902a or the sub-transport path 902b, and to stock the substrates.
  • Device By storing the substrates S one by one in this way, it is possible to adjust the number of substrates transported in the sub-transport path and the main transport path, and function as a buffer when the processing load increases.
  • the transfer device 903 shown in Fig. 11A and Fig. 11B has a transfer device with two arms 1 1 0 2a and 1 1 0 2b in addition to the stocker 1 1 1
  • a transfer robot 1102 is provided as a means.
  • the other configuration is the same as that of the transfer device 903 shown in FIG.
  • the transfer device having the stocker 111 the number of substrates S to be transferred is large, and thus the transfer robot 1102 has two arms 110102a, although it is desirable to have the unit 110 b, it is needless to say that a transfer robot 1002 of the type shown in FIG. 10 having only one arm may be used.
  • the respective arms 1102a and 1102b of this transfer port pot 1102 also operate in the same manner as the arms of the transfer pot 1002 described in FIG. Here, the description is omitted.
  • the shape of the stocker 111 is an octagonal prism, and the substrate can be inserted into eight shelves 110 d from eight surfaces by rotating as shown by arrows.
  • FIG. 11A shows a state in which substrates are stocked in four of the eight shelves.
  • the door 111a is opened as shown in the figure.
  • the cleaning unit 101b is provided, and clean air is blown downward as indicated by an arrow.
  • the cleaning unit may be further provided on the upper part of the transfer device 903.
  • each of the eight shelves 1 101 d has a shape in which a plurality of substrate storage rooms 110 e are vertically stacked.
  • a stocker rotating device 111c is provided below the eight shelves, and rotates the entire stocker 1101 clockwise or counterclockwise.
  • the transfer robot 1102 can also be moved in the vertical direction in order to transport the substrate to each of the substrate storage chambers 111e that are vertically continuous.
  • a table that cannot be moved up and down can be used instead of the push-up table 1001.
  • a configuration in which the transfer port pot 1102 directly receives the substrate S from the substrate transport vehicle 202 is also possible.
  • the hand provided at the tip of the arms 110102a and 110102b of the transfer robot 110102 must be attached to the substrate transport vehicle 202. It is necessary to make the shape according to the tray shape of 02.
  • FIG. 11B it is desirable that the main transport path 901 and the sub transport path 902 are vertically displaced so that their rails do not conflict with each other.
  • the shape of the Stot force is not limited to an octagonal prism, but may be a cylinder or another polygonal prism.
  • the transfer robot 1102 has a mechanism for moving up, down, left, and right, a flat shelf that does not rotate may be used as the stopping force.
  • FIG. 11C is a top view for explaining another example of the stocker 1101
  • FIG. 11D is a partial cross-sectional view taken along XX of FIG. 11C. In the example shown in FIGS.
  • the plurality of substrate storage chambers 110 1 e are formed on a donut-shaped table 111 f, and the table 110 f is hollow at the center. Supported by the motor. As a result, the substrate storage chambers 111 e can be integrally rotated for each stage.
  • the entire stocker 1101 has a multilayer structure in which these tables 1101f and hollow motors are stacked vertically. -19- More specifically, the hollow motor includes a donut-shaped rotating part 111 g and a donut-shaped fixing part 111 h, and the rotating part 111 g has a fixing part 110 101 h. It is rotatable with respect to.
  • the lower surface of the table 111f is fixed to the upper surface of the rotating portion 110g, and the lower surface of the fixing portion 111h is fixed to the upper surface of the fixing member 111i.
  • the fixing members 1101i in each stage are connected to each other by a plurality of columnar supporting members 1101j, and have a hollow, hollow shape as a whole.
  • a cleaning unit (not shown) is provided above the hollow portion located at the center of the storage force 1101, and blows clean air downward as indicated by an arrow.
  • the motors are provided at each stage, the load on each motor can be reduced, and the motor can be rotated and stopped at high speed and with high accuracy. Then, the storage / replacement operation of the reticle or the substrate or the like with respect to the stocker 111 can be efficiently performed. In addition, a reticle or a substrate can be stored separately for each stage, which facilitates the management. Furthermore, since the movement required for the mouth pot is small, the mouth pot can be reduced in size, and the size of the entire system can be reduced.
  • the stocker described above can be used to store a reticle instead of a substrate. Further, the substrate and the reticle may be stored with the same stopping power. Further, this storage force can be applied to a system that does not assume a single-sheet transfer. In other words, it is possible to transform a cassette containing substrates (for example, FOUP: Front Opening Unifed Pod) as a temporary storage. If the stocker shown in Fig. 11C is applied as a stocking force for accommodating cassettes, the movement required for the mouth pot can be reduced as compared with the conventional case, so that the mouth pot can be downsized. The size of the entire system can be reduced.
  • FOUP Front Opening Unifed Pod
  • FIGS. 12A and 12B show the transfer with a reader device for reading board information.
  • FIG. 20 is a diagram for explaining the device 903.
  • the transfer device 903 shown in FIGS. 12A and 12B is a reading device for reading information attached to a reticle or a substrate, etc. It is provided above 01a, 1001b, and 1001c.
  • the other configuration is the same as that of the transfer device 903 shown in FIGS. 11A and 11B.
  • the reader device 201 reads information attached to the reticle or the substrate, etc., and transfers the stored information about the reticle or the substrate, etc. stored in the stocker 111 to an information management device (not shown). Send. As a result, it is possible to manage the number of substrates / reticles in the storage force 111. Then, based on the information of the information management device, a reticle or a substrate corresponding to the request of each processing device 102 is taken out from the stocker 111 and transported to a target processing device. In this case, the reader 1 201 was placed above the push-up tables 1001a, 1001b, and 1001c, but the substrate storage room 1 1 0 Each of them may be arranged within 1 e. In addition, if information is managed using wireless communication IC memory (wireless IC tags), information on multiple reticles or substrates can be communicated at once, and the information in the stocker 111 Real-time management of information such as reticles and substrates.
  • the number of stop forces included in the transfer device has been described as one, but a plurality may be provided.
  • the substrate and the like are conveyed one by one in the tunnel, so that the surrounding environment of the substrate and the like can be cleaned with high accuracy, and as a result, the substrate processing accuracy is improved.
  • the interface device Since the interface device has been generalized so that it can be adapted to various processing devices, there is no need to prepare various types of interface devices for each processing device. The equipment cost can be reduced.
  • the interface device below the tunnel it is possible to cope with various processing devices with different heights of the substrate entrance simply by changing the installation position of the interface device.
  • the system can be generalized.
  • the interface device installed at any height can be changed simply by changing the stroke of the push-up stroke.
  • the substrate can also be delivered to the server, and generalization can be achieved.
  • the orientation flat alignment function into the push-up mechanism, the size of the device can be further reduced.
  • the interface device can be equipped with a vacuum compatible:, there is no need to provide a pressure switching device for switching the air pressure, and the equipment installation area can be used effectively, and the equipment cost can be greatly reduced. Become.
  • each substrate transport vehicle can travel independently in both directions, and can pass, etc., so that substrates can be transported without stagnation. It becomes possible.
  • the interface device according to the present embodiment is different from the first embodiment in that the interface device has a rod arm inside the chamber 132.
  • Other configurations are the same as those in the first embodiment, and thus the same components are denoted by the same reference numerals and description thereof will be omitted.
  • FIGS. 13 to 18 are views showing the inside of the channel 13 02 of the interface device 103 according to the present embodiment, and a in FIGS. 13 to 18 denotes the chamber 13.
  • FIG. 2B is a plan view of the inside of the chamber 132
  • FIG. 13C is a left side view of the inside of the chamber 1302.
  • the wall of the chamber 1302 is shown in cross section for easy understanding.
  • the robot programs 1303 and 1304 have hands 1303a and 1304a on which substrates are placed, respectively.
  • the hands 1303 a and 1304 a have a fork-like tip similar to the tray 202 a of the substrate carrier, and the opening gap is wider than the outer diameter of the push-up rod 601 a.
  • the nodes 1303 a and 1304 a are rotatably connected to one ends of the first arm portions 1303 b and 1304 b, respectively, and
  • FIG. 13C shows a state where both the robot arm 1303 and the robot arm 1304 are waiting at the basic position. In this basic position, the hands 1303a and 1304a are located at the same position in the horizontal direction, and therefore only the upper hand 1303a is shown in FIG. 13A.
  • FIG. 14 is a diagram showing a state where the interface device 103 according to the present embodiment has received the substrate S from the tunnel 101.
  • the processing from receiving the substrate from the substrate transport vehicle 202 traveling in the tunnel 101 to placing it on the hand 1303a is almost the same as in the first embodiment. That is, the substrate transport vehicle 202 on which the substrate S is mounted travels along the rail 201 and stops at the upper portion of the interface device 103.
  • the shirt 204 at the lower part of the tunnel 101 and the gate valve 502 at the upper part of the interface are opened, the board elevating unit 6001 is operated, the push-up port 601a is raised, and the board - twenty three -
  • the substrate transport vehicle 202 When the lifting of the substrate S is completed, the substrate transport vehicle 202 is moved so that the lifting rod 600a passes through the gap G of the tray 202a. Substrate transport vehicle
  • the substrate elevating unit 601 When 202 is completely retracted from the substrate transfer position, the substrate elevating unit 601 operates, and the push-up rod 601a descends with the substrate S placed thereon. At the same time, the joints of the mouth pot arm 133 are driven so that the push-up rod 61 a enters into the fork-shaped opening provided at the tip of the hand 133 a. Move the hand 1303a. On the other hand, the push-up port 6 101 a on which the substrate S is placed temporarily stops before the substrate S reaches the hand 133 a, and rotates the substrate S at that position to rotate the orientation flat (or i entat ion frame). When the orientation flat alignment is completed, the push-up rod 61 a is further lowered, and as shown in FIG.
  • the internal pressure of the face device 103 is made to match the pressure of the processing device 102.
  • the gate valve 503 on the processing apparatus 102 side is opened, and as shown in FIG. 15, the robot arm 1303 protrudes toward the processing apparatus 102 side.
  • the processing device 102 receives the substrate S placed on the hand 1303a of the robot arm 1303, the processor 130 is retracted to the basic position shown in FIG. .
  • the gate valve 503 is closed, and the pressure in the chamber 501 is returned to the atmospheric pressure.
  • the substrate S is received again from the substrate transport vehicle 202 in exactly the same procedure as described above, and the state is shifted to the state shown in FIG.
  • the lower robot arm 1304 is extended to the processing device 102 side, and the state shown in FIG. 16 is shifted to the state shown in FIG. Receive 1 In FIG. 16, the unprocessed substrate placed on the upper robot arm 13 - twenty four ⁇
  • the upper arm 1303 is instead extended toward the processing apparatus 102, and the state shifts to the state shown in FIG.
  • the processing apparatus 102 receives the unprocessed substrate S2 placed on the hand 1303a of the robot arm 1303, the mouth pot arm 1303 as shown in FIG. Is retracted to the basic position, the gate valve 503 is closed, and the pressure in the chamber 501 is returned to the atmospheric pressure.
  • a substrate removal request is issued to the substrate transport vehicle 202, and the substrate transport vehicle 202 is made to stand by in front of the substrate receiving position above the interface device 103, and the shirt 204 and the gate valve 502 Opens.
  • the push-up rod 600a rises to push up the substrate S1 on the hand 134a, and further rises and stops. Then, the substrate transporter 202 is moved so that the push-up rod 601a passes through the gap G of the substrate transporter 202 that has been waiting at the standby position. In this state, the push-up rod 61 a descends, and the substrate S 1 is placed on the tray 202 a of the substrate carrier 202. After the push-up rod 601a has been lowered, the substrate transporter 202 transports the substrate S1 to the next processing apparatus, and at the same time, closes the shutter 204 and the gate valve 502.
  • robot arm 1304 is returned to the basic position shown in Fig. 13 again, and then a series of state changes such as Fig. 14 ⁇ Fig. 16 ⁇ Fig. 17 ⁇ Fig. 18 ⁇ Fig. Repeatedly, robot arm 13 0 3, 1 3 4 4, push-up rod 6 0 1 a, substrate carrier 2 0 2, shirt 2 0 4, gate valve 5 0 2, 5 0 3, Activate the pump 801 etc.
  • FIG. 19 shows a modification of the present embodiment.
  • Fig. 19 is similar to Fig. 13 -25-Fig. 19 is a diagram showing the inside of the chamber 1902 of the face device 103.
  • Fig. 19a shows a plan view of the inside of the chamber 1902, and b shows the front of the interior of the chamber 1902.
  • Fig. 13c is a left side view of the inside of the chamber 1902. Note that the wall portion of the chamber 1902 is shown in cross section in these figures for easy understanding.
  • a slide unit 1903 including two slide arms 1903a and 1903b is provided inside the chamber 1902.
  • the slide unit 1903 includes a slide base 1903c and a slider drive 1903d, and was attached to the slide base 1903c by power from the slider drive 1903d.
  • the slide arms 1903 a and 1903 b reciprocate horizontally in the direction of the arrow.
  • Each of the slide arms 1903a and 1903b has a fork-like tip like the above-mentioned mouth pot arm, and the gap of the opening is the same as that of the push-up rod 61a. It is wider than the outside diameter.
  • the slide arms 1903 a and 1903 b are slidably connected to both sides of the slide table 1903 c, and each has a height as shown in Fig. 19c. It is supported by differently shaped arms. For this reason, the slide arm 1903 a and the slide arm 1903 b can freely slide in the horizontal direction without hitting each other.
  • FIG. 19 shows a state in which both the slide arm 1903a and the slide arm 193b are waiting at the basic position. At this basic position, the leading ends of the slide arms 1903 a and 1903 b are retracted in the opposite direction to the processing apparatus 102, as in the first embodiment, and The raised push rod 6 01 a can freely move up and down.
  • the processed substrate is carried out by one of the slide arms. , Untreated with the other slide arm
  • the substrate can be loaded into the processing apparatus 102, and the substrate processing speed can be improved as described above.
  • a multi-stage slide mechanism may be incorporated in the slide arms 1903a and 1903b shown in FIG. In this case, since the slide arm is not only slid, but also expandable and contractible, it is possible to reduce the size of the interface device 103 in the width direction of FIG.
  • FIGS. 2OA and 20B are schematic configuration diagrams extracting and showing only the internal configuration of the tunnel 101, and correspond to the tunnel portion of FIG. 2A.
  • FIG. 20A shows a case where the reading device 2001 is provided on the ceiling portion of the tunnel 101, and FIG.
  • the reading device 2002 is provided on the side wall of the tunnel 101.
  • the readers 2001 and 2002 are readers for reading information recorded on the substrate S to be conveyed. For example, when a bar code is printed on the substrate S, a bar code is used. Any reader is acceptable. If a wireless communication IC memory (wireless IC tag) is embedded in, attached to, or has an ID tag attached to the substrate S, the wireless communication IC memory (wireless IC tag) is attached. ) Or a receiving device for receiving data transmitted from an ID tag. Further, the reading devices 2001 and 2002 may be character recognition sensors that read characters recorded on the surface of the substrate S.
  • the IC memory for wireless communication is a storage device provided with an antenna for transmitting and receiving data in an ultra-small IC chip. Frequency of electricity -27-Data is transmitted and received by operating by waves.
  • a reading device for reading data from an IC tag or an ID tag is provided in a tunnel, but this reading device writes data to an IC tag or the like attached to the substrate. It may have a function to insert. For example, on which substrate the processing is completed is recorded on the substrate, and the substrate is transported under feedback control or feedforward control based on the processing information. And further facilitates the control of substrate transfer. Further, a writing device for writing data to an IC tag or the like attached to the substrate may be provided instead of the reading device. Further, here, the device for reading and writing data from and to the substrate in a non-contact manner has been described. However, it goes without saying that a contact-type reading or writing device may be used instead. 4th embodiment>
  • the tunnel 101 according to the present embodiment differs from the first embodiment in that it performs self-circulating air cleaning.
  • Other configurations and operations are the same as those in the first embodiment, and therefore, the same components are denoted by the same reference characters and description thereof will not be repeated.
  • FIG. 21 is a schematic diagram showing the inside of the tunnel 101 and the interface device 103.
  • the air discharge unit 304 has a built-in pump function. Then, the air discharged from the air discharge unit 304 is sent again to the clean unit 301 through the pipe 211.
  • self-circulating air cleaning can be realized, the entire facility can be simplified as compared with the case where pipes are laid along the tunnel 101, and the independence of each unit of the tunnel 101 is increased. As a result, maintenance becomes easier.
  • FIG. -28-It will be explained using Fig. 23B.
  • the system 100 according to the present embodiment has means for switching the transport path within the tunnel. More specifically, the present embodiment differs from the first embodiment in that a tunnel 101 has one unit, and a tunnel unit having a rail switching mechanism is provided. Other configurations and operations are the same as those of the first embodiment, and thus, the same components are denoted by the same reference characters and description thereof will not be repeated.
  • FIGS. 22A to 22E are diagrams for explaining the rail switching operation.
  • a tunnel switch having a rail switching function is required. Stop the board carrier 2222a in the knit 2221.
  • the rail in the tunnel unit 222 is slid upward.
  • the substrate transporter 222a is run.
  • the substrate transport vehicle 220 2b is stopped in the tunnel unit 2201, and the rail is slid downward as shown in Fig. 22D, and then the substrate transport vehicle 222b as shown in Fig. 22E.
  • the substrate transport vehicle 222b is stopped in the tunnel unit 2201, and the rail is slid downward as shown in Fig. 22D, and then the substrate transport vehicle 222b as shown in Fig. 22E.
  • FIG. 23A and FIG. 23B are views for explaining a rail sliding mechanism in the tunnel unit 222.
  • FIG. 23A is a schematic configuration diagram viewed from the longitudinal direction of the tunnel
  • FIG. 23B is a schematic configuration diagram viewed from the left side in FIG. 23A.
  • the rails 201a and 201b are both fixed to the rail support member 2301.
  • the rail support member 2301 is fixed to the belt 2303 through the groove 230a of the guide member 2302.
  • the belt 2303 can be reciprocated up and down by the motor 2304.
  • the rails 201a and 20lb are fixed to auxiliary support members 230a and 230b on both sides of the support member 2301, respectively.
  • the auxiliary support members 2305a and 2305b are Each of the auxiliary guide members 2306a and 2306b can slide along the grooves.
  • the rail support member 2301 moves up and down together with the belt 2303, and the rail 201a and the rail 201b slide up and down while maintaining the interval.
  • the rail pair is slid using the motor 2304 and the belt 2303, but the present invention is not limited to this.
  • another wire such as a wire winding mechanism or a pressure cylinder may be used.
  • the rail pair may be slid by a mechanism.
  • the number of rails in the tunnel is not limited to this, and may be three or more or one.
  • a substrate transport vehicle 2401 traveling on the upper rail 201a and a substrate transport vehicle 402 traveling on the lower rail 201b may have different configurations. That is, the tray 2401a of the substrate transport vehicle 2401 traveling on the upper rail 201a may be formed in an L shape, and the distance from the tray 2402a of the lower substrate transport vehicle 2402 may be reduced. In this way, the ceiling of the tunnel can be lowered, and the overall configuration of the tunnel can be reduced.
  • rails 201a and 201b may be laid at the bottom of the tunnel.
  • the substrate transport vehicle 2401 traveling on the rail 201a and the substrate transport vehicle 402 traveling on the rail 201b need to have different configurations so that each tray travels with a gap above and below. .
  • bending stress is less likely to be generated on the rails, and the substrate transport vehicle can travel relatively stably.
  • rails 201a and 201b may be laid outside the tunnel, and only the tray of the substrate carrier may be accommodated inside the tunnel. With this configuration, dust or dust that is rolled up by the traveling of the substrate transport vehicle does not adhere to the substrate, and the traveling environment of the substrate can be extremely clean.
  • the rail 201a may be laid on the side wall of the tunnel and the rail 201b may be laid on the bottom of the tunnel.
  • the air purifying unit is installed on the ceiling of the tunnel, but may be installed on any of the tunnel side walls.
  • a robot / slide unit may further include an elevating mechanism capable of moving the substrate in the vertical direction.
  • the substrate can be moved in the vertical direction in accordance with the substrate loading ports of a plurality of types of processing equipment.
  • the processing apparatus waits at the transfer position of the processing apparatus and transfers the substrate, the substrate can be transferred to a mounting table (not shown) of the processing apparatus.
  • the arm provided with a U-shaped fork-shaped hand at the tip is shown as the arm for transferring the substrate to the processing apparatus in the interface device, but the present invention is not limited to this. Absent.
  • FIGS. 25A to 25C are applicable. That is, FIG. 25A shows a C-shaped hand having a circular outer end, and FIG. 25B shows a C-shaped hand having a hole into which a push-up port is inserted. FIG. 25C shows a U-shaped hand that opens laterally toward the processing apparatus.
  • these hand parts may be configured to be detachable so that they can be replaced according to the type of processing device.
  • processing equipment when processing equipment is arranged on both sides of the tunnel, openings are provided on both sides of the interface device, and one transfer means is moved to both processing equipments.
  • -31-It is good also as a movable structure.
  • the space for installing the equipment can be more effectively utilized.
  • the configuration has been described in which power is supplied from the power supply element 203 to the substrate transport vehicle 202 and the substrate is transported on the rail by the motor inside the substrate transport vehicle 202.
  • the present invention is not limited to this.
  • the present invention includes a configuration in which a substrate transport vehicle is lifted and transported by air or magnetism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A wafer transportation system with which a system scale can be downsized. A transfer device (903) is a device for transferring wafers (S) and reticles between a main transportation path (901) and a sub-transportation path (902a or 902b) and storing the wafers (S), reticles, or wafer-receiving cassettes. Storing the wafers (S) singly or storing the wafer-receiving cassettes singly enables the number of the wafers (S), reticles, or wafer-receiving cassettes transported through the sub and main transportation paths to be regulated. The transfer device works as a buffer when a process load becomes high.

