WO2004082052A1 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
WO2004082052A1
WO2004082052A1 PCT/JP2004/002596 JP2004002596W WO2004082052A1 WO 2004082052 A1 WO2004082052 A1 WO 2004082052A1 JP 2004002596 W JP2004002596 W JP 2004002596W WO 2004082052 A1 WO2004082052 A1 WO 2004082052A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
load
supply system
power supply
battery group
Prior art date
Application number
PCT/JP2004/002596
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Ikuma
Makoto Inoue
Original Assignee
The Japan Research Institute, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Japan Research Institute, Limited filed Critical The Japan Research Institute, Limited
Publication of WO2004082052A1 publication Critical patent/WO2004082052A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04611Power, energy, capacity or load of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04932Power, energy, capacity or load of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power supply system that supplies power to a load.
  • the present invention relates to a power supply system including a plurality of fuel cells.
  • the total power supply capacity of the power supply system is given by the sum of the power generation capacity of each fuel cell.
  • a load whose demand power is smaller than the total power supply capacity is selected and connected to the power supply system.
  • the total power supply capacity of the conventional power supply system is calculated from the power generation capacity when each fuel cell is installed. For this reason, it is difficult to know the current total power supply capacity of the power supply system. For example, even when the fuel cell is deteriorated and its power generation capacity is reduced, the total power supply capacity of the power supply system is recognized as the same value as when it was installed.
  • an object of the present invention is to solve such a problem.
  • an electric power supply for supplying electric power to a load A power supply system, comprising: a plurality of fuel cells that generate power and supply the load to a load; a performance storage unit that stores a maximum power value indicating a maximum value of power generated by each fuel cell; and a predetermined period.
  • a test device for sequentially performing a maximum power generation test of at least one fuel cell for each fuel cell; an updating unit for updating the maximum power value of each fuel cell stored in the performance storage unit in accordance with a result of the performance test;
  • a power supply system based on the difference between the power generation detector that detects the total power generation supplied to the load by the battery, the total of the maximum power values stored in the performance storage unit, and the total power generation And a surplus power calculation unit that calculates surplus power that can generate surplus every predetermined period.
  • the power supply system determines the fuel cells to be tested by the test device so that the sum of the maximum power values of the selected fuel cells among the plurality of fuel cells is larger than the demand power of the load and the number of selected fuel cells is minimized.
  • a selection unit for selecting one or a plurality of fuel cells and generating electricity, and a selection changing unit for sequentially changing the fuel cells selected by the selection unit at predetermined intervals and causing the test apparatus to test all the fuel cells. Further provision may be made.
  • the selection unit may preferentially select a fuel cell having a larger maximum power value in addition to the fuel cell to be tested. Further, when the maximum power value of the fuel cell becomes smaller than a predetermined value, it is preferable that the selecting unit does not select the fuel cell.
  • the power supply system further includes a request receiving unit that receives a request for power from the outside in an emergency, and the selecting unit causes only the fuel cell having a maximum power value smaller than a predetermined value to generate power only in an emergency.
  • the generated power may be supplied to the outside.
  • a control unit that causes the fuel cell to generate power in response to a request from the outside and supplies the power to the outside may be further provided.
  • the surplus power calculation unit calculates a probability that the power supplied to the load is insufficient based on the surplus power, and if the probability that the power supplied to the load is insufficient exceeds a predetermined value, the excess power calculation unit reports the fact to the outside. May be notified.
  • the surplus power calculation unit may calculate the probability that the power supplied to the load becomes insufficient based on power transition data that predicts the transition of the demand power of the load.
  • the performance storage unit may further store the failure probability of each fuel cell, and the surplus power calculation unit may calculate the probability that the power supplied to the load becomes insufficient based on the failure probability.
  • the power supply system supplies a power to a plurality of loads. Further provision may be made.
  • the power supply system supplies power to multiple loads and uses multiple fuel cells to provide a highly reliable battery group with a maximum power value equal to or higher than a predetermined value and low reliability with a maximum power value lower than a predetermined value.
  • the battery switching section which is divided into the battery group, and a predetermined important load among multiple loads is connected to the high-reliability battery group, and non-critical loads other than the important load are connected to the low-reliability battery group.
  • a load control unit which is divided into the battery group, and a predetermined important load among multiple loads is connected to the high-reliability battery group, and non-critical loads other than the important load are connected to the low-reliability battery group.
  • the battery switching unit divides the plurality of fuel cells into a high-reliability battery group and a low-reliability battery group when the probability of power shortage is equal to or higher than a predetermined probability. If the division divides a plurality of fuel cells into a high-reliability battery group and a low-reliability battery group, it connects a predetermined important load among the multiple loads to the high-reliability battery group, Non-critical loads other than the load may be connected to the low-reliability battery group.
  • the battery switching unit selects the fuel cell with the highest maximum power generation among the fuel cells belonging to the low reliability battery group with high reliability. It may belong to a battery group.
  • the load control unit regards the load with the lowest predetermined importance among the important loads as the non-critical load May be connected to groups.
  • the power supply system consists of a high-reliability battery network that connects the high-reliability batteries and important loads, and a high-reliability power network that supplies the power generated by the high-reliability batteries to the important loads.
  • a low-reliability power network that is connected and supplies the power generated by the low-reliability battery group to the non-critical loads.
  • FIG. 1 shows an example of a configuration of a power supply system 100 according to an embodiment of the present invention.
  • FIG. 2 shows another example of the configuration of the power supply system 100.
  • FIG. 3 is a flowchart showing an example of the performance test process of the fuel cell 10.
  • FIG. 4 is a flowchart illustrating an example of the detailed processing of S212. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an example of the configuration of a power supply system 100 according to the present invention.
  • the power supply system 100 includes a load (120 a) provided in each of a plurality of dwellings (110 a, 110 b, 110 c, hereinafter collectively referred to as 110).
  • the power supply system 100 includes a plurality of fuel cells (10 a, 10 b, 10 c, hereinafter collectively referred to as 10), a performance storage unit 60, a test device 40, an update unit 50, and a power generation amount.
  • a detection unit 70, a surplus power calculation unit 80, and a load control unit 92 are provided.
  • the plurality of fuel cells 10 are provided in each residence 110 corresponding to the plurality of loads 120, and supply power to the plurality of loads 120.
  • a plurality of fuel cells 10 and a plurality of loads 120 are connected to a power network 90, and exchange power between the respective dwellings.
  • Each load 120 is connected to the electric power network 90 via a switching unit (20a, 20b, 20c, hereinafter collectively referred to as 20).
  • the switching unit 20 supplies power by connecting only the important load 120 to the power network 90 when the power supply of the plurality of fuel cells 10 is insufficient.
  • the performance storage unit 60 stores the performance value of each fuel cell 10. For example, the performance storage unit 60 stores the maximum power value indicating the maximum value of the generated power of each fuel cell 10. Further, the performance storage unit 60 may further store the failure probability of each fuel cell 10, and may further store the activation time of each fuel cell 10. These values May be stored in advance with a given initial performance value, or a performance value measured by a test may be stored in advance. Further, the performance storage unit 60 may further store the accumulated power generation amount of each fuel cell 10, and the Z or the accumulated operating time.
  • the power generation amount detection unit 0 detects the power generation amount that each fuel cell 10 supplies to the load 120 and the total amount thereof.
  • the surplus power calculation unit 80 calculates the sum of the maximum power values of the fuel cells 10 stored in the performance storage unit 60 and the power generation amount of the fuel cells 10 detected by the power generation amount detection unit 70.
  • the surplus power that the power supply system 100 can generate surplus is calculated based on the difference from the sum of
  • the surplus power calculation unit 80 notifies the outside of the calculated surplus power.
  • the user of the power supply system 100 may select a load further connected to the power supply system 100 according to the notified surplus power.
  • the other power supply system may request the power supply system 100 to have power equal to or less than the surplus power.
  • the power supply system 100 includes a control unit that, when an external request for power smaller than the surplus power is made, causes the fuel cell 100 to generate power in response to an external request and supply the power to the outside. Further provision may be made.
  • the test device 40 may function as the control unit.
  • the test apparatus 40 sequentially performs a maximum power generation test of at least one fuel cell 10 at predetermined intervals. That is, the test apparatus 40 performs the maximum power generation test on all the fuel cells 10 by sequentially performing the maximum power generation test on one or a plurality of fuel cells 10 at predetermined intervals. For example, the test apparatus 40 may perform the maximum power generation test at intervals of one week, one month, or the like.
  • the test apparatus 40 selects the fuel cell 10, causes the selected fuel cell 10 to generate electric power, and supplies it to the load 120, and the selection unit 42 and the fuel cell 10 selected by the selection unit 42. And a selection changing unit 4 for changing the setting.
  • the selection unit 42 controls the power generation amount of each fuel cell 10 so that the power generation efficiency of the plurality of fuel cells 10 is maximized with respect to the total demand power of the plurality of loads 120. You can do it.
  • the selection unit 42 determines that the sum of the maximum power values of the selected fuel cells 10 among the plurality of fuel cells 10 is larger than the sum of the demand powers of the plurality of loads 120, and One or more fuel cells 10 including the fuel cell 10 to be tested are selected to generate power so that the number of selections is minimized. That is, the selector 42 selects one or a plurality of fuel cells 10 to be tested and a fuel cell 10 to be generated according to the power demand of the load 120.
  • the selection unit 42 causes the fuel cell 10 to be tested to generate maximum power, and causes the other fuel cells 10 to generate power according to the demand power of the load 120.
  • the power generation amount detection unit 70 detects the power generation amount of the fuel cell 10 that is selected to generate the maximum power, and the update unit 50 stores the performance storage unit 60 according to the result of the performance test. The stored performance value of the fuel cell 10 is updated. At this time, the power generation amount detection unit 70 may further detect the startup time of the fuel cell 10 and cause the updating unit 50 to update the startup time of the fuel cell 10.
  • the power generation amount detection unit 70 may detect the power generated by the fuel cell 10 that is generating the maximum power, in addition to the fuel cell 10 selected to be tested. In this case, the performance value of the fuel cell 10 can also be updated.
  • the selecting unit 42 controls the power generation amount of each of the fuel cells 10 so that the number of the fuel cells 10 that generate the maximum power is maximized also in the other fuel cells 10. Is preferred. In other words, the selection unit 42 selects the maximum number of fuel cells 10 that do not exceed the total power demand of the load 120, including the fuel cells 10 to be tested, and selects the selected fuel. The fuel cell 10 which should cause the battery 10 to generate the maximum power and generate the insufficient power may be further selected.
  • the selection unit 4'2 may preferentially select the fuel cell 10 having a large maximum power value stored in the performance storage unit 60 in addition to the fuel cell 10 to be tested. By preferentially selecting and using the fuel cells 10 with high performance, the deterioration of each fuel cell 10 can be made uniform.
  • the selection unit 42 may cause the fuel cell 10 selected at the time of the test to continuously generate power even during normal times.
  • the selection change unit 44 sequentially changes the fuel cells 10 selected by the selection unit 42 every predetermined period in which the test is to be performed, and causes the test apparatus 40 to test all the fuel cells 10. .
  • the surplus power calculation unit 80 calculates the surplus power that the power supply system 100 can generate in excess. I do. With such an operation, the test can be performed without disconnecting the fuel cell 10 to the load 120. For this reason, each fuel cell 10 can be tested while supplying power stably to the load 120. For example, the fuel cell 10 can be tested even during the daytime when the power demand of the load 120 increases.
  • the current maximum power generation capacity of the power supply system 100 can be constantly grasped, and the surplus power generation capacity of the power supply system 100 can be constantly grasped.
  • the selection unit 42 preferably does not select the fuel cell 10.
  • the power supply system 100 notifies the user that the replacement of the fuel cell 10 is urged.
  • the selector 42 causes the fuel cell 10 to generate power only in an emergency, and the fuel cell 10 generates power. Electric power may be supplied to the outside.
  • the fuel cell 10 is caused to generate power only when an external power request is received in an emergency such as a disaster.
  • the selection unit 42 functions as a request reception unit that receives a power request from the outside. As a result, the fuel cell 10 whose performance has deteriorated can be used effectively.
  • the switching unit 30 connects the power network 90 and an external load.
  • the surplus power calculation unit 80 calculates a probability that the power supplied to the load 120 is insufficient based on the calculated surplus power, and when the probability exceeds a predetermined value, notifies the fact. It is preferable to notify the outside.
  • the probability that the power supplied to the load 120 becomes insufficient can be easily calculated from the surplus power and the failure probability of each fuel cell 10.
  • the surplus power calculating unit 80 may calculate the probability that the power supplied to the load 120 becomes insufficient based on the power transition data that predicts the transition of the demand power of the load 120.
  • the power transition data may be data that is given in advance based on the past transition of the demand power of the load 120.
  • FIG. 2 shows another example of the configuration of the power supply system 100.
  • the power supply system 100 in the present example is different from the power supply network 100 of the power supply system 100 described in FIG. 1 in that the high-reliability power network 90 a and the low-reliability power network 0b, and further includes a control unit 94, a switching unit 22, and a battery switching unit 26.
  • the unreliable power network 90a receives power from external power sources.
  • the external power source is a power source that externally supplies power to the low-reliability power network 90a.
  • the external power source is another power supply system 100 or a commercial power supply.
  • the high reliability power network 90b is a power network provided independently of the low reliability power network 90a.
  • the plurality of fuel cells 10 and the plurality of loads 120 are connected to either the high reliability power network 90a or the low reliability power network 90b.
  • the control unit 94 determines whether the external power source is operating normally based on the power supplied from the external power source to the low reliability power network 90b. When the control unit 94 determines that the operation of the external power source is normal, the switching unit 22 and the battery switching unit 26 have low reliability for the plurality of fuel cells 10 and the plurality of loads 120. Power supply network 90b to supply power from an external power source and a plurality of fuel cells 10 to a plurality of loads 120.
  • the switching unit 22 and the battery switching unit 26 provide a plurality of fuel cells 10 and a plurality of loads 1 2 0 is connected to the high-reliability electric power network 90a, and power is supplied from the plurality of fuel cells 10 to the plurality of loads 120.
  • the switching unit 22 has a plurality of switching means 20 for switching the connection of the plurality of loads 120
  • the battery switching unit 26 has a plurality of switching units for switching the connection of the plurality of fuel cells 10. It has switching means 24.
  • At least one of the plurality of fuel cells 10 constantly supplies power to the load 120 I do. Therefore, the test of the fuel cell 10 described with reference to FIG. 1 can be performed efficiently. Further, by such control, the external power source and the fuel cell 10 can be connected to another network in the event of an abnormality. Therefore, when the external power source is abnormal, reverse flow of power from the fuel cell 10 to the external power source can be prevented, and at least one fuel cell 10 can be operated at all times.
  • the test of the fuel cell 10 can be performed efficiently.
  • the battery switching unit 26 controls the plurality of fuel cells 10 Based on these performance values, the high reliability battery group and the low reliability battery group are divided.
  • the battery switching unit 26 may include a plurality of fuel cells 10, a high-reliability battery group having a maximum power value equal to or higher than a predetermined value, and a low-reliability battery having a maximum power value smaller than the predetermined value. In particular, connect the high-reliability battery group to the high-reliability power network 90a, and connect the low-reliability battery group to the low-reliability power network 90b.
  • the load control unit 92 connects a predetermined important load among the plurality of loads 120 to the high-reliability power network 90a, and transfers non-critical loads other than the important load to the low-reliability power network. Connect to network 90 b.
  • the high-reliability battery network 90a is connected to the high-reliability battery group and the important load, and the power generated by the high-reliability battery group is supplied to the important load.
  • a low-reliability battery group and a non-critical load are connected to the low-reliability power network 90b, and the power generated by the low-reliability battery group is supplied to the non-critical load.
  • the battery switching unit 26 sets the plurality of fuel cells 10 as a high reliability battery group and a low reliability battery group. It may be separated from the battery group. In this case, when the battery switching unit 26 divides the plurality of fuel cells into the high-reliability battery group and the low-reliability battery group, the load control unit 92 A predetermined important load is connected to the high reliability battery group, and non-critical loads other than the important load are connected to the low reliability battery group.
  • the battery switching unit 26 when the total demand power of the critical load is larger than the total power generation of the high-reliability battery group, the battery switching unit 26 generates the highest power generation among the fuel cells 10 belonging to the low-reliability battery group.
  • the large fuel cell 10 may belong to a high reliability cell group.
  • the battery switching unit 26 controls the fuel cells with high power generation from the low-reliability battery group to the high-reliability battery group until the total power generation of the high-reliability Change 10 sequentially.
  • the load control unit 92 removes the load 120 having the predetermined lowest importance among the important loads. It may be connected to a low reliability battery group as an important load.
  • the load control unit 92 sequentially switches the important loads of lower importance to the non-important loads. With such an operation, it is possible to stably supply power to important loads.
  • FIG. 3 is a flowchart illustrating an example of a performance test process of the fuel cell 10.
  • the selection unit 42 normally selects the fuel cell 10 to generate power (S200), and power is supplied to the load 120 (S202).
  • S204 power is supplied to the load 120
  • S204 the previous performance test
  • the selection unit 42 selects one or a plurality of fuel cells 10 including the fuel cell 10 to be tested and generates power (S206).
  • the power generation amount detection unit 70 detects operation data such as the power generation amount and the start-up time of the fuel cell under test (S208). Then, the updating unit 50 updates the performance value stored by the performance storage unit 60 based on the detected operation data (S210). At this time, it is determined whether the performance value of the fuel cell or the power failure probability indicates an abnormal value, and if not, the power supply from the selected fuel cell 10 is continued (S 2 0 2) 0
  • FIG. 4 is a flowchart showing an example of the detailed process of S212.
  • the detected operation data of the fuel cell 10 is compared with a reference value (S300). Then, it is determined whether or not the operation data of the fuel cell 10 indicates an abnormal value (S302). If the operation data indicates an abnormal value, the fuel cell 10 is exchanged as described with reference to FIG. Is notified to the outside (S2114).
  • the surplus power of the power supply system 100 is calculated based on the updated performance values, and the power failure probability that the power supply of the power supply system 100 is insufficient is calculated. Yes (S304). Then, when the power failure probability is larger than the abnormal value, that is, the predetermined reference value, the fact is notified to the outside (S2114). If the power failure probability is smaller than the reference value, the process from S202 is continued.
  • a plurality of fuel cells can be efficiently tested while supplying power stably to the load, and the current maximum power generation capacity Can be easily grasped.

