WO2004080588A1 - Desulfurizing agent and method for production thereof, method for desulfurization, and method for producing hydrogen for fuel cell - Google Patents

Desulfurizing agent and method for production thereof, method for desulfurization, and method for producing hydrogen for fuel cell Download PDF

Info

Publication number
WO2004080588A1
WO2004080588A1 PCT/JP2004/003032 JP2004003032W WO2004080588A1 WO 2004080588 A1 WO2004080588 A1 WO 2004080588A1 JP 2004003032 W JP2004003032 W JP 2004003032W WO 2004080588 A1 WO2004080588 A1 WO 2004080588A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurization
desulfurizing agent
sulfur
compound
hydrogen
Prior art date
Application number
PCT/JP2004/003032
Other languages
French (fr)
Japanese (ja)
Inventor
Michihiro Ishimori
Masafumi Katsuta
Tetsuji Suzuki
Koichiro Furusawa
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Publication of WO2004080588A1 publication Critical patent/WO2004080588A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0218Compounds of Cr, Mo, W
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/003Additives for gaseous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials

Definitions

  • the present invention relates to a desulfurizing agent, a method for producing the same, a method for producing desulfurization, and a method for producing hydrogen for a fuel cell, and in particular, can efficiently remove sulfur from various sulfur-containing compounds such as organic sulfur-containing compounds.
  • this fuel cell is available in a phosphoric acid type, a molten carbonate type, a solid oxide type, a solid polymer type, etc.
  • solid polymer fuel cells operate at low temperatures. As a result, it is drawing attention as a power source for next-generation fuel cell vehicles.
  • Fuel cells can efficiently convert chemical energy into electric energy by electrochemically reacting hydrogen and oxygen.
  • hydrogen as a raw material source must have high purity.
  • Such hydrogen sources include methanol, liquefied natural gas, city gas, and synthetic liquid fuels.
  • fuel oil is generally subjected to reforming treatment such as steam reforming, partial reforming, and autothermal reforming, but the reforming catalyst is poisoned by sulfur content. Therefore, it is necessary to highly desulfurize the sulfur content in fuel oil.
  • H 2 S hydrogen sulfide
  • the wet method has a problem that the desulfurization temperature is low and the energy loss is large, while the dry method has a small energy loss and a high desulfurization temperature, and is currently commercially available (particularly, No resulfurization method has been developed yet.
  • Commonly used dry desulfurization agents include iron oxide and zinc oxide. Iron oxide as a conventional dry desulfurization agent does not have a very high ability to remove sulfur compounds, and therefore iron oxide should be used in fuel cells that have a significant decrease in performance due to the presence of sulfur compounds, such as fuel cells. It does not have sufficient performance as a desulfurizing agent.
  • zinc oxide used as a desulfurizing agent has a poor absorption capacity for sulfur compounds, is difficult to regenerate, and cannot be used repeatedly.
  • hydrogen production methods using advanced natural gas desulfurization include natural gas reforming. There is a way. Hydrogen reformed from natural gas and highly desulfurized can be used for fuel cells and the like. Conventional methods for producing such highly desulfurized hydrogen include flowing natural gas into a desulfurization apparatus, precision desulfurizing hydrogen sulfide with zinc oxide or the like to obtain highly desulfurized natural gas, and then modifying the resulting highly desulfurized natural gas. High-desulfurized hydrogen is obtained by feeding the gas into the gasifier.
  • the zinc fluoride desulfurizing agent decomposes the desulfurizing agent or deposits carbon inside the desulfurizing agent to block pores of the desulfurizing agent for diffusing the sulfur compound gas
  • Desulfurization efficiency is reduced by producing by-products not involved in desulfurization. Also, the desulfurization performance of the desulfurizing agent after regeneration will be significantly reduced.
  • JP-A-2003-643866 discloses a desulfurizing agent having a catalytically active metal supported on a zeolite carrier as a desulfurizing agent for removing sulfur compounds in a fuel gas.
  • desulfurizing agents desulfurize sulfur compounds by adsorption from fuel gas, and it is difficult to apply such desulfurizing agents to liquid fuels.
  • the desulfurization performance of the steel significantly deteriorated, and it was difficult to use it repeatedly.
  • an object of the present invention is to provide an ultra-high-performance desulfurizing agent capable of instantaneously removing sulfur from a sulfur-containing compound with high efficiency in a one-step process (conventionally a three-step process) and capable of repeated regeneration. It is to be.
  • Another object of the present invention is to provide a method for producing a desulfurizing agent capable of economically and efficiently producing such a desulfurizing agent.
  • Still another object of the present invention is to provide a desulfurization method capable of efficiently and efficiently removing a sulfur component in a sulfur-containing compound using the desulfurizing agent of the present invention.
  • Still another object of the present invention is to use a desulfurizing agent of the present invention to highly efficiently remove a sulfur component in a sulfur-containing compound and to perform a reforming treatment to obtain a high-purity hydrogen for a fuel cell. It is an object of the present invention to provide a method for producing a large amount of highly desulfurized hydrogen at low cost. Disclosure of the invention
  • the present inventors have conducted research to solve the above-mentioned problems, and as a result, a desulfurizing agent having a specific composition can efficiently cut various sulfur bonds such as a hydrogen-sulfur bond and a carbon-sulfur bond to improve desulfurization performance. At the same time, they have found that a desulfurizing agent whose desulfurization performance does not deteriorate even after repeated use after regeneration can be obtained, and have reached the present invention.
  • the desulfurizing agent of the present invention has the following general formula:
  • the desulfurizing agent of the present invention has the following general formula:
  • the molybdenum compound, the M o S 2 and / or M o O 3, also titanium compounds show T 1_Rei 2) characterized in that it comprises a compound represented by.
  • the method for producing a desulfurizing agent of the present invention have the formula: zinc ferrite silica represented by Z n F e 2 0 4 ZS i 0 2, molybdenum compounds (molybdenum compound, M o S 2 and / Or Mo 3), or a molybdenum compound and a titanium compound (a titanium compound shows Ti 2 ), pulverize and mix, and add a molding aid to the resulting mixture. It is characterized by firing.
  • the desulfurization method of the present invention is characterized in that when desulfurizing from a sulfur-containing compound, the desulfurizing agent of the present invention is desulfurized by contact with the sulfur-containing compound.
  • the used desulfurizing agent is regenerated by acidification and the regenerated desulfurizing agent is used repeatedly.
  • the method for producing hydrogen for a fuel cell according to the present invention is characterized in that the sulfur-containing compound is brought into contact with the desulfurizing agent of the present invention to desulfurize the sulfur-containing compound, and then subjected to steam reforming.
  • the desulfurizing agent of the present invention is a high-performance desulfurizing agent capable of repetitive desulfurization regeneration.
  • a desulfurizing agent capable of repetitive desulfurization regeneration.
  • it is possible to highly efficiently remove a sulfur content in a sulfur-containing compound and perform a reforming treatment.
  • high-purity hydrogen and highly desulfurized hydrogen can be easily produced economically. Therefore, in fields where the allowable sulfide concentration in hydrogen gas is extremely severe, such as fuel cells such as scale acid fuel cells and polymer electrolyte fuel cells, in which the electrodes and catalysts are susceptible to degradation due to the reaction with hydrogen sulfate, etc. Can also be used very effectively.
  • the method for producing a desulfurizing agent of the present invention enables the desulfurizing agent of the present invention to be produced economically and efficiently.
  • the desulfurization method of the present invention is capable of highly efficiently removing the sulfur content in a sulfur-containing compound and has a level of 100 ppb or less.
  • a natural gas such as city gas or LP gas has a level of 30 ppb or less.
  • the sulfur concentration can be reduced.
  • the desulfurizing agent of the present invention by using the desulfurizing agent of the present invention, the desulfurization start time is shortened, but excellent desulfurization performance is achieved, such as intermittent use in which desulfurization reaction is temporarily stopped and re-desulfurization reaction is repeated during desulfurization. have. That is, desulfurization can be easily started and stopped.
  • the desulfurizing agent of the present invention is used to highly efficiently remove the sulfur content of the sulfur-containing compound and perform a reforming treatment, thereby reducing a large amount of high-purity hydrogen for fuel cells and highly desulfurized hydrogen. It enables production at a low cost.
  • Figure 1 is a desulfurizing agent of the present invention (ZnFe 2 0 4 / S i 0 2 / Mo0 3) diagram showing the relationship of the desulfurization characteristics of time and the concentration of hydrogen sulfide (ppm) of (desulfurizing agent: Oxidation regeneration method; hydrogen sulfide concentration: gas at the desulfurization unit outlet).
  • Figure 2 is a desulfurizing agent of the present invention (ZnFe 2 ⁇ 4 / S i 0 2 / MoS 2) diagram showing the relationship of the desulfurization characteristics of time and the concentration of hydrogen sulfide (ppm) of (desulfurizing agent: Oxidation regeneration method; hydrogen sulfide concentration: gas at the desulfurization unit outlet).
  • Fig. 3 is an enlarged view (hydrogen sulfide concentration; ppb) of part of Fig. 2.
  • Figure 4 is a desulfurization cycle times and hydrogen sulfide absorption the relationship between the (experimental value Z theory) is a diagram showing the desulfurization agent of the present invention (ZnFe 2 0 4 / S i 0 2 Mo0 3).
  • Figure 5 shows the relationship between the number of desulfurization cycles and the amount of hydrogen sulfide absorbed (experimental / theoretical values). Is a diagram showing the desulfurization agent of the present invention (ZnF e 2 0 4 / S i 0 2 / Mo S 2).
  • Figure 6 is a desulfurization characteristics of the desulfurization agent of the present invention (ZnFe 2 0 4 XS i 0 2 / MoS 2), the relationship between time and concentration of hydrogen sulfide (ppb) and dimethyl sulphates id Concentration (ppm) (Desulfurizing agent: oxidation regeneration method; sulfide hydrogen concentration and dimethyl sulfide concentration: gas at the desulfurizer outlet).
  • ppb hydrogen sulfide
  • ppm dimethyl sulphates id Concentration
  • Figure 7 is a desulfurization characteristics of the desulfurization agent of the present invention (ZnFe 2 0 4 "S i 0 2 / MoS 2), the relationship between the time and the methane concentration (ppm) and dimethyl sulphates id Concentration (ppm) (Desulfurizing agent: oxidation regeneration method; methane concentration and dimethylsulfide concentration: gas at the exit of the desulfurization unit).
  • Figure 8 is a desulfurizing agent of the present invention (ZnFe 2 0 4 ZS I_ ⁇ 2 ZMoS 2 ZTi0 2) diagram showing the relationship of the desulfurization characteristics of time and the concentration of hydrogen sulfide (ppb) of (desulfurizing agent: oxidizing Regeneration method; hydrogen sulfide concentration: gas at the desulfurization unit outlet).
  • ppb concentration of hydrogen sulfide
  • Figure 9 is a desulfurizing agent (ZnFe 2 0 4 ZS I_ ⁇ 2 ZMOS 2 Bruno T I_ ⁇ 2) time desulfurization characteristics and methane concentration (ppm) and of dimethyl sulphates id concentration of the present invention (pp m) (Desulfurizing agent: oxidation regeneration method; methane concentration and dimethyl sulfide concentration: gas at the desulfurization unit outlet).
  • Figure 10 is a desulfurizing agent (ZnFe 2 ⁇ 4 ZS i 0 2 / M o S 2 / T i 0 2) Time and hydrogen sulfide concentration desulfurization characteristics of (PP b) and dimethyl sulfide concentration of the present invention (p pm) (desulfurization agent: oxidation regeneration system; hydrogen sulfide concentration and dimethyl sulfide concentration: gas at the desulfurization unit outlet).
  • FIG. 11 is a desulfurization agent (ZnFe 2 0 4 / S i 0 2 / Mo S 2 / T i 0 2) the desulfurization characteristic time and methane concentration (ppm) and dimethyl sulfide concentration of the present invention (ppb)
  • ppm desulfurization characteristic time and methane concentration
  • ppb dimethyl sulfide concentration of the present invention
  • ppb hydrogen sulfide
  • pp b dimethyl sulphates id Concentration
  • a preferred desulfurizing agent of the present invention has the following general formula:
  • molybdenum compounds show Mo S 2 and Z or Mo 0 3
  • Mo S 2 and / or MO0 3 is a molybdenum compound in the above formulas, the carbon of the sulfur-containing compounds - has a function of sulfur bonds as a catalyst for cutting out the hydrogenation, Z nFe 2 0 4 / S i 0 has a function as the second structural stability I ⁇ , especially to allow the maintenance of high performance of a desulfurizing agent after regeneration.
  • Mo S 2 and Z or Mo_ ⁇ as these structures stabilizers 3, T I_ ⁇ 2 to stabilize the bond with similarly sigma 11 6 2 0 4 and 3 i 0 2 and, the reproduction process after the desulfurization Has a function of preventing agglomeration of zinc ferrite.
  • the production method is as follows: a precursor of iron oxide and zinc oxide is mixed with a precursor of silicon oxide, and iron, zinc and silicon components are contained in the form of ⁇ -oxide by coprecipitation or homogeneous precipitation. the precipitate was allowed to form, filtered, dried and washed, by firing, further by grinding if necessary, ZnFe 2 0 4 - producing S I_ ⁇ 2.
  • the form of addition of silicon is not particularly limited as long as zinc, iron and silicon can interact with each other.
  • the mixing ratio of zinc and iron is not particularly limited, but the molar ratio is 1: 2 to 1: 4, preferably 1: 2 to 1: 3, in terms of desulfurization efficiency with respect to the amount of desulfurizing agent used. Is preferred.
  • the amount of silicon oxide added is not particularly limited, but the weight ratio (S i 0 2 / ZnFe 2 0 4 ) of 211 6 2 ⁇ 4 to 3 i 0 2 may be 1 Z4 to 2Z 1. It is preferable from the viewpoint of the desulfurization performance of the obtained desulfurizing agent.
  • iron oxide or zinc oxide for example, a water-soluble salt such as nitrate, sulfate and chloride can be used.
  • silicon as a precursor of silicon oxide, silicate, colloidal silicide, amorphous silicide, or the like can be used.
  • a hydroxide is formed by a coprecipitation method using ammonia or the like or a uniform precipitation method using urea or the like.
  • a precipitate As a precipitate.
  • Sodium hydroxide and potassium hydroxide can also be used as other additives for obtaining the precipitate.
  • This precipitate is aged, washed, filtered, dried, and fired at a temperature of, for example, 300 to 900 ° C. If necessary, by Kona ⁇ the obtained baked product, Z n F e 2 0 4 - producing S i O 2.
  • the mixtures were mixed Kona ⁇ and calcined by adding a molding aid to the mixture obtained, the present invention ZnF e 2 0 4 - S i 0 2 - molybdenum compound, or, ZnFe 2 0 4 -S i 0 2 _ molybdenum compound one titanium compound (wherein, the molybdenum compound, a Mo S 2 and / or Mo_ ⁇ 3, also titanium compounds show T I_ ⁇ 2) obtained.
  • the amount of Mo S 2 , Mo 0 3 , and even T i 0 2 to be added is not particularly limited, but preferably the total addition amount is 1 to 3 times the weight of ZnFe 2 0 4 —S i 0 2
  • the degree is preferred from the viewpoint that the desulfurizing performance of the obtained desulfurizing agent is maintained even after regeneration.
  • organic substances such as methylcellosolve, polyethylene glycol, polyvinyl alcohol, starch, and lignin can be used as a molding aid.
  • an inorganic agent such as glass fiber, carbon fiber, metal fiber and the like to mold.
  • firing is performed at a temperature of 400 to 700 ° C., and firing and forming into any desired shape such as, for example, granular, pellet, spherical, cylindrical, 82-cam, plate, etc. 2 ⁇ 4 one S I_ ⁇ 2 - molybdenum compound, or, ZnFe 2 0 4 -S I_ ⁇ 2-molybdenum compound one titanium compound (molybdenum compound, 03 2 and or MO0 3, also titanium compound T i 0 2 Is obtained).
  • the desulfurizing agent of the present invention By bringing the desulfurizing agent of the present invention thus obtained into contact with an organic sulfur-containing compound such as natural gas, city gas, or LP gas, or a sulfur-containing compound such as H 2 S, these sulfur-containing compounds are obtained. From the sulfur content. Specifically, for example, natural gas, city gas, LP gas, or the like is heated and vaporized, and the desulfurizing agent of the present invention is vapor-desulfurized with hydrogen together with hydrogen to thereby desulfurize sulfur. As the hydrogen used here, it is natural that hydrogen obtained by a hydrogen production process described later may be circulated and used.
  • the desulfurization conditions are not particularly limited, and various settings can be made depending on the properties of the organic sulfur-containing compound.However, it is preferable that the temperature is 300 to 60 ° C and the pressure is in the range of normal pressure to IMPaG. It is desirable because of the reactivity of the desulfurizing agent and the economics of the desulfurization equipment.
  • Gasoline a typical example of liquid fuels containing organic sulfur-containing compounds, contains many sulfur sulfides, such as thiophenes, mercaptans, and sulfides, and the binding energy of C-S bonds in them
  • the properties are similar to dimethyl sulfide (R 2 S), and the reaction to hydrocrack the sulfur compounds in gasoline into hydrogen sulfide and hydrocarbons should be considered in terms of the molecular size of the sulfur compounds. However, it is basically the same as the desulfurization reaction of dimethyl sulfide.
  • the desulfurization method of the present invention is effective for desulfurization of an organic sulfur-containing compound.
  • Such a mechanism is represented by, for example, the following mechanism (where R represents a hydrocarbon group).
  • the desulfurizing agent of the present invention comprises a desulfurizer (C-S bond) Since the cleavage and H 2 S generation) reactions and the desulfurization (H 2 S absorption) reaction can proceed simultaneously, the desulfurization method of the present invention removes the organic sulfur compounds in the organic sulfur-containing compounds in a step.
  • This is an ultra-high-performance desulfurization method that enables the sulfur concentration of organic sulfur-containing compounds with a sulfur concentration of 1000 pm or more to be reduced to 100 ppb or less.
  • the organic sulfur compound in the organic sulfur-containing compound is usually removed in the following three reaction steps.
  • H 2 S removal reaction process precision desulfurization, H 2 S absorption reaction: use of zinc oxide, etc.
  • the desulfurization method of the present invention uses a super-high This is a high-performance desulfurization method, and is a highly efficient method compared to conventional desulfurization methods.
  • the desulfurization method of the present invention is a high-performance desulfurizer, catalyst poisoning in the downstream reforming process (for hydrogen production) is eliminated or greatly reduced.
  • it since it is a renewable desulfurizing agent, it can be evaluated as excellent in terms of environmental preservation, resource reuse, system compactness, and economic efficiency.
  • the sulfur-containing compound that can be used in the desulfurization method of the present invention is not particularly limited as long as it can perform gas-phase desulfurization. Natural gas, city gas, alcohol, ether, LPG, naphtha, gasoline, kerosene, gas oil And various organic sulfur-containing compounds such as coal liquefied oil, and sulfur compounds such as hydrogen sulfide. It is also applicable to high-grade desulfurization and high-purification of by-product hydrogen from petroleum refining, steel industry, and hydrogen-based gas obtained from hydrogen-producing bacteria from organic waste.
  • the desulfurizing agent of the present invention after being used as a desulfurizing agent, It can be regenerated by oxidation, and the regenerated desulfurizing agent can be used repeatedly. Even by such repeated use, the desulfurization performance is not deteriorated but rather improved. Also, in the desulfurization reaction, intermittent use in which pause and re-desulfurization reaction are repeated is possible, and excellent desulfurization performance can be exhibited.
  • the structure of the desulfurization agent of the present invention Mo S 2 and Mo O 3, and T i 0 2 is Z nFe 2 0 4 and S i 0 be used as the titanium compound for use as a molybdenum compound This is because it has a function of stabilizing the bond with 2 and preventing aggregation of zinc ferrite in the regeneration treatment after desulfurization.
  • titanium compound (Ti 2 ) used as a carrier has a function of promptly performing the above reaction.
  • the desulfurization performance of the regenerated desulfurization agent obtained in this way shows better desulfurization performance than that of a newly prepared desulfurization agent.
  • dimethylsulfide is below the detection limit (30 ppb or less; equilibrium theoretical). 1 ppb or less) and hydrogen sulfide can be reduced to 3 O ppb or less.
  • the method for producing high-purity hydrogen of the present invention comprises: After the desulfurization step, high-purity hydrogen or highly desulfurized hydrogen can be produced by steam reforming and CO modification.
  • Such a mechanism is represented by the following mechanism.
  • advanced desulfurization is carried out in a desulfurization unit, and then the gas discharged from the desulfurization unit is passed through a reforming unit, and a part of the H 2 gas reformed and generated in the reforming unit is, for example, about 5%
  • the desulfurized material flowing into the desulfurization unit is highly desulfurized as a hydrogen reducing atmosphere, and this highly desulfurized product is sent to the reforming unit to achieve the advanced desulfurization.
  • Desulfurized hydrogen is obtained.
  • the desulfurizing agent of the present invention when used, the decomposition of sulfur compounds such as organic sulfur-containing compounds and the absorption of hydrogen sulfide can be simultaneously advanced.
  • sulfur compounds such as organic sulfur-containing compounds and the absorption of hydrogen sulfide
  • natural gas city gas, LP gas, etc.
  • Pure hydrogen or highly desulfurized hydrogen can be obtained easily and economically.
  • the obtained hydroxide is aged for 1 hour, filtered, washed 5 times with pure water, dried with 12 O: for 12 hours, then heated in an electric furnace to 80 Ot in 3 hours, and then 800 ° C in calcined 5 hours, and pulverized in a mortar, ZnFe 2 0 4 - was obtained S i 0 2.
  • Desulfurizer sample weight 600mg Test Example 1 (Gas composition 1; ⁇ S)
  • Example 1 The desulfurizing agent obtained in Example 1 and Example 2 was desulfurized under the above desulfurization conditions (desulfurization temperature: 450, desulfurization gas composition 1; H 2 S), and then oxidized and regenerated under the above regeneration conditions and repeated.
  • a desulfurization test was carried out, and the H 2 S concentration at the outlet of the fixed-bed flow reactor tube was measured with a gas chromatograph (device number: G2800-FPD, manufactured by Yanagimoto Seisakusho) having an FPD detector.
  • FIGS. 1 and 2 shows a partially enlarged precise measurement of FIG. 2 (? 1 2 3 the concentration of scale Ichiru 1) 111 13 obtained by changing the).
  • Fig. 4 shows the relationship between the number of desulfurization cycles of the desulfurizing agent of Example 1 and the amount of absorbed hydrogen sulfide
  • Fig. 5 shows the relationship between the number of desulfurization cycles of the desulfurizing agent of Example 2 and the amount of absorbed hydrogen sulfide. Show the person in charge.
  • the experimental values are based on the area of the graphs in Figs. 1 and 2 (Fig. Theoretical absorption values were calculated on the assumption ZnFe 2 ⁇ 4 3 mol, Fe 2 ⁇ 3 2 moles, 211_Rei and absorbs 1 mol of 1 ⁇ 2 S.
  • Example 1 and Example 2 were able to maintain excellent desulfurization performance after regeneration, the binding of zinc ferrite and silica as described above is stabilized by Mo 0 3 and Mo S 2, zinc ferrite It is considered that the aggregation of was prevented.
  • a desulfurization test and regeneration test were performed in the same manner as in Test Example 1 except that the desulfurizing agent was changed to the desulfurizing agent obtained in Example 2 and the desulfurizing gas composition was changed to desulfurizing gas composition 2; (CH 3 ) 2 S. I did it. At the outlet of the reaction tube, H 2 S concentration and CH 4 concentration were measured. The results are shown in FIGS. 6 and 7, respectively.
  • the desulfurizing agent of the present invention is not modified until it undergoes catalytic denaturation with hydrogen sulfide. It is considered that the S bond can be cleaved with high efficiency.
  • Example 3 the desulfurization agent obtained in Example 3 was subjected to a desulfurization test, a regeneration test, and a desulfurization reaction suspension test.
  • Test Example 3 Gas composition 1; H 9 S
  • FIG. 8 shows the scale of the H 2 S concentration in ppb, as in FIG. 3, and the minimum H 2 S concentration in Example 3 was set at 100% in the same manner as in Examples 1 and 2. It is possible to reduce to ppb.
  • Test Example 4 Gas composition 2; (CH,), S
  • a desulfurization test and a regeneration test were performed in the same manner as in Test Example 2 except that the desulfurizing agent was replaced with the desulfurizing agent obtained in Example 3. The results are shown in FIGS. 9 and 10, respectively.
  • Example 3 Using the desulfurizing agent of Example 3, a desulfurization reaction suspension test was performed.
  • the desulfurization gas composition was desulfurized with gas composition 2; (CH 3 ) 2 S for 60 minutes, and then gas composition 4; N 2 was flowed for 5 minutes, and it was in the reaction tube.
  • the desulfurization reaction was temporarily stopped by flowing out dimethyl sulfide, and then the desulfurization gas composition was changed to gas composition 2 again, and the desulfurization reaction was further performed for 60 minutes. Thereafter, the suspension and the desulfurization reaction were repeated in the same manner.
  • the desulfurizing agent of the present invention can be used intermittently in which a temporary stop and re-reaction are repeated in a desulfurization reaction, and exhibits excellent desulfurization performance.
  • the desulfurizing agent used in this experiment was the one used in the oxidation regeneration experiment (Figs. 9 and 10).
  • Dimethyl sulfide is detected in a small amount 5 minutes after the start of the first desulfurization, but 15 minutes After that, it was not detected, and it was not detected at all after the second time (detection limit: 3 O ppb).
  • H 2 S is less than 100 ppb after 15 minutes from the start of the first desulfurization, and is about 30 ppb immediately after the start of the desulfurization in the third time.
  • the desulfurizing agent of the present invention is a high-performance desulfurizing agent capable of repetitive desulfurization regeneration.
  • a desulfurizing agent capable of repetitive desulfurization regeneration.
  • it is possible to highly efficiently remove a sulfur content in a sulfur-containing compound and perform a reforming treatment.
  • high-purity hydrogen and highly desulfurized hydrogen can be easily produced economically. Therefore, even in fields where the allowable sulfide concentration in hydrogen gas is extremely severe, such as in phosphoric acid fuel cells and polymer electrolyte fuel cells, where electrodes and catalysts are liable to degrade due to reaction with hydrogen sulfide, etc. It can be used effectively.
  • the method for producing a desulfurizing agent of the present invention enables the desulfurizing agent of the present invention to be produced economically and efficiently.
  • the desulfurization method using the desulfurizing agent of the present invention can remove sulfur components in a sulfur-containing compound with high efficiency and at a level of 100 ppb or less, such as natural gas, city gas, and LP gas. From this, the sulfur concentration can be reduced to a level of 30 ppb or less.
  • this desulfurization method can provide excellent desulfurization performance, such as a short desulfurization start time and intermittent use in which desulfurization reaction is temporarily stopped and re-desulfurization reaction is repeated. That is, starting and stopping of desulfurization can be easily performed.
  • the “oxidation regeneration method” enables the desulfurization agent to be oxidized when the desulfurization performance of the desulfurization agent is reduced, thereby allowing the desulfurization agent to regenerate its desulfurization performance to the initial state.
  • the “temporary desulfurization reaction suspension method” is used to instantaneously perform advanced desulfurization of substances to be desulfurized.
  • the desulfurization can be easily stopped. After the suspension of the desulfurization reaction (processing), when the next substance to be desulfurized arrives, the advanced desulfurization can be performed again immediately. During the suspension of the desulfurization reaction, safety can be ensured by replacing the desulfurization unit with nitrogen.
  • the desulfurizing agent of the present invention is used to highly efficiently remove the sulfur content of the sulfur-containing compound and perform a reforming treatment, thereby reducing a large amount of high-purity hydrogen for fuel cells and highly desulfurized hydrogen. Enables production at low cost.

Abstract

A desulfurizing agent, characterized in that it is represented by the general formula: ZnFe2O4/SiO2/a molybdenum compound (MoS2 and/or MoO3), or ZnFe2O4/SiO2/a molybdenum compound (MoS2 and/or MoO3)/a titanium compound(TiO2); a method for producing the desulfurizing agent; a desulfurizing method which comprises contacting a sulfur-containing compound with the desulfurizing agent; and a method for producing a highly pure and highly desulfurized hydrogen gas which comprises the desulfurization using the desulfurizing agent followed by a reforming treatment. The desulfurizing agent exhibits high performance capability and allows sulfur to be removed from a sulfur-containing compound instantaneously in an one stage process with high efficiency, and also can be regenerated and used repeatedly. Further, the desulfurization using the desulfurizing agent can be temporarily stopped. The above method for producing hydrogen can be employed for producing a hydrogen gas for use in a fuel cell on a large scale at a low cost.

Description

明 細 書 脱硫剤及びその製造方法、  Description Desulfurizing agent and method for producing the same,
脱硫方法並びに燃料電池用水素の製造方法 技術分野  Desulfurization method and method for producing hydrogen for fuel cell
本発明は、 脱硫剤及びその製造方法、 脱硫方法並びに燃料電池用水素の製造方 法に関し、 特に詳しくは、 有機硫黄含有化合物等の種々の硫黄含有化合物から、 硫黄を効率良く除去することができる脱硫剤及び経済的にかつ効率的な脱硫剤の 製造方法、 また、 当該脱硫剤を用いた脱硫方法、 更には当該脱硫剤を用いて燃料 電池用の高純度水素、 高度脱硫水素を製造する方法に関する。 背景技術  The present invention relates to a desulfurizing agent, a method for producing the same, a method for producing desulfurization, and a method for producing hydrogen for a fuel cell, and in particular, can efficiently remove sulfur from various sulfur-containing compounds such as organic sulfur-containing compounds. A method for producing a desulfurizing agent and an economical and efficient desulfurizing agent, a desulfurizing method using the desulfurizing agent, and a method for producing high-purity hydrogen and advanced desulfurized hydrogen for a fuel cell using the desulfurizing agent About. Background art
近年、 環境性に優れた高効率エネルギー変換技術として、 燃料電池が国内外で 脚光を浴びている。  In recent years, fuel cells have been spotlighted at home and abroad as a highly efficient energy conversion technology with excellent environmental properties.
この燃料電池には、 使用する電解質の種類に応じて、 燐酸型、 溶融炭酸塩型、 固体酸化物型、 固体高分子型などのものがあり、 特に固体高分子型燃料電池は低 温度で作動することもあり、 次世代の燃料電池用自動車の動力源として着目され ている。  Depending on the type of electrolyte used, this fuel cell is available in a phosphoric acid type, a molten carbonate type, a solid oxide type, a solid polymer type, etc. Particularly, solid polymer fuel cells operate at low temperatures. As a result, it is drawing attention as a power source for next-generation fuel cell vehicles.
燃料電池は、 水素と酸素とを電気化学的に反応させて化学エネルギーを電気工 ネルギ一に効率良く変換できるものであるが、 原料源としての水素は、 高純度で あることが要される。  Fuel cells can efficiently convert chemical energy into electric energy by electrochemically reacting hydrogen and oxygen. However, hydrogen as a raw material source must have high purity.
かかる水素源としては、 メタノール、 液化天然ガス、 都市ガス、 合成液体燃料 Such hydrogen sources include methanol, liquefied natural gas, city gas, and synthetic liquid fuels.
(GT L)、 バイオフューエル、 廃プラスチック油、 石油系ナフサ、 ガソリン、 灯 油等の石油系炭化水素化合物が えられ、 特に石油系炭化水素化合物は、 保管及 び取り扱いが容易である上、 ガソリンスタンド等での供給施設が整備されている ことから、 水素源として有利である。 (GT L), Biofuel, Waste plastic oil, Petroleum naphtha, Gasoline, Light Petroleum hydrocarbon compounds such as oil can be obtained.Especially as petroleum hydrocarbon compounds are easy to store and handle, and the supply facilities at gas stations and other facilities are provided, which is an advantageous source of hydrogen. is there.
しかし、 石油系炭化水素化合物は、 硫黄分の含有量が多いという欠点があり -' これでは、 燃料電池の電極を硫黄が腐食してしまうため、 特に固体高分子型燃料 電池の場合、 硫黄化合物は数十 p p bレベルまで除去されなければならないが、 硫黄化合物中の H— S結合に加えて C—S結合を有効に切断して高い脱硫効率を 実現することは未だ確立されていない。  However, petroleum-based hydrocarbon compounds have the disadvantage of having a high sulfur content.- 'In this case, sulfur corrodes the fuel cell electrodes. Must be removed to tens of ppb levels, but it has not yet been established to effectively cleave the CS bond in addition to the HS bond in sulfur compounds to achieve high desulfurization efficiency.
更に、 一般に燃料油は、 水蒸気改質、 部分改質、 ォ一トサーマル改質等の改質 処理に課して改質処理されるが、 硫黄分により、 改質触媒が被毒されてしまうた め、 燃料油中の硫黄分を高度に脱硫することが必要とされる。  Further, fuel oil is generally subjected to reforming treatment such as steam reforming, partial reforming, and autothermal reforming, but the reforming catalyst is poisoned by sulfur content. Therefore, it is necessary to highly desulfurize the sulfur content in fuel oil.
現在使用されている硫化水素 (H2 S ) などの脱硫方法としては、 湿式方法と 乾式方法とがある。 湿式方法は、 脱硫温度が低く、 エネルギー損失が大きいとい う問題点があり、 一方、 乾式方法は、 エネルギー損失が小さい一方、 脱硫温度が 高くなつてしまい、 現時点では商用的に利用可能 (特に、 再生利用可能) な脱硫 方式はまだ開発されていない。 Currently used desulfurization methods for hydrogen sulfide (H 2 S) include a wet method and a dry method. The wet method has a problem that the desulfurization temperature is low and the energy loss is large, while the dry method has a small energy loss and a high desulfurization temperature, and is currently commercially available (particularly, No resulfurization method has been developed yet.
また、 通常使用されている乾式脱硫剤としては、 酸化鉄や酸化亜鉛がある。 従来の乾式脱硫剤としての酸化鉄は、 硫黄化合物を除去できる程度があまり高 くなく、 従って、 酸化鉄を燃料電池のような硫黄化合物の存在によって著しく性 能を低下させてしまうものに用いることはできず、 脱硫剤としては十分な性能を 有さない。  Commonly used dry desulfurization agents include iron oxide and zinc oxide. Iron oxide as a conventional dry desulfurization agent does not have a very high ability to remove sulfur compounds, and therefore iron oxide should be used in fuel cells that have a significant decrease in performance due to the presence of sulfur compounds, such as fuel cells. It does not have sufficient performance as a desulfurizing agent.
また、脱硫剤として使用されている酸化亜鉛は、硫黄化合物の吸収容量が劣り、 再生も困難であり、 繰り返し使用することはできない。  In addition, zinc oxide used as a desulfurizing agent has a poor absorption capacity for sulfur compounds, is difficult to regenerate, and cannot be used repeatedly.
一方、 天然ガスの高度脱硫方法による水素製造方法としては、 天然ガス ·改質 方法がある。 天然ガスを改質して高度に脱硫した水素は燃料電池等に用いること ができるものである。 かかる高度脱硫水素を製造する従来の方法は、 天然ガスを 脱硫装置に流入し、酸化亜鉛等で硫化水素を精密脱硫し、高度脱硫天然ガスを得、 次いで、 得られた高度脱硫天然ガスを改質装置に送入することにより、 高度脱硫 水素を得るものである。 On the other hand, hydrogen production methods using advanced natural gas desulfurization include natural gas reforming. There is a way. Hydrogen reformed from natural gas and highly desulfurized can be used for fuel cells and the like. Conventional methods for producing such highly desulfurized hydrogen include flowing natural gas into a desulfurization apparatus, precision desulfurizing hydrogen sulfide with zinc oxide or the like to obtain highly desulfurized natural gas, and then modifying the resulting highly desulfurized natural gas. High-desulfurized hydrogen is obtained by feeding the gas into the gasifier.
しかし、 かかる従来の天然ガスの高度脱硫方法では 使用した酸化亜鉛等は廃 棄され再利用することはできない。 また、 天然ガス中に含まれる硫化水素の濃度 が高い場合 (3 0〜1 0 0 0 p p m) には、 精密脱硫を行う前に、 MD E A (ァ ミン) 等を用いた粗脱硫を実施する必要があり、 工程が煩雑となってしまう。 このような問題点を解決するため、 特開平 4一 7 4 5 2 6号公報に、 脱硫剤と して使用する亜鉛フェライ卜の製造方法が開示されている。 脱硫剤としてのかか る亜鉛フェライトは、 亜鉛一鉄二元系酸化物とされることで硫黄化合物の除去効 率を向上させ、 さらにその吸収容量を向上させようとするものである。  However, zinc oxide and the like used in such conventional methods for desulfurizing natural gas are discarded and cannot be reused. If the concentration of hydrogen sulfide in natural gas is high (30 to 1000 ppm), perform crude desulfurization using MDEA (amine) before performing precision desulfurization. Required, and the process becomes complicated. In order to solve such problems, Japanese Patent Application Laid-Open No. Hei 4-74526 discloses a method for producing zinc ferrite used as a desulfurizing agent. Zinc ferrite, which is used as a desulfurizing agent, is intended to improve the efficiency of removing sulfur compounds and increase its absorption capacity by being made into a zinc-iron ferric binary oxide.
しかし、 前記亜鉛フヱライト脱硫剤は、 脱硫工程で使用した場合に、 脱硫剤の 分解または脱硫剤の内部で炭素が析出し、 硫黄化合物ガスが拡散するための脱硫 剤の細孔を閉塞したり、 脱硫に関与しない副生成物を生成したりして脱硫効率を 低下させてしまっている。 また、 再生後の脱硫剤の脱硫性能は大幅に低下してし まう。  However, when used in the desulfurization step, the zinc fluoride desulfurizing agent decomposes the desulfurizing agent or deposits carbon inside the desulfurizing agent to block pores of the desulfurizing agent for diffusing the sulfur compound gas, Desulfurization efficiency is reduced by producing by-products not involved in desulfurization. Also, the desulfurization performance of the desulfurizing agent after regeneration will be significantly reduced.
また、脱硫剤として亜鉛フェライトにシリカを添加した Z n F e 24 _ S i O 2も提案されている。かかる脱硫剤は、 Z n F e 24 fc S i〇2を添加することに より脱硫性能は向上させるものの、 再生後の脱硫性能は著しく低下してしまい、 繰り返し使用することは困難であつた。 Further, Z n F e 24 _ S i O 2 was added to the silica to zinc ferrite as desulfurizing agent has been proposed. Such desulfurization agent, although more desulfurization performance is improved on the addition of Z n F e 24 fc S I_〇 2, desulfurization performance after regeneration will be significantly reduced, it is filed difficult to repeatedly use Was.
更に、 特開 2 0 0 3— 6 4 3 8 6号公報には、 燃料ガス中の硫黄化合物を除去 するための脱硫剤として、 ゼォライト担体に触媒活性金属を担持した脱硫剤が提 案されているが、 かかる脱硫剤は、 燃料ガスからの吸着により硫黄化合物を脱硫 するもので、 かかる脱硫剤を液体燃料に適用することは困難であり、 汎用性が狭 く、 また再生使用後の脱硫性能は著しく低下してしまい、 やはり繰り返し使用す ることは困難であった。 Further, JP-A-2003-643866 discloses a desulfurizing agent having a catalytically active metal supported on a zeolite carrier as a desulfurizing agent for removing sulfur compounds in a fuel gas. However, such desulfurizing agents desulfurize sulfur compounds by adsorption from fuel gas, and it is difficult to apply such desulfurizing agents to liquid fuels. The desulfurization performance of the steel significantly deteriorated, and it was difficult to use it repeatedly.
従って、 本発明の目的は、 硫黄含有化合物から硫黄を高効率で瞬時に 1段工程 (従来は 3段工程) で除去することができ、 繰り返し再生の可能な超高性能の脱 硫剤を提供することである。  Accordingly, an object of the present invention is to provide an ultra-high-performance desulfurizing agent capable of instantaneously removing sulfur from a sulfur-containing compound with high efficiency in a one-step process (conventionally a three-step process) and capable of repeated regeneration. It is to be.
また、 他の目的は、 かかる脱硫剤を経済的かつ効率的に製造できる脱硫剤の製 造方法を提供することである。  Another object of the present invention is to provide a method for producing a desulfurizing agent capable of economically and efficiently producing such a desulfurizing agent.
さらに他の目的は、 本発明の脱硫剤を用いて、 硫黄含有化合物中の硫黄分を高 度に効率良く除去することができる脱硫方法を提供することである。  Still another object of the present invention is to provide a desulfurization method capable of efficiently and efficiently removing a sulfur component in a sulfur-containing compound using the desulfurizing agent of the present invention.
また更に本発明の他の目的は、 本発明の脱硫剤を用いて、 硫黄含有化合物中の 硫黄分を高度に効率良く除去し、 改質処理を施すことにより、 燃料電池用の高純 度水素、 高度脱硫水素を大量に低コストで製造する方法を提供することである。 発明の開示  Still another object of the present invention is to use a desulfurizing agent of the present invention to highly efficiently remove a sulfur component in a sulfur-containing compound and to perform a reforming treatment to obtain a high-purity hydrogen for a fuel cell. It is an object of the present invention to provide a method for producing a large amount of highly desulfurized hydrogen at low cost. Disclosure of the invention
本発明者らは上記課題を解決するため研究した結果、 特定の組成を有する脱硫 剤が、水素一硫黄結合や炭素一硫黄結合等の種々の硫黄結合を効率良く切断でき、 脱硫性能を向上させるとともに、 再生後の繰り返し使用においても脱硫性能が劣 化しない脱硫剤が得られることを見出し、 本発明に到達した。  The present inventors have conducted research to solve the above-mentioned problems, and as a result, a desulfurizing agent having a specific composition can efficiently cut various sulfur bonds such as a hydrogen-sulfur bond and a carbon-sulfur bond to improve desulfurization performance. At the same time, they have found that a desulfurizing agent whose desulfurization performance does not deteriorate even after repeated use after regeneration can be obtained, and have reached the present invention.
本発明の脱硫剤は、 次の一般式;  The desulfurizing agent of the present invention has the following general formula:
Z n F e 204ZS i〇ノモリブデン化合物 Z n Fe 2 0 4 ZS i〇Nomolybdenum compound
(式中、 モリプデン化合物は、 M o S 2及び Z又は M o O 3を示す) で表される化 合物を含むことを特徴とする。 また、 本発明の脱硫剤は、 次の一般式; (Wherein, the molybdenum compound represents Mo S 2 and Z or Mo O 3). The desulfurizing agent of the present invention has the following general formula:
Z n F e 204/S i O 2 モリブデン化合物/チタン化合物 Z n F e 2 0 4 / S i O 2 molybdenum compound / titanium compound
(式中、 モリブデン化合物は、 M o S 2及び/又は M o O 3を、 また、 チタン化合 物は T 1〇2を示す) で表される化合物を含むことを特徴とする。 (Wherein, the molybdenum compound, the M o S 2 and / or M o O 3, also titanium compounds show T 1_Rei 2) characterized in that it comprises a compound represented by.
そして、 上記本発明の脱硫剤の製造方法は、 次の式; Z n F e 204Z S i 02 で示される亜鉛フェライト ·シリカに、モリブデン化合物(モリブデン化合物は、 M o S 2及び/又は M o〇 3を示す)、またはモリブデン化合物とチタン化合物(チ タン化合物は、 T i〇2を示す) とを添加して粉砕混合し、 得られた混合物に成 形助剤を添加して焼成することを特徴とする。 The method for producing a desulfurizing agent of the present invention have the formula: zinc ferrite silica represented by Z n F e 2 0 4 ZS i 0 2, molybdenum compounds (molybdenum compound, M o S 2 and / Or Mo 3), or a molybdenum compound and a titanium compound (a titanium compound shows Ti 2 ), pulverize and mix, and add a molding aid to the resulting mixture. It is characterized by firing.
本発明の脱硫方法は、 硫黄含有化合物から脱硫するにあたり、 上記本発明の脱 硫剤を、 硫黄含有化合物と接触させることにより脱硫することを特徴とする。 好適には、 上記脱硫方法において、 使用した脱硫剤を酸ィヒすることにより再生 し、 当該再生した脱硫剤を繰り返し使用することが望ましい。  The desulfurization method of the present invention is characterized in that when desulfurizing from a sulfur-containing compound, the desulfurizing agent of the present invention is desulfurized by contact with the sulfur-containing compound. Preferably, in the above desulfurization method, it is desirable that the used desulfurizing agent is regenerated by acidification and the regenerated desulfurizing agent is used repeatedly.
あるいは、 上記脱硫方法において、 脱硫剤と硫黄含有化合物との接触を一時停 止した後、 再度、 脱硫剤と硫黄含有化合物とを接触させることが望ましい。  Alternatively, in the above desulfurization method, it is desirable to temporarily stop the contact between the desulfurizing agent and the sulfur-containing compound, and then contact the desulfurizing agent and the sulfur-containing compound again.
また、 本発明の燃料電池用水素の製造方法は、 硫黄含有化合物と、 本発明の脱 硫剤とを接触させて硫黄含有化合物を脱硫した後、 7蒸気改質することを特徴と する。  Further, the method for producing hydrogen for a fuel cell according to the present invention is characterized in that the sulfur-containing compound is brought into contact with the desulfurizing agent of the present invention to desulfurize the sulfur-containing compound, and then subjected to steam reforming.
本発明の脱硫剤は、 繰り返し脱硫再生が可能な高性能の脱硫剤であり、 かかる 脱硫剤を用いると、 硫黄含有化合物中の硫黄分を高度に効率良く除去し、 改質処 理を施すことにより、 高純度水素、 高度脱硫水素を経済的に製造することが容易 にできる。 従って、 電極や触媒が硫ィヒ水素等との反応で劣化しやすい鱗酸型燃料 電池、 固体高分子型燃料電池等の燃料電池のような水素ガス中の許容硫化物濃度 が極めて厳しい分野においても非常に有効に用いることができる。 また、 本発明の脱硫剤の製造方法は、 上記本発明の脱硫剤を経済的かつ効率的 に製造することができるものである。 The desulfurizing agent of the present invention is a high-performance desulfurizing agent capable of repetitive desulfurization regeneration. By using such a desulfurizing agent, it is possible to highly efficiently remove a sulfur content in a sulfur-containing compound and perform a reforming treatment. As a result, high-purity hydrogen and highly desulfurized hydrogen can be easily produced economically. Therefore, in fields where the allowable sulfide concentration in hydrogen gas is extremely severe, such as fuel cells such as scale acid fuel cells and polymer electrolyte fuel cells, in which the electrodes and catalysts are susceptible to degradation due to the reaction with hydrogen sulfate, etc. Can also be used very effectively. Further, the method for producing a desulfurizing agent of the present invention enables the desulfurizing agent of the present invention to be produced economically and efficiently.
本発明の脱硫方法は、 硫黄含有化合物中の硫黄分を高度に効率良く除去するこ とができ、 100 p p b以下のレベル.. 例えば天然ガス 都市ガス LPガスな どからは 30 p p b以下のレベルにまで、 硫黄濃度を低減できることを可能とす る。 また、 本発明の脱硫剤を用いることにより、 脱硫開始時間が短縮され、 しか も、 脱硫に際して、 脱硫反応の一時停止と再脱硫反応を繰り返す断続的使用も可 能となるなど、 優れた脱硫性能を有している。 すなわち、 脱硫の開始および停止 を容易に行うことができる。  INDUSTRIAL APPLICABILITY The desulfurization method of the present invention is capable of highly efficiently removing the sulfur content in a sulfur-containing compound and has a level of 100 ppb or less. For example, a natural gas such as city gas or LP gas has a level of 30 ppb or less. Until the sulfur concentration can be reduced. In addition, by using the desulfurizing agent of the present invention, the desulfurization start time is shortened, but excellent desulfurization performance is achieved, such as intermittent use in which desulfurization reaction is temporarily stopped and re-desulfurization reaction is repeated during desulfurization. have. That is, desulfurization can be easily started and stopped.
また更に、 本発明の脱硫剤を用いて、 硫黄含有化合物中の硫黄分を高度に効率 良く除去し、 改質処理を施すことにより、 大量に燃料電池用の高純度水素、 高度 脱硫水素を低コストで製造できることを可能とする。 図面の簡単な説明  Furthermore, the desulfurizing agent of the present invention is used to highly efficiently remove the sulfur content of the sulfur-containing compound and perform a reforming treatment, thereby reducing a large amount of high-purity hydrogen for fuel cells and highly desulfurized hydrogen. It enables production at a low cost. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の脱硫剤 (ZnFe 204/S i 02/Mo03) の脱硫再生特 性を時間と硫化水素濃度 (ppm) との関係で示した線図 (脱硫剤:酸化再生方 式;硫化水素濃度:脱硫装置出口ガス) である。 Figure 1 is a desulfurizing agent of the present invention (ZnFe 2 0 4 / S i 0 2 / Mo0 3) diagram showing the relationship of the desulfurization characteristics of time and the concentration of hydrogen sulfide (ppm) of (desulfurizing agent: Oxidation regeneration method; hydrogen sulfide concentration: gas at the desulfurization unit outlet).
第 2図は、 本発明の脱硫剤 (ZnFe24/S i 02/MoS2) の脱硫再生特 性を時間と硫化水素濃度 (ppm) との関係で示した線図 (脱硫剤:酸化再生方 式;硫化水素濃度:脱硫装置出口ガス) である。 Figure 2 is a desulfurizing agent of the present invention (ZnFe 2 4 / S i 0 2 / MoS 2) diagram showing the relationship of the desulfurization characteristics of time and the concentration of hydrogen sulfide (ppm) of (desulfurizing agent: Oxidation regeneration method; hydrogen sulfide concentration: gas at the desulfurization unit outlet).
第 3図は、 第 2図の一部精密測定拡大図 (硫化水素濃度; ppb) である。 第 4図は、脱硫サイクル回数と硫化水素吸収量(実験値 Z理論値)との関係を、 本発明の脱硫剤 (ZnFe 204/S i 02 Mo03) について示した図である。 第 5図は、脱硫サイクル回数と硫化水素吸収量(実験値/理論値)との関係を、 本発明の脱硫剤 (ZnF e 204/S i 02/Mo S2) について示した図である。 第 6図は、 本発明の脱硫剤 (ZnFe 204XS i 02/MoS2) の脱硫再生特 性を、 時間と硫化水素濃度 (ppb) 及びジメチルスルフイド濃度 (ppm) と の関係で示した線図 (脱硫剤:酸化再生方式;硫ィ匕水素濃度及ぴジメチルスルフ ィド濃度:脱硫装置出口ガス) である。 Fig. 3 is an enlarged view (hydrogen sulfide concentration; ppb) of part of Fig. 2. Figure 4 is a desulfurization cycle times and hydrogen sulfide absorption the relationship between the (experimental value Z theory) is a diagram showing the desulfurization agent of the present invention (ZnFe 2 0 4 / S i 0 2 Mo0 3). Figure 5 shows the relationship between the number of desulfurization cycles and the amount of hydrogen sulfide absorbed (experimental / theoretical values). Is a diagram showing the desulfurization agent of the present invention (ZnF e 2 0 4 / S i 0 2 / Mo S 2). Figure 6 is a desulfurization characteristics of the desulfurization agent of the present invention (ZnFe 2 0 4 XS i 0 2 / MoS 2), the relationship between time and concentration of hydrogen sulfide (ppb) and dimethyl sulphates id Concentration (ppm) (Desulfurizing agent: oxidation regeneration method; sulfide hydrogen concentration and dimethyl sulfide concentration: gas at the desulfurizer outlet).
第 7図は、 本発明の脱硫剤 (ZnFe 204 "S i 02/MoS2) の脱硫再生特 性を、 時間とメタン濃度 (ppm) 及びジメチルスルフイド濃度 (ppm) との 関係で示した線図 (脱硫剤:酸化再生方式;メタン濃度及びジメチルスルフィド 濃度:脱硫装置出口ガス) である。 , Figure 7 is a desulfurization characteristics of the desulfurization agent of the present invention (ZnFe 2 0 4 "S i 0 2 / MoS 2), the relationship between the time and the methane concentration (ppm) and dimethyl sulphates id Concentration (ppm) (Desulfurizing agent: oxidation regeneration method; methane concentration and dimethylsulfide concentration: gas at the exit of the desulfurization unit).
第 8図は、 本発明の脱硫剤 (ZnFe 204ZS i〇2ZMoS2ZTi02) の 脱硫再生特性を時間と硫化水素濃度 (ppb) との関係で示した線図 (脱硫剤: 酸化再生方式;硫化水素濃度:脱硫装置出口ガス) である。 Figure 8 is a desulfurizing agent of the present invention (ZnFe 2 0 4 ZS I_〇 2 ZMoS 2 ZTi0 2) diagram showing the relationship of the desulfurization characteristics of time and the concentration of hydrogen sulfide (ppb) of (desulfurizing agent: oxidizing Regeneration method; hydrogen sulfide concentration: gas at the desulfurization unit outlet).
第 9図は、 本発明の脱硫剤 (ZnFe 204ZS i〇2ZMoS2ノ T i〇2) の 脱硫再生特性を時間とメタン濃度 (ppm) 及びジメチルスルフイド濃度 (pp m) との関係で示した線図 (脱硫剤:酸化再生方式;メタン濃度及びジメチルス ルフィド濃度:脱硫装置出口ガス) である。 Figure 9 is a desulfurizing agent (ZnFe 2 0 4 ZS I_〇 2 ZMOS 2 Bruno T I_〇 2) time desulfurization characteristics and methane concentration (ppm) and of dimethyl sulphates id concentration of the present invention (pp m) (Desulfurizing agent: oxidation regeneration method; methane concentration and dimethyl sulfide concentration: gas at the desulfurization unit outlet).
第 10図は、 本発明の脱硫剤 (ZnFe24ZS i 02/M o S 2/T i 02) の脱硫再生特性を時間と硫化水素濃度(P P b)及びジメチルスルフィド濃度(p pm) との関係で示した線図 (脱硫剤:酸化再生方式;硫化水素濃度及びジメチ ルスルフィド濃度:脱硫装置出口ガス) である。 Figure 10 is a desulfurizing agent (ZnFe 2 4 ZS i 0 2 / M o S 2 / T i 0 2) Time and hydrogen sulfide concentration desulfurization characteristics of (PP b) and dimethyl sulfide concentration of the present invention (p pm) (desulfurization agent: oxidation regeneration system; hydrogen sulfide concentration and dimethyl sulfide concentration: gas at the desulfurization unit outlet).
第 11図は、 本発明の脱硫剤 (ZnFe 204/S i 02/Mo S2/T i 02) の脱硫特性を時間とメタン濃度(ppm)及びジメチルスルフィド濃度(ppb) との関係で示した線図 (脱硫剤:脱硫反応一時停止方式;メタン濃度及びジメチ ルスルフイド濃度:脱硫装置出口ガス) である。 第 12図は、 本発明の脱硫剤 (ZnFe 204/S i 02/UoS2/T i 02) の脱硫特性を時間と硫化水素濃度 (ppb) 及びジメチルスルフイド濃度 (pp b) との関係で示した線図 (脱硫剤:脱硫反応一時停止方式;硫化水素濃度及び ジメチルスルフィド濃度:脱硫装置出口ガス) である。 発明を実施するための最良の形態 FIG. 11 is a desulfurization agent (ZnFe 2 0 4 / S i 0 2 / Mo S 2 / T i 0 2) the desulfurization characteristic time and methane concentration (ppm) and dimethyl sulfide concentration of the present invention (ppb) This is a diagram showing the relationship (desulfurizing agent: desulfurization reaction suspension method; methane concentration and dimethylsulfide concentration: gas at the desulfurization unit outlet). FIG. 12 is a desulfurization agent of the present invention (ZnFe 2 0 4 / S i 0 2 / UoS 2 / T i 0 2) the desulfurization characteristic time and the concentration of hydrogen sulfide (ppb) and dimethyl sulphates id Concentration (pp b ) (Desulfurizing agent: method for temporarily stopping the desulfurization reaction; hydrogen sulfide concentration and dimethyl sulfide concentration: gas at the exit of the desulfurization unit). BEST MODE FOR CARRYING OUT THE INVENTION
本発明を、 以下の好適例に基づいて説明する。  The present invention will be described based on the following preferred examples.
本発明の好適な脱硫剤は、 次の一般式;  A preferred desulfurizing agent of the present invention has the following general formula:
ZnFe 204/S i 02 /モリブデン化合物 ZnFe 2 0 4 / S i 0 2 / molybdenum compound
(式中、 モリブデン化合物は Mo S2及び Z又は Mo 03を示す)、 あるいは、 ZnFe24/S i 02Zモリブデン化合物/チタン化合物 (Wherein molybdenum compounds show Mo S 2 and Z or Mo 0 3), or, ZnFe 24 / S i 0 2 Z molybdenum compound / titanium compound
(式中、 モリブデン化合物は、 MoS2及びZ又はMo03を、 また、 チタン化合 物は T i〇2を示す) で表される化合物を含む。 (Wherein, the molybdenum compound, the MoS 2 and Z or MO0 3, also titanium compounds show T I_〇 2) a compound represented by.
上記式中のモリブデン化合物である Mo S2及び/又は Mo03は、含硫黄化合 物の炭素—硫黄結合を水素化切断する際の触媒としての機能を有すると共に、 Z nFe 204/S i 02の構造安定ィ匕剤としての機能を有し、 特に再生後の脱硫剤 としての高性能性の維持を可能とする。 Mo S 2 and / or MO0 3 is a molybdenum compound in the above formulas, the carbon of the sulfur-containing compounds - has a function of sulfur bonds as a catalyst for cutting out the hydrogenation, Z nFe 2 0 4 / S i 0 has a function as the second structural stability I匕剤, especially to allow the maintenance of high performance of a desulfurizing agent after regeneration.
これらの構造安定剤としての Mo S2及び Z又は Mo〇3は、 T i〇2と同様に ∑ 11 6204と3 i 02との結合を安定化させ、 脱硫した後の再生処理における 亜鉛フェライトの凝集を防止することができる機能を有する。 Mo S 2 and Z or Mo_〇 as these structures stabilizers 3, T I_〇 2 to stabilize the bond with similarly sigma 11 6 2 0 4 and 3 i 0 2 and, the reproduction process after the desulfurization Has a function of preventing agglomeration of zinc ferrite.
さらに必要に応じて、 Mo S2及び/又は Mo 03と担体としての T i 02とを 組み合わせて用いることにより、 脱硫開始時間の大幅な短縮並びに脱硫反応の一 時停止と再反応を繰り返す断続的使用も可能とする。 すなわち、 高効率脱硫を瞬 時に開始でき、 脱硫停止、 さらに脱硫再開始も容易に行うことができる。 上記本発明の脱硫剤の製造方法を以下に説明する。 If necessary, by using a combination of the T i 0 2 as Mo S 2 and / or Mo 0 3 and a carrier, repeated pause and re-reaction of the significant reduction and desulfurization reaction of the desulfurization start time Intermittent use is also possible. That is, high-efficiency desulfurization can be started instantaneously, desulfurization can be stopped, and desulfurization can be restarted easily. The method for producing the desulfurizing agent of the present invention will be described below.
その製造方法としては、 酸化鉄及び酸化亜鉛の前駆物質と酸化珪素の前駆物資 とを混合し、 共沈法または均一沈殿法により τΚ酸化物の形態で鉄及び亜鉛及ぴ珪 素成分を含有する沈殿物を形成させ、 これを濾過、 洗浄した後 乾燥、 焼成する ことにより、 さらには必要に応じて粉砕することにより、 ZnFe 204— S i〇 2を製造する。 The production method is as follows: a precursor of iron oxide and zinc oxide is mixed with a precursor of silicon oxide, and iron, zinc and silicon components are contained in the form of τ-oxide by coprecipitation or homogeneous precipitation. the precipitate was allowed to form, filtered, dried and washed, by firing, further by grinding if necessary, ZnFe 2 0 4 - producing S I_〇 2.
亜鉛と鉄と珪素とが相互作用できる状態にあれば珪素の添加形態は特に制限さ れない。  The form of addition of silicon is not particularly limited as long as zinc, iron and silicon can interact with each other.
亜鉛と鉄との混合比 (Zn: Fe) は特に制限されないが、 モル比として 1 : 2〜1 : 4、 好ましくは1 : 2〜1 : 3が使用する脱硫剤の量に対する脱硫効率 の点から好ましい。  The mixing ratio of zinc and iron (Zn: Fe) is not particularly limited, but the molar ratio is 1: 2 to 1: 4, preferably 1: 2 to 1: 3, in terms of desulfurization efficiency with respect to the amount of desulfurizing agent used. Is preferred.
また、 酸化珪素の添加量も、 特に制限されないが、 211 624と3 i 02の 重量比 (S i 02/ZnF e 204) は、 1 Z4〜 2Z 1であることが、 得られる 脱硫剤の脱硫性能の点から好ましい。 Also, the amount of silicon oxide added is not particularly limited, but the weight ratio (S i 0 2 / ZnFe 2 0 4 ) of 211 6 24 to 3 i 0 2 may be 1 Z4 to 2Z 1. It is preferable from the viewpoint of the desulfurization performance of the obtained desulfurizing agent.
酸化鉄または酸ィ匕亜鉛の前駆物質としては、 例えば硝酸塩、 硫酸塩、 塩化塩等 の水溶性塩が使用できる。また、珪素は、酸化珪素の前駆物質としては、ケィ酸、 コロイダルシリ力、 アモルファスシリ力等が使用できる。  As a precursor of iron oxide or zinc oxide, for example, a water-soluble salt such as nitrate, sulfate and chloride can be used. In addition, as silicon, as a precursor of silicon oxide, silicate, colloidal silicide, amorphous silicide, or the like can be used.
具体的には、 これらの鉄前駆物質、 亜鉛前駆物質、 珪素前駆物質が混合されて いる水溶液を攪拌した後、 アンモニア等を用いた共沈法あるいは尿素等を用いた 均一沈殿法で水酸化物として沈殿物を得る。 沈殿物を得るための他の添加物質と しては、 水酸化ナトリウムや水酸化カリウムも用いることができる。 この沈殿物 を熟成、洗浄、濾過した後、乾燥し、例えば 300〜900°Cの温度で焼成する。 必要に応じて、 得られた焼成物を粉碎することにより、 Z n F e 204— S i O 2 を製造する。 次いで、得られた ZnFe 204— S i 02焼成物に構造安定剤としての Mo S 2 及び Z又は Mo03を、 さらには T i 02を添加する。 これらの混合物を粉碎混合 し、 得られた混合物に成形助剤を添加して焼成することにより、 本発明の ZnF e 204— S i 02—モリブデン化合物、あるいは、 ZnFe 204—S i 02_モリ ブデン化合物一チタン化合物 (式中、 モリブデン化合物は、 Mo S2及び/又は Mo〇3を、 また、 チタン化合物は T i〇2を示す) を得る。 Specifically, after stirring an aqueous solution in which these iron precursor, zinc precursor, and silicon precursor are mixed, a hydroxide is formed by a coprecipitation method using ammonia or the like or a uniform precipitation method using urea or the like. As a precipitate. Sodium hydroxide and potassium hydroxide can also be used as other additives for obtaining the precipitate. This precipitate is aged, washed, filtered, dried, and fired at a temperature of, for example, 300 to 900 ° C. If necessary, by Kona碎the obtained baked product, Z n F e 2 0 4 - producing S i O 2. Then, the resulting ZnFe 2 0 4 - a Mo S 2 and Z or MO0 3 as a structural stabilizer to the S i 0 2 calcined product, further adding T i 0 2. The mixtures were mixed Kona碎and calcined by adding a molding aid to the mixture obtained, the present invention ZnF e 2 0 4 - S i 0 2 - molybdenum compound, or, ZnFe 2 0 4 -S i 0 2 _ molybdenum compound one titanium compound (wherein, the molybdenum compound, a Mo S 2 and / or Mo_〇 3, also titanium compounds show T I_〇 2) obtained.
添加する Mo S 2や Mo03、 さらには T i 02の量は、 特に制限されないが、 好適には ZnFe 204— S i 02の重量に対して、 その添加総量は 1 ~ 3倍程度 が、 得られる脱硫剤の脱硫性能を再生後においても維持させる点から好ましい。 The amount of Mo S 2 , Mo 0 3 , and even T i 0 2 to be added is not particularly limited, but preferably the total addition amount is 1 to 3 times the weight of ZnFe 2 0 4 —S i 0 2 The degree is preferred from the viewpoint that the desulfurizing performance of the obtained desulfurizing agent is maintained even after regeneration.
T i 02を添加した場合、 その重量はモリブデン化合物の 1〜 5倍が、 脱硫剤 の反応性という点から好ましい。 If the addition of T i 0 2, its weight 1-5 times the molybdenum compound are preferred from the viewpoint of reactivity of the desulfurizing agent.
脱硫剤の成形に際しては、 成形助剤としてメチルセルソルブ、 ポリエチレング リコール、 ポリビエルアルコール、 でんぷん、 リグニン等の有機物を用いること ができる。  When molding the desulfurizing agent, organic substances such as methylcellosolve, polyethylene glycol, polyvinyl alcohol, starch, and lignin can be used as a molding aid.
また更に、 ガラス繊維、 炭素繊維、 金属繊維等の無機剤を加えて成形すること も可能である。  Further, it is also possible to add an inorganic agent such as glass fiber, carbon fiber, metal fiber and the like to mold.
次いで、焼成を温度 400〜700°Cで行い、例えば粒状、ペレツト状、球状、 円筒状、 八二カム状、 板状等の任意の所望する形状に焼成成形して、 本発明の Z nF e 24一 S i〇2—モリブデン化合物、 あるいは、 ZnFe 204—S i〇2 ーモリブデン化合物一チタン化合物 (モリブデン化合物は、 032及び 又は Mo03を、 また、 チタン化合物は T i 02を示す) の脱硫剤を得る。 Next, firing is performed at a temperature of 400 to 700 ° C., and firing and forming into any desired shape such as, for example, granular, pellet, spherical, cylindrical, 82-cam, plate, etc. 24 one S I_〇 2 - molybdenum compound, or, ZnFe 2 0 4 -S I_〇 2-molybdenum compound one titanium compound (molybdenum compound, 03 2 and or MO0 3, also titanium compound T i 0 2 Is obtained).
このようにして得られた本発明の脱硫剤と、 天然ガス、 都市ガス、 LPガス等 の有機硫黄含有化合物や、 H 2 S等の硫黄含有化合物とを接触させることにより、 これらの硫黄含有化合物から硫黄分を脱硫することを可能とする。 具体的には、 例えば天然ガス、 都市ガス、 LPガス等を加熱気化し、 水素とと ともに、 本発明の脱硫剤と気相脱硫することにより、 硫黄分の脱硫が図られる。 ここで使用される水素は、 後述する水素製造工程により得られた水素を循環さ せて用いてもよいことは当然である。 By bringing the desulfurizing agent of the present invention thus obtained into contact with an organic sulfur-containing compound such as natural gas, city gas, or LP gas, or a sulfur-containing compound such as H 2 S, these sulfur-containing compounds are obtained. From the sulfur content. Specifically, for example, natural gas, city gas, LP gas, or the like is heated and vaporized, and the desulfurizing agent of the present invention is vapor-desulfurized with hydrogen together with hydrogen to thereby desulfurize sulfur. As the hydrogen used here, it is natural that hydrogen obtained by a hydrogen production process described later may be circulated and used.
脱硫条件としては、 特に限定されず、 有機硫黄含有化合物の性状により種々の 設定が可能であるが、 温度が 300〜60 ΟΤ 圧力が常圧〜 IMP a · Gの範 囲で行なわれることが、 脱硫剤の反応性及び脱硫装置材料の経済性という理由の 点から望ましい。  The desulfurization conditions are not particularly limited, and various settings can be made depending on the properties of the organic sulfur-containing compound.However, it is preferable that the temperature is 300 to 60 ° C and the pressure is in the range of normal pressure to IMPaG. It is desirable because of the reactivity of the desulfurizing agent and the economics of the desulfurization equipment.
有機硫黄含有化合物の液体燃料の代表例であるガソリンには、 チォフェン類、 メルカブタン類、 スルフイド類等の多くの硫黄ィ匕合物が含まれているが、 その中 の C一 S結合の結合エネルギー性状は、 ジメチルスルフイド (R2S) と類似し ており、 ガソリン中の硫黄化合物を硫化水素と炭化水素とへ水素化分解する反応 は、 当該硫黄化合物の分子サイズ等の考慮すべき点があるものの、 基本的にはジ メチルスルフィドの脱硫反応と同様である。 Gasoline, a typical example of liquid fuels containing organic sulfur-containing compounds, contains many sulfur sulfides, such as thiophenes, mercaptans, and sulfides, and the binding energy of C-S bonds in them The properties are similar to dimethyl sulfide (R 2 S), and the reaction to hydrocrack the sulfur compounds in gasoline into hydrogen sulfide and hydrocarbons should be considered in terms of the molecular size of the sulfur compounds. However, it is basically the same as the desulfurization reaction of dimethyl sulfide.
本発明の脱硫方法は、 有機硫黄含有化合物の脱硫に有効である。  The desulfurization method of the present invention is effective for desulfurization of an organic sulfur-containing compound.
かかる機構は、 例えば以下の機構式で表される (式中、 Rは、 炭化水素基を示 す)。  Such a mechanism is represented by, for example, the following mechanism (where R represents a hydrocarbon group).
脱硫 (C一 S結合切断, H2S生成) Desulfurization (C-S bond breaking, H 2 S generation)
(触媒:モリブデン化合物);  (Catalyst: molybdenum compound);
RSH + H2→RH + H2S RSH + H 2 → RH + H 2 S
R2S+H2→RH + H2S R 2 S + H 2 → RH + H 2 S
脱硫 (H2S吸収) ; Desulfurization (H 2 S absorption);
H2S + ZnFe204 + H2->ZnS + Fe S+H20 H 2 S + ZnFe 2 0 4 + H 2 -> ZnS + Fe S + H 2 0
上記したように、 本発明の脱硫剤は、 上記機構式で表される脱硫 (C一 S結合 切断, H2S生成) 反応と脱硫 (H2S吸収) 反応とを同時に進行させることがで きるため、 本発明の脱硫方法は、 有機硫黄含有化合物中の有機硫黄化合物をーェ 程で除去できる超高性能脱硫方法であり、 硫黄濃度 1000 pm以上の有機硫 黄含有化合物の硫黄濃度を 100 p p b以下にまでクリーン化することを可能と する。 As described above, the desulfurizing agent of the present invention comprises a desulfurizer (C-S bond) Since the cleavage and H 2 S generation) reactions and the desulfurization (H 2 S absorption) reaction can proceed simultaneously, the desulfurization method of the present invention removes the organic sulfur compounds in the organic sulfur-containing compounds in a step. This is an ultra-high-performance desulfurization method that enables the sulfur concentration of organic sulfur-containing compounds with a sulfur concentration of 1000 pm or more to be reduced to 100 ppb or less.
従来の脱硫技術では、 有機硫黄含有化合物中の有機硫黄化合物は、 通常、 次の 3段階の反応工程にて除去される。  In the conventional desulfurization technology, the organic sulfur compound in the organic sulfur-containing compound is usually removed in the following three reaction steps.
(1) 水素化分解反応工程 (C_S結合切断, H2S生成反応):水素化触媒使用(1) Hydrocracking reaction process (C_S bond cleavage, H 2 S formation reaction): Use of hydrogenation catalyst
(2) H2S除去反応工程 (粗脱硫, H2S吸収反応) : MDEA (ァミン) 等使 用 (2) H 2 S removal reaction process (crude desulfurization, H 2 S absorption reaction): Use MDEA (amine)
(3) H2S除去反応工程 (精密脱硫, H2S吸収反応):酸化亜鉛等使用 本発明の脱硫方法は、 従来の 3段階工程を要する脱硫が、 1段工程で脱硫でき る超高性能脱硫方法であり、従来の脱硫方法と比較して大幅な高効率方式である。 しかも、 本発明の脱硫方法は、 高性能脱硫のため、 後流の改質プロセス (水素 製造用) における触媒被毒は消失もしくは大幅に軽減される。 さらに、 再生可能 な脱硫剤のため、 環境保全性、 資源再利用、 システムのコンパクト化、 経済性等 の観点からも優れたものと評価できる。 (3) H 2 S removal reaction process (precision desulfurization, H 2 S absorption reaction): use of zinc oxide, etc. The desulfurization method of the present invention uses a super-high This is a high-performance desulfurization method, and is a highly efficient method compared to conventional desulfurization methods. In addition, since the desulfurization method of the present invention is a high-performance desulfurizer, catalyst poisoning in the downstream reforming process (for hydrogen production) is eliminated or greatly reduced. Furthermore, since it is a renewable desulfurizing agent, it can be evaluated as excellent in terms of environmental preservation, resource reuse, system compactness, and economic efficiency.
本発明の脱硫方法に用いることができる硫黄含有化合物は、 気相脱硫が可能な ものであれば特に限定されず、 天然ガス、 都市ガス、 アルコール、 エーテル、 L PG, ナフサ、 ガソリン、 灯油、 軽油、 石炭液化オイル等の種々の有機硫黄含有 化合物や、 硫化水素等の硫黄化合物が挙げられる。 石油精製、 鉄鋼産業等からの 副生水素、 更に有機性廃棄物からの水素生成細菌にて得られる水素系ガス等の高 度脱硫、 高純度化にも適用可能である。  The sulfur-containing compound that can be used in the desulfurization method of the present invention is not particularly limited as long as it can perform gas-phase desulfurization. Natural gas, city gas, alcohol, ether, LPG, naphtha, gasoline, kerosene, gas oil And various organic sulfur-containing compounds such as coal liquefied oil, and sulfur compounds such as hydrogen sulfide. It is also applicable to high-grade desulfurization and high-purification of by-product hydrogen from petroleum refining, steel industry, and hydrogen-based gas obtained from hydrogen-producing bacteria from organic waste.
また、 本発明の脱硫剤は、 脱硫剤として使用した後、 低濃度の酸素ガスにより 酸化することにより再生でき、 当該再生した脱硫剤を繰り返し使用することがで きる。 このような繰り返しの使用によっても、 脱硫性能が劣ることなく、 むしろ 性能向上する。 また、 脱硫反応において、 一時停止と再脱硫反応を繰り返す断続 的使用も可能であり、 優れた脱硫性能を発揮することができる。 In addition, the desulfurizing agent of the present invention, after being used as a desulfurizing agent, It can be regenerated by oxidation, and the regenerated desulfurizing agent can be used repeatedly. Even by such repeated use, the desulfurization performance is not deteriorated but rather improved. Also, in the desulfurization reaction, intermittent use in which pause and re-desulfurization reaction are repeated is possible, and excellent desulfurization performance can be exhibited.
これは、 上記したように、 本発明の脱硫剤の構造中、 モリブデン化合物として 使用する Mo S2や Mo O 3、 並びにチタン化合物として使用する T i 02が Z nFe 204と S i 02との結合を安定化させ、 脱硫した後の再生処理における亜 鉛フェライトの凝集を防止することができる機能を有するからである。 This is because, as described above, the structure of the desulfurization agent of the present invention, Mo S 2 and Mo O 3, and T i 0 2 is Z nFe 2 0 4 and S i 0 be used as the titanium compound for use as a molybdenum compound This is because it has a function of stabilizing the bond with 2 and preventing aggregation of zinc ferrite in the regeneration treatment after desulfurization.
また、 当初、 ZnFe 204ZS i 02ZMo 03系脱硫剤の場合、 脱硫反応 (C - S結合の水素化切断反応) が若干妨げられたが、 当該モリブデン化合物が硫化 することにより、 脱硫反応が活発化されると考えられる。 Also, initially, when the ZnFe 2 0 4 ZS i 0 2 ZMo 0 3 desulfurization agent, desulfurization reaction - but (C S bond hydrogenation cleavage reaction) was prevented somewhat by the molybdenum compounds will sulphide, It is thought that the desulfurization reaction is activated.
一方、 ZnFe 204/S i 02/Mo S 2系脱硫剤の場合も、 上記/ Mo03系 脱硫剤の場合と同様に、 脱硫再生を繰り返すごとに優れた脱硫性能を示すことに より、 本発明の ZnF e 24ZS i 02/Mo S 2や Z n F e 24/S i 02/M o03系脱硫剤は、 脱硫再生を繰り返すと、 酸化モリブデンや硫化モリブデン等 が混在するコンプレックス型の脱硫剤となり、 脱硫反応を妨げることなく、 当該 モリブデン化合物自体が、 脱硫再生反応に寄与するものと考えられる。 On the other hand, in the case of ZnFe 2 0 4 / S i 0 2 / Mo S 2 based desulfurizing agent, as in the case of the / MO0 3 desulfurization agent, and more to exhibit excellent desulfurization performance each time repeating the desulfurization , ZnF e 2 4 ZS i 0 2 / Mo S 2 and Z n F e 2 4 / S i 0 2 / M o0 3 desulfurization agent of the present invention, repeating the desulfurization, molybdenum oxide or molybdenum sulfide Thus, the molybdenum compound itself is considered to contribute to the desulfurization regeneration reaction without interfering with the desulfurization reaction.
担体として使用するチタン化合物 (T i〇2) は、 上記反応を速やかに行わせ る機能を有すると考えられる。 It is considered that the titanium compound (Ti 2 ) used as a carrier has a function of promptly performing the above reaction.
このようにして得られた再生脱硫剤の脱硫性能は、 新規に調製した脱硫剤より も、 より優れた脱硫性能を示し、 例えばジメチルスルフイドを検出限界以下 (3 0 p p b以下;平衡論的に 1 ppb以下)、また硫化水素も 3 O ppb以下にまで クリーン化することを可能とする。  The desulfurization performance of the regenerated desulfurization agent obtained in this way shows better desulfurization performance than that of a newly prepared desulfurization agent. For example, dimethylsulfide is below the detection limit (30 ppb or less; equilibrium theoretical). 1 ppb or less) and hydrogen sulfide can be reduced to 3 O ppb or less.
また、 本発明の高純度水素の製造方法、 特に燃料電池用水素の製造方法は、 上 記脱硫工程を経た後に、 水蒸気改質して、 CO変性することにより、 高純度水素 又は高度脱硫水素を製造することができる。 Further, the method for producing high-purity hydrogen of the present invention, in particular, the method for producing hydrogen for a fuel cell, comprises: After the desulfurization step, high-purity hydrogen or highly desulfurized hydrogen can be produced by steam reforming and CO modification.
かかる機構は、 以下の機構式で表される。  Such a mechanism is represented by the following mechanism.
水蒸気改質 CnH2n + 2 + H20→H2 + CO + C02 Steam reforming C n H 2n + 2 + H 2 0 → H 2 + CO + C0 2
CO変性 CO + H20→H2 + C02 CO-modified CO + H 2 0 → H 2 + C0 2
本発明においては、 脱硫装置にて高度脱硫を実施し、 次いで脱硫装置から出た ガスを改質装置に通じ、改質装置にて改質生成した H2ガスの一部を、例えば 5 % 程度の水素ガスを、 脱硫装置の上流に戻すことにより、 脱硫装置に流入する被脱 硫物を、 水素還元性雰囲気として高度脱硫し、 この高度脱硫物を改質装置に送入 することにより、 高度脱硫水素が得られるのである。 In the present invention, advanced desulfurization is carried out in a desulfurization unit, and then the gas discharged from the desulfurization unit is passed through a reforming unit, and a part of the H 2 gas reformed and generated in the reforming unit is, for example, about 5% By returning the hydrogen gas to the upstream of the desulfurization unit, the desulfurized material flowing into the desulfurization unit is highly desulfurized as a hydrogen reducing atmosphere, and this highly desulfurized product is sent to the reforming unit to achieve the advanced desulfurization. Desulfurized hydrogen is obtained.
このように、 本発明の脱硫剤を用いると、 有機硫黄含有化合物等の硫黄化合物 の分解及び硫化水素の吸収を同時に進行させることができ、 例えば天然ガス、 都 市ガス、 LPガスなどから、 高純度水素又は高度脱硫水素が容易にかつ経済的に 得られる。  As described above, when the desulfurizing agent of the present invention is used, the decomposition of sulfur compounds such as organic sulfur-containing compounds and the absorption of hydrogen sulfide can be simultaneously advanced. For example, natural gas, city gas, LP gas, etc. Pure hydrogen or highly desulfurized hydrogen can be obtained easily and economically.
従って、 電極が硫化水素等との反応で劣化しやすい燐酸型燃料電池、 固体高分 子型燃料電池のような水素ガス中の許容硫化物濃度が厳しい分野においても、 高 純度の水素が得られるため、 産業上非常に有効である。 また、 溶融炭酸塩型燃料 電池又は固体電解質型燃料電池等の燃料電池へも容易に適用できる。 実施例  Therefore, high-purity hydrogen can be obtained even in fields where the allowable sulfide concentration in hydrogen gas is severe, such as phosphoric acid fuel cells and solid polymer fuel cells whose electrodes are easily degraded by reaction with hydrogen sulfide, etc. Therefore, it is very effective in industry. Further, it can be easily applied to a fuel cell such as a molten carbonate fuel cell or a solid electrolyte fuel cell. Example
本発明を以下の実施例、 比較例及び試験例によりさらに具体的に説明するが、 本発明はこれらの実施例に限定されるものではない。  The present invention will be described more specifically with reference to the following examples, comparative examples, and test examples, but the present invention is not limited to these examples.
実施例 1 Example 1
硝酸亜鉛六水和物を約 22. 3 g、 硝酸鉄 (III) 九水和物を約 60. 6g、 コ ロイダルシリカを約 30.1 g及び、蒸留水を 150m 1添加して攪拌混合した。 得られた混合液にアンモニアを約 35 m 1添加して溶液の p Hを 7に調整し、 水酸化物を共沈させた。 About 22.3 g of zinc nitrate hexahydrate, about 60.6 g of iron (III) nitrate nonahydrate, About 30.1 g of the toroidal silica and 150 ml of distilled water were added and mixed with stirring. About 35 ml of ammonia was added to the obtained mixed solution to adjust the pH of the solution to 7, and a hydroxide was coprecipitated.
得られた水酸化物を 1時間熟成後 濾過 純水を用いて 5回洗浄し、 12 O : で 12時間乾燥した後、電気炉にて 3時間で 80 Otまで昇温し、その後 800°C で 5時間焼成し、 乳鉢を用いて粉砕して、 ZnFe 204— S i 02を得た。 The obtained hydroxide is aged for 1 hour, filtered, washed 5 times with pure water, dried with 12 O: for 12 hours, then heated in an electric furnace to 80 Ot in 3 hours, and then 800 ° C in calcined 5 hours, and pulverized in a mortar, ZnFe 2 0 4 - was obtained S i 0 2.
次いで、得られた ZnF e 204— S i 02に対して、重量で 2倍の Mo 03を添 加して、 成形助剤としてのリグニンを全質量の 5%添加し、 乳鉢にて混合した。 混合して得られた物質を、 錠剤成形器にて夕ブレット状に成形し、 乾燥させた 後、 500°Cで 1時間焼成して、 焼成物を乳鉢にて粉砕し、 平均粒径 500〜 7 00 mに分級して、 本発明の ZnFe24/S i〇2/MoO 3脱硫剤を得た。 実施例 2 Then, ZnF e 2 0 4 obtained - against S i 0 2, twice the Mo 0 3 was added pressure by weight, the lignin as a molding aid were added 5% of the total weight, the mortar And mixed. The material obtained by mixing is shaped into an evening bullet using a tablet press, dried, and then baked at 500 ° C for 1 hour. 7 00 and classified into m, to obtain a ZnFe 24 / S I_〇 2 / MoO 3 desulfurization agent of the present invention. Example 2
実施例 1の M o〇 3を M o S 2に代えた以外は同様にして、 本発明の Z n F e 2 04/S i〇2ZMoS2脱硫剤を得た。 実施例 3 Was used in place of the M O_〇 3 of Example 1 to M o S 2 were obtained in the same manner Z n F e 2 0 4 / S I_〇 2 ZMOS 2 desulfurization agent of the present invention. Example 3
実施例 1の Mo〇3を Mo S2及び T i 02に代え、 ZnFe204—S i 02に対 する重量は、 MoS2が 0. 5倍、 丁 1〇2が1. 5倍となるように添加した以外 は同様にして、 本発明の ZnF e 204ZS i 02ZMo S 2 T i 02脱硫剤を得 た。 試験例 Instead the Mo_〇 3 of Example 1 Mo S 2 and T i 0 2, weight against the ZnFe 2 0 4 -S i 0 2 is, MoS 2 0.5 times, Ding 1_Rei 2 1.5 except for adding so as to be doubled in the same manner to obtain ZnF e 2 0 4 ZS i 0 2 ZMo S 2 T i 0 2 desulfurization agent of the present invention. Test example
<脱硫試験、 再生試験及び脱硫反応一時停止試験 > 上記実施例 1、 実施例 2及び実施例 3で得られた脱硫剤を用いて、 下記の固定 床流通式反応装置により脱硫試験、再生試験及び脱硫反応一時停止試験を行つた。 反応管:石英ガラス製; <Desulfurization test, regeneration test and desulfurization reaction suspension test> Using the desulfurizing agents obtained in Examples 1, 2, and 3, a desulfurization test, a regeneration test, and a test for temporarily stopping the desulfurization reaction were performed using the following fixed-bed flow reactor. Reaction tube: quartz glass;
内径 7. 6mm 外径 10. 0mm 長さ 40. 0mm  Inner diameter 7.6mm Outer diameter 10.0mm Length 40.0mm
(1) 脱硫試験条件  (1) Desulfurization test conditions
圧力 常圧 Pressure Normal pressure
温度 450 Temperature 450
ガス組成 H^S濃度 l O O O ppm Gas composition H ^ S concentration l O O O ppm
H2 20容量% H 2 20% by volume
N 2. バランス (80容量%) N 2. Balance (80% by volume)
ガス組成 2 (CH3) 2S濃度 100 p pm Gas composition 2 (CH 3 ) 2 S concentration 100 p pm
H2 20容量% H 2 20% by volume
N2 バランス (80容量%) N 2 balance (80% by volume)
ガス流量 10 Oml/分 Gas flow 10 Oml / min
脱硫剤試料重量 600mg Desulfurizing agent sample weight 600mg
(2) 再生試験条件 (2) Regeneration test conditions
圧力 常圧 Pressure Normal pressure
450。C  450. C
ガス組成 3 酸化再生 (60分) Gas composition 3 Oxidation regeneration (60 minutes)
2 2容量% 2 2% by volume
N2 98容量% N 2 98% by volume
ガス流量 100 m 1 /分 Gas flow 100 m1 / min
脱硫剤試料重 600 mg (3) 脱硫反応一時停止試験条件 Desulfurizer sample weight 600 mg (3) Desulfurization reaction suspension test conditions
圧力 常圧 Pressure Normal pressure
温度 450 Temperature 450
ガス組成 2 (脱硫反応: 1回 60分) Gas composition 2 (desulfurization reaction: once 60 minutes)
(CH3) 2S濃度 100 p pm (CH 3 ) 2 S concentration 100 p pm
H2 20容量% H 2 20% by volume
N2 バランス (80容量%) N 2 balance (80% by volume)
ガス組成 4 (一時停止: 1回 5分) Gas composition 4 (pause: once for 5 minutes)
N2 100容量% N 2 100% by volume
ガス流量 100 m 1 Z分 Gas flow 100 m 1 Z min
脱硫剤試料重量 600mg 試験例 1 (ガス組成 1 ; ^S) Desulfurizer sample weight 600mg Test Example 1 (Gas composition 1; ^ S)
実施例 1及び実施例 2で得られた脱硫剤を上記脱硫条件 (脱硫温度; 450で、 脱硫ガス組成 1 ; H2S) にて脱硫し、 次いで上記再生条件にて酸化再生をして 繰り返し脱硫試験をおこない、 固定床流通式反応装置管の出口 H2S濃度を、 F PD検出器を有するガスクロマトグラフ (装置番号; G2800— FPD、 株式 会社柳本製作所製) にて測定した。 その結果を各々図 1及び図 2に示す。 また、 図 3に、 図 2の一部拡大精密測定図 (?123濃度のスケ一ルを1) 111から 13 に変更したもの) を示す。 The desulfurizing agent obtained in Example 1 and Example 2 was desulfurized under the above desulfurization conditions (desulfurization temperature: 450, desulfurization gas composition 1; H 2 S), and then oxidized and regenerated under the above regeneration conditions and repeated. A desulfurization test was carried out, and the H 2 S concentration at the outlet of the fixed-bed flow reactor tube was measured with a gas chromatograph (device number: G2800-FPD, manufactured by Yanagimoto Seisakusho) having an FPD detector. The results are shown in FIGS. 1 and 2, respectively. Further, FIG. 3 shows a partially enlarged precise measurement of FIG. 2 (? 1 2 3 the concentration of scale Ichiru 1) 111 13 obtained by changing the).
また、 図 4には実施例 1の脱硫剤の脱硫サイクル回数と硫化水素吸収量との関 係を、 図 5には、 実施例 2の脱硫剤の脱硫サイクル回数と硫化水素吸収量との関 係を示す。実験値は、 図 1及び図 2のグラフの面積により (図積分)、 また H2 S 理論吸収値は ZnFe24は 3モル、 Fe23は 2モル、 211〇は1モルの1^2 Sを吸収すると仮定して算出した。 Fig. 4 shows the relationship between the number of desulfurization cycles of the desulfurizing agent of Example 1 and the amount of absorbed hydrogen sulfide, and Fig. 5 shows the relationship between the number of desulfurization cycles of the desulfurizing agent of Example 2 and the amount of absorbed hydrogen sulfide. Show the person in charge. The experimental values are based on the area of the graphs in Figs. 1 and 2 (Fig. Theoretical absorption values were calculated on the assumption ZnFe 24 3 mol, Fe 23 2 moles, 211_Rei and absorbs 1 mol of 1 ^ 2 S.
特に、 Z n F e 204/S i〇2ZMo S2や Z nF e 204/S i 02/Mo03 系脱硫剤は、 H2S吸収容量との観点より優れた脱硫剤であり、 脱硫再生処理回 数を増す毎に H2S吸収量実測値は理論値より高い値となり、 l ppm以下の 高性能脱硫維持時間が長くなつていることがわかる。 In particular, Z n F e 2 0 4 / S I_〇 2 ZMo S 2 and Z nF e 2 0 4 / S i 0 2 / Mo0 3 based desulfurizing agent, H 2 S absorption capacity and aspects superior to desulfurizing agent With each increase in the number of desulfurization regeneration treatments, the measured H 2 S absorption value becomes higher than the theoretical value, and it can be seen that the high-performance desulfurization maintenance time of 1 ppm or less is longer.
これにより、 実施例 1及び実施例 2で得られた本発明の脱硫剤は、 再生処理後 も益々優れた脱硫性能を有することがわかる。  This indicates that the desulfurizing agents of the present invention obtained in Example 1 and Example 2 have more and more excellent desulfurization performance even after the regeneration treatment.
実施例 1及び実施例 2の脱硫剤が再生後も優れた脱硫性能を維持できたのは、 上記したように亜鉛フェライトとシリカとの結合が Mo 03や Mo S2によって 安定し、 亜鉛フェライトの凝集が防止されたためと考えられる。 The desulfurization agent of Example 1 and Example 2 were able to maintain excellent desulfurization performance after regeneration, the binding of zinc ferrite and silica as described above is stabilized by Mo 0 3 and Mo S 2, zinc ferrite It is considered that the aggregation of was prevented.
また、 H2S吸収量実測値は理論値より高い値となったこの結果は、 脱硫反応 機構として従来想定されてきた脱硫反応式 1の他に、 反応式 2のような脱硫反応 も行なわれていることを示唆するものと考えられる。 In addition, the measured H 2 S absorption value was higher than the theoretical value.This result indicates that in addition to the desulfurization reaction formula 1 conventionally assumed as the desulfurization reaction mechanism, the desulfurization reaction as shown in reaction formula 2 is also performed. It is considered to indicate that
反応式 1 Reaction formula 1
ZnFe 204+ 3H2S+H2 ZnFe 2 0 4 + 3H 2 S + H 2
→ZnS+2Fe S+4H20 → ZnS + 2Fe S + 4H 20
反応式 2 Reaction formula 2
ZnF e 204+4H2S ZnF e 2 0 4 + 4H 2 S
→ZnS+Fe S+Fe S2+4H20 → ZnS + Fe S + Fe S 2 + 4H 20
また、 図 3より、 1回目は脱硫性能がやや劣るものの、 脱硫再生を繰り返した 後の 2回目以降の脱硫性能は、 硫黄化合物が 3 O ppb以下となっており、 硫化 水素の極めて高度な脱硫が可能となることがわかる。 試験例 2 (ガス組成 2 ; (CHJ 9S) According to Fig. 3, although the desulfurization performance is slightly inferior in the first run, the desulfurization performance in the second and subsequent runs after repeated desulfurization regeneration is as low as 3 O ppb or less for sulfur compounds. It turns out that it becomes possible. Test Example 2 (Gas composition 2; (CHJ 9 S)
脱硫剤を実施例 2で得られた脱硫剤に、また、脱硫ガス組成を脱硫ガス組成 2; (CH3) 2Sに代えた以外は、 試験例 1と同様にして、 脱硫試験や再生試験をお こなった。 また、 反応管の出口では、 H2S濃度及び CH4濃度を測定した。 その 結果を各々図 6及び図 7に示す。 A desulfurization test and regeneration test were performed in the same manner as in Test Example 1 except that the desulfurizing agent was changed to the desulfurizing agent obtained in Example 2 and the desulfurizing gas composition was changed to desulfurizing gas composition 2; (CH 3 ) 2 S. I did it. At the outlet of the reaction tube, H 2 S concentration and CH 4 concentration were measured. The results are shown in FIGS. 6 and 7, respectively.
図 6より、 硫化ジメチルを 100 p p b以下まで高度脱硫することが可能とな り、 図 6から、 硫ィ匕ジメチルが分解されて発生する硫化水素もすぐに 100 p p b以下に脱硫されていることがわかる。 これは、 硫ィ匕ジメチルが分解したときに 発生するメタンが検出されていることからも (図 7) 明らかである。  From Fig. 6, it is possible to desulfurize dimethyl sulfide to 100 ppb or less, and from Fig. 6, it can be seen that hydrogen sulfide generated by decomposition of dimethyl sulfate is also desulfurized to 100 ppb or less immediately. Understand. This is evident from the fact that methane generated when sulphide dimethyl is decomposed is detected (Fig. 7).
さらに、 硫化ジメチル濃度が 100 ppb以下となるのに、 脱硫開始から 40 分程度の時間を要していることから、 本発明の脱硫剤は、 硫化水素によって、 触 媒変性を起こしてはじめて C— S結合が高効率で切断できる触媒であると考えら れる。  Furthermore, it takes about 40 minutes from the start of desulfurization for the dimethyl sulfide concentration to be 100 ppb or less. Therefore, the desulfurizing agent of the present invention is not modified until it undergoes catalytic denaturation with hydrogen sulfide. It is considered that the S bond can be cleaved with high efficiency.
次に、 実施例 3で得られた脱硫剤に対して、 脱硫試験、 再生試験並びに脱硫反 応一時停止試験を行った。 試験例 3 (ガス組成 1 ; H9S) Next, the desulfurization agent obtained in Example 3 was subjected to a desulfurization test, a regeneration test, and a desulfurization reaction suspension test. Test Example 3 (Gas composition 1; H 9 S)
脱硫剤を実施例 3で得られた脱硫剤に代えた以外は、 試験例 1と同様にして、 脱硫試験と再生試験を行った。 その結果を図 8に示す。  A desulfurization test and a regeneration test were performed in the same manner as in Test Example 1 except that the desulfurizing agent was replaced with the desulfurizing agent obtained in Example 3. Fig. 8 shows the results.
図 8は、 図 3と同様に、 H2S濃度のスケールを p p bで示したものであり、 実施例 1及び実施例 2などと同様に、 実施例 3においても最低 H2S濃度を 10 0 p p bに低減することが可能である。 試験例 4 (ガス組成 2 ; (CH,) ,S) 脱硫剤を実施例 3で得られた脱硫剤に代えた以外は、 試験例 2と同様にして、 脱硫試験や再生試験をおこなった。 その結果を各々図 9及び図 10に示す。 FIG. 8 shows the scale of the H 2 S concentration in ppb, as in FIG. 3, and the minimum H 2 S concentration in Example 3 was set at 100% in the same manner as in Examples 1 and 2. It is possible to reduce to ppb. Test Example 4 (Gas composition 2; (CH,), S) A desulfurization test and a regeneration test were performed in the same manner as in Test Example 2 except that the desulfurizing agent was replaced with the desulfurizing agent obtained in Example 3. The results are shown in FIGS. 9 and 10, respectively.
図 9及び図 10より、 硫化ジメチルは、 脱硫開始から 5分後では、 3 p pm以 下となり、 15分後には、 ほとんど検出されず、 他方、 硫化ジメチルが分解して 発生するメタンは、 15分以降には、 ほぼ 200 p p mが定量的に検出されてい る。 また、 H2Sについても、 10〜20分後には、 200 ρ p b以下となる。 これらにより、 実施例 3の ZnFe 204/S i 02/MoS2ZT i 02は、 実施 例 2の ZnFe 204/S i〇2ZMoS2より、脱硫開始後、極めて短時間で効果 的に硫ィ匕ジメチルを脱硫していることが理解される。 試験例 5 (脱硫反応一時停止試験) From Figs. 9 and 10, dimethyl sulfide was less than 3 ppm after 5 minutes from the start of desulfurization, and was hardly detected after 15 minutes.On the other hand, methane generated by decomposition of dimethyl sulfide was 15 minutes. After that, almost 200 ppm was quantitatively detected. Also, H 2 S becomes less than 200 ρpb after 10 to 20 minutes. These, ZnFe 2 0 4 / S i 0 2 / MoS 2 ZT i 0 2 of Example 3 from ZnFe 2 0 4 / S I_〇 2 ZMOS 2 of Example 2, after the start of desulfurization, in a very short period of time It is understood that the sulfuric acid dimethyl is effectively desulfurized. Test Example 5 (temporary suspension test for desulfurization reaction)
実施例 3の脱硫剤を用いて、 脱硫反応一時停止試験を行った。 脱硫反応一時停 止試験は、 脱硫ガス組成をガス組成 2 ; (CH3) 2Sで 60分間、 脱硫を行い、 その後、 5分間はガス組成 4 ; N2を流し、 反応管の中にある硫化ジメチルを流 し出すことにより、 脱硫反応を一時停止させ、 その後、 再度脱硫ガス組成をガス 組成 2に代え、 更に 60分間の脱硫反応行なった。 その後、 同様に一時停止と脱 硫反応を繰り返した。 Using the desulfurizing agent of Example 3, a desulfurization reaction suspension test was performed. In the desulfurization reaction suspension test, the desulfurization gas composition was desulfurized with gas composition 2; (CH 3 ) 2 S for 60 minutes, and then gas composition 4; N 2 was flowed for 5 minutes, and it was in the reaction tube. The desulfurization reaction was temporarily stopped by flowing out dimethyl sulfide, and then the desulfurization gas composition was changed to gas composition 2 again, and the desulfurization reaction was further performed for 60 minutes. Thereafter, the suspension and the desulfurization reaction were repeated in the same manner.
その結果を図 11及び図 12に示す。  The results are shown in FIGS.
図 11及び図 12により、 脱硫反応を一時停止した後に、 再度、 脱硫を行う場 合では、 脱硫開始直後から脱硫反応が定常状態となり、 効率的に脱硫が行われて いる。 これにより、 本発明の脱硫剤は、 脱硫反応において、 一時停止と再反応を 繰り返す断続的使用も可能であり、優れた脱硫性能を発揮することが理解できる。 本実験で使用した脱硫剤は酸化再生実験 (図 9、 図 10) で使用したものであ る。 硫化ジメチルは、 第 1回目の脱硫開始後 5分では少量検出されるが、 15分 以降では検出されず、 また第 2回目以降は全く検出されない (検出限界: 3 O p p b )。 一方、 H2 Sは、 第 1回目の脱硫開始後 1 5分以降では l O O p p b以下 であり、 第 3回目では脱硫開始後直ちに 3 0 p p b程度となっている。 産業上の利用可能性 According to Figs. 11 and 12, when the desulfurization reaction is temporarily stopped and then desulfurized again, the desulfurization reaction is in a steady state immediately after the start of desulfurization, and the desulfurization is performed efficiently. Accordingly, it can be understood that the desulfurizing agent of the present invention can be used intermittently in which a temporary stop and re-reaction are repeated in a desulfurization reaction, and exhibits excellent desulfurization performance. The desulfurizing agent used in this experiment was the one used in the oxidation regeneration experiment (Figs. 9 and 10). Dimethyl sulfide is detected in a small amount 5 minutes after the start of the first desulfurization, but 15 minutes After that, it was not detected, and it was not detected at all after the second time (detection limit: 3 O ppb). On the other hand, H 2 S is less than 100 ppb after 15 minutes from the start of the first desulfurization, and is about 30 ppb immediately after the start of the desulfurization in the third time. Industrial applicability
本発明の脱硫剤は、 繰り返し脱硫再生が可能な高性能の脱硫剤であり、 かかる 脱硫剤を用いると、 硫黄含有化合物中の硫黄分を高度に効率良く除去し、 改質処 理を施すことにより、 高純度水素、 高度脱硫水素を経済的に製造することが容易 にできる。 従って、 電極や触媒が硫化水素等との反応で劣化しやすい燐酸型燃料 電池、 固体高分子型燃料電池等の燃料電池のような水素ガス中の許容硫化物濃度 が極めて厳しい分野においても非常に有効に用いることができる。  The desulfurizing agent of the present invention is a high-performance desulfurizing agent capable of repetitive desulfurization regeneration. By using such a desulfurizing agent, it is possible to highly efficiently remove a sulfur content in a sulfur-containing compound and perform a reforming treatment. As a result, high-purity hydrogen and highly desulfurized hydrogen can be easily produced economically. Therefore, even in fields where the allowable sulfide concentration in hydrogen gas is extremely severe, such as in phosphoric acid fuel cells and polymer electrolyte fuel cells, where electrodes and catalysts are liable to degrade due to reaction with hydrogen sulfide, etc. It can be used effectively.
また、 本発明の脱硫剤の製造方法は、 上記本発明の脱硫剤を経済的かつ効率的 に製造することができるものである。  Further, the method for producing a desulfurizing agent of the present invention enables the desulfurizing agent of the present invention to be produced economically and efficiently.
本発明の脱硫剤を用いた脱硫方法は、 硫黄含有化合物中の硫黄分を高度に効率 良く除去することができ、 1 0 0 p p b以下のレベル、 例えば天然ガス、 都巿ガ ス、 L Pガスなどからは 3 0 p p b以下のレベルにまで、 硫黄濃度を低減できる ことを可能とする。 しかもこの脱硫方法により、 脱硫開始時間が短く、 脱硫に際 して、脱硫反応の一時停止と再脱硫反応を繰り返す断続的使用も可能となるなど、 優れた脱硫性能を提供することができる。 すなわち、 脱硫の開始および停止を容 易に行うことができる。  The desulfurization method using the desulfurizing agent of the present invention can remove sulfur components in a sulfur-containing compound with high efficiency and at a level of 100 ppb or less, such as natural gas, city gas, and LP gas. From this, the sulfur concentration can be reduced to a level of 30 ppb or less. In addition, this desulfurization method can provide excellent desulfurization performance, such as a short desulfurization start time and intermittent use in which desulfurization reaction is temporarily stopped and re-desulfurization reaction is repeated. That is, starting and stopping of desulfurization can be easily performed.
なお、 「酸化再生方式」 は、脱硫剤の脱硫性能が低下した時点で、 当該脱硫剤を 酸化させることにより、 脱硫剤の脱硫性能を最初の状態に再生することを可能と するものである。  The “oxidation regeneration method” enables the desulfurization agent to be oxidized when the desulfurization performance of the desulfurization agent is reduced, thereby allowing the desulfurization agent to regenerate its desulfurization performance to the initial state.
また、 「脱硫反応一時停止方式」は、脱硫すべき物質を瞬時に高度脱硫を行うこ とが可能であり、 脱硫停止も容易に行うことができるものである。 脱硫反応 (処 理) の一時停止後、 次の脱硫すべき物質が到着した時点で、 直ちに再度高度脱硫 . を行うことができる。 脱硫反応一時停止期間においては、 脱硫装置を窒素置換す ることにより., 安全確保することが可能となる。 In addition, the “temporary desulfurization reaction suspension method” is used to instantaneously perform advanced desulfurization of substances to be desulfurized. The desulfurization can be easily stopped. After the suspension of the desulfurization reaction (processing), when the next substance to be desulfurized arrives, the advanced desulfurization can be performed again immediately. During the suspension of the desulfurization reaction, safety can be ensured by replacing the desulfurization unit with nitrogen.
また更に、 本発明の脱硫剤を用いて、 硫黄含有化合物中の硫黄分を高度に効率 良く除去し、 改質処理を施すことにより、 大量に燃料電池用の高純度水素、 高度 脱硫水素を低コス卜で製造できることを可能とする。  Furthermore, the desulfurizing agent of the present invention is used to highly efficiently remove the sulfur content of the sulfur-containing compound and perform a reforming treatment, thereby reducing a large amount of high-purity hydrogen for fuel cells and highly desulfurized hydrogen. Enables production at low cost.

Claims

請 求 の 範 囲 The scope of the claims
1 - 次の一般式; 1-the following general formula:
ZnFe 204 S i 02/モリブデン化合物 ZnFe 2 0 4 Si 0 2 / molybdenum compound
(式中、 モリブデン化合物は、 M o S 2及び Z又は M o O 3を示す) で表される化 合物を含むことを特徴とする脱硫剤。 (Wherein, the molybdenum compound represents Mo S 2 and Z or Mo O 3).
2. 次の一般式; 2. The following general formula:
ZnFe204/S i〇2 モリブデン化合物/チタン化合物 ' ZnFe 2 0 4 / S I_〇 2 molybdenum compound / titanium compound '
(式中、 モリブデン化合物は、 Mo S2及び Z又は Mo03を、 また、 チタン化合 物は T i 02を示す) で表される化合物を含むことを特徴とする脱硫剤。 (Wherein, the molybdenum compound, a Mo S 2 and Z or MO0 3, also titanium compounds show T i 0 2) desulfurizing agent which comprises a compound represented by.
3. 請求の範囲第 1項又は第 2項記載の脱硫剤を製造するにあたり、 次の式; ZnFe 204/S i 02で示される亜鉛フェライト ·シリカに、 モリブデン化合 物 (モリブデン化合物は、 Mo S2及び Z又は Mo〇3を示す)、 またはモリブデ ン化合物とチタン化合物 (チタン化合物は、 T i〇2を示す) とを添加して粉砕 混合し、 得られた混合物に成形助剤を添加して焼成することを特徴とする脱硫剤 の製造方法。 3. In producing the desulfurizing agent in the range paragraph 1 or 2, wherein according to the following equation: zinc ferrite silica represented by ZnFe 2 0 4 / S i 0 2, molybdenum compounds (molybdenum compound shows Mo S 2 and Z or Mo_〇 3), or molybdenum compound and a titanium compound (titanium compound, T I_〇 shows a 2) and the pulverized mixture was added, the resulting mixture into a molding aid A method for producing a desulfurizing agent, characterized by adding and baking.
4. 硫黄含有化合物から脱硫するにあたり、 請求の範囲第 1項又は第 2項記載 の脱硫剤を、 硫黄含有化合物と接触させることにより脱硫することを特徴とする 硫黄含有化合物の脱硫方法。  4. A method for desulfurizing a sulfur-containing compound, which comprises desulfurizing the sulfur-containing compound by bringing the desulfurizing agent according to claim 1 into contact with the sulfur-containing compound.
5. 請求の範囲第 4項記載の脱硫方法において、 使用した脱硫剤を酸化するこ とにより再生し、 当該再生した脱硫剤を繰り返し使用することを特徴とする硫黄 含有化合物の脱硫方法。  5. The desulfurization method according to claim 4, wherein the used desulfurizing agent is regenerated by oxidizing, and the regenerated desulfurizing agent is used repeatedly.
6. 請求の範囲第 4項記載の脱硫方法において、 脱硫剤と硫黄含有化合物との 接触を一時停止した後、 再度、 脱硫剤と硫黄含有化合物とを接触させることを特 徵とする硫 有化合物の脱硫方法。 6. The desulfurization method according to claim 4, wherein the contact between the desulfurizing agent and the sulfur-containing compound is temporarily stopped, and then the desulfurizing agent is contacted with the sulfur-containing compound again. 徵 Desulfurization method for sulfur compounds.
7 . 硫黄含有化合物と、 請求の範囲第 1項又は第 2項記載の脱硫剤とを接蝕さ せて硫黄含有化合物を脱硫した後、 改質処理することを特徴とする燃料電池用水 素の製造方法。  7. Hydrogen for fuel cells, characterized by subjecting the sulfur-containing compound to desulfurization according to claim 1 or 2 to desulfurize the sulfur-containing compound and then subjecting the sulfur-containing compound to reforming treatment. Production method.
PCT/JP2004/003032 2003-03-11 2004-03-09 Desulfurizing agent and method for production thereof, method for desulfurization, and method for producing hydrogen for fuel cell WO2004080588A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-065060 2003-03-11
JP2003065060 2003-03-11
JP2003-386108 2003-11-17
JP2003386108A JP4625970B2 (en) 2003-03-11 2003-11-17 Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing hydrogen for fuel cell

Publications (1)

Publication Number Publication Date
WO2004080588A1 true WO2004080588A1 (en) 2004-09-23

Family

ID=32992947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003032 WO2004080588A1 (en) 2003-03-11 2004-03-09 Desulfurizing agent and method for production thereof, method for desulfurization, and method for producing hydrogen for fuel cell

Country Status (3)

Country Link
JP (1) JP4625970B2 (en)
TW (1) TW200500135A (en)
WO (1) WO2004080588A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123269A (en) * 2005-10-26 2007-05-17 Samsung Sdi Co Ltd Desulfurization adsorbent for fuel cell, desulfurizing method using it, regenerating method for desulfurization adsorbent, desulfurizer, and fuel cell system
CN101235324B (en) * 2007-11-13 2011-06-08 沈阳航空工业学院 High-temperature coal gas desulfurizer using coal ash as carrier
WO2017088216A1 (en) * 2015-11-27 2017-06-01 武汉中地金盾环境科技有限公司 Magnetic solid polyamine adsorbent particle material, preparation method and application thereof
CN111378285A (en) * 2020-04-30 2020-07-07 新纳奇材料科技江苏有限公司 High-strength high-flame-retardant organic silicon foam material and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722414B2 (en) * 2004-06-02 2011-07-13 学校法人早稲田大学 Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing high-purity hydrogen
FR2937045B1 (en) * 2008-10-10 2012-11-30 Inst Francais Du Petrole USE OF ZINC FERRITE-BASED SOLIDS IN A PROCESS FOR THE DEEP DEULFURIZATION OF OXYGENIC LOADS
JP2016064352A (en) * 2014-09-24 2016-04-28 一般財団法人電力中央研究所 Desulfurizing agent, and manufacturing method of desulfurizing agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218081A (en) * 1995-02-10 1996-08-27 Central Res Inst Of Electric Power Ind Desulfurizing agent for suppressing deposition of carbon
US5710089A (en) * 1995-06-07 1998-01-20 Phillips Petroleum Company Sorbent compositions
US5726117A (en) * 1995-06-07 1998-03-10 Phillips Petroleum Company Sorbent compositions containing zinc subjected to a steam treatment
WO2002074883A1 (en) * 2001-03-21 2002-09-26 Waseda University Desulfurizing agent, method for production thereof, and method of use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA93401B (en) * 1992-01-27 1993-08-24 Phillips Petroleum Co Composition useful as sulfur absorption for fluid streams.
JP3563923B2 (en) * 1997-06-11 2004-09-08 三菱重工業株式会社 Desulfurizing agent and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218081A (en) * 1995-02-10 1996-08-27 Central Res Inst Of Electric Power Ind Desulfurizing agent for suppressing deposition of carbon
US5710089A (en) * 1995-06-07 1998-01-20 Phillips Petroleum Company Sorbent compositions
US5726117A (en) * 1995-06-07 1998-03-10 Phillips Petroleum Company Sorbent compositions containing zinc subjected to a steam treatment
WO2002074883A1 (en) * 2001-03-21 2002-09-26 Waseda University Desulfurizing agent, method for production thereof, and method of use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123269A (en) * 2005-10-26 2007-05-17 Samsung Sdi Co Ltd Desulfurization adsorbent for fuel cell, desulfurizing method using it, regenerating method for desulfurization adsorbent, desulfurizer, and fuel cell system
US7842645B2 (en) 2005-10-26 2010-11-30 Samsung Sdi Co., Ltd. Desulfurization adsorbent for fuel cell and desulfurizing method using the same
CN101235324B (en) * 2007-11-13 2011-06-08 沈阳航空工业学院 High-temperature coal gas desulfurizer using coal ash as carrier
WO2017088216A1 (en) * 2015-11-27 2017-06-01 武汉中地金盾环境科技有限公司 Magnetic solid polyamine adsorbent particle material, preparation method and application thereof
CN111378285A (en) * 2020-04-30 2020-07-07 新纳奇材料科技江苏有限公司 High-strength high-flame-retardant organic silicon foam material and preparation method thereof

Also Published As

Publication number Publication date
JP2004290955A (en) 2004-10-21
JP4625970B2 (en) 2011-02-02
TW200500135A (en) 2005-01-01

Similar Documents

Publication Publication Date Title
EP1192981B1 (en) Desulfurizing agent and method for desulfurization of hydrocarbon
CA2601124C (en) Desulfurizing agent and method of desulfurization with the same
EP2804692B1 (en) Method for removing sulfur containing compounds from fluid fuel streams
CN106268219B (en) A kind of iron oxide fine desulfurizer and its preparation and application method
JPH02302301A (en) Improvement of hydrocarbon by water vapor
NZ211554A (en) Removing hydrogen sulphide from gases and absorbent used therefor
EA032617B1 (en) Sulphur recovery process with concurrent hydrogen production
EP3632538B1 (en) Desulfurizing agent for gases, and gas desulfurization method
JP4722414B2 (en) Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing high-purity hydrogen
US9097678B2 (en) Method for removing sulfur-comprising compounds from a hydrocarbonaceous gas mixture
WO2004080588A1 (en) Desulfurizing agent and method for production thereof, method for desulfurization, and method for producing hydrogen for fuel cell
KR20090067856A (en) Manufacturing method of zn-ferrite for removing h2s in coke oven gas
KR100653046B1 (en) Method for removal of hydrogen sulfide by reaction of catalyst
CA2854463A1 (en) Method for removing sulfur-comprising compounds from a hydrocarbonaceous gas mixture
JPH06228570A (en) Desulfurization of feedstock hydrocarbon for fuel cell
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
CN106609166B (en) Desulfurizing agent and preparation method thereof
JPWO2002074883A1 (en) Desulfurizing agent, method for producing and using the same
CN105712410A (en) Method for preparing iron disulfide
CN113877405B (en) Waste lubricating oil hydrogenation gas treatment and discharge process
EP0599351A1 (en) Method of desulfurization of town gas
JP7134019B2 (en) Desulfurization device, hydrogen production device, desulfurization method, and hydrogen production method
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
JP2003290659A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using the same
Wu et al. Nitrogen-doping boosted the activity of K/Al2O3 catalysts in simultaneous removal of COS and CS2: an experimental and theoretical study

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase