WO2004088422A1 - Fluoro compound and fluoropolymer - Google Patents

Fluoro compound and fluoropolymer Download PDF

Info

Publication number
WO2004088422A1
WO2004088422A1 PCT/JP2003/014743 JP0314743W WO2004088422A1 WO 2004088422 A1 WO2004088422 A1 WO 2004088422A1 JP 0314743 W JP0314743 W JP 0314743W WO 2004088422 A1 WO2004088422 A1 WO 2004088422A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
compound
group
pellicle
atom
Prior art date
Application number
PCT/JP2003/014743
Other languages
French (fr)
Japanese (ja)
Inventor
Ikuo Matsukura
Hiromasa Yamamoto
Eisuke Murotani
Hirokazu Takagi
Takeshi Eriguchi
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to AU2003284574A priority Critical patent/AU2003284574A1/en
Priority to JP2004570191A priority patent/JP4396525B2/en
Publication of WO2004088422A1 publication Critical patent/WO2004088422A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F34/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring
    • C08F34/02Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring in a ring containing oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography

Definitions

  • the present invention relates to a novel fluorinated compound and a novel fluorinated polymer obtained by polymerizing the fluorinated compound.
  • the present invention also relates to a novel fluorinated polymer adhesive having a high transparency in the ultraviolet region, for pellicle and pellicle films. Further, the present invention relates to an exposure processing method using the pellicle.
  • Fluorinated dioxole compounds having a fluorine-substituted carbon-carbon double bond are known (US Pat. No. 3,865,845) and US Pat. No. 4,429,144. No. statement). Further, as a fluorine-containing dioxole compound having a spiro ring structure, a compound represented by the following formula (T) is known (Japanese Patent No. 3057588).
  • a polymer obtained by polymerizing the compound represented by the formula (c) is soluble in a specific solvent and has a high glass transition temperature (hereinafter, referred to as Tg).
  • Tg glass transition temperature
  • a fluoropolymer having a saturated ring structure in the main chain can be a transparent fluoropolymer having an amorphous property.
  • a fluorine-containing polymer is useful as a transparent coating material or an optical material.
  • a pellicle is a process in the manufacture of semiconductor devices or liquid crystal display panels.
  • photolithography foreign matter is placed on a photomask reticle (hereafter referred to as a mask).
  • the pellicle usually has a structure in which a transparent thin film is attached to a frame via an adhesive.
  • Pellicles are installed at a certain distance from the mask surface.
  • wiring and wiring intervals are becoming finer. The wavelength is rapidly shortening.
  • a KrF excimer laser has been introduced for wiring processing with a minimum pattern size of 0.3 m or less, but its oscillation wavelength is 248 nm.
  • the polymer described in the above-mentioned US Pat. No. 3,865,845 has insufficient durability.
  • the polymer described in the US Patent Specification (trade name: CYTOP, manufactured by Asahi Glass Co., Ltd.) has a property that light transmittance for light of 170 nm or less, durability is rapidly reduced, and wavelength 1 57 nm F 2 excimer laser There is a drawback that the light transmittance is extremely low.
  • the polymer is excellent in transparency to light of 170 nm or more, but has a problem that the film strength is insufficient and handling is difficult.
  • Japanese Patent the third 0 7 5 5 8 8 No. describes fluorinated polymer chain structure
  • Japanese Patent 3 3 9 9 No. 63 discloses a copolymer containing vinylidene fluoride or the like as a main component. However, these polymers had transparency at 157 nm, but had insufficient durability.
  • the adhesive for bonding the pellicle film and the frame has the same deterioration problem due to the stray light or reflected light of the laser light, and therefore, the development of an adhesive having high durability has been desired.
  • An object of the present invention is to provide a novel polymer useful as a protective coating agent, a photoresist film, a masking agent at the time of etching, a separator for a fuel cell, a catalyst fixing film for a fuel cell, a velcro material, and the like.
  • Another object of the present invention is to provide a compound useful as a raw material of the polymer and a novel intermediate useful for producing the compound.
  • Another object of the present invention is to provide a pellicle film and a pellicle film adhesive using a novel material.
  • a polymer containing a specific unit has a laser beam of 200 nm or less, preferably a laser beam of 180 nm or less (hereinafter, these laser beams are collectively referred to as short-wavelength laser beams). It has been found to have high transparency and durability to light. Furthermore, they have found that they have excellent transparency and durability in the short wavelength light range. It has been found that the use of the polymer as a pellicle film and / or a pellicle film adhesive provides an optimal pellicle as a pellicle for exposure processing with short wavelength light.
  • the present invention provides the following inventions.
  • a pellicle for exposure processing with light having a wavelength of 200 nm or less, wherein the film is adhered to a frame via an adhesive, and the pellicle film and the Z Or a pellicle, wherein the adhesive comprises a polymer containing a unit represented by the following formula (A).
  • Q represents a group in which one or more of the hydrogen atoms present in the following group (B) are substituted with a fluorine atom.
  • X 1 and X 2 independently represent a fluorine atom, a chlorine atom or a hydrogen atom.
  • X 1 and X 2 are each independently a fluorine atom, a chlorine atom or a hydrogen atom, n is an integer of 1 or 2, R fl is a fluorine atom or a trifluoromethyl group, and R f 2 is a fluorine atom Or a perfluoroalkyl group having 1 to 5 carbon atoms.
  • ⁇ 5> The pellicle according to any one of ⁇ 1> to ⁇ 4>, wherein the adhesive essentially includes a unit represented by the formula (A) and comprises a polymer having a functional group.
  • ⁇ 6> The pellicle according to any one of ⁇ 1> to ⁇ 5>, wherein the polymer containing a unit represented by the formula (A) is a polymer having no —CH 2 CH 2 — structure.
  • ⁇ 7> An exposure treatment method using a pellicle according to any one of ⁇ 1> to ⁇ 6>, in an exposure treatment method using light having a wavelength of 200 nm or less in photolithography.
  • X 1 and X 2 are each independently a fluorine atom, a chlorine atom or a hydrogen atom, n is an integer of 1 or 2, R fl is a fluorine atom or a trifluoromethyl group, and R f 2 is It is a fluorine atom or a perfluoroalkyl group having 1 to 5 carbon atoms.
  • Y and Z each independently represent a fluorine atom, a chlorine atom or a hydrogen atom, n is an integer of 1 or 2, R fl represents a fluorine atom or a trifluoromethyl group, and R f 2 represents fluorine. It represents an atom or a perfluoroalkyl group having 1 to 5 carbon atoms.
  • a group in which one or more of the hydrogen atoms of a group having a hydrogen atom is substituted by a fluorine atom is referred to as a polyfluoro group, and a group in which all of the hydrogen atoms are substituted by a fluorine atom is referred to as a perfluoro group.
  • the polymer represented by A) is represented by polymer (A), the compound represented by formula (al) is represented by compound (al), and the same applies to the compounds and units represented by other formulas.
  • the description regarding the formula (A) also applies to the formula (a l) unless otherwise specified.
  • the present invention provides a novel pellicle. That is, a pellicle film is adhered to a frame via an adhesive, and is a particle for exposure processing with light having a wavelength of 200 nm or less, wherein the pellicle film and / or the adhesive are represented by the following formula:
  • a pellicle comprising a polymer containing a unit represented by (A) is provided.
  • a polymer containing a unit represented by the formula (A) is referred to as a polymer (A).
  • Q in the formula (A) represents a group in which one or more of the hydrogen atoms present in the following group (B) has been replaced by a fluorine atom.
  • An alkylene group containing two or more etheric oxygen atoms, or one or more hydrogen atoms in the alkylene group containing two or more etheric oxygen atoms is an ether.
  • the group connecting two hydrogen atoms in the group (B) is preferably a group containing two etheric oxygen atoms, and one (CH 2 ) b O (CH 2 ) d O (CH 2 ) e — (however, , B, d, and e each independently represent an integer of 1 to 2, and (b + d + e) is preferably 3 or 4.
  • the group represented by the following formula is particularly preferable.
  • Q is a group in which one or more of the hydrogen atoms present in the group (B) have been replaced by fluorine atoms, and a group in which all of the hydrogen atoms present in the group (B) have been replaced by fluorine atoms Is preferred.
  • the group is an alkyl group and / or an alkyl group containing an etheric oxygen atom, and preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms. Is preferable, and 1 or 2 is particularly preferable.
  • two hydrogen atoms present in the group represented by one (CH 2 ) a — include two hydrogen atoms bonded to the same carbon atom, or-. It is preferably two hydrogen atoms bonded to each other, and particularly preferably two hydrogen atoms bonded to the same carbon atom. Further, it is preferable that the two hydrogen atoms be connected by the above-mentioned group to form a 5- to 7-membered ring structure.
  • X 1 and X 2 each independently represent a fluorine atom, a chlorine atom or a hydrogen atom.
  • X 1 and X 2 are each a fluorine atom or a chlorine atom, it is preferable because the heat resistance, weather resistance and light resistance of the polymer (A) are improved, and X 1 and X 2 are more preferable.
  • the unit (A) is particularly preferably the following unit ( ⁇ ').
  • X 1 and X 2 and Q have the same meanings as described above, and Q F represents a perfluoroalkylene group containing two or more etheric oxygen atoms.
  • the unit (A) is preferably a monomer unit obtained by polymerizing the following compound (a), and the unit ( ⁇ ′) is preferably a monomer unit obtained by polymerizing the following compound (a ′).
  • the unit exemplified as the unit (A) is preferably a monomer unit obtained by polymerizing a polymerizable monomer having a structure corresponding to the unit.
  • the unit (A) is preferably the following monomer unit (A1) obtained by polymerizing the following compound (al).
  • the polymer containing the compound (al) and the monomer unit (A1) is a novel compound.
  • n is 1 or 2.
  • R fl is a fluorine atom or a trifluoromethyl group, and a fluorine atom is preferable in terms of availability of raw materials and the like.
  • R f2 is a fluorine atom or a perfluoroalkyl group having 1 to 5 carbon atoms, and the perfluoroalkyl group may be linear or branched.
  • R i2 a fluorine atom, a trifluoromethyl group or a pentafluoroethyl group is preferable, and a fluorine atom is particularly preferable.
  • Specific examples of the compound (al) include the following compounds, and the following compound (a2) is preferable.
  • Compound (a) is a compound that can be produced by applying a known reaction to a known compound.
  • compound (al) can be manufactured according to the following manufacturing route.
  • n and R f ⁇ R f2 in the following formula have the same meanings as described above, and Y and Z each independently represent a fluorine atom, a chlorine atom, or a hydrogen atom.
  • the reaction for adding ethylene oxide to the compound (bl) can be carried out by a known method (for example, a method described in US Pat. No. 3,324,144). For example, there is a method in which the compound (bl) and ethylene oxide are reacted in the presence of a catalyst (for example, a catalyst comprising potassium iodide and water).
  • a catalyst for example, a catalyst comprising potassium iodide and water.
  • the reaction temperature of the reaction is preferably from 100 to 150 ° C, more preferably from 130 to 130 ° C.
  • the compound (b 2) is photochlorinated to obtain a compound (b 3).
  • This photochlorination can be carried out, for example, according to the method described in US Pat. No. 2,925,424 and Example 9 therein. Specifically, there is a method in which the reaction is performed while blowing a chlorine gas under ultraviolet irradiation.
  • the reaction is preferably carried out in the absence of a solvent, and the reaction temperature is preferably 0 ° C to 100 ° C. 30 ° C to 80 ° C is preferred.
  • the compound (b3) having a different degree of chlorination can be obtained by controlling the supply amount of chlorine gas.
  • the supply of chlorine gas is continued until at least one of each of the hydrogen atoms present in the two methylene groups of compound (b 2) is chlorinated.
  • the reaction for obtaining the compound (al) from the compound (b3) is classified according to the following chlorination reaction and selective fluorination reaction conditions and the progress of the reaction.
  • the selective fluorination of compound (b 3-C 1) is preferably carried out according to the method described in US Pat. No. 3,865,845. Specifically with S b F 3 and S b C 1 5, the solvent (e.g., Perufuruoro (2-Petit Le tetrahydrofuran)) in, or a method of reacting in the absence of a solvent can be mentioned up.
  • the reaction temperature of the reaction is preferably from 50 to 200, particularly preferably from 100 ° C to 150.
  • the compound (a 1 —C 1) in which both X 1 and X 2 in the formula (al) are chlorine atoms can be obtained by directly dechlorinating the compound.
  • the dechlorination reaction is preferably performed using a dehalogenating agent in a polar solvent.
  • a dehalogenating agent is a reactant that acts on a halogen atom in a raw material to extract the halogen atom.
  • a dehalogenating agent that acts as a dechlorinating agent is used in each method for producing the compound (al) of the present invention.
  • the dehalogenating agent zinc, sodium, magnesium, tin, copper, iron or other metals are preferred.
  • zinc is preferable as the dehalogenating agent because a relatively low reaction temperature can be employed.
  • the dehalogenating agent may be activated before acting before the reaction. Activation is preferably performed using an activator.
  • the amount of the dehalogenating agent relative to the substrate for dechlorination is preferably 2- to 10-fold molar, and particularly preferably 5- to 8-fold molar.
  • the reaction temperature of the dechlorination reaction is preferably from 40 to 100 ° C, particularly preferably from 40 to 80 ° C.
  • the polar solvent is preferably an organic polar solvent such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, 1,4-dioxane, diglyme, methanol, or water.
  • the dechlorination reaction is preferably performed by a method in which a dechlorination substrate is dropped into a dehalogenating agent and a polar solvent. Further, it is preferable that the compound (al) produced by the reaction is promptly extracted from the reaction system by reaction distillation.
  • the product may be two or more compounds having different degrees of chlorination or fluorination.
  • the desired compound is appropriately separated from the product, and the necessary reaction is appropriately performed.
  • reaction in the next step may be carried out as a mixture, followed by separation.
  • Compound (b2) and compound (b3), which are intermediates for producing compound (al), are novel compounds.
  • R f 1 and R f 2 are preferably a fluorine atom, and n is preferably 1.
  • Y and Z are preferably each independently a fluorine atom or a chlorine atom, and both are preferably fluorine atoms.
  • the following compound (b20) is preferable as the compound (b2)
  • the following compound (b30) is preferable as the compound (b3).
  • the compound (b2) is useful as an intermediate for the production of the polymer (Al) described later, or as an electrolyte for batteries such as capacitors, batteries, etc., or as an additive to the electrolyte.
  • Compound (b1) which is a starting material for the production of compound (al), can be synthesized using the method described in WO200 / 18314 pamphlet.
  • compound R f 1 and R f 2 is a fluorine atom and n is 1 in formula (b 1) (b 10) can be produced by the following production route.
  • a glycerol-formal mixture which is an adduct of dalyserin and formaldehyde (the mixture is usually a mixture in which the compound (b11) and the compound (b12) are present in an equilibrium state) and the formula R F COF (R F is. showing a good pel full O b alkyl group optionally having ether oxygen atoms) performs esterification reaction between the table are the compounds of then fluorinated in a liquid phase As a result, a mixture of the compound (b13) and the compound (b14) is obtained. Next, the mixture is thermally decomposed to obtain a mixture of the compound (b10) and the compound (b15).
  • compound (b10) it is preferable to separate compound (b10) from compound (b10) and compound (b15).
  • the separation may be performed on a mixture of the compound (b10) and the compound (b15), or each compound may be converted into a compound which can be easily separated and then separated, and the latter method is preferred.
  • the latter method a method of adding water to a mixture of the compound (bl0) and the compound (bl5), followed by dehydration can be mentioned.
  • the keto group is converted to a C (OH) 2 structure by adding water, and then converted to the compound (b10) by dehydration.
  • the compound (b 10) compound having R f 2 groups other than (b 1) is an adduct of glycerin and formaldehyde in the how, adduct of glycerin and ⁇ Seto aldehyde, or, propanal or the like Can be obtained by changing to an adduct with alkanal.
  • a compound (bl) in which R f 2 in the formula (bl) is a trifluoromethyl group can be obtained by using an adduct of glycerin and acetylaldehyde.
  • various compounds having different R fl in the formula (bl) can be obtained.
  • 1,2,3-butanetriol as a triol
  • a compound represented by the formula (bl) in which R f1 is a trifluoromethyl group can be obtained.
  • 1,2,4-butanol a compound represented by the formula (bl) in which n is 2 can be obtained.
  • the compound (a) such as the compound (a1) obtained by the above method has a polymerizable unsaturated bond, it can be polymerized to obtain a polymer (A).
  • the polymer (A) is a polymer having a saturated ring structure in the main chain of the polymer. Due to the presence of the saturated ring structure, the polymer (A) in the present invention exhibits an amorphous property and can be a highly transparent polymer. In addition, the ring structure has an effect of cutting off long electronic conjugation to the polymer chain. Therefore, the polymer (A) of the present invention can be a transparent polymer even in a short wavelength light region.
  • the polymer (A) of the present invention is soluble in a specific solvent. At the same time, it has high T g and thermal decomposition temperature, and the difference between T g and thermal decomposition temperature is large, so that melt molding is possible.
  • the polymer (A) of the present invention is a polymer (A1) having a monomer unit of the compound (al), two oxygen atoms are contained in a saturated ring structure existing in the main chain of the polymer (A1). It is thought that the presence of the polymer makes the polymer flexible and easily eliminates the strain when exposed to high temperatures, thus raising the pyrolysis temperature.
  • the molecular weight of the polymer (A) of the present invention is such that the intrinsic viscosity (unit: dlZg) measured at 30 ° C. in perfluoro (2-butyltetrahydrofuran) is 0.
  • the molecular weight is between 1 and 5.0.
  • the intrinsic viscosity is 0.1 or more, the film obtained from the polymer (A) has sufficient mechanical strength.
  • the solubility in a specific solvent is good and preferable.
  • a more preferable range of the intrinsic viscosity is 0.2 to 3.0.
  • the polymer (A) containing the monomer unit of the compound (a) a homopolymer obtained by polymerizing one kind of the compound (a), a copolymer obtained by polymerizing two or more kinds of the compound (a), or a compound A copolymer of (a) and another monomer having copolymerizability with the compound (a) (hereinafter, referred to as another monomer) is preferable.
  • the other monomer is a monomer having radical polymerizability, and is not particularly limited as long as it is a monomer having copolymerizability with compound (a). Further, the other monomer may be a fluorine-containing monomer other than compound (a) or a monomer having no fluorine atom.
  • Examples of the monomer having no fluorine atom include a hydrocarbon-based monomer.
  • Examples of the hydrocarbon-based monomer include olefins such as ethylene, propylene, butylene and isobutylene, styrene, vinyl ethers and pinyl esters.
  • olefins and vinyl ethers have good alternating copolymerizability with compound (a) such as compound (al), and the resulting fluoropolymer greatly improves the transmittance of light with a wavelength of 200 nm or less. It is preferable because it can be performed.
  • the other monomer is a fluorine-containing monomer other than the compound (a), it is selected from monomers having a polymerizable unsaturated bond and having a fluorine atom.
  • the monomer (k) the following monomers (k-1) to (k-3) are preferred.
  • Monomer (k_l) A monomer in which R 3 , R 4 , and R 5 are each independently a hydrogen atom, a fluorine atom, or a monovalent fluorine-containing organic group.
  • Monomer (k_2) a monomer in which R 3 and R 4 together form a divalent fluorinated organic group, and R 5 is a fluorine atom or a monovalent fluorinated organic group.
  • Monomer (k_3) A monomer in which R 4 and R 5 together form a divalent fluorinated organic group, and R 3 is a fluorine atom or a monovalent fluorinated organic group.
  • Examples of the monomer (k-1) include fluorofluorenes having a hydrogen atom such as vinyl fluoride, 1,2-difluoroethylene, vinylidene fluoride, and trifluoroethylene; tetrafluoroethylene, and chlorofluoroethylene.
  • fluorofluorenes having a hydrogen atom such as vinyl fluoride, 1,2-difluoroethylene, vinylidene fluoride, and trifluoroethylene; tetrafluoroethylene, and chlorofluoroethylene.
  • Perfluoro (methyl vinyl ether) and perfluoro (alkyl vinyl ether) such as perfluoro (methyl vinyl ether) and perfluoro (methyl vinyl ether) which do not have a hydrogen atom, such as propylene and hexafluoro propylene; and the like.
  • the monomer (k-2) and the monomer (k_3) are monomers having both an unsaturated bond and a ring structure.
  • the monomer (k-1) and the monomer (k-1) include the following monomer (k-1), the following monomer (k-1), and the following monomer (k-30).
  • R 11 to R 17 each independently represent a fluorine atom or a monovalent fluorine-containing organic group.
  • R 11 to R 16 are a monovalent fluorine-containing organic group, a perfluoroalkyl group is preferable, and a perfluoroalkyl group having 1 or 2 carbon atoms is particularly preferable.
  • R 17 is a monovalent fluorine-containing organic group, a perfluoroalkyl group or a perfluoroalkoxy group is preferable, and the group having 1 or 2 carbon atoms is particularly preferable.
  • the other monomer is a fluorine-containing monomer other than the compound (a) is a fluorine-containing monomer having two or more types of polymerizable unsaturated bonds having different reactivities in a molecule (for example, a fluorine-containing monomer) And the following monomers (k-1 4) or (k-1 5) are preferred.
  • a perfluoroalkylene group which may have an etheric oxygen atom having 1 to 10 carbon atoms is preferable.
  • the number of oxygen atoms may be one, two or more, and it may be present at one terminal of the perfluoroalkylene group or at both terminals. Or between carbon atoms.
  • the number of carbon atoms is preferably 2 to 6, and has an etheric oxygen atom at one end of the perfluoroalkylene group or between carbon atoms.
  • it preferably has 1 to 4 carbon atoms
  • it preferably has 1 to 3 carbon atoms.
  • the chain length (the chain length is the total number of carbon atoms and oxygen atoms excluding the branch portion ) of 3 ⁇ 11 () is 3 to 4.
  • Q 1 G and Q 11 are a perfluoroalkylene group having 1 to 4 carbon atoms having an etheric oxygen atom at a terminal bonded to a 2,2-difluorovinyl group, and a carbon atom having an etheric oxygen atom between carbon atoms.
  • a perfluoroalkylene group having 2 to 4 or less and a perfluoroalkylene group having 1 to 4 carbon atoms and having no etheric oxygen atom are preferable.
  • More preferred Q 1 Q and Q 11 are each a perfluoroalkylene group having 1 to 4 carbon atoms and having an etheric oxygen atom at the terminal bonded to the 2,2 difluorovinyl group.
  • monomer (k-14) examples include the following compounds.
  • monomer (k-15) examples include the following compounds.
  • CF 2 CFCF 2 CF (CF 3 ) OCF-CF 2
  • the polymer (A) in the present invention can be made into a polymer having a different glass transition temperature while maintaining transparency by changing the copolymer composition. Further, by copolymerizing the polymer with another monomer having a functional group, the adhesion of the polymer to the base material can be improved or a crosslinked site can be provided.
  • the functional group include groups such as a hydroxyl group, a carboxyl group, and a sulfonic acid group, and groups that can be converted into the group.
  • the other monomers may be used alone or in combination of two or more.
  • the unit (A) in all units of the polymer (A) may be used.
  • the lower limit of the ratio is preferably 10 mol%, particularly preferably 20 mol%
  • the upper limit of the ratio of the unit (A) is preferably 100 mol%.
  • the unit (A) is When it is a monomer unit of the compound (a) such as the compound (al), the content of the monomer unit (A) relative to all monomer units is preferably at least 10 mol%, particularly preferably at least 20 mol%.
  • the upper limit of the monomer unit is preferably 100 mol%.
  • the polymer (A) of the present invention has high durability against light in a short wavelength light region.
  • the reason for this property is not necessarily clear, but it is considered that the main chain is hardly cleaved even if light is absorbed due to the small distortion of the main chain saturated ring structure.
  • the polymer (A) of the present invention is used as a pellicle film and a glue or an adhesive.
  • the present invention provides a pellicle for exposure treatment with light having a wavelength of 200 nm or less, wherein the pellicle film is adhered to a frame via an adhesive.
  • a pellicle for use in an agent is provided.
  • an exposure processing method using light having a wavelength of 200 nm or less in photolithography can be performed using the pellicle of the present invention.
  • the polymer (A) as the pellicle material is preferably a polymer (A) that requires the unit (A) or a polymer (A 1) that requires the unit (A 1).
  • the pellicle of the present invention is intended to prevent a reduction in yield due to dust adhering to a mask and a reticle used in exposure processing using light having a wavelength of 200 nm or less, particularly excimer laser light.
  • the pellicle of the present invention can be applied to any kind of exposure treatment, but is preferably used in the exposure treatment of photolithography, which is one step in manufacturing a semiconductor device or a liquid crystal display panel.
  • the light used for the exposure process is highly durable against KrF excimer laser light (wavelength 248 nm) and ArF excimer laser light (wavelength 193 nm). In particular, light having a wavelength of 180 nm or less (for example, F 2 excimer laser light (wavelength: 157 nm)) can be preferably used.
  • the pellicle of the present invention includes a pellicle film and a frame, and the pellicle film is bonded to the frame via an adhesive.
  • the material for forming the frame is not limited as long as it can support the pellicle film, and is preferably a metal material in terms of strength, and particularly a metal material having resistance to short-wavelength light used in exposure processing. Can be adopted without restriction.
  • Aluminum, 18- 8 Examples include stainless steel, nickel, synthetic quartz, calcium fluoride, and palladium fluoride. Among these, aluminum or synthetic quartz is preferable as the material from the viewpoints of environmental resistance, strength, and specific gravity.
  • the polymer (A) is used as a pellicle film and / or an adhesive in the pellicle.
  • the pellicle film is preferably manufactured by forming a film using a solution of the polymer (A).
  • the solvent is not particularly limited as long as it dissolves the polymer (A) of the present invention having a fluorine atom, and it is preferable to select a solvent having high polymer solubility, particularly a fluorine-containing organic solvent.