Abstract

There is provided a power supply system which can easily recognize the current maximum generation capacity. The system includes: a plurality of fuel cells for generating electric power and supplying the power to loads; a performance storage section for storing the maximum power value indicating the maximum power generation value of the respective fuel cells; a test device for successively testing the maximum power generation of at least one fuel cell; an update section for updating the maximum power value of the respective fuel cells stored in the performance storage section according to the performance test result; a generation amount detection section for detecting the total of the generation amounts supplied to the loads by the fuel cells; and a surplus power calculation section for calculating at a predetermined interval a surplus power that can be generated as a surplus by the power supply system according to a difference between the total of the maximum power values stored in the performance storage section and the total of the generation amounts.

Description

明 細 書 電力供給システム 技術分野  Description Power supply system Technical field
本発明は、 負荷に電力を供給する電力供給システムに関する。 特に、 本発明は、 複数の燃料電池を備えた電力供給システムに関する。 背景技術  The present invention relates to a power supply system that supplies power to a load. In particular, the present invention relates to a power supply system including a plurality of fuel cells. Background art
従来、 複数の燃料電池を備え、 負荷に電力を供給する電力供給システムがある。 このような電力供給システムにおいて、 電力供給システムの総電力供給能力は、 そ れぞれの燃料電池の発電能力の総和で与えられる。  Conventionally, there is a power supply system that includes a plurality of fuel cells and supplies power to a load. In such a power supply system, the total power supply capacity of the power supply system is given by the sum of the power generation capacity of each fuel cell.
電力供給システムには、 需要電力が総電力供給能力より小さい負荷が選択されて 接続される。 負荷の需要電力に対して、 電力供給システムの総電力供給能力にある 程度余裕を持たせることにより、 負荷に安定して電力を供給することができる。 従来の電力供給システムの総電力供給能力は、 それぞれの燃料電池の設置時にお ける発電能力から算出している。 このため、 電力供給システムの現在の総電力供給 能力を知ることが困難である。 例えば、 燃料電池が劣化して発電能力が低下した場 合であっても、 電力供給システムの総電力供給能力は、 設置時と変わらない値とし て認識される。  A load whose demand power is smaller than the total power supply capacity is selected and connected to the power supply system. By providing a certain margin in the total power supply capacity of the power supply system with respect to the demand power of the load, power can be supplied to the load stably. The total power supply capacity of the conventional power supply system is calculated from the power generation capacity when each fuel cell is installed. For this reason, it is difficult to know the current total power supply capacity of the power supply system. For example, even when the fuel cell is deteriorated and its power generation capacity is reduced, the total power supply capacity of the power supply system is recognized as the same value as when it was installed.
このため、 電力供給システムの設置から時間が経過し、 燃料電池の発電能力が劣 化すると、 想定している発電力が得られず、 負荷に供給する電力が不足する場合が ある。 このため、 負荷に安定して電力を供給することが困難であった。 また、 電力 供給システムにどの程度の余剰発電能力があるのかを知ることが困難であった。 そこで本発明は、 このような問題を解決することを目的とする。 発明の開示 上記課題を解決するために、 本発明の形態においては、 負荷に電力を供給する電 力供給システムであって、 電力を発電して負荷に供給する複数の燃料電池と、 それ ぞれの燃料電池の発電力の最大値を示す最大電力値を格納する性能格納部と、 所定 の期間毎に、 少なくとも一つの燃料電池の最大発電試験を順次行う試験装置と、 性 能試験の結果に応じて、 性能格納部が格納したそれぞれの燃料電池の最大電力値を 更新する更新部と、 燃料電池が負荷に供給している発電量の総和を検出する発電量 検出部と、 性能格納部が格納したそれぞれの最大電力値の総和と、 発電量の総和と の差分に基づいて、 電力供給システムが余剰に発電できる余剰電力を所定の期間毎 に算出する余剰電力算出部とを備えることを特徴とする電力供給システムを提供す る。 For this reason, if time has passed since the installation of the power supply system and the power generation capacity of the fuel cell deteriorates, the expected power generation cannot be obtained and the power supplied to the load may be insufficient. For this reason, it was difficult to supply power stably to the load. Also, it was difficult to know how much surplus power generation capacity the power supply system had. Therefore, an object of the present invention is to solve such a problem. DISCLOSURE OF THE INVENTION In order to solve the above problems, in an embodiment of the present invention, an electric power supply for supplying electric power to a load A power supply system, comprising: a plurality of fuel cells that generate power and supply the load to a load; a performance storage unit that stores a maximum power value indicating a maximum value of power generated by each fuel cell; and a predetermined period. A test device for sequentially performing a maximum power generation test of at least one fuel cell for each fuel cell; an updating unit for updating the maximum power value of each fuel cell stored in the performance storage unit in accordance with a result of the performance test; A power supply system based on the difference between the power generation detector that detects the total power generation supplied to the load by the battery, the total of the maximum power values stored in the performance storage unit, and the total power generation And a surplus power calculation unit that calculates surplus power that can generate surplus every predetermined period.
電力供給システムは、 複数の燃料電池のうち、 選択した燃料電池の最大電力値の 和が負荷の需要電力より大きくなり、 且つ選択数が最小となるように、 試験装置が 試験するべき燃料電池を含む一又は複数の燃料電池を選択して発電させる選択部と、 所定の期間毎に選択部が選択する燃料電池を順次変更し、 試験装置に全ての燃料電 池を試験させる選択変更部とを更に備えてよい。  The power supply system determines the fuel cells to be tested by the test device so that the sum of the maximum power values of the selected fuel cells among the plurality of fuel cells is larger than the demand power of the load and the number of selected fuel cells is minimized. A selection unit for selecting one or a plurality of fuel cells and generating electricity, and a selection changing unit for sequentially changing the fuel cells selected by the selection unit at predetermined intervals and causing the test apparatus to test all the fuel cells. Further provision may be made.
選択部は、 試験するべき燃料電池の他に、 最大電力値が大きい燃料電池を優先し て選択してよい。 また、 燃料電池の最大電力値が所定の値より小さくなつた場合、 選択部は当該燃料電池を選択しないことが好ましい。  The selection unit may preferentially select a fuel cell having a larger maximum power value in addition to the fuel cell to be tested. Further, when the maximum power value of the fuel cell becomes smaller than a predetermined value, it is preferable that the selecting unit does not select the fuel cell.
電力供給システムは、 非常時において外部から電力の要求を受け取る要求受信部 を更に備え、 選択部は、 非常時にのみ最大電力値が所定の値より小さくなつた燃料 電池を発電させ、 当該燃料電池が発電した電力を外部に供給してよい。 また、 外部 力 ら余剰電力より小さい電力の要求があった場合に、 外部からの要求に応じて燃料 電池に電力を発電させて外部に電力を供給する制御部を更に備えてよい。  The power supply system further includes a request receiving unit that receives a request for power from the outside in an emergency, and the selecting unit causes only the fuel cell having a maximum power value smaller than a predetermined value to generate power only in an emergency. The generated power may be supplied to the outside. Further, when an external power requests a power smaller than the surplus power, a control unit that causes the fuel cell to generate power in response to a request from the outside and supplies the power to the outside may be further provided.
余剰電力算出部は、 余剰電力に基づいて、 負荷に供給される電力が不足する確率 を計算し、 負荷に供給される電力が不足する確率が所定の値を超えた場合に、 その 旨を外部に通知してよい。 また、 余剰電力算出部は、 負荷の需要電力の推移を予測 した電力推移データに更に基づいて、 負荷に供給される電力が不足する確率を計算 してよい。  The surplus power calculation unit calculates a probability that the power supplied to the load is insufficient based on the surplus power, and if the probability that the power supplied to the load is insufficient exceeds a predetermined value, the excess power calculation unit reports the fact to the outside. May be notified. In addition, the surplus power calculation unit may calculate the probability that the power supplied to the load becomes insufficient based on power transition data that predicts the transition of the demand power of the load.
性能格納部は、 それぞれの燃料電池の故障確率を更に格納し、 余剰電力算出部は、 故障確率に更に基づいて、 負荷に供給される電力が不足する確率を計算してよい。 電力供給システムは、 複数の負荷に電力を供給し、 電力が不足する確率が所定の 確率以上である場合に、 複数の負荷のうち予め定められた非重要負荷に電力を供給 させない負荷制御部を更に備えてよい。 The performance storage unit may further store the failure probability of each fuel cell, and the surplus power calculation unit may calculate the probability that the power supplied to the load becomes insufficient based on the failure probability. The power supply system supplies a power to a plurality of loads. Further provision may be made.