Description

- 2 - 上記目的を達成するため、 本発明のシステムは、 基板を処理するための 複数の処理装置間で基板及びレチクルを搬送するトンネルと、 トンネル内 の基板及びレチクルの搬送を制御する制御手段と、 を備えることを特徴と する。  To achieve the above object, a system of the present invention comprises a tunnel for transporting a substrate and a reticle between a plurality of processing apparatuses for processing a substrate, and a control unit for controlling transport of the substrate and the reticle in the tunnel. And characterized in that:
ここで、 トンネル内を搬送されるレチクルをストックするストッカを更 に備え、 制御手段は、 ストツ力からトンネルへのレチクルの搬出及び、 ト ンネルからストッ力へのレチクルの搬入をも制御することを特徴とする。 また、 トンネル内を搬送される基板及びレチクルをストックするストツ力 を更に備え、 制御手段は、 ストツ力からトンネルへの基板及びレチクルの 搬出及び、 トンネルからストツ力への基板及びレチクルの搬入をも制御す ることを特徴とする。 更に、 ストッカは、 レチクルまたは基板に付随した 情報を読みとる情報読取手段を備えることを特徴とする。 また、 ストッカ は、 レチクルまたは基板を載置する複数段のテーブルと、 該テ一ブルのそ れぞれを独立して回転する回転手段と、 を備えることを特徴とする。 また、 本発明に係るストッカは、 基板またはレチクルまたは基板収納力 セットを載置する複数段のテーブルと、 テーブルを各段ごとに回転する回 転手段と、 とを備える。 更に本発明に係る他の基板搬送システムは、 上記 ストツ力と、 テーブルに載置された基板またはレチクルまたは基板収納力 セットを、 取りだして搬送路に移動させ、 かつ、 搬送路を搬送されてきた 基板またはレチクルまたは基板収納カセットを、 テ一ブルに載置する移載 手段と、 を有する。  Here, a stocker for stocking the reticle conveyed in the tunnel is further provided, and the control means controls the unloading of the reticle from the stocking force to the tunnel and the transfer of the reticle from the tunnel to the stocking force. Features. The apparatus further includes a stock force for stocking the substrate and the reticle conveyed in the tunnel. It is characterized by control. Further, the stocker is provided with information reading means for reading information attached to the reticle or the substrate. Further, the stocker is characterized by comprising: a multi-stage table on which a reticle or a substrate is placed; and rotating means for independently rotating each of the tables. Further, a stocker according to the present invention includes: a multi-stage table on which a substrate, a reticle, or a substrate storage force set is placed; and a rotating unit that rotates the table for each stage. Further, in another substrate transport system according to the present invention, the storage force and the substrate or reticle or substrate storage force set placed on the table are taken out and moved to the transport path, and the transport path has been transported. Transfer means for mounting a substrate, a reticle, or a substrate storage cassette on a table.
本発明のその他の特徴及び利点は、 添付図面を参照とした以下の説明に より明らかになるであろう。 なお、 添付図面においては、 同じ若しくは同 様の構成には、 同じ参照番号を付す。 図面の簡単な説明  Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals. BRIEF DESCRIPTION OF THE FIGURES
添付図面は明細書に含まれ、 その一部を構成し、 本発明の実施の形態を - 3 - 示し、 その記述と共に本発明の原理を説明するために用いられる The accompanying drawings are included in and constitute a part of the specification and illustrate embodiments of the invention. -3-used together with the description to explain the principles of the present invention.
図 1 Aは、 本発明の第 1実施形態に係る基板搬送システムの外観を示 す斜視図である。  FIG. 1A is a perspective view showing the appearance of the substrate transfer system according to the first embodiment of the present invention.
図 1 Bは、 本発明の第 1実施形態に係るイン夕フェース装置の配置を 示す図である。  FIG. 1B is a diagram showing an arrangement of the interface device according to the first embodiment of the present invention.
図 2 A及び図 2 Bは、 本発明の第 1実施形態に係るトンネル及びィン 夕フェース装置の内部構成を示す図である。  FIG. 2A and FIG. 2B are diagrams showing the internal configuration of the tunnel and interface device according to the first embodiment of the present invention.
図 3 A及び図 3 Bは、 本発明の第 1実施形態に係るトンネルとィン夕 フェース装置の間の接続部分を示す図である。  FIGS. 3A and 3B are views showing a connection portion between the tunnel and the interface device according to the first embodiment of the present invention.
図 3 Cは、 本発明の第 1実施形態に係るトンネルの内部構成を示す斜 視図である。  FIG. 3C is a perspective view showing the internal configuration of the tunnel according to the first embodiment of the present invention.
図 4 A及び図 4 Bは、 本発明の第 1実施形態に係る基板搬送車の構成 を示す図である。  4A and 4B are diagrams showing a configuration of the substrate transport vehicle according to the first embodiment of the present invention.
図 5は、 本発明の第 1実施形態に係る基板搬送装置の基板の受け渡し 動作について説明する図である。  FIG. 5 is a diagram for explaining a substrate transfer operation of the substrate transfer device according to the first embodiment of the present invention.
囪 6は、 本発明の第 1実施形態に係る基板搬送装置の基板の受け渡し 動作について説明する図である。  FIG. 6 is a view for explaining a substrate transfer operation of the substrate transfer apparatus according to the first embodiment of the present invention.
図 7 A及び図 7 Bは、 本発明に係るインタフェース装置の他の例を示 す図である。  7A and 7B are diagrams showing another example of the interface device according to the present invention.
図 8 Aは、 本発明の第 1実施形態に係る基板搬送システムの全体的な レイアウトについて説明するための図である。  FIG. 8A is a diagram for explaining the overall layout of the substrate transfer system according to the first embodiment of the present invention.
図 8 Bは、 本発明の第 1実施形態に係る基板搬送システムの全体的な レイアウトについて説明するための図である。  FIG. 8B is a diagram for explaining the overall layout of the substrate transfer system according to the first embodiment of the present invention.
図 9 A乃至図 9 Eは、 本発明の第 1実施形態に係る卜ンネル及び処理 装置の様々なレイアウトパターンを示す図である。  9A to 9E are diagrams showing various layout patterns of the tunnel and the processing device according to the first embodiment of the present invention.
図 1 0は、 基板をストックする機能を持たない移載装置の内部構成を 示す上面図である。 - 4 - 図 1 1 Aは、 基板をストックする機能を有する移載装置の内部構成を 示す上面図である。 FIG. 10 is a top view showing an internal configuration of a transfer device having no function of stocking a substrate. -4-Fig. 11A is a top view showing the internal configuration of the transfer device having the function of stocking substrates.
図 1 1 Bは、 基板をストックする機能を有する移載装置の内部構成を 示す側断面図である。  FIG. 11B is a side sectional view showing an internal configuration of the transfer device having a function of stocking a substrate.
図 1 1 C及び図 1 1 Dは、 基板をストックする機能を有する移載装置 の他の例を示す図である。  FIG. 11C and FIG. 11D are diagrams showing another example of a transfer device having a function of stocking a substrate.
図 1 2 Aは、 読取装置を備えた移載装置の内部構成を示す上面図であ る。 '  FIG. 12A is a top view showing the internal configuration of the transfer device provided with the reading device. '
図 1 2 Bは、 読取装置を備えた移載装置の内部構成を示す側断面図で ある。  FIG. 12B is a side sectional view showing the internal configuration of the transfer device provided with the reading device.
図 1 3は、 本発明の第 2実施形態に係るインタフェース装置の構成及 び動作を説明するための図である。  FIG. 13 is a diagram for explaining the configuration and operation of the interface device according to the second embodiment of the present invention.
図 1 4は、 本発明の第 2実施形態に係るインタフェース装置の構成及 び動作を説明するための図である。  FIG. 14 is a diagram for explaining the configuration and operation of the interface device according to the second embodiment of the present invention.
図 1 5は、 本発明の第 2実施形態に係るインタフエ一ス装置の構成及 び動作を説明するための図である。  FIG. 15 is a diagram for explaining the configuration and operation of the interface device according to the second embodiment of the present invention.
図 1 6は、 本発明の第 2実施形態に係るインタフエ一ス装置の構成及 び動作を説明するための図である。  FIG. 16 is a diagram for explaining the configuration and operation of the interface device according to the second embodiment of the present invention.
図 1 7は、 本発明の第 2実施形態に係るインタフェース装置の構成及 び動作を説明するための図である。  FIG. 17 is a diagram for explaining the configuration and operation of the interface device according to the second embodiment of the present invention.
図 1 8は、 本発明の第 2実施形態に係るインタフェース装置の構成及 び動作を説明するための図である。  FIG. 18 is a diagram for explaining the configuration and operation of the interface device according to the second embodiment of the present invention.
図 1 9は、 '本発明の第 2実施形態に係るインタフェース装置の変形例 を示す図である。  FIG. 19 is a diagram showing a modified example of the interface device according to the second embodiment of the present invention.
図 2 0 A及び図 2 0 Bは、 本発明の第 3実施形態に係るトンネルの内 部構成を示す概略図である。  FIG. 20A and FIG. 20B are schematic diagrams showing the internal configuration of the tunnel according to the third embodiment of the present invention.
図 2 1は、 本発明の第 4実施形態に係るトンネル及びインタフェース - 5 - 装置の内部構成を示す概略図である。 FIG. 21 shows a tunnel and an interface according to the fourth embodiment of the present invention. FIG. 5 is a schematic diagram showing the internal configuration of the device.
図 2 2 A乃至図 2 2 Eは、 本発明の第 5実施形態に係るトンネルにお けるレールの切換え動作を説明するための図である。  FIGS. 22A to 22E are views for explaining a rail switching operation in the tunnel according to the fifth embodiment of the present invention.
図 2 3 A及び図 2 3 Bは、 本発明の第 5実施形態に係るトンネルにお けるレールのスライド機構を説明する図である。  FIGS. 23A and 23B are diagrams illustrating a rail slide mechanism in a tunnel according to a fifth embodiment of the present invention.
図 2 4 A乃至図 2 4 Dは、 本発明の他の実施形態に係るトンネル内の レイアウトを示す図である。  FIGS. 24A to 24D are views showing layouts in a tunnel according to another embodiment of the present invention.
図 2 5 A乃至図 2 5 Cは、 本発明の他の実施形態に係るアームの先端 •形状例を示す図である。 発明を実施するための最良の形態  FIG. 25A to FIG. 25C are views showing examples of the distal end shape of an arm according to another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 図面を参照して、 この発明の好適な実施の形態を例示的に詳し く説明する。 ただし、 この実施の形 ίιに記載されている構成要素の相対配 置等は、 特に特定的な記載がない限りは、 この発明の範囲をそれらのみに 限定する趣旨のものではない。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the relative arrangement of the components described in this embodiment is not intended to limit the scope of the present invention only to them unless otherwise specified.
<第 1実施形態 >  <First embodiment>
(構成)  (Constitution)
図 1 Αは、 本発明の第 1実施形態に係る基板搬送システム 1 0 0の一部 のレイアウトを示す概略図である。  FIG. 1 is a schematic diagram showing a layout of a part of the substrate transfer system 100 according to the first embodiment of the present invention.
図 1 Aにおいて、 1 0 1はトンネル、 1 0 2は基板に対して処理を施す 処理装置、 1 0 3はトンネル 1 0 1と処理装置 1ひ 2との間で基板の受け 渡しを行うインタフェース装置である。  In FIG. 1A, 101 is a tunnel, 102 is a processing device for processing a substrate, and 103 is an interface for transferring a substrate between the tunnel 101 and the processing device 1 2. Device.
トンネル 1 0 1は、 複数の処理装置 1 0 2間を繋ぐようにレイアウトさ れている。 また、 トンネル 1 0 1と処理装置 1 0 2とは直接接続されてお らず、 インタフェース装置 1 0 3が介在している。 すなわち、 トンネル 1 0 1はその下面においてインタフェース装置 1 0 3と接続され、 インタフ エース装置 1 0 3はその側面において処理装置 1 0 2と接続されている。 - 6 - トンネル 1 0 1は、 インタフエ一ス装置 1 0 3の幅と同程度の幅ごとにュ ニット化されており、 各ユニットを取 0外してメンテナンス可能に構成さ れている。 また、 トンネル 1 0 1とインタフエ一ス装置 1 0 3との組合せ で 1ユニットとして极うこともできる。 ここでは、 インタフェース装置 1 0 3は、 複数の処理装置 1 0 2に対して 1つずつ設けられている。 The tunnel 101 is laid out so as to connect the plurality of processing devices 102. Also, the tunnel 101 and the processing device 102 are not directly connected, and the interface device 103 is interposed. That is, the tunnel 101 is connected to the interface device 103 on the lower surface, and the interface device 103 is connected to the processing device 102 on the side surface. -6-Tunnel 101 is unitized for each width approximately equal to the width of interface device 103, and each unit is removed so that maintenance is possible. Further, a combination of the tunnel 101 and the interface device 103 can be used as one unit. Here, one interface device 103 is provided for each of the plurality of processing devices 102.
トンネル 1 0 1内部には、 基板 (ウェハ) を搬送するための搬送機構が 設けられており、 トンネル内を搬送されてきた基板は、 インタフエ一ス装 置 1 0 3に渡された後、 更にインタフェース装置 1 0 3から処理装置 1 0 2に搬送される。  A transport mechanism for transporting the substrate (wafer) is provided inside the tunnel 101, and the substrate transported in the tunnel is transferred to the interface device 103 and then further transferred to the interface device 103. It is transported from the interface device 103 to the processing device 102.
図 1 Bは、 本基板搬送システム 1 0 0のレイアウトを別の角度から示す 図である。 図 1 Βの上側の図は、'本基板搬送システム 1 0 0を上方から見 た図、 図 I Bの下側の図は、 トンネルの長手方向から見た概略断面図であ る。  FIG. 1B is a diagram showing the layout of the present substrate transfer system 100 from another angle. The upper diagram in FIG. 1A is a diagram of the present substrate transport system 100 as viewed from above, and the lower diagram of FIG. IB is a schematic cross-sectional diagram as viewed from the longitudinal direction of the tunnel.
例えば、 エツチヤ一、 アッシャー、 ウエットステーション、 スパッ夕、 C M P、 ステツパ等といったウェハが完成するために必要な一連の処理装 置 1 0 2が、 図 1 Bの上側の図のようにトンネル 1 0 1に沿って配置され ている場合、 それぞれの処理装置 1 0 2において、 基板受渡部 1 0 2 aの 高さが異なる場合が考えられる。 トンネル 1 0 1の高さは基本的に一定で あるから、 トンネル 1 0 1とインタフェース装置 1 0 3の間の連通部 1 0 4の長さを、 処理装置 1 0 2に応じて変え、 処理装置 1 0 2に応じた高さ にインタフェース装置 1 0 3を設置する。 具体的には、 基板受渡部 1 0 2 aが比較的低い処理装置 1◦ 2に対しては、 図 1 Bの下側の左図に示すよ うに、 インタフェース装置 1 0 3を低く設置し、 基板受渡部 1 0 2 aが比 較的高い処理装置 1 0 2に対しては、 図 1 Bの下側の右図に示すように、 イン夕フェース装置 1 0 3を高く設置する。 これにより、 イン夕フェース 装置は、 複数種類の処理装置に対応可能な構成となっている。 なお、 ここ では、 基板の搬送に特化して説明するが、 本システム 1 0 0の搬送機構は - 7 - 通常のウェハに限らず、 レチクルやモニタウェハ、 ダミーウェハなどの他 種類のウェハを混合搬送することが可能である。 その場合、 トンネル内の 基板及びレチクルの搬送を総合的に制御するコントローラを備えているこ とが好適である。 このコントローラは、 例えば、 製造するウェハの種類が 変わったときやウェハに対する処理条件が変わったときに、 ステツパなど レチクルを交換する必要がある所定の処理装置に、 レチクル保管部から条 件に合ったレチクルを搬送車に載置して搬送し、 レチクルを必要とする所 定の処理装置にそのレチクルを搬入するように、 基板搬送車の搬送及びィ ン夕フエース装置を総合的に制御する。 For example, a series of processing equipment 102 required to complete a wafer, such as an etcher, asher, wet station, sputter, CMP, stepper, etc., is a tunnel 101 as shown in the upper part of FIG. 1B. When arranged along, the height of the substrate delivery unit 102a may be different in each processing apparatus 102. Since the height of the tunnel 101 is basically constant, the length of the communication portion 104 between the tunnel 101 and the interface device 103 is changed according to the processing device 102, and the processing is performed. The interface device 103 is installed at a height corresponding to the device 102. Specifically, as shown in the lower left figure in FIG.1B, the interface device 103 is installed low for the processing device 1◦2 with a relatively low substrate transfer section 102a, For the processing apparatus 102 having a relatively high substrate transfer section 102a, the interface apparatus 103 is installed at a high level as shown in the lower right diagram of FIG. 1B. Thus, the interface device is configured to be compatible with a plurality of types of processing devices. Note that, here, the description will focus on the transfer of the substrate, but the transfer mechanism of the system 100 will be described. -7-Not only normal wafers but also other types of wafers such as reticles, monitor wafers, and dummy wafers can be mixed and transported. In such a case, it is preferable to provide a controller that comprehensively controls the transport of the substrate and the reticle in the tunnel. For example, when the type of wafer to be manufactured changes or when the processing conditions for the wafer change, this controller can be used to change the reticle to a predetermined processing device, such as a stepper, from the reticle storage unit. The reticle is mounted on the transport vehicle and transported, and the transport of the substrate transport vehicle and the interface device are comprehensively controlled so that the reticle is loaded into the specified processing equipment that requires the reticle.
図 2 Aは、 トンネル 1 0 1及びイン夕フェース装置 1 0 3の内部を示す 概略図である。 また、 図 2 Bは、 図 1 Aの A側から矢印方向に見た場合の トンネル 1 0 1及びイン夕フェース装置 1 0 3の外観図である。  FIG. 2A is a schematic diagram showing the inside of the tunnel 101 and the interface device 103. FIG. 2B is an external view of the tunnel 101 and the interface device 103 when viewed in the direction of the arrow from the A side in FIG. 1A.
図 2 Aに示す通り、 トンネル 1 0 1の内部側壁には、 2本のレール 2 0 1 a、 2 0 1 bが上下方向に平行に設けられている。 これら 2本のレ一ル 2 0 1 a、 2 0 1 bは、 それぞれ複数の基板搬送車 2 0 2を支持可能であ り、 基板搬送車 2 0 2は、 モータの駆動によりレール 2 0 1 aまたはレ一 ル 2 0 1 bに沿って自走する。 これによりトンネル 1 0 1は、 その内部に、 基板を搬送する第 1搬送路と、 第 1搬送路の上方で基板を搬送する第 2搬 送路とを有することになる。  As shown in FIG. 2A, two rails 201a and 201b are provided on the inner side wall of the tunnel 101 in parallel in the vertical direction. Each of these two rails 201a and 201b can support a plurality of substrate transport vehicles 202, and the substrate transport vehicles 202 are driven by motors to drive the rails 201 Drive along a or level 201b. As a result, the tunnel 101 has therein a first transport path for transporting the substrate and a second transport path for transporting the substrate above the first transport path.
基板搬送車 2 0 2は、 基板 Sを載置可能な C型状のトレ一 2 0 2 aと、 トレー 2 0 2 aを支持しつつレール 2 0 1に沿って走行する力一ト 2 0 2 bとを備える。  The substrate transport vehicle 202 includes a C-shaped tray 202 a on which the substrate S can be placed, and a force 200 traveling along the rail 201 while supporting the tray 202 a. 2b.
なお、 図 2 Aの Cは、 レール 2 0 1の根本付近の拡大図である。 ここに 示すように、 トンネル 1 0 1の内側面には、 部分的に給電素子 2 0 3が設 けられている。 給電素子 2 0 3は、 基板搬送車 2 0 2が処理装置 1 0 2に 基板を搬入または搬出するために停止する位置に配置されており、 基板搬 送車 2 0 2は、 停止中、 給電素子 2 0 3と接触することにより、 基板搬送 - 8 - 車 2 0 2内の不図示のバッテリーに対し電力を供給する。 そして、 パッテ リ一内に蓄電された電力を用いてモータを駆動し、 レール上を走行する。 また、 トンネル 1 0 1内には、 空気清浄フィル夕'(U L P A (Ul tra Low Penetrat ion Ai r) フィルタ) を備えた清浄ュニット 3 0 1が設けら れている。 清浄ュニット 3 0 1には、 パイプ 3 0 2が接続されており、 パ ィプ 3 0 2から流入したエア一が、 清浄ュニッ卜 3 0 1の空気清浄フィル 夕を通って浄化され、 矢印で示すようにトンネル 1 0 1の内部を経て、 排 気ダクト 3 0 3から空気排出ユニット 3 0 4に送られる。 本実施形態にお いてパイプ 3 0 2は、 図 2 Bに示すように、 トンネル 1 0 1の各ユニット にわたつて接続されている。 すなわち、 本基板搬送システム 1 0 0は、 大 型のエア供給ユニット (不図示) を備えており、 パイプ 3 0 2は、 そのェ ァ供給ュニットからトンネル 1 0 1に沿って敷設され、 途中で枝分れして、 トンネル 1 0 1の各ュニットに設けられた清浄ュニット 3 0 1に接続され ている。 Note that C in FIG. 2A is an enlarged view near the root of the rail 201. As shown here, a feed element 203 is partially provided on the inner surface of the tunnel 101. The power supply element 203 is disposed at a position where the substrate transport vehicle 202 stops to load or unload the substrate into or from the processing apparatus 102, and the substrate transport vehicle 202 supplies power during the stop. Substrate transport by contacting element 203 -8-Power is supplied to the battery (not shown) in the car 202. Then, the motor is driven by using the electric power stored in the battery to travel on the rail. In the tunnel 101, a cleaning unit 301 equipped with an air cleaning filter (ULPA (Ultra Low Penetration Air) filter) is provided. A pipe 302 is connected to the cleaning unit 301, and the air flowing from the pipe 302 is purified through the air cleaning filter of the cleaning unit 301, and is indicated by an arrow. As shown, the air is sent from the exhaust duct 303 to the air exhaust unit 304 through the inside of the tunnel 101. In the present embodiment, the pipe 302 is connected to each unit of the tunnel 101 as shown in FIG. 2B. That is, the substrate transport system 100 includes a large-sized air supply unit (not shown), and a pipe 302 is laid from the air supply unit along a tunnel 101, and along the tunnel. It branches and is connected to the clean unit 301 provided in each unit of the tunnel 101.
これにより、 トンネル 1 0 1の内部は常にクリーンエア一で満たされる こととなり、 搬送される基板に埃や塵等が付着することを防止する。 また、 清浄ュニット 3 0 1は取り外してメンテナンス可能に構成されている。 な お、 ここでは清浄ュニット 3 0 1に U L P Aフィル夕を構成していること としたが、 本発明はこれに限定されるものではなく、 所定の清浄度に合わ せて H E P A (High Ef f iciency Part iculate Ai r) フィルタなどの清浄 フィル夕を設けても良い。  As a result, the inside of the tunnel 101 is always filled with the clean air, thereby preventing dust and dirt from adhering to the conveyed substrate. Further, the cleaning unit 301 is configured to be detachable for maintenance. Here, it is assumed that the cleaning unit 301 has a ULPA filter, but the present invention is not limited to this, and the HEPA (High Efficiency Part iculate Air) A clean filter such as a filter may be provided.
トンネル 1 0 1の底面には、 インタフェース装置 1 0 3に対して基板を 搬出し、 インタフェース装置 1 0 3から基板を搬入するための開口部 1 0 1 aが設けられている。 そして、 開口部 1 0 1 aを開閉するためのシャツ 夕 2 0 4が設けられている。  An opening 101 a is provided on the bottom surface of the tunnel 101 to carry out the substrate to the interface device 103 and to carry in the substrate from the interface device 103. Further, a shirt 204 for opening and closing the opening 101a is provided.
連通部 1 0 4では、 トンネル 1 0 1とインタフェース装置 1 0 3との間 で基板を受け渡す際に基板に埃や塵などが付着しないように、 一定の密閉 - 9 - 性を確保する目的で、 遮蔽壁 7 0 1が設けられている。 この遮蔽壁 7 0 1 は、 トンネル 1 0 1とイン夕フエ一ス装置 1 0 3で振動の伝達が起こらな いように緩衝する機能を備えてもよい。 その場合、 遮蔽壁 7 0 1を、 例え ば、 ジャバラ部材のように自由に伸縮する部材にすることが考えられる。 また、 遮蔽壁 7 0 1は、 トンネル 1 0 1とイン夕フェース装置 1 0 3と の間を連通する構成に限られない。 例えば、 図 3 A及び図 3 Bに示すよう に、 トンネル 1 0 1の下部とインタフェース装置 1 0 3の上部とに、 基板 の受渡し開口部を囲うように、 それぞれ互いに接触しない凸壁 7 O l a , 7 0 l bを設けて、 ラビリンス構造としても良い。 この時、 トンネル 1 0 1とインタフェース装置 1 0 3との間の内部気圧が、 外部より高めにして おくことで埃や塵などが基板に付着しないようにできる。 The communication part 104 has a certain hermetic seal to prevent dust and dirt from adhering to the board when transferring the board between the tunnel 101 and the interface device 103. -9-A shielding wall 700 is provided for the purpose of ensuring the property. The shielding wall 70 1 may have a function of damping the vibration so that the transmission of the vibration does not occur between the tunnel 101 and the interface device 103. In this case, it is conceivable that the shielding wall 700 is a member that freely expands and contracts, for example, a bellows member. Further, the shielding wall 700 is not limited to a configuration that allows communication between the tunnel 101 and the interface device 103. For example, as shown in FIGS. 3A and 3B, convex walls 7 O la not in contact with each other at the lower part of the tunnel 101 and the upper part of the interface device 103 so as to surround the transfer opening of the substrate. , 70 lb to provide a labyrinth structure. At this time, by setting the internal pressure between the tunnel 101 and the interface device 103 higher than the outside, it is possible to prevent dust and dirt from adhering to the substrate.
一方、 インタフェース装置 1 0 3は、 トンネル 1 0 1の下方において、 処理装置 1 0 2の基板受け取り口に応じた高さに配置されている。 インタ フェース装置 1 0 3は、 密閉空間を形成可能なチャンバ 5 0 1と、 チャン ノ 5 0 1内で基板を搬送するスライドュニット 4 0 1と、 基板搬送車 2 0 2からスライドユニット 4 0 1へ基板を移し替える基板昇降ュニット 6 0 1とを備えている。 基板昇降ュニット 6 0 1は、 言い換えれば、 トンネル 1 0 1に対し基板を上下方向に受け渡す機能を有する。  On the other hand, the interface device 103 is disposed below the tunnel 101 at a height corresponding to the substrate receiving port of the processing device 102. The interface device 103 includes a chamber 501 capable of forming a closed space, a slide unit 401 for transporting a substrate in the channel 501, and a slide unit 400 from the substrate transport vehicle 202. And a substrate elevating unit 600 for transferring the substrate to 1. In other words, the substrate lifting unit 600 has a function of transferring the substrate to the tunnel 101 in the vertical direction.
チヤンバ 5 0 1は、 トンネル 1 0 1側と処理側に開口部 5 0 1 a及び開 口部 5 0 1 bを有しており、 それぞれ、 開閉扉としてのゲートバルブ 5 0 2、 5 0 3によって開閉自在となっている。  The chamber 501 has an opening 501a and an opening 501b on the tunnel 101 side and the processing side, respectively, and gate valves 502 and 503 as opening and closing doors, respectively. It can be opened and closed freely.
また、 スライドュニッ卜 4 0 1は、 スライドアーム 4 0 1 aとスライド 台 4 0 1 bとスライダドライブ 4 0 1 cを含み、 スライダドライブ 4 0 1 cがスライド台 4 0 1 bに動力を伝達することによって、 スライド台 4 0 1に取付けられたスライドアーム 4 0 1 aが、 処理装置 1 0 2方向に前後 する。 これにより、 スライドアーム 4 0 1 aに載置された基板は図 2 Aの 左方向にスライドされ、 処理装置 1 0 2内部に搬送される。 - 10 - 図 3 Cは、 トンネル 1 0 1の内部を示す斜視図である。 図 3 Cに示すよ うに、 清浄ュニット 3 0 1は、 取り外して交換やメンテナンスをすること が可能である。 また、 トンネル 1 0 1の天井及び側面には、 透明板が嵌め 込まれた窓 1 0 1 a、 1 0 1 bが設けられており、 トンネル 1 0 1内部の 様子が視認可能である。 これにより、 トンネル内の基板の状態やトンネル 内で発生したトラブルを瞬時に発見できる。 The slide unit 401 includes a slide arm 401a, a slide base 401b, and a slider drive 401c, and the slider drive 401c transmits power to the slide base 401b. As a result, the slide arm 401 a attached to the slide base 401 moves back and forth in the direction of the processing device 102. As a result, the substrate placed on the slide arm 401a is slid to the left in FIG. 2A and transported into the processing apparatus 102. -10-FIG. 3C is a perspective view showing the inside of the tunnel 101. As shown in FIG. 3C, the cleaning unit 301 can be removed for replacement or maintenance. In addition, windows 101a and 101b in which transparent plates are fitted are provided on the ceiling and side surfaces of the tunnel 101, so that the inside of the tunnel 101 can be visually recognized. As a result, it is possible to instantly discover the state of the substrate in the tunnel and troubles that have occurred in the tunnel.
図 4 A及び図 4 Bは、 基板搬送車 2 0 2の内部構造を示す概略構成図で ある。  4A and 4B are schematic configuration diagrams showing the internal structure of the substrate transport vehicle 202.
図 4 Aは、 基板搬送車 2 0 2を上方から見た場合の内部構成を示してい る。 図 4 Bは、 図 4 Aの図中下方から基板搬送車 2 0 2を見た場合の内部 構成を示している。 図 4 Aに示すように、 トレ一 2 0 2 aは、 C形状をし ており、 外周の一部にギャップ Gを有している。 また、 トレ一 2 0 2 aの 上面には、 基板を吸着保持するためのチヤッキングポート 2 1 1が 3っ設 けられており、 これらのチヤッキングポート 2 1 1は全て力一ト 2 0 2 b 内のポンプユニット 2 1 2に接続されている。 トレ一 2 0 2 a上に基板を 載置した状態でポンプユニット 2 1 2を駆動し、 チヤッキングポート 2 1 1から吸気することによって、 基板がトレー 2 0 2 aに吸い付けられる。 また、 トレー 2 0 2 aには基板を載置するための溝 3 1 7が設けられてお り、 この溝 3 1 7に基板が嵌り込み、 かつチヤッキングポート 2 1 1で吸 引されることにより、 基板は搬送中ずれたり落ちたりすることなく固定さ れる。  FIG. 4A shows an internal configuration when the substrate transport vehicle 202 is viewed from above. FIG. 4B shows an internal configuration when the substrate transport vehicle 202 is viewed from below in FIG. 4A. As shown in FIG. 4A, the tray 202a is C-shaped, and has a gap G at a part of the outer periphery. In addition, three chucking ports 211 for holding the substrate by suction are provided on the upper surface of the tray 202a, and all these chucking ports 211 are force-splitting. It is connected to the pump unit 2 1 2 in 2 0 2 b. The substrate is sucked to the tray 202a by driving the pump unit 212 with the substrate placed on the tray 202a and drawing air from the chucking port 211. Further, the tray 202a is provided with a groove 317 for mounting the substrate, and the substrate is fitted into the groove 317, and is sucked by the chucking port 211. As a result, the substrate is fixed without shifting or falling during transport.
また、 力一ト 2 0 2 bは、 ポンプユニット 2 1 2の他、 力一ト 2 0 2 b を走行させる駆動ュニット 2 1 3と、 ポンプュニット 2 1 2や駆動ュニッ ト 2 1 3を制御する制御ュニット 2 1 4とを備えている。  In addition, the power unit 202 b controls the pump unit 212 for driving the power unit 202 b, the pump unit 212 and the drive unit 212 in addition to the pump unit 212. And a control unit 2 14.
駆動ュニット 2 1 3は、 その内部にモータ 2 1 3 aと、 ギア 2 1 3 b、 2 1 3 cと、 駆動ローラ 2 1 3 dとを備えており、 モータ 2 1 3 aの回転 力が、 ギア 2 1 3 b、 2 1 3 cを介して駆動ローラ 2 1 3 dに伝達し、 レ - 11 - The driving unit 2 13 includes a motor 2 13 a, a gear 2 13 b, a 2 13 c, and a driving roller 2 13 d inside thereof, and a rotating force of the motor 2 13 a is provided. And transmitted to the drive roller 2 13 d via the gears 2 13 b and 2 13 c, -11-
—ル 2 0 1に插接する駆動ローラ 2 1 3 dが回転することによって、 レ一 ル 2 0 1上を力一ト 2 0 2 bが走行する。 When the drive roller 2 13 d inserted into the rail 201 rotates, the force 202 b runs on the rail 201.
カート 2 0 2 bは、 駆動ローラ 2 1 3 d以外に、 上下方向にレール 2 0 1を狭持するためのガイドローラ 2 1 5と、 駆動ローラ 2 1 3との間で水 平方向にレール 2 0 1を狭持するためのガイドローラ 2 1 6とを備えてい る。 これらのガイドローラにより、 カート 2 0 2 bは、 レ一ル 2 0 1上を 安定して走行することができる。  In addition to the drive roller 2 13 d, the cart 202 b has a horizontal rail between the guide roller 2 15 for holding the rail 201 in the vertical direction and the drive roller 2 13. And a guide roller 216 for holding the nip. With these guide rollers, the cart 202b can run stably on the rail 201.
(基板受け渡し動作)  (Board transfer operation)
図 5及び図 6を用いて、 基板の受け渡し動作について説明する。 図 5の a、 eは、 トンネル 1 0 1内の基板搬送車 2 0 2の位置を示しており、 ト ンネル上方からトンネル 1 0 1の天井部分を透過して示した図である。 図 5の b、 図 6の b、 f は、 インタフェース装置 1 0 3をトンネル 1 0 1側 から見た場合の部分的な外観を示している。 図 5の c、 d、 f , g、 図 6 の a、 c , d、 e、 gは、 図 2 Aと同様に、 トンネル 1 0 1及びインタフ エース装置 1 0 3の内部を示している。  The transfer operation of the substrate will be described with reference to FIGS. 5 (a) and 5 (e) show the position of the substrate carrier 202 in the tunnel 101, and show the ceiling of the tunnel 101 from above the tunnel. FIGS. 5B and 6B and 6F show partial appearances when the interface device 103 is viewed from the tunnel 101 side. In FIG. 5, c, d, f, g, and a, c, d, e, and g in FIG. 6 show the inside of the tunnel 101 and the interface device 103, as in FIG. 2A.
まず、 図 5の aに示すように、 基板 Sを載置した基板搬送車 2 0 2が、 レール 2 0 1に沿って走行して、 インタフェース装置 1 0 3の上部で停止 する。  First, as shown in FIG. 5A, the substrate transport vehicle 202 on which the substrate S is mounted travels along the rail 201 and stops at the upper part of the interface device 103.
次に、 図 5の b及び cに示すように、 トンネル 1 0 1下部のシャツ夕 2 0 4とインタフエ一ス上部のゲートバルブ 5 0 2が開く。 イン夕フェース 装置 1 0 3の上面に設けられた支軸と円盤状のゲ一トバルブ 5 0 2の中心 軸を腕が連結している。 そして、 支軸を中心に、 腕を回動させる開動作を 行うことにより、 ゲートバルブ 5 0 2が開口部 5 0 1 aを閉じる位置から、 開放する位置へ移動する。  Next, as shown in FIGS. 5 (b) and 5 (c), the shirt 204 at the bottom of the tunnel 101 and the gate valve 502 at the top of the interface are opened. The arm connects the support shaft provided on the upper surface of the interface device 103 with the center axis of the disk-shaped gate valve 502. Then, by performing an opening operation of rotating the arm about the support shaft, the gate valve 502 moves from a position where the opening portion 501a is closed to a position where it is opened.
ゲートバルブ 5 0 2とシャツ夕 2 0 4が開くと、 次に、 dに示すように、 基板昇降ュニット 6 0 1が動作し、 突上げ口ッド 6 0 1 aが上昇してトレ 一 2 0 2 a上の基板 Sを突上げる。 - 12 - 基板 Sの突上げが完了すると、 eに示すように基板搬送車 2 0 2がギヤ ップ Gがない方向 (図中下向き) に移動する。 すなわち、 突上げロッド 6 0 1 aがギャップ Gを通るように、 基板搬送車 2 0 2を移動させる。 When the gate valve 502 and the shirt 204 open, the board elevating unit 601 operates as shown in d, and the push-up port 601 a rises and the tray 1 Push up the substrate S on 0 2 a. -12-When the lifting of the substrate S is completed, the substrate carrier 202 moves in the direction without the gap G (downward in the figure) as shown in e. That is, the substrate transport vehicle 202 is moved so that the push-up rod 601a passes through the gap G.
基板搬送車 2 0 2が基板受け渡し位置から完全に退避すると、 ίに示す ように、 基板昇降ュニット 6 0 1が動作し、 突上げ口ッド 6 0 1 aが基板 Sを載置したまま下降する。  When the substrate carrier 202 retreats completely from the substrate delivery position, the substrate elevating unit 601 operates as shown in ί, and the ejection port 601 a descends while the substrate S is mounted. I do.
そして、 gに示すように、 インタフェース装置 1 0 3の天板付近で一旦 停止し、 突上げロッ ド 6 0 1 aを回転して基板 Sのオリ フラ (or ientat ion f racture) 合わせを行う。 ここでオリフラ合わせとは、 基 板 Sの一部に設けられた破断部分を所定の方向に向けることである。 処理 装置 1 0 2の種類によっては、 基板が特定の方向を向いて搬入されること を要求するものがある。 従って、 そのような処理装置 1 0 2に基板を搬入 する場合には、 基板昇降ユニット 6 0 1が基板の方向を調整する方向調整 手段として機能する。 具体的には、 インタフェース装置 1 0 3の天板の上 面に設けられた不図示の光センサによって、 基板 Sの破断部分を検知する。 オリフラ合せが終了すると、 図 6の aに示すように、 更に突上げロッド 6 0 1 aを下降させ、 スライドアーム 4 0 1 a上に基板を載置する。 そし て、 その状態で、 b及び cに示すように、 トンネル 1 0 1下部のシャツ夕 2 0 4とインタフエ一ス装置 1 0 3上部のゲートバルブ 5 0 2が閉位置に 移動する。 また、 処理装置 1 0 2の種類に応じて、 インタフェース装置 1 0 3のゲートバルブ 5 0 2が完全に閉じられたことを確認後、 インタフエ —ス装置 1 0 3のチヤンパ 5 0 1内を減圧する。 すなわち、 処理装置 1 0 2が低圧下で処理を行う種類のものである場合には、 それに合わせてチヤ ンパ 5 0 1内の気圧を低下させる。 例えば、 処理装置 1 0 2が高真空下で 処理を行う装置である場合には、 チャンパ 5 0 1内を高真空状態にするた め、 図 7 A及び図 7 Bに示すように、 インタフエ一ス装置 1 0 3に低真空 ポンプ 8 0 1及び高真空ポンプ 8 0 2を更に接続する。 もちろん、 処理装 - 13 - 置 1 0 2が低真空を要求する場合には、 インタフェース装置 1 0 3に低真 空ポンプ 8 0 1のみを接続すればよい。 Then, as shown in g, the system temporarily stops near the top plate of the interface device 103, rotates the push-up rod 61a, and aligns the orientation flat of the substrate S. Here, the orientation flat alignment means that a broken portion provided on a part of the substrate S is directed in a predetermined direction. Some types of processing apparatus 102 require that the substrate be carried in a specific direction. Therefore, when a substrate is carried into such a processing apparatus 102, the substrate lifting / lowering unit 601 functions as a direction adjusting means for adjusting the direction of the substrate. Specifically, a broken portion of the substrate S is detected by an optical sensor (not shown) provided on an upper surface of the top plate of the interface device 103. When the orientation flat alignment is completed, the push-up rod 61a is further lowered as shown in FIG. 6A, and the substrate is placed on the slide arm 401a. Then, in this state, as shown in b and c, the shirt 204 at the bottom of the tunnel 101 and the gate valve 502 at the top of the interface device 103 move to the closed position. Also, after confirming that the gate valve 502 of the interface device 103 is completely closed according to the type of the processing device 102, the pressure inside the chamber 501 of the interface device 103 is reduced. I do. That is, when the processing apparatus 102 is of a type that performs processing under low pressure, the pressure in the chamber 501 is reduced accordingly. For example, when the processing device 102 is a device that performs processing under a high vacuum, an interface is provided as shown in FIG. 7A and FIG. A low-vacuum pump 801 and a high-vacuum pump 802 are further connected to the vacuum apparatus 103. Of course, processing equipment If the device 102 requires a low vacuum, only the low vacuum pump 801 needs to be connected to the interface device 103.
チャンバ 5 0 1内の減圧が完了すると、 図 6の dに示すように、 インタ フェース装置の処理側の側面に設けられたゲートバルブ 5 0 3を開く。 そ して、 スライダドライブ 4 0 1 cを動作して、 eに示すように、 スライド 台 4 0 1 bに取付けられたスライドアーム 4 0 1 aを、 処理装置 1 0 2の 方向にスライドする。  When the pressure in the chamber 501 is reduced, the gate valve 503 provided on the processing side of the interface device is opened as shown in FIG. Then, the slider drive 401c is operated to slide the slide arm 401a attached to the slide base 401b in the direction of the processing device 102, as shown in e.
その状態で、 処理装置 1 0 2は、 スライドアーム 4 0 1 aのフォーク状 の先端部分に載置された基板 Sを受け取り、 f及び gの状態となる。 その 後、 スライドアーム 4 0 1 aをチャンバ 5 0 1内部に後退させ、 dの位置 に戻す。 そして、 処理装置 1 0 2で基板の処理が完了すると、 再度、 スラ ィドアーム 4 0 1 aをスライドさせ、 f及び gの状態で待機する。 次に、 処理装置 1 0 2側で基板 Sがスライドアーム 4 0 1 aへ載置され、 eの状 態となると、 図 6の d—図 6の b & c→図 6の a—図 5の f→図 5の d→ 図 5の cと順番に状態が変化する。  In this state, the processing apparatus 102 receives the substrate S mounted on the fork-shaped tip of the slide arm 401a, and enters the state of f and g. After that, the slide arm 401 a is retracted into the chamber 501 and returned to the position d. Then, when the processing of the substrate is completed in the processing apparatus 102, the slide arm 410a is again slid, and waits in the state of f and g. Next, the substrate S is placed on the slide arm 401 a on the processing apparatus 102 side, and when the state of e is reached, d in FIG. 6—b & c in FIG. 6 → a in FIG. The state changes in the order of f → d in Fig. 5 → c in Fig. 5.
具体的には、 スライドアーム 4 0 1 aが後退し、 チャンバ 5 0 1内に基 板 Sを取り込み (図 6の d )、 ゲートバルブ 5 0 3を閉じて、 チャンバ 5 0 1内の気圧を大気圧に戻す (図 6の c )。 その後、 基板搬送車 2 0 2に 基板取出し要求を出し、 基板搬送車 2 0 2をイン夕フェース装置 1 0 3上 方の基板受取位置手前で待機させ、 シャツ夕 2 0 4とゲ一トバルブ 5 0 2 が開く (図 6の a )。 次いで、 突上げロッド 6 0 1 aが上昇してスライド アーム 4 0 1 a上の基板 Sを突上げ、 更に上昇して停止する (図 5の f )。 そして、 待機位置で待機していた基板搬送車 2 0 2が、 突上げロッド 6 0 1 aがギャップ Gを通るように移動して、 受取り位置で待機する (図 5の d )。 突上げロッド 6 0 1 aが下降して、 基板搬送車 2 0 2のトレー 2 0 2 aに基板 Sを渡す。 突上げロッド 6 0 1 aが下降完了後、 基板搬送車 2 0 2は基板 Sを次の処理装置へ搬送し、 同時に、 シャツ夕 2 0 4と、 ゲー - 14 - トバルブ 5 0 2を閉じる。 Specifically, the slide arm 401 a retreats, takes the substrate S into the chamber 501 (d in FIG. 6), closes the gate valve 503, and reduces the pressure in the chamber 501. Return to atmospheric pressure (c in Figure 6). After that, a substrate unloading request is issued to the substrate carrier 202, and the substrate carrier 202 is made to stand by in front of the substrate receiving position above the interface device 103, and the shirt 204 and the gate valve 5 are set. 0 2 opens (a in Fig. 6). Next, the push-up rod 600a rises and pushes up the substrate S on the slide arm 401a, and further rises and stops (f in FIG. 5). Then, the substrate transport vehicle 202 that has been waiting at the standby position moves so that the push-up rod 601a passes through the gap G and waits at the receiving position (d in FIG. 5). The push-up rod 60a descends and transfers the substrate S to the tray 202a of the substrate carrier 202. After the push-up rod 601a has been lowered, the substrate transporter 202 transports the substrate S to the next processing device, and at the same time, the shirt 204 -14-Close the valve 502.
(全体的なレイアウト)  (Overall layout)
次に、 基板搬送システム 1 0 0の全体的なレイアウトについて図 8 A、 図 8 B及び図 9 A乃至図 9 Eを用いて説明する。  Next, the overall layout of the substrate transport system 100 will be described with reference to FIGS. 8A, 8B, and 9A to 9E.
図 8 Aは、 メイン搬送路とサブ搬送路の関係を示す図である。 基板搬送 システム 1 0 0は、 メイン搬送路 9 0 1とサブ搬送路 9 0 2とを含み、 メ ィン搬送路 9 0 1のトンネル 1 0 1とサブ搬送路 9 0 2のトンネル 1 0 1 とは、 移載装置 9 0 3によって接続されている。 移載装置 9 0 3は、 メイ ン搬送路 9 0 1のトンネル 1 0 1内を搬送されてきた基板をサブ搬送路 9 0 2のトンネル 1 0 1に移載する装置である。 サブ搬送路 9 0 2に含まれ るトンネル 1 0 1は直線的で端部は行止りになっているため、 メイン搬送 路 9 0 1からサブ搬送路 9 0 2に移載された基板は、 サブ搬送路 9 0 2の トンネル 1 0 1を往復しながら、 処理装置 1 0 2で処理を施される。 その 際、 卜ンネル 1 0 1から処理装置 1 0 2へはィンタフエ一ス装置 1 0 3に よって搬送される。  FIG. 8A is a diagram showing the relationship between the main transport path and the sub transport path. The substrate transfer system 100 includes a main transfer path 901 and a sub-transfer path 902, and a tunnel 101 of the main transfer path 901 and a tunnel 1001 of the sub-transfer path 902. And are connected by a transfer device 903. The transfer device 903 is a device that transfers a substrate transferred in the tunnel 101 of the main transfer path 901 to the tunnel 101 of the sub transfer path 902. Since the tunnel 101 included in the sub-transport path 902 is straight and has no end, the substrate transferred from the main transport path 901 to the sub-transport path 902 is The processing is performed by the processing device 102 while reciprocating in the tunnel 101 of the sub-transport path 902. At this time, the wafer is transported from the tunnel 101 to the processing device 102 by the interface device 103.
サブ搬送路 9 0 2での処理を終えた基板は、 再度メイン搬送路 9 0 1に 移載され、 次の工程へ送られる。  The substrate that has been processed in the sub-transport path 902 is transferred to the main transport path 901 again and sent to the next step.
図 8 Bは、 更に全体的な基板搬送システムのレイアウト例を示す図であ る。 図 8 Bに示すシステムでは、 メイン搬送路 9 0 1が 2本あり、 それぞ れのメイン搬送路にサブ搬送路 9 0 2、 9 0 5が接続されている。 メイン 搬送路 9 0 1の端部には、 容器倉庫 9 0 5が接続されている。 容器倉庫 9 0 5は、 基板製造工場から送られてきた基板入りの容器をストックし、 そ の容器から基板を 1枚ずつ取りだしてメイン搬送路 9 0 1に搬入する。 サブ搬送路 9 0 2は、 図 8 Aで説明したものと同様に直線的なレイァゥ トであるが、 サブ搬送路 9 0 5は、 無端のトンネル 1 0 1を有しており、 サブ搬送路 9 0 5内で 1方向に基板を搬送することによって、 同様な処理 を何度も繰返し行うことが可能となっている。 また、 メイン搬送路 9 0 1 - 15 - には、 サブ搬送路を介さずに直接に基板が搬送される処理装置群 9 0 6が 接続されている。 メイン搬送路 9 0 1を搬送されて一連の処理が施された 基板は、 容器収容装置 9 0 7に集められ、 所定枚数毎に容器に収容され、 他の工場または、 後工程に搬送される。 FIG. 8B is a diagram showing a layout example of the overall substrate transfer system. In the system shown in FIG. 8B, there are two main transport paths 901, and each of the main transport paths is connected to sub-transport paths 902 and 905. A container warehouse 905 is connected to an end of the main transport path 901. The container warehouse 905 stocks the containers containing the substrates sent from the substrate manufacturing plant, takes out the substrates one by one from the containers, and carries them into the main transfer path 901. The sub-transport path 902 is a linear pattern similar to that described with reference to FIG. 8A, but the sub-transport path 905 has an endless tunnel 101, and By transporting the substrate in one direction within 905, the same process can be repeated many times. Also, the main transport path 9 0 1 A processing apparatus group 906 to which the substrate is directly transferred without passing through the sub-transport path is connected to the sub-transport path. Substrates that have been transported through the main transport path 901 and subjected to a series of processing are collected in a container storage device 907, stored in containers every predetermined number, and transported to another factory or a post-process. .
次に、 搬送路におけるトンネル 1 0 1の形状と処理装置 1 0 2の配置に ついて説明する。 図 9 A乃至図 9 Eは、 トンネル 1 0 1及び処理装置 1 0 2の様々なレイアウトパターンを示す図である。  Next, the shape of the tunnel 101 in the transport path and the arrangement of the processing device 102 will be described. 9A to 9E are diagrams showing various layout patterns of the tunnel 101 and the processing device 102. FIG.
このうち、 図 9 Aは、 直線状の 1本のトンネル 1 0 1を含む搬送路に対 し、 その両側に処理装置 1 0 2を配置するレイアウトである。 このレイァ ゥトを実現するためには、 トンネル 1 0 1から処理装置 1 0 2へ基板を搬 送するインタフェース装置 1 0 3 (ここでは不図示) が、 トンネルの両側 に基板を搬送する能力を有することが必要となる。 このように両側配置に すれば、 複数の処理装置の設置面積が全体として小さくなり、 基板処理ェ 場内のスペースを有効に活用でき、 工場のコストを下げることが可能とな る。  Among them, FIG. 9A shows a layout in which a processing apparatus 102 is disposed on both sides of a transport path including one straight tunnel 101. To achieve this rate, an interface device 103 (not shown here) that transports the substrate from the tunnel 101 to the processing device 102 requires the ability to transport the substrate to both sides of the tunnel. It is necessary to have. With this arrangement on both sides, the installation area of the plurality of processing equipment is reduced as a whole, and the space in the substrate processing plant can be effectively used, and the cost of the factory can be reduced.
図 9 Bは、 ル一プ状のトンネル 1 0 1を含む搬送路に対し、 その両側に 処理装置 1 0 2を配置するレイアウトである。 搬送路は一部に移載装置 9 0 3を有している。 移載装置 9 0 3は、 一連の処理を終えて戻ってきた基 板を、 再度搬送路に搬送したり、 移載装置 9 0 3内にストックしたりする ことができる。 図 9 Cは、 直線状の 2本のトンネル 1 0 1を含む搬送路に 対し、 その両側に処理装置 1 0 2を配置するレイアウトである。 ここでも 搬送路は一部に移載装置 9 0 3を有している。 移載装置 9 0 3は、 一方の' トンネル 1 0. 1で一連の処理を終えて戻ってきた基板を、 他方のトンネル 1 0 1に搬送することができる。 そして各処理装置 1 0 2のメンテナンス をトンネル 1 0 1に挟まれた通路側からも容易に行うことができる。 図 9 Dは、 直線状の 1本のトンネル 1 0 1を含む搬送路に対し、 その片側に処 理装置 1 0 2を配置するレイアウトである。 図 9 Eは、 直線状のトンネル - 16 - FIG. 9B shows a layout in which processing devices 102 are arranged on both sides of a transport path including a loop-shaped tunnel 101. The transport path has a transfer device 903 in part. The transfer device 903 can convey the substrate returned after the series of processing to the conveyance path again or stock it in the transfer device 903. FIG. 9C shows a layout in which a processing apparatus 102 is arranged on both sides of a transport path including two straight tunnels 101. Also here, the transfer path has a transfer device 903 partially. The transfer device 903 can transfer the substrate that has returned after completing a series of processing in one tunnel 10. 1 to the other tunnel 101. Further, maintenance of each processing apparatus 102 can be easily performed from the side of the passage sandwiched between the tunnels 101. FIG. 9D shows a layout in which a processing device 102 is arranged on one side of a transport path including one straight tunnel 101. Figure 9E shows a straight tunnel -16-
101を含む搬送路に対し、 トンネル 101を挟んで互違いに処理装置 1 02を千鳥配置するレイアウトである。 This is a layout in which the processing apparatuses 102 are alternately arranged in a staggered manner with respect to the transport path including 101 with the tunnel 101 interposed therebetween.
(移載装置の構成)  (Configuration of transfer equipment)
次に、 図 8 Aに示した移載装置 903の内部構成について、 図 10乃至 図 12 Bを用いて説明する。  Next, the internal configuration of the transfer device 903 shown in FIG. 8A will be described with reference to FIGS. 10 to 12B.
図 10は、 基板をストックする機能を持たない移載装置 903の内部構 成を示す上面図である。 この移載装置 903は、 メイン搬送路 901と、 サブ搬送路 902 aまたはサブ搬送路 902 bとの間で基板 Sを移載する ための装置である。 図 10において、 移載装置 903の内部には、 メイン 搬送路 901のトンネル 101内から連続したレール 201 aと、 サブ搬 送路 902 a, 902 bのトンネル 101内から連続したレール 201 b、 201 cとが設けられている。 これにより移載装置 903、 それぞれの搬 送路 901のトンネル 101内を走行する基板搬送車 202が出入りでき る搆成となっている。  FIG. 10 is a top view showing the internal configuration of the transfer device 903 having no function of stocking substrates. The transfer device 903 is a device for transferring the substrate S between the main transport path 901 and the sub transport path 902a or 902b. In FIG. 10, inside the transfer device 903, a continuous rail 201a from within the tunnel 101 of the main transport path 901 and continuous rails 201b, 201 from within the tunnel 101 of the secondary transport paths 902a, 902b. c is provided. Thus, the transfer device 903 and the substrate transport vehicle 202 traveling in the tunnel 101 of each transport path 901 can enter and exit.
また、 移載装置 903の内部には、 更に、 レールの数と同数の突上げテ 一ブル 1001 a、 1001 b, 1001 cと、 移載ロボット 1002と が設けられている。 各レ一ル 201 a、 201 b、 201 cを搬送してき た基板搬送車 202が、 突上げテーブル 1001 a、 1001 b、 100 1 cの上部で停止すると、 突上げテーブル 1001 a、 1001 b、 10 01 cは、 基板搬送車 202が搬送してきた基板 Sを下方から突上げる。 その状態で、 基板搬送車 202が逃げると、 突上げテ一ブル 1001 a、 1001 b、 1001 cに残された基板の下方に移載ロポット 1002の U字状のハンドが入り込み、 突上げテーブル 1001 a、 1001 b、 1 001 cが下がることによって、 基板が移載ロポット 1002に渡される。 そして、 移載ロボット 1.002が回転することにより、 基板 Sは他の突上 げテ一ブルに渡され、 更に異なるレール上の基板搬送車 2002に移載さ れる。 このような移載処理をスムーズに行うため、 移載口ポット 1002 - 17 - のアームには、 少なくとも 2箇所の関節部分があり、 非常に自由に基板 S を動かすことができる。 Further, inside the transfer device 903, further, push-up tables 1001a, 1001b, and 1001c, the same number as the number of rails, and a transfer robot 1002 are provided. When the substrate carrier 202, which has transported each of the rails 201a, 201b, 201c, stops above the push-up tables 1001a, 1001b, 1001c, the push-up tables 1001a, 1001b, 10 01c pushes up the substrate S transported by the substrate transport vehicle 202 from below. In this state, when the board carrier 202 escapes, the U-shaped hand of the transfer robot 1002 enters below the board left in the push-up tables 1001a, 1001b, and 1001c, and the push-up table 1001 The substrates are transferred to the transfer robot 1002 by lowering a, 1001 b, and 1001 c. Then, as the transfer robot 1.002 rotates, the substrate S is transferred to another protruding table and further transferred to the substrate transport vehicle 2002 on a different rail. To facilitate such transfer processing, transfer port pot 1002 -17-The arm has at least two joints, and the board S can be moved very freely.
次に、 基板をストックする機能を有する移載装置 9 0 3について、 図 1 1 A乃至図 1 1 D及び図 1 2 A、 Bを用いて説明する。 図 1 1 Aは、 基板 をストックする機能を有する移載装置 9 0 3の内部構成を示す上面図であ る。 図 1 1 Bは、 その側断面図である。 この移載装置 9 0 3は、 メイン搬 送路 9 0 1と、 サブ搬送路 9 0 2 aまたはサブ搬送路 9 0 2 bとの間で基 板を移載すると共に、 基板をストックするための装置である。 このように 基板 Sを 1枚ずつ保管することにより、 サブ搬送路とメイン搬送路で搬送 される基板の数を調整することが可能となり、 処理負荷が大きくなつた場 合のバッファとして機能する。  Next, a transfer device 903 having a function of stocking a substrate will be described with reference to FIGS. 11A to 11D and FIGS. 12A and 12B. FIG. 11A is a top view showing the internal configuration of a transfer device 903 having a function of stocking a substrate. FIG. 11B is a side sectional view thereof. The transfer device 903 is used to transfer a substrate between the main transport path 901, and the sub-transport path 902a or the sub-transport path 902b, and to stock the substrates. Device. By storing the substrates S one by one in this way, it is possible to adjust the number of substrates transported in the sub-transport path and the main transport path, and function as a buffer when the processing load increases.
' 図 1 1 A、 図 1 1 Bに示す移載装置 9 0 3には、 ストッカ 1 1 0 1のほ か、 2つのァ一ム 1 1 0 2 a、 1 1 0 2 bを有する移載手段としての移載 ロポット 1 1 0 2が設けられている。 その他の構成は、 図 1 0に示した移 載装置 9 0 3と同様であるため、 同じ機構には同じ符号を付してその説明 を省略する。 ストッカ 1 1 0 1を備えた移載装置の場合には、 基板 Sの移 載処理枚数が多くなるため、 このように移載ロボット 1 1 0 2が 2つのァ —ム 1 1 0 2 a、 1 1 0 2 bを備えることが望ましいが、 もちろん 1つの アームのみを有する図 1 0のタイプの移載ロポット 1 0 0 2を用いてもか まわない。 なお、 この移載口ポット 1 1 0 2の各ァ一ム 1 1 0 2 a、 1 1 0 2 bも図 1 0で説明した移載ロポット 1 0 0 2のアームと同様の動きを するため、 ここではその説明を省略する。  '' The transfer device 903 shown in Fig. 11A and Fig. 11B has a transfer device with two arms 1 1 0 2a and 1 1 0 2b in addition to the stocker 1 1 1 A transfer robot 1102 is provided as a means. The other configuration is the same as that of the transfer device 903 shown in FIG. In the case of the transfer device having the stocker 111, the number of substrates S to be transferred is large, and thus the transfer robot 1102 has two arms 110102a, Although it is desirable to have the unit 110 b, it is needless to say that a transfer robot 1002 of the type shown in FIG. 10 having only one arm may be used. Note that the respective arms 1102a and 1102b of this transfer port pot 1102 also operate in the same manner as the arms of the transfer pot 1002 described in FIG. Here, the description is omitted.
ここでは、 ストッカ 1 1 0 1の形状は 8角柱であり、 矢印のように回転 することによって、 8つの面から 8つの棚 1 1 0 1 dに対して基板を挿入 可能である。 図 1 1 Aは、 8つの棚のうち、 4つの棚に基板がストックさ れている状態を示している。 棚に対して基板 Sを挿入する際には、 図のよ うに扉 1 1 0 1 aが開かれる。 8つの棚の上面中央には、 清浄ュニット 1 - 18 - Here, the shape of the stocker 111 is an octagonal prism, and the substrate can be inserted into eight shelves 110 d from eight surfaces by rotating as shown by arrows. FIG. 11A shows a state in which substrates are stocked in four of the eight shelves. When the board S is inserted into the shelf, the door 111a is opened as shown in the figure. In the center of the top of the eight shelves, a clean unit 1 -18-
1 0 1 bが設けられており下方に向けて矢印のようにクリーンエア一を吹 出している。 なお、 清浄ュニットは、 移載装置 9 0 3の上部に更に設けて もよい。 101b is provided, and clean air is blown downward as indicated by an arrow. The cleaning unit may be further provided on the upper part of the transfer device 903.
図 1 1 Bに示すように、 8つの棚 1 1 0 1 dはそれぞれ複数の基板保管 室 1 1 0 1 eが上下方向に積重なった形状となっている。 8つの棚の下部 には、 ストッカ回転装置 1 1 0 1 cが設けられており、 ストッカ 1 1 0 1 の全体を、 時計方向或は反時計方向に回転させる。  As shown in FIG. 11B, each of the eight shelves 1 101 d has a shape in which a plurality of substrate storage rooms 110 e are vertically stacked. A stocker rotating device 111c is provided below the eight shelves, and rotates the entire stocker 1101 clockwise or counterclockwise.
なお、 上下方向に連続する基板保管室 1 1 0 1 eのそれぞれに基板を搬 送するため、 移載ロボット 1 1 0 2は、 上下方向にも移動可能である。 こ の場合、 突上げテーブル 1 0 0 1の代りに上下移動不可能なテーブルを用 いることができる。 また、 或は、 基板搬送車 2 0 2から直接移載口ポット 1 1 0 2が基板 Sを受取る構成も可能である。 ただし、 基板搬送車 2 0 2 から直接基板 Sを受取るためには、 移載ロポット 1 1 0 2のアーム 1 1 0 2 a、 1 1 0 2 bの先端に設けられたハンドを基板搬送車 2 0 2のトレイ 形状に合わせた形状とする必要がある。  The transfer robot 1102 can also be moved in the vertical direction in order to transport the substrate to each of the substrate storage chambers 111e that are vertically continuous. In this case, a table that cannot be moved up and down can be used instead of the push-up table 1001. Alternatively, a configuration in which the transfer port pot 1102 directly receives the substrate S from the substrate transport vehicle 202 is also possible. However, in order to directly receive the substrate S from the substrate transport vehicle 202, the hand provided at the tip of the arms 110102a and 110102b of the transfer robot 110102 must be attached to the substrate transport vehicle 202. It is necessary to make the shape according to the tray shape of 02.
なお、 図 1 1 Bに示すようにメイン搬送路 9 0 1とサブ搬送路 9 0 2と は、 互いのレールが抵触しあわないように上下方向にずれていることが望 ましい。 更に、 ストツ力の形状は 8角柱に限らず、 円柱でもよく、 その他 の多角柱でもよい。 また、 移載ロボット 1 1 0 2が上下左右に移動する機 構を有していれば、 回転をしない平面棚をストツ力として用いても良い。 図 1 1 Cは、 ストッカ 1 1 0 1の他の例について説明するための上面図 であり、 図 1 1 Dは図 1 1 Cの X— Xで切断した部分断面図である。 図 1 1 C及び図 1 1 Dに示す例では、 複数の基板保管室 1 1 0 1 eはドーナツ 状のテーブル 1 1 0 1 f上に形成され、 テーブル 1 1 0 1 f は中心部分で 中空モータに支持されている。 これにより、 基板保管室 1 1 0 1 eは 1段 毎に一体となって回転可能となっている。 ストッカ 1 1 0 1全体は、 これ らのテーブル 1 1 0 1 f及び中空モータが上下方向に積重なった多層構造 - 19 - となっている。 詳しく説明すると、 中空モ一夕は、 ドーナツ状の回転部 1 1 0 1 gとドーナツ状の固定部 1 1 0 1 hとを含み、 回転部 1 1 0 1 gが 固定部 1 1 0 1 hに対して回転可能となっている。 そして、 テーブル 1 1 0 1 fの下面は回転部 1 1 0 1 gの上面に固定され、 固定部 1 1 0 1 hの 下面は、 固定部材 1 1 0 1 iの上面に固定されている。 また、 各段の固定 部材 1 1 0 1 i同士は、 それぞれ、 円柱状の複数の支持部材 1 1 0 1 jに よって接続されており、 全体として中空の夕ヮ一状となっている。 ストツ 力 1 1 0 1の中心に位置する中空部分上方には、 清浄ュニット (不図示) が設けられており下方に向けて矢印のようにクリーンエアーを吹出してい る。 As shown in FIG. 11B, it is desirable that the main transport path 901 and the sub transport path 902 are vertically displaced so that their rails do not conflict with each other. Further, the shape of the Stot force is not limited to an octagonal prism, but may be a cylinder or another polygonal prism. In addition, if the transfer robot 1102 has a mechanism for moving up, down, left, and right, a flat shelf that does not rotate may be used as the stopping force. FIG. 11C is a top view for explaining another example of the stocker 1101, and FIG. 11D is a partial cross-sectional view taken along XX of FIG. 11C. In the example shown in FIGS. 11C and 11D, the plurality of substrate storage chambers 110 1 e are formed on a donut-shaped table 111 f, and the table 110 f is hollow at the center. Supported by the motor. As a result, the substrate storage chambers 111 e can be integrally rotated for each stage. The entire stocker 1101 has a multilayer structure in which these tables 1101f and hollow motors are stacked vertically. -19- More specifically, the hollow motor includes a donut-shaped rotating part 111 g and a donut-shaped fixing part 111 h, and the rotating part 111 g has a fixing part 110 101 h. It is rotatable with respect to. The lower surface of the table 111f is fixed to the upper surface of the rotating portion 110g, and the lower surface of the fixing portion 111h is fixed to the upper surface of the fixing member 111i. Further, the fixing members 1101i in each stage are connected to each other by a plurality of columnar supporting members 1101j, and have a hollow, hollow shape as a whole. A cleaning unit (not shown) is provided above the hollow portion located at the center of the storage force 1101, and blows clean air downward as indicated by an arrow.
このように各段にモータを設けたので、 各モータに対する負荷を軽減で き高速かつ高精度に回転 ·停止が可能となる。 そして、 ストッカ 1 1 0 1 に対するレチクルまたは基板などの保管 ·入替動作を効率よく行うことが できる。 また、 段毎にレチクルまたは、 基板などを分けて収納することが 可能となり、 それらの管理が容易となる。 更に、 口ポットに求められる動 きが少なくて済むため、 口ポットを小型化することが可能となり、 ひいて はシステム全体の規模を小さくできる。  Since the motors are provided at each stage, the load on each motor can be reduced, and the motor can be rotated and stopped at high speed and with high accuracy. Then, the storage / replacement operation of the reticle or the substrate or the like with respect to the stocker 111 can be efficiently performed. In addition, a reticle or a substrate can be stored separately for each stage, which facilitates the management. Furthermore, since the movement required for the mouth pot is small, the mouth pot can be reduced in size, and the size of the entire system can be reduced.
なお、 以上に説明したストッカは、 基板の代わりに、 レチクルを保管す るものとしても使用できる。 また、 基板とレチクルとを同一のストツ力に 保管しても良い。 更に、 このス卜ッ力は、 枚葉搬送を前提としないシステ ムにも応用できる。 つまり、 基板を収納したカセット (例えば F O U P : Front Opening Uni f ied Pod) を一時的に保管するものとして変形することも 可能である。 図 1 1 Cに示すストッカをカセットを収容するストツ力とし て応用すれば、 やはり、 従来に比べて口ポットに求められる動きが少なく て済むため、 口ポットを小型化することが可能となり、 ひいてはシステム 全体の規模を小さくできる。  Note that the stocker described above can be used to store a reticle instead of a substrate. Further, the substrate and the reticle may be stored with the same stopping power. Further, this storage force can be applied to a system that does not assume a single-sheet transfer. In other words, it is possible to transform a cassette containing substrates (for example, FOUP: Front Opening Unifed Pod) as a temporary storage. If the stocker shown in Fig. 11C is applied as a stocking force for accommodating cassettes, the movement required for the mouth pot can be reduced as compared with the conventional case, so that the mouth pot can be downsized. The size of the entire system can be reduced.
図 1 2 A、 Bは、 基板の情報を読みとる読取装置 1 2 0 1を備えた移載 - 20 - 装置 9 0 3について説明する図である。 図 1 2 A、 図 1 2 Bに示す移載装 置 9 0 3は、 レチクルまたは、 基板などに付随されている情報を読み取る ための読取装置 1 2 0 1を、 それぞれの突上げテーブル 1 0 0 1 a、 1 0 0 1 b、 1 0 0 1 cの上方に備えている。 その他の構成は、 図 1 1 A、 B に示した移載装置 9 0 3と同様であるため、 同じ機構には同じ符号を付し てその説明を省略する。 Figures 12A and 12B show the transfer with a reader device for reading board information. FIG. 20 is a diagram for explaining the device 903. The transfer device 903 shown in FIGS. 12A and 12B is a reading device for reading information attached to a reticle or a substrate, etc. It is provided above 01a, 1001b, and 1001c. The other configuration is the same as that of the transfer device 903 shown in FIGS. 11A and 11B.
読取装置 1 2 0 1は、 レチクルまたは、 基板などに付随されている情報 を読み取り、 ストッカ 1 1 0 1に保管されたレチクルまたは、 基板などに ついての保管情報を、 不図示の情報管理装置に送信する。 これにより、 ス トツ力 1 1 0 1内の基板ゃレチクルの数量を管理することが可能となる。 そして、 情報管理装置の情報に基づき、 各処理装置 1 0 2の要求に対応す るレチクルまたは基板などを、 ストッカ 1 1 0 1から取り出して目的の処 理装置へ搬送する。 なおここでは、 読取装置 1 2 0 1は突上げテーブル 1 0 0 1 a , 1 0 0 1 b , 1 0 0 1 cの上方に配置したが、 ストッカ 1 1 0 1の基板保管室 1 1 0 1 e内に各々配置しても良い。 また、 ワイヤレス通 信用 I Cメモリ (無線 I Cタグ) を使用して情報の管理を行えば、 一度に 複数のレチクルまたは基板などの情報を通信することが可能になり、 スト ッカ 1 1 0 1内のレチクルや基板などの情報をリアルに管理することがで さる。  The reader device 201 reads information attached to the reticle or the substrate, etc., and transfers the stored information about the reticle or the substrate, etc. stored in the stocker 111 to an information management device (not shown). Send. As a result, it is possible to manage the number of substrates / reticles in the storage force 111. Then, based on the information of the information management device, a reticle or a substrate corresponding to the request of each processing device 102 is taken out from the stocker 111 and transported to a target processing device. In this case, the reader 1 201 was placed above the push-up tables 1001a, 1001b, and 1001c, but the substrate storage room 1 1 0 Each of them may be arranged within 1 e. In addition, if information is managed using wireless communication IC memory (wireless IC tags), information on multiple reticles or substrates can be communicated at once, and the information in the stocker 111 Real-time management of information such as reticles and substrates.
また、 移載装置に含まれるストツ力の数は一台として説明したが、 複数 設けてもよい。  Also, the number of stop forces included in the transfer device has been described as one, but a plurality may be provided.
(本実施形態の効果)  (Effect of this embodiment)
以上に説明したように、 本実施形態によれば、 トンネル内において基板 等を枚葉搬送するので、 基板等の周辺環境を高い精度で清浄化することが でき、 結果として基板処理精度が向上する。 インタフェース装置を様々な 処理装置に適合できるように汎用化したので、 それぞれの処理装置に合わ せて多種のインタフェース装置を用意する必要が無く、 システム全体とし - 21 - て設備費を削減することができる。 また、 トンネルの下方にイン夕フエ一 ス装置を配置することにより、 基板搬入口の高さの異なる様々な処理装置 に対しても、 インタフエ一ス装置の設置位置を変えるだけで対応すること ができ、 更にシステムの汎用化が図れる。 また、 搬送通路としてのトンネ ルとイン夕フエ一ス装置との基板受渡しを突上げ機構により実現したので、 突上げのスト口一クを変えるだけで、 如何なる高さに設置されたインタフ エース装置に対しても基板を受渡すことができ、 より汎用化を図ることが できる。 また、 突上げ機構にオリフラ合わせ機能を組込むことでより装置 の小型化を図ることができる。 また、 インターフェース装置に真空対応の :を備えることが可能なので、 改めて気圧切替のための気圧切替え 装置を設ける必要がなく設備設置面積を有効に使用でき、 設備費用の大巾; な削減が可能となる。 As described above, according to the present embodiment, the substrate and the like are conveyed one by one in the tunnel, so that the surrounding environment of the substrate and the like can be cleaned with high accuracy, and as a result, the substrate processing accuracy is improved. . Since the interface device has been generalized so that it can be adapted to various processing devices, there is no need to prepare various types of interface devices for each processing device. The equipment cost can be reduced. In addition, by arranging the interface device below the tunnel, it is possible to cope with various processing devices with different heights of the substrate entrance simply by changing the installation position of the interface device. The system can be generalized. In addition, since the transfer of the substrate between the tunnel as the transfer passage and the interface device is realized by the push-up mechanism, the interface device installed at any height can be changed simply by changing the stroke of the push-up stroke. The substrate can also be delivered to the server, and generalization can be achieved. In addition, by incorporating the orientation flat alignment function into the push-up mechanism, the size of the device can be further reduced. In addition, since the interface device can be equipped with a vacuum compatible:, there is no need to provide a pressure switching device for switching the air pressure, and the equipment installation area can be used effectively, and the equipment cost can be greatly reduced. Become.
また、 1つのトンネル内に複数の基板搬送車を多重に走行させる構成と したので、 各基板搬送車は両方向へ独立に走行可能であり、 追越しなどを 行うこともできるので停滞無く基板を搬送することが可能となる。  In addition, since multiple substrate transport vehicles are configured to travel multiple times in one tunnel, each substrate transport vehicle can travel independently in both directions, and can pass, etc., so that substrates can be transported without stagnation. It becomes possible.
<第 2実施形態 >  <Second embodiment>
次に、 本発明の第 2実施形態に係るインタフェース装置について図 1 3 〜図 1 8を用いて説明する。 本実施形態に係るインタフェース装置は、 そ のチャンバ 1 3 0 2内部にロポッ卜アームを有する点で上記第 1実施形態 と異なる。 その他の構成については、 上記第 1実施形態と同様であるため、 ここでは同じ構成については同じ符号を付してその説明を省略する。  Next, an interface device according to a second embodiment of the present invention will be described with reference to FIGS. The interface device according to the present embodiment is different from the first embodiment in that the interface device has a rod arm inside the chamber 132. Other configurations are the same as those in the first embodiment, and thus the same components are denoted by the same reference numerals and description thereof will be omitted.
図 1 3〜1 8は、 本実施形態に係るイン夕フェース装置 1 0 3のチャン ノ 1 3 0 2の内部の様子を示す図であり、 図 1 3〜図 1 8の aはチャンバ 1 3 0 2内部の平面図、 bはチャンバ 1 3 0 2内部の正面図を示す。 また、 図 1 3の cはチャンバ 1 3 0 2内部の左側面図である。 なお、 説明を分り やすくするため、 これらの図においてチャンバ 1 3 0 2の壁面部分は断面 で示している。 チャンバ 1 3 0 2内部には、 2つのロボットアーム 1 3 0 -22- FIGS. 13 to 18 are views showing the inside of the channel 13 02 of the interface device 103 according to the present embodiment, and a in FIGS. 13 to 18 denotes the chamber 13. FIG. 2B is a plan view of the inside of the chamber 132, and FIG. FIG. 13C is a left side view of the inside of the chamber 1302. In these figures, the wall of the chamber 1302 is shown in cross section for easy understanding. Two robot arms 1 3 0 inside chamber 1 3 0 2 -twenty two-
3, 1304が設けられており、 チャンバ 1302の底部に設けられたァ —ム台 1305によって回動可能に支持されている。 3, 1304 are provided, and are rotatably supported by an arm table 1305 provided at the bottom of the chamber 1302.
ロポットァ一ム 1303、 1304は、 基板を載置するハンド 1303 a、 1304 aをそれぞれ有している。 ハンド 1303 a、 1304 aは、 基板搬送車のトレー 202 aに似た、 フォーク状の先端部を有し、 その開 口部のギャップは、 突上げロッド 601 aの外径よりも広くなつている。 ノ\ンド 1303 a、 1304 aは、 それぞれ、 第 1腕部 1303 b、 13 04 bの一端に回動可能に接続されており、 第 lfl宛部 1303 b、 130 The robot programs 1303 and 1304 have hands 1303a and 1304a on which substrates are placed, respectively. The hands 1303 a and 1304 a have a fork-like tip similar to the tray 202 a of the substrate carrier, and the opening gap is wider than the outer diameter of the push-up rod 601 a. . The nodes 1303 a and 1304 a are rotatably connected to one ends of the first arm portions 1303 b and 1304 b, respectively, and
4 bの他端は、 第 2腕部 1303 c、 1304 cに回動可能に接続されて いる。 更に、 第 2腕部 1303 c、 1304 cの他端はアーム台 1305 に回動可能に接続されている。 また、 図 13の cに示すように、 第 1腕部 1303 bと 1303 cとの接続部分には、 円筒状のスぺーサ 1303 d が設けられているため、 第 1腕部 1303 bと第 1腕部 1304 bとは、 その高さが異なっており、 このため、 ハンド 1303 aとハンド 1304 aとは、 互いにぶつかることなく水平方向に自由に移動可能となっている。 図 13は、 ロポットアーム 1303及びロボットアーム 1304が共に基 本位置で待機している状態を示している。 この基本位置ではそれらのハン ド 1303 a、 1304 aは、 水平方向に同一のポジショ に位置するた め、 図 13の aでは、 上側のハンド 1303 aのみ表示されている。 The other end of 4b is rotatably connected to second arms 1303c and 1304c. Further, the other ends of the second arms 1303 c and 1304 c are rotatably connected to the arm base 1305. Further, as shown in FIG. 13C, since a cylindrical spacer 1303d is provided at a connection portion between the first arm portions 1303b and 1303c, the first arm portion 1303b and the third arm portion 1303b are connected to each other. The height of the arm 1304b is different from that of the arm 1304b. Therefore, the hand 1303a and the hand 1304a can move freely in the horizontal direction without hitting each other. FIG. 13 shows a state where both the robot arm 1303 and the robot arm 1304 are waiting at the basic position. In this basic position, the hands 1303a and 1304a are located at the same position in the horizontal direction, and therefore only the upper hand 1303a is shown in FIG. 13A.
図 14は、 本実施形態に係るイン夕フェース装置 103がトンネル 10 1から基板 Sを受取った状態を示す図である。 トンネル 101を走行する 基板搬送車 202から基板を受取り、 ハンド 1303 aに載置するまでの 処理は、 上記第 1実施形態とほぼ同様である。 すなわち、 基板 Sを載置し た基板搬送車 202が、 レール 201に沿って走行して、 インタフェース 装置 103の上部で停止する。 次にトンネル 101下部のシャツ夕 204 とインタフェース上部のゲートバルブ 502が開き、 基板昇降ュニット 6 01が動作し、 突上げ口ッド 601 aが上昇して基板搬送車 202のトレ - 23 - FIG. 14 is a diagram showing a state where the interface device 103 according to the present embodiment has received the substrate S from the tunnel 101. As shown in FIG. The processing from receiving the substrate from the substrate transport vehicle 202 traveling in the tunnel 101 to placing it on the hand 1303a is almost the same as in the first embodiment. That is, the substrate transport vehicle 202 on which the substrate S is mounted travels along the rail 201 and stops at the upper portion of the interface device 103. Next, the shirt 204 at the lower part of the tunnel 101 and the gate valve 502 at the upper part of the interface are opened, the board elevating unit 6001 is operated, the push-up port 601a is raised, and the board - twenty three -
— 2 0 2 a上の基板 Sを突上げる。 — Push up the substrate S on 202 a.
基板 Sの突上げが完了すると、 突上げロッド 6 0 1 aがトレー 2 0 2 a のギャップ Gを通るように、 基板搬送車 2 0 2を移動させる。 基板搬送車 When the lifting of the substrate S is completed, the substrate transport vehicle 202 is moved so that the lifting rod 600a passes through the gap G of the tray 202a. Substrate transport vehicle
2 0 2が基板受け渡し位置から完全に退避すると、 基板昇降ユニット 6 0 1が動作し、 突上げロッド 6 0 1 aが基板 Sを載置したまま下降する。 ま た、 これと同時に、 口ポットアーム 1 3 0 3の各関節を駆動させ、 ハンド 1 3 0 3 aの先端に設けられたフォーク状の開口部に突上げロッド 6 0 1 aが入るようにハンド 1 3 0 3 aを移動させる。 一方、 基板 Sを載置した突上げ口ッド 6 0 1 aは、 基板 Sがハンド 1 3 0 3 aに到達する前に一旦停止し、 その位置で基板 Sを回転してオリフラ (or i entat ion frac ture) 合わせを行う。 オリフラ合せが終了すると、 更 に突上げロッド 6 0 1 aを下降させ、 図 1 4に示すように、 ハンド 1 3 0When 202 is completely retracted from the substrate transfer position, the substrate elevating unit 601 operates, and the push-up rod 601a descends with the substrate S placed thereon. At the same time, the joints of the mouth pot arm 133 are driven so that the push-up rod 61 a enters into the fork-shaped opening provided at the tip of the hand 133 a. Move the hand 1303a. On the other hand, the push-up port 6 101 a on which the substrate S is placed temporarily stops before the substrate S reaches the hand 133 a, and rotates the substrate S at that position to rotate the orientation flat (or i entat ion frame). When the orientation flat alignment is completed, the push-up rod 61 a is further lowered, and as shown in FIG.
3 a上に基板 Sを載置する。 そして、 トンネル 1 0 1下部のシャツタ 2 0 4とインタフェース上部のゲートバルブ 5 0 2を閉じる。 その後、 インタ3 Place the substrate S on a. Then, the shirt 204 at the bottom of the tunnel 101 and the gate valve 502 at the top of the interface are closed. After that,
—フェース装置 1 0 3の内部気圧を処理装置 1 0 2の気圧と一致させる。 次に、 処理装置 1 0 2側のゲートバルブ 5 0 3を開き、 図 1 5に示すよう に、 ロポットアーム 1 3 0 3を処理装置 1 0 2側に突出す。 処理装置 1 0 2が、 ロポットアーム 1 3 0 3のハンド 1 3 0 3 aに載置された基板 Sを 受け取ると、 ロポットァ一ム 1 3 0 3を図 1 3に示す基本位置に後退させ る。 次に、 ゲートバルブ 5 0 3を閉じて、 チャンバ 5 0 1内の気圧を大気 圧に戻す。 —The internal pressure of the face device 103 is made to match the pressure of the processing device 102. Next, the gate valve 503 on the processing apparatus 102 side is opened, and as shown in FIG. 15, the robot arm 1303 protrudes toward the processing apparatus 102 side. When the processing device 102 receives the substrate S placed on the hand 1303a of the robot arm 1303, the processor 130 is retracted to the basic position shown in FIG. . Next, the gate valve 503 is closed, and the pressure in the chamber 501 is returned to the atmospheric pressure.
次に、 上記に説明した手順と全く同じ手順で再度基板搬送車 2 0 2から 基板 Sを受取り、 図 1 4の状態にまで移行させる。 次に、 図 1 4の状態か ら、 下側のロポットアーム 1 3 0 4を処理装置 1 0 2側に伸ばし、 図 1 6 の状態に移行して処理装置 1 0 2から処理済の基板 S 1を受取る。 図 1 6 では、 上側のロポットアーム 1 3 0 3に載置された未処理の基板を基板 S - 24 · Next, the substrate S is received again from the substrate transport vehicle 202 in exactly the same procedure as described above, and the state is shifted to the state shown in FIG. Next, from the state shown in FIG. 14, the lower robot arm 1304 is extended to the processing device 102 side, and the state shown in FIG. 16 is shifted to the state shown in FIG. Receive 1 In FIG. 16, the unprocessed substrate placed on the upper robot arm 13 - twenty four ·
2としている。 And 2.
更に、 下側のロポットアーム 1 3 0 4を退避させつつ、 代りに上側の口 ポットアーム 1 3 0 3を処理装置 1 0 2側に伸ばして図 1 7の状態に移行 する。 処理装置 1 0 2が、 ロポットアーム 1 3 0 3のハンド 1 3 0 3 aに 載置された未処理の基板 S 2を受取ると、 図 1 8に示すように口ポットァ ーム 1 3 0 3を基本位置まで後退させ、 ゲ一トバルブ 5 0 3を閉じてチヤ ンバ 5 0 1内の気圧を大気圧に戻す。 その後、 基板搬送車 2 0 2に基板取 出し要求を出し、 基板搬送車 2 0 2をインタフェース装置 1 0 3上方の基 板受取位置手前で待機させ、 シャツ夕 2 0 4とゲートバルブ 5 0 2が開く。 次いで、 突上げロッド 6 0 1 aが上昇してハンド 1 3 0 4 a上の基板 S 1 を突上げ、 更に上昇して停止する。 そして、 待機位置で待機していた基板 搬送車 2 0 2のギャップ Gを突上げロッド 6 0 1 aが通るように、 基板搬 送車 2 0 2を移動させる。 その状態で突上げロッド 6 0 1 aが下降して、 基板搬送車 2 0 2のトレー 2 0 2 a上に基板 S 1を載置する。 突上げロッ ド 6 0 1 aが下降完了後、 基板搬送車 2 0 2は基板 S 1を次の処理装置へ 搬送し、 同時に、 シャツタ 2 0 4と、 ゲートバルブ 5 0 2を閉じる。  Further, while retracting the lower robot arm 1304, the upper arm 1303 is instead extended toward the processing apparatus 102, and the state shifts to the state shown in FIG. When the processing apparatus 102 receives the unprocessed substrate S2 placed on the hand 1303a of the robot arm 1303, the mouth pot arm 1303 as shown in FIG. Is retracted to the basic position, the gate valve 503 is closed, and the pressure in the chamber 501 is returned to the atmospheric pressure. After that, a substrate removal request is issued to the substrate transport vehicle 202, and the substrate transport vehicle 202 is made to stand by in front of the substrate receiving position above the interface device 103, and the shirt 204 and the gate valve 502 Opens. Next, the push-up rod 600a rises to push up the substrate S1 on the hand 134a, and further rises and stops. Then, the substrate transporter 202 is moved so that the push-up rod 601a passes through the gap G of the substrate transporter 202 that has been waiting at the standby position. In this state, the push-up rod 61 a descends, and the substrate S 1 is placed on the tray 202 a of the substrate carrier 202. After the push-up rod 601a has been lowered, the substrate transporter 202 transports the substrate S1 to the next processing apparatus, and at the same time, closes the shutter 204 and the gate valve 502.
その後は、 ロボットアーム 1 3 0 4を、 再度、 図 1 3に示す基本位置に 戻し、 その後、 図 1 4→図 1 6→図 1 7→図 1 8→図 1 3といった一連の 状態変化が繰返されるように、 ロポットアーム 1 3 0 3、 1 3 0 4、 突上 げロッド 6 0 1 a、 基板搬送車 2 0 2、 シャツ夕 2 0 4、 ゲ一トバルブ 5 0 2 , 5 0 3、 ポンプ 8 0 1等を動作する。  After that, the robot arm 1304 is returned to the basic position shown in Fig. 13 again, and then a series of state changes such as Fig. 14 → Fig. 16 → Fig. 17 → Fig. 18 → Fig. Repeatedly, robot arm 13 0 3, 1 3 4 4, push-up rod 6 0 1 a, substrate carrier 2 0 2, shirt 2 0 4, gate valve 5 0 2, 5 0 3, Activate the pump 801 etc.
以上のように、 2段の口ポットアームを用いることにより、 処理装置 1 0 2への未処理基板の搬入と処理装置 1 0 2からの処理済基板の搬出とを 同時に行うことができるため、 処理済の基板を基板搬送車に乗せてから次 の未処理の基板を搬入する場合に比べ、 基板の処理を格段に速く行うこと ができる。  As described above, by using the two-stage mouth pot arm, it is possible to simultaneously carry in the unprocessed substrate to the processing apparatus 102 and carry out the processed substrate from the processing apparatus 102, Substrate processing can be performed much faster than when a processed substrate is loaded on a substrate carrier and the next unprocessed substrate is loaded.
本実施形態の変形例を図 1 9に示す。 図 1 9は、 図 1 3と同様にイン夕 - 25 - フェース装置 1 0 3のチャンバ 1 9 0 2の内部の様子を示す図であり、 図 1 9の aはチャンバ 1 9 0 2内部の平面図、 bはチヤンバ 1 9 0 2内部の 正面図、 図 1 3 cはチャンバ 1 9 0 2内部の左側面図である。 なお、 説明 を分りやすくするため、 これらの図においてチャンバ 1 9 0 2の壁面部分 は断面で示している。 FIG. 19 shows a modification of the present embodiment. Fig. 19 is similar to Fig. 13 -25-Fig. 19 is a diagram showing the inside of the chamber 1902 of the face device 103. Fig. 19a shows a plan view of the inside of the chamber 1902, and b shows the front of the interior of the chamber 1902. Fig. 13c is a left side view of the inside of the chamber 1902. Note that the wall portion of the chamber 1902 is shown in cross section in these figures for easy understanding.
チャンバ 1 9 0 2内部には、 2つのスライドアーム 1 9 0 3 a、 1 9 0 3 bを備えたスライドユニット 1 9 0 3が設けられている。 また、 スライ ドュニット 1 9 0 3は、 スライド台 1 9 0 3 cとスライダドライブ 1 9 0 3 dを含み、 スライダドライブ 1 9 0 3 dからの動力によってスライド台 1 9 0 3 cに取付けられたスライドア一ム 1 9 0 3 a、 1 9 0 3 bが、 矢 印方向に水平に往復移動する。  Inside the chamber 1902, a slide unit 1903 including two slide arms 1903a and 1903b is provided. The slide unit 1903 includes a slide base 1903c and a slider drive 1903d, and was attached to the slide base 1903c by power from the slider drive 1903d. The slide arms 1903 a and 1903 b reciprocate horizontally in the direction of the arrow.
スライドアーム 1 9 0 3 a、 1 9 0 3 bは、 上述の口ポットアームと同 様に、 フォーク状の先端部を有し、 その開口部のギャップは、 突上げロッ ド 6 0 1 aの外径よりも広くなつている。 また、 スライドアーム 1 9 0 3 a、 1 9 0 3 bは、 スライド台 1 9 0 3 cの両側面にスライド可能に接続 されており、 図 1 9の cに示すように、 それぞれ高さが異なるように異な る形状の腕によって支持されている。 このため、 スライドアーム 1 9 0 3 aとスライドア一ム 1 9 0 3 bとは、 互いにぶつかることなく水平方向に 自由にスライド可能となっている。 図 1 9は、 スライドアーム 1 9 0 3 a 及びスライドアーム 1 9 0 3 bが共に基本位置で待機している状態を示し ている。 この基本位置では、 スライドアーム 1 9 0 3 a、 1 9 0 3 bの先 端は、 第 1実施形態と同様に処理装置 1 0 2とは逆の方向に退避しており、 基板を載置した突上げロッド 6 0 1 aが、 自由に上下できる状態となって いる。  Each of the slide arms 1903a and 1903b has a fork-like tip like the above-mentioned mouth pot arm, and the gap of the opening is the same as that of the push-up rod 61a. It is wider than the outside diameter. Also, the slide arms 1903 a and 1903 b are slidably connected to both sides of the slide table 1903 c, and each has a height as shown in Fig. 19c. It is supported by differently shaped arms. For this reason, the slide arm 1903 a and the slide arm 1903 b can freely slide in the horizontal direction without hitting each other. FIG. 19 shows a state in which both the slide arm 1903a and the slide arm 193b are waiting at the basic position. At this basic position, the leading ends of the slide arms 1903 a and 1903 b are retracted in the opposite direction to the processing apparatus 102, as in the first embodiment, and The raised push rod 6 01 a can freely move up and down.
このような図 1 9に示すインタフェース装置 1 0 3でも、 図 1 3〜図 1 8を用いて説明した処理と同様の処理を行うことにより、 一方のスライド アームで処理済の基板を搬出しながら、 他方のスライドアームで未処理の - 26 - 基板を搬入することが処理装置 102に対してでき、 上記同様に基板処理 速度の向上を図ることができる。 In the interface device 103 shown in FIG. 19 as well, by performing the same processing as that described with reference to FIGS. 13 to 18, the processed substrate is carried out by one of the slide arms. , Untreated with the other slide arm The substrate can be loaded into the processing apparatus 102, and the substrate processing speed can be improved as described above.
また、 更に、 図 19に示すスライドア一ム 1903 a、 1903 bに多 段階スライド機構を組込んでも良い。 その場合、 スライドアームはただス ライドするだけでなく、 伸縮自在になるため、 インタフェース装置 103 を図 19の幅方向に小型化することが可能となる。  Further, a multi-stage slide mechanism may be incorporated in the slide arms 1903a and 1903b shown in FIG. In this case, since the slide arm is not only slid, but also expandable and contractible, it is possible to reduce the size of the interface device 103 in the width direction of FIG.
<第 3実施形態 >  <Third embodiment>
次に、 本発明の第 3実施形態に係るトンネル 101について図 2 OA及 び図 20Bを用いて説明する。 本実施形態に係るトンネル 101は、 基板 に付随された情報を読みとるための読取装置を有する点で上記第 1実施形 態と異なる。 その他の構成及び動作は、 上記第 1実施形態と同様であるた めここでは、 同じ構成については同じ符号を付してその説明を省略する。 図 2 OA及び図 20Bは、 トンネル 101の内部構成のみを抽出して示 す概略構成図であり、 図 2 Aのトンネル部分に該当するものである。 ここ で、 図 20 Aは、 読取装置 2001をトンネル 101の天井部分に設けた ものであり、 図 20 Bは、 読取装置 2002をトンネル 101の側壁に設 けたものである。 読取装置 2001、 2002は、 搬送される基板 S上に 記録された情報を読みとるための読取装置であり、 例えば、 基板 S上にバ —コ ドがプリン卜されている場合には、 バーコ一ド読取装置であればよ い。 また、 基板 Sにワイヤレス通信用 I Cメモリ (無線 I Cタグ) が埋込 まれているもしくは、 付随しているまたは、 I Dタグが付随している場合 には、 そのワイヤレス通信用 I Cメモリ (無線 I Cタグ) や IDタグから 送信されたデータを受信するための受信装置であればよい。 更に、 読取装 置 2001、 2002は、 基板 Sの表面に記録された文字を読みとる文字 認識センサであってもよい。 ここで、 ワイヤレス通信用 I Cメモリ (無線 I Cタグ) とは、 デ一夕の送受信を行うためのアンテナを超小型の I Cチ ップに備えた記憶機器であり、 読取装置から発信される所定の周波数の電 - 27 - 波によって動作してデータの送受信が行われるものである。 Next, a tunnel 101 according to a third embodiment of the present invention will be described with reference to FIGS. 2OA and 20B. The tunnel 101 according to the present embodiment is different from the first embodiment in that the tunnel 101 has a reading device for reading information attached to the substrate. Other configurations and operations are the same as those of the first embodiment, and thus the same components are denoted by the same reference numerals and description thereof will be omitted. FIG. 2 OA and FIG. 20B are schematic configuration diagrams extracting and showing only the internal configuration of the tunnel 101, and correspond to the tunnel portion of FIG. 2A. Here, FIG. 20A shows a case where the reading device 2001 is provided on the ceiling portion of the tunnel 101, and FIG. 20B shows a case where the reading device 2002 is provided on the side wall of the tunnel 101. The readers 2001 and 2002 are readers for reading information recorded on the substrate S to be conveyed. For example, when a bar code is printed on the substrate S, a bar code is used. Any reader is acceptable. If a wireless communication IC memory (wireless IC tag) is embedded in, attached to, or has an ID tag attached to the substrate S, the wireless communication IC memory (wireless IC tag) is attached. ) Or a receiving device for receiving data transmitted from an ID tag. Further, the reading devices 2001 and 2002 may be character recognition sensors that read characters recorded on the surface of the substrate S. Here, the IC memory for wireless communication (wireless IC tag) is a storage device provided with an antenna for transmitting and receiving data in an ultra-small IC chip. Frequency of electricity -27-Data is transmitted and received by operating by waves.
なお、 ここでは、 I Cタグや I Dタグからデ一夕を読みとる読取装置が トンネルに設けられている場合について説明したが、 この読取装置が、 基 板に付随する I Cタグ等に対してデータを書込む機能を有していても良い。 その塲合、 基板には、 例えば、 どの処理装置での処理が終了したかなどが 記録されることとなり、 その処理情報を元にフィードバック制御またはフ イードフォヮ一ド制御をして基板を搬送することができ、 更に基板搬送制 御が容易になる。 更には、 上記の読取装置の代りに基板に付随する I C夕 グ等に対してデータを書込む書込装置を設けても良い。 また、 ここでは、 基板から非接触でデ一夕を読み書きする装置について説明したが、 これに 代えて接触式の読取または書込装置を用いても良いことは言うまでもない。 ぐ第 4実施形態 >  Here, a case has been described where a reading device for reading data from an IC tag or an ID tag is provided in a tunnel, but this reading device writes data to an IC tag or the like attached to the substrate. It may have a function to insert. For example, on which substrate the processing is completed is recorded on the substrate, and the substrate is transported under feedback control or feedforward control based on the processing information. And further facilitates the control of substrate transfer. Further, a writing device for writing data to an IC tag or the like attached to the substrate may be provided instead of the reading device. Further, here, the device for reading and writing data from and to the substrate in a non-contact manner has been described. However, it goes without saying that a contact-type reading or writing device may be used instead. 4th embodiment>
次に、 本発明の第 4実施形態に係るトンネル 1 0 1について図 2 1を用 いて説明する。 本実施形態に係るトンネル 1 0 1は、 自己循環型のエアク リーニングを行う点で上記第 1実施形態と異なる。 その他の構成及び動作 は、 上記第 1実施形態と同様であるためここでは、 同じ構成については同 じ符号を付してその説明を省略する。  Next, a tunnel 101 according to a fourth embodiment of the present invention will be described with reference to FIG. The tunnel 101 according to the present embodiment differs from the first embodiment in that it performs self-circulating air cleaning. Other configurations and operations are the same as those in the first embodiment, and therefore, the same components are denoted by the same reference characters and description thereof will not be repeated.
図 2 1は、 トンネル 1 0 1及びインタフェース装置 1 0 3の内部を示す 概略図である。 図のように、 本システム 1 0 0では、 空気排出ユニット 3 0 4にポンプ機能が組込まれている。 そして空気排出ュニット 3 0 4から 排出された空気は、 パイプ 2 1 0 1を通じて再度清浄ュニット 3 0 1に送 られる。 これにより、 自己循環型のエアクリーニングが実現でき、 トンネ ル 1 0 1に沿ってパイプを敷設する場合に比べると全体の設備が簡略化で き、 トンネル 1 0 1の各ユニットの独立性が増すため、 メンテナンスも容 易になる。  FIG. 21 is a schematic diagram showing the inside of the tunnel 101 and the interface device 103. As shown in the figure, in the present system 100, the air discharge unit 304 has a built-in pump function. Then, the air discharged from the air discharge unit 304 is sent again to the clean unit 301 through the pipe 211. As a result, self-circulating air cleaning can be realized, the entire facility can be simplified as compared with the case where pipes are laid along the tunnel 101, and the independence of each unit of the tunnel 101 is increased. As a result, maintenance becomes easier.
<第 5実施形態 >  <Fifth embodiment>
次に、 本発明の第 5実施形態に係るトンネル 1 0 1について図 2 2 A乃 - 28 - 至図 2 3 Bを用いて説明する。 本実施形態に係るシステム 1 0 0は、 トン ネル内において、 搬送路を切換える手段を有する。 具体的にはトンネル 1 0 1を 1ユニットとして、 レールの切換え機構を有する卜ンネルュニッ卜 を備える点で上記第 1実施形態と異なる。 その他の構成及び動作は、 上記 第 1実施形態と同様であるためここでは、 同じ構成については同じ符号を 付してその説明を省略する。 Next, regarding the tunnel 101 according to the fifth embodiment of the present invention, FIG. -28-It will be explained using Fig. 23B. The system 100 according to the present embodiment has means for switching the transport path within the tunnel. More specifically, the present embodiment differs from the first embodiment in that a tunnel 101 has one unit, and a tunnel unit having a rail switching mechanism is provided. Other configurations and operations are the same as those of the first embodiment, and thus, the same components are denoted by the same reference characters and description thereof will not be repeated.
図 2 2 A乃至図 2 2 Eは、 レールの切換え動作を説明するための図であ る。 まず、 下側のレール 2 0 1 bを走行する基板搬送車 2 2 0 2 aを上側 のレール 2 0 1 aに移送する場合、 図 2 2 Aに示すように、 レール切換え 機能を有するトンネルュニット 2 2 0 1内に、 基板搬送車 2 2 0 2 aを停 止させる。 次に、 図 2 2 Bに示すように、 トンネルユニット 2 2 0 1内の レールを上方にスライドさせる。 そして、 図 2 2 Cに示すように、 基板搬 送車 2 2 0 2 aを走行させる。 また、 上側のレール 2 0 1 aを走行する基 板搬送車 2 2 0 2 bを下側のレール 2 0 1 bに移送する場合、 図 2 2 Cに 示す状態で、 基板搬送車 2 2 0 2 bをトンネルュニット 2 2 0 1内に停止 させ、 図 2 2 Dに示すように、 レールを下方にスライドさせた後、 図 2 2 Eに示すように、 基板搬送車 2 2 0 2 bを走行させる。  FIGS. 22A to 22E are diagrams for explaining the rail switching operation. First, when transferring a substrate transporter 2202a traveling on the lower rail 201b to the upper rail 201a, as shown in FIG. 22A, a tunnel switch having a rail switching function is required. Stop the board carrier 2222a in the knit 2221. Next, as shown in FIG. 22B, the rail in the tunnel unit 222 is slid upward. Then, as shown in FIG. 22C, the substrate transporter 222a is run. Also, when transferring the substrate transport vehicle 2202b traveling on the upper rail 201a to the lower rail 201b, the substrate transport vehicle 220 2b is stopped in the tunnel unit 2201, and the rail is slid downward as shown in Fig. 22D, and then the substrate transport vehicle 222b as shown in Fig. 22E. To run.
図 2 3 A及び図 2 3 Bは、 トンネルュニット 2 2 0 1内におけるレール のスライド機構を説明する図である。 図 2 3 Aは、 トンネルの長手方向か ら見た概略構成図であり、 図 2 3 Bは、 図 2 3 Aの図中左側から見た場合 の概略構成図である。 図 2 3 A及び図 2 3 Bにおいて、 レール 2 0 1 a、 2 0 1 bは、 共に、 レール支持部材 2 3 0 1に固定されている。 レール支 持部材 2 3 0 1は、 ガイド部材 2 3 0 2の溝 2 3 0 2 aを通って、 ベル卜 2 3 0 3に固定されている。 ベルト 2 3 0 3は、 モー夕 2 3 0 4によって 上下に往復動可能となっている。 また、 レール 2 0 1 a、 2 0 l bは、 支 持部材 2 3 0 1の両側において、 補助支持部材 2 3 0 5 a、 2 3 0 5 bに 固定されている。 そして、 補助支持部材 2 3 0 5 a , 2 3 0 5 bは、 それ 、 - 29 - ぞれ、 補助ガイド部材 2306 a、 2306 bの溝に沿ってスライド可能 となっている。 FIG. 23A and FIG. 23B are views for explaining a rail sliding mechanism in the tunnel unit 222. FIG. 23A is a schematic configuration diagram viewed from the longitudinal direction of the tunnel, and FIG. 23B is a schematic configuration diagram viewed from the left side in FIG. 23A. In FIG. 23A and FIG. 23B, the rails 201a and 201b are both fixed to the rail support member 2301. The rail support member 2301 is fixed to the belt 2303 through the groove 230a of the guide member 2302. The belt 2303 can be reciprocated up and down by the motor 2304. The rails 201a and 20lb are fixed to auxiliary support members 230a and 230b on both sides of the support member 2301, respectively. And the auxiliary support members 2305a and 2305b are Each of the auxiliary guide members 2306a and 2306b can slide along the grooves.
この構成において、 モータ 2304を駆動すれば、 ベルト 2303と共 にレール支持部材 2301が上下動し、 レール 201 a及びレ一ル 201 bが、 その間隔を保ったまま上下にスライドする。  In this configuration, when the motor 2304 is driven, the rail support member 2301 moves up and down together with the belt 2303, and the rail 201a and the rail 201b slide up and down while maintaining the interval.
なお、 ここでは、 モ一夕 2304とベルト 2303を用いてレール対を スライドさせる構成としたが、 本発明はこれに限定されるものではなく、 例えば、 ワイヤ巻取機構や圧力シリンダなどの他の機構によってレール対 をスライドさせても良い。  Here, the rail pair is slid using the motor 2304 and the belt 2303, but the present invention is not limited to this. For example, another wire such as a wire winding mechanism or a pressure cylinder may be used. The rail pair may be slid by a mechanism.
(他の実施形態)  (Other embodiments)
上記実施形態では、 トンネル内に 2本のレールを設ける場合について説 明したが、 トンネル内のレールの本数はこれに限定されるものではなく、 3本以上でもよいし、 1本でもよい。  In the above embodiment, the case where two rails are provided in the tunnel has been described. However, the number of rails in the tunnel is not limited to this, and may be three or more or one.
また、 トンネル内のレイアウトは、 上記第 1実施形態に示されたものに 限定されるものではない。 例えば、 図 24Aに示すように、 上側のレール 201 aを走行する基板搬送車 2401と、 下側のレール 201 bを走行 する基板搬送車 402とを異なる構成としても良い。 すなわち、 上側のレ ール 201 aを走行する基板搬送車 2401のトレ一 2401 aを L字型 に形成し、 下側の基板搬送車 2402のトレー 2402 aとの距離を小さ くしても良い。 このようにすれば、 トンネルの天井を低くすることができ、 全体としてトンネルの構成を小型化できる。  Further, the layout inside the tunnel is not limited to the layout shown in the first embodiment. For example, as shown in FIG. 24A, a substrate transport vehicle 2401 traveling on the upper rail 201a and a substrate transport vehicle 402 traveling on the lower rail 201b may have different configurations. That is, the tray 2401a of the substrate transport vehicle 2401 traveling on the upper rail 201a may be formed in an L shape, and the distance from the tray 2402a of the lower substrate transport vehicle 2402 may be reduced. In this way, the ceiling of the tunnel can be lowered, and the overall configuration of the tunnel can be reduced.
また、 図 24Bに示すように、 レール 201 a、 201 bをトンネルの 底部に敷設しても良い。 その場合、 レール 201 aを走行する基板搬送車 2401と、 レール 201 bを走行する基板搬送車 402とは、 それぞれ のトレーが上下に間隙を持って走行するように、 異なる構成にする必要が ある。 このようにすれば、 トンネル側壁にレールを設ける場合に比べて、 レールに曲げ応力が発生しにくく、 比較的安定して基板搬送車を走行させ - 30 - ることが可能となる。 Further, as shown in FIG. 24B, rails 201a and 201b may be laid at the bottom of the tunnel. In that case, the substrate transport vehicle 2401 traveling on the rail 201a and the substrate transport vehicle 402 traveling on the rail 201b need to have different configurations so that each tray travels with a gap above and below. . In this way, compared to the case where rails are provided on the side wall of the tunnel, bending stress is less likely to be generated on the rails, and the substrate transport vehicle can travel relatively stably. -30-
また更に、 図 2 4 Cに示すように、 レール 2 0 1 a、 2 0 1 bをトンネ ルの外部に敷設して、 基板搬送車の卜レーのみを卜ンネル内部に収容する 構成でも良い。 このようにすれば、 基板搬送車の走行によって巻上がる塵 や埃が基板に付着することはなく、 基板の走行環境を極めて清浄にするこ とが可能となる。 その他、 図 2 4 Dに示すように、 レ一ル 2 0 1 aをトン ネル側壁に、 レール 2 0 1 bをトンネル底部に敷設してもよい。 なお、 こ こでは、 空気清浄ユニットをトンネル天井部に設置したが、 いずれかのト ンネル側壁に設置しても良い。  Further, as shown in FIG. 24C, rails 201a and 201b may be laid outside the tunnel, and only the tray of the substrate carrier may be accommodated inside the tunnel. With this configuration, dust or dust that is rolled up by the traveling of the substrate transport vehicle does not adhere to the substrate, and the traveling environment of the substrate can be extremely clean. Alternatively, as shown in FIG. 24D, the rail 201a may be laid on the side wall of the tunnel and the rail 201b may be laid on the bottom of the tunnel. Here, the air purifying unit is installed on the ceiling of the tunnel, but may be installed on any of the tunnel side walls.
上記実施形態では、 スライドユニットがチャンバ内で基板を水平方向に のみ移動できる構成について説明したが、 本願発明はこれに限定されるも のではない。 例えば、 ロポットゃスライドュニットに基板を垂直方向にも 移動できる昇降機構をさらに備えてもよい。 その場合、 複数種類の処理装 置の基板搬入口に合わせて基板を垂直方向に移動可能となる。 また、 処理 装置の受け渡し位置で待機して処理装置が基板の受け渡しを行っていたが、 処理装置の図示されていない載置台に対して基板を受け渡すことができる。 上記実施形態では、 ィン夕フェース装置内で処理装置に基板を搬送する アームとして、 U字型のフォーク状ハンドを先端に備えたものを示したが、 本発明はこれに限定されるものではない。 例えば、 図 2 5 A乃至図 2 5 C に示すような様々なハンドが適用可能である。 すなわち、 図 2 5 Aは、 先 端外周が円形となっている C字型のハンドを示し、 図 2 5 Bは、 突上げ口 ッドが揷入される穴を有する〇字型のハンドを示し、 図 2 5 Cは、 処理装 置に向って横方向に開口する Π字型のハンドを示している。 また、 これら のハンド部分を着脱可能として、 処理装置の種類に応じて取り替えること · ができるように構成してもよい。  In the above embodiment, the configuration in which the slide unit can move the substrate in the chamber only in the horizontal direction has been described, but the present invention is not limited to this. For example, a robot / slide unit may further include an elevating mechanism capable of moving the substrate in the vertical direction. In this case, the substrate can be moved in the vertical direction in accordance with the substrate loading ports of a plurality of types of processing equipment. Further, although the processing apparatus waits at the transfer position of the processing apparatus and transfers the substrate, the substrate can be transferred to a mounting table (not shown) of the processing apparatus. In the above embodiment, the arm provided with a U-shaped fork-shaped hand at the tip is shown as the arm for transferring the substrate to the processing apparatus in the interface device, but the present invention is not limited to this. Absent. For example, various hands as shown in FIGS. 25A to 25C are applicable. That is, FIG. 25A shows a C-shaped hand having a circular outer end, and FIG. 25B shows a C-shaped hand having a hole into which a push-up port is inserted. FIG. 25C shows a U-shaped hand that opens laterally toward the processing apparatus. In addition, these hand parts may be configured to be detachable so that they can be replaced according to the type of processing device.
また、 トンネルの両側に処理装置を配置した場合に、 イン夕フェース装 置の両側面に開口部を設け、 両側の処理装置に対して 1つの搬送手段を移 - 31 - 動可能な構成としてもよい。 特にロポットを用いて両側の処理装置基板を 搬送する構成とすれば、 更に設備設置スペースの有効活用が可能となる。 なお、 上記実施形態では給電素子 2 0 3から基板搬送車 2 0 2に電力を 供給し、 基板搬送車 2 0 2内のモー夕でレール上を搬送する構成について 説明したが、 本発明はこれに限定されるものではない。 エアーや磁気で基 板搬送車を浮上させ、 搬送する構成も本発明に含まれる。 Also, when processing equipment is arranged on both sides of the tunnel, openings are provided on both sides of the interface device, and one transfer means is moved to both processing equipments. -31-It is good also as a movable structure. In particular, if the processing apparatus substrates on both sides are transported by using a robot, the space for installing the equipment can be more effectively utilized. In the above-described embodiment, the configuration has been described in which power is supplied from the power supply element 203 to the substrate transport vehicle 202 and the substrate is transported on the rail by the motor inside the substrate transport vehicle 202. However, the present invention is not limited to this. The present invention includes a configuration in which a substrate transport vehicle is lifted and transported by air or magnetism.
以上説明したように、 本発明によれば、 システム規模を小さくすること のできる基板搬送システムを提供することができる。  As described above, according to the present invention, it is possible to provide a substrate transfer system that can reduce the system scale.
本発明は上記実施の形態に制限されるものではなく、 本発明の精神及び 範囲から離脱することなく、 様々な変更及び変形が可能である。 従って、 本発明の範囲を公にするために、 以下の請求項を添付する。  The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the following claims are appended to make the scope of the present invention public.

Claims

- 32 - 請求の範囲 -32-Claims
1 . 基板を処理するための複数の処理装置間で基板及びレチクルを搬送 するトンネルと、  1. A tunnel for transporting the substrate and the reticle between a plurality of processing apparatuses for processing the substrate;
前記トンネル内の基板及びレチクルの搬送を制御する制御手段と、 を備えることを特徴とする基板搬送システム。  Control means for controlling the transfer of the substrate and the reticle in the tunnel.
2 . 前記トンネル内を搬送される基板またはレチクルをストツクするス トツ力を更に備え、 2. It further comprises a stocking force for stocking a substrate or a reticle conveyed in the tunnel,
前記制御手段は、 前記ストッ力から前記トンネルへの基板またはレチク ルの搬出及び、 前記トンネルから前記ストッ力への基板またはレチクルの 搬入をも制御することを特徴とする請求項 1に記載の基板搬送システム。  2. The substrate according to claim 1, wherein the control unit also controls carrying out of the substrate or reticle from the stopping force to the tunnel and carrying in of the substrate or reticle from the tunnel to the stopping force. Transport system.
3 . 前記トンネル内を搬送される基板及びレチクルをストックするスト ッカを更に備え、 ' 3. It further comprises a stocker for storing substrates and reticles conveyed in the tunnel,
前記制御手段は、 前記ストッ力から前記トンネルへの基板及びレチクル の搬出及び、 前記トンネルから前記ストッ力への基板及びレチクルの搬入 をも制御することを特徴とする請求項 1に記載の基板搬送システム。  2. The substrate transport according to claim 1, wherein the control unit also controls unloading of the substrate and the reticle from the stopping force to the tunnel and loading of the substrate and the reticle from the tunnel into the stopping force. 3. system.
4. 前記ストッカは、 レチクルまたは基板に付随した情報を読みとる情 報読取手段を備えることを特徴とする請求項 2又は 3に記載の基板搬送シ ステム。 4. The substrate transport system according to claim 2, wherein the stocker includes information reading means for reading information attached to a reticle or a substrate.
5 . 前記ストッカは、 5. The stocker
レチクルまたは基板を載置する複数段のテーブルと、  A multi-stage table on which a reticle or substrate is placed,
該テーブルのそれぞれを独立して回転する回転手段と、  Rotating means for independently rotating each of the tables;
を備えることを特徴とする請求項 2または 3に記載の基板搬送システム。 33 4. The substrate transfer system according to claim 2, comprising: 33
6 . 基板またはレチクルまたは基板収納カセットを載置する複数段のテ —ブルと、 6. A multi-stage table on which a substrate or reticle or substrate storage cassette is placed;
前記テ一ブルを各段ごとに回転する回転手段と、  Rotating means for rotating the table for each stage;
とを備えることを特徴とするストッカ。  And a stocker comprising:
7 . 請求項 6に記載のストツ力と、 7. The storage force according to claim 6, and
前記テ一ブルに載置された基板またはレチクルまたは基板収納カセッ卜 を、 取りだして搬送路に移動させ、 かつ、 搬送路を搬送されてきた基板ま たはレチクルまたは基板収納カセットを、 前記テーブルに載置する移載手 段と、  The substrate, the reticle, or the substrate storage cassette placed on the table is taken out and moved to the transport path, and the substrate, the reticle, or the substrate storage cassette transported through the transport path is placed on the table. Transfer means to be placed,
を有することを特徴とする基板搬送システム。  A substrate transport system comprising:
PCT/JP2004/003929 2003-03-28 2004-03-23 Wafer transportation system WO2004088741A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005504171A JPWO2004088741A1 (en) 2003-03-28 2004-03-23 Substrate transfer system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003091795 2003-03-28
JP2003-091795 2003-03-28

Publications (1)

Publication Number Publication Date
WO2004088741A1 true WO2004088741A1 (en) 2004-10-14

Family

ID=33127295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003929 WO2004088741A1 (en) 2003-03-28 2004-03-23 Wafer transportation system

Country Status (3)

Country Link
JP (1) JPWO2004088741A1 (en)
TW (1) TW200521055A (en)
WO (1) WO2004088741A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057758A1 (en) * 2007-10-31 2009-05-07 Asahi Glass Co., Ltd. Container exchanging device and container exchanging method
JP2009545141A (en) * 2006-07-26 2009-12-17 テック・セム アーゲー Device for storing objects from the electronic component manufacturing field
KR20190054572A (en) * 2017-11-14 2019-05-22 에스케이하이닉스 주식회사 Substrate transfer system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502130B1 (en) * 2008-07-10 2015-03-13 주식회사 원익아이피에스 Transfer apparatus, Transfer chamber having the same and vacuum processing system including the same
JP6727044B2 (en) * 2016-06-30 2020-07-22 株式会社荏原製作所 Substrate processing equipment
JP6791665B2 (en) * 2016-06-30 2020-11-25 日本電産サンキョー株式会社 Transport system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188646A (en) * 1989-12-18 1991-08-16 Dan Sangyo Kk Clean stocker
JPH07147310A (en) * 1993-11-22 1995-06-06 Ebara Corp Method and apparatus for transportation
JP2002158155A (en) * 2000-11-17 2002-05-31 Canon Inc Aligner and method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172578A (en) * 1993-12-15 1995-07-11 Ebara Corp Tunnel carrying device
JPH07228345A (en) * 1994-02-14 1995-08-29 Ebara Corp Tunnel conveyer
JP2003072916A (en) * 2001-08-30 2003-03-12 Sony Corp Storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188646A (en) * 1989-12-18 1991-08-16 Dan Sangyo Kk Clean stocker
JPH07147310A (en) * 1993-11-22 1995-06-06 Ebara Corp Method and apparatus for transportation
JP2002158155A (en) * 2000-11-17 2002-05-31 Canon Inc Aligner and method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545141A (en) * 2006-07-26 2009-12-17 テック・セム アーゲー Device for storing objects from the electronic component manufacturing field
WO2009057758A1 (en) * 2007-10-31 2009-05-07 Asahi Glass Co., Ltd. Container exchanging device and container exchanging method
JP2009107797A (en) * 2007-10-31 2009-05-21 Asahi Glass Co Ltd Container replacing device and container replacing method
CN101842303B (en) * 2007-10-31 2013-07-10 旭硝子株式会社 Container exchanging device and container exchanging method
KR20190054572A (en) * 2017-11-14 2019-05-22 에스케이하이닉스 주식회사 Substrate transfer system
KR102398568B1 (en) * 2017-11-14 2022-05-17 에스케이하이닉스 주식회사 Substrate transfer system

Also Published As

Publication number Publication date
JPWO2004088741A1 (en) 2006-07-06
TW200521055A (en) 2005-07-01

Similar Documents

Publication Publication Date Title
US20060016720A1 (en) Substrate transportation system
US9842756B2 (en) Integrated systems for interfacing with substrate container storage systems
KR101415708B1 (en) Substrate processing apparatus
US6726429B2 (en) Local store for a wafer processing station
US6235634B1 (en) Modular substrate processing system
JP5386082B2 (en) Low capacity carrier and method of use
US6579052B1 (en) SMIF pod storage, delivery and retrieval system
CN101048861B (en) Elevator-based tool loading and buffering system
JP2018110268A (en) Reduced capacity carrier transport, load port, buffer system
KR100555620B1 (en) System for carrying flat panel display and the carrying method using the same
JP2006206218A (en) Conveying system for glass substrate or the like
US20100080672A1 (en) Direct loading to and from a conveyor system
CN108290687B (en) Storage device and transport system
WO2004088741A1 (en) Wafer transportation system
TWI392049B (en) Cassette transporting system
WO2004088742A1 (en) Wafer transportation system
WO2004088740A1 (en) Wafer transportation system
TW202116650A (en) System and method for automated wafer carrier handling
US20010014269A1 (en) High throughput wafer transfer mechanism
KR101647277B1 (en) Automatic handling buffer for bare stocker
KR101649299B1 (en) Wafer processing system having linear wafer transfering apparatus
KR100560956B1 (en) Apparatus for manufacturing flat panel display
KR100596335B1 (en) Apparatus for manufacturing FPD
JP2009196776A (en) Storage cabinet and transportation system
JP2008100801A (en) Substrate storage warehouse

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504171

Country of ref document: JP

122 Ep: pct application non-entry in european phase