  • fluorinated organic solvent examples include the following.
  • Polyfluoroaromatic compounds such as perfluorobenzene, pentafluorobenzene, and 1,3-bis (trifluoromethyl) benzene.
  • Polyfluorotrialkylamine compounds such as perfluorotributylamine and perfluorotripropylamine.
  • Polyfluorocycloalkane compounds such as perfluorodephosphorus and perfluorocyclohexane.
  • Polyfluoro cyclic ether compounds such as perfluoro (2-butyltetrahydrofuran).
  • Perfluorooctane Perfluorodecane, 1,3—Dichloro-1,1,2,2,3—Penfufluoropropane, 2 H, 3 H—Perfluoropentane, 1 H—Perfluo Polyfluoroalkanes such as xane.
  • Polyfluoroethers such as methyl perfluoroisopropyl ether, methyl perfluoro mouth butyl ether, methyl (perfluoro mouth hexyl methyl) ether, methyl perfluorooctyl ether, and ethyl perfluorobutyl ether.
  • a method for producing a pellicle film from a solution of the polymer (A) a known method for forming a polymer thin film on a substrate can be adopted, and a roll coating method, a casting method, a dip method, a spin coating method, The water casting method, the die coating method, the Langmuir project method and the like can be mentioned.
  • the pellicle film is required to form a strict film thickness, and therefore, it is particularly preferable to employ the spin coating method.
  • the substrate is preferably a silicon wafer, quartz glass or the like having a flat surface.
  • the thickness of the pellicle film is preferably in the range of 0.01 to 50.
  • the polymer (A1) is preferable. Further, the polymer (A1) is preferably a polymer which requires the unit (A) and has no functional group. Further, the polymer (A) is preferably a polymer having no CH 2 CH 2 structure.
  • the polymer (A) may be a polymer composed of one or more units (a) (preferably, units (al)), and a unit other than the units (a) and (a). (Hereinafter, referred to as other units), and the latter is preferable.
  • the ratio of the other units to the total units in the polymer is 0.1 to 60 mol in terms of the mechanical strength and transmittance of the membrane. %, Particularly preferably 1.0 to 50 mol%.
  • a monomer unit obtained by polymerizing monomers (k-1) to (k-5) is preferable.
  • a polymer containing the unit (A) is preferably used, and a polymer containing the unit (A) and having a functional group is particularly preferable.
  • the ratio of the monomer unit (A) to one monomer unit in the polymer may be less than 1 mol%, preferably from 0.0001 mol% to less than 1 mol%.
  • an adhesive polymer (A) into which a functional group effective for improving adhesiveness is introduced is used.
  • the polymer (A) in the present invention for a pellicle film is preferably a polymer having no functional group from the viewpoint of light transmission.
  • the functional group may be a frame or a base. It is selected from functional groups that exhibit adhesiveness to the icle film, and includes carboxylic acid groups, sulfonic acid groups, alkoxycarbonyl groups, acyloxy groups, alkenyl groups, hydrolyzable silyl groups, hydroxyl groups, maleimide groups, amino groups, and cyano groups. And at least one group selected from a group and an isocyanate group. Further, as a functional group, it exhibits good adhesiveness to metals such as aluminum as a frame material, can exert its effect at a relatively low temperature, and has a high storage stability. Lupoxyl groups are particularly preferred.
  • the number of functional groups is preferably from 0.01 to 1 mmol per gram of the polymer.
  • the number of the functional groups is within 1 mmol, the possibility that the short-wavelength light absorptivity of the functional groups impairs the durability of the adhesive is reduced.
  • the adhesive polymer (A) into which a functional group is introduced can be synthesized by a known method (for example, Japanese Patent Application Laid-Open No. 4-189890, Japanese Patent Application Laid-Open No. 4-226261). No. 7 Japanese Patent Application Laid-Open No. Hei 6-222022).
  • Method 1 As a method for introducing a functional group, (Method 1) After polymerizing the monomer (a) or polymerizing the monomer (a) with another monomer, a polymer terminal group derived from a polymerization initiator, a chain transfer agent, etc. (Method 2) Monomer-(a), a method of copolymerizing another monomer having no functional group, and another monomer having a functional group, or (Method 3) Monomer ( a) a method of copolymerizing another monomer having no functional group and another monomer having a group that can be converted into a functional group, and then converting a group that can be converted into a functional group into a functional group, etc. Is mentioned. Of these, method 1 is preferred because the introduction operation is easy.
  • a method in which a polymer is subjected to high temperature treatment to oxidatively decompose a side chain or a terminal of the polymer to introduce a hydroxyl group into the polymer is also employed. it can.
  • a polymer other than the polymer (A) may be used as the adhesive.
  • the polymer is not particularly limited, and examples thereof include compounds described in Japanese Patent Application Laid-Open No. 2001-330943 and International Publication No. 2001/37044. Specific examples include polymers having no saturated aliphatic ring structure in the main chain, such as propylenenovinylidene fluoride tetrafluoroethylene copolymer, vinylidene fluoride hexafluoropropylene copolymer, and the like.
  • a copolymer mainly composed of It is preferable to introduce a functional group into these polymers by a method such as the method 1.
  • a coupling agent such as a silane-based, epoxy-based, titanium-based, or aluminum-based coupling agent is used for the purpose of improving the adhesiveness of the adhesive polymer (A). Etc. may be used.
  • an adhesive polymer (A) containing a functional group is used, the polymer (A) is coated thinly on a frame, and the polymer (A) of the present invention having no functional group on its surface is used. The pellicle film can be firmly adhered even if) is applied and adhered.
  • the polymer (A1) having the monomer unit (A1) among the polymers (A) in the present invention is a novel polymer.
  • X 1 , X 2 , n, R fl , and R i2 have the same meaning as described above, and the preferred embodiments are also the same.
  • X 1 and X 2 are independently a fluorine atom or a chlorine atom
  • the polymer has good heat resistance, weatherability and light resistance.
  • X 1 and X 2 are both fluorine atoms
  • Quality is further improved.
  • the polymer (A 1) a polymer containing a monomer unit in which X 1 , X 2 , R fl and R f 2 in the formula (A 1) are all fluorine atoms and n is 1 is particularly preferable.
  • the polymer (A 1) may be used as it is, or may be used after being converted into another compound. When used as it is, it is preferable to use it after dissolving it in a solvent.
  • a fluorinated solvent is preferable.
  • a perfluorotetrahydrofuran derivative such as perfluoro (2-butyltetrahydrofuran); a perfluoroalkylamine such as perfluorotriptylamin; And perfluorocycloalkanes (including condensed rings) such as perfluorocyclohexane; hydrofluoroethers; and fluorene-containing fluorocarbons.
  • the polymer (A) of the present invention is soluble in these fluorinated solvents.
  • the polymer (A) of the present invention can be obtained by ordinary radical polymerization.
  • a technique of a radical polymerization reaction can be applied.
  • polymerization by an organic or inorganic radical initiator, light, ionizing radiation or heat, etc. may be mentioned.
  • the polymerization method bulk polymerization, solution polymerization, suspension polymerization, or emulsion polymerization can be used.
  • the initiator used for the main polymerization include the following compounds.
  • Diisopropylperoxydipotionate di (2-ethylhexyl) ⁇ -roxydicarbonate, diarylperoxydicarbonate, isobutylyl ruperoxide, t-butylperoxypivalate, bisperfluo Peroxide or azo compound such as lovtyrilperoxide, perfluorobenzoylperoxide, bisperfluoride or the like, or azo compound; etc.
  • the molecular weight of the polymer (A) of the present invention It can be adjusted by using a known chain transfer agent.
  • chain transfer agent examples include black-mouthed carbon such as black-mouthed form, alcohols such as methanol and isopropyl alcohol, hidden-mouthed fluorocarbons such as difluorochloromethane, and sulfides. . 43
  • Compound (a) such as compound (al) in the present invention has a relatively high boiling point and an appropriate polymerization rate, and is a polymerization method for directly obtaining parts and the like from monomers, such as potting polymerization or cast polymerization.
  • Bulk polymerization method (hereinafter also referred to as direct polymerization method).
  • direct polymerization method for example, in the case of cast polymerization, it is possible to manufacture a lens-like product, manufacture a rod for an optical fiber, and directly manufacture a core or a clad of an optical waveguide.
  • a monomer and a polymerization initiator are mixed, and if necessary, other additives are added, and the mixture is injected into a molding die. Thereafter, a heat polymerization method of curing by heating, or a photopolymerization method of curing by actinic rays such as light curing can be adopted.
  • the type of the initiator used in the direct polymerization method is not particularly limited, and the same initiator as described above can be used.
  • the amount of the initiator added is preferably 0.05 to 5%, more preferably 0.1 to 3%, based on the total amount of the monomers.
  • the temperature is preferably set to 0 to 50 at the initial stage, and the temperature is preferably gradually increased as the polymerization proceeds, and finally to 60 to 150. Heating is preferred. After removal from the mold, boss cure can be performed if necessary.
  • a photosensitizer such as benzoin, benzoin methyl ether, benzoethyl ether, benzophenone, acetate phenone, etc.
  • the polymerization initiator may be used in combination.
  • the polymer (A) of the present invention can be used not only in a direct polymerization method but also in a polymer obtained by a usual polymerization method, such as extrusion molding, injection molding, etc., melt coating such as solution coating, casting, and dipping. It is possible to adopt the processing means of You. Thereby, the polymer (A) of the present invention can be applied to various uses.
  • the novel polymer (A 1) of the present invention has a property that its elastic modulus is maintained even at high temperatures, so that its strength at high temperatures is higher than that of other general-purpose fluoropolymers such as PTFE and PFA. Have. Moreover, the chemical stability is equivalent to PTF E and PFA. Therefore, it can be applied to products in which structural parts such as piping, valves, sight glass, silicon wafer cases, and various chemical tanks come into direct contact with chemicals in various chemical and semiconductor factories.
  • the polymer (A 1) of the present invention has excellent thermal stability, additives such as a plasticizer and a heat stabilizer are not required when the above-mentioned molded product is melt-molded. In addition, high decomposition temperature makes it difficult to generate decomposition products. These characteristics have an advantage that when the polymer (A 1) of the present invention is applied to the food industry and bioindustry, contamination of impurities into products can be avoided.
  • the polymer (A 1) of the present invention has a transmittance of ultraviolet light of 200 nm to 400 nm of 90% or more and is hardly deteriorated by ultraviolet rays. Therefore, it can be used as an optical transmission member such as a lens, an optical fiber, or an optical waveguide in various optical devices and optical components using ultraviolet light.
  • an optical transmission member such as a lens, an optical fiber, or an optical waveguide in various optical devices and optical components using ultraviolet light.
  • a component for DVD using a blue laser having a wavelength of 400 nm or less, a surface protective film of a disk for DVD, or a surface protective film of a solar cell are exemplified.
  • the polymer (A 1) of the present invention has a high glass transition temperature, it can be used under severe conditions (for example, long-term high-temperature conditions such as solder reflow conditions or around an engine, or heat generation conditions such as inside a computer). Under long-term use, etc.) It has the advantage that the characteristics are hardly deteriorated.
  • the polymer (A 1) of the present invention has excellent resistance to various chemicals, it can be used as a protective coating agent, a photoresist film, and a masking agent for etching. It is useful as a separator for fuel cells, a catalyst fixing film for fuel cells, and the like.
  • the photopolymerization method of the direct polymerization method can be used to simplify the process as compared with the conventional method.
  • a mixture of a monomer and a photopolymerization initiator is applied to a substrate and irradiated with light of a desired pattern by a photoresist method, only the irradiated portion is polymerized. Thereafter, a desired pattern can be formed by removing the monomer in a portion which is not irradiated with light and is not polymerized.
  • resist film materials for low wavelengths for example, for an F 2 excimer laser that oscillates at 157 nm, or for an Ar F excimer laser that oscillates at 193 nm, for lithography It is also useful.
  • the polymer (A1) of the present invention has a low refractive index, and may be used in combination with various photoacid generators, leveling agents, surfactants, and the like, instead of the monomer alone. It is also useful as a low reflection processing agent. Coating of the polymer (A1) of the present invention on the surface of spectacle lenses, optical lenses, various optical members, pellicles, show windows, show cases or various displays (PDP, LCD, FED, organic EL, projection TV) By forming, an antireflection effect can be obtained.
  • the homopolymer of the compound (a1) of the present invention has a refractive index of about 1.33, which is almost the same as that of water, the protective film for bioindustry, lenses, and protection for analytical instruments It is also useful as a film or molded article.
  • the polymer (A1) of the present invention has a low dielectric constant, when it is used as a protective film of a semiconductor device, it has the effect of increasing the calculation speed.
  • the dielectric constant is hardly affected by humidity, and the effect of shielding the semiconductor element from moisture is high.
  • interlayer insulating films for example, for semiconductor devices, liquid crystal displays, and multilayer wiring boards
  • buffer coating films for example, for semiconductor devices, liquid crystal displays, and multilayer wiring boards
  • passivation films for high-density mounting boards
  • wire shielding films for example, RF circuit devices, GaAs devices, and InP devices
  • high-frequency devices for example, RF circuit devices, GaAs devices, and InP devices
  • the polymer (A1) of the present invention is laminated with a single film or a resin such as polyimide. They can be used as layered films, and these are useful as films for circuit boards and film capacitors.
  • the solvent may be perfluoro (2-butyltetrahydrofuran), perfluorotriptylamin, perfluorocycloalkane (including a condensed ring), or a hydride.
  • Solvents that do not attack the base material itself, such as mouth fluoroesters and hide mouth fluorocarbons, can be used. Therefore, there is an advantage that the solution composition can be coated on various substrates and the formed film is tough.
  • a 2 L autoclave made of Hastelloy C was charged with F (CF 2 ) 3 ⁇ CF (CF 3 ) CF 2 ⁇ CF (CF 3 ) COF (2515 g) and NaF powder (240 g). Cool the reactor with sufficient agitation and keep the internal temperature below 30 at normal pressure. Glycerol-formal (401 g) was introduced slowly so as to be dripping. The HF generated by the reaction was removed by adsorption with NaF. After charging the whole amount of glycerol * formal, the mixture was further stirred for 24 hours, and then the NaF powder was removed by pressure filtration to obtain a product.
  • the product was analyzed by NMR and GC, and as a result, it was a mixture of the compound (18) and the compound (19), and the selectivity as a mixture was 99.4%. Unreacted glycerol-formal was not detected. This product was used for the next reaction without purification.
  • CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COF (4 kg) was added to the stainless steel autoclave ( 3 ) equipped with a condenser, a pump, and a circulation line connected to the pump. Circulation (flow rate 300 L / h).
  • a heat exchanger was installed on a part of the circulation line extending from the pump discharge side to the autoclave top plate to maintain the temperature of the circulating liquid at 25 ° C.
  • a stainless steel ejector is installed in the middle of the circulation line so that gas can be sucked into the circulating liquid, and a raw material supply pipe between the ejector and the pump, and a reaction crude liquid reacted in the autoclave.
  • Example 2 the product obtained in Example 1 was circulated from the raw material supply pipe without dilution, and the CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COF was fed continuously at an average supply of about 50 gZh, for a total of 4800 g of raw material.
  • about 270 g of the reaction crude liquid was withdrawn from the circulation line about 12 times in total every about 8 hours from the start of raw material supply. Even after the supply of the raw materials is completed, 50% dilution of fluorine gas is supplied for 1 hour.Fluorine gas is supplied, and nitrogen gas is further blown in for 3.5 hours.
  • the reaction crude liquid was recovered.
  • Example 4 After thoroughly replacing the inside of a 2 L flask equipped with a dry ice reflux condenser, a chlorine gas inlet, and a thermocouple thermometer with a high-pressure mercury lamp in the side tube and a side tube, the compound synthesized in Example 4 (b20) ( 76 g) and R—113 (540 g) were charged. After the internal temperature was raised to 10 ° C, the mercury lamp was turned on, and at an internal temperature of 30, the introduction of chlorine gas was started slowly. Thereafter, the temperature of the system was raised and kept constant within the range of 45 to 50 ° C. The unreacted chlorine gas was reacted while circulating in the system by a dry ice reflux condenser. A total of 90.5 g of chlorine was charged, and the reaction was terminated when the chlorine was consumed.
  • a well-dried four-necked flask was equipped with a reflux condenser, stirrer, dropper port, and thermocouple thermometer, charged with antimony trifluoride (61.6 g), and used a vacuum pump at room temperature. And dried under reduced pressure for about 12 hours. Thereafter, the compound (b31) (100.0 g) synthesized in Example 6 and antimony pentachloride (18.0 g) were dropped into the system from a dropping funnel, and the mixture was heated to reflux while stirring. Thereafter, the reflux condenser was replaced with a simple distillation apparatus, and the product was distilled off from the system under reduced pressure to obtain a colorless transparent liquid (87.6 g). As a result of analysis by 19 F-NMR, it was confirmed that the liquid was Compound (b30). The yield determined by NMR (internal standard: C 6 F 6 ) was 97%.
  • Zinc powder (42.1) and dimethylformamide (120 g) were placed in a 50-mL four-neck glass flask equipped with a mechanical mechanical mixer, a dropping funnel, a thermocouple thermometer, and a distillation column. Heated to 40 ° C. Thereafter, 1,2-dibromoethane (16.1 g) was added dropwise to the system. After the end of the vigorous exotherm, the system was adjusted to 55 and the compound (b30) (77.0 g) was slowly dropped. As the reaction proceeded, the product distilled off from the top of the distillation column. The compound (b30) was charged into the system in its entirety while maintaining the balance between the distillation and the dropwise addition, and the product (32.1 g) was recovered.
  • the obtained product was a colorless and transparent liquid.
  • the liquid was Compound (a2), and the yield was determined by gas chromatography. As determined, it was 52%.
  • polymer A2 As a polymerization initiator, a 3% solution of (C 3 F 7 COO) 2 in dichloropentafluoropropane (0.74 g) was added, the system was replaced with nitrogen again, and polymerization was carried out at 110 ° C for 80 hours. Was. As a result, an amorphous polymer (hereinafter, referred to as polymer A2) (2.2 g) was obtained. When 19 F-NMR of polymer A 2 was measured, the peak of the fluorine atom bonded to the carbon atom constituting the unsaturated bond of the raw material monomer (compound (a 2)) was completely eliminated. It was confirmed that the ring structure of (a 2) was maintained as it was.
  • the intrinsic viscosity [? 7] of the polymer A2 was 2.42 at 30 ° C in perfluoro (2-butylethyltetrahydrofuran).
  • the polymer A2 was a tough and transparent glassy polymer at room temperature.
  • the onset temperature of weight loss of the polymer A2 was about 400 ° C, and the 10% weight loss temperature was 480 ° C.
  • the refractive index of the film obtained by casting on a glass substrate was measured using an Abbe refractometer to be 1.33. .
  • DSC measurement showed a glass transition temperature of 305 ° C.
  • the polymer A 2 was charged into a nickel autoclave, nitrogen gas was charged with F 2 gas diluted to 2 0%, the 12 hours fluorinated with 240 ° C.
  • the IR spectrum of the obtained polymer was measured, no terminal absorption was observed at 1600 cm- 1 to 1900 cm " 1.
  • the terminal of the polymer A2 was fluorinated.
  • the obtained polymer is hereinafter referred to as polymer A3.
  • the intrinsic viscosity [??] of polymer A4 was 0.31 at 30 in perfluoro (2-butyltetrahydrofuran).
  • the polymer A4 was a tough and transparent glassy polymer at room temperature.
  • the weight loss onset temperature of this polymer was about 400 and the 10% weight loss temperature was 480, as determined by thermogravimetric analysis in nitrogen. After dissolving in perfluoro (2-butyltetrahydrofuran) to prepare a solution, the film was cast on a glass substrate and the refractive index of the film obtained was measured using an Abbe refractometer to be 1/33. Was. Further, the glass transition temperature was observed at 14 ° C. from the DSC measurement.
  • the ratio of the monomer unit of the compound (5M monomer) to the total polymer units in the polymer A5 was 10 mol%, and the monomer of the compound (a2) was The unit ratio was 90 mol%.
  • the peak of the fluorine atom bonded to the carbon atom constituting the unsaturated bond has completely disappeared, and the spiacyclic ring structure has been retained. It was confirmed.
  • Mw of the polymer A5 measured by the GPC method was 56,000.
  • the polymer A5 was a tough and transparent glassy polymer at room temperature.
  • polymer A7 The intrinsic viscosity [7?] Of polymer A7 was 0.90 at 30 ° C in 1,3-bis (trifluoromethyl) benzene. Polymer A7 had a glass transition point of 90, was a tough and transparent glassy polymer at room temperature, and had a low refractive index of 1.36.
  • the polymer A7 was heat-treated in air at 320 ° C. for 3 hours, and then denatured by immersion in water. An IR spectrum measurement of the modified polymer A7 confirmed a carboxyl group peak, and the amount was 0.005 mmol /. This modified polymer A7 is hereinafter referred to as an adhesive A7.
  • Polymer B had a glass transition point of 90, was a tough, transparent glassy polymer at room temperature, and had a low refractive index of 1.36.
  • polymer B obtained in the same manner as above After heat treatment for an hour, it was immersed in water for denaturation. The peak of the lipoxyl group was confirmed by IR spectrum measurement of the modified polymer B, and its amount was 0.004 mmol / g. This modified polymer B is hereinafter referred to as adhesive B.
  • Polymer A3 (1.5 g) synthesized in Example 8 and perfluoro (methyldecalin) (98.5 g) were put in a glass flask and heated and stirred at 70 ° C for 48 hours. As a result, a colorless, transparent, turbid, homogeneous solution was obtained.
  • This solution was spin-coated on a polished quartz substrate. The spin coating was performed at a spin speed of 500 rpm for 10 seconds, and then at 700 rpm for 20 seconds. Furthermore, it was dried by heating at 80 at 1 hour and further at 200 at 2 hours to form a uniform and transparent polymer A3 film on a quartz substrate.
  • uniform and transparent films of the polymer A5 synthesized in Example 11 and the polymer A6 synthesized in Example 12 were formed on a quartz substrate.
  • Example 15-2 Example of pellicle production using adhesive A7 as an adhesive and polymer A3 as a pellicle film
  • Adhesive A7 (2 g) obtained in Example 13 and 1,3-bis (trifluoromethyl) benzene (38 g) were treated in the same manner as in Example 15-1, to obtain a uniform solution.
  • the adhesive solution E was applied to the surface of the aluminum frame to which the pellicle film was adhered, and dried at room temperature for 2 hours. Then, the aluminum frame was placed on a 120 hot plate with the adhesive side up and heated for 10 minutes.
  • the aluminum frame was placed on the film surface of the polymer A3 on the quartz substrate obtained in Example 15-1.
  • the bodies were overlapped and crimped such that the adhesive surfaces of the frames were in contact. It was kept at 12 O ⁇ C for 10 minutes to complete the adhesion.
  • Example 15-2 The adhesive B is applied to an aluminum frame in the same manner as described above.
  • Example 14 using the polymer B obtained in Example 14, a uniform and transparent film of the polymer B is formed on a quartz substrate in the same manner as in Example 15-1.
  • Example 15-2 an aluminum frame is pressure-bonded, adhered, and separated from the film surface of the polymer B formed on the quartz substrate surface.
  • a pellicle is obtained in which a uniform free-standing film having a film thickness of about 1 ⁇ m made of polymer B is adhered to the aluminum frame by the adhesive B.
  • the transmittance of 157 nm light of the film made of the polymer B is 90% or more.
  • Example 1 5-2 obtained in polymer A 3, A 5, pellicle with A 6, and in the pellicle employing the polymer B obtained in Example 1 5 _ 3, F 2 which oscillates 1 5 7 nm
  • the irradiation test was performed at a cycle of 200 Hz using an excimer laser beam at an intensity of 0.05 mJZ cm 2 / pulse.
  • the pellicle using polymers A3, A5, and A6 showed extremely good resistance, with a decrease in transmittance of the membrane within 30% of the initial value after 400,000 pulses or more.
  • the pellicle film is firmly adhered to the frame with an adhesive, and good durability is recognized.
  • the present invention provides a polymer (A) having high transparency and durability to short wavelength light.
  • the polymer (A) is useful as a pellicle material.
  • the present invention provides a novel polymer (A 1) as the polymer (A). Also provided is a novel monomer that can be used for producing the polymer (A 1).
  • the present invention This monomer is easily homopolymerized or copolymerized with another radically polymerizable monomer.
  • the novel polymer (A1) has a low refractive index, is a solvent-soluble polymer and has good transparency. Further, the polymer (A1) has a high Tg and a high thermal decomposition temperature, and the difference between the Tg and the thermal decomposition temperature is large, so that melt molding is easy. Further, the polymer (A1) of the present invention also has the properties of other fluorinated polymers.
  • the polymer (A1) of the present invention can be used to obtain an ultrathin film free of defects such as pinholes, it can be applied to coating materials, separation membrane materials, and the like.
  • it can be applied to an optical material such as an antireflection agent, an optical fiber, a core of an optical waveguide or a cladding agent by utilizing the low refractive index.
  • it since it has a low dielectric constant and low water absorption, it can be used as an electronic material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Novel polymer being useful as, for example, a material of protective coating agent, photoresist film, masking agent at etching, separator for fuel cell, coating for fuel cell catalyst immobilization or pellicle; compound being useful as a raw material of the polymer; and novel intermediate being useful in the production of the compound. Further, there are provided a pellicle film and adhesive for pellicle film in which a novel material is employed. In particular, a pellicle constituted of a polymer comprising units of the formula (A), for example, units of the formula (A1), and a novel compound of the formula (a1). In the formulae, each of X1 and X2 independently represents a fluorine, chlorine or hydrogen atom. n is an integer of 1 or 2. Rf1 represents a fluorine atom or trifluoromethyl. Rf2 represents a fluorine atom or a C1-C5 perfluoroalkyl.

Description

明 細 書  Specification
含フッ素化合物および含フッ素重合体  Fluorinated compounds and fluorinated polymers
<技術分野 > <Technical field>
本発明は、 新規な含フッ素化合物、 および該含フッ素化合物を重合させた 新規な含フッ素重合体に関する。 また本発明は、 紫外光領域で高い透明性を 有する新規な含フッ素重合体からなるペリクル膜およびべリクル膜用接着剤 に関する。 また、 該ペリクルを用いた露光処理方法に関する。  The present invention relates to a novel fluorinated compound and a novel fluorinated polymer obtained by polymerizing the fluorinated compound. The present invention also relates to a novel fluorinated polymer adhesive having a high transparency in the ultraviolet region, for pellicle and pellicle films. Further, the present invention relates to an exposure processing method using the pellicle.
<背景技術 > <Background technology>
フッ素置換された炭素一炭素二重結合を有する含フッ素ジォキソール化合 物が知られている (米国特許 3 , 8 6 5, 8 4 5号明細書) および米国特許 4, 4 2 9 , 1 4 3号明細書) 。 またスピロ環構造を有する含フッ素ジォキ ソール化合物として、 下式 (T) で表される化合物が知られている (日本特 許第 3 0 7 5 5 8 8号公報) 。  Fluorinated dioxole compounds having a fluorine-substituted carbon-carbon double bond are known (US Pat. No. 3,865,845) and US Pat. No. 4,429,144. No. statement). Further, as a fluorine-containing dioxole compound having a spiro ring structure, a compound represented by the following formula (T) is known (Japanese Patent No. 3057588).
Figure imgf000003_0001
Figure imgf000003_0001
該式 (丁) で表される化合物が重合した重合体は、 特定の溶媒に可溶であ り、 ガラス転移温度 (以下、 T gと記す。 ) が高い。 しかし、 該重合体の熱 分解開始温度が低く、 T gと熱分解開始温度が近いために、 溶融成形時の温 度範囲を厳密にコントロールする必要があった。 また、 重合体の透過率およ び耐久性が不充分であつた。  A polymer obtained by polymerizing the compound represented by the formula (c) is soluble in a specific solvent and has a high glass transition temperature (hereinafter, referred to as Tg). However, since the thermal decomposition onset temperature of the polymer was low and the Tg was close to the thermal decomposition onset temperature, it was necessary to strictly control the temperature range during melt molding. Further, the transmittance and durability of the polymer were insufficient.
また主鎖に飽和環構造を有する含フッ素重合体は、 非晶質性を示し透明な 含フッ素重合体となりうることが知られている。 このような含フッ素重合体 は、 透明コーティング材料または光学材料等として有用である (日本特開平 It is also known that a fluoropolymer having a saturated ring structure in the main chain can be a transparent fluoropolymer having an amorphous property. Such a fluorine-containing polymer is useful as a transparent coating material or an optical material.
3 - 3 9 9 6 3号公報および日本特開平 3— 6 7 2 6 2号公報) 。 また、 主 鎖に水素原子を含み、 かつ、 実質的に線状の含フッ素重合体 (日本特開 20 0 1 -330943号公報) 、 ペルフルォロ 1 , 3—ジォキソール構造を含 む重合体 (国際公開第 200 1/37044号パンフレツト) は、 紫外領域 で高い透明性を有することが知られている。 また、 これらの材料をペリクル 用に用いることも知られている。 3-39963 and Japanese Unexamined Patent Publication (Kokai) No. Hei 3-67272. Also the Lord A substantially linear fluorine-containing polymer containing a hydrogen atom in the chain (Japanese Patent Application Laid-Open No. 2001-330943); a polymer containing a perfluoro-1,3-dioxole structure (International Publication No. / 37044 pamphlet) is known to have high transparency in the ultraviolet region. It is also known to use these materials for pellicles.
ペリクルとは、 半導体装置または液晶表示板を製造する際の一工程である フォトリソグラフィにおいて、 フォトマスクゃレチクル (以下、 これらをマ スクという。 ) 上に異物が乗ることによって露光時のパターン欠陥が発生す るのを防ぐために、 マスクのパターン上に装着される保護膜をいう。 ペリク ルは、 通常は、 枠体 (フレーム) に接着剤を介して透明薄膜を取り付けた構 造からなる。 またペリクルは、 マスク面から一定の距離をおいて設置される ペリクルが使用される半導体装置や液晶表示板の製造分野では、 配線や配 線間隔の微細化進展にともない-. フォトリソグラフィにおける光源の波長が 急速に短波長化している。 近年では、 最小パターン寸法 0. 3 m以下の配 線加工のために、 K r Fエキシマレーザーが導入されているが、 その発振波 長は 248 nmである。 該波長においては、 従来のニトロセルロース系の膜 材料では耐久性が不充分になるため、 日本特開平 3— 39963号公報等に 記載される非結晶性のペルフルォロ重合体が膜材料として提案されている。 一方、 近年のリソグラフィーでは、 最小パターン寸法 0. 2 m以下の配 線加工が必要とされているが、 これらの加工のために波長 200 nm以下の レーザーとして、 波長 1 93 nmのフッ化アルゴンエキシマレーザー (以下 、 A r Fエキシマレ一ザ一という。 ) 、 波長 1 57 nmのフッ素ガスエキシ マレーザー (以下、 F2エキシマレーザーという。 ) 等の使用が検討されて いる。 A pellicle is a process in the manufacture of semiconductor devices or liquid crystal display panels. In photolithography, foreign matter is placed on a photomask reticle (hereafter referred to as a mask). A protective film that is mounted on a mask pattern to prevent it from occurring. The pellicle usually has a structure in which a transparent thin film is attached to a frame via an adhesive. Pellicles are installed at a certain distance from the mask surface. In the field of manufacturing semiconductor devices and liquid crystal display panels that use pellicles, wiring and wiring intervals are becoming finer. The wavelength is rapidly shortening. In recent years, a KrF excimer laser has been introduced for wiring processing with a minimum pattern size of 0.3 m or less, but its oscillation wavelength is 248 nm. At this wavelength, the durability of conventional nitrocellulose-based film materials is insufficient, so that an amorphous perfluoropolymer described in Japanese Patent Application Laid-Open No. 3-39963 has been proposed as a film material. I have. On the other hand, in recent lithography, wiring processing with a minimum pattern size of 0.2 m or less is required.For these processing, a laser with a wavelength of 200 nm or less is used as an argon fluoride excimer with a wavelength of 193 nm. laser (hereinafter, referred to as a r F excimer one tHE one.) wavelength 1 57 nm of fluorine Gasuekishi Mareza (hereinafter, referred to as F 2 excimer lasers.) use of the like have been studied.
しかし、 これらのレーザーからのレーザ一光は非常にエネルギーが高いた め、 上記米国特許 3, 865, 845号明細書に記載される重合体では、 耐 久性が不充分であった。 また、 該米国特許明細書に記載される重合体 (旭硝 子社製商品名: CYTOP) は、 1 70 nm以下の光に対する光透過性ゃ耐 久性が急激に低下する性質があり、 波長 1 57 nmの F 2エキシマレーザー 光に対する透過性は著しく低くなる欠点があった。 また、 該重合体は 1 7 0 n m以上の光に対する透明性には優れるが、 膜強度が不充分であり取り扱い が難しい問題があった。 However, since the laser light from these lasers has very high energy, the polymer described in the above-mentioned US Pat. No. 3,865,845 has insufficient durability. Further, the polymer described in the US Patent Specification (trade name: CYTOP, manufactured by Asahi Glass Co., Ltd.) has a property that light transmittance for light of 170 nm or less, durability is rapidly reduced, and wavelength 1 57 nm F 2 excimer laser There is a drawback that the light transmittance is extremely low. Further, the polymer is excellent in transparency to light of 170 nm or more, but has a problem that the film strength is insufficient and handling is difficult.
また、 F 2エキシマレ一ザ一光に対応できるペリクル膜として、 日本特許 第 3 0 7 5 5 8 8号公報には鎖状構造の含フッ素重合体が記載され、 日本特 開平 3— 3 9 9 6 3号公報等にはフッ化ビニリデン等を主成分とする共重合 体が記載されている。 しかし、 これらの重合体は 1 5 7 n mで透明性を有す るものの、 耐久性が不充分であつた。 Further, F as 2 excimer one The one pellicle film can respond to light, Japanese Patent the third 0 7 5 5 8 8 No. describes fluorinated polymer chain structure, Japanese Patent 3 3 9 9 No. 63 discloses a copolymer containing vinylidene fluoride or the like as a main component. However, these polymers had transparency at 157 nm, but had insufficient durability.
さらに、 ペリクル膜とフレームを接着する接着剤においても、 レーザー光 の迷光や反射光による同様な劣化問題があるため、 耐久性の高い接着剤の開 発が望まれてきた。  Further, the adhesive for bonding the pellicle film and the frame has the same deterioration problem due to the stray light or reflected light of the laser light, and therefore, the development of an adhesive having high durability has been desired.
<発明の開示 > <Disclosure of Invention>
本発明は、 保護コーティング剤、 フォトレジスト膜、 エッチング時のマス キング剤、 燃料電池用セパレーター、 燃料電池用触媒固定用皮膜、 およびべ リクル材料等として有用な新規な重合体の提供を目的とする。 また、 本発明 は、 該重合体の原料として有用な化合物および該化合物の製造に有用な新規 な中間体の提供を目的とする。 また本発明は、 新規な材料を用いたペリクル 膜およぴぺリクル膜用接着剤の提供を目的とする。  An object of the present invention is to provide a novel polymer useful as a protective coating agent, a photoresist film, a masking agent at the time of etching, a separator for a fuel cell, a catalyst fixing film for a fuel cell, a velcro material, and the like. . Another object of the present invention is to provide a compound useful as a raw material of the polymer and a novel intermediate useful for producing the compound. Another object of the present invention is to provide a pellicle film and a pellicle film adhesive using a novel material.
本発明者らは、 特定の単位を含む重合体が 2 0 0 n m以下のレ一ザ一光、 好ましくは 1 8 0 n m以下のレーザ一光 (以下、 これらのレーザー光を総称 して短波長光という。 ) に対して高い透過性と耐久性を有することを見いだ した。 さらに、 短波長光領域での透明性と耐久性にも優れることを見いだし た。 そして、 該重合体をペリクル膜および/またはペリクル膜接着剤として 用いることにより、 短波長光による露光処理用のペリクルとして最適のペリ クルを提供することを見いだした。  The present inventors have concluded that a polymer containing a specific unit has a laser beam of 200 nm or less, preferably a laser beam of 180 nm or less (hereinafter, these laser beams are collectively referred to as short-wavelength laser beams). It has been found to have high transparency and durability to light. Furthermore, they have found that they have excellent transparency and durability in the short wavelength light range. It has been found that the use of the polymer as a pellicle film and / or a pellicle film adhesive provides an optimal pellicle as a pellicle for exposure processing with short wavelength light.
すなわち本発明は、 以下の発明を提供する。  That is, the present invention provides the following inventions.
'膜が接着剤を介して枠体に接着されてなる、 波長 2 0 0 n m以下の光による露光処理用のペリクルであって、 該ぺリクル膜および Zま たは該接着剤が下式 (A) で表される単位を含む重合体からなることを特徴 とするペリクル。 'A pellicle for exposure processing with light having a wavelength of 200 nm or less, wherein the film is adhered to a frame via an adhesive, and the pellicle film and the Z Or a pellicle, wherein the adhesive comprises a polymer containing a unit represented by the following formula (A).
ただし Qは、 下記の基 (B) 中に存在する水素原子の 1個以上がフッ素原 子に置換された基を示す。  However, Q represents a group in which one or more of the hydrogen atoms present in the following group (B) are substituted with a fluorine atom.
基 (B) : - (CH2) a— (ただし、 aは 1〜3の整数を示す) で表され る基中に存在する 2つの水素原子が、 2個以上のエーテル性酸素原子を含む アルキレン基、 または、 該アルキレン基中の水素原子の 1個以上がエーテル 性酸素原子を含んでいてもよいアルキル基で置換された基、 で連結された基 Group (B):-(CH 2 ) a — (where a is an integer of 1 to 3), wherein two hydrogen atoms present in the group include two or more etheric oxygen atoms An alkylene group, or a group in which at least one hydrogen atom in the alkylene group is substituted by an alkyl group optionally containing an etheric oxygen atom,
X1および X2は独立に、 フッ素原子、 塩素原子または水素原子を示す。 X 1 and X 2 independently represent a fluorine atom, a chlorine atom or a hydrogen atom.
Figure imgf000006_0001
Figure imgf000006_0001
<2>Qが、 基 (B) 中に存在する水素原子の全てがフッ素原子に置換さ れた基であるぐ 1 >に記載のペリクル。  <2> The pellicle according to <1>, wherein Q is a group in which all of the hydrogen atoms present in the group (B) are substituted with fluorine atoms.
ぐ 3〉式 (A) で表される単位が、 下式 (A1) で表される単位であるぐ 1>に記載のペリクル。  The pellicle according to <1>, wherein the unit represented by the formula (A) is a unit represented by the following formula (A1).
ただし、 X1および X2は独立に、 フッ素原子、 塩素原子または水素原子で あり、 nは 1または 2の整数であり、 Rf lはフッ素原子またはトリフルォロ メチル基であり、 R f 2はフッ素原子または炭素数 1〜 5のペルフルォロアル キル基である。 X 1 and X 2 are each independently a fluorine atom, a chlorine atom or a hydrogen atom, n is an integer of 1 or 2, R fl is a fluorine atom or a trifluoromethyl group, and R f 2 is a fluorine atom Or a perfluoroalkyl group having 1 to 5 carbon atoms.
(A1)
Figure imgf000006_0002
<4>ペリクル膜が、 式 (A) で表される単位を必須とし、 かつ、 官能基 を持たない重合体からなるく 1〉〜< 3〉のいずれかに記載のペリクル。
(A1)
Figure imgf000006_0002
<4> The pellicle according to any one of <1> to <3>, wherein the pellicle film requires a unit represented by the formula (A) and comprises a polymer having no functional group.
<5>接着剤が、 式 (A) で表される単位を必須とし、 かつ、 官能基を有 する重合体からなる < 1 >〜<4>のいずれかに記載のペリクル。  <5> The pellicle according to any one of <1> to <4>, wherein the adhesive essentially includes a unit represented by the formula (A) and comprises a polymer having a functional group.
<6>式 (A) で表される単位を含む重合体が、 — CH2CH2—構造を持 たない重合体であるぐ 1 >〜< 5 >のいずれかに記載のペリクル。 <6> The pellicle according to any one of <1> to <5>, wherein the polymer containing a unit represented by the formula (A) is a polymer having no —CH 2 CH 2 — structure.
< 7〉フォトリソグラフィ一における波長 200 nm以下の光を用いた露 光処理方法において、 < 1〉〜< 6 >のいずれかに記載のペリクルを用いる ことを特徴とする露光処理方法。  <7> An exposure treatment method using a pellicle according to any one of <1> to <6>, in an exposure treatment method using light having a wavelength of 200 nm or less in photolithography.
<8>下式 (a l) で表される化合物。 ただし、 X1および X2は独立に、 フッ素原子、 塩素原子または水素原子であり、 nは 1または 2の整数であり 、 Rf lはフッ素原子またはトリフルォロメチル基であり、 Rf 2はフッ素原 子または炭素数 1〜5のペルフルォロアルキル基である。 <8> A compound represented by the following formula (al). However, X 1 and X 2 are each independently a fluorine atom, a chlorine atom or a hydrogen atom, n is an integer of 1 or 2, R fl is a fluorine atom or a trifluoromethyl group, and R f 2 is It is a fluorine atom or a perfluoroalkyl group having 1 to 5 carbon atoms.
Figure imgf000007_0001
Figure imgf000007_0001
<9〉X1および X2がフッ素原子であり、 nが 1であり、 かつ Rf 1およ び R f 2がフッ素原子であるぐ 8 >に記載の化合物。 <9> The compound according to <8>, wherein X 1 and X 2 are each a fluorine atom, n is 1, and R f 1 and R f 2 are each a fluorine atom.
<10>< 8 >またはぐ 9 >に記載の化合物のモノマー単位を含む重合体  <10> Polymer containing a monomer unit of the compound described in <8> or <9>
<11〉下式 (b 2) で表される化合物または下式 (b 3) で表される化 合物。 <11> A compound represented by the following formula (b2) or a compound represented by the following formula (b3).
ただし、 Yおよび Zは、 それぞれ独立に、 フッ素原子、 塩素原子または水 素原子を示し、 nは 1または 2の整数であり、 Rf lはフッ素原子またはトリ フルォロメチル基を示し、 Rf 2はフッ素原子または炭素数 1〜 5のペルフル ォロアルキル基を示す。
Figure imgf000008_0001
However, Y and Z each independently represent a fluorine atom, a chlorine atom or a hydrogen atom, n is an integer of 1 or 2, R fl represents a fluorine atom or a trifluoromethyl group, and R f 2 represents fluorine. It represents an atom or a perfluoroalkyl group having 1 to 5 carbon atoms.
Figure imgf000008_0001
(b2) ぐ発明を実施するための最良の形態 >  (b2) Best mode for carrying out the invention>
本明細書においては、 水素原子を有する基の水素原子の 1個以上がフッ素 原子に置換された基をポリフルォロ基と記し、 該水素原子の全てがフッ素原 子に置換された基をペルフルォロ基と記す。 また本明細書においては、 式 ( In the present specification, a group in which one or more of the hydrogen atoms of a group having a hydrogen atom is substituted by a fluorine atom is referred to as a polyfluoro group, and a group in which all of the hydrogen atoms are substituted by a fluorine atom is referred to as a perfluoro group. Write. In this specification, the expression (
A) で表される重合体を重合体 (A) 、 式 (a l ) で表される化合物を化合 物 (a l ) のように記し、 他の式で表される化合物および単位においても同 様に記す。 また以下の説明において、 式 (A) に関する説明は、 特に記載し ない限り式 (a l ) にも適用される。 The polymer represented by A) is represented by polymer (A), the compound represented by formula (al) is represented by compound (al), and the same applies to the compounds and units represented by other formulas. Write. Further, in the following description, the description regarding the formula (A) also applies to the formula (a l) unless otherwise specified.
本発明は新規なペリクルを提供する。 すなわち、 ペリクル膜が接着剤を介 して枠体に接着されてなる、 波長 2 0 0 n m以下の光による露光処理用のぺ リクルであって、 該ペリクル膜および/または該接着剤が下式 (A) で表さ れる単位を含む重合体からなるペリクルを提供する。 以下、 式 (A) で表さ れる単位を含む重合体を重合体 (A) と記す。  The present invention provides a novel pellicle. That is, a pellicle film is adhered to a frame via an adhesive, and is a particle for exposure processing with light having a wavelength of 200 nm or less, wherein the pellicle film and / or the adhesive are represented by the following formula: A pellicle comprising a polymer containing a unit represented by (A) is provided. Hereinafter, a polymer containing a unit represented by the formula (A) is referred to as a polymer (A).
(A)(A)
Figure imgf000008_0002
Figure imgf000008_0002
式 (A) における Qは、 下記の基 (B ) 中に存在する水素原子の 1個以上 がフッ素原子に置換された基を示す。  Q in the formula (A) represents a group in which one or more of the hydrogen atoms present in the following group (B) has been replaced by a fluorine atom.
基 (B ) :— ( C H 2) a— (ただし、 aは 1〜3の整数を示す) で表され る基中に存在する 2つの水素原子が、 2個以上のエーテル性酸素原子を含む アルキレン基、 または、 該 2個以上のエーテル性酸素原子を含むアルキレン 基中の水素原子の 1個以上がエーテル性酸素原子を含んでいてもよいアルキ ル基で置換された基、 で連結された'基。 Group (B): — (CH 2 ) a — (where a represents an integer of 1 to 3) An alkylene group containing two or more etheric oxygen atoms, or one or more hydrogen atoms in the alkylene group containing two or more etheric oxygen atoms is an ether. A group substituted with an alkyl group which may contain a neutral oxygen atom;
基 (B) における 2つの水素原子を連結する基は 2個のエーテル性酸素原 子を含む基が好ましく、 一 (CH2) bO (CH2) dO (CH2) e— (ただ し、 b、 d、 および eはそれぞれ独立に 1〜2の整数を示し、 (b + d + e ) は 3または 4が好ましい。 ) で表される基が特に好ましい。 The group connecting two hydrogen atoms in the group (B) is preferably a group containing two etheric oxygen atoms, and one (CH 2 ) b O (CH 2 ) d O (CH 2 ) e — (however, , B, d, and e each independently represent an integer of 1 to 2, and (b + d + e) is preferably 3 or 4. The group represented by the following formula is particularly preferable.
Qは、 基 (B) 中に存在する水素原子の 1個以上がフッ素原子に置換され た基であり、 基 (B) 中に存在する水素原子の全てがフッ素原子に置換され た基であるのが好ましい。  Q is a group in which one or more of the hydrogen atoms present in the group (B) have been replaced by fluorine atoms, and a group in which all of the hydrogen atoms present in the group (B) have been replaced by fluorine atoms Is preferred.
基 (B) 中に置換基が存在する場合、 該基としてはアルキル基および/ま たはエーテル性酸素原子を含むアルキル基であり、 それらの炭素数は 1〜 5 が好ましく、 特に 1〜3が好ましく、 とりわけ 1または 2が好ましい。 基 (B) において、 一 (CH2) a—で表される基中に存在する 2つの水素 原子としては、 同一の炭素原子に結合する 2つの水素原子、 または-. 隣り合 う炭素原子に結合する 2つの水素原子であるのが好ましく、 同一の炭素原子 に結合する 2つの水素原子であるのが特に好ましい。 さらに、 該 2つの水素 原子が前記の基で連結することにより 5員環〜 7員環構造を形成するのが好 ましい。 When a substituent is present in the group (B), the group is an alkyl group and / or an alkyl group containing an etheric oxygen atom, and preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms. Is preferable, and 1 or 2 is particularly preferable. In the group (B), two hydrogen atoms present in the group represented by one (CH 2 ) a — include two hydrogen atoms bonded to the same carbon atom, or-. It is preferably two hydrogen atoms bonded to each other, and particularly preferably two hydrogen atoms bonded to the same carbon atom. Further, it is preferable that the two hydrogen atoms be connected by the above-mentioned group to form a 5- to 7-membered ring structure.
Qの具体例としては、 後述する単位 (A) の具体例中に例示されうる。  Specific examples of Q can be exemplified in the specific examples of unit (A) described below.
X1および X2は、 それぞれ独立に、 フッ素原子、 塩素原子または水素原子 を表す。 X1および X2が、 それぞれフッ素原子または塩素原子である場合に は、 重合体 (A) の耐熱性、 耐候性および耐光性が良好になる利点があるた め好ましく、 さらに X1と X2とがフッ素原子である場合には、 重合体 (A) の光学的性質も向上するため特に好ましい。 X 1 and X 2 each independently represent a fluorine atom, a chlorine atom or a hydrogen atom. When X 1 and X 2 are each a fluorine atom or a chlorine atom, it is preferable because the heat resistance, weather resistance and light resistance of the polymer (A) are improved, and X 1 and X 2 are more preferable. Is preferably a fluorine atom because the optical properties of the polymer (A) are also improved.
単位 (A) としては、 下記単位 (Α' ) であるのが特に好ましい。 ただし 、 式中の X1および X2、 および Qは前記と同じ意味を示し、 QFはェ一テル 性酸素原子を 2個以上含むペルフルォロアルキレン基を示す。
Figure imgf000010_0001
The unit (A) is particularly preferably the following unit (Α '). However, in the formula, X 1 and X 2 and Q have the same meanings as described above, and Q F represents a perfluoroalkylene group containing two or more etheric oxygen atoms.
Figure imgf000010_0001
単位 (Α) としては、 下記単位が例示できる。 ただし、 X1および X2は、 前記と同じ意味を示し、 好ましい態様も同じである。 The following units can be exemplified as the unit (で き る). However, X 1 and X 2 have the same meaning as described above, and the preferred embodiments are also the same.
Figure imgf000010_0002
単位 (A) は、 下記化合物 (a) を重合させてなるモノマー単位であるの が好ましく、 単位 (Α' ) は下記化合物 (a' ) を重合させてなるモノマー 単位であるのが好ましい。 同様に単位 (A) として例示した単位は該単位に 対応する構造の重合性モノマーを重合させてなるモノマー単位であるのが好 ましい。
Figure imgf000010_0002
The unit (A) is preferably a monomer unit obtained by polymerizing the following compound (a), and the unit (Α ′) is preferably a monomer unit obtained by polymerizing the following compound (a ′). Similarly, the unit exemplified as the unit (A) is preferably a monomer unit obtained by polymerizing a polymerizable monomer having a structure corresponding to the unit.
Figure imgf000010_0003
Figure imgf000010_0003
(a')  (a ')
さらに、 単位 (A) は、 下記化合物 (a l) を重合させてなる下記モノマ 一単位 (A1) であるのが好ましい。 化合物 (a l) およびモノマー単位 ( A1) を含む重合体は新規な化合物である。 Further, the unit (A) is preferably the following monomer unit (A1) obtained by polymerizing the following compound (al). The polymer containing the compound (al) and the monomer unit (A1) is a novel compound.
Figure imgf000011_0001
Figure imgf000011_0001
(a1) (A1)  (a1) (A1)
ただし、 nは 1または 2である。 このうち、 環構造を形成しやすく、 環構 造が安定であること、 原料入手の容易性の点から、 nは 1が好ましい。 Rf l はフッ素原子またはトリフルォロメチル基であり、 原料の入手の容易さ等の 点からフッ素原子が好ましい。 Rf 2はフッ素原子または炭素数 1〜 5のペル フルォロアルキル基であり、 該ペルフルォロアルキル基は直鎖状であっても 分岐状であってもよい。 Ri2としては、 フッ素原子、 トリフルォロメチル基 、 またはペンタフルォロェチル基が好ましく、 フッ素原子が特に好ましい。 化合物 (a l) の具体例としては下記化合物が挙げられ、 下記化合物 (a 2) が好ましい。 Here, n is 1 or 2. Among these, n is preferably 1 in terms of easy formation of a ring structure, stable ring structure, and easy availability of raw materials. R fl is a fluorine atom or a trifluoromethyl group, and a fluorine atom is preferable in terms of availability of raw materials and the like. R f2 is a fluorine atom or a perfluoroalkyl group having 1 to 5 carbon atoms, and the perfluoroalkyl group may be linear or branched. As R i2 , a fluorine atom, a trifluoromethyl group or a pentafluoroethyl group is preferable, and a fluorine atom is particularly preferable. Specific examples of the compound (al) include the following compounds, and the following compound (a2) is preferable.
Figure imgf000011_0002
Figure imgf000011_0002
化合物 (a) は、 公知の化合物に公知の反応を適用することにより製造で きる化合物である。 たとえば、 化合物 (a l) は以下の製造ルートにしたが つて製造できる。 ただし、 下式中の n、 Rf \ Rf2は前記と同じ意味を示 し、 Yおよび Zは、 それぞれ独立に、 フッ素原子、 塩素原子、 または水素原 子を示す。
Figure imgf000012_0001
Compound (a) is a compound that can be produced by applying a known reaction to a known compound. For example, compound (al) can be manufactured according to the following manufacturing route. However, n and R f \ R f2 in the following formula have the same meanings as described above, and Y and Z each independently represent a fluorine atom, a chlorine atom, or a hydrogen atom.
Figure imgf000012_0001
すなわち、 後述する方法等による入手できる下記化合物 (b 1) に、 ェチ レンォキシドを付加する方法、 または、 2—クロ口エタノールを付加し、 つ ぎに塩基の存在下で脱塩化水素することによって閉環する方法、 により化合 物 (b 2) を得る。  That is, by adding ethylenoxide to the following compound (b1) which can be obtained by the method described below, or by adding 2-chloroethanol and then dehydrochlorinating in the presence of a base. The compound (b 2) is obtained by the method of ring closure.
化合物 (b l) にエチレンォキシドを付加する反応は、 公知の方法 (たと えば米国特許第 3 324, 144号記載の方法) により実施できる。 たと えば、 化合物 (b l) とエチレンオキサイドとを、 触媒 (たとえば、 ヨウ化 カリゥムおよび水からなる触媒) の存在下に反応させる方法が挙げられる。 該反応の反応温度は、 100で〜 150°Cが好ましく、 特に 120°C 13 0でが好ましい。  The reaction for adding ethylene oxide to the compound (bl) can be carried out by a known method (for example, a method described in US Pat. No. 3,324,144). For example, there is a method in which the compound (bl) and ethylene oxide are reacted in the presence of a catalyst (for example, a catalyst comprising potassium iodide and water). The reaction temperature of the reaction is preferably from 100 to 150 ° C, more preferably from 130 to 130 ° C.
化合物 (b l) にエチレンクロロヒドリン付加させ、 つぎに閉環する反応 は、 たとえば米国特許 2, 925, 424号の例 3に記載の方法を採用でき る。  For the reaction of adding ethylene chlorohydrin to the compound (bl) and then closing the ring, for example, the method described in Example 3 of US Pat. No. 2,925,424 can be employed.
次に、 化合物 (b 2) を光塩素化して化合物 (b 3) を得る。 この光塩素 化は、 たとえば米国特許第 2 925, 424号明細書および該明細書の例 9に記載の方法にしたがって実施できる。 具体的には、 紫外線照射下に、 塩 素ガスを吹き込みながら反応させる方法が挙げられる。 該反応は、 溶媒を存 在させずに実施するのが好ましく、 反応温度は 0 100°Cが好ましく、 特 に 30°C〜80 が好ましい。 Next, the compound (b 2) is photochlorinated to obtain a compound (b 3). This photochlorination can be carried out, for example, according to the method described in US Pat. No. 2,925,424 and Example 9 therein. Specifically, there is a method in which the reaction is performed while blowing a chlorine gas under ultraviolet irradiation. The reaction is preferably carried out in the absence of a solvent, and the reaction temperature is preferably 0 ° C to 100 ° C. 30 ° C to 80 ° C is preferred.
また、 化合物 (b 2) の光塩素化においては、 塩素ガスの供給量を制御す ることにより、 塩素化の程度の異なる化合物 (b 3) を得ることができる。 塩素ガスの供給は、 化合物 (b 2) の 2つのメチレン基に存在する水素原子 のそれぞれ 1個以上が塩素化するまで継続する。  In the photochlorination of the compound (b2), the compound (b3) having a different degree of chlorination can be obtained by controlling the supply amount of chlorine gas. The supply of chlorine gas is continued until at least one of each of the hydrogen atoms present in the two methylene groups of compound (b 2) is chlorinated.
該化合物 (b 3) から化合物 (a l) を得る反応は、 下記塩素化反応およ び選択的フッ素化反応の条件や反応の進行状況により分類される。  The reaction for obtaining the compound (al) from the compound (b3) is classified according to the following chlorination reaction and selective fluorination reaction conditions and the progress of the reaction.
たとえば、 化合物 (b 3) における光塩素化が完全に進行するまで塩素ガ スを供給した場合には、 式 (b 3) における Yおよび Zが塩素原子である下 記化合物 (b 3— C l) が得られる。 つぎに該化合物 (b 3_C l) におい ては、 選択的フッ素化を行うことにより、 塩素原子である Yおよび Zをフッ 素化して下記化合物 (b 3—F) を得る。 さらに該化合物 (b 3—F) を脱 塩素化反応することにより、 式 (a l) における X1および X 2がフッ素原子 である化合物 ( 1 -F) が得られる。 For example, when chlorine gas is supplied until the photochlorination of the compound (b 3) has completely proceeded, the following compound (b 3—Cl) wherein Y and Z in the formula (b 3) are chlorine atoms ) Is obtained. Next, the compound (b3_Cl) is subjected to selective fluorination to fluorinate chlorine atoms Y and Z to obtain the following compound (b3-F). Further, by subjecting the compound (b3-F) to a dechlorination reaction, a compound (1-F) in which X 1 and X 2 in the formula (al) are a fluorine atom can be obtained.
また化合物 (b 3-C 1 ) の選択的フッ素化の条件によっては、 Yおよび Zの一方のみがフッ素化され、 Yおよび Zの一方がフッ素原子で他方が塩素 原子である下記化合物 (b 3—FC l) のいずれか一方または両方が生成し うる。 該化合物においても、 化合物 (b 3-F) と同様の脱塩素化反応を行 なうことにより式 (a l) における X 1および X 2の一方がフッ素原子であり 、 他方が塩素原子である下記化合物 (a l— FC 1) が得られる。 Depending on the conditions for the selective fluorination of compound (b 3-C 1), only the following compound (b 3) wherein only one of Y and Z is fluorinated, one of Y and Z is a fluorine atom and the other is a chlorine atom One or both of —FC l) can be formed. Also in this compound, the same dechlorination reaction as in the compound (b 3-F) is carried out, whereby one of X 1 and X 2 in the formula (al) is a fluorine atom and the other is a chlorine atom. The compound (al—FC 1) is obtained.
化合物 (b 3-C 1) の選択的フッ素化は、 米国特許第 3 , 865, 84 5号明細書に記載される方法に従って実施するのが好ましい。 具体的には S b F3および S b C 15を用いて、 溶媒 (たとえば、 ペルフルォロ (2—プチ ルテトラヒドロフラン) ) 中、 または溶媒の不存在下で反応させる方法が挙 げられる。 該反応の反応温度は 50〜200 が好ましく、 特に 100°C〜 150でが好ましい。 The selective fluorination of compound (b 3-C 1) is preferably carried out according to the method described in US Pat. No. 3,865,845. Specifically with S b F 3 and S b C 1 5, the solvent (e.g., Perufuruoro (2-Petit Le tetrahydrofuran)) in, or a method of reacting in the absence of a solvent can be mentioned up. The reaction temperature of the reaction is preferably from 50 to 200, particularly preferably from 100 ° C to 150.
また、 化合物 (b 3—C l) においては、 該化合物をそのまま脱塩素化す ることに式 (a l) における X1および X2の両方が塩素原子である化合物 ( a 1— C 1 ) も得られる。 In addition, in the case of the compound (b 3 —Cl), the compound (a 1 —C 1) in which both X 1 and X 2 in the formula (al) are chlorine atoms can be obtained by directly dechlorinating the compound. Can be
Figure imgf000014_0001
Figure imgf000014_0001
また、 化合物 (b 3) の光塩素化において、 光塩素化が部分的に進行した 時点で塩素ガスの供給を停止した場合には、 式 (b 3) における Yおよび Z が水素原子である下記化合物 (b 3—H) が得られる。 該化合物 (b 3—H ) においては、 そのまま脱塩素化反応を行なうことにより X1および X·2が水 素原子である化合物 (a l—H) が得られる。 P T/JP2003/014743 In addition, when the supply of chlorine gas is stopped when the photochlorination partially proceeds in the photochlorination of the compound (b3), the following formula in which Y and Z in the formula (b3) are hydrogen atoms Compound (b3-H) is obtained. In the compound (b 3-H), Compound X 1 and X · 2 is water atom (al-H) is obtained by performing as dechlorination. PT / JP2003 / 014743
13 13
Figure imgf000015_0001
Figure imgf000015_0001
(b3-H) (a1'H) (b3-H) ( a1 ' H )
前記脱塩素化反応は、 極性溶媒中で脱ハロゲン化剤を用いて行うことが好 ましい。 脱ハロゲン化剤とは原料中のハロゲン原子に作用してハロゲン原子 を引き抜く作用のある反応剤をいう。 このうち本発明の化合物 (a l ) の各 製造方法においては脱塩素化剤として作用する脱ハロゲン化剤を用いる。 該 脱ハロゲン化剤としては、 亜鉛、 ナトリウム、 マグネシウム、 スズ、 銅、 鉄 、 またはその他の金属が好ましい。 このうち、 比較的低い反応温度を採用で きることから、 脱ハロゲン化剤としては亜鉛が好ましい。 脱ハロゲン化剤は 反応前に作用させる前に活性化させてもよい。 活性化は活性化剤を使用して 行うことが好ましい。 活性化剤としてはジブロモェタン、 塩酸、 ヨウ素、 お よび塩化第二水銀等が好ましい。 脱塩素化の基質に対する脱ハロゲン化剤量 は、 2〜1 0倍モルが好ましく、 特に 5〜8倍モルが好ましい。 脱塩素化反 応の反応温度は 4 0〜1 0 0 °Cが好ましく、 特に 4 0〜8 0 °Cが好ましい。 また極性溶媒としては、 ジメチルホルムアミド、 ジメチルァセトアミド、 N—メチルピロリドン、 1, 4一ジォキサン、 ジグライム、 メタノール等の 有機極性溶媒、 または、 水が好ましい。  The dechlorination reaction is preferably performed using a dehalogenating agent in a polar solvent. A dehalogenating agent is a reactant that acts on a halogen atom in a raw material to extract the halogen atom. Among them, a dehalogenating agent that acts as a dechlorinating agent is used in each method for producing the compound (al) of the present invention. As the dehalogenating agent, zinc, sodium, magnesium, tin, copper, iron or other metals are preferred. Among these, zinc is preferable as the dehalogenating agent because a relatively low reaction temperature can be employed. The dehalogenating agent may be activated before acting before the reaction. Activation is preferably performed using an activator. As the activator, dibromoethane, hydrochloric acid, iodine, mercuric chloride and the like are preferable. The amount of the dehalogenating agent relative to the substrate for dechlorination is preferably 2- to 10-fold molar, and particularly preferably 5- to 8-fold molar. The reaction temperature of the dechlorination reaction is preferably from 40 to 100 ° C, particularly preferably from 40 to 80 ° C. The polar solvent is preferably an organic polar solvent such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, 1,4-dioxane, diglyme, methanol, or water.
脱塩素化反応は、 脱ハロゲン化剤と極性溶媒中に、 脱塩素化の基質を滴下 する方法によるのが好ましい。 また反応で生成した化合物 (a l ) は反応蒸 留により、 速やかに反応系から抜き出されることが好ましい。  The dechlorination reaction is preferably performed by a method in which a dechlorination substrate is dropped into a dehalogenating agent and a polar solvent. Further, it is preferable that the compound (al) produced by the reaction is promptly extracted from the reaction system by reaction distillation.
前記塩素化反応およびフッ素化反応においては、 生成物が塩素化の程度ま たはフッ素化の程度の異なる 2種以上の化合物となる場合がある。 この場合 においては、 生成物から目的とする化合物を適宜分離して、 適宜必要な反応 03014743 In the chlorination reaction and the fluorination reaction, the product may be two or more compounds having different degrees of chlorination or fluorination. In this case, the desired compound is appropriately separated from the product, and the necessary reaction is appropriately performed. 03014743
14 を行ってもよく、 または混合物のまま次工程の反応を行ない、 その後に分離 してもよい。  14 or the reaction in the next step may be carried out as a mixture, followed by separation.
化合物 (a l) の製造中間体である化合物 (b 2) および化合物 (b 3) は新規化合物である。 化合物 (b 2) および化合物 (b 3) においては、 R f 1および R f 2はフッ素原子であるのが好ましく、 nは 1であるのが好まし い。 また化合物 (b 3) においては Yおよび Zがそれぞれ独立に、 フッ素原 子または塩素原子であるのが好ましく、 両方がフッ素原子であるのが好まし い。 さらに化合物 (b 2) としては下記化合物 (b 20) が好ましく、 化合 物 (b 3) としては下記化合物 (b 30) が好ましい。 Compound (b2) and compound (b3), which are intermediates for producing compound (al), are novel compounds. In the compound (b 2) and the compound (b 3), R f 1 and R f 2 are preferably a fluorine atom, and n is preferably 1. In the compound (b3), Y and Z are preferably each independently a fluorine atom or a chlorine atom, and both are preferably fluorine atoms. Further, the following compound (b20) is preferable as the compound (b2), and the following compound (b30) is preferable as the compound (b3).
Figure imgf000016_0001
Figure imgf000016_0001
(b20) (b30)  (b20) (b30)
前記化合物 (b 2) は、 後述する重合体 (Al) の製造中間体として、 も しくはキャパシ夕等の電池ゃバッテリ一等の電解液として、 または電解液へ の添加剤として有用である。  The compound (b2) is useful as an intermediate for the production of the polymer (Al) described later, or as an electrolyte for batteries such as capacitors, batteries, etc., or as an additive to the electrolyte.
化合物 (a l) 製造の出発物質である化合物 (b 1) は、 国際公開第 20 02/18314号パンフレツトに記載される方法を用いて合成できる。 た とえば、 式 (b 1) における nが 1であり R f 1および R f 2がフッ素原子で ある化合物 (b 10) は下記製造ルートにより製造できる。
Figure imgf000017_0001
Compound (b1), which is a starting material for the production of compound (al), can be synthesized using the method described in WO200 / 18314 pamphlet. For example, compound R f 1 and R f 2 is a fluorine atom and n is 1 in formula (b 1) (b 10) can be produced by the following production route.
Figure imgf000017_0001
(b12)  (b12)
Figure imgf000017_0002
Figure imgf000017_0002
(b10) (b15)  (b10) (b15)
(blO)  (blO)
すなわち、 ダリセリンとホルムアルデヒドとの付加物である、 グリセロー ル ·ホルマール混合物 (該混合物は、 通常は化合物 (b 1 1) と化合物 (b 12) が平衡状態で存在する混合物である。 ) と式 RFCOF (RFは、 エー テル性酸素原子を有していてもよいペルフルォロアルキル基を示す。 ) で表 される化合物とのエステル化反応を行ない、 つぎに液相中でフッ素化するこ とにより化合物 (b 13) と化合物 (b 14) との混合物を得る。 つぎに該 混合物を熱分解することにより、 化合物 (b 10) と化合物 (b 15) の混 合物を得る。 That is, a glycerol-formal mixture which is an adduct of dalyserin and formaldehyde (the mixture is usually a mixture in which the compound (b11) and the compound (b12) are present in an equilibrium state) and the formula R F COF (R F is. showing a good pel full O b alkyl group optionally having ether oxygen atoms) performs esterification reaction between the table are the compounds of then fluorinated in a liquid phase As a result, a mixture of the compound (b13) and the compound (b14) is obtained. Next, the mixture is thermally decomposed to obtain a mixture of the compound (b10) and the compound (b15).
本発明においては、 化合物 (b 10) と化合物 (b 15) から化合物 (b 10) を分離するのが好ましい。 該分離は、 化合物 (b 10) と化合物 (b 15) の混合物において行ってもよく、 それぞれの化合物を分離しやすい化 合物に変換してから分離してもよく、 後者の方法によるのが好ましい。 後者 の方法としては、 化合物 (b l 0) と化合物 (b l 5) の混合物に水を添加 しつぎに脱水する方法が挙げられる。 化合物 (b l O) は、 水の添加により ケト基部分が C (OH) 2構造に変換され、 つぎに脱水することにより化合 物 (b 10) に再変換される。 一方、 化合物 (b 15) は水の添加により一 COF部分が一 COOH基に変換され、 つぎの脱水反応では変化しない。 脱 水反応後の混合物を蒸留することにより、 化合物 (b l O) が分離されて得 られる。 In the present invention, it is preferable to separate compound (b10) from compound (b10) and compound (b15). The separation may be performed on a mixture of the compound (b10) and the compound (b15), or each compound may be converted into a compound which can be easily separated and then separated, and the latter method is preferred. preferable. As the latter method, a method of adding water to a mixture of the compound (bl0) and the compound (bl5), followed by dehydration can be mentioned. In the compound (blO), the keto group is converted to a C (OH) 2 structure by adding water, and then converted to the compound (b10) by dehydration. On the other hand, in compound (b15), one COF moiety is converted to one COOH group by the addition of water, and does not change in the next dehydration reaction. By distilling the mixture after the dehydration reaction, the compound (blO) is separated and obtained. Can be
また、 化合物 (b 10) 以外の Rf 2基を有する化合物 (b 1) は、 前記方 法におけるグリセリンとホルムアルデヒドとの付加物を、 グリセリンとァセ トアルデヒドの付加物、 または、 プロパナール等のアルカナールとの付加物 に変更することにより得ることができる。 たとえば、 グリセリンとァセトァ ルデヒドとの付加物を用いることで、 式 (b l) における Rf 2がトリフルォ ロメチル基である化合物 (b l) が得られる。 The compound (b 10) compound having R f 2 groups other than (b 1) is an adduct of glycerin and formaldehyde in the how, adduct of glycerin and § Seto aldehyde, or, propanal or the like Can be obtained by changing to an adduct with alkanal. For example, a compound (bl) in which R f 2 in the formula (bl) is a trifluoromethyl group can be obtained by using an adduct of glycerin and acetylaldehyde.
また、 種々のトリオ一ルを用いることにより式 (b l) において Rf lが異 なる種々の化合物が得られる。 たとえば、 トリオールとして 1, 2, 3—ブ タントリオールを用いることにより、 Rf 1がトリフルォロメチル基である式 (b l) で表される化合物が得られる。 また、 1, 2, 4—ブタントリオ一 ルを用いることにより、 nが 2である式 (b l) で表される化合物が得られ る。 Further, by using various triols, various compounds having different R fl in the formula (bl) can be obtained. For example, by using 1,2,3-butanetriol as a triol, a compound represented by the formula (bl) in which R f1 is a trifluoromethyl group can be obtained. Further, by using 1,2,4-butanol, a compound represented by the formula (bl) in which n is 2 can be obtained.
上記方法により得た化合物 (a 1) 等の化合物 (a) は、 重合性の不飽和 結合を有することから、 これを重合させて重合体 (A) を得ることができる · 。 該重合体 (A) は、 重合体の主鎖に飽和環構造を必須とする重合体である 。 該飽和環構造の存在によって本発明における重合体 (A) は、 非晶質性を 示し、 透明性の高い重合体となりうる。 また、 該環構造によって、 重合体鎖 に長い電子的な共役ができるのを分断する効果を有する。 よって、 本発明の 重合体 (A) は、 短波長光領域においても透明な重合体になりうる。  Since the compound (a) such as the compound (a1) obtained by the above method has a polymerizable unsaturated bond, it can be polymerized to obtain a polymer (A). The polymer (A) is a polymer having a saturated ring structure in the main chain of the polymer. Due to the presence of the saturated ring structure, the polymer (A) in the present invention exhibits an amorphous property and can be a highly transparent polymer. In addition, the ring structure has an effect of cutting off long electronic conjugation to the polymer chain. Therefore, the polymer (A) of the present invention can be a transparent polymer even in a short wavelength light region.
また、 本発明の重合体 (A) は特定の溶媒に可溶である。 また、 同時に高 い T gと熱分解温度を有し、 かつ T gと熱分解温度との差が大きいため溶融 成形が可能である。  Further, the polymer (A) of the present invention is soluble in a specific solvent. At the same time, it has high T g and thermal decomposition temperature, and the difference between T g and thermal decomposition temperature is large, so that melt molding is possible.
本発明の重合体 (A) が、 化合物 (a l) のモノマー単位を有する重合体 (A1) である場合には、 重合体 (A1) の主鎖に存在する飽和環構造中に 2つの酸素原子が存在することから、 重合体がフレキシブルになり、 高温に 曝された際の歪を容易に解消できるため、 熱分解温度が高くなると考えられ る。  When the polymer (A) of the present invention is a polymer (A1) having a monomer unit of the compound (al), two oxygen atoms are contained in a saturated ring structure existing in the main chain of the polymer (A1). It is thought that the presence of the polymer makes the polymer flexible and easily eliminates the strain when exposed to high temperatures, thus raising the pyrolysis temperature.
本発明の重合体 (A) の分子量は、 ペルフルォロ (2—プチルテトラヒド 口フラン) 中、 30°Cで測定したときの固有粘度 (単位; d lZg) が 0. 1〜5. 0に相当する分子量であるのが好ましい。 該固有粘度が 0. 1以上 であれば、 該重合体 (A) から得たフィルムは充分な機械強度を有する。 ま た、 該固有粘度が 5. 0以下である場合には、 特定溶媒に対する溶解性が良 好であり好ましい。 より好ましい固有粘度の範囲は 0. 2〜3. 0である。 化合物 (a) のモノマー単位を含む重合体 (A) としては、 化合物 (a) の 1種を重合させた単独重合体、 化合物 (a) の 2種以上を重合させた共重 合体、 または化合物 (a) と、 化合物 (a) と共重合性を有する他のモノマ 一 (以下、 他のモノマーと記す。 ) 、 との共重合体が好ましい。 他のモノマ 一としては、 ラジカル重合性を有するモノマーであり、 化合物 (a) と共重 合性を有するモノマーであれば、 特に限定されない。 また、 他のモノマーと しては、 化合物 (a) 以外の含フッ素モノマーであっても、 フッ素原子を有 しないモノマーであってもよい。 The molecular weight of the polymer (A) of the present invention is such that the intrinsic viscosity (unit: dlZg) measured at 30 ° C. in perfluoro (2-butyltetrahydrofuran) is 0. Preferably the molecular weight is between 1 and 5.0. When the intrinsic viscosity is 0.1 or more, the film obtained from the polymer (A) has sufficient mechanical strength. In addition, when the intrinsic viscosity is 5.0 or less, the solubility in a specific solvent is good and preferable. A more preferable range of the intrinsic viscosity is 0.2 to 3.0. As the polymer (A) containing the monomer unit of the compound (a), a homopolymer obtained by polymerizing one kind of the compound (a), a copolymer obtained by polymerizing two or more kinds of the compound (a), or a compound A copolymer of (a) and another monomer having copolymerizability with the compound (a) (hereinafter, referred to as another monomer) is preferable. The other monomer is a monomer having radical polymerizability, and is not particularly limited as long as it is a monomer having copolymerizability with compound (a). Further, the other monomer may be a fluorine-containing monomer other than compound (a) or a monomer having no fluorine atom.
フッ素原子を有しないモノマーとしては、 炭化水素系のモノマーが挙げら れる。 炭化水素系モノマーとしては、 たとえば、 エチレン、 プロピレン、 プ チレン、 イソブチレン等のォレフィン類、 スチレン、 ビニルエーテル類、 ピ ニルエステル類等を挙げられる。 なかでも、 ォレフィン類、 ビニルエーテル 類等は、 化合物 (a l) 等の化合物 (a) と交互共重合性がよく、 得られる 含フッ素重合体は、 波長 200 nm以下の光の透過性を大幅に向上させるこ とができるので好ましい。  Examples of the monomer having no fluorine atom include a hydrocarbon-based monomer. Examples of the hydrocarbon-based monomer include olefins such as ethylene, propylene, butylene and isobutylene, styrene, vinyl ethers and pinyl esters. In particular, olefins and vinyl ethers have good alternating copolymerizability with compound (a) such as compound (al), and the resulting fluoropolymer greatly improves the transmittance of light with a wavelength of 200 nm or less. It is preferable because it can be performed.
また、 他のモノマーが化合物 (a) 以外の含フッ素モノマーである場合に は、 重合性不飽和結合を有し、 かつフッ素原子を有するモノマーから選択さ れる。  When the other monomer is a fluorine-containing monomer other than the compound (a), it is selected from monomers having a polymerizable unsaturated bond and having a fluorine atom.
たとえば、 式 CFR3 = CR4R5で表されるモノマー (以下、 該モノマー をモノマー (k) と記す。 ) が挙げられる。 For example, monomers represented by the formula CFR 3 = CR 4 R 5 (hereinafter, referred to the monomer and monomer (k).) Can be mentioned.
モノマー (k) としては、 下記モノマー (k一 1) 〜 (k— 3) が好まし い。  As the monomer (k), the following monomers (k-1) to (k-3) are preferred.
モノマー (k_ l) : R3、 R4、 および R5がそれぞれ独立に、 水素原子 、 フッ素原子、 または 1価の含フッ素有機基である場合のモノマ一。 Monomer (k_l): A monomer in which R 3 , R 4 , and R 5 are each independently a hydrogen atom, a fluorine atom, or a monovalent fluorine-containing organic group.
モノマー (k_2) : R3と R4とが共同で 2価の含フッ素有機基を形成し 、 R 5はフッ素原子または 1価含フッ素有機基であるモノマー。 03014743 Monomer (k_2): a monomer in which R 3 and R 4 together form a divalent fluorinated organic group, and R 5 is a fluorine atom or a monovalent fluorinated organic group. 03014743
18 モノマー (k_3) : R4と R5とが共同して 2価の含フッ素有機基を形成 しかつ R 3はフッ素原子または 1価含フッ素有機基であるモノマ一。 18 Monomer (k_3): A monomer in which R 4 and R 5 together form a divalent fluorinated organic group, and R 3 is a fluorine atom or a monovalent fluorinated organic group.
モノマー (k一 1) としては、 フッ化ビニル、 1, 2—ジフルォロェチレ ン、 フッ化ビニリデン、 およびトリフルォロエチレン等の水素原子を有する フルォロォレフィン類;テトラフルォロエチレン、 クロ口トリフルォロェチ レン、 へキサフルォ口プロピレン等の水素原子を有しないパ一ハ口フルォ口 ォレフィン類;ペルフルォロ (メチルビニルエーテル) 、 ペルフルォロ (プ 口ピルビニルエーテル) 等のペルフルォロ (アルキルビニルエーテル) 類; 等が挙げられる。  Examples of the monomer (k-1) include fluorofluorenes having a hydrogen atom such as vinyl fluoride, 1,2-difluoroethylene, vinylidene fluoride, and trifluoroethylene; tetrafluoroethylene, and chlorofluoroethylene. Perfluoro (methyl vinyl ether) and perfluoro (alkyl vinyl ether) such as perfluoro (methyl vinyl ether) and perfluoro (methyl vinyl ether) which do not have a hydrogen atom, such as propylene and hexafluoro propylene; and the like.
モノマー (k— 2) およびモノマー (k_3) は、 不飽和結合と環構造と を併有するモノマーである。 モノマー (k一 2) およびモノマー (k一 3) としては、 下記モノマー (k一 20) 、 下記モノマ一 (k一 21) 、 および 下記モノマー (k- 30) が挙げられる。  The monomer (k-2) and the monomer (k_3) are monomers having both an unsaturated bond and a ring structure. The monomer (k-1) and the monomer (k-1) include the following monomer (k-1), the following monomer (k-1), and the following monomer (k-30).
Figure imgf000020_0001
Figure imgf000020_0001
ただし、 R 11〜 R 17はそれぞれ独立にフッ素原子または 1価含フッ素有 機基を示す。 R 11〜 R 16が 1価含フッ素有機基である場合には、 ペルフル ォロアルキル基が好ましく、 特に炭素数 1または 2のペルフルォロアルキル 基が好ましい。 また、 R 17が 1価含フッ素有機基である場合には、 ペルフル ォロアルキル基またはペルフルォロアルコキシ基が好ましく、 特に炭素数 1 または 2の該基が好ましい。 However, R 11 to R 17 each independently represent a fluorine atom or a monovalent fluorine-containing organic group. When R 11 to R 16 are a monovalent fluorine-containing organic group, a perfluoroalkyl group is preferable, and a perfluoroalkyl group having 1 or 2 carbon atoms is particularly preferable. Further, when R 17 is a monovalent fluorine-containing organic group, a perfluoroalkyl group or a perfluoroalkoxy group is preferable, and the group having 1 or 2 carbon atoms is particularly preferable.
他のモノマーが化合物 (a) 以外の含フッ素モノマ一である場合の他の例 としては、 分子内に反応性の異なる 2種類以上の重合性不飽和結合を有する 含フッ素モノマー (たとえば、 含フッ素ジェンモノマー等。 ) も挙げられ、 該モノマ一としては、 下記モノマー (k一 4) または (k一 5) が好ましい モノマー (k一 4) :式 CH? = CR7— Q10— CR8 = CFりで表される モノマー (ただし、 R7および R8はそれぞれ独立に、 水素原子、 フッ素原子 、 または 1価含フッ素有機基を示し、 Q1Qは 2価の含フッ素有機基を示す) モノマー (k一 5) :式 CF2 = CR9— Q — CR^-CFsで表される モノマー (ただし、 R 9および R1Dはそれぞれ独立に、 水素原子、 フッ素原 子または 1価の含フッ素有機基を示し、 Q 11は 2価の含フッ素有機基を示すAnother example of the case where the other monomer is a fluorine-containing monomer other than the compound (a) is a fluorine-containing monomer having two or more types of polymerizable unsaturated bonds having different reactivities in a molecule (for example, a fluorine-containing monomer) And the following monomers (k-1 4) or (k-1 5) are preferred. Monomers (k-1 4): Formula CH ? = CR 7 — Q 10 — CR 8 = Expressed by CF Monomer (However, R 7 and R 8 each independently represent a hydrogen atom, a fluorine atom, or a monovalent fluorinated organic group, and Q 1Q represents a divalent fluorinated organic group.) Monomer (k-1 5): A monomer represented by the formula CF 2 = CR 9 — Q — CR ^ -CFs (where R 9 and R 1D each independently represent a hydrogen atom, a fluorine atom, or a monovalent fluorine-containing organic group, and Q 11 Represents a divalent fluorine-containing organic group
) o ) o
Q1Qおよび Q11としては、 炭素数 1〜10のエーテル性酸素原子を有し ていてもよいペルフルォロアルキレン基が好ましい。 エーテル性酸素原子を 有する場合の酸素原子数は 1個であっても 2個以上であってもよく、 ペルフ ルォロアルキレン基の一方の末端に存在していてもよく、 両末端に存在して いてもよく、 または炭素原子間に存在していてもよい。 As Q 1Q and Q 11 , a perfluoroalkylene group which may have an etheric oxygen atom having 1 to 10 carbon atoms is preferable. When the compound has an etheric oxygen atom, the number of oxygen atoms may be one, two or more, and it may be present at one terminal of the perfluoroalkylene group or at both terminals. Or between carbon atoms.
(^^ぉょび。1^ それぞれペルフルォロアルキレン基である場合の炭 素数は 2〜 6が好ましく、 ペルフルォロアルキレン基の片末端または炭素原 子間にエーテル性酸素原子を有する基である場合の炭素数は 1〜4が好まし く、 ペルフルォロァルキレン基の両末端にェ一テル性酸素原子を有する基で ある場合の炭素数は 1〜 3が好ましい。 また、 <31()ぉょび(311の鎖長 (鎖 長とは分岐部分を除く炭素原子と酸素原子の総数) は、 2〜4であることが 最も好ましい。 (^^ ぉ. 1 ^ When each is a perfluoroalkylene group, the number of carbon atoms is preferably 2 to 6, and has an etheric oxygen atom at one end of the perfluoroalkylene group or between carbon atoms. When it is a group, it preferably has 1 to 4 carbon atoms, and when it is a group having ether oxygen atoms at both ends of a perfluoroalkylene group, it preferably has 1 to 3 carbon atoms. Most preferably, the chain length (the chain length is the total number of carbon atoms and oxygen atoms excluding the branch portion ) of 3 < 11 () is 3 to 4.
Q1 Gおよび Q11としては、 2, 2—ジフルォロビニル基に結合する末端 にエーテル性酸素原子を有する炭素数 1〜4のペルフルォロアルキレン基、 炭素原子間にエーテル性酸素原子を有する炭素数 2〜4以下のペルフルォロ アルキレン基、 およびエーテル性酸素原子を有しない炭素数 1〜4のペルフ ルォロアルキレン基が好ましい。 さらに好ましい Q1 Qおよび Q 11は、 それ ぞれ 2, 2ージフルォロビニル基に結合する末端にエーテル性酸素原子を有 する炭素数 1〜4のペルフルォロアルキレン基である。 Q 1 G and Q 11 are a perfluoroalkylene group having 1 to 4 carbon atoms having an etheric oxygen atom at a terminal bonded to a 2,2-difluorovinyl group, and a carbon atom having an etheric oxygen atom between carbon atoms. A perfluoroalkylene group having 2 to 4 or less and a perfluoroalkylene group having 1 to 4 carbon atoms and having no etheric oxygen atom are preferable. More preferred Q 1 Q and Q 11 are each a perfluoroalkylene group having 1 to 4 carbon atoms and having an etheric oxygen atom at the terminal bonded to the 2,2 difluorovinyl group.
モノマー (k一 4) の具体例としては、 下記化合物が挙げられる。  Specific examples of the monomer (k-14) include the following compounds.
CH2 = CHCF2CF2〇CF = CF2CH 2 = CHCF 2 CF 2 〇CF = CF 2 ,
CH2 = CHCF2CF2CF2OCF = CF2CH 2 = CHCF 2 CF 2 CF 2 OCF = CF 2 ,
CH2 = CHCF2OCF = CFり、 CH2 = CHC F (CF3) CF2OCF = CF2CH 2 = CHCF 2 OCF = CF CH 2 = CHC F (CF 3 ) CF 2 OCF = CF 2 ,
CH2 = CHCF2OCF2CF = CF2CH 2 = CHCF 2 OCF 2 CF = CF 2 ,
CH2 = CHCF2CC 12〇CF = CF2CH 2 = CHCF 2 CC 1 2 〇CF = CF 2 ,
CH2 = CFCF2CF2OCF = CF2CH 2 = CFCF 2 CF 2 OCF = CF 2 ,
CH2 = CFCF (CF3) CF2OCF = CF CH 2 = CFCF (CF 3 ) CF 2 OCF = CF
モノマー (k一 5) の具体例としては、 下記化合物が挙げられる。  Specific examples of the monomer (k-15) include the following compounds.
CF2 = CFCF2CF (CF3) OCF = CF2CF 2 = CFCF 2 CF (CF 3 ) OCF = CF 2 ,
CF2 = CFOCF2OCF = CF2CF 2 = CFOCF 2 OCF = CF 2 ,
CF2 = CFOC (CF3) 2OCF = CF2CF 2 = CFOC (CF 3 ) 2 OCF = CF 2 ,
CF2 = CFCF2C (CF3) 2OCF = CF2CF 2 = CFCF 2 C (CF 3 ) 2 OCF = CF 2 ,
CF2 = CFCF2CF2OCF = CF2CF 2 = CFCF 2 CF 2 OCF = CF 2 ,
CF2 = CHCF2CF2OCF = CF2CF 2 = CHCF 2 CF 2 OCF = CF 2 ,
C F2 = CHC F (CF3) CF2〇CF = CF2CF 2 = CHC F (CF 3 ) CF 2 〇CF = CF 2 ,
CF2 = CFCF2CF2CF2〇CF = CF2CF 2 = CFCF 2 CF 2 CF 2 〇CF = CF 2 ,
CF2 = CFCF2OCF = CF2CF 2 = CFCF 2 OCF = CF 2 ,
CF2 = CFCF (C F3) CF2OCF = CF2CF 2 = CFCF (CF 3 ) CF 2 OCF = CF 2 ,
CF2 = CFCF2CF (CF3) OCF-CF2 CF 2 = CFCF 2 CF (CF 3 ) OCF-CF 2
CF2 = CFOCF2OCF = CF2CF 2 = CFOCF 2 OCF = CF 2 ,
C F2 = C FOC (C F3) 2OCF = CF2CF 2 = C FOC (CF 3 ) 2 OCF = CF 2 ,
CF2 = CFCF2C (CF3) 2OCF = CF20 CF 2 = CFCF 2 C (CF 3 ) 2 OCF = CF 20
本発明における重合体 (A) は、 共重合組成を変えることにより、 透明性 を保持したままガラス転移温度の異なる重合体にできる。 また、 官能基を有 する他のモノマーと共重合させることにより、 重合体の基材に対する密着性 を改善したり架橋部位を付与できる。 官能基としては、 水酸基、 カルポキシ ル基、 およびスルホン酸基等の基や、 該基に変換できる基等が例示できる。 他のモノマーは、 1種類であっても 2種類以上を併用してもよい。  The polymer (A) in the present invention can be made into a polymer having a different glass transition temperature while maintaining transparency by changing the copolymer composition. Further, by copolymerizing the polymer with another monomer having a functional group, the adhesion of the polymer to the base material can be improved or a crosslinked site can be provided. Examples of the functional group include groups such as a hydroxyl group, a carboxyl group, and a sulfonic acid group, and groups that can be converted into the group. The other monomers may be used alone or in combination of two or more.
本発明の重合体 (A) が、 非結晶性の重合性であり、 かつ、 溶媒への溶解 性を有する重合体であるには、 重合体 (A) の全単位中の単位 (A) の割合 の下限は、 10モル%が好ましく、 特に 20モル%が好ましく、 また該単位 (A) の割合の上限は 100モル%が好ましい。 また、 該単位 (A) が、 化 合物 (a l ) 等の化合物 (a ) のモノマー単位である場合、 モノマー単位 ( A) の全モノマー単位に対する含有量は、 1 0モル%以上が好ましく、 特に 2 0モル%以上が好ましい。 該モノマー単位の上限は 1 0 0モル%であるの が好ましい。 In order that the polymer (A) of the present invention is a non-crystalline polymerizable polymer having solubility in a solvent, the unit (A) in all units of the polymer (A) may be used. The lower limit of the ratio is preferably 10 mol%, particularly preferably 20 mol%, and the upper limit of the ratio of the unit (A) is preferably 100 mol%. Further, the unit (A) is When it is a monomer unit of the compound (a) such as the compound (al), the content of the monomer unit (A) relative to all monomer units is preferably at least 10 mol%, particularly preferably at least 20 mol%. The upper limit of the monomer unit is preferably 100 mol%.
また、 本発明の重合体 (A) は短波長光領域の光に対して耐久性が高い性 質を有する。 該性質を示す理由は必ずしも明確ではないが、 主鎖の飽和環構 造のゆがみが小さいために、 光を吸収しても、 主鎖の開裂を引き起こしにく いためであると考えられる。  Further, the polymer (A) of the present invention has high durability against light in a short wavelength light region. The reason for this property is not necessarily clear, but it is considered that the main chain is hardly cleaved even if light is absorbed due to the small distortion of the main chain saturated ring structure.
本発明の重合体 (A) は、 ペリクル膜およびノまたは接着剤として用いう る。 そして、 本発明はペリクル膜が接着剤を介して枠体に接着されてなる、 波長 2 0 0 n m以下の光による露光処理用のペリクルにおいて、 該重合体 ( A) をペリクル膜およびノまたは接着剤に用いるペリクルを提供する。 また 、 本発明によれば、 フォトリソグラフィ一における波長 2 0 0 n m以下の光 を用いた露光処理方法を、 本発明のペリクルを用いて実施できる。  The polymer (A) of the present invention is used as a pellicle film and a glue or an adhesive. The present invention provides a pellicle for exposure treatment with light having a wavelength of 200 nm or less, wherein the pellicle film is adhered to a frame via an adhesive. A pellicle for use in an agent is provided. Further, according to the present invention, an exposure processing method using light having a wavelength of 200 nm or less in photolithography can be performed using the pellicle of the present invention.
ペリクル材料としての重合体 (A) は、 単位 (A) を必須とする重合体 ( A) または、 単位 (A 1 ) を必須とする重合体 (A 1 ) が好ましい。  The polymer (A) as the pellicle material is preferably a polymer (A) that requires the unit (A) or a polymer (A 1) that requires the unit (A 1).
本発明のペリクルは、 波長 2 0 0 n m以下の光、 特にエキシマレーザー光 、 による露光処理において使用されるマスクおよぴレチクル上にゴミが付着 することによる、 歩留まり低下を防止するものである。 本発明のペリクルは 、 どのような露光処理にも応用できるが、 半導体装置または液晶表示板を製 造する際の一工程であるフォトリソグラフィーの露光処理において用いるこ とが好ましい。 露光処理に用いる光としては、 K r Fエキシマレ一ザ一光 ( 波長 2 4 8 n m) 、 A r Fエキシマレ一ザ一光 (波長 1 9 3 n m) に対して 高度な耐久性を有し、 特に波長 1 8 0 n m以下の光 (たとえば、 F 2エキシ マレ一ザ一光 (波長 1 5 7 n m) 。 ) も使用でき好ましい。 The pellicle of the present invention is intended to prevent a reduction in yield due to dust adhering to a mask and a reticle used in exposure processing using light having a wavelength of 200 nm or less, particularly excimer laser light. The pellicle of the present invention can be applied to any kind of exposure treatment, but is preferably used in the exposure treatment of photolithography, which is one step in manufacturing a semiconductor device or a liquid crystal display panel. The light used for the exposure process is highly durable against KrF excimer laser light (wavelength 248 nm) and ArF excimer laser light (wavelength 193 nm). In particular, light having a wavelength of 180 nm or less (for example, F 2 excimer laser light (wavelength: 157 nm)) can be preferably used.
本発明のペリクルは、 ペリクル膜と枠体とからなつており、 ペリクル膜が 接着剤を介して枠体に接着されている。 枠体を形成する材料は、 ペリクル膜 を支持できるものであれば限定されず、 強度の面から金属材料が好ましく、 露光処理に用いられる短波長光に対して耐性を有する金属材料であれば特に 制限なく採用できる。 枠体を形成する材料としては、 アルミニウム、 1 8— 8ステンレス、 ニッケル、 合成石英、 フッ化カルシウム、 またはフッ化パリ ゥム等が挙げられる。 このうち、 該材料としては、 耐環境性、 強度、 および 比重の観点からアルミニウム、 または合成石英が好ましい。 The pellicle of the present invention includes a pellicle film and a frame, and the pellicle film is bonded to the frame via an adhesive. The material for forming the frame is not limited as long as it can support the pellicle film, and is preferably a metal material in terms of strength, and particularly a metal material having resistance to short-wavelength light used in exposure processing. Can be adopted without restriction. Aluminum, 18- 8 Examples include stainless steel, nickel, synthetic quartz, calcium fluoride, and palladium fluoride. Among these, aluminum or synthetic quartz is preferable as the material from the viewpoints of environmental resistance, strength, and specific gravity.
本発明においては、 重合体 (A) を、 前記ペリクルにおけるペリクル膜お よび/または接着剤として用いる。  In the present invention, the polymer (A) is used as a pellicle film and / or an adhesive in the pellicle.
このうちペリクル膜は、 重合体 (A) の溶液を用いて製膜することにより 製造するのが好ましい。 溶剤としてはフッ素原子を有する本発明の重合体 ( A) を溶解するものであれば特に限定されず、 重合体の溶解性が高い溶剤を 選択するのが好ましく、 特に含フッ素有機溶剤が好ましい。  Among them, the pellicle film is preferably manufactured by forming a film using a solution of the polymer (A). The solvent is not particularly limited as long as it dissolves the polymer (A) of the present invention having a fluorine atom, and it is preferable to select a solvent having high polymer solubility, particularly a fluorine-containing organic solvent.
含フッ素有機溶剤の具体例としては、 つぎの例が挙げられる。  Specific examples of the fluorinated organic solvent include the following.
ペルフルォロベンゼン、 ペンタフルォロベンゼン、 1, 3—ビス (トリフ ルォロメチル) ベンゼン等のポリフルォロ芳香族化合物。 ペルフルォロトリ ブチルァミン、 ペルフルォロトリプロピルアミン等のポリフルォロトリアル キルアミン化合物。 ペルフルォロデ力リン、 ペルフルォロシクロへキサン等 のポリフルォロシクロアルカン化合物。 ペルフルォロ (2—プチルテトラヒ ドロフラン) 等のポリフルォロ環状エーテル化合物。 ペルフルォロクタン、 ペルフルォロデカン、 1 , 3 —ジクロロ一 1, 1 , 2, 2 , 3 —ペン夕フル ォロプロパン、 2 H, 3 H—ペルフルォロペンタン、 1 H—ペルフルォ口へ キサン等のポリフルォロアルカン類。 メチルペルフルォロイソプロピルエー テル、 メチルペルフルォ口ブチルエーテル、 メチル (ペルフルォ口へキシル メチル) エーテル、 メチルペルフルォロクチルエーテル、 ェチルペルフルォ ロブチルエーテル等のポリフルォロエーテル類。  Polyfluoroaromatic compounds such as perfluorobenzene, pentafluorobenzene, and 1,3-bis (trifluoromethyl) benzene. Polyfluorotrialkylamine compounds such as perfluorotributylamine and perfluorotripropylamine. Polyfluorocycloalkane compounds such as perfluorodephosphorus and perfluorocyclohexane. Polyfluoro cyclic ether compounds such as perfluoro (2-butyltetrahydrofuran). Perfluorooctane, Perfluorodecane, 1,3—Dichloro-1,1,2,2,3—Penfufluoropropane, 2 H, 3 H—Perfluoropentane, 1 H—Perfluo Polyfluoroalkanes such as xane. Polyfluoroethers such as methyl perfluoroisopropyl ether, methyl perfluoro mouth butyl ether, methyl (perfluoro mouth hexyl methyl) ether, methyl perfluorooctyl ether, and ethyl perfluorobutyl ether.
重合体 (A) の溶液からペリクル膜を製造する方法としては、 基材上に重 合体の薄膜を形成する公知の方法が採用でき、 ロールコ一卜法、 キャスト法 、 ディップ法、 スピンコート法、 水上キャス卜法、 ダイコ一ト法、 およびラ ングミュア ·プロジエツ卜法等の方法が挙げられる。 このうちペリクル膜は 、 厳密な膜厚形成が求められるため、 スピンコート法を採用するのが特に好 ましい。 基材としては、 シリコンウェハ、 石英ガラス等で表面が平坦なもの が好ましい。 ペリクル膜の厚さは、 通常は 0 . 0 1〜5 0 の範囲が好ま しい。 ペリクル膜に用いる重合体 (A) としても、 重合体 (A1) が好ましい。 また、 重合体 (A1) としては、 単位 (A) を必須とし、 かつ、 官能基を持 たない重合体であるのが好ましい。 さらに、 重合体 (A) は、 一 CH2CH2 一構造を持たない重合体であるのが好ましい。 該重合体 (A) は、 単位 (a ) (好ましくは、 単位 (a l) ) の 1種または 2種以上からなる重合体であ つてもよく、 単位 (a) と単位 (a) 以外の単位 (以下、 他の単位という。 ) を有する重合体であってもよく、 後者であるのが好ましい。 ペリクル膜と しての重合体 (A1) が他の単位を有する場合、 膜の機械的強度および透過 率の点から、 重合体中の全単位に対する他の単位の割合は 0. 1〜60モル %が好ましく、 1. 0〜50モル%が特に好ましい。 他の単位としては、 モ ノマー (k- 1) 〜 (k- 5) を重合させたモノマ一単位が好ましい。 As a method for producing a pellicle film from a solution of the polymer (A), a known method for forming a polymer thin film on a substrate can be adopted, and a roll coating method, a casting method, a dip method, a spin coating method, The water casting method, the die coating method, the Langmuir project method and the like can be mentioned. Of these, the pellicle film is required to form a strict film thickness, and therefore, it is particularly preferable to employ the spin coating method. The substrate is preferably a silicon wafer, quartz glass or the like having a flat surface. Usually, the thickness of the pellicle film is preferably in the range of 0.01 to 50. As the polymer (A) used for the pellicle membrane, the polymer (A1) is preferable. Further, the polymer (A1) is preferably a polymer which requires the unit (A) and has no functional group. Further, the polymer (A) is preferably a polymer having no CH 2 CH 2 structure. The polymer (A) may be a polymer composed of one or more units (a) (preferably, units (al)), and a unit other than the units (a) and (a). (Hereinafter, referred to as other units), and the latter is preferable. When the polymer (A1) as a pellicle membrane has other units, the ratio of the other units to the total units in the polymer is 0.1 to 60 mol in terms of the mechanical strength and transmittance of the membrane. %, Particularly preferably 1.0 to 50 mol%. As another unit, a monomer unit obtained by polymerizing monomers (k-1) to (k-5) is preferable.
また、 ペリクル膜を枠体に接着させる接着剤としては、 単位 (A) を含む 重合体を用いるのが好ましく、 特に単位 (A) を含みかつ官能基を有する重 合体であるのが好ましい。  Further, as the adhesive for adhering the pellicle film to the frame, a polymer containing the unit (A) is preferably used, and a polymer containing the unit (A) and having a functional group is particularly preferable.
さらに、 式 (A) で表される単位とモノマ一 ( k - 1 ) のモノマー単位を 必須としかつ官能基を有する共重合体、 式 (A) で表される単位とモノマー (k一 2) および Zまたはモノマー (k一 3) のモノマー単位を必須としか つ官能基を有する共重合体、 または式 (A) で表される単位とモノマー (k 一 4) および/またはモノマー (k一 5) のモノマー単位を必須としかつ官 能基を有する共重合体、 であるのがとりわけ好ましい。 また、 接着性の重合 体 (A) においては、 必ずしも高い透明性は要求されないことから、 接着性 の重合体 (A) 中の単位 (A) の割合が少なくてもよい。 たとえば、 重合体 中の全モノマ一単位に対するモノマー単位 (A) の割合は 1モル%未満であ つてもよく、 0. 0001モル%以上 1モル%未満であるのが好ましい。 また、 本発明の重合体 (A) を、 ペリクル用フレームとペリクル膜との接 着剤として用いる場合、 接着性向上に有効な官能基が導入された接着性の重 合体 (A) を用いることが好ましい。 一方、 ペリクル膜用の本発明における 重合体 (A) は光透過性の面から官能基を有しない重合体とするのが好まし い。  Further, a copolymer having a unit represented by the formula (A) and a monomer unit (k-1) as essential and having a functional group, a unit represented by the formula (A) and a monomer (k-1) And a copolymer having an essential and functional group of a monomer unit of Z or a monomer (k-1), or a unit represented by the formula (A) and a monomer (k-1 4) and / or a monomer (k-1 5) ) Is a copolymer having essential functional units and having a functional group. Since high transparency is not always required for the adhesive polymer (A), the proportion of the unit (A) in the adhesive polymer (A) may be small. For example, the ratio of the monomer unit (A) to one monomer unit in the polymer may be less than 1 mol%, preferably from 0.0001 mol% to less than 1 mol%. When the polymer (A) of the present invention is used as an adhesive between a pellicle frame and a pellicle membrane, an adhesive polymer (A) into which a functional group effective for improving adhesiveness is introduced is used. Is preferred. On the other hand, the polymer (A) in the present invention for a pellicle film is preferably a polymer having no functional group from the viewpoint of light transmission.
接着性の重合体 (A) が官能基を有する場合の官能基としては、 枠体やべ リクル膜に対して接着性を発現する官能基から選択され、 力ルポキシル基、 スルホン酸基、 アルコキシカルポニル基、 ァシロキシ基、 アルケニル基、 加 水分解性シリル基、 水酸基、 マレイミド基、 アミノ基、 シァノ基、 およびィ ソシァネート基から選ばれる 1種以上の基が 1ί子ましい。 さらに、 官能基とし ては、 枠体材料であるアルミニウム等の金属類に対して良好な接着性を発現 し、 比較的低温でその効果が発現でき、 かつ、 保存安定性に富むことから、 力ルポキシル基が特に好ましい。 When the adhesive polymer (A) has a functional group, the functional group may be a frame or a base. It is selected from functional groups that exhibit adhesiveness to the icle film, and includes carboxylic acid groups, sulfonic acid groups, alkoxycarbonyl groups, acyloxy groups, alkenyl groups, hydrolyzable silyl groups, hydroxyl groups, maleimide groups, amino groups, and cyano groups. And at least one group selected from a group and an isocyanate group. Further, as a functional group, it exhibits good adhesiveness to metals such as aluminum as a frame material, can exert its effect at a relatively low temperature, and has a high storage stability. Lupoxyl groups are particularly preferred.
接着性の重合体 (Α) が官能基を含む場合の官能基数は、 重合体 l gあた り 0 . 0 0 1〜1ミリモルであることが好ましい。 官能基の数が 1ミリモル 以内であれば、 官能基の有する短波長光の光吸収性が、 接着剤の耐久性を阻 害する可能性が少なくなる。  When the adhesive polymer (Α) contains a functional group, the number of functional groups is preferably from 0.01 to 1 mmol per gram of the polymer. When the number of the functional groups is within 1 mmol, the possibility that the short-wavelength light absorptivity of the functional groups impairs the durability of the adhesive is reduced.
官能基を導入した接着性の重合体 (A) は、 公知の方法で合成できる (た とえば、 日本特開平 4— 1 8 9 8 8 0号公報、 日本特開平 4ー 2 2 6 1 7 7 号公報 日本特開平 6— 2 2 0 2 3 2号公報。 ) 。  The adhesive polymer (A) into which a functional group is introduced can be synthesized by a known method (for example, Japanese Patent Application Laid-Open No. 4-189890, Japanese Patent Application Laid-Open No. 4-226261). No. 7 Japanese Patent Application Laid-Open No. Hei 6-222022).
官能基の導入方法としては、 (方法 1 ) モノマー ( a ) を重合、 または、 モノマー ( a ) と他のモノマーを重合させた後に、 重合開始剤や連鎖移動剤 等に由来する重合体末端基を官能基として利用する方法、 (方法 2 ) モノマ ― ( a ) 、 官能基を含有しない他のモノマー、 および官能基を含有する他の モノマーを共重合させる方法、 または (方法 3 ) モノマ一 ( a ) 、 官能基を 含有しない他のモノマー、 および官能基に変換しうる基を含有する他のモノ マーを共重合させ、 つぎに官能基に変換しうる基を官能基に変換する方法、 等が挙げられる。 このうち、 導入操作が容易であることから方法 1を採用す るのが好ましい。  As a method for introducing a functional group, (Method 1) After polymerizing the monomer (a) or polymerizing the monomer (a) with another monomer, a polymer terminal group derived from a polymerization initiator, a chain transfer agent, etc. (Method 2) Monomer-(a), a method of copolymerizing another monomer having no functional group, and another monomer having a functional group, or (Method 3) Monomer ( a) a method of copolymerizing another monomer having no functional group and another monomer having a group that can be converted into a functional group, and then converting a group that can be converted into a functional group into a functional group, etc. Is mentioned. Of these, method 1 is preferred because the introduction operation is easy.
力ルポキシル基を導入する方法の具体例としては、 アルコキシカルポニル 基を有するモノマーを共重合させ、 その後、 共重合体中のアルコキシ力ルポ 二ル基を加水分解反応により力ルポキシル基に変換する方法 (方法 3の例) 、 アルコキシルカルポ二ル基を末端基に有する重合体を得て、 加水分解する 方法 (方法 1の例) が挙げられる。  As a specific example of the method for introducing a carbonyl group, a method of copolymerizing a monomer having an alkoxycarbonyl group, and then converting the alkoxy group in the copolymer into a carbonyl group by a hydrolysis reaction ( Example of Method 3), and a method of obtaining a polymer having an alkoxylcarbonyl group at a terminal group and hydrolyzing the polymer (an example of Method 1).
また上記以外の方法として、 重合体を高温処理して重合体の側鎖または末 端を酸化分解せしめて、 重合体中に力ルポキシル基を導入する方法等も採用 できる。 As a method other than the above, a method in which a polymer is subjected to high temperature treatment to oxidatively decompose a side chain or a terminal of the polymer to introduce a hydroxyl group into the polymer is also employed. it can.
また接着剤として、 重合体 (A) 以外の重合体も用いうる。 該重合体とし ては特に限定されず、 日本特開 2001— 330943号公報や国際公開 2 001/37044号に記載される化合物が挙げられる。 具体的には、 プロ ピレンノフッ化ビニリデン テトラフルォロエチレンコ重合体、 フッ化ビニ リデンノへキサフルォロプロピレンコ重合体等の主鎖に飽和脂肪族環構造を 持たない重合体、 フッ化ピニリデンを主成分とする共重合体等が例示できる 。 これらの重合体においても、 方法 1等の方法で、 官能基を導入するのが好 ましい。  Further, a polymer other than the polymer (A) may be used as the adhesive. The polymer is not particularly limited, and examples thereof include compounds described in Japanese Patent Application Laid-Open No. 2001-330943 and International Publication No. 2001/37044. Specific examples include polymers having no saturated aliphatic ring structure in the main chain, such as propylenenovinylidene fluoride tetrafluoroethylene copolymer, vinylidene fluoride hexafluoropropylene copolymer, and the like. For example, a copolymer mainly composed of It is preferable to introduce a functional group into these polymers by a method such as the method 1.
さらに、 本発明においては、 接着性の重合体 (A) とともに、 該接着性の 重合体 (A) の接着性向上させる目的で、 シラン系、 エポキシ系、 チタン系 、 アルミニウム系等のカップリング剤等を使用してもよい。 また、 官能基を 含有する接着性の重合体 (A) を用いる場合には、 該重合体を枠体上に薄く コートし、 その表面に官能基を有しない場合の本発明の重合体 (A) を塗布 し、 接着を行っても、 ペリクル膜を強固に接着させうる。  Further, in the present invention, in addition to the adhesive polymer (A), a coupling agent such as a silane-based, epoxy-based, titanium-based, or aluminum-based coupling agent is used for the purpose of improving the adhesiveness of the adhesive polymer (A). Etc. may be used. When an adhesive polymer (A) containing a functional group is used, the polymer (A) is coated thinly on a frame, and the polymer (A) of the present invention having no functional group on its surface is used. The pellicle film can be firmly adhered even if) is applied and adhered.
本発明における重合体 (A) のうちモノマー単位 (A1) を有する重合体 (A1) は新規な重合体である。  The polymer (A1) having the monomer unit (A1) among the polymers (A) in the present invention is a novel polymer.
Figure imgf000027_0001
Figure imgf000027_0001
(A1)  (A1)
式 (A1) において X1、 X2、 n、 Rf l、 および Ri2は、 前記と同じ意 味を示し、 好ましい態様も同じである。 X1および X2が独立に、 フッ素原子 または塩素原子である場合の重合体は、 耐熱性、 謝候性および耐光性が良好 になる。 特に、 X1および X2がともにフッ素原子である場合には、 光学的性 質がさらに向上する。 重合体 (A 1 ) としては、 式 (A 1 ) における X 1、 X 2、 R f lおよび R f 2がすべてフッ素原子であり、 nが 1であるモノマー単 位を含む重合体が特に好ましい。 In formula (A1), X 1 , X 2 , n, R fl , and R i2 have the same meaning as described above, and the preferred embodiments are also the same. When X 1 and X 2 are independently a fluorine atom or a chlorine atom, the polymer has good heat resistance, weatherability and light resistance. In particular, when X 1 and X 2 are both fluorine atoms, Quality is further improved. As the polymer (A 1), a polymer containing a monomer unit in which X 1 , X 2 , R fl and R f 2 in the formula (A 1) are all fluorine atoms and n is 1 is particularly preferable.
重合体 (A 1 ) をペリクル以外の用途に用いる場合においても、 該重合体 (A 1 ) は、 そのままを目的とする用途に用いてもよく、 他の化合物に変換 して用いてもよい。 またそのままを用いる場合においては、 溶媒に溶解させ 用いるのが好ましい。 溶媒としては、 含フッ素溶媒が好ましく、 前記の含フ ッ素溶媒の他、 ペルフルォロ (2 _プチルテトラヒドロフラン) 等のペルフ ルォロテトラヒドロフラン誘導体;ペルフルォロトリプチルァミン等のペル フルォロアルキルアミン類;ペルフルォロシクロへキサン等のペルフルォロ シクロアルカン類 (縮合環を含む) ;ハイドロフルォロエーテル類;ハイド 口フルォロカ一ボン類;等が挙げられる。 本発明の重合体 (A) は、 これら の含フッ素溶媒に可溶である。  Even when the polymer (A 1) is used for purposes other than pellicles, the polymer (A 1) may be used as it is, or may be used after being converted into another compound. When used as it is, it is preferable to use it after dissolving it in a solvent. As the solvent, a fluorinated solvent is preferable. In addition to the above-mentioned fluorinated solvent, a perfluorotetrahydrofuran derivative such as perfluoro (2-butyltetrahydrofuran); a perfluoroalkylamine such as perfluorotriptylamin; And perfluorocycloalkanes (including condensed rings) such as perfluorocyclohexane; hydrofluoroethers; and fluorene-containing fluorocarbons. The polymer (A) of the present invention is soluble in these fluorinated solvents.
本発明の重合体 (A) は通常のラジカル重合により得ることができる。 重 合方法としてはラジカル重合反応の手法を適用できる。 たとえば有機または 無機ラジカル開始剤、 光、 電離放射線または熱による重合等が挙げられる。 重合の方法もバルク重合、 溶液重合、 懸濁重合、 または乳化重合を用いるこ とができる。 本重合に用いられる開始剤としては、 以下の化合物が例示され る。  The polymer (A) of the present invention can be obtained by ordinary radical polymerization. As a polymerization method, a technique of a radical polymerization reaction can be applied. For example, polymerization by an organic or inorganic radical initiator, light, ionizing radiation or heat, etc. may be mentioned. As the polymerization method, bulk polymerization, solution polymerization, suspension polymerization, or emulsion polymerization can be used. Examples of the initiator used for the main polymerization include the following compounds.
ジイソプロピルペルォキシジ力一ポネート、 ジ (2—ェチルへキシル) ぺ ルォキシジカーボネー卜、 ジァリルペルォキシジカーボネート、 イソブチリ ルペルォキシド、 t一ブチルペルォキシピバレート、 ビスペルフルォロブチ リルペルォキシド、 ペルフルォロベンゾィルペルォキシド、 ビスペルフルォ 口 tーブチリルベルォキシド等の過酸化物またはァゾ化合物等が挙げられる また、 本発明の重合体 (A) の分子量は従来公知の連鎖移動剤を用いるこ とにより調節できる。 該連鎖移動剤としては、 たとえば、 クロ口ホルム等の ハイド口クロ口カーボン類、 メタノール、 イソプロピルアルコール等のアル コール類、 ジフロロクロロメタン等のハイド口フルォロカ一ボン類、 または スルフィド類が挙げられる。 43 Diisopropylperoxydipotionate, di (2-ethylhexyl) ぺ -roxydicarbonate, diarylperoxydicarbonate, isobutylyl ruperoxide, t-butylperoxypivalate, bisperfluo Peroxide or azo compound such as lovtyrilperoxide, perfluorobenzoylperoxide, bisperfluoride or the like, or azo compound; etc. The molecular weight of the polymer (A) of the present invention It can be adjusted by using a known chain transfer agent. Examples of the chain transfer agent include black-mouthed carbon such as black-mouthed form, alcohols such as methanol and isopropyl alcohol, hidden-mouthed fluorocarbons such as difluorochloromethane, and sulfides. . 43
27 本発明における化合物 (a l ) 等の化合物 (a ) は、 比較的沸点が高く、 適度な重合速度を有するため、 モノマーから直接部品等を得る重合方法であ る、 ポッティング重合または注型重合等のバルク重合法 (以下、 直接重合法 とも記す。 ) を採用できる。 たとえば注型重合であれば、 レンズ状形成物の 製造、 光ファイバ用ロッドの製造、 光導波路のコアまたはクラッドを直接製 造できる。 通常、 モノマーと重合開始剤とを混合し、 さらに必要に応じて他 の添加剤を加え、 成形型に注入する。 その後、 加熱硬化する熱重合法、 また は光硬化等の活性光線により硬化する光重合法が採用できる。 27 Compound (a) such as compound (al) in the present invention has a relatively high boiling point and an appropriate polymerization rate, and is a polymerization method for directly obtaining parts and the like from monomers, such as potting polymerization or cast polymerization. Bulk polymerization method (hereinafter also referred to as direct polymerization method). For example, in the case of cast polymerization, it is possible to manufacture a lens-like product, manufacture a rod for an optical fiber, and directly manufacture a core or a clad of an optical waveguide. Usually, a monomer and a polymerization initiator are mixed, and if necessary, other additives are added, and the mixture is injected into a molding die. Thereafter, a heat polymerization method of curing by heating, or a photopolymerization method of curing by actinic rays such as light curing can be adopted.
化合物 (a l ) 等の化合物 (a ) を重合した後、 該重合工程中に混入した 不純物を取り除くことは難しいが、 モノマーの段階では、 高精度ろ過等によ る不純物の除去が容易である。 従って、 直接重合法により部材 ·部品が製造 できれば、 不純物混入の機会を削減できる。 従って、 直接重合法を採用する ことによって、 不純物が極めて少ない光学レンズ、 光学セル、 光ファイバ一 用母材、 光導波路等の光学部材 ·部品が極めて高純度、 高品位に作成可能で ある。 従って、 散乱が無く、 透明性が良好な部材 ·部品が作製できる。  After polymerizing the compound (a) such as the compound (al), it is difficult to remove impurities mixed during the polymerization step, but at the monomer stage, it is easy to remove impurities by high-precision filtration or the like. Therefore, if parts and components can be manufactured by the direct polymerization method, the chance of impurity contamination can be reduced. Therefore, by employing the direct polymerization method, optical members and components such as optical lenses, optical cells, optical fiber preforms, optical waveguides, etc., having extremely few impurities can be produced with extremely high purity and high quality. Therefore, it is possible to produce members and parts having good transparency without scattering.
直接重合法に用いられる開始剤の種類としては、 特に限定されず、 前記と 同じ開始剤を使用できる。 開始剤の添加量は一般的にはモノマーの総量に対 して 0 . 0 5〜5 %が好ましく、 特に 0 . 1〜3 %が好ましい。  The type of the initiator used in the direct polymerization method is not particularly limited, and the same initiator as described above can be used. Generally, the amount of the initiator added is preferably 0.05 to 5%, more preferably 0.1 to 3%, based on the total amount of the monomers.
直接重合法として熱重合法を採用する場合には、 初期は 0〜5 0でで行い 、 重合が進行するにつれて徐々に温度を上昇させるのが好ましく、 最終的に は 6 0〜1 5 0 まで加熱するのが好ましい。 さらに、 必要に応じて成形型 から取り出した後、 ボス卜キュアを行うこともできる。  When the thermal polymerization method is used as the direct polymerization method, the temperature is preferably set to 0 to 50 at the initial stage, and the temperature is preferably gradually increased as the polymerization proceeds, and finally to 60 to 150. Heating is preferred. After removal from the mold, boss cure can be performed if necessary.
直接重合法として光重合法を採用する場合には、 光増感剤、 たとえばベン ゾイン、 ベンゾィンメチルエーテル、 ベンゾィンェチルエーテル、 ベンゾフ ェノン、 ァセ卜フエノン等をモノマーの総量に対して 0 . 0 1〜5 %添加し て紫外線を照射することによって重合硬化させる。 該光重合法において、 前 記重合開始剤を併用してもよい。  When the photopolymerization method is used as the direct polymerization method, a photosensitizer, such as benzoin, benzoin methyl ether, benzoethyl ether, benzophenone, acetate phenone, etc., is added to the total amount of the monomers. It is polymerized and cured by irradiating ultraviolet rays with addition of 0.01 to 5%. In the photopolymerization method, the polymerization initiator may be used in combination.
本発明の重合体 (A) は、 直接重合法だけでなく、 通常の重合法により得 られた重合体も、 押し出し成形、 射出成形等の溶融成形や、 溶液によるコ一 ティング、 キャスト、 デイツピング等の加工手段を採用することが可能であ る。 これにより本発明の重合体 (A) を種々の用途に適用できる。 The polymer (A) of the present invention can be used not only in a direct polymerization method but also in a polymer obtained by a usual polymerization method, such as extrusion molding, injection molding, etc., melt coating such as solution coating, casting, and dipping. It is possible to adopt the processing means of You. Thereby, the polymer (A) of the present invention can be applied to various uses.
たとえば、 本発明における新規な重合体 (A 1 ) は、 弾性率が高温下まで 保持されるため、 他の汎用フッ素重合体である P T F Eや P F Aに比較して 高温下での強度が強い性質を有する。 しかも化学的安定性は P T F Eや P F Aと同等である。 従って、 各種の化学品工場や半導体工場の配管、 バルブ、 のぞき窓、 シリコンウェハ等のケース、 各種薬品槽等構造部品が直接薬品と 接触するような製品に適用できる。  For example, the novel polymer (A 1) of the present invention has a property that its elastic modulus is maintained even at high temperatures, so that its strength at high temperatures is higher than that of other general-purpose fluoropolymers such as PTFE and PFA. Have. Moreover, the chemical stability is equivalent to PTF E and PFA. Therefore, it can be applied to products in which structural parts such as piping, valves, sight glass, silicon wafer cases, and various chemical tanks come into direct contact with chemicals in various chemical and semiconductor factories.
さらに、 本発明の重合体 (A 1 ) は熱安定性に優れるため、 上記の成形物 の溶融成形の際に可塑剤、 熱安定剤等の添加物を必要としない。 また、 熱分 解温度が高いため分解物が生成しにくい。 これらの特徴は、 本発明の重合体 (A 1 ) を食料品工業、 バイオインダストリ一に応用した場合、 不純物の製 品への混入が避けられる利点を有する。  Further, since the polymer (A 1) of the present invention has excellent thermal stability, additives such as a plasticizer and a heat stabilizer are not required when the above-mentioned molded product is melt-molded. In addition, high decomposition temperature makes it difficult to generate decomposition products. These characteristics have an advantage that when the polymer (A 1) of the present invention is applied to the food industry and bioindustry, contamination of impurities into products can be avoided.
また、 本発明の重合体 (A 1 ) は、 2 0 0 n m〜4 0 0 n mの紫外光の透 過率が 9 0 %以上でありかつ紫外線による劣化が少ない。 そのため、 紫外線 を利用した各種の光学装置、 光学部品においてレンズ、 光ファイバ一、 光導 波路等の光伝送部材として利用可能である。 たとえば、 波長 4 0 0 n m以下 の青色レーザーを使用する D V D用の部品や D V D用ディスクの表面保護膜 または太陽電池の表面保護膜等が例示される。  In addition, the polymer (A 1) of the present invention has a transmittance of ultraviolet light of 200 nm to 400 nm of 90% or more and is hardly deteriorated by ultraviolet rays. Therefore, it can be used as an optical transmission member such as a lens, an optical fiber, or an optical waveguide in various optical devices and optical components using ultraviolet light. For example, a component for DVD using a blue laser having a wavelength of 400 nm or less, a surface protective film of a disk for DVD, or a surface protective film of a solar cell are exemplified.
—方.. 波長 7 0 0〜 1 7 0 0 n mの範囲の近赤外領域においても、 高い透 明性を有する。 従って、 光通信用の光ファイバ一、 光導波路等の光部品や光 通信用のレーザー、 フォトダイオードの保護膜またはレンズ、 光部品用接着 剤、 光 ·電子部品混載導波路基板等に特に好適である。 また、 本発明の重合 体 (A 1 ) は高いガラス転移温度を有するため、 過酷な条件下においても ( たとえばハンダリフロ一条件もしくはエンジン周り等のような長期高温条件 、 またはコンピューター内部のような発熱条件下での長期使用等。 ) 特性が 劣化しにくい利点を有する。 さらに、 可視光においても高い透明性を有する とともに分散が少ない。 従って、 色収差補正用のレンズとしても利用できる また、 本発明の重合体 (A 1 ) は各種の薬品に対し優れた耐性を有するた め、 保護コーティング剤、 フォトレジスト膜、 エッチング時のマスキング剤 、 燃料電池用セパレー夕一、 燃料電池用触媒固定用皮膜等として有用である 。 特に、 フォトレジスト膜やエッチング時のマスキング剤として利用すると きには、 直接重合法のうちの光重合法を採用することで、 従来のものに比べ て工程を簡略化することが可能である。 — Higher transparency in the near-infrared region of the wavelength range of 700 to 170 nm. Therefore, it is particularly suitable for optical components such as optical fibers for optical communications, optical waveguides and the like, lasers for optical communications, protective films or lenses for photodiodes, adhesives for optical components, waveguide substrates for mixed optical and electronic components, etc. is there. Further, since the polymer (A 1) of the present invention has a high glass transition temperature, it can be used under severe conditions (for example, long-term high-temperature conditions such as solder reflow conditions or around an engine, or heat generation conditions such as inside a computer). Under long-term use, etc.) It has the advantage that the characteristics are hardly deteriorated. Furthermore, it has high transparency and low dispersion even in visible light. Therefore, it can be used as a lens for correcting chromatic aberration. Further, since the polymer (A 1) of the present invention has excellent resistance to various chemicals, it can be used as a protective coating agent, a photoresist film, and a masking agent for etching. It is useful as a separator for fuel cells, a catalyst fixing film for fuel cells, and the like. In particular, when used as a photoresist film or as a masking agent at the time of etching, the photopolymerization method of the direct polymerization method can be used to simplify the process as compared with the conventional method.
すなわち、 モノマーと光重合開始剤の混合物を基材に塗布し、 フォトレジ スト法により所望のパターンの光を照射すると、 光が照射した部分のみ重合 する。 その後、 光が照射されず重合していない部分のモノマーを除去するこ とにより所望のパターンを形成できる。 また、 紫外光の透過率も高いため、 低波長用、 たとえば 1 57 nmを発振する F2エキシマレーザ一用、 または 193 nmを発振する A r Fエキシマレーザ一リソグラフィ一用のレジス卜 膜用材料としても有用である。 この場合は、 モノマー単独でなく、 各種の光 酸発生剤、 レべリング剤、 界面活性剤等と混合して用いることも可能である 本発明の重合体 (A1) は屈折率が低いため、 低反射加工剤としても有用 である。 眼鏡レンズ、 光学レンズ、 各種光学部材、 ペリクル、 ショーウィン ドウ、 ショーケースまたは各種ディスプレー (PDP、 LCD, FED, 有 機 EL、 プロジェクシヨン TV) 等の表面に本発明の重合体 (A1) の皮膜 を形成することによって、 反射防止効果が得られる。 また、 本発明の化合物 (a 1) の単独重合体の屈折率は約 1. 33であり水とほぼ同じ屈折率であ るため、 バイオインダストリ一用の保護膜、 レンズ、 分析機器用保護膜、 ま たは成形品としても有用である。 That is, when a mixture of a monomer and a photopolymerization initiator is applied to a substrate and irradiated with light of a desired pattern by a photoresist method, only the irradiated portion is polymerized. Thereafter, a desired pattern can be formed by removing the monomer in a portion which is not irradiated with light and is not polymerized. In addition, because of the high transmittance of ultraviolet light, resist film materials for low wavelengths, for example, for an F 2 excimer laser that oscillates at 157 nm, or for an Ar F excimer laser that oscillates at 193 nm, for lithography It is also useful. In this case, the polymer (A1) of the present invention has a low refractive index, and may be used in combination with various photoacid generators, leveling agents, surfactants, and the like, instead of the monomer alone. It is also useful as a low reflection processing agent. Coating of the polymer (A1) of the present invention on the surface of spectacle lenses, optical lenses, various optical members, pellicles, show windows, show cases or various displays (PDP, LCD, FED, organic EL, projection TV) By forming, an antireflection effect can be obtained. In addition, since the homopolymer of the compound (a1) of the present invention has a refractive index of about 1.33, which is almost the same as that of water, the protective film for bioindustry, lenses, and protection for analytical instruments It is also useful as a film or molded article.
さらに、 本発明の重合体 (A1) は低誘電率であるため、 半導体素子の保 護膜として用いた場合に演算速度が速くなる効果を有する。 また、 吸水率が 低いため誘電率が湿度の影響を受け難く、 半導体素子を水分から遮断する効 果も高い。 これらの特性を活かし、 層間絶縁膜 (たとえば半導体素子用、 液 晶表示体用、 多層配線板用) 、 バッファ一コート膜、 パッシベ一シヨン膜、 ひ線遮蔽膜、 素子封止材、 各種半導体用接着材 (たとえば LOC用、 ダイポ ンド用等) 、 高密度実装基板用層間絶縁膜、 高周波素子 (たとえば RF回路 素子、 GaAs素子、 I nP素子) の防湿膜、 保護膜として利用できる。 ま た、 本発明の重合体 (A1) は単独フィルムまたはポリイミド等の樹脂と積 層したフィルムとして使用可能であり、 これらは回路基板用フィルム、 フィ ルムコンデンサ用として有用である。 Furthermore, since the polymer (A1) of the present invention has a low dielectric constant, when it is used as a protective film of a semiconductor device, it has the effect of increasing the calculation speed. In addition, since the water absorption is low, the dielectric constant is hardly affected by humidity, and the effect of shielding the semiconductor element from moisture is high. Taking advantage of these characteristics, interlayer insulating films (for example, for semiconductor devices, liquid crystal displays, and multilayer wiring boards), buffer coating films, passivation films, wire shielding films, element sealing materials, and various semiconductors It can be used as an adhesive (for LOC, for dipoles, etc.), an interlayer insulating film for high-density mounting boards, a moisture-proof film and a protective film for high-frequency devices (for example, RF circuit devices, GaAs devices, and InP devices). Further, the polymer (A1) of the present invention is laminated with a single film or a resin such as polyimide. They can be used as layered films, and these are useful as films for circuit boards and film capacitors.
また、 本発明の重合体 (A1) の低表面自由エネルギー性を利用して種々 の基材表面に撥水撥油性を付与することが可能である。 これらの特性および 他の特性をあわせることにより磁気ディスク基板、 光ディスク、 夕ツチパネ ルの防汚または潤滑膜、 電子写真における感光および定着ドラム被覆材、 ガ ラス窓用の各種フィルム、 電線被覆材、 撥インク剤 (たとえば塗装用、 イン クジェットの吐出表面等の印刷機器用) 、 レジスト用反射防止膜等に使用で さる。  Further, it is possible to impart water / oil repellency to various substrate surfaces by utilizing the low surface free energy of the polymer (A1) of the present invention. By combining these and other characteristics, anti-fouling or lubricating films for magnetic disk substrates, optical disks, and sunset panels, photosensitive and fixing drum coating materials for electrophotography, various films for glass windows, electric wire coating materials, It can be used for inks (eg, for coating, printing equipment such as ink jet ejection surfaces), anti-reflective coatings for resists, etc.
また、 本発明の重合体を溶媒に溶解させた溶液組成物においては、 溶媒と して、 ペルフルォロ ( 2一ブチルテトラヒドロフラン) 、 ペルフルォロトリ プチルァミン、 ペルフルォロシクロアルカン類 (縮合環を含む) 、 ハイド口 フルォロェ一テル類およびハイド口フルォロカーボン類等の基材自身を侵す ことのない溶媒が採用できる。 よって該溶液組成物は種々の基材にコ一ティ ングでき、 しかも形成された皮膜は強靭である利点がある。  In the solution composition obtained by dissolving the polymer of the present invention in a solvent, the solvent may be perfluoro (2-butyltetrahydrofuran), perfluorotriptylamin, perfluorocycloalkane (including a condensed ring), or a hydride. Solvents that do not attack the base material itself, such as mouth fluoroesters and hide mouth fluorocarbons, can be used. Therefore, there is an advantage that the solution composition can be coated on various substrates and the formed film is tough.
(実施例) (Example)
以下に本発明を実施例を挙げて具体的に説明するが、 本発明はこれらによ つて限定されない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
[例 1 ] 化合物 (18) と化合物 (19) との混合物の合成例  [Example 1] Synthesis example of mixture of compound (18) and compound (19)
へ ,0. / CF(CF3)OCF2CF(CF3)OCF2CF2CF3 To, 0. / CF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3
、ひ ,
(18)  (18)
CF(CF3)OCF2CF(CF3)OCF2CF2CF3
Figure imgf000032_0001
CF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3
Figure imgf000032_0001
(19)  (19)
ハステロイ C製の 2 Lのオートクレ一ブに F (CF2) 3〇CF (CF3) CF2〇CF (CF3) COF (2515 g) と Na F粉末 (240 g) を入 れた。 充分に撹拌しながら反応器を冷却して、 常圧で内温が 30で以下に保 たれるようにゆっくりとグリセロール ·ホルマ一ル (40 1 g) を導入した 。 反応により生じた HFは NaFにより、 吸着除去した。 グリセロール *ホ ルマール全量を投入後、 さらに 24時間撹拌した後に加圧ろ過によって N a F粉末を除去し、 生成物を得た。 生成物を NMRと GCにて分析した結果、 化合物 (1 8) および化合物 (1 9) の混合物であり、 混合物としての選択 率は 99. 4%であった。 未反応のグリセロール ·ホルマールは検出されな かった。 この生成物は精製することなく、 次の反応に使用した。 A 2 L autoclave made of Hastelloy C was charged with F (CF 2 ) 3 〇CF (CF 3 ) CF 2 〇CF (CF 3 ) COF (2515 g) and NaF powder (240 g). Cool the reactor with sufficient agitation and keep the internal temperature below 30 at normal pressure. Glycerol-formal (401 g) was introduced slowly so as to be dripping. The HF generated by the reaction was removed by adsorption with NaF. After charging the whole amount of glycerol * formal, the mixture was further stirred for 24 hours, and then the NaF powder was removed by pressure filtration to obtain a product. The product was analyzed by NMR and GC, and as a result, it was a mixture of the compound (18) and the compound (19), and the selectivity as a mixture was 99.4%. Unreacted glycerol-formal was not detected. This product was used for the next reaction without purification.
化合物 (18) の1 H— NMR (300. 4MHz、 溶媒: CDC 13、 基 準: TMS) δ (p pm) : 3. 93〜 4. 1 0 (4H) 、 4. 82 (1 H ) 、 4. 95 (2 H) 。 Compound (18) of 1 H- NMR (300. 4MHz, solvent: CDC 1 3, standards: TMS) δ (p pm) : 3. 93~ 4. 1 0 (4H), 4. 82 (1 H) , 4.95 (2H).
化合物 (18) の19 F— NMR (282. 7MHz、 溶媒 CDC 13、 基 準: CFC 13) δ (p pm) : - 79. 0〜― 80. 7 (4 F) 、 — 8 1 . 9〜― 83. 1 (8 F) 、 一 84. 6〜一 85. 6 (1 F) 、 - 1 30. 1 (2 F) 、 - 1 32. 0 (I F) , - 145. 7 (1 F) 。 19 F- NMR of the compound (18) (282. 7MHz, solvent CDC 1 3, criteria: CFC 1 3) δ (p pm): - 79. 0~- 80. 7 (4 F), - 8 1. 9--83.1 (8 F), 1 84.6-1 85.6 (1 F),-1 30.1 (2 F),-1 32.0 (IF),-145.7 (1 F).
化合物 (19) の1 H— NMR (300. 4MHz、 溶媒: CDC 13、 基 準: TMS) δ (p pm) : 3. 74 (1H) 、 3. 93〜 4. 1 0 (1 H ) 、 4. 27〜4. 54 (3H) 、 4. 90 ( 1 H) 、 5. 04 ( 1 H) 。 化合物 (19) の19 F— NMR (282. 7MH z、 溶媒 CDC 13、 基 準: CFC 13) δ (p pm) : - 79. 0〜― 80. 7 (4 F) 、 - 8 1 . 9〜― 83. 1 (8 F) 、 — 84. 6〜― 85. 6 (I F) , - 1 30. 1 (2 F) 、 - 1 32. 0 (I F) , - 145. 7 (1 F) 。 Compound (19) of 1 H- NMR (300. 4MHz, solvent: CDC 1 3, standards: TMS) δ (p pm) : 3. 74 (1H), 3. 93~ 4. 1 0 (1 H) 4.27 to 4.54 (3H), 4.90 (1H), 5.04 (1H). 19 F- NMR of the compound (19) (282. 7MH z, solvent CDC 1 3, criteria: CFC 1 3) δ (p pm): - 79. 0~- 80. 7 (4 F), - 8 1 9--83.1 (8 F),-84.6--85.6 (IF),-1 30.1 (2 F),-1 32.0 (IF),-145.7 (1 F).
[例 2] フッ素化反応の例  [Example 2] Example of fluorination reaction
コンデンサ一およびポンプとそれにつながる循環ラインを装填した 3 の ステンレス製オートクレーブに CF3CF2CF2OCF (CF3) CF2OC F (CF3) COF (4 k g) を加え、 ポンプにより内液を循環 (流速 30 0 L/h) させた。 ポンプの吐出側からオートクレープの天板に渡る循環ラ インの一部に熱交換器を設置し、 循環する液体の温度を 25 °Cに保った。 循 環ラインの途中にはステンレス製イジェク夕を取り付け、 循環する液体中に ガスを吸引できるようにし、 また、 該イジェクタとポンプの間に原料供給管 と、 オートクレープ中で反応した反応粗液を抜き出すための抜き出し管を取 り付けた。 該イジェクタを通して窒素ガスを 2. 0時間吹き込んだ後、 窒素 ガスで 50 %に希釈したフッ素ガス (以下、 50%希釈ガスと記す。 ) を、 流速 113. 2NL/hで 1. 5時間吹き込んだ。 CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COF (4 kg) was added to the stainless steel autoclave ( 3 ) equipped with a condenser, a pump, and a circulation line connected to the pump. Circulation (flow rate 300 L / h). A heat exchanger was installed on a part of the circulation line extending from the pump discharge side to the autoclave top plate to maintain the temperature of the circulating liquid at 25 ° C. A stainless steel ejector is installed in the middle of the circulation line so that gas can be sucked into the circulating liquid, and a raw material supply pipe between the ejector and the pump, and a reaction crude liquid reacted in the autoclave. Take out the extraction tube for extraction Attached. After nitrogen gas was blown through the ejector for 2.0 hours, fluorine gas diluted to 50% with nitrogen gas (hereinafter referred to as 50% diluted gas) was blown at a flow rate of 113.2 NL / h for 1.5 hours. .
つぎに、 50%希釈フッ素ガスを同じ流速で吹き込みながら、 例 1で得た 生成物を希釈することなくそのまま原料供給管から、 循環している C F 3 C F2CF2OCF (CF3) CF2OCF (CF3) COF中に、 平均供給量約 50 gZhで連続供給し、 合計で 4800 gの原料を仕込んだ。 一方、 反応 粗液としては原料供給開始から約 8時間毎に、 循環ラインより約 270 gの 量を合計で 12回抜き出した。 原料の供給を終了した後も 1時間 50%希釈 フッ素ガスを供給し、 さらに窒素ガスを 3. 5時間吹き込んだ後、 オートク レーブ内液全量を抜き出し、 途中抜き出し分とあわせ、 合計 726 1 gの反 応粗液を回収した。 Next, while blowing the 50% diluted fluorine gas at the same flow rate, the product obtained in Example 1 was circulated from the raw material supply pipe without dilution, and the CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COF was fed continuously at an average supply of about 50 gZh, for a total of 4800 g of raw material. On the other hand, about 270 g of the reaction crude liquid was withdrawn from the circulation line about 12 times in total every about 8 hours from the start of raw material supply. Even after the supply of the raw materials is completed, 50% dilution of fluorine gas is supplied for 1 hour.Fluorine gas is supplied, and nitrogen gas is further blown in for 3.5 hours. The reaction crude liquid was recovered.
生成物を19 F— NMRで分析した結果、 化合物 (18) からの化合物 (b 13- 1) の収率は 57. 5 %、 および化合物 (19) からの化合物 (b 1 4- 1) の収率は 81 %であり、 該化合物以外は循環に使用した C F3CF2 CF2OCF (CF3) CF OCF (C F3) COFが主な成分であること を確認した。 得られた粗液はそのまま次の反応に使用した。 The product was analyzed by 19 F-NMR. As a result, the yield of compound (b 13-1) from compound (18) was 57.5%, and that of compound (b 14-1) from compound (19). The yield was 81%, and it was confirmed that the main component was CF 3 CF 2 CF 2 OCF (CF 3 ) CF OCF (CF 3 ) COF used for circulation except for the compound. The obtained crude liquid was used for the next reaction as it was.
F2  F2
- CL 0 8"(€^?*3)0 卜2 ^"(¾^¾ ¾^ ト2 ^"2 ^"3  -CL 0 8 "(€ ^? * 3) 0 u2 ^" (¾ ^ ¾ ¾ ^ u2 ^ "2 ^" 3
CF  CF
2 0  2 0
(bl3-l)  (bl3-l)
CF(CF3)OCF2CF(CF3)OCF2CF。CF3 CF (CF 3) OCF 2 CF (CF 3) OCF 2 CF. CF 3
Figure imgf000034_0001
Figure imgf000034_0001
(bl4"l)  (bl4 "l)
化合物 (b 13 - 1) の19 F— NMR (282. 7 MH z 溶媒 CDC 1 3、 基準: CFC 13) δ (ppm) : -52. 8 (2 F) 、 78. 5 80. 5 (4 F) — 81 9 (8 F) -83. 0 89. 1 (5 F) 130. 1 (2 F) 132. 0 (I F) 139. 8 (I F) , - 145. 5 (1 F) 。 . Compound (b 13 - 1) of the 19 F- NMR (282. 7 MH z solvent CDC 1 3, reference: CFC 1 3) δ (ppm ): -52 8 (2 F), 78. 5 80. 5 ( 4 F) — 81 9 (8 F) -83. 0 89. 1 (5 F) 130. 1 (2 F) 132.0 (IF) 139.8 (IF),-145.5 (1 F).
化合物 (b l 4— 1) の19 F— NMR (282. 7 MHz, 溶媒 CD C I 基準: CFC 1 δ (p pm) 54. 5〜一 58. 3 (2 F) 19 F-NMR (282.7 MHz, solvent CD CI) of compound (bl 4-1) Standard: CFC 1 δ (p pm) 54.5 to 15.8 (2 F)
78. 5〜一 80. 5 (4F) 、 一 8 1. 9 (8 F) 、 —83. 0 - 8978.5-1 80.5 (4F), 1 81.9 (8F), -83.0-89
. 1 (5 F) 、 - 127. 9 (I F) , 一 1 30. 1 (2 F) 、 - 1 32.1 (5 F),-127.9 (IF), 1 1 30.1 (2 F),-1 32.
0 (I F) 、 一 145. 5 (I F) 。 0 (IF), one 145.5 (IF).
[例 3] 液相熱分解反応による化合物 (b 10) の合成例  [Example 3] Synthesis example of compound (b10) by liquid phase pyrolysis reaction
例 2で得た粗液 (3575. 6 g) をKF粉末 (1 5. 7 g) とともに 2 Combine the crude liquid (355.6 g) obtained in Example 2 with KF powder (15.7 g)
L丸底フラスコに仕込み、 激しく撹拌しながらオイルバスにて 90 で 5時 間加熱した。 フラスコ上部から 20 に温度調節した冷却器および一 7 8°C に冷却した丸底フラスコを直列に接続した。 生成物は冷却した丸底フラスコ に回収した。 反応が進行してガスの生成が見られなくなった時点から 1時間 程度、 10 Ot:で加熱撹拌した後に熱分解終了とした。 液状生成物 (463The mixture was charged into an L round bottom flask and heated in an oil bath at 90 for 5 hours with vigorous stirring. A condenser cooled to 20 from the top of the flask and a round bottom flask cooled to 178 ° C were connected in series. The product was collected in a cooled round bottom flask. The thermal decomposition was terminated after heating and stirring at 10 Ot: for about 1 hour from the point when gas generation was not observed due to the progress of the reaction. Liquid products (463
. 2 g) を回収した。 19F— NMRにより分析した結果、 液状生成物は化合 物 ( b 1 0 ) と化合物 (b 1 5) との混合物であることを確認した。 2 g) was recovered. As a result of analysis by 19 F-NMR, it was confirmed that the liquid product was a mixture of the compound (b10) and the compound (b15).
Figure imgf000035_0001
Figure imgf000035_0001
15)  15)
次に、 回収した丸底フラスコの内温が 1 o°cを越えないように冷却しなが らイオン交換水 (95. 5 g) をゆつくり滴下した。 全量滴下後、 室温に戻 して 1 6時間撹拌を続けた。 19F— NMRにより分析した結果、 化合物 (b 1 0) が水和した化合物 (22) 、 および化合物 (b 1 5) の力ルポン酸フ ルオリド基がカルボン酸基に変換した化合物 (23) の混合物であることを 確認した。 Next, ion-exchanged water (95.5 g) was slowly added dropwise while cooling so that the internal temperature of the collected round bottom flask did not exceed 1 ° C. After dropping the whole amount, the temperature was returned to room temperature and stirring was continued for 16 hours. As a result of analysis by 19 F-NMR, it was found that the compound (22) in which the compound (b10) was hydrated, and the compound (23) in which the sulfonic acid fluoride group of the compound (b15) was converted to a carboxylic acid group were obtained. It was confirmed that it was a mixture.
Figure imgf000035_0002
Figure imgf000035_0002
(22) (23) 19F— NMRの測定から得られた収率 (内部標準: C6F6) は、 化合物 (22) が化合物 (b 10) 基準で 91 %、 化合物 (23) が化合物 (b 1 5) 基準で 75 %であった。 (22) (23) The yield (internal standard: C 6 F 6 ) obtained from the 19 F—NMR measurement was 91% based on compound (b 10) for compound (22) and compound (b 15) based on compound (23). At 75%.
化合物 (b 10) の19 F—NMR (282. 7 MH z、 溶媒 CDC 13、 基準: CFC 13) δ (ppm) : -51. 9 (2 F) 、 —80. 6 (4F 19 F-NMR of the compound (b 10) (282. 7 MH z, solvent CDC 1 3, reference: CFC 1 3) δ (ppm ):.. -51 9 (2 F), -80 6 (4F
) o ) o
化合物 (b 15) の19 F—NMR (282. 7 MH z、 溶媒 CDC 13、 基準: CFC 13) δ (ppm) : 25. 5 (I F) , — 53. 6 (I F) 、 -58. 4 (I F) , -77. 5 (I F) , -88. 5 (I F) , — 1 1 9. 2 (1 F) 。 Compound (b 15) of the 19 F-NMR (282. 7 MH z, solvent CDC 1 3, reference: CFC 1 3) δ (ppm ): 25. 5 (IF), - 53. 6 (IF), -58 4 (IF), -77.5 (IF), -88. 5 (IF), — 1 19.2 (1 F).
化合物 (22) の19 F—NMR (282. 7MHz、 溶媒 CDC 13、 基 準: CFC 13) 6 (ppm) : - 52. 2 (2 F) 、 -87. 9 (4 F) 化合物 (23) の19 F— NMR (282. 7MHz, 溶媒 CDC 13、 基 準: CFC 13) δ ( m) : -54. 0 (I F) , — 59. 2 (I F) , -79. 1 (I F) 、 一 90. 2 (I F) 、 —119. 5 (I F;) 。 濃硫酸 (203. 2 g) を 50 OmLの丸底フラスコに仕込み、 激しく撹 拌しながらオイルバス中で 130°Cに加熱した。 そこへ化合物 (22) と化 合物 (23) の混合物 (304. 4 g) をゆつくり滴下した。 フラスコ上部 から 2 Ot:に温度調節した冷却器および一 78 に冷却した丸底フラスコを 直列に接続した。 生成物は冷却した丸底フラスコにて回収し、 全量滴下後か ら約 1時間 145でで加熱撹拌した後に終了とした。 19F— NMRにより分 祈した結果、 回収した生成物はほぼ全て化合物 (b 10) であることを確認 した。 19 F-NMR of the compound (22) (282. 7 MHz, solvent CDC 1 3, criteria: CFC 1 3) 6 (ppm ): -. 52. 2 (2 F), -87 9 (4 F) Compound ( 23) of the 19 F- NMR (282. 7MHz, solvent CDC 1 3, criteria: CFC 1 3) δ (m ):.. -54 0 (IF), - 59. 2 (IF), -79 1 ( IF), 19.2 (IF), —119.5 (IF;). Concentrated sulfuric acid (203.2 g) was charged into a 50 OmL round bottom flask and heated to 130 ° C in an oil bath with vigorous stirring. Thereto, a mixture (304.4 g) of the compound (22) and the compound (23) was slowly added dropwise. From the top of the flask, a condenser cooled to 2 Ot: and a round bottom flask cooled to 78 were connected in series. The product was recovered in a cooled round-bottomed flask, heated and stirred at 145 for about 1 hour after the entire amount was dropped, and the process was terminated. As a result of 19 F-NMR, it was confirmed that almost all of the recovered product was compound (b10).
[例 4] 化合物 (b 20) の合成例  [Example 4] Synthesis example of compound (b 20)
例 3において化合物 (b l O) が回収された丸底フラスコを— 78°Cに冷 却し、 エチレンクロロヒドリン (40. 5 g) をゆっくり滴下した。 全量滴 下後、 撹拌したまま室温まで昇温し、 その後 16時間撹拌を続けた。 単蒸留 によって無色透明液体 (106. 8 g) を回収した。 — NMR、 19F_ NMRにより分析した結果、 回収された無色透明液体はエチレンクロルヒド リンが付加した化合物 (24) であることを確認した。 NMRで定量 (内部 標準: C6F6) した収率は 83%であった。 The round bottom flask in which the compound (blO) was recovered in Example 3 was cooled to -78 ° C, and ethylene chlorohydrin (40.5 g) was slowly added dropwise. After dropping the whole amount, the temperature was raised to room temperature with stirring, and then stirring was continued for 16 hours. A colorless transparent liquid (106.8 g) was recovered by simple distillation. — As a result of NMR and 19 F_ NMR analysis, the recovered colorless and transparent liquid is ethylene chlorohydroxide. The compound (24) to which phosphorus was added was confirmed. The yield determined by NMR (internal standard: C 6 F 6 ) was 83%.
化合物 (24) の1 H— NMR (300. 4MHz、 溶媒 CDC 13、 : TMS) δ (ppm) : 3. 68 (2H) , 4. 17 (2H) 。 1 H- NMR of the compound (24) (300. 4MHz, solvent CDC 1 3,: TMS) δ (ppm): 3. 68 (2H), 4. 17 (2H).
化合物 (24) の19 F— NMR (282. 7 MH z、 溶媒 CDC 1 準: CFC 13) δ (p m) 48. 4 (I F) 54. 5 (I F) 19 F- NMR of the compound (24) (282. 7 MH z , solvent CDC 1 level: CFC 1 3) δ (pm ) 48. 4 (IF) 54. 5 (IF)
、 一 82. 0 (1 F) 、 — 86. 3 (1 F) 。 18.0 (1 F), — 86.3 (1 F).
{  {
b  b
引き続き、 還流冷却機、 撹拌機、 滴下ロートを備えた 50 OmLの 4つ口 ガラスフラスコを窒素にて充分置換した後、 メタノール (160. 0 g) と 水酸化ナトリウム (17. 6 g) を仕込み、 水浴中で系内を冷却しながら完 全に溶解させた。  Subsequently, the 50 OmL four-neck glass flask equipped with a reflux condenser, stirrer, and dropping funnel was sufficiently purged with nitrogen, and then methanol (160.0 g) and sodium hydroxide (17.6 g) were charged. The solution was completely dissolved while cooling the system in a water bath.
その後、 滴下ロートに化合物 (24) (99. 8 g) を仕込み、 フラスコ 内を 10 以下に保ちながら滴下した。 そのまま 12時間撹拌を続け反応を 完結させた後、 フラスコ内の液をイオン交換水 (40 OmL) 中に加え、 本 液よりジクロロペン夕フルォロプロパン (40 g) を用いて抽出した。 抽出 液をロータリーエバポレーターで濃縮し、 減圧下にジクロ口ペンタフルォロ プロパンを留去し 82. 0 gの無色透明液体を得た。 — NMR、 19 F— NMRを用いて分析した結果、 該無色透明液体は化合物 (b 20) であるこ とを確認し、 収率をガスクロマトグラフィーで定量したところ、 84. 5 % であった。 Thereafter, compound (24) (99.8 g) was charged into the dropping funnel, and the mixture was dropped while keeping the inside of the flask at 10 or less. After stirring for 12 hours as it was to complete the reaction, the solution in the flask was added to ion-exchanged water (40 OmL), and the solution was extracted with dichloropentafluoropropane (40 g). The extract was concentrated by a rotary evaporator, and pentafluoropropane having a diclo opening was distilled off under reduced pressure to obtain 82.0 g of a colorless transparent liquid. As a result of analysis using —NMR and 19 F—NMR, it was confirmed that the colorless and transparent liquid was Compound (b20), and the yield was determined by gas chromatography to be 84.5%.
Figure imgf000037_0001
Figure imgf000037_0001
(24) 化合物 (b 20) の1 H— NMR (300. 4MHz、 溶媒 CDC 13、 3 準: TMS) δ (ppm) : 4. 32 (4H) . (24) 1 H- NMR of the compound (b 20) (300. 4MHz, solvent CDC 1 3, 3 quasi: TMS) δ (ppm): 4. 32 (4H).
化合物 (b 20) の19 F— NMR (282. 7MHz、 溶媒 CDC 13、 基準: CFC 13) δ (ppm) : -52. 7 (2 F) 、 —86. 6 (4 F ) o Compound (b 20) of the 19 F- NMR (282. 7MHz, solvent CDC 1 3, reference: CFC 1 3) δ (ppm ):.. -52 7 (2 F), -86 6 (4 F ) o
[例 5] 光塩素化による化合物 (b 31) の合成例  [Example 5] Example of synthesis of compound (b31) by photochlorination
Figure imgf000038_0001
Figure imgf000038_0001
高圧水銀灯を中心部に、 側管にドライアイス還流コンデンサーおよび塩素 ガス導入口、 熱電対温度計を具備した 2 Lフラスコ内を充分に窒素置換した 後、 例 4で合成した化合物 (b 20) (76 g) と R— 1 13 (540 g) を仕込んだ。 内温を 10°Cにした後、 水銀灯を点灯し、 内温 30でにてゆつ くりと塩素ガスの導入を開始した。 その後、 系内を昇温し 45〜50°Cの範 囲内で一定に保つた。 未反応の塩素ガスはドライアイス還流コンデンサ一に より系内に循環させながら反応を行った。 合計 90. 5 gの塩素を仕込み、 塩素の消費がなくなった時点で反応を終了とした。  After thoroughly replacing the inside of a 2 L flask equipped with a dry ice reflux condenser, a chlorine gas inlet, and a thermocouple thermometer with a high-pressure mercury lamp in the side tube and a side tube, the compound synthesized in Example 4 (b20) ( 76 g) and R—113 (540 g) were charged. After the internal temperature was raised to 10 ° C, the mercury lamp was turned on, and at an internal temperature of 30, the introduction of chlorine gas was started slowly. Thereafter, the temperature of the system was raised and kept constant within the range of 45 to 50 ° C. The unreacted chlorine gas was reacted while circulating in the system by a dry ice reflux condenser. A total of 90.5 g of chlorine was charged, and the reaction was terminated when the chlorine was consumed.
その後、 窒素にて残存塩素を除去した後、 内容物を回収し、 R— 1 13を ロータリーエバポレーターにて留去して無色透明液体 (120 g) を得た。 19F— NMRにより分析した結果、 該液体は化合物 (b 31) であることを 確認した。 その後、 簡易蒸留装置を用いて操作圧力 (15 X 133. 322 ) P aで 40で〜 41°Cの留分 (1 16 g) を目的物として回収した。 収率 は 99 %であった。 Then, after removing residual chlorine with nitrogen, the content was recovered, and R-113 was distilled off with a rotary evaporator to obtain a colorless transparent liquid (120 g). As a result of analysis by 19 F-NMR, it was confirmed that the liquid was Compound (b31). Thereafter, using a simple distillation apparatus, a fraction (116 g) at an operating pressure (15 × 133.322) Pa of 40 ° C. to 41 ° C. was recovered as the target substance. The yield was 99%.
化合物 (b 31) の19 F— NMR (282. 7MHz、 溶媒 CDC 13、 基準: CFC 13) δ (p pm) : - 52. 3 (2 F) 、 -85. 9 (4 F 19 F- NMR of the compound (b 31) (282. 7MHz, solvent CDC 1 3, reference: CFC 1 3) δ (p pm): -. 52. 3 (2 F), -85 9 (4 F
) o ) o
[例 6] 部分フッ素化による化合物 (b 30) の合成例
Figure imgf000039_0001
[Example 6] Example of synthesis of compound (b30) by partial fluorination
Figure imgf000039_0001
あらかじめ充分に乾燥した 4つ口フラスコに還流冷却機、 撹拌機、 滴下口 —ト、 熱電対温度計を装填し、 3フッ化アンチモン (61. 6 g) を仕込み 、 室温下で真空ポンプを用いて約 12時間減圧乾燥した。 その後、 例 6で合 成した化合物 (b 31) (100. 0 g) および 5塩化アンチモン (18. 0 g) を滴下ロートより系内に滴下し、 撹拌しながら加熱還流を行った。 そ の後、 還流冷却機を単蒸留装置に付け変えて系内より生成物を減圧下に留去 し、 無色透明の液体 (87. 6 g) を得た。 19 F— N M Rにより分析した結 果、 液状は化合物 (b 30) であることを確認した。 NMRで定量 (内部標 準: C6F6) した収率は 97 %であった。 A well-dried four-necked flask was equipped with a reflux condenser, stirrer, dropper port, and thermocouple thermometer, charged with antimony trifluoride (61.6 g), and used a vacuum pump at room temperature. And dried under reduced pressure for about 12 hours. Thereafter, the compound (b31) (100.0 g) synthesized in Example 6 and antimony pentachloride (18.0 g) were dropped into the system from a dropping funnel, and the mixture was heated to reflux while stirring. Thereafter, the reflux condenser was replaced with a simple distillation apparatus, and the product was distilled off from the system under reduced pressure to obtain a colorless transparent liquid (87.6 g). As a result of analysis by 19 F-NMR, it was confirmed that the liquid was Compound (b30). The yield determined by NMR (internal standard: C 6 F 6 ) was 97%.
化合物 (b 30) の19 F— NMR (282. 7MHz、 溶媒 CDC 13、 基準: CFC 13) δ (ppm) : -53. 2 (4 F) 、 一 84. 2/- 8 5. 0 (4 F) 。 Compound (b 30) of the 19 F- NMR (282. 7MHz, solvent CDC 1 3, reference: CFC 1 3) δ (ppm ):. -53 2 (4 F), one 84.2 / - 8 5.0 (4F).
[例 7] 脱塩素反応による化合物 (a 2) の合成例  [Example 7] Example of synthesis of compound (a 2) by dechlorination reaction
メカ二カルス夕一ラー、 滴下ロート、 熱電対温度計、 蒸留塔を備えた 50 OmLの 4つ口ガラスフラスコに、 亜鉛粉末 (42. 1 ) 、 ジメチルホル ムアミド (120 g) を入れ、 水浴中で 40°Cに加熱した。 その後、 1, 2 —ジブロモェタン (16. 1 g) を系内に滴下した。 激しい発熱が終了した 後、 系内を 55でに調節し、 化合物 (b 30) (77. 0 g) をゆっくり滴 下した。 反応の進行と同時に生成物が蒸留塔のトップより留出してきた。 こ の留出と滴下のバランスをとりながら化合物 (b 30) を全量系内に仕込み 、 生成物 (32. 1 g) を回収した。 得られた生成物は無色透明の液体であ り、 — NMR、 19F— NMRを用いて分析した結果、 該液状は化合物 ( a 2) であることを確認し、 収率をガスクロマトグラフィーで定量したとこ ろ、 52%であった。 また、 得られた生成物のマススペクトル (C I法) を 測定したところ、 mZ z = 28 8に分子ィオンピークが認められた。 Zinc powder (42.1) and dimethylformamide (120 g) were placed in a 50-mL four-neck glass flask equipped with a mechanical mechanical mixer, a dropping funnel, a thermocouple thermometer, and a distillation column. Heated to 40 ° C. Thereafter, 1,2-dibromoethane (16.1 g) was added dropwise to the system. After the end of the vigorous exotherm, the system was adjusted to 55 and the compound (b30) (77.0 g) was slowly dropped. As the reaction proceeded, the product distilled off from the top of the distillation column. The compound (b30) was charged into the system in its entirety while maintaining the balance between the distillation and the dropwise addition, and the product (32.1 g) was recovered. The obtained product was a colorless and transparent liquid. As a result of analysis using —NMR and 19 F—NMR, it was confirmed that the liquid was Compound (a2), and the yield was determined by gas chromatography. As determined, it was 52%. The mass spectrum (CI method) of the obtained product was Upon measurement, a molecular ion peak was observed at mZ z = 288.
Figure imgf000040_0001
Figure imgf000040_0001
化合物 (a 2) の19 F— NMR (282. 7MHz、 溶媒 CDC 13、 基 準: CFC 13) δ (p pm) : - 53. 1 (2 F) 、 —87. 7 (4 F) 、 - 1 56. 1 (2 F;) 。 19 F- NMR of the compound (a 2) (282. 7MHz, solvent CDC 1 3, criteria: CFC 1 3) δ (p pm): -. 53. 1 (2 F), -87 7 (4 F) ,-1 56. 1 (2 F;).
[例 8] 重合体 (A 2) および重合体 (A3) の合成例  [Example 8] Synthesis example of polymer (A 2) and polymer (A3)
例 7にて得た化合物 (a 2) (6. 0 g) 、 および CF3CF2CF2CF 2 C F 2 C F 2 H (1 50 g) を内容積 20 OmLの耐圧ガラス製オートクレ —プに入れた。 The compound (a 2) (6.0 g) obtained in Example 7 and CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 H (150 g) were added to a pressure-resistant glass autocrepe having an internal volume of 20 OmL. I put it.
重合開始剤として (C3F7COO) 2の 3 %ジクロロペン夕フルォロプロ パン溶液 (0. 74 g) を加え、 系内を再度窒素で置換した後、 一 10°Cで 80時間重合を行った。 その結果、 非結晶性重合体 (以下、 重合体 A2とい う) (2. 2 g) を得た。 重合体 A 2の19 F— N M Rを測定したところ、 原 料モノマー (化合物 (a 2) ) の不飽和結合を構成する炭素原子に結合した フッ素原子のピークは完全になくなつており、 また化合物 (a 2) の環構造 がそのまま保持されていることを確認した。 As a polymerization initiator, a 3% solution of (C 3 F 7 COO) 2 in dichloropentafluoropropane (0.74 g) was added, the system was replaced with nitrogen again, and polymerization was carried out at 110 ° C for 80 hours. Was. As a result, an amorphous polymer (hereinafter, referred to as polymer A2) (2.2 g) was obtained. When 19 F-NMR of polymer A 2 was measured, the peak of the fluorine atom bonded to the carbon atom constituting the unsaturated bond of the raw material monomer (compound (a 2)) was completely eliminated. It was confirmed that the ring structure of (a 2) was maintained as it was.
重合体 A 2の固有粘度 [?7] は、 ペルフルォロ (2—プチルテ卜ラヒドロ フラン) 中 30°Cで 2. 42であった。 重合体 A 2は、 室温ではタフで透明 なガラス状の重合体であつた。  The intrinsic viscosity [? 7] of the polymer A2 was 2.42 at 30 ° C in perfluoro (2-butylethyltetrahydrofuran). The polymer A2 was a tough and transparent glassy polymer at room temperature.
窒素中での熱重量分析による測定から重合体 A 2の重量減少開始温度は約 400°C、 10%重量減少温度は、 480°Cであった。 また、 ペルフルォロ (2—プチルテトラヒドロフラン) に溶解して溶液を調整した後、 ガラス基 板上にキャストして得られたフィルムの屈折率をアッベ屈折計を用いて測定 したところ 1. 33であった。 また、 D S C測定によりガラス転移温度が 3 05 °Cにおいて観測された。 つぎに、 重合体 A 2をニッケル製オートクレープに仕込み、 窒素ガスで 2 0 %に希釈した F2ガスを仕込み、 240°Cで 12時間フッ素化した。 得ら れた重合体の I Rスぺクトルを測定したところ、 1600 cm―1〜 1900 c m" 1に観測される末端吸収は認められなかった。 重合体 A 2の端末をフッ 素化処理して得た重合体を以下、 重合体 A3という。 From the measurement by thermogravimetric analysis in nitrogen, the onset temperature of weight loss of the polymer A2 was about 400 ° C, and the 10% weight loss temperature was 480 ° C. After dissolving in perfluoro (2-butyltetrahydrofuran) to prepare a solution, the refractive index of the film obtained by casting on a glass substrate was measured using an Abbe refractometer to be 1.33. . In addition, DSC measurement showed a glass transition temperature of 305 ° C. Then, the polymer A 2 was charged into a nickel autoclave, nitrogen gas was charged with F 2 gas diluted to 2 0%, the 12 hours fluorinated with 240 ° C. When the IR spectrum of the obtained polymer was measured, no terminal absorption was observed at 1600 cm- 1 to 1900 cm " 1. The terminal of the polymer A2 was fluorinated. The obtained polymer is hereinafter referred to as polymer A3.
[例 9] 重合体 A 4の合成例  [Example 9] Synthesis example of polymer A4
化合物 (a 2) (6. 0 g) と CH2 = CHCF (CF3) CF2〇CF = CF2 (1. 3 g) 、 および 1 H—ペルフルォ口へキサン (130 g) を内 容積 20 O'mLの耐圧ガラス製ォ一トクレーブに入れた。 Compound (a 2) (6.0 g), CH 2 = CHCF (CF 3 ) CF 2 〇CF = CF 2 (1.3 g), and 1 H—perfluorohexane (130 g) in a volume of 20 g O'mL was placed in a pressure-resistant glass autoclave.
重合開始剤としてビス (ヘプ夕フルォロブチリル) ペルォキシドの 3%ジ クロ口ペン夕フルォロプロパン溶液 (0. 8 g) を加え、 系内を再度窒素で 置換した後、 2 Ot:で 60時間重合を行った。 その結果、 非結晶性重合体 ( 以下、 重合体 A 4という) (6. 5 g) を得た。 例 8と同様に、 化合物 (a 2) の環構造が保持されていることを確認した。  A 3% solution of bis (heptyfluorobutyryl) peroxide in chloroform (0.8 g) was added as a polymerization initiator, and the system was replaced with nitrogen again. . As a result, an amorphous polymer (hereinafter, referred to as polymer A4) (6.5 g) was obtained. As in Example 8, it was confirmed that the ring structure of compound (a2) was maintained.
重合体 A 4の固有粘度 [??] は、 ペルフルォロ (2—プチルテトラヒドロ フラン) 中 30 で 0. 31であった。 重合体 A 4は、 室温ではタフで透明 なガラス状の重合体であった。  The intrinsic viscosity [??] of polymer A4 was 0.31 at 30 in perfluoro (2-butyltetrahydrofuran). The polymer A4 was a tough and transparent glassy polymer at room temperature.
窒素中での熱重量分析による測定からこの重合体の重量減少開始温度は約 400で、 10%重量減少温度は、 480でであった。 また、 ペルフルォロ (2—プチルテトラヒドロフラン) に溶解して溶液を調整した後、 ガラス基 板上にキャス卜して得られたフィルムの屈折率をアッベ屈折計を用いて測定 したところ 1 · 33であった。 また、 D S C測定からガラス転移温度が 14 o°cにおいて観測された。  The weight loss onset temperature of this polymer was about 400 and the 10% weight loss temperature was 480, as determined by thermogravimetric analysis in nitrogen. After dissolving in perfluoro (2-butyltetrahydrofuran) to prepare a solution, the film was cast on a glass substrate and the refractive index of the film obtained was measured using an Abbe refractometer to be 1/33. Was. Further, the glass transition temperature was observed at 14 ° C. from the DSC measurement.
[例 10] 含フッ素重合体成形体 (注型重合) の合成例  [Example 10] Synthesis example of fluoropolymer molded article (cast polymerization)
化合物 (a 2) (1. 0 g) 、 および重合開始剤として (CH3CH (C H3) OCOO) 2 (0. 01 g) を直径 10mmの平底パイレックス (登録 商標) ガラス管に入れ、 窒素ガス雰囲気中に放置した。 5日後に取り出して 、 100 で 1昼夜真空乾燥したところ直径 10mm厚さ 5mmの円筒型の 重合体が得られた。 この円筒型重合体の光線透過率は紫外 (250 nm) か ら近赤外領域 (1700 nm) まで 90%以上であった。 [例 11 ] 重合体 A 5の製造例 Compound (a2) (1.0 g) and (CH 3 CH (CH 3 ) OCOO) 2 (0.01 g) as a polymerization initiator were put into a flat-bottom Pyrex (registered trademark) glass tube having a diameter of 10 mm, and nitrogen was introduced. It was left in a gas atmosphere. After 5 days, it was taken out and vacuum-dried at 100 days and nights to obtain a cylindrical polymer having a diameter of 10 mm and a thickness of 5 mm. The light transmittance of this cylindrical polymer was at least 90% from the ultraviolet (250 nm) to the near infrared region (1700 nm). [Example 11] Production example of polymer A5
化合物 (a 2) (4. 9 g) と CF2 = CHCF (CF3) CF2OCF = CF2 (以下、 5Mモノマ一と略記する。 ) (3. 3 g) 、 1H—ペルフル ォ口へキサン (120 g) および重合開始剤としてビス (ヘプタフルォロブ チリル) ペルォキシドの 3 %ジクロロペン夕フルォロプロパン溶液 0. 8 g を、 あらかじめ一 10°Cに冷却しておいた内容積 20 OmLの耐圧ガラス製 オートクレープに入れ、 系内を窒素ガスで置換した。 その後、 30°Cで 80 時間重合を行った。 その結果、 重合体 (以下、 重合体 A 5という) (3. 9 g) を得た。 重合体 A 5の1 H— NMRを測定した結果、 重合体 A 5中の全 重合体単位に対する化合物 (5Mモノマー) のモノマー単位の割合は 10モ ル%であり、 化合物 (a 2) のモノマー単位の割合は 90モル%であった。 また、 重合体 A 5の19 F—NMRスペクトルにおいては、 不飽和結合を構成 する炭素原子に結合するフッ素原子のピークは完全に消失しており、 またス ピ口環構造が保持されていることを確認した。 Compound (a 2) (4.9 g) and CF 2 = CHCF (CF 3 ) CF 2 OCF = CF 2 (hereinafter abbreviated as 5M monomer) (3.3 g), 1H—Perfluorinated Oxane (120 g) and 0.8 g of a 3% solution of bis (heptafluorobutyryl) peroxide as a polymerization initiator in dichloropentafluoropropane were previously cooled to 110 ° C. The system was placed in a crepe, and the system was replaced with nitrogen gas. Thereafter, polymerization was carried out at 30 ° C. for 80 hours. As a result, a polymer (hereinafter, referred to as polymer A5) (3.9 g) was obtained. As a result of 1 H-NMR measurement of the polymer A5, the ratio of the monomer unit of the compound (5M monomer) to the total polymer units in the polymer A5 was 10 mol%, and the monomer of the compound (a2) was The unit ratio was 90 mol%. In addition, in the 19 F-NMR spectrum of polymer A5, the peak of the fluorine atom bonded to the carbon atom constituting the unsaturated bond has completely disappeared, and the spiacyclic ring structure has been retained. It was confirmed.
GPC法で測定した重合体 A5の Mwは 56000であった。 また、 重合 体 A 5は、 室温ではタフで透明なガラス状の重合体であった。 Mw of the polymer A5 measured by the GPC method was 56,000. The polymer A5 was a tough and transparent glassy polymer at room temperature.
[例 12 ] 重合体 A 6の製造例  [Example 12] Production example of polymer A 6
化合物 (a 2) (4. 9 g) ゝ 1 H—ペルフルォ口へキサン ( 105 g) および重合開始剤としてビス (ヘプ夕フル才ロブチリル) ペルォキシドの 3 %ジクロ口ペンタフルォロプロパン溶液 (0. 95 g) を、 あらかじめ窒素 置換し、 - 5でに冷却した内容積 20 OmLの耐圧ガラス製オートクレープ に仕込んだ。 その後、 フッ化ビニリデン (0. 6 g) を同オートクレープに 仕込んだ。 その後、 25でで 20時間、 さらに 100°Cで 37時間重合を行 つた。 その結果、 重合体 (以下、 重合体 A 6という) (6. 7 g) を得た。 重合体 A 6の1 H— NM Rを測定した結果、 重合体 A 6中の全重合体単位に 対するフッ化ビニリデンのモノマー単位の割合は 27モル%であり、 化合物 (a 2) のモノマー単位の割合は 73モル%であった。 また、 重合体 A6の 19F— NMRスぺクトルにおいては、 不飽和結合を構成する炭素原子に結合 するフッ素原子のピークは完全に消失しており、 またスピロ環構造が保持さ れていることを確認した。 GPC法で測定した重合体 A6の Mwは 215000であった。 また、 重 合体 A 6は、 室温ではタフで透明なガラス状の重合体であった。 また、 DS C法で測定した結果、 Tgは 120でであった。 Compound (a 2) (4.9 g) ゝ 1 H—perfluorohexane (105 g) and bis (heppufurofolbutyryl) peroxide as a polymerization initiator in 3% dichloromouth pentafluoropropane solution (0 95 g) was charged with a pressure-resistant glass autoclave having a capacity of 20 OmL, which had been replaced with nitrogen in advance and cooled at −5. Then, vinylidene fluoride (0.6 g) was charged into the autoclave. Thereafter, polymerization was carried out at 25 at 20 hours and at 100 ° C for 37 hours. As a result, a polymer (hereinafter, referred to as polymer A6) (6.7 g) was obtained. As a result of measuring the 1 H—NMR of polymer A6, the ratio of the monomer units of vinylidene fluoride to the total polymer units in polymer A6 was 27 mol%, and the monomer units of compound (a 2) Was 73 mol%. Also, in the 19 F-NMR spectrum of polymer A6, the peak of the fluorine atom bonded to the carbon atom constituting the unsaturated bond has completely disappeared, and the spiro ring structure has been retained. It was confirmed. Mw of polymer A6 measured by the GPC method was 215,000. The polymer A6 was a tough and transparent glassy polymer at room temperature. Further, as a result of measurement by the DSC method, T g was 120.
[例 13] 重合体 A 7からなる接着剤 A 7の合成例  [Example 13] Synthetic example of adhesive A7 composed of polymer A7
CH2 = CHCF2CF2OCF = CF2 (20 g) および 1H—ペルフル ォ口へキサン (40 g) を内容積 200m 1の耐圧ガラス製ォ一トクレーブ に入れた。 重合開始剤としてビス (ヘプ夕フルォロブチリル) ペルォキシド 2 Omgを加え、 系内を窒素で置換した後、 0°Cで 24時間重合を行った。 その結果、 主鎖に脂肪族環構造を有する含フッ素重合体 (以下、 重合体 A 7 という) (10 g) を得た。 CH 2 = CHCF 2 CF 2 OCF = CF 2 (20 g) and 1H-perfluorohexane (40 g) were placed in a pressure-resistant glass autoclave having an internal volume of 200 ml. Bis (hepnofluorbutyryl) peroxide 2 Omg was added as a polymerization initiator, and the atmosphere in the system was replaced with nitrogen, and then polymerization was performed at 0 ° C for 24 hours. As a result, a fluoropolymer having an aliphatic ring structure in the main chain (hereinafter referred to as polymer A7) (10 g) was obtained.
重合体 A 7の固有粘度 [7?] は、 1, 3_ビス (トリフルォロメチル) ベ ンゼン中 30°Cで 0. 90であった。 重合体 A 7のガラス転移点は 90 で あり、 室温ではタフで透明なガラス状の重合体であり、 屈折率は 1. 36と 低かった。  The intrinsic viscosity [7?] Of polymer A7 was 0.90 at 30 ° C in 1,3-bis (trifluoromethyl) benzene. Polymer A7 had a glass transition point of 90, was a tough and transparent glassy polymer at room temperature, and had a low refractive index of 1.36.
また、 上記重合体 A 7を空気中 320°Cで 3時間熱処理した後に水中に浸 潢して変性した。 変性された重合体 A 7の I Rスぺクトル測定によりカルボ キシル基のピークが確認され、 その量は 0. 005ミリモル / であった。 この変性された重合体 A 7を以下接着剤 A 7という。  The polymer A7 was heat-treated in air at 320 ° C. for 3 hours, and then denatured by immersion in water. An IR spectrum measurement of the modified polymer A7 confirmed a carboxyl group peak, and the amount was 0.005 mmol /. This modified polymer A7 is hereinafter referred to as an adhesive A7.
[例 14 (比較例) ] 重合体 Bおよび接着剤 Bの製造例  [Example 14 (Comparative example)] Production example of polymer B and adhesive B
1 , 1, 2, 4, 4, 5, 5—ヘプ夕フルオロー 3—ォキサ一 1, 6—へ ブタジエン (20 g) および 1 H—ペルフルォ口へキサン (40 g) を内容 積 20 Omlの耐圧ガラス製オートクレープに入れた。 重合開始剤としてビ ス (ヘプ夕フルォロブチリル) ペルォキシド (2 Omg) を加え、 系内を窒 素で置換した後、 40 で 10時間重合を行った。 その結果、 主鎖に脂肪族 環構造を有する含フッ素重合体 (以下、 重合体 Bという) (15 g) を得た 重合体 Bの固有粘度 [??] は、 1, 3_ビス (トリフルォロメチル) ベン ゼン中 30でで 0. 96 d l/gであった。 重合体 Bのガラス転移点は 90 であり、 室温ではタフで透明なガラス状の重合体であり、 屈折率は 1. 3 6と低かった。 一方、 上記と同じ方法で得た重合体 Bを空気中 320°Cで 3 時間熱処理した後に水中に浸漬して変性した。 変性された重合体 Bの I Rス ベクトル測定により力ルポキシル基のピークが確認され、 その量は 0. 00 4ミリモル/ gであった。 この変性された重合体 Bを以下接着剤 Bという。 1,1,2,4,4,5,5-Heptane fluor-3-oxa 1,6-butadiene (20 g) and 1H-perfluorinated hexane (40 g) Content pressure 20 Oml Placed in glass autoclave. After adding bis (fluorobutyryl) peroxide (2 Omg) as a polymerization initiator and replacing the system with nitrogen, polymerization was carried out at 40 for 10 hours. As a result, a fluorinated polymer having an aliphatic ring structure in the main chain (hereinafter referred to as polymer B) (15 g) was obtained. The intrinsic viscosity [??] of polymer B is 1,3_bis (trifluene). It was 0.96 dl / g at 30 in Benzene. Polymer B had a glass transition point of 90, was a tough, transparent glassy polymer at room temperature, and had a low refractive index of 1.36. On the other hand, polymer B obtained in the same manner as above After heat treatment for an hour, it was immersed in water for denaturation. The peak of the lipoxyl group was confirmed by IR spectrum measurement of the modified polymer B, and its amount was 0.004 mmol / g. This modified polymer B is hereinafter referred to as adhesive B.
[例 15] ペリクルの作製および評価  [Example 15] Preparation and evaluation of pellicle
(例 15— 1 ) 重合体 A 3を用いた膜の合成例  (Example 15-1) Example of membrane synthesis using polymer A3
例 8で合成した重合体 A 3 (1. 5 g) とペルフルォロ (メチルデカリン ) (98. 5 g) とをガラス製フラスコ中に入れて 70°Cにて 48時間加熱 撹拌した。 その結果、 無色透明で濁りのない均一な溶液を得た。 この溶液を 、 研磨した石英基板上にスピンコートした。 スピンコートの条件は、 スピン 速度 500 r pmにて 10秒間、 その後 700 r pmにて 20秒間とした。 さらに、 80 にて 1時間、 さらに 200でにて 2時間加熱処理することに より乾燥させ、 石英基板上に均一で透明な重合体 A 3の膜を形成させた。 同様な方法を用いて、 例 1 1で合成した重合体 A 5、 および例 12で合成し た重合体 A 6の均一で透明な膜を石英基板上に形成した。  Polymer A3 (1.5 g) synthesized in Example 8 and perfluoro (methyldecalin) (98.5 g) were put in a glass flask and heated and stirred at 70 ° C for 48 hours. As a result, a colorless, transparent, turbid, homogeneous solution was obtained. This solution was spin-coated on a polished quartz substrate. The spin coating was performed at a spin speed of 500 rpm for 10 seconds, and then at 700 rpm for 20 seconds. Furthermore, it was dried by heating at 80 at 1 hour and further at 200 at 2 hours to form a uniform and transparent polymer A3 film on a quartz substrate. Using a similar method, uniform and transparent films of the polymer A5 synthesized in Example 11 and the polymer A6 synthesized in Example 12 were formed on a quartz substrate.
(例 15— 2 ) 接着剤 A 7を接着剤および重合体 A 3をべリクル膜に用い たペリクルの作製例  (Example 15-2) Example of pellicle production using adhesive A7 as an adhesive and polymer A3 as a pellicle film
例 13で得た接着剤 A7 (2 g) と 1, 3—ビス (トリフルォロメチル) ベンゼン (38 g) とを例 15— 1と同様に処理して、 均一な溶液を得たも のを接着剤溶液 Eとした。 アルミニウム製枠体のペリクル膜を接着させる面 に該接着剤溶液 Eを塗布し、 室温で 2時間乾燥した。 その後、 120 のホ ッ卜プレート上に接着面を上にしてアルミニウム製枠体を載せて 10分間加 熱し、 例 15— 1で得た石英基板上の重合体 A3の膜面に、 アルミニウム製 枠体をフレームの接着面が接するように重ねて圧着した。 さらに 12 O^Cで 10分間保持して接着を完結させた。 つぎに、 石英基板からアルミニウム製 枠体ごと重合体 A 3の薄膜を剥離した。 その結果、 アルミニウム製枠体に、 重合体 A 3からなる膜厚約 1 / mの均一な自立膜が接着剤 A 7により接着さ れたペリクルを得た。 同様な方法を用いて重合体 A 5および A 6からなる膜 厚約 1 mの均一な自立膜が接着剤 A 7により接着されたペリクルを得た。 該重合体 A3、 A5、 A 6からなる膜の 157 nmの光の透過率はそれぞれ 75%以上、 80%以上、 90%以上であった。 (例 1 5— 3 (比較例) ) 重合体 Bをペリクル膜、 および接着剤に用いた ペリクルの作製例 Adhesive A7 (2 g) obtained in Example 13 and 1,3-bis (trifluoromethyl) benzene (38 g) were treated in the same manner as in Example 15-1, to obtain a uniform solution. Was used as an adhesive solution E. The adhesive solution E was applied to the surface of the aluminum frame to which the pellicle film was adhered, and dried at room temperature for 2 hours. Then, the aluminum frame was placed on a 120 hot plate with the adhesive side up and heated for 10 minutes. The aluminum frame was placed on the film surface of the polymer A3 on the quartz substrate obtained in Example 15-1. The bodies were overlapped and crimped such that the adhesive surfaces of the frames were in contact. It was kept at 12 O ^ C for 10 minutes to complete the adhesion. Next, a thin film of the polymer A3 was peeled off from the quartz substrate together with the aluminum frame. As a result, a pellicle was obtained in which a uniform free-standing film having a thickness of about 1 / m made of polymer A3 was adhered to an aluminum frame with an adhesive A7. Using a similar method, a pellicle was obtained in which a uniform free-standing film having a thickness of about 1 m comprising polymers A5 and A6 was adhered with adhesive A7. The transmittance of 157 nm light of the film composed of the polymers A3, A5, and A6 was 75% or more, 80% or more, and 90% or more, respectively. (Example 15-3 (Comparative Example)) Example of manufacturing pellicle using polymer B as pellicle film and adhesive
例 1 4で得た接着剤 B ( 7 g ) と 1, 3 —ビス (トリフルォロメチル) ベ ンゼン (9 3 g ) とを例 1 5—1と同様に処理して、 均一な溶液を得てこれ を、 接着剤とする。 例 1 5— 2上記と同様の方法で、 該接着剤 Bをアルミ二 ゥム製枠体に塗布する。  The adhesive B (7 g) obtained in Example 14 and 1,3-bis (trifluoromethyl) benzene (93 g) were treated in the same manner as in Example 15-1, to obtain a homogeneous solution. This is used as an adhesive. Example 15-2 The adhesive B is applied to an aluminum frame in the same manner as described above.
一方、 例 1 4で得た重合体 Bを用いて例 1 5— 1と同様な方法により石英 基板上に均一で透明な重合体 Bの膜を形成させる。  On the other hand, using the polymer B obtained in Example 14, a uniform and transparent film of the polymer B is formed on a quartz substrate in the same manner as in Example 15-1.
つぎに例 1 5— 2と同様の方法で、 石英基板表面に形成された重合体 Bの 膜面にアルミニウム製枠体を圧着、 接着、 および剥離する。 その結果、 アル ミニゥム製枠体に重合体 Bからなる膜厚約 1 ^ mの均一な自立膜が接着剤 B により接着されたペリクルを得る。 該重合体 Bからなる膜の 1 5 7 n mの光 の透過率は 9 0 %以上である。  Next, in the same manner as in Example 15-2, an aluminum frame is pressure-bonded, adhered, and separated from the film surface of the polymer B formed on the quartz substrate surface. As a result, a pellicle is obtained in which a uniform free-standing film having a film thickness of about 1 ^ m made of polymer B is adhered to the aluminum frame by the adhesive B. The transmittance of 157 nm light of the film made of the polymer B is 90% or more.
(例 1 5— 4 (実施例、 比較例) ) ぺリクルの耐久性の評価例  (Example 15-4 (Example, Comparative Example)) 例 Example of durability evaluation of vehicle
例 1 5— 2で得た重合体 A 3、 A 5、 A 6を用いたペリクル、 および例 1 5 _ 3で得た重合体 Bを用いたペリクルにおいて、 1 5 7 n mを発振する F 2エキシマレーザ一光を用いて 0 . 0 5 m J Z c m2 /パルスの強度にて 2 0 0 H zのサイクルで照射試験を行った。 その結果、 重合体 A 3、 A 5、 A 6 を用いたペリクルにおいては、 4 0万パルス以上で膜の透過率低下は初期に 対して 3 0 %以内であり、 極めて良好な耐性を示した。 また、 ペリクル膜は 接着剤により枠体に強固に接着されており、 良好な耐久性が認められる。 一方、 重合体 Bを用いたペリクルにおいては、 4万パルス程度で膜の透過 率が低下したことから、 耐久性の低下が認められた。 また、 ペリクル膜の枠 体からの剥離も認められ、 耐久性が劣つている。 ぐ産業上の利用可能性 > Example 1 5-2 obtained in polymer A 3, A 5, pellicle with A 6, and in the pellicle employing the polymer B obtained in Example 1 5 _ 3, F 2 which oscillates 1 5 7 nm The irradiation test was performed at a cycle of 200 Hz using an excimer laser beam at an intensity of 0.05 mJZ cm 2 / pulse. As a result, the pellicle using polymers A3, A5, and A6 showed extremely good resistance, with a decrease in transmittance of the membrane within 30% of the initial value after 400,000 pulses or more. . In addition, the pellicle film is firmly adhered to the frame with an adhesive, and good durability is recognized. On the other hand, in the case of the pellicle using the polymer B, the transmittance of the film decreased at about 40,000 pulses, and thus a decrease in durability was observed. In addition, peeling of the pellicle film from the frame was observed, and the durability was poor. Industrial applicability>
本発明は、 短波長光に対して高い透過性と耐久性を有する重合体 (A) が 提供する。 該重合体 (A) はペリクル材料として有用である。  The present invention provides a polymer (A) having high transparency and durability to short wavelength light. The polymer (A) is useful as a pellicle material.
また本発明は、 重合体 (A) として新規な重合体 (A 1 ) を提供する。 ま た該重合体 (A 1 ) の製造に用いうる新規なモノマーが提供される。 本発明 のモノマーは、 容易に単独重合し、 または他のラジカル重合性モノマーと共 重合する。 該新規な重合体 (A1) は低い屈折率を有し、 溶媒可溶で透明性 の良好な重合体である。 さらに、 重合体 (A1) は高い Tgと高い熱分解温 度を有し、 かつ Tgと熱分解温度との差が大きいことから溶融成形が容易で ある。 また本発明の重合体 (A1) は他の含フッ素重合体が有する特性も有 する。 Further, the present invention provides a novel polymer (A 1) as the polymer (A). Also provided is a novel monomer that can be used for producing the polymer (A 1). The present invention This monomer is easily homopolymerized or copolymerized with another radically polymerizable monomer. The novel polymer (A1) has a low refractive index, is a solvent-soluble polymer and has good transparency. Further, the polymer (A1) has a high Tg and a high thermal decomposition temperature, and the difference between the Tg and the thermal decomposition temperature is large, so that melt molding is easy. Further, the polymer (A1) of the present invention also has the properties of other fluorinated polymers.
したがって本発明の重合体 (A1) あからは、 ピンホール等の欠陥のない 超薄膜が得られるため、 コーティング材料、 分離膜材料等への応用も可能で ある。 また、 低屈折率を利用して反射防止剤や光ファイバ一、 光導波路のコ ァまたはクラッド剤等の光学材料への応用も可能である。 また、 低誘電率で 吸水性が低いため、 電子材料としての応用も可能である。  Therefore, since the polymer (A1) of the present invention can be used to obtain an ultrathin film free of defects such as pinholes, it can be applied to coating materials, separation membrane materials, and the like. In addition, it can be applied to an optical material such as an antireflection agent, an optical fiber, a core of an optical waveguide or a cladding agent by utilizing the low refractive index. In addition, since it has a low dielectric constant and low water absorption, it can be used as an electronic material.

Claims

請求の範囲 The scope of the claims
1. ペリクル膜が接着剤を介して枠体に接着されてなる、 波長 200 nm以 下の光による露光処理用のペリクルであって、 該ぺリクル膜および または 該接着剤が下式 (A) で表される単位を含む重合体からなることを特徴とす るペリクル。 1. A pellicle for exposure processing using light having a wavelength of 200 nm or less, wherein a pellicle film is adhered to a frame via an adhesive, wherein the pellicle film and / or the adhesive is represented by the following formula (A) A pellicle comprising a polymer containing a unit represented by the formula:
ただし Qは、 下記の基 (B) 中に存在する水素原子の 1個以上がフッ素原 子に置換された基を示す。  However, Q represents a group in which one or more of the hydrogen atoms present in the following group (B) are substituted with a fluorine atom.
基 (B) : - (CH2) a— (ただし、 aは 1〜3の整数を示す) で表され る基中に存在する 2つの水素原子が、 2個以上のエーテル性酸素原子を含む アルキレン基、 または、 該アルキレン基中の水素原子の 1個以上がエーテル 性酸素原子を含んでいてもよいアルキル基で置換された基、 で連結された基 Group (B):-(CH 2 ) a — (where a represents an integer of 1 to 3), wherein two hydrogen atoms present in the group include two or more etheric oxygen atoms An alkylene group, or a group in which at least one hydrogen atom in the alkylene group is substituted by an alkyl group optionally containing an etheric oxygen atom,
X1および X2は独立に、 フッ素原子、 塩素原子または水素原子を示す。 X 1 and X 2 independently represent a fluorine atom, a chlorine atom or a hydrogen atom.
Figure imgf000047_0001
Figure imgf000047_0001
2. Qが基 (B) 中に存在する水素原子の全てがフッ素原子に置換された基 である請求項 1に記載のペリクル。 2. The pellicle according to claim 1, wherein Q is a group in which all of the hydrogen atoms present in the group (B) are substituted with fluorine atoms.
3. 式 (A) で表される単位が、 下式 (A1) で表される単位である請求項 1に記載のペリクル。 3. The pellicle according to claim 1, wherein the unit represented by the formula (A) is a unit represented by the following formula (A1).
ただし、 X1および X2は独立に、 フッ素原子、 塩素原子または水素原子で あり、 nは 1または 2の整数であり、 Rf lはフッ素原子またはトリフルォロ メチル基であり、 Ri2はフッ素原子または炭素数 1〜 5のペルフルォロアル キル基である。
Figure imgf000048_0001
However, X 1 and X 2 are each independently a fluorine atom, a chlorine atom or a hydrogen atom, n is an integer of 1 or 2, R fl is a fluorine atom or a trifluoromethyl group, and R i2 is a fluorine atom or It is a perfluoroalkyl group having 1 to 5 carbon atoms.
Figure imgf000048_0001
4 . ペリクル膜が、 式 (A) で表される単位を必須とし、 かつ、 官能基を持 たない重合体からなる請求項 1〜 3のいずれかに記載のペリクル。 4. The pellicle according to any one of claims 1 to 3, wherein the pellicle film essentially comprises a polymer having a unit represented by the formula (A) and having no functional group.
5 . 接着剤が、 式 (A) で表される単位を必須とし、 かつ、 官能基を有する 重合体からなる請求項 1〜 4のいずれかに記載のペリクル。 5. The pellicle according to any one of claims 1 to 4, wherein the adhesive essentially comprises a polymer having a unit represented by the formula (A) and having a functional group.
6 . 式 (A) で表される単位を含む重合体が、 一 C H 2 C H 2—構造を持たな い重合体である請求項 1〜 5のいずれかに記載のペリクル。 6. The pellicle according to any one of claims 1 to 5, wherein the polymer containing the unit represented by the formula (A) is a polymer having no CH 2 CH 2 — structure.
7 . フォトリソグラフィ一における波長 2 0 0 n m以下の光を用いた露光処 理方法において、 請求項 1〜 6のいずれかに記載のペリクルを用いることを 特徴とする露光処理方法。 7. An exposure processing method using light having a wavelength of 200 nm or less in photolithography, wherein the pellicle according to any one of claims 1 to 6 is used.
8 . 下式 ( a 1 ) で表される化合物。 ただし、 X 1および X 2は独立に、 フッ 素原子、 塩素原子または水素原子であり、 nは 1または 2の整数であり、 R f 1はフッ素原子またはトリフルォロメチル基であり、 R f 2はフッ素原子ま たは炭素数 1〜 5のペルフルォロアルキル基である。
Figure imgf000049_0001
8. A compound represented by the following formula (a1). However, X 1 and X 2 are independently a fluorine atom, a chlorine atom or a hydrogen atom, n is an integer of 1 or 2, R f 1 is a fluorine atom or a trifluoromethyl group, and R f 2 is a fluorine atom or a perfluoroalkyl group having 1 to 5 carbon atoms.
Figure imgf000049_0001
(a1)  (a1)
9. X1および X2がフッ素原子であり、 nが 1であり、 かつ Rf lおよび Rf 2がフッ素原子である請求項 8に記載の化合物。 ■ 9. The compound according to claim 8, wherein X 1 and X 2 are a fluorine atom, n is 1, and R fl and R f 2 are a fluorine atom. ■
10. 請求項 8または 9に記載の化合物のモノマー単位を含む重合体。 10. A polymer comprising a monomer unit of the compound according to claim 8 or 9.
1 1. 下式 (b 2) で表される化合物または下式 (b 3) で表される化合物 ただし、 Yおよび Zは、 それぞれ独立に、 フッ素原子、 塩素原子または水 素原子を示し、 nは 1または 2の整数であり、 Rf lはフッ素原子またはトリ フルォロメチル基を示し、 Rf 2はフッ素原子または炭素数 1〜 5のペルフル ォロアルキル基を示す。 1 1. A compound represented by the following formula (b 2) or a compound represented by the following formula (b 3) wherein Y and Z each independently represent a fluorine atom, a chlorine atom or a hydrogen atom, and n Is an integer of 1 or 2, R fl represents a fluorine atom or a trifluoromethyl group, and R f 2 represents a fluorine atom or a perfluoroalkyl group having 1 to 5 carbon atoms.
Figure imgf000049_0002
Figure imgf000049_0002
(b2) (b3)  (b2) (b3)
PCT/JP2003/014743 2003-03-28 2003-11-19 Fluoro compound and fluoropolymer WO2004088422A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003284574A AU2003284574A1 (en) 2003-03-28 2003-11-19 Fluoro compound and fluoropolymer
JP2004570191A JP4396525B2 (en) 2003-03-28 2003-11-19 Fluorine-containing compound and fluorine-containing polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003090049 2003-03-28
JP2003-90049 2003-03-28
JP2003121735 2003-04-25
JP2003-121735 2003-04-25

Publications (1)

Publication Number Publication Date
WO2004088422A1 true WO2004088422A1 (en) 2004-10-14

Family

ID=33134289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014743 WO2004088422A1 (en) 2003-03-28 2003-11-19 Fluoro compound and fluoropolymer

Country Status (3)

Country Link
JP (1) JP4396525B2 (en)
AU (1) AU2003284574A1 (en)
WO (1) WO2004088422A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054336A1 (en) * 2003-12-03 2005-06-16 Asahi Glass Company, Limited Pellicle and novel fluorinated polymer
WO2007145181A1 (en) 2006-06-12 2007-12-21 Asahi Glass Company, Limited Curable composition and fluorine-containing cured product
EP2143738A1 (en) * 2008-07-08 2010-01-13 Solvay Solexis S.p.A. Method for manufacturing fluoropolymers
WO2010003929A1 (en) * 2008-07-08 2010-01-14 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
JP2011049274A (en) * 2009-08-26 2011-03-10 Asahi Glass Co Ltd Window material for solid-state imaging element package, and imaging apparatus
DE102011088149A1 (en) 2011-12-09 2013-06-13 Evonik Industries Ag A coated composite comprising a composite material
JP2018039937A (en) * 2016-09-09 2018-03-15 株式会社豊田中央研究所 Cycloalkyl perfluoro dioxole monomer, low-density ionomer, and solid-polymer fuel cell

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339963A (en) * 1989-04-17 1991-02-20 Furukawa Electric Co Ltd:The Pellicle
JPH0367262A (en) * 1989-05-31 1991-03-22 Asahi Glass Co Ltd Protective implement for preventing contamination
EP0488245A1 (en) * 1990-11-29 1992-06-03 Asahi Glass Company Ltd. Phase-shifting mask and process for its production
JPH04346989A (en) * 1991-05-22 1992-12-02 Asahi Glass Co Ltd Fluorinated compound and its production
JPH059224A (en) * 1991-07-03 1993-01-19 Asahi Glass Co Ltd Fluoropolymer and its production
JPH0692957A (en) * 1992-09-16 1994-04-05 Asahi Glass Co Ltd Production of fluorine-containing dioxolane compound
JPH06128247A (en) * 1992-10-14 1994-05-10 Asahi Glass Co Ltd Production of fluorine-containing dioxolane compound
JPH1031119A (en) * 1996-07-18 1998-02-03 Asahi Glass Co Ltd Core/clad type optical resin material
WO2001037044A1 (en) * 1999-11-17 2001-05-25 E.I. Du Pont De Nemours And Company Ultraviolet and vacuum ultraviolet transparent polymer compositions and their uses
JP2001296662A (en) * 2000-04-13 2001-10-26 Asahi Glass Co Ltd Resist composition
JP2001330943A (en) * 2000-03-15 2001-11-30 Asahi Glass Co Ltd Pellicle
WO2001096963A1 (en) * 2000-06-13 2001-12-20 Asahi Glass Company, Limited Resist composition
JP2002303982A (en) * 2001-04-06 2002-10-18 Asahi Glass Co Ltd Resist composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339963A (en) * 1989-04-17 1991-02-20 Furukawa Electric Co Ltd:The Pellicle
JPH0367262A (en) * 1989-05-31 1991-03-22 Asahi Glass Co Ltd Protective implement for preventing contamination
EP0488245A1 (en) * 1990-11-29 1992-06-03 Asahi Glass Company Ltd. Phase-shifting mask and process for its production
JPH04346989A (en) * 1991-05-22 1992-12-02 Asahi Glass Co Ltd Fluorinated compound and its production
JPH059224A (en) * 1991-07-03 1993-01-19 Asahi Glass Co Ltd Fluoropolymer and its production
JPH0692957A (en) * 1992-09-16 1994-04-05 Asahi Glass Co Ltd Production of fluorine-containing dioxolane compound
JPH06128247A (en) * 1992-10-14 1994-05-10 Asahi Glass Co Ltd Production of fluorine-containing dioxolane compound
JPH1031119A (en) * 1996-07-18 1998-02-03 Asahi Glass Co Ltd Core/clad type optical resin material
WO2001037044A1 (en) * 1999-11-17 2001-05-25 E.I. Du Pont De Nemours And Company Ultraviolet and vacuum ultraviolet transparent polymer compositions and their uses
JP2001330943A (en) * 2000-03-15 2001-11-30 Asahi Glass Co Ltd Pellicle
JP2001296662A (en) * 2000-04-13 2001-10-26 Asahi Glass Co Ltd Resist composition
WO2001096963A1 (en) * 2000-06-13 2001-12-20 Asahi Glass Company, Limited Resist composition
JP2002303982A (en) * 2001-04-06 2002-10-18 Asahi Glass Co Ltd Resist composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUKURA IKUO: "Kotomeisei Fusso Jushi no Tokusei to Oyo", KIKAN KAGAKU SOSETSU, no. 39, 1998, pages 202 - 210, XP002904090 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790811B2 (en) 2003-12-03 2010-09-07 Asahi Glass Company, Limited Pellicle and novel fluoropolymer
WO2005054336A1 (en) * 2003-12-03 2005-06-16 Asahi Glass Company, Limited Pellicle and novel fluorinated polymer
WO2007145181A1 (en) 2006-06-12 2007-12-21 Asahi Glass Company, Limited Curable composition and fluorine-containing cured product
US20110160415A1 (en) * 2008-07-08 2011-06-30 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
WO2010003929A1 (en) * 2008-07-08 2010-01-14 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
EP2143738A1 (en) * 2008-07-08 2010-01-13 Solvay Solexis S.p.A. Method for manufacturing fluoropolymers
US8703889B2 (en) 2008-07-08 2014-04-22 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
US20140228531A1 (en) * 2008-07-08 2014-08-14 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
CN102089335B (en) * 2008-07-08 2015-04-01 索维索莱克西斯公开有限公司 Method for manufacturing fluoropolymers
US9776983B2 (en) 2008-07-08 2017-10-03 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
JP2011049274A (en) * 2009-08-26 2011-03-10 Asahi Glass Co Ltd Window material for solid-state imaging element package, and imaging apparatus
DE102011088149A1 (en) 2011-12-09 2013-06-13 Evonik Industries Ag A coated composite comprising a composite material
WO2013083362A2 (en) 2011-12-09 2013-06-13 Evonik Industries Ag Coated composite body comprising a composite material
JP2018039937A (en) * 2016-09-09 2018-03-15 株式会社豊田中央研究所 Cycloalkyl perfluoro dioxole monomer, low-density ionomer, and solid-polymer fuel cell

Also Published As

Publication number Publication date
JPWO2004088422A1 (en) 2006-07-06
JP4396525B2 (en) 2010-01-13
AU2003284574A1 (en) 2004-10-25

Similar Documents

Publication Publication Date Title
JP4935763B2 (en) Fluorine-containing ethylenic monomer containing hydroxyl group or fluoroalkylcarbonyl group
WO2004016689A1 (en) Optical material containing photocurable fluoropolymer and photocurable fluororesin composition
JPWO2006011427A1 (en) Fluorine-containing compound, fluorine-containing polymer, resist composition, and resist protective film composition
JPWO2005042453A1 (en) Fluorine-containing compound, fluorine-containing polymer and production method thereof
JP2013181140A (en) Optical resin composition, cured matter, optical part, sealant for semiconductor light-emitting device, optical lens, optical adhesive, optical sealing agent and optical waveguide
US7442815B2 (en) Ultraviolet transmitting fluoropolymer and pellicle comprising said polymer
JP2005060664A (en) Fluorine containing compound, fluorine containing polymer and production process for the same, and resist composition containing the same
WO2004088422A1 (en) Fluoro compound and fluoropolymer
JPWO2007122977A1 (en) Resist protective film material for immersion lithography
WO2005019284A1 (en) Fluorocopolymer, process for producing the same, and resist composition containing the same
JP4415942B2 (en) Pellicle and novel fluoropolymer
JP4696914B2 (en) Novel fluorine-containing dioxolane compound and novel fluorine-containing polymer
JP5812049B2 (en) Fluorine-containing alcohol and fluorine-containing monomer
JPWO2005108446A1 (en) Fluorine-containing copolymer, method for producing the same, and resist composition containing the same
JP2006131879A (en) Fluorine-containing copolymer, its manufacturing method and resist composition containing it
JP2001330943A (en) Pellicle
JPWO2005095471A1 (en) NOVEL FLUORINE-CONTAINING POLYMER AND METHOD FOR PRODUCING THE SAME
US20060122301A1 (en) Fluorinated divinyl ethers
JP4192600B2 (en) Fluorine-containing optical waveguide material
JP4604726B2 (en) Novel fluorine-containing epoxy compound and polymer thereof
JP4329572B2 (en) Novel fluoropolymer
JPWO2007119803A1 (en) Resist material for immersion lithography
CN101421673A (en) The resist-protecting membrane for immersion lithography material
JP2003156835A (en) Pellicle and exposure method
JP2004102269A (en) Ultra-violet light transmissive fluorine-containing polymer and pellicle made of same polymer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004570191

Country of ref document: JP

122 Ep: pct application non-entry in european phase