電力供給システムは、 複数の負荷に電力を供給し、 複数の燃料電池を、 最大電力 値が所定の値以上である高信頼性電池群と、 最大電力値が所定の値より小さい低信 頼性電池群とにきりわける電池切替部と、 複数の負荷のうち、 予め定められた重要 負荷を高信頼性電池群に接続し、 重要負荷以外の非重要負荷を低信頼性電池群に接 続する負荷制御部とを更に備えてよい。  The power supply system supplies power to multiple loads and uses multiple fuel cells to provide a highly reliable battery group with a maximum power value equal to or higher than a predetermined value and low reliability with a maximum power value lower than a predetermined value. The battery switching section, which is divided into the battery group, and a predetermined important load among multiple loads is connected to the high-reliability battery group, and non-critical loads other than the important load are connected to the low-reliability battery group. And a load control unit.
電池切替部は、 電力が不足する確率が所定の確率以上になった場合に、 複数の燃 料電池を高信頼性電池群と低信頼性電池群とにきりわけ、 負荷制御部は、 電池切替 部が複数の燃料電池を高信頼性電池群と低信頼性電池群とにきりわけた場合に、 複 数の負荷のうち、 予め定められた重要負荷を高信頼性電池群に接続し、 重要負荷以 外の非重要負荷を低信頼性電池群に接続してよい。  The battery switching unit divides the plurality of fuel cells into a high-reliability battery group and a low-reliability battery group when the probability of power shortage is equal to or higher than a predetermined probability. If the division divides a plurality of fuel cells into a high-reliability battery group and a low-reliability battery group, it connects a predetermined important load among the multiple loads to the high-reliability battery group, Non-critical loads other than the load may be connected to the low-reliability battery group.
電池切替部は、 重要負荷の総需要電力が、 高信頼性電池群の総発電力より大きい 場合に、 低信頼性電池群に属する燃料電池のうち最大発電力が最も大きい燃料電池 を高信頼性電池群に属させてよい。  When the total demand power of the critical load is larger than the total power generation of the high reliability battery group, the battery switching unit selects the fuel cell with the highest maximum power generation among the fuel cells belonging to the low reliability battery group with high reliability. It may belong to a battery group.
負荷制御部は、 重要負荷の総需要電力が、 高信頼性電池群の総発電力より大きい 場合に、 重要負荷のうち予め定められた重要度が最も低い負荷を非重要負荷として 低信頼性電池群に接続してよい。  When the total demand power of the critical load is greater than the total power generation of the high-reliability battery group, the load control unit regards the load with the lowest predetermined importance among the important loads as the non-critical load May be connected to groups.
電力供給システムは、 高信頼性電池群及ぴ重要負荷が接続され、 高信頼性電池群 が発電した電力を重要負荷に供給する高信頼性電力ネットワークと、 低信頼性電池 群及び非重要負荷が接続され、 低信頼性電池群が発電した電力を非重要負荷に供給 する低信頼性電力ネットワークとを更に備えてよい。  The power supply system consists of a high-reliability battery network that connects the high-reliability batteries and important loads, and a high-reliability power network that supplies the power generated by the high-reliability batteries to the important loads. A low-reliability power network that is connected and supplies the power generated by the low-reliability battery group to the non-critical loads.
尚、 上記の発明の概要は、 本発明の必要な特徴の全てを列挙したものではなく、 これらの特徴群のサブコンビネーションも又、 発明となりうる。 図面の簡単な説明  Note that the above summary of the present invention does not enumerate all of the necessary features of the present invention, and a sub-combination of these features may also be an invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施形態に係る電力供給システム 1 0 0の構成の一例を示す 図 2は、 電力供給システム 1 00の構成の他の例を示す。 FIG. 1 shows an example of a configuration of a power supply system 100 according to an embodiment of the present invention. FIG. 2 shows another example of the configuration of the power supply system 100.
図 3は、 燃科電池 1 0の性能試験の処理の一例を示すフローチャートである。 図 4は、 S 2 1 2の詳細な処理の一例を示すフローチヤ一トである。 発明を実施するための最良の形態 以下、 発明の実施の形態を通じて本発明を説明するが、 以下の実施形態は特許請 求の範囲にかかる発明を限定するものではなく、 又実施形態の中で説明されている 特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 図 1は、 本発明に係る電力供給システム 1 00の構成の一例を示す。 本例におけ る電力供給システム 1 00は、 複数の住居 (1 1 0 a、 1 1 0 b、 1 1 0 c、 以下 1 1 0と総称する)のそれぞれに設けられた負荷(1 20 a、 1 20 b、 1 20 c、 以下 1 20と総称する) に電力を供給する。 電力供給システム 1 00は、 複数の燃 料電池 (1 0 a、 1 0 b、 1 0 c、 以下 1 0と総称する)、 性能格納部 6 0、 試験装 置 40、 更新部 50、 発電量検出部 70、 余剰電力算出部 80、 及び負荷制御部 9 2を備える。  FIG. 3 is a flowchart showing an example of the performance test process of the fuel cell 10. FIG. 4 is a flowchart illustrating an example of the detailed processing of S212. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described through embodiments of the present invention. However, the following embodiments do not limit the invention according to the scope of the patent request. Not all described combinations of features are essential to the solution of the invention. FIG. 1 shows an example of the configuration of a power supply system 100 according to the present invention. In this example, the power supply system 100 includes a load (120 a) provided in each of a plurality of dwellings (110 a, 110 b, 110 c, hereinafter collectively referred to as 110). , 120b, 120c, hereinafter collectively referred to as 120). The power supply system 100 includes a plurality of fuel cells (10 a, 10 b, 10 c, hereinafter collectively referred to as 10), a performance storage unit 60, a test device 40, an update unit 50, and a power generation amount. A detection unit 70, a surplus power calculation unit 80, and a load control unit 92 are provided.
複数の燃料電池 1 0は、 複数の負荷 1 20と対応してそれぞれの住居 1 1 0に設 けられ、 複数の負荷 1 20に電力を供給する。 例えば、 複数の燃料電池 1 0及ぴ複 数の負荷 1 20は、 電力ネットワーク 90に接続され、 それぞれの住居間で電力の 授受を行う。  The plurality of fuel cells 10 are provided in each residence 110 corresponding to the plurality of loads 120, and supply power to the plurality of loads 120. For example, a plurality of fuel cells 10 and a plurality of loads 120 are connected to a power network 90, and exchange power between the respective dwellings.
また、 それぞれの負荷 1 20は、 電カネットワーク 90と切替部 ( 20 a、 20 b、 20 c、 以下 20と総称する) を介して接続される。 例えば、 切替部 20は、 複数の燃料電池 1 0の電力の供給量が不足した場合に、 重要な負荷 1 20のみを電 カネットワーク 90に接続して電力を供給する。  Each load 120 is connected to the electric power network 90 via a switching unit (20a, 20b, 20c, hereinafter collectively referred to as 20). For example, the switching unit 20 supplies power by connecting only the important load 120 to the power network 90 when the power supply of the plurality of fuel cells 10 is insufficient.
性能格納部 6 0は、 それぞれの燃料電池 1 0の性能値を格納する。 例えば、 性能 格納部 6 0は、 それぞれの燃料電池 1 0の発電力の最大値を示す最大電力値を格納 する。 また、 性能格納部 60は、 それぞれの燃料電池 1 0の故障確率を更に格納し てもよく、 それぞれの燃料電池 1 0の起動時間を更に格納してもよい。 これらの値 は、 与えられた初期性能値が予め格納されてよく、 また試験により測定された性能 値が予め格納されてもよい。 また、 性能格納部 6 0は、 それぞれの燃料電池 1 0の 累積発電量、 及ぴ Z又は累積稼働時間を更に格納してもよい。 The performance storage unit 60 stores the performance value of each fuel cell 10. For example, the performance storage unit 60 stores the maximum power value indicating the maximum value of the generated power of each fuel cell 10. Further, the performance storage unit 60 may further store the failure probability of each fuel cell 10, and may further store the activation time of each fuel cell 10. These values May be stored in advance with a given initial performance value, or a performance value measured by a test may be stored in advance. Further, the performance storage unit 60 may further store the accumulated power generation amount of each fuel cell 10, and the Z or the accumulated operating time.
発電量検出部 Ί 0は、 それぞれの燃料電池 1 0が負荷 1 2 0に供給している発電 量、 及びその総和を検出する。 また、 余剰電力算出部 8 0は、 性能格納部 6 0が格 納したそれぞれの燃料電池 1 0の最大電力値の総和と、 発電量検出部 7 0が検出し た燃料電池 1 0の発電量の総和との差分に基づいて、 電力供給システム 1 0 0が余 剰に発電できる余剰電力を算出する。  The power generation amount detection unit 0 detects the power generation amount that each fuel cell 10 supplies to the load 120 and the total amount thereof. The surplus power calculation unit 80 calculates the sum of the maximum power values of the fuel cells 10 stored in the performance storage unit 60 and the power generation amount of the fuel cells 10 detected by the power generation amount detection unit 70. The surplus power that the power supply system 100 can generate surplus is calculated based on the difference from the sum of
余剰電力算出部 8 0は、 算出した余剰電力を外部に通知する。 例えば、 電力供給 システム 1 0 0の利用者は、 通知された余剰電力に応じて電力供給システム 1 0 0 に更に接続する負荷を選択してよい。 また、 電力供給システム 1 0 0が他の電力供 給システムと接続されている場合に、 他の電力供給システムは、 当該余剰電力以下 の電力を電力供給システム 1 0 0に要求してもよい。  The surplus power calculation unit 80 notifies the outside of the calculated surplus power. For example, the user of the power supply system 100 may select a load further connected to the power supply system 100 according to the notified surplus power. Further, when the power supply system 100 is connected to another power supply system, the other power supply system may request the power supply system 100 to have power equal to or less than the surplus power.
電力供給システム 1 0 0は、 外部から余剰電力より小さい電力の要求があった場 合に、 外部からの要求に応じて燃料電池 1 0に電力を発電させて外部に電力を供給 する制御部を更に備えてよい。 例えば、 試験装置 4 0が当該制御部として機能して よい。  The power supply system 100 includes a control unit that, when an external request for power smaller than the surplus power is made, causes the fuel cell 100 to generate power in response to an external request and supply the power to the outside. Further provision may be made. For example, the test device 40 may function as the control unit.
試験装置 4 0は、 所定の期間毎に、 少なくとも一つの燃料電池 1 0の最大発電試 験を順次行う。 つまり、 試験装置 4 0は、 所定の期間毎に一つ又は複数の燃料電池 1 0の最大発電試験を順次行うことにより、 全ての燃料電池 1 0の最大発電試験を 行う。 例えば、 試験装置 4 0は、 1週間、 1ヶ月等の期間毎に最大発電試験を行つ てよい。 試験装置 4 0は、 燃料電池 1 0を選択し、 選択した燃料電池 1 0に電力を 発電させて負荷 1 2 0に供給する選択部 4 2、 及び選択部 4 2が選択する燃料電池 1 0を変更させる選択変更部 4 4を有する。  The test apparatus 40 sequentially performs a maximum power generation test of at least one fuel cell 10 at predetermined intervals. That is, the test apparatus 40 performs the maximum power generation test on all the fuel cells 10 by sequentially performing the maximum power generation test on one or a plurality of fuel cells 10 at predetermined intervals. For example, the test apparatus 40 may perform the maximum power generation test at intervals of one week, one month, or the like. The test apparatus 40 selects the fuel cell 10, causes the selected fuel cell 10 to generate electric power, and supplies it to the load 120, and the selection unit 42 and the fuel cell 10 selected by the selection unit 42. And a selection changing unit 4 for changing the setting.
通常時、 選択部 4 2は、 複数の負荷 1 2 0の総需要電力に対して、 複数の燃料電 池 1 0の発電効率が最大となるようにそれぞれの燃料電池 1 0の発電量を制御して よい。  Normally, the selection unit 42 controls the power generation amount of each fuel cell 10 so that the power generation efficiency of the plurality of fuel cells 10 is maximized with respect to the total demand power of the plurality of loads 120. You can do it.
試験時においては、 選択部 4 2は、 複数の燃料電池 1 0のうち、 選択した燃料電 池 1 0の最大電力値の和が複数の負荷 1 2 0の需要電力の和より大きくなり、 且つ 選択数が最小となるように、 試験するべき燃料電池 1 0を含む一又は複数の燃料電 池 1 0を選択して発電させる。 つまり、 選択部 4 2は、 試験をするべき一つ又は複 数の燃料電池 1 0に加え、 負荷 1 2 0の需要電力に応じて発電させるべき燃料電池 1 0を選択する。 At the time of the test, the selection unit 42 determines that the sum of the maximum power values of the selected fuel cells 10 among the plurality of fuel cells 10 is larger than the sum of the demand powers of the plurality of loads 120, and One or more fuel cells 10 including the fuel cell 10 to be tested are selected to generate power so that the number of selections is minimized. That is, the selector 42 selects one or a plurality of fuel cells 10 to be tested and a fuel cell 10 to be generated according to the power demand of the load 120.
そして、 選択部 4 2は、 試験をするべき燃料電池 1 0に最大電力を発電させ、 他 の燃料電池 1 0には、 負荷 1 2 0の需要電力に応じた電力を発電させる。 発電量検 出部 7 0は、最大電力を発電させるベく選択された燃料電池 1 0の発電量を検出し、 更新部 5 0は、 性能試験の結果に応じて、 性能格納部 6 0が格納した当該燃料電池 1 0の性能値を更新する。 このとき、 発電量検出部 7 0は、 燃料電池 1 0の起動時 間を更に検出し、 更新部 5 0に燃料電池 1 0の起動時間を更新させてもよレ、。  Then, the selection unit 42 causes the fuel cell 10 to be tested to generate maximum power, and causes the other fuel cells 10 to generate power according to the demand power of the load 120. The power generation amount detection unit 70 detects the power generation amount of the fuel cell 10 that is selected to generate the maximum power, and the update unit 50 stores the performance storage unit 60 according to the result of the performance test. The stored performance value of the fuel cell 10 is updated. At this time, the power generation amount detection unit 70 may further detect the startup time of the fuel cell 10 and cause the updating unit 50 to update the startup time of the fuel cell 10.
また、 発電量検出部 7 0は、 試験するべく選択された燃料電池 1 0の他に、 最大 電力を発電している燃料電池 1 0の発電電力を検出してもよい。 この場合、 当該燃 料電池 1 0の性能値をも更新することができる。 また、 選択部 4 2は、 当該他の燃 料電池 1 0においても、最大電力を発電する燃料電池 1 0の数が最大となるように、 それぞれの燃料電池 1 0の発電量を制御することが好ましい。 つまり、 選択部 4 2 は、 最大発電量の総和が負荷 1 2 0の総需要電力を超えない最大数の燃料電池 1 0 を、 試験するべき燃料電池 1 0を含んで選択し、 選択した燃料電池 1 0に最大電力 を発電させ、 不足する電力を発電させるべき燃料電池 1 0を更に選択してよい。 ま た、 選択部 4' 2は、 試験するべき燃料電池 1 0の他に、 性能格納部 6 0が格納した 最大電力値が大きい燃料電池 1 0を優先して選択してもよレ、。 性能の高い燃料電池 1 0を優先して選択して使用することにより、 それぞれの燃料電池 1 0の劣化を均 一にすることができる。  Further, the power generation amount detection unit 70 may detect the power generated by the fuel cell 10 that is generating the maximum power, in addition to the fuel cell 10 selected to be tested. In this case, the performance value of the fuel cell 10 can also be updated. In addition, the selecting unit 42 controls the power generation amount of each of the fuel cells 10 so that the number of the fuel cells 10 that generate the maximum power is maximized also in the other fuel cells 10. Is preferred. In other words, the selection unit 42 selects the maximum number of fuel cells 10 that do not exceed the total power demand of the load 120, including the fuel cells 10 to be tested, and selects the selected fuel. The fuel cell 10 which should cause the battery 10 to generate the maximum power and generate the insufficient power may be further selected. In addition, the selection unit 4'2 may preferentially select the fuel cell 10 having a large maximum power value stored in the performance storage unit 60 in addition to the fuel cell 10 to be tested. By preferentially selecting and using the fuel cells 10 with high performance, the deterioration of each fuel cell 10 can be made uniform.
また、 選択部 4 2は、 通常時においても試験時に選択した燃料電池 1 0に継続し て発電させてよい。この場合、選択変更部 4 4は、試験を行うべき所定の期間毎に、 選択部 4 2が選択する燃料電池 1 0を順次変更し、 試験装置 4 0に全ての燃料電池 1 0を試験させる。  In addition, the selection unit 42 may cause the fuel cell 10 selected at the time of the test to continuously generate power even during normal times. In this case, the selection change unit 44 sequentially changes the fuel cells 10 selected by the selection unit 42 every predetermined period in which the test is to be performed, and causes the test apparatus 40 to test all the fuel cells 10. .
性能格納部 6 0に格納された性能値が更新された場合、 即ち試験する所定の期間 毎に、 余剰電力算出部 8 0は、 電力供給システム 1 0 0が余剰に発電できる余剰電 力を算出する。 このような動作により、 燃料電池 1 0を負荷 1 2 0に切り離さずに試験を行うこ とができる。 このため、 負荷 1 2 0に安定して電力を供給しつつ、 それぞれの燃料 電池 1 0の試験を行うことができる。 例えば、 負荷 1 2 0の需要電力が増大する昼 間であっても、 燃料電池 1 0の試験を行うことができる。 また、 電力供給システム 1 0 0の現在の最大発電能力を常時把握することができ、 電力供給システム 1 0 0 の余剰発電能力を常時把握することができる。 When the performance value stored in the performance storage unit 60 is updated, that is, for each predetermined period to be tested, the surplus power calculation unit 80 calculates the surplus power that the power supply system 100 can generate in excess. I do. With such an operation, the test can be performed without disconnecting the fuel cell 10 to the load 120. For this reason, each fuel cell 10 can be tested while supplying power stably to the load 120. For example, the fuel cell 10 can be tested even during the daytime when the power demand of the load 120 increases. In addition, the current maximum power generation capacity of the power supply system 100 can be constantly grasped, and the surplus power generation capacity of the power supply system 100 can be constantly grasped.
また、 試験の結果、 燃料電池 1 0の性能値が所定の値より小さくなつた場合、 選 択部 4 2は、 当該燃料電池 1 0を選択しないことが好ましい。 例えば、 燃料電池 1 0の最大電力値が所定の値より小さくなった場合、 当該燃料電池 1 0の信頼性もそ れに応じて劣化しているため、 通常時の発電においても当該燃料電池 1 0を使用し ないことが好ましい。 この場合、 電力供給システム 1 0 0は、 当該燃料電池 1 0の 交換を促す旨を利用者に通知することが好ましい。  Further, as a result of the test, when the performance value of the fuel cell 10 becomes smaller than the predetermined value, the selection unit 42 preferably does not select the fuel cell 10. For example, when the maximum power value of the fuel cell 10 becomes smaller than a predetermined value, the reliability of the fuel cell 10 is also deteriorated accordingly, so that the fuel cell 10 is not affected during normal power generation. It is preferable not to use. In this case, it is preferable that the power supply system 100 notifies the user that the replacement of the fuel cell 10 is urged.
また、性能値が所定の値より小さくなった燃料電池 1 0が交換されていない場合、 選択部 4 2は、 非常時にのみ当該燃料電池 1 0を発電させ、 当該燃料電池 1 0が発 電した電力を外部に供給してもよい。 例えば、 災害等の非常時において外部から電 力の要求を受けた場合にのみ、 当該燃料電池 1 0を発電させる。 この場合、 選択部 4 2力 S、外部からの電力の要求を受け取る要求受信部として機能する。これにより、 性能が劣化した燃料電池 1 0を有効に活用することができる。 外部に電力を供給す る場合、 切替部 3 0が電力ネットワーク 9 0と外部の負荷とを接続する。  If the fuel cell 10 whose performance value has become smaller than the predetermined value has not been replaced, the selector 42 causes the fuel cell 10 to generate power only in an emergency, and the fuel cell 10 generates power. Electric power may be supplied to the outside. For example, the fuel cell 10 is caused to generate power only when an external power request is received in an emergency such as a disaster. In this case, the selection unit 42 functions as a request reception unit that receives a power request from the outside. As a result, the fuel cell 10 whose performance has deteriorated can be used effectively. When supplying power to the outside, the switching unit 30 connects the power network 90 and an external load.
また、 余剰電力算出部 8 0は、 算出した余剰電力に基づいて、 負荷 1 2 0に供給 される電力が不足する確率を計算し、 当該確率が所定の値を超えた場合に、 その旨 を外部に通知することが好ましい。負荷 1 2 0に供給される電力が不足する確率は、 余剰電力と、それぞれの燃料電池 1 0の故障確率から容易に算出することができる。 また、 余剰電力算出部 8 0は、 負荷 1 2 0の需要電力の推移を予測した電力推移 データに更に基づいて、 負荷 1 2 0に供給される電力が不足する確率を計算しても よい。 当該電力推移データは、 負荷 1 2 0の過去の需要電力の推移に基づいて予め 与えられるデータであってよい。  Further, the surplus power calculation unit 80 calculates a probability that the power supplied to the load 120 is insufficient based on the calculated surplus power, and when the probability exceeds a predetermined value, notifies the fact. It is preferable to notify the outside. The probability that the power supplied to the load 120 becomes insufficient can be easily calculated from the surplus power and the failure probability of each fuel cell 10. Further, the surplus power calculating unit 80 may calculate the probability that the power supplied to the load 120 becomes insufficient based on the power transition data that predicts the transition of the demand power of the load 120. The power transition data may be data that is given in advance based on the past transition of the demand power of the load 120.
利用者は、 電力が不足しそうな旨が通知された場合に、 所望の負荷 1 2 0を電力 ネットワーク 9 0から切断することができる。 また、 負荷制御部 9 2は、 電力が不 足する確率が所定の確率以上である場合に、 複数の負荷 1 2 0のうち予め定められ た非重要負荷に電力を供給させないように、対応する切替部 2 0を制御してもよい。 負荷制御部 9 2は、 非重要負荷を切断することにより負荷 1 2 0の総需要電力を減 少させることにより、 余剰電力を増加させて停電の確率を減少させる。 図 2は、 電力供給システム 1 0 0の構成の他の例を示す。 本例における電力供給 システム 1 0 0は、 図 1において説明した電力供給システム 1 0 0の電カネットヮ ーク 9 0に代えて、 高信頼性電カネットワーク 9 0 a、 低信頼性電カネットワーク 9 0 bを備え、 制御部 9 4、 切替部 2 2、 及ぴ電池切替部 2 6を更に備える。 The user can disconnect the desired load 120 from the power network 90 when notified that the power is likely to be insufficient. In addition, the load controller 92 When the addition probability is equal to or higher than the predetermined probability, the corresponding switching unit 20 may be controlled so as not to supply power to a predetermined insignificant load among the plurality of loads 120. The load controller 92 reduces the total power demand of the load 120 by cutting off the non-essential load, thereby increasing the surplus power and reducing the probability of a power failure. FIG. 2 shows another example of the configuration of the power supply system 100. The power supply system 100 in the present example is different from the power supply network 100 of the power supply system 100 described in FIG. 1 in that the high-reliability power network 90 a and the low-reliability power network 0b, and further includes a control unit 94, a switching unit 22, and a battery switching unit 26.
低信頼性電力ネットワーク 9 0 aは、 外部の電力源から電力を受け取る。 外部の 電力源は、 外部から低信頼性電力ネットワーク 9 0 aに電力を供給する電力源であ る。 例えば、 外部の電力源は他の電力供給システム 1 0 0であり、 また商用電源等 であってもよい。 また、 高信頼性電力ネットワーク 9 0 bは、 低信頼性電力ネット ワーク 9 0 aから独立して設けられた電力ネットワークである。  The unreliable power network 90a receives power from external power sources. The external power source is a power source that externally supplies power to the low-reliability power network 90a. For example, the external power source is another power supply system 100 or a commercial power supply. The high reliability power network 90b is a power network provided independently of the low reliability power network 90a.
複数の燃料電池 1 0及び複数の負荷 1 2 0は、 高信頼性電カネットワーク 9 0 a 又は低信頼性電力ネットワーク 9 0 bのいずれかに接続される。  The plurality of fuel cells 10 and the plurality of loads 120 are connected to either the high reliability power network 90a or the low reliability power network 90b.
制御部 9 4は、 外部の電力源から低信頼性電力ネットワーク 9 0 bに供給される 電力に基づいて、 外部の電力源が正常に動作している力否かを判定する。 切替部 2 2及び電池切替部 2 6は、 制御部 9 4が外部の電力源の動作が正常であると判定し た場合に、 複数の燃料電池 1 0及び複数の負荷 1 2 0を低信頼性電力ネットワーク 9 0 bに接続し、 外部の電力源及び複数の燃料電池 1 0から複数の負荷 1 2 0に電 力を供給させる。  The control unit 94 determines whether the external power source is operating normally based on the power supplied from the external power source to the low reliability power network 90b. When the control unit 94 determines that the operation of the external power source is normal, the switching unit 22 and the battery switching unit 26 have low reliability for the plurality of fuel cells 10 and the plurality of loads 120. Power supply network 90b to supply power from an external power source and a plurality of fuel cells 10 to a plurality of loads 120.
また、 切替部 2 2及ぴ電池切替部 2 6は、 制御部 9 4が外部の電力源の動作が異 常であると判定した場合に、 複数の燃料電池 1 0及ぴ複数の負荷 1 2 0を高信頼性 電カネットワーク 9 0 aに接続し、 複数の燃料電池 1 0から複数の負荷 1 2 0に電 力を供給させる。 切替部 2 2は、 複数の負荷 1 2 0の接続を切り替えるための複数 の切替手段 2 0を有し、 電池切替部 2 6は、 複数の燃料電池 1 0の接続を切り替え るための複数の切替手段 2 4を有する。  When the control unit 94 determines that the operation of the external power source is abnormal, the switching unit 22 and the battery switching unit 26 provide a plurality of fuel cells 10 and a plurality of loads 1 2 0 is connected to the high-reliability electric power network 90a, and power is supplied from the plurality of fuel cells 10 to the plurality of loads 120. The switching unit 22 has a plurality of switching means 20 for switching the connection of the plurality of loads 120, and the battery switching unit 26 has a plurality of switching units for switching the connection of the plurality of fuel cells 10. It has switching means 24.
つまり、 複数の燃料電池 1 0の少なくとも一つは、 負荷 1 2 0に電力を常時供給 する。 このため、 図 1において説明した燃料電池 1 0の試験を効率よく行うことが できる。 また、 このような制御により、 異常時に外部の電力源と燃料電池 1 0とを 別のネットワークに接続することができる。 このため、 外部の電力源の異常時に、 燃料電池 1 0から外部の電力源への電力の逆潮流を防ぎ、 少なくとも一つの燃料電 池 1 0を常時稼働することができる。 In other words, at least one of the plurality of fuel cells 10 constantly supplies power to the load 120 I do. Therefore, the test of the fuel cell 10 described with reference to FIG. 1 can be performed efficiently. Further, by such control, the external power source and the fuel cell 10 can be connected to another network in the event of an abnormality. Therefore, when the external power source is abnormal, reverse flow of power from the fuel cell 10 to the external power source can be prevented, and at least one fuel cell 10 can be operated at all times.
以上説明したように、 本例における電力供給システム 1 0 0によれば、 燃料電池 1 0の試験を効率よく行うことができる。  As described above, according to the power supply system 100 in this example, the test of the fuel cell 10 can be performed efficiently.
また、 主に複数の燃料電池 1 0から複数の負荷 1 2 0に電力を供給し、 外部から 補助的に電力を受け取る場合、 電池切替部 2 6は、 複数の燃料電池 1 0を、 それぞ れの性能値に基づ!/ヽて高信頼性電池群と低信頼性電池群とにきりわける。 例えば、 電池切替部 2 6は、 複数の燃料電池 1 0を、 最大電力値が所定の値以上である高信 頼性電池群と、最大電力値が当該所定の値より小さ 、低信頼性電池群とにきりわけ、 高信頼性電池群を高信頼性電力ネットワーク 9 0 aに接続し、 低信頼性電池群を低 信頼性電力ネットワーク 9 0 bに接続する。  Also, when power is mainly supplied from the plurality of fuel cells 10 to the plurality of loads 120 and power is received from the outside in an auxiliary manner, the battery switching unit 26 controls the plurality of fuel cells 10 Based on these performance values, the high reliability battery group and the low reliability battery group are divided. For example, the battery switching unit 26 may include a plurality of fuel cells 10, a high-reliability battery group having a maximum power value equal to or higher than a predetermined value, and a low-reliability battery having a maximum power value smaller than the predetermined value. In particular, connect the high-reliability battery group to the high-reliability power network 90a, and connect the low-reliability battery group to the low-reliability power network 90b.
また、 負荷制御部 9 2は、 複数の負荷 1 2 0のうち、 予め定められた重要負荷を 高信頼性電カネットワーク 9 0 aに接続し、 重要負荷以外の非重要負荷を低信頼性 電カネットワーク 9 0 bに接続する。 これにより、 高信頼性電カネットワーク 9 0 aには高信頼性電池群及び重要負荷が接続され、 高信頼性電池群が発電した電力が 重要負荷に供給される。 また、 低信頼性電力ネットワーク 9 0 bには低信頼性電池 群及び非重要負荷が接続され、 低信頼性電池群が発電した電力が非重要負荷に供給 される。  In addition, the load control unit 92 connects a predetermined important load among the plurality of loads 120 to the high-reliability power network 90a, and transfers non-critical loads other than the important load to the low-reliability power network. Connect to network 90 b. As a result, the high-reliability battery network 90a is connected to the high-reliability battery group and the important load, and the power generated by the high-reliability battery group is supplied to the important load. In addition, a low-reliability battery group and a non-critical load are connected to the low-reliability power network 90b, and the power generated by the low-reliability battery group is supplied to the non-critical load.
また、 電池切替部 2 6は、 余剰電力算出部 8 0が算出した電力が不足する確率が 所定の確率以上になった場合に、 複数の燃料電池 1 0を高信頼性電池群と低信頼性 電池群とにきりわけてもよい。 この場合、 負荷制御部 9 2は、 電池切替部 2 6が複 数の燃料電池を高信頼性電池群と低信頼性電池群とにきりわけた場合に、 複数の負 荷 1 2 0のうち、 予め定められた重要負荷を高信頼性電池群に接続し、 重要負荷以 外の非重要負荷を低信頼性電池群に接続する。  In addition, when the probability that the power calculated by the surplus power calculation unit 80 becomes insufficient becomes equal to or higher than a predetermined probability, the battery switching unit 26 sets the plurality of fuel cells 10 as a high reliability battery group and a low reliability battery group. It may be separated from the battery group. In this case, when the battery switching unit 26 divides the plurality of fuel cells into the high-reliability battery group and the low-reliability battery group, the load control unit 92 A predetermined important load is connected to the high reliability battery group, and non-critical loads other than the important load are connected to the low reliability battery group.
また、 電池切替部 2 6は、 重要負荷の総需要電力が、 高信頼性電池群の総発電力 より大きい場合に、 低信頼性電池群に属する燃料電池 1 0のうち最大発電力が最も 大きい燃料電池 1 0を高信頼性電池群に属させてよい。 この場合、 電池切替部 2 6 は、 高信頼性電池群の総発電力が重要負荷の総需要電力より大きくなるまで、 低信 頼性電池群から高信頼性電池群に発電力の大きい燃料電池 1 0を順次切り替える。 また、 負荷制御部 9 2は、 重要負荷の総需要電力が、 高信頼性電池群の総発電力 より大きい場合に、 重要負荷のうち予め定められた重要度が最も低い負荷 1 2 0を 非重要負荷として低信頼性電池群に接続してもよい。この場合、負荷制御部 9 2は、 重要負荷の総需要電力が、 高信頼性電池群の総発電力より小さくなるので、 重要度 の低い重要負荷を非重要負荷に順次切り替える。 このような動作により、 重要負荷 に安定して電力を供給することができる。 In addition, when the total demand power of the critical load is larger than the total power generation of the high-reliability battery group, the battery switching unit 26 generates the highest power generation among the fuel cells 10 belonging to the low-reliability battery group. The large fuel cell 10 may belong to a high reliability cell group. In this case, the battery switching unit 26 controls the fuel cells with high power generation from the low-reliability battery group to the high-reliability battery group until the total power generation of the high-reliability Change 10 sequentially. Further, when the total demand power of the important load is larger than the total power generation of the high-reliability battery group, the load control unit 92 removes the load 120 having the predetermined lowest importance among the important loads. It may be connected to a low reliability battery group as an important load. In this case, since the total demand power of the important loads becomes smaller than the total power generation of the high-reliability battery group, the load control unit 92 sequentially switches the important loads of lower importance to the non-important loads. With such an operation, it is possible to stably supply power to important loads.
また、 それぞれの負荷 1 2 0の重要度は、 利用者により予め定められてよく、 時 間毎に重要度が変化するものであってもよい。 例えば、 昼間と夜間、 季節毎等にお いて、 それぞれの負荷 1 2 0の重要度が変化してもよい。 図 3は、 燃料電池 1 0の性能試験の処理の一例を示すフローチャートである。 ま ず、 通常時に選択部 4 2が、燃料電池 1 0を選択して発電させ (S 2 0 0 )、負荷 1 2 0に電力が供給される (S 2 0 2 )。 次に、前回の性能試験から所定の期間が経過 しているか否かを判定し ( S 2 0 4 )、所定の期間が経過していない場合には選択さ れている燃料電池 1 0からの電力供給を継続する (S 2 0 2 )。 また、所定の期間が 経過している場合には、 選択部 4 2は、 試験する燃料電池 1 0を含む一つ又は複数 の燃料電池 1 0を選択し、 発電させる (S 2 0 6 )。  The importance of each load 120 may be determined in advance by the user, and the importance may change with time. For example, the importance of each load 120 may change in the daytime and nighttime, in each season, and the like. FIG. 3 is a flowchart illustrating an example of a performance test process of the fuel cell 10. First, the selection unit 42 normally selects the fuel cell 10 to generate power (S200), and power is supplied to the load 120 (S202). Next, it is determined whether or not a predetermined period has elapsed since the previous performance test (S204), and if the predetermined period has not elapsed, the time from the selected fuel cell 10 is determined. Continue power supply (S202). If the predetermined period has elapsed, the selection unit 42 selects one or a plurality of fuel cells 10 including the fuel cell 10 to be tested and generates power (S206).
次に、 発電量検出部 7 0が、 被試験燃料電池の発電量、 起動時間等の動作データ を検出する(S 2 0 8 )。そして、更新部 5 0は、検出された動作データに基づいて、 性能格納部 6 0が格納した性能値を更新する (S 2 1 0 )。 このとき、燃料電池の性 能値、 又は停電確率が異常値を示すか否かを判定し、 異常値を示さない場合、 選択 されている燃料電池 1 0からの電力供給を継続する ( S 2 0 2 ) 0 Next, the power generation amount detection unit 70 detects operation data such as the power generation amount and the start-up time of the fuel cell under test (S208). Then, the updating unit 50 updates the performance value stored by the performance storage unit 60 based on the detected operation data (S210). At this time, it is determined whether the performance value of the fuel cell or the power failure probability indicates an abnormal value, and if not, the power supply from the selected fuel cell 10 is continued (S 2 0 2) 0
また、 S 2 1 2において異常値が検出された場合、 外部にその旨を通知する ( S 2 1 4 )。例えば、 S 2 1 4においては、異常値を検出した燃料電池を交換する旨を 外部に通知し、 処理を終了する。 図 4は、 S 2 1 2の詳細な処理の一例を示すフローチャートである。 まず、 検出 した燃料電池 1 0の動作データと基準値を比較する (S 3 0 0 )。 そして、燃料電池 1 0の動作データが異常値を示すか否かを判定し(S 3 0 2 )、異常値を示す場合に は、図 3において説明したように、当該燃料電池を交換する旨を外部に通知する(S 2 1 4 )。 If an abnormal value is detected in S212, the fact is notified to the outside (S2114). For example, in S2114, a message to replace the fuel cell that has detected the abnormal value is notified to the outside, and the process is terminated. FIG. 4 is a flowchart showing an example of the detailed process of S212. First, the detected operation data of the fuel cell 10 is compared with a reference value (S300). Then, it is determined whether or not the operation data of the fuel cell 10 indicates an abnormal value (S302). If the operation data indicates an abnormal value, the fuel cell 10 is exchanged as described with reference to FIG. Is notified to the outside (S2114).
S 3 0 2において異常値が検出されない場合、 更新された性能値に基づいて電力 供給システム 1 0 0の余剰電力を算出し、 電力供給システム 1 0 0の電力供給が不 足する停電確率を計算する (S 3 0 4 )。 そして、停電確率が異常値、 即ち所定の基 準値より大きい場合には、 その旨を外部に通知する (S 2 1 4 )。 また、 停電確率が 基準値より小さい場合には、 S 2 0 2以降の処理を継続する。  If no abnormal value is detected in S302, the surplus power of the power supply system 100 is calculated based on the updated performance values, and the power failure probability that the power supply of the power supply system 100 is insufficient is calculated. Yes (S304). Then, when the power failure probability is larger than the abnormal value, that is, the predetermined reference value, the fact is notified to the outside (S2114). If the power failure probability is smaller than the reference value, the process from S202 is continued.
以上、 本発明を実施の形態を用いて説明したが、 本発明の技術的範囲は上記実施 の形態に記載の範囲には限定されない。 上記実施の形態に、 多様な変更又は改良を 加えることが可能であることが当業者に明らかである。 その様な変更又は改良を加 えた形態も本発明の技術的範囲に含まれ得ることが、 特許請求の範囲の記載から明 らかである。 産業上の利用可能性  As described above, the present invention has been described using the embodiment, but the technical scope of the present invention is not limited to the scope described in the above embodiment. It is obvious to those skilled in the art that various changes or improvements can be added to the above-described embodiment. It is apparent from the description of the claims that embodiments with such changes or improvements can be included in the technical scope of the present invention. Industrial applicability
以上の説明から明らかなように、 本発明に係る電力供給システムによれば、 負荷 に安定して電力を供給しながら、複数の燃料電池の試験を効率よく行うことができ、 現在の最大発電能力を容易に把握することができる。  As is apparent from the above description, according to the power supply system of the present invention, a plurality of fuel cells can be efficiently tested while supplying power stably to the load, and the current maximum power generation capacity Can be easily grasped.

Claims

請求 の範囲 The scope of the claims
1 . 負荷に電力を供給する電力供給システムであって、 1. A power supply system for supplying power to a load,
電力を発電して負荷に供給する複数の燃料電池と、  A plurality of fuel cells that generate power and supply it to the load;
それぞれの前記燃料電池の発電力の最大値を示す最大電力値を格納する性能格納 部と、  A performance storage unit for storing a maximum power value indicating a maximum value of the power generated by each of the fuel cells;
所定の期間毎に、 少なくとも一つの前記燃料電池の最大発電試験を順次行う試験 装置と、  A test apparatus for sequentially performing a maximum power generation test of at least one of the fuel cells for each predetermined period;
前記性能試験の結果に応じて、 前記性能格納部が格納したそれぞれの前記燃料電 池の前記最大電力値を更新する更新部と、  An update unit that updates the maximum power value of each of the fuel cells stored in the performance storage unit according to a result of the performance test;
前記燃料電池が前記負荷に供給している発電量の総和を検出する発電量検出部と、 前記性能格納部が格納したそれぞれの前記最大電力値の総和と、 前記発電量の総 和との差分に基づいて、 前記電力供給システムが余剰に発電できる余剰電力を前記 所定の期間毎に算出する余剰電力算出部と  A power generation amount detection unit that detects a total amount of power generation supplied to the load by the fuel cell; a difference between a total of the maximum power values stored by the performance storage unit and a total of the power generation amounts; A surplus power calculation unit that calculates surplus power that the power supply system can generate surplus for each predetermined period based on
を備えることを特徴とする電力供給システム。 A power supply system comprising:
2 . 前記複数の燃料電池のうち、 選択した前記燃料電池の前記最大電力値の和 が前記負荷の需要電力より大きくなり、 且つ選択数が最小となるように、 前記試験 装置が試験するべき前記燃料電池を含む一又は複数の前記燃料電池を選択して発電 させる選択部と、 2. The test device to be tested by the test apparatus such that the sum of the maximum power values of the selected fuel cells among the plurality of fuel cells is larger than the demand power of the load and the number of selections is minimized. A selection unit that selects one or a plurality of the fuel cells including a fuel cell to generate power,
前記所定の期間毎に前記選択部が選択する前記燃料電池を順次変更し、 前記試験 装置に全ての前記燃料電池を試験させる選択変更部と  A selection change unit that sequentially changes the fuel cells selected by the selection unit for each of the predetermined periods, and causes the test apparatus to test all of the fuel cells;
を更に備えることを特徴とする請求項 1に記載の電力供給システム。 The power supply system according to claim 1, further comprising:
3 . 前記選択部は、 試験するべき前記燃料電池の他に、 前記最大電力値が大き い前記燃料電池を優先して選択することを特徴とする請求項 2に記載の電力供給シ ステム。 3. The power supply system according to claim 2, wherein the selection unit preferentially selects the fuel cell having the larger maximum power value in addition to the fuel cell to be tested.
4 . 前記燃料電池の前記最大電力値が所定の値より小さくなった場合、 前記選 択部は当該燃料電池を選択しないことを特徴とする請求項 2に記載の電力供給シス テム。 4. If the maximum power value of the fuel cell is smaller than a predetermined value, 3. The power supply system according to claim 2, wherein the selector does not select the fuel cell.
5 . 非常時において外部から電力の要求を受け取る要求受信部を更に備え、 前記選択部は、 非常時にのみ前記最大電力値が前記所定の値より小さくなった前 記燃料電池を発電させ、 当該燃料電池が発電した電力を外部に供給することを特徴 とする請求項 4に記載の電力供給、、' 5. The apparatus further includes a request receiving unit that receives a request for power from outside in an emergency, wherein the selecting unit causes the fuel cell to generate power only when the maximum power value is smaller than the predetermined value only in an emergency, and The power supply according to claim 4, wherein the power generated by the battery is supplied to the outside.
6 . 外部から前記余剰電力より小さレ、電力の要求があつた場合に、 前記外部か らの要求に応じて前記燃料電池に電力を発電させて外部に電力を供給する制御部を 更に備えることを特徵とする請求項 1に記載の電力供給システム。 6. When a request for power is received from the outside that is smaller than the surplus power, a control unit that supplies power to the outside by causing the fuel cell to generate power in response to the request from the outside is further provided. The power supply system according to claim 1, wherein
7 . 前記余剰電力算出部は、 前記余剰電力に基づいて、 前記負荷に供給される 電力が不足する確率を計算し、 前記負荷に供給される電力が不足する確率が所定の 値を超えた場合に、 その旨を外部に通知することを特徴とする請求項 1に記載の電 力供給システム。 7. The surplus power calculation unit calculates a probability that the power supplied to the load is insufficient based on the surplus power, and when the probability that the power supplied to the load is insufficient exceeds a predetermined value. 2. The power supply system according to claim 1, wherein a notification to that effect is sent to the outside.
8 . 前記余剰電力算出部は、 前記負荷の需要電力の推移を予測した電力推移デ ータに更に基づいて、 前記負荷に供給される電力が不足する確率を計算することを 特徴とする請求項 7に記載の電力供給システム。 8. The surplus power calculation unit calculates a probability that the power supplied to the load becomes insufficient based on power transition data that predicts a transition of demand power of the load. 7. The power supply system according to 7.
9 . 前記性能格納部は、 それぞれの前記燃料電池の故障確率を更に格納し、 前記余剰電力算出部は、 前記故障確率に更に基づいて、 前記負荷に供給される電 力が不足する確率を計算することを特徴とする請求項 7に記載の電力供給システム。 9. The performance storage unit further stores a failure probability of each of the fuel cells, and the surplus power calculation unit calculates a probability that the power supplied to the load becomes insufficient based on the failure probability. The power supply system according to claim 7, wherein
1 0 . 前記電力供給システムは、 複数の前記負荷に電力を供給し、 前記電力が 不足する確率が所定の確率以上である場合に、 前記複数の負荷のうち予め定められ た非重要負荷に電力を供給させない負荷制御部を更に備えることを特徴とする請求 項 7から 9のいずれかに記載の電力供給システム。 10. The power supply system supplies power to the plurality of loads, and when the probability of the power shortage is equal to or greater than a predetermined probability, the power is supplied to a predetermined non-critical load among the plurality of loads. The power supply system according to any one of claims 7 to 9, further comprising a load control unit that does not supply the power.
1 1 . 前記電力供給システムは、 複数の前記負荷に電力を供給し、 1 1. The power supply system supplies power to the plurality of loads,
前記複数の燃料電池を、前記最大電力値が所定の値以上である高信頼性電池群と、 前記最大電力値が前記所定の値より小さい低信頼性電池群とにきりわける電池切替 部と、 A battery switching unit that divides the plurality of fuel cells into a highly reliable battery group in which the maximum power value is equal to or more than a predetermined value; and a low reliability battery group in which the maximum power value is smaller than the predetermined value.
前記複数の負荷のうち、予め定められた重要負荷を前記高信頼性電池群に接続し、 前記重要負荷以外の非重要負荷を前記低信頼性電池群に接続する負荷制御部と を更に備えることを特徴とする請求項 7から 9のいずれかに記載の電力供給システ ム。 A load control unit that connects a predetermined important load among the plurality of loads to the high-reliability battery group, and connects a non-critical load other than the important load to the low-reliability battery group. The power supply system according to any one of claims 7 to 9, wherein:
1 2 . , 前記電池切替部は、 前記電力が不足する確率が所定の確率以上になった 場合に、 前記複数の燃料電池を前記高信頼性電池群と前記低信頼性電池群とにきり わけ、 12. The battery switching section separates the plurality of fuel cells into the high-reliability battery group and the low-reliability battery group when the probability of the power shortage is equal to or higher than a predetermined probability. ,
前記負荷制御部は、 前記電池切替部が前記複数の燃料電池を前記高信頼性電池群 と前記低信頼性電池群とにきりわけた場合に、 前記複数の負荷のうち、 予め定めら れた重要負荷を前記高信頼性電池群に接続し、 前記重要負荷以外の非重要負荷を前 記低信頼性電池群に接続することを特徴とする請求項 1 1に記載の電力供給システ ム。  The load control unit, when the battery switching unit divides the plurality of fuel cells into the high-reliability battery group and the low-reliability battery group, a predetermined one of the plurality of loads. The power supply system according to claim 11, wherein an important load is connected to the high reliability battery group, and a non-critical load other than the important load is connected to the low reliability battery group.
1 3 . 前記電池切替部は、 前記重要負荷の総需要電力が、 前記高信頼性電池群 の総発電力より大きい場合に、 前記低信頼性電池群に属する前記燃料電池のうち前 記最大発電力が最も大きい前記燃料電池を前記高信頼性電池群に属させることを特 徴とする請求項 1 1に記載の電力供給システム。 13. The battery switching unit, when the total demand power of the important load is larger than the total power generation of the high reliability battery group, the maximum power generation of the fuel cells belonging to the low reliability battery group. 12. The power supply system according to claim 11, wherein the fuel cell having the largest power belongs to the high reliability battery group.
1 4 . 前記負荷制御部は、 前記重要負荷の総需要電力が、 前記高信頼性電池群 の総発電力より大きい場合に、 前記重要負荷のうち予め定められた重要度が最も低 い前記負荷を前記非重要負荷として前記低信頼性電池群に接続することを特徴とす る請求項 1 1に記載の電力供給システム。 14. The load controller, when a total demand power of the important load is larger than a total power generation of the high-reliability battery group, the load having a predetermined lowest priority among the important loads. The power supply system according to claim 11, wherein the power supply system is connected to the low reliability battery group as the non-critical load.
1 5 . 前記高信頼性電池群及び前記重要負荷が接続され、 前記高信頼性電池群 が発電した電力を前記重要負荷に供給する高信頼性電力ネットワークと、 15. A high-reliability power network to which the high-reliability battery group and the important load are connected, and which supplies the power generated by the high-reliability battery group to the important load;
前記低信頼性電池群及び前記非重要負荷が接続され、 前記低信頼性電池群が発電 した電力を前記非重要負荷に供給する低信頼性電力ネットワークと  The low-reliability battery group and the non-critical load are connected, and a low-reliability power network for supplying power generated by the low-reliability battery group to the non-critical load;
を更に備えることを特徴とする請求項 1 1に記載の電力供給 The power supply according to claim 11, further comprising:
PCT/JP2004/002596 2003-03-10 2004-03-03 Power supply system WO2004082052A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003063750A JP3796226B2 (en) 2003-03-10 2003-03-10 Power supply system
JP2003-063750 2003-03-10

Publications (1)

Publication Number Publication Date
WO2004082052A1 true WO2004082052A1 (en) 2004-09-23

Family

ID=32984442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002596 WO2004082052A1 (en) 2003-03-10 2004-03-03 Power supply system

Country Status (2)

Country Link
JP (1) JP3796226B2 (en)
WO (1) WO2004082052A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131719B2 (en) * 2005-03-29 2013-01-30 独立行政法人産業技術総合研究所 Power generation amount control system, power generation amount control method, and arithmetic unit
JP4489640B2 (en) * 2005-06-02 2010-06-23 静岡瓦斯株式会社 Power supply control device, power supply control method, power supply system, and program
JP5296966B2 (en) * 2006-03-28 2013-09-25 大阪瓦斯株式会社 Power supply equipment
JP2011083086A (en) 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd Electric power distribution system
US8645285B2 (en) * 2011-06-24 2014-02-04 General Electric Company Methods and systems involving databases for energy microgeneration data
WO2017150139A1 (en) * 2016-03-04 2017-09-08 日本電気株式会社 Terminal device, control device, server, evaluation method, and program
US11205903B2 (en) 2016-03-04 2021-12-21 Nec Corporation Apparatus, evaluation method, and non-transitory storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299025A (en) * 1991-03-27 1992-10-22 Toshiba Corp Dc power unit
JPH06338341A (en) * 1993-05-28 1994-12-06 Hitachi Ltd Fuel cell power generation facility and operation thereof
JPH08236134A (en) * 1995-02-23 1996-09-13 Mitsubishi Heavy Ind Ltd Power supply control device for fuel cell
JP2001023667A (en) * 1999-07-09 2001-01-26 Nissan Motor Co Ltd Output diagnostic device for fuel cell vehicle
WO2001073879A1 (en) * 2000-03-29 2001-10-04 Idatech, Llc Fuel cell system with load management
JP2002334711A (en) * 2001-05-09 2002-11-22 Fuji Electric Co Ltd Method for operating solid polymer type fuel cell power generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299025A (en) * 1991-03-27 1992-10-22 Toshiba Corp Dc power unit
JPH06338341A (en) * 1993-05-28 1994-12-06 Hitachi Ltd Fuel cell power generation facility and operation thereof
JPH08236134A (en) * 1995-02-23 1996-09-13 Mitsubishi Heavy Ind Ltd Power supply control device for fuel cell
JP2001023667A (en) * 1999-07-09 2001-01-26 Nissan Motor Co Ltd Output diagnostic device for fuel cell vehicle
WO2001073879A1 (en) * 2000-03-29 2001-10-04 Idatech, Llc Fuel cell system with load management
JP2002334711A (en) * 2001-05-09 2002-11-22 Fuji Electric Co Ltd Method for operating solid polymer type fuel cell power generator

Also Published As

Publication number Publication date
JP3796226B2 (en) 2006-07-12
JP2004273316A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
KR101835575B1 (en) Dynamically reconfigurable framework for a large-scale battery system
US7904115B2 (en) Adaptive power management for a node of a mobile telecommunications network
JP3469228B2 (en) Power storage device charge / discharge control device, charge / discharge control method, and power storage system
JP6238107B2 (en) Storage battery management system
JP5667123B2 (en) Storage battery system and connection configuration changing method
JP2006108124A (en) Technique for controlling efficiency of fuel cell system
CN112005425A (en) Data center's stand-by power supply system, stand-by battery frame
JP2009043520A (en) Power supply system
WO2004082052A1 (en) Power supply system
JP3917092B2 (en) Power supply system and program for maintaining high reliability of DC distribution network
KR20130070952A (en) A method of power supply using backup battery and apparatus for it
US6981379B2 (en) Power supply system
JP2007122930A (en) Fuel cell unit
JP2001069668A (en) Power management device
JP3869845B2 (en) Power supply system
JP2013232703A (en) Method and device for controlling data processing system
KR20220060931A (en) Apparatus and method for managing battery
WO2017077711A1 (en) Fuel cell system and assembly thereof
US7732944B2 (en) Central current share coordinator, method of current sharing and battery plant employing the same
JP7230257B1 (en) Management system
US20100312411A1 (en) Ac consumption controller, method of managing ac power consumption and a battery plant employing the same
US20230275447A1 (en) Battery testing in operation
JP5758240B2 (en) Power feeding system and control method
JP2005261123A (en) Control method and control system of power system
WO2023175795A1 (en) Control device, control method, storage medium, and program

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase