WO2004076617A2 - Verfahren zur herstellung mehrfach ungesättigter fettsäuren - Google Patents

Verfahren zur herstellung mehrfach ungesättigter fettsäuren Download PDF

Info

Publication number
WO2004076617A2
WO2004076617A2 PCT/EP2004/000771 EP2004000771W WO2004076617A2 WO 2004076617 A2 WO2004076617 A2 WO 2004076617A2 EP 2004000771 W EP2004000771 W EP 2004000771W WO 2004076617 A2 WO2004076617 A2 WO 2004076617A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleic acid
fatty acids
acyl
acid
Prior art date
Application number
PCT/EP2004/000771
Other languages
English (en)
French (fr)
Other versions
WO2004076617A3 (de
Inventor
Andreas Renz
Ernst Heinz
Amine Abbadi
Frederic Domergue
Thorsten Zank
Original Assignee
Basf Plant Science Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Plant Science Gmbh filed Critical Basf Plant Science Gmbh
Priority to US10/547,447 priority Critical patent/US7537920B2/en
Priority to AT04706146T priority patent/ATE517984T1/de
Priority to BR0407138-7A priority patent/BRPI0407138A/pt
Priority to AU2004215705A priority patent/AU2004215705B2/en
Priority to CA2517253A priority patent/CA2517253C/en
Priority to EP04706146A priority patent/EP1599582B1/de
Publication of WO2004076617A2 publication Critical patent/WO2004076617A2/de
Publication of WO2004076617A3 publication Critical patent/WO2004076617A3/de
Priority to NO20053149A priority patent/NO20053149D0/no
Priority to US12/417,171 priority patent/US8486671B2/en
Priority to US13/912,731 priority patent/US20140026259A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6432Eicosapentaenoic acids [EPA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6434Docosahexenoic acids [DHA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone

Definitions

  • the present invention relates to a method for producing polyunsaturated fatty acids in an organism by introducing nucleic acids into the organism which code for polypeptides with acyl-CoA: lysophospholipid acyltransferase activity. These nucleic acid sequences can optionally be expressed in the transgenic organism together with further nucleic acid sequences which code for polypeptides of the biosynthesis of the fatty acid or lipid metabolism.
  • the invention further relates to the nucleic acid sequences, nucleic acid constructs containing the nucleic acid sequences according to the invention, vectors containing the nucleic acid sequences and / or the nucleic acid constructs and transgenic organisms containing the aforementioned nucleic acid sequences, nucleic acid constructs and / or vectors.
  • Another part of the invention relates to oils, lipids and / or fatty acids produced by the process according to the invention and their use.
  • Fatty acids and triglycerides have a large number of applications in the food industry, animal nutrition, cosmetics and in the pharmaceutical sector. Depending on whether it is free saturated or unsaturated fatty acids or triglycerides with an increased content of saturated or unsaturated fatty acids, they are suitable for a wide variety of applications, for example polyunsaturated fatty acids are added to baby food to increase the nutritional value .. Multiple Unsaturated ⁇ -3 fatty acids and ⁇ -6 fatty acids are an important component of animal and human food. Due to the composition of human food that is common today, the addition of polyunsaturated ⁇ -3 fatty acids, which are preferred in fish oils, particularly important for food.
  • DHA docosahexaenoic acid
  • EPA icosapentaenoic acid
  • polyunsaturated fatty acids are referred to as PUFA, PUFAs, LCPUFA or LCPUFAs (ßoly unsaturated fatty acids, PUFA. Long chain ßoly unsaturated fatty acids, LCPUFA).
  • the free Fatty acids are advantageously produced by saponification.
  • Common natural sources of these fatty acids are fish such as herring, salmon, sardine, goldfish, eel, carp, trout, halibut, mackerel, pikeperch or tuna or algae.
  • oils with saturated or unsaturated fatty acids are preferred, for example lipids with unsaturated fatty acids, especially polyunsaturated fatty acids, are preferred in human nutrition.
  • the polyunsaturated ⁇ -3 fatty acids are said to have a positive effect on the cholesterol level in the blood and thus on the possibility of preventing heart disease. Adding these ⁇ -3 fatty acids to food can significantly reduce the risk of heart disease, stroke, or high blood pressure. Inflammatory, particularly chronic inflammatory processes in the context of immunological diseases such as rheumatoid arthritis can also be positively influenced by ⁇ -3 fatty acids. They are therefore added to foods, especially dietary foods, or are used in medicines.
  • ⁇ -6 fatty acids such as arachidonic acid tend to have a negative effect on these diseases due to our usual food composition.
  • ⁇ -3 and ⁇ -6 fatty acids are precursors of tissue hormones, the so-called egg cosanoids such as prostaglandins, which are derived from dihomo- ⁇ -linolenic acid, arachidonic acid and eicosapentaenoic acid, the thromoxanes and leukotriene which are derived from arachidonic acid and eicosapentaenoic acid.
  • Eicosanoids which are formed from ⁇ -6 fatty acids, generally promote inflammatory reactions, while eicosanoids (so-called PG 3 series) from ⁇ -3 fatty acids have little or no inflammation-promoting effect.
  • ⁇ -6-desaturases are described in WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WOOO / 21557 and WO 99/27111 and also the use for production in transgenic organisms as described in WO98 / 46763 WO98 / 46764, , WO9846765.
  • microorganisms for the production of PUFAs are microorganisms such as Thraustochytria or Schizochytria strains, algae such as Phaeodactylum tricomutum or Crypthecodinium species, ciliates such as Stylonychia or Colpidium, fungi such as Mortierella, Entomophthora or Mucor.
  • strain selection a number of mutant strains of the corresponding microorganisms have been developed which produce a number of desirable compounds, including PUFAs.
  • mutation and selection of strains with improved production of a particular molecule such as the polyunsaturated fatty acids is a time-consuming and difficult process. Therefore, whenever possible, genetic engineering methods are preferred as described above.
  • the production of fine chemicals on a large scale can advantageously be carried out via production in plants that are developed to produce the above-mentioned PUFAs.
  • Plants that are particularly suitable for this purpose are oil-fruit plants which contain large amounts of lipid compounds, such as rapeseed, canola, flax, soybeans, sunflowers, borage and evening primrose.
  • lipid compounds such as rapeseed, canola, flax, soybeans, sunflowers, borage and evening primrose.
  • other crop plants containing oils or lipids and fatty acids are also well suited, as mentioned in the detailed description of this invention.
  • Using conventional breeding a number of mutant plants have been developed that produce a spectrum of desirable lipids and fatty acids, cofactors and enzymes.
  • microalgae such as Phaeodactylum and mosses such as Physcomitrella
  • unsaturated fatty acids such as linoleic acid or linolenic acid in the form of their acyl-CoAs are converted into LCPUFAs in several desaturation and elongation steps (Zank et al. (2000) Biochemical Society Transactions 28: 654-658 ).
  • the biosynthesis of DHA involves chain shortening via ⁇ -oxidation.
  • LCPUFAs are present in microorganisms and lower plants either exclusively in the form of membrane lipids, such as in Physcomitrella and Phaeodactylum, or they are present in membrane lipids and triacylglycerides, such as in Schizochytrium and Mortierella.
  • the incorporation of LCPUFAs into lipids and oils is catalyzed by various acyltransferases and transacylases. These enzymes are already known for the incorporation of saturated and unsaturated fatty acids [Slabas (2001) J. Plant Physiology 158: 505-513; Frentzen (1998) Fett ipid 100: 161-166); Cases et al. (1998) Proc. Nat. Acad. Be.
  • acyltransferases are enzymes of the so-called Kennedy pathway, which are located on the cytoplasmic side of the membrane system of the endoplasmic reticulum, hereinafter referred to as "ER".
  • ER membranes can be isolated as so-called 'microsomal fractions' from different organisms (Knutzon et al.
  • Glycerin-3-phosphate acyltransferase catalyzes the incorporation of acyl groups at the sn-1 position of glycerol-3-phosphate.
  • 1-Acylg! Ycerin-3-phosphate acyltransferase (EC 2.3.1.51), also lysophosphatidic acid acyltransferase, hereinafter referred to as LPAAT catalyzes the incorporation of acyl groups at the sn-2 position of lysophosphatidic acid, hereinafter abbreviated as LPA.
  • diacylglycerol acyltransferase After dephosphorylation of phosphatidic acid by phosphatidic acid phosphatase, diacylglycerol acyltransferase, hereinafter called DAGAT, catalyzes the incorporation of acyl groups at the sn, 5, 3 position of diacylglycerol.
  • DAGAT diacylglycerol acyltransferase
  • PDAT lysophosphatidylcholine acyltransferase
  • acyl-CoA lysophospholipid acyltransferase, hereinafter referred to as LPLAT, in the ATP-independent synthesis of acyl-CoA from phospholipids was described by Yamashita et al. (2001; Journal of Biological Chemistry 276: 26745-26752).
  • Higher plants contain polyunsaturated fatty acids such as linoleic acid (C18: 2) and linolenic acid (C18: 3).
  • linoleic acid C18: 2
  • linolenic acid C18: 3
  • arachidonic acid ERA
  • EPA eicosapentaenoic acid
  • DHA do- cosahexaenoic acid
  • genes coding for enzymes of the biosynthesis of LCPUFAs are advantageously introduced and expressed in oilseeds using genetic engineering methods. These are, for example, genes coding for ⁇ -6-desaturase, ⁇ -6-elongase, ⁇ -5-desaturase, ⁇ -5-elongase and ⁇ -4- 0 desaturase.
  • genes can advantageously be isolated from microorganisms, animals and lower plants which produce LCPUFAs and incorporate them into the membranes or triacylglycerides.
  • ⁇ -6 desaturase genes from the moss were already able to do this Physcomitrella patens and ⁇ -6 elongase genes isolated from P. patens and the nematode C. elegans.
  • the first transgenic plants which contain and express genes coding for enzymes of LCPUFA biosynthesis and which produce LCPUFAs were described for the first time in ' ⁇ ' ' DE 102 19203 (process for the production of polyunsaturated fatty acids in plants). However, these plants produce LCPUFAs in quantities that have to be further optimized for processing the oils contained in the plants.
  • This object 5 was achieved by the method according to the invention for the production of polyunsaturated fatty acids in an organism, characterized in that the method comprises the following steps: a) introducing at least one nucleic acid sequence into the organism with that in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 sequence shown for a polypeptide with an acyl-CoA: lysophospholipid
  • Encoded acyltransferase activity or b) introducing at least one nucleic acid sequence into the organism which results as a result of the degenerate genetic code from the coding 5 contained in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 Sequence can be derived, or c) introducing at least one derivative of the nucleic acid sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 into the organism, which is suitable for polypeptides with the SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8 code and 0 at least 40% homology at the amino acid level with SEQ ID NO: 2, SEQ ID NO:
  • SEQ ID NO: 4 SEQ ID NO: 6 or SEQ ID NO: 8 and have an equivalent acyl-CoA: lysophospholipid acyltransferase activity, and d) cultivate and harvest the organism.
  • the polyunsaturated fatty acids produced in the process according to the invention advantageously contain at least two, advantageously three, double bonds.
  • the fatty acids particularly advantageously contain four or five double bonds.
  • Fatty acids produced in the process advantageously have 16, 18, 20 or 22 carbon atoms in the fatty acid Chain. These fatty acids produced can be produced as the only product in the process or can be present in a fatty acid mixture.
  • nucleic acid sequences used in the method according to the invention are isolated nucleic acid sequences which code for polypeptides with acyl-CoA: lysophospholipid acyltransferase activity.
  • the polyunsaturated fatty acids produced in the process are advantageously bound in membrane lipids and / or triacylglycerides, but can also occur in the organism as free fatty acids or bound in the form of other fatty acid esters. As said, they can be present as “pure products” or, advantageously, in the form of mixtures of different fatty acids or mixtures of different glycerides.
  • the different fatty acids bound in the triacylglycerides can be derived from short-chain fatty acids with 4 to 6 C-atoms, medium-chain fatty acids with 8 to 12 C-atoms or long-chain fatty acids with 14 to 24 C-atoms, the long-chain fatty acids are particularly preferred are the long-chain fatty acids LCPUFAs of C ⁇ 8 -, C 2 o and / or C22 fatty acids.
  • fatty acid esters with polyunsaturated Ci6 ⁇ , Ci8, C 2 o and / or C22 fatty acid molecules with at least two double bonds in the fatty acid ester are advantageously produced.
  • the fatty acid esters with polyunsaturated C 16 -, C 18 -, C 20 - and / or C ⁇ - fatty acid molecules can be obtained from the organisms used for the production of the fatty acid esters in the form of an oil or lipid, for example in the form of compounds such as sphingolipids , Phosphoglycerides, lipids, glycolipids such as glycosphingolipid, phospholipids such as phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol or diphosphatidylglycerol, monoacylglyceride, diacylglyceryl diecylacetic acid ester, triacylglycerol die die, triacylglyceride die, triacylglyceride die, triacylglyceride die, triacylglyceride die, triacylglyceride die,
  • the polyunsaturated fatty acids are also advantageously contained in the plants as free fatty acids or bound in other compounds in the organisms.
  • the various aforementioned compounds lie in the organisms in an approximate distribution of 80 up to 90% by weight of triglycerides, 2 to 5% by weight of diglycerides, 5 to 10% by weight of monoglycerides, 1 to 5% by weight of free fatty acids, 2 to 8% by weight of phospholipids, the sum being of the various compounds added to 100% by weight.
  • the LCPUFAs produced are at least 3% by weight, advantageously at least 5% by weight, preferably of at least 8% by weight, particularly preferably at least 10% by weight, very particularly preferably at least 15% by weight, based on the total fatty acids in the transgenic organisms, advantageously produced in a transgenic plant. Since in the process of the invention hexadecadienoic acid>,>.
  • linoleic acid C18: 2
  • linolenic acid C18: 3
  • the end products of the process such as arachidonic acid (ERA) or eicosapentaenoic acid (EPA) are not absolutely pure products, they always are also contain slight traces of the precursors in the end product. If, for example, both linoleic acid and linolenic acid are present in the starting organism or in the starting plant, the end products such as ERA and EPA are present as mixtures.
  • the precursors should advantageously not more than 20% by weight, preferably not more than 15% by weight, particularly preferably not more than 10% by weight, very particularly preferably not more than 5% by weight, based on the amount of the particular Final product.
  • ERA or only EPA are advantageously bound as end products in the process according to the invention or produced as free acids. If both compounds (ERA + EPA) are produced simultaneously, they are advantageously produced in a ratio of at least 1: 2 (EPA: ARA), advantageously at least 1: 3, preferably 1: 4, particularly preferably 1: 5.
  • the nucleic acid sequences according to the invention can increase the yield of polyunsaturated fatty acids by at least 50%, advantageously by at least 80%, particularly advantageously by at least 100%, very particularly advantageously by at least 150% compared to the non-transgenic starting organism when compared in the GC -Analysis see examples can be achieved.
  • Chemically pure polyunsaturated fatty acids or fatty acid compositions can also be prepared using the methods described above.
  • the fatty acids or the fatty acid compositions from the organism such as the microorganisms or the plants or the culture medium in or on which the organisms were grown, or from the organism and the culture medium in a known manner, for example via extraction, distillation, crystallization, chroma- topography or combinations of these methods isolated.
  • These chemically pure fatty acids or fatty acid compositions are advantageous for applications in the food industry, the cosmetics industry and especially the pharmaceutical industry.
  • organisms such as fungi such as Mortierella or Traustochytrium, yeasts such as Saccharomyces or Schizosaccharomyces, mosses such as Physcomitrella or Ceratodon, non-human animals such as Caenorhabditis, algae such as Crypthecodinium or Phaeodactyum come as the organism for production in the process according to the invention or plants such as dicotyledonous or monocotyledonous plants.
  • fungi such as Mortierella or Traustochytrium
  • yeasts such as Saccharomyces or Schizosaccharomyces
  • mosses such as Physcomitrella or Ceratodon
  • non-human animals such as Caenorhabditis
  • algae such as Crypthecodinium or Phaeodactyum come as the organism for production in the process according to the invention or plants such as dicotyledonous or monocotyledonous plants.
  • Organisms which belong to the oil-producing organisms that is to say are used for the production of oils, such as fungi such as Mortierella or Traustochytrium, algae such as Crypthecodinium, Phaeodactylum or plants, in particular plants, preferably oil fruit, are advantageously used in the process according to the invention.
  • lipid compounds such as peanut, rapeseed, canola, sunflower, safflower (safflower), poppy seeds, mustard, hemp, castor oil, olive, sesame, caiendula, punica, evening primrose, mullein, thistle, wild roses, hazelnut , Almond, macadamia, avocado, laurel, pumpkin, flax, soy, pistachio, borage, trees (oil, palm, coconut or walnut) or field crops such as corn, wheat, rye, oats, triticale, rice, barley, Cotton, cassava, pepper, tagetes, solanaceae plants such as potatoes, tobacco, aubergine and tomato, Vicia species, peas, alfalfa or bush plants (coffee, cocoa, tea), Salix species as well as perennial grasses and forage crops.
  • lipid compounds such as peanut, rapeseed, canola, sunflower, safflower (safflower), poppy
  • Preferred plants according to the invention are oil fruit plants such as peanut, rapeseed, canola, sunflower, safflower (safflower), poppy, mustard, hemp, castor oil, olive, caiendula, punica, evening primrose, pumpkin, flax, soybean, borage, trees (oil palm, coconut) , Plants rich in C18: 2 and / or C18: 3 fatty acids such as sunflower, safflower, tobacco, mullein, sesame, cotton, pumpkin, poppy, evening primrose, walnut, flax, hemp, thistle or safflower are particularly preferred. Plants such as safflower, sunflower, poppy, evening primrose, walnut, flax or are very particularly preferred.
  • nucleic acids introduced in method step (a) it is advantageous to introduce in addition to the nucleic acids introduced in method step (a) to (c) further nucleic acids which code for enzymes of the fatty acid or lipid metabolism in addition to the nucleic acids introduced in method step (a).
  • genes of fatty acid or lipid metabolism can advantageously be used in combination with the inventive acyl-CoA: lysophospholipid acyltransferase in the process for producing polyunsaturated fatty acids.
  • Genes of fatty acid or lipid metabolism selected from the group acyl-CoA dehydrogenase ( n), acyl-ACP-desaturase (s), acyl-ACP-thioesterase (s), fatty acid acyl transferase (s), fatty acid synthase (s), fatty acid hydroxylase (s), Acetyl-coenzyme A-carboxylase (s), acyl-coenzyme A-okidase (s), fatty acid desaturase (s), fatty acid acetylenases, lipoxygenases, triacylglycerol lipases, allen oxide synthases, hydroperoxide lyases or fatty acid elongase (n) used in combination with the group
  • Genes are particularly preferably selected from the group of the ⁇ -4-desaturases, ⁇ -5-desaturases, ⁇ -6-desaturases, ⁇ -8-desatuases, ⁇ -9-desaturases, ⁇ -12-desaturases, ⁇ -5-elongases , ⁇ -6-elongases or ⁇ -9-elongases in combination with the acyl-CoA: lysophospholipid acyltransferase used in the process according to the invention.
  • nucleic acids used in the method according to the invention which code for polypeptides with acyl-CoA: lysophospholipid acyltransferase activity, advantageously in combination with nucleic acid sequences which are suitable for polypeptides of fatty acid or lipid metabolism such as ⁇ -4-, ⁇ -5 -, ⁇ -6, ⁇ -8-desaturase or ⁇ -5, ⁇ -6 or ⁇ -9 elongase activity, a wide variety of polyunsaturated fatty acids can be produced in the process according to the invention.
  • mixtures of the various polyunsaturated fatty acids or individual polyunsaturated fatty acids such as EPA or ERA can be produced in free or bound form.
  • fatty acid composition prevails in the starting plant (C18: 2 or C18: 3 fatty acids)
  • linoleic acid LA, C18: 2 ⁇ 9.12
  • GLA, DGLA and ERA can arise as products of the process, which can be present as free fatty acids or bound.
  • ⁇ -linolenic acid ALA, C18: 3 ⁇ 9, 12, 15
  • SDA, ETA and EPA can be produced as products of the process, as above described as free fatty acids or bound.
  • lysophospholipid acyltransferase advantageously in combination 5 with the ⁇ -5, ⁇ -6 desaturase and ⁇ -6 elongase, or the ⁇ -5, ⁇ -8 -Desaturase and ⁇ -9-Elongase or in combination with only the first two genes ⁇ -6- Desat ⁇ rase and ⁇ -6-Elongase or ⁇ -8-Desaturase and ⁇ -9-Elongase of the synthesis chain can be advantageously targeted in the aforementioned organisms only produce individual products in the aforementioned plants.
  • the activity of the ⁇ -6- 0 desäturase and ⁇ -6-elongase produces, for example, GLA and DGLA or SDA and ETA, depending on the starting plant and unsaturated fatty acid.
  • DGLA or ETA or mixtures thereof are preferably formed.
  • additional ERA or EPA arise. This also applies to organisms into which the ⁇ -8 desaturase and ⁇ -9- 5 elongase have previously been introduced. Only ERA or EPA or their mixtures are advantageously synthesized, depending on the fatty acid present in the organism or in the plant, which serves as the starting substance for the synthesis.
  • Nucleic acids used in the method according to the invention advantageously come from plants such as algae such as isochrysis or Crypthecodinium, algae / diatoms such as Phaeodactylum, mosses such as Physcomitrella or Ceratodon or higher plants such as Aspergillus, Thraustochytrium, Phytophtora, Entomophthora, Mucor or Mortierella, yeasts or animals such as nematodes such as Caenorhabditis, insects or humans.
  • the nucleic acids advantageously come from fungi, animals or from plants such as algae or mosses, preferably from nematodes such as caenorhabditis.
  • nucleic acid sequences or their derivative or homologs which code for polypeptides which still have the enzymatic activity of those caused by nucleic acid sequences
  • sequences are cloned individually or in combination with the nucleic acid sequence coding for the acyl-CoA: lysophospholipid acyltransferase in expression constructs and used for introduction and expression in organisms.
  • expression constructs enable an advantageous optimal synthesis of the by their construction Polyunsaturated fatty acids produced in the process according to the invention.
  • the method further comprises the step of obtaining a cell or an entire organism which contains the nucleic acid sequences used in the method, the cell and / or the organism having the nucleic acid sequence according to the invention which is responsible for the AcyI-CoA: lysophospholipid acyltransferase encoded, a gene construct or a vector as described below, alone or in combination with other nucleic acid sequences which code for proteins of the fatty acid or lipid metabolism, is transformed.
  • this method further comprises the step of extracting the fine chemical from the culture.
  • the culture can be, for example, a fermentation culture, for example in the case of the cultivation of microorganisms, e.g.
  • the cell or organism thus produced is advantageously a cell of an oil-producing organism, such as an oil crop, such as, for example, peanut, rapeseed, canola, flax, hemp, peanut, soy, safflower, hemp, sunflower or borage.
  • an oil-producing organism such as an oil crop, such as, for example, peanut, rapeseed, canola, flax, hemp, peanut, soy, safflower, hemp, sunflower or borage.
  • Cultivation means, for example, cultivation in the case of plant cells, tissues or organs on or in a nutrient medium or the whole plant on or in a substrate, for example in hydroponics, potting compost or on a soil.
  • Natural genetic environment means the natural genomic or chromosomal locus in the organism of origin or the presence in a genomic library.
  • the natural, genetic environment of the nucleic acid sequence is preferably at least partially preserved.
  • the environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp.
  • non-natural, synthetic ("artificial") methods such as for example mutagenization is changed.
  • Corresponding methods are described, for example, in US 5,565,350 or WO 00/15815.
  • transgenic organism or transgenic plant means that the nucleic acids used in the method are not in their natural place in the genome of an organism, and the nucleic acids can be expressed homologously or heterologously.
  • transgene also means that the nucleic acids according to the invention are in their natural place in the genome of an organism, but that the sequence has been changed compared to the natural sequence and / or that the regulatory sequences of the natural sequences have been changed.
  • Transgenic is preferably to be understood as meaning the expression of the nucleic acids according to the invention at a non-natural location in the genome, that is to say that the nucleic acids are homologous or preferably heterologous.
  • Preferred transgenic organisms are fungi such as Mortierella or plants are the oil fruit plants.
  • all organisms which are able to synthesize fatty acids, especially unsaturated fatty acids or are suitable for the expression of recombinant genes are advantageously suitable as organisms or host organisms for the nucleic acids, the expression cassette or the vector used in the method according to the invention.
  • Examples include plants such as Arabidopsis, Asteraceae such as Calendula or cult Tur plants such as soy, peanut, castor, sunflower, corn, cotton, flax, rapeseed, coconut, oil palm, safflower (Carthamus tinctorius) or cocoa bean, microorganisms such as fungi, for example the genus Mortierella, Saprolegnia or Pythium, bacteria such as the genus Escherichia, yeast like the genus Saccharomyces, Cya- 5. Nobacteria, ciliates, algae or protozoa such as dinoflagellates such as Crypthecodinium.
  • Asteraceae such as Calendula or cult Tur plants
  • soy peanut, castor, sunflower, corn, cotton, flax, rapeseed, coconut, oil palm, safflower (Carthamus tinctorius) or cocoa bean
  • microorganisms such as fungi, for example the
  • Organisms which can naturally synthesize oils in large quantities such as fungi such as Mortierella alpina, Pythium insidiosum or plants such as soybean, rapeseed, coconut, oil palm, safflower, flax, hemp, castor oil, calendula, peanut, cocoa bean or sunflower or yeasts such as Saccharomyces, are preferred cere-0 visiae, soya, flax, rapeseed, safflower, sunflower, calendula, Mortierella or Saccharomyces cerevisiae are particularly preferred.
  • transgenic animals are also advantageously suitable as host organisms, for example C. elegans.
  • transgenic plants include plant cells and certain tissues, organs and parts of plants in all their forms, such as anthers, fibers, root hairs, stems, embryos, calli, kotelydones, petioles, harvested material, plant tissues, reproductive tissues and cell cultures, that of the actual transgenic plant is derived and / or can be used to produce the transgenic plant.
  • Transgenic plants which contain the polyunsaturated fatty acids synthesized in the process according to the invention can advantageously be marketed directly without the oils, lipids or fatty acids synthesized having to be isolated.
  • Plants in the process according to the invention include whole plants and all parts of plants, plant organs or parts of plants such as leaves, stems, seeds, roots, tubers, anthers, fibers, root hairs, stems, embryos, calli, kotelydones, petioles, nutrients, plant tissue, reproductive tissue, cell cultures derived from and / or used to produce the transgenic plant.
  • the semen comprises all parts of the semen such as the seminal shell, epidermal and sperm cells, endosperm or embyro tissue.
  • the compounds produced in the process according to the invention can also advantageously be isolated from the 5 organisms in the form of their oils, fats, lipids and / or free fatty acids.
  • Polyunsaturated fatty acids produced by this process can be harvested by harvesting the organisms either from the culture in which they grow * "* " or from the field. This can be done by pressing or extracting the plant parts, preferably the plant seeds.
  • the oils, fats, lipids and / or free fatty acids can be obtained by so-called cold beating or cold pressing without the addition of heat by pressing. So that the plant Certain parts make it easier to digest the seeds, they are crushed, steamed or roasted beforehand. The seeds pretreated in this way can then be pressed or extracted with solvents such as warm hexane.
  • the solvent is then removed again.
  • these are extracted directly after harvesting, for example, without further work steps, or extracted after digestion using various methods known to the skilled worker. In this way, more than 96% of the compounds produced in the process can be isolated.
  • the products thus obtained are then processed further, that is to say refined.
  • the plant mucus and turbidity are removed first.
  • the so-called degumming can be carried out enzymatically or, for example, chemically / physically by adding acid such as phosphoric acid.
  • the free fatty acids are then removed by treatment with a base, for example sodium hydroxide solution.
  • the product obtained is washed thoroughly with water to remove the lye remaining in the product and dried.
  • the products are subjected to bleaching with, for example, bleaching earth or activated carbon. Finally, the product is still deodorized with steam, for example.
  • the PUFAs or LCPUFAs produced by this process are preferably C 8 , C 20 or C 22 fatty acid molecules with at least two double bonds in the fatty acid molecule, preferably three, four, five or six double bonds.
  • These C 18 , C 20 or Car fatty acid molecules can be isolated from the organism in the form of an oil, lipid or a free fatty acid. Suitable organisms are, for example, those mentioned above. Preferred organisms are transgenic plants.
  • One embodiment of the invention is therefore oils, lipids or fatty acids or fractions thereof which have been produced by the process described above, particularly preferably oil, lipid or a fatty acid composition which comprise PUFAs and originate from transgenic plants.
  • a further embodiment according to the invention is the use of the oil, lipid, the fatty acids and / or the fatty acid composition in animal feed, food, cosmetics or pharmaceuticals.
  • oil is understood to mean a fatty acid mixture which contains unsaturated, saturated, preferably esterified fatty acid (s). It is preferred that the oil, lipid or fat has a high proportion of polyunsaturated free or advantageously esterified fatty acid (s), in particular linoleic acid, ⁇ -oleolenic acid, dihomo- ⁇ -linolenic acid, arachidonic acid, ⁇ -linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, Has docosapentaenoic acid or docosahexaenoic acid.
  • s polyunsaturated free or advantageously esterified fatty acid
  • the content of unsaturated esterified fatty acids is approximately 30%, a proportion is more preferably 50%, even more preferably a content of 60%, 70%, 80% 'more barren.
  • the proportion of fatty acid after conversion of the fatty acids into the methyl esters can be determined by gas chromatography by transesterification.
  • the oil, lipid or fat can be various other saturated or unsaturated Fatty acids, such as calendulic acid, palmitic, palmitoleic, stearic, oleic acid, etc. contain.
  • the proportion of the different fatty acids in the oil or fat can vary depending on the starting organism.
  • Sphingolipids Sphingolipids, phosphoglycerides, lipids, glycolipids, phospholipids, monoacylglycerol,
  • Diacylglycerol, triacylglycerol or other fatty acid esters Diacylglycerol, triacylglycerol or other fatty acid esters.
  • the polyunsaturated fatty acids containing can be obtained, for example, by an alkali treatment, for example aqueous KOH or NaOH or acidic hydrolysis, advantageously in the presence of an alcohol such as methanol or ethanol or by enzymatic elimination release and isolate, for example, phase separation and subsequent acidification, for example H 2 SO 4 .
  • the fatty acids can also be released directly without the workup described above.
  • the nucleic acids used in the method can advantageously be a plant cell or ; Plant either lie on a separate plasmid or be integrated into the genome of the host cell.
  • the integration can be random or by recombination such that the native gene is replaced by the inserted copy, thereby modulating the production of the desired compound by the cell, or by using a gene in trans so that the The gene is functionally linked to a functional expression unit which contains at least one sequence ensuring expression of a gene and at least one sequence ensuring polyadenylation of a functionally transcribed gene.
  • the nucleic acids are advantageously brought into the plants via multi-expression cassettes or constructs for multiparallel expression in the organisms for the multiparallel seed-specific expression of genes.
  • Mosses and algae are the only known plant systems that produce significant amounts of polyunsaturated fatty acids, such as arachidonic acid (ERA) and / or eicosapentaenoic acid (EPA) and / or docosahexaenoic acid (DHA).
  • ERA arachidonic acid
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • Mosses contain PUFAs in membrane lipids while algae, algae-related organisms and some fungi also accumulate significant amounts of PUFAs in the triacylglycerol fraction.
  • Nucleic acid molecules are therefore suitable; the advertising isolated from such strains accumulate the 5, the PUFAs in the triacylglycerol fraction, particularly advantageously for the inventive method and thus for the modification of the lipid and PUFA production system in a host, in particular plants such as oil crop plants, examples * "" for example rapeseed, canola, flax, hemp, soybeans, sunflowers, borage. They can therefore be used advantageously in the process according to the invention.
  • C 16 , C 1S , C 20 or C 22 fatty acids are advantageously used as substrates of the acyl-CoA: lysophospholipid acyl transferases according to the invention.
  • the polyunsaturated C 1 -C 6 or C 8 fatty acids must first be desaturated by the enzymatic activity of a desaturase and then extended by at least two carbon atoms using an elongase. After one round of elongation, this enzyme activity leads to C 18 or C 20 fatty acids, and after two or three rounds of elongation to C 22 or C 2 fatty acids.
  • the activity of the desaturases and elongases used according to the invention preferably leads to C 8 -, C 20 - and / or C 2 2- fatty acids, advantageously with at least two double bonds in the fatty acid molecule, preferably with three, four or five double bonds, particularly preferably to C 20 - and / or C ⁇ fatty acids with at least two double bonds in the fatty acid molecule, preferably with three, four or five double bonds in the molecule.
  • Particularly preferred products of the process according to the invention are dihomo- ⁇ -linolenic acid, arachidonic acid, eicosapentaenoic acid, docosapetaenic acid and / or docosahesaenoic acid.
  • the C 18 fatty acids with at least two double bonds in the fatty acid can be extended by the enzymatic activity according to the invention in the form of the free fatty acid or in the form of the esters, such as phospholipids, glycolipids, sphingolipids, phosphoglycerides, monoacylglycerol, diacylglycerol or triacylglycerol.
  • the preferred biosynthesis site for fatty acids, oils, lipids or fats in the plants advantageously used is, for example, generally the seed or cell layers of the seed, so that a specific expression of the nucleic acids used in the method is useful.
  • the biosynthesis of fatty acids, oils or lipids does not have to be restricted to the seed tissue, but can also be tissue-specific in all other parts of the ligament - for example in epidermal cells or in the tubers.
  • microorganisms such as yeasts such as Saccharomyces or Schizosaccharomyces, fungi such as Mortierella, Aspergillus, Phytophtora, Entomophthora, Mucor or Traustochytrium algae such as isochrysis, Phaeodactylum or Crypthecodinium are used as organisms in the process according to the invention, these organisms are advantageously fermentatively grown.
  • the polyunsaturated fatty acids produced in the process can be at least 10%, preferably at least 15%, particularly preferably at least 20%, very particularly preferably by at least 50 % compared to the wild type of the organisms which do not contain the nucleic acids recombinantly.
  • the process according to the invention can in principle increase the polyunsaturated fatty acids produced in the organisms used in the process in two ways.
  • the pool of free polyunsaturated fatty acids and / or the proportion of the esterified polyesters produced by the process can advantageously be used.
  • polyunsaturated fatty acids can be increased.
  • the pool of esterified polyunsaturated fatty acids in the transgenic organisms is advantageously increased by the process according to the invention.
  • microorganisms are used as organisms in the process according to the invention, they are grown or cultivated in a manner known to the person skilled in the art, depending on the host organism.
  • Microorganisms are usually in a liquid medium that contains a carbon source mostly in the form of sugars, a nitrogen source mostly in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as iron, manganese magnesium salts and possibly vitamins, at temperatures between 0 ° C and 100 ° C, preferably between 10 ° C to 60 ° C attracted with oxygen.
  • the pH of the nutrient liquid can be kept at a fixed value, that is to say it can be regulated during cultivation or not.
  • the cultivation can be batch-wise, semi-batch wise or continuous. Nutrients can be introduced at the beginning of the fermentation or can be replenished semi-continuously or continuously.
  • the polyunsaturated fatty acids produced can be isolated from the organisms by methods known to those skilled in the art, as described above. For example, via extraction, distillation, crystallization, salt precipitation and / or chromatography, if necessary.
  • the organisms can be advantageously digested beforehand. If the host organisms are microorganisms, the process according to the invention is advantageously entirely at a temperature between 0 ° C. to 95 ° C., preferably between 10 ° C. to 85 ° C., particularly preferably between 15 ° C. to 75 ° C. carried out particularly preferably between 15 ° C to 45 ° C.
  • the pH is advantageously kept between pH 4 and 12, preferably between pH 6 and 9, particularly preferably between pH 7 and 8.
  • the process according to the invention can be operated batchwise, semi-batchwise or continuously.
  • a summary of known cultivation methods can be found in the textbook by Chmiel (bioprocess technology 1st introduction to bioprocess engineering (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (bioreactors and peripheral facilities (Vieweg Verlag, Braunschweig / Wiesbaden, 1994) ) to find.
  • the culture medium to be used has to meet the requirements of the respective strains in a suitable manner.
  • Descriptions of culture media of various microorganisms are contained in the manual "Manual of Methods for General Bacteriology” of the American Society for Bacteriology (Washington DC, USA, 1981).
  • these media which can be used according to the invention usually comprise one or more carbon sources, nitrogen sources, inorganic salts, vitamins and / or trace elements.
  • Preferred carbon sources are sugars, such as mono-, di- or polysaccharides.
  • Very good carbon sources are, for example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cel-, lulose.
  • Sugar can also be added to the media via complex compounds, such as molasses, or other by-products of sugar refining. It may also be advantageous to add mixtures of different carbon sources.
  • Other possible carbon sources are oils and fats such as e.g. B. soybean oil, sunflower oil, peanut oil and / or coconut fat, fatty acids such as. B.
  • palmitic acid palmitic acid, stearic acid and / or linoleic acid, alcohols and / or polyalcohols such as. B. glycerol, methanol and / or ethanol 0 and / or organic acids such as. B. acetic acid and / or lactic acid.
  • Nitrogen sources are usually organic or inorganic nitrogen compounds or materials containing these compounds.
  • Exemplary nitrogen sources include liquid or gaseous ammonia or ammonium salts such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate or ammonium nitrate, nitrates, urea, amino acids or complex nitrogen sources such as corn steep liquor, soy flour, soy protein, yeast extract, meat extract and others.
  • the nitrogen sources can be used individually or as a mixture.
  • Inorganic salt compounds that may be contained in the media include the chloride, phosphorus or sulfate salts of calcium, magnesium, sodium, cobalt, 0 molybdenum, potassium, manganese, zinc, copper and iron.
  • Inorganic sulfur-containing compounds such as, for example, sulfates, sulfites, dithionites, tetrathionates, thiosulfates, sulfides, but also organic sulfur compounds, such as mercaptans and thiols, can be used as the sulfur source for the production of sulfur-containing fine chemicals, in particular methionine.
  • 5 Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used as the source of phosphorus.
  • Chelating agents can be added to the medium to keep the metal ions in solution.
  • Particularly suitable chelating agents include dihydroxyphenols, such as catechol 0 or protocatechuate, or organic acids, such as citric acid.
  • the fermentation media used for the cultivation of microorganisms usually also contain other growth factors, such as vitamins or growth promoters, which include, for example, biotin, riboflavin, thiamine, folic acid, nicotinic acid, panthothenate and pyridoxine.
  • Growth factors and salts 5 often come from complex media components, such as yeast extract, molasses, corn steep liquor and the like. Suitable precursors can also be added to the culture medium.
  • the exact composition of the media connections strongly depends on the respective experiment and is decided individually for each specific case. Information on media optimization is available from the textbook "Applied Microbiol. Physiology, A Practical Approach" (Ed. PM Rhodes, PF Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 199635773).
  • Growth media can also be obtained from commercial suppliers, such as Standard 1 (Merck) or BHI (Brain heart infusion, DI FCO) and the like.
  • All media components are sterilized, either by heat (20 min at 1.5 bar and 121 ° C) or by sterile filtration.
  • the components can be sterilized either together or, if necessary, separately. All media components • can be present at the beginning of cultivation or can be added continuously or in batches.
  • the temperature of the culture is normally between 15 ° C and 45 ° C, preferably 25 ° C to 40 ° C and can be kept constant or changed during the experiment.
  • the pH of the medium should be in the range from 5 to 8.5, preferably around 7.0.
  • the pH for cultivation can be checked during the cultivation by adding basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water or acidic compounds such as phosphoric acid or sulfuric acid.
  • anti-foaming agents such.
  • B. fatty acid polyglycol esters can be used.
  • suitable selectively acting substances such as, for. B. antibiotics.
  • oxygen or oxygen-containing gas mixtures such as e.g.
  • the temperature of the culture is usually 20 ° C to 45 ° C and preferably 25 ° C to 40 ° C.
  • the culture is continued until a maximum of the desired product has formed. This goal is usually achieved within 10 hours to 160 hours.
  • the fermentation broths obtained in this way in particular containing polyunsaturated fatty acids, usually have a dry matter of 7.5 to 25% by weight.
  • the fermentation broth can then be processed further.
  • the biomass can be wholly or partially separated by methods such as. B. centrifugation, filtration, decanting or a combination of these methods from the fermentation broth or completely left in it.
  • the biomass is advantageously processed after separation.
  • the fermentation broth can also be done without cell separation using known methods, such as. B. with the help of a rotary evaporator, thin film evaporator, falling film evaporator, by reverse osmosis, or by nanofiltration, thickened or concentrated. This concentrated fermentation broth can finally be worked up to obtain the fatty acids contained therein.
  • the fatty acids obtained in the process are also suitable as a starting material for the chemical synthesis of other valuable products.
  • they can be used in combination with one another or alone for the production of pharmaceuticals, foods, animal feed or cosmetics.
  • Another subject of the invention is isolated nucleic acid sequences which code for polypeptides with acyl-CoA: lysophospholipid acyltransferase activity, the acyl-CoA: lysophospholipid acyltransferases coded by the nucleic acid sequences specifically C ⁇ 6 -, C ⁇ 8 -, C 20 - or C ⁇ - Implement fatty acids with at least one ⁇ f , double bonds in the fatty acid molecule.
  • Advantageous isolated nucleic acid sequences are sequences selected from the group: a) a nucleic acid sequence with the SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:
  • nucleic acid sequences which, as a result of the degenerate genetic code, differ from that in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 containing coding sequence can be derived c) ' derivatives of the nucleic acid sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7, which are suitable for polypeptides with the SEQ ID 5 NO: 2 , SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: encoding the amino acid sequence shown in Figure 8 and at least 40% homology at Aminoklareebe- 'ne with SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8 and have acyl-CoA: lysophospholipid acyltransferase activity.
  • the nucleic acid sequences mentioned above advantageously come from a eukaryotic
  • the nucleic acids used in the method are advantageously subjected to amplification and ligation in a known manner.
  • the procedure is preferably based on the protocol of Ru-DNA polymerase or a Ru / Taq-DNA-0 polymerase mixture.
  • the primers are chosen based on the sequence to be amplified.
  • the primers should expediently be chosen such that the amplificate comprises the entire codogenic sequence from the start to the stop codon.
  • the amplificate is expediently analyzed. For example, analysis after gel electrophoretic separation for 5-. Quality and quantity are done.
  • the amplificate can then be cleaned according to a standard protocol (eg Qiagen).
  • Suitable cloning vectors are generally known to the person skilled in the art. This includes, in particular, vectors that can be replicated in microbial systems, that is, above all, vectors that are effective Ensure efficient cloning in yeasts or fungi and enable the stable transformation of plants.
  • vectors that can be replicated in microbial systems, that is, above all, vectors that are effective Ensure efficient cloning in yeasts or fungi and enable the stable transformation of plants.
  • various binary and co-integrated vector systems suitable for T-DNA-mediated transformation are to be mentioned. Such vector systems are generally characterized in that they contain at least required vir genes and T-DNA-delimiting sequences (T-DNA border) the ,, 'for die ⁇ grobakterium-mediated transformation.
  • vector systems preferably also comprise further cis-regulatory regions such as promoters and coordinators terminology * and / or selection markers can be used to suitably transformed organisms identified.
  • vir genes and T-DNA sequences are arranged on the same vector
  • binary systems are based on at least two vectors, one of which is vir genes, but no T-DNA and a second T-DNA, but none carries vir gene.
  • the latter vectors are relatively small, easy to manipulate and can be replicated in both E. coli and Agrobacterium.
  • binary vectors include vectors from the pBIB-HYG, pPZP, pBecks, pGreen series.
  • Bin19, pBI101, pBinAR, pGPTV and pCAMBIA are preferably used according to the invention.
  • An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Science (2000) 5, 446-451.
  • the vectors can first be linearized with restriction endonuclease (s) and then enzymatically modified in a suitable manner. The vector is then cleaned and an aliquot used for the cloning. During the cloning, the enzymatically cut and, if necessary, purified amplificate is cloned with similarly prepared vector fragments using ligase.
  • a specific nucleic acid construct or vector or plasmid construct can have one or more codogenic gene segments.
  • the codogenic gene segments in these constructs are preferably functionally linked to regulatory sequences.
  • the regulatory sequences include, in particular, plant sequences such as the promoters and terminators described above.
  • the constructs can advantageously be stably propagated in microorganisms, in particular Escherichia coli and Agrobacterium tumefaciens, under selective conditions and enable transfer of heterologous DNA in plants or microorganisms.
  • nucleic acids used in the method can be introduced into organisms such as microorganisms or advantageously plants and can thus be used in plant transformation, such as those published in and cited in: Plant Molecular. Biology and Biotechnology (CRC Press, Boca Raten, Florida), Chapter 6/7, pp. 71-119 (1993); FF White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds .: Kung and R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol.
  • nucleic acids used in the method, the inventive nucleic acids and nucleic acid constructs and / or vectors can thus be used for genetic engineering changes use a wide range of organisms advantageously on plants so that they become better and / or more efficient producers of PUFAs.
  • the number or activity of the acyl-CoA: lysophospholipid acyltransferase protein or gene and of gene combinations of acyl-CoA: lysophospholipid acyltransferases, desaturases and / or elongases can be increased, so that larger amounts of the compounds produced are produced de novo, because the organisms lacked this activity and ability to biosynthesize prior to the introduction of the corresponding gene (s).
  • the use of different divergent, i.e. Different sequences at the DNA sequence level can be advantageous, or the use of promoters for gene expression that have a different temporal gene expression e.g. depending on the level of maturity of a seed or oil-storing tissue.
  • acyl-CoA lysophospholipid-acyltransferase, desaturase and / or elongase gene or several acyl-CoA: lysophospholipid-acyltransferases, des turase and / or elongase genes into one organism alone or in combination with others
  • Genes in a cell can not only increase the biosynthesis flow to the end product, but also increase the corresponding triacylglycerol composition or create de novo.
  • the number or activity of other genes involved in the import of nutrients required for the biosynthesis of one or more fine chemicals can also be increased, so that the concentration of these precursors, cofactors or intermediate compounds within of the cells or within the storage compartment is increased, thereby further increasing the ability of the cells to produce PUFAs as described below.
  • Fatty acids and lipids are desirable even as fine chemicals; by optimizing the activity or increasing the number of one or more acyl-CoA: lysophospholipid acyltransferase, desaturases and / or elongases which are involved in the biosynthesis of these compounds, or by destroying the activity of one or more desaturases which are involved in the degradation of these compounds involved, it may be possible to increase the yield, production and / or efficiency of the production of fatty acid and lipid molecules from organisms and advantageously from plants.
  • acyl-CoA lysophospholipid acyltransferase, desaturases and / or elongases which are involved in the biosynthesis of these compounds, or by destroying the activity of one or more desaturases which are involved in the degradation of these compounds involved
  • the isolated nucleic acid molecules used in the method according to the invention code for proteins or parts thereof, the proteins or the individual protein or parts thereof containing an amino acid sequence which is sufficiently homologous to an amino acid sequence of the sequence SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8, so that the protein or part thereof is an acyl CoA: maintains lysophospholipid acyltransferase activity.
  • the protein or the part thereof which is encoded by the nucleic acid molecule still has its essential enzymatic activity and the ability to metabolize to build up cell membranes or lipid bodies in organisms, advantageously in plants 5 . , necessary connections or to participate in the transport of molecules over these membranes.
  • the protein encoded by the nucleic acid molecules is at least about 40%, preferably at least about 60%, and more preferably at least about 70%, 80% or 90%, and most preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to an amino acid sequence of the sequence SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8.
  • Advantageous embodiments of the amino acid sequence of the sequence SEQ ID NO: 2 according to the invention are amino acid sequences which have a valine residue instead of the methionine present at position 30 of SEQ ID NO: 2 or a glycine residue at position 100 or a portion of the phenylalanine present at position 170. These are reproduced in SEQ ID NO: 4, SEQ ID NO: 6 and SEQ ID NO: 8.
  • homology or homologous, identity or identical is to be understood.
  • the essential enzymatic activity of the acyl-CoA: lysophospholipid acyltransferases used is to be understood as being that compared to those obtained by the sequence with 0 SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 and their derivatives encoded proteins / enzymes in comparison still have at least one enzymatic activity of at least 10%, preferably 20%, particularly preferably 30% and very particularly 40% and thus necessary in the metabolism of a plant cell to build up fatty acids in an organism
  • Compounds or 5 can participate in the transport of molecules across membranes, meaning desaturated C16, C18 or C20-24 carbon chains with double bonds at at least two, advantageously three, four or five, positions.
  • Nucleic acids which can advantageously be used in the process originate from fungi or lances such as algae or mosses such as the genera Physcomitrella, Thraustochytrium, Phytophtora, Ceratodon, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium or from nematodes such as Caenor Species Physcomitrella patens, Phytophtora infestans, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricornutum or particularly advantageous from Cae-5 norhabditis elegans.
  • fungi or lances such as algae or mosses such as the genera Physcomitrella, Thrausto
  • the isolated nucleotide sequences used can code for acyl-CoA: lysophospholipid acyltransferases which hybridize to a nucleotide sequence of _ SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7, for example under stringent ones Hybridize conditions.
  • the nucleic acid sequences used in the method are advantageously introduced in an expression cassette which enables the expression of the nucleic acids in organisms such as microorganisms or plants. f . f ⁇ Here ,.
  • the nucleic acid sequences coding for the inventive acyl-CoA: lysophospholipid acyltransferases, 5 the desaturases used and / or the elongases are advantageously functionally linked with one or more regulation signals to increase gene expression.
  • These regulatory sequences are intended to enable targeted expression of the genes and protein expression. Depending on the host organism, this can mean, for example, that the gene is only expressed and / or overexpressed after induction 0, or that it is immediately expressed and / or overexpressed.
  • these regulatory sequences are sequences to which inducers or repressors bind and thus regulate the expression of the nucleic acid.
  • the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes increased.
  • the gene construct can also advantageously contain one or more so-called “enhancer sequences” functionally linked to the promoter, which enable increased expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the DNA sequences.
  • the gene construct or the gene constructs can be inserted in one or more vectors and freely available in the cell or else inserted in the genome. It is advantageous for the insertion of further genes in the host genome if the genes to be expressed are present together in one gene construct.
  • the regulatory sequences or factors can preferably positively influence and thereby increase the gene expression of the genes introduced.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as Promoters and / or "enhancers" can be used.
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • one or more gene constructs that contain one or more sequences defined by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 are defined or its derivatives and code for polypeptides according to SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8.
  • the acyl-CoA lysophospholipid acyltransferases mentioned lead to an exchange of the fatty acids between the mono-, di- and / or triglyceride pool of the cell and the CoA-fatty acid ester pool, the substrate advantageously one, two, three, four or five , Has double bonds and advantageously has 16, 18, 20, 22 or 24 carbon atoms in the fatty acid molecule.
  • the substrate advantageously one, two, three, four or five , Has double bonds and advantageously has 16, 18, 20, 22 or 24 carbon atoms in the fatty acid molecule.
  • Advantageous regulatory sequences for the new method are present, for example, in promoters such as the cos, tac, trp, tet, trp-tet, Ipp, lac, Ipp-lac, laclq, T7, T5 , T3, gal, trc, ara, SP6, ⁇ -PR or ⁇ -PL promoter and are advantageously used in Gram-negative bacteria.
  • promoters such as the cos, tac, trp, tet, trp-tet, Ipp, lac, Ipp-lac, laclq, T7, T5 , T3, gal, trc, ara, SP6, ⁇ -PR or ⁇ -PL promoter and are advantageously used in Gram-negative bacteria.
  • Further advantageous regulatory sequences are, for example, in the Gram-positive promoters amy and SPO2, in the yeast or fungal promoters ADC1, MF ⁇ , AC, P-60, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaMV / 35S [Franck et al., 1980, Cell 21: 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, Iib4, usp, STLS1, B33, nos or in the ubiquitin or phaseolin promoter.
  • inducible promoters are also advantageous, such as those in EP-A-0388 186 (benzylsulfonamide-inducible), Plant J. 2, 1992: 397-404 (Gatz et al., Tetracycline-inducible), EP-A -0335528 (abzisic acid inducible) or WO 93/21334 (ethanol or cyclohexenol inducible) described promoters.
  • Further suitable plant promoters are the cytosolic FBPase promoter or the ST-LSI promoter of the potato (Stockhaus et al., EMBO J. 8, 1989, 2445), the phosphoribosyl pyrophosphatamidotransferase promoter from Glycine max (Genbank accession no.
  • promoters which enable expression in tissues which are involved in fatty acid biosynthesis.
  • Seed-specific promoters such as the USP promoter according to the embodiment, but also other promoters such as the LeB4, DC3, phaseolin or napin promoter are very particularly advantageous.
  • Further particularly advantageous promoters are seed-specific promoters which can be used for monocotyledonous or dicotyledonous plants and in US Pat. No. 5,608,152 (napin promoter from rapeseed), WO 98/45461 (oleosin promoter from Arabidopsis), US.
  • the PUFA biosynthesis genes should advantageously be expressed seed-specifically in oilseeds.
  • seed-specific promoters can be used, or those promoters that are active in the embryo and / or in the endosperm.
  • seed-specific promoters can be isolated both from dicotolydones and from monocotolydones.
  • Plant gene expression can also be facilitated via a chemically inducible promoter (see an overview in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 89-108).
  • Chemically inducible promoters are particularly suitable if it is desired that the gene expression takes place in a time-specific manner. Examples of such promoters are a salicylic acid-inducible promoter (WO 95/19443), a tetracycline-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter.
  • each of the nucleic acids used in the process which are suitable for the acyl-CoA: lysophospholipid acyltransferase, the advantageous ⁇ -4-desaturase, the ⁇ -5-desaturase ⁇ -6-desaturase, the ⁇ -8-desaturase and / or the 5 ⁇ -5-elongase, which encode ⁇ -6-elongase and / or the ⁇ -9-elongase, are preferably expressed under the control of their own from a different promoter because repeating sequence motifs can lead to instability of the T-DNA or to recombination events.
  • the expression cassette is advantageously constructed in such a way that a promoter is followed by a suitable interface for inserting the nucleic acid to be expressed, advantageously in a polylinker, and optionally a terminator behind the polylinker.
  • This sequence is repeated several times. preferably three, four or five times, so that up to five genes are brought together in one construct and can thus be introduced into the transgenic plant for expression.
  • the sequence is advantageously repeated up to three times.
  • the nucleic acid sequences are used for expression via the suitable interface, for example in ⁇ *,>. Polylinker inserted behind the promoter.
  • Each nucleic acid sequence advantageously has its own promoter and possibly its own terminator.
  • nucleic acid sequences behind a promoter and possibly ago • Terminator.
  • the insertion point or the sequence of the inserted nucleic acids in the expression cassette is not of critical importance, ie a nucleic acid sequence can be inserted in the first or last position in the cassette without the expression being significantly influenced thereby.
  • Different promoters such as the USP, LegB4 or DC3 promoter and different terminators can advantageously be used in the expression cassette.
  • the transcription of the introduced genes should advantageously be terminated by suitable terminators at the 3 'end of the introduced biosynthesis genes (behind the stop codon).
  • suitable terminators at the 3 'end of the introduced biosynthesis genes (behind the stop codon).
  • the promoters each gene should use different terminator sequences.
  • the gene construct can also comprise further genes which are to be introduced into the organisms. It is possible and advantageous to introduce and express regulatory genes, such as genes for inducers, repressors or enzymes, which intervene in the regulation of one or more genes of a biosynthetic pathway due to their enzyme activity. These genes can be heterologous or homologous in origin. Furthermore, further biosynthesis genes of the fatty acid or lipid metabolism can advantageously be contained in the nucleic acid construct or gene construct, or these genes can be located on one or more further nucleic acid constructs.
  • regulatory genes such as genes for inducers, repressors or enzymes, which intervene in the regulation of one or more genes of a biosynthetic pathway due to their enzyme activity. These genes can be heterologous or homologous in origin.
  • further biosynthesis genes of the fatty acid or lipid metabolism can advantageously be contained in the nucleic acid construct or gene construct, or these genes can be located on one or more further nucleic acid constructs.
  • nucleic acid sequences are biosynthesis genes of the fatty acid or lipid metabolism selected from the group of ⁇ -4-desaturase, ⁇ -5-desaturase, ⁇ -6-desaturase,. ⁇ -8 desatase, ⁇ -9 desaturase, ⁇ -12 desaturase, ⁇ -5 elongase, ⁇ -6 elongase or ⁇ -9 elongase.
  • the above-mentioned desaturases in combination with other elongases and desaturases can be cloned in the expression cassettes according to the invention and used for the transformation of lances using agrobacterium.
  • the regulatory sequences or factors can, as described above, preferably have a positive influence on the gene expression of the introduced genes and thereby increase it.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • the expression cassettes can be used directly for insertion into the ligament or can be inserted into a vector.
  • These advantageous vectors contain the nucleic acids used in the process, which code for acyl-CoA: lysophospholipid acyltransferases, or a nucleic acid construct which contains the nucleic acid used alone or in combination with other biosynthesis genes of the fatty acid or lipid metabolism such as ⁇ -4 -Desaturase-, ⁇ -5-Desaturase-, ⁇ -6-Desaturase-, ⁇ -8-Desatuase-, ⁇ -9-Desaturase-, ⁇ -12-Desaturase-, ⁇ -5-Elongase-, ⁇ -6- Elongase and / or ⁇ -9 elongase.
  • acyl-CoA lysophospholipid acyltransferases
  • vector refers to a nucleic acid molecule that can transport another nucleic acid to which it is attached.
  • plasmid which stands for a circular double-stranded DNA loop into which additional DNA segments can be ligated.
  • viral vector Another type of vector, whereby additional DNA segments can be ligated into the viral genome.
  • Certain vectors can replicate autonomously in a host cell into which they have been introduced (e.g. bacterial vectors with a bacterial origin of replication). Other vectors are advantageously integrated into the genome of a host cell when introduced into the host cell and are thereby replicated together with the host genome.
  • certain vectors can control the expression of genes to which they are operably linked.
  • vectors are referred to here as "expression vectors".
  • Expression vectors suitable for recombinant DNA techniques are usually in the form of plasmids.
  • plasmid and “vector” can be used interchangeably because the plasmid is the most commonly used vector form.
  • the invention is intended to encompass these other expression vector forms, such as viral vectors, which perform similar functions.
  • vector is also intended to include other vectors known to the person skilled in the art, such as phages, viruses such as SV40, CMV, TMV, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA.
  • the recombinant expression vectors advantageously used in the method comprise the nucleic acids described below or the gene construct described above in a form which is suitable for expression of the nucleic acids used in a host cell, which means that the recombinant expression vectors have selected one or more regulatory sequences on the basis of the host cells to be used for expression, which have the nucleic acid sequence to be expressed is operatively connected.
  • "operably linked" means that the nucleotide sequence of interest is linked to the regulatory sequence (s) in such a way that expression of the nucleotide sequence is possible and that they are linked to one another so that both sequences said the " .
  • regulatory sequence promoters ene • hancer and other expression control elements (eg These regulatory sequences are described, for example, in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), or see: Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy , CRC Press, Boca Raten, Florida, ed .: Glick and Thompson, Chapter 7, 89-108, including the references therein Regulatory sequences include those which control the constitutive expression of a nucleotide sequence in many host cell types and those which control the direct expression of the nucleotide sequence only in certain host cells under certain conditions.
  • the recombinant expression vectors used can be designed for the expression of acyl-CoA: lysophospholipid acyltransferases, desaturases and elongases in prokaryotic or eukaryotic cells. This is advantageous since intermediate steps of vector construction are often carried out in microorganisms for the sake of simplicity.
  • AcyI-CoA lysophospholipid acyltransferase, desäturase and / or elongase genes in bacterial cells, insect cells (using baculovirus expression vectors), yeast and other fungal cells (see Romanos, MA, et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel, CAMJJ, et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, JW Bennet & LL Lasure, ed., Pp.
  • ciliates of the types: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplote s, Engelmanieila and Stylonychia, in particular of the genus Stylonychia lemnae, with vectors according to a transformation process, as described in WO 98/01572, and preferably in cells of multicellular plants (see Schmidt, R. and Willmitzer, L (1988) "High efficiency Agrobacterium * - tumefaciens-mediated.
  • rek ⁇ mbinante expression vector may alternatively, for example, encryption, ">, application of T7 promoter regulatory sequences and T7 polymerase, are transcribed and translated in vitro.
  • Proteins are usually expressed in prokaryotes using vectors which contain constitutive or inducible promoters which control the expression of fusion or non-fusion proteins.
  • Typical fusion expression vectors include pGEX (Pharmacia Biotech Ine; Smith, DB, and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) where Glutathione-S Transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein.
  • GST Glutathione-S Transferase
  • Suitable inducible non-fusion E. coli expression vectors include pTfc (Amann et al. (1988) Gene 69: 301-315) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89).
  • Target gene expression from the pTrc vector is based on transcription by host RNA polyrherase from a hybrid trp-lac fusion promoter.
  • the target gene expression from the pET 11d vector is based on the transcription of a T7-gn10-lac fusion promoter which is derived from a coexpressed viral RNA
  • T7 gn1 Polymerase (T7 gn1) is mediated.
  • This viral polymerase is provided by BL21 (DE3) or HMS174 (DE3) host strains from a resident ⁇ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.
  • Other vectors suitable in prokaryotic organisms are known to the person skilled in the art, these vectors are, for example, in E.
  • the pBR series such as pBR322
  • the pUC series such as pUC18 or pUC19
  • the M113mp series pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-llll 13-B1, ⁇ gt11 or pB
  • the expression vector is a yeast expression vector.
  • yeast expression vectors for expression in the yeast S. cerevisiae include pYe-Desaturased (Baldari et al. (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA).
  • Vectors and methods of constructing vectors suitable for use in other fungi, such as filamentous fungi include those described in detail in: van den Honel ⁇ del, CAMJJ, & Punt, PJ (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, JF Peberdy et al., eds., pp. 1-28, Cambridge University Press: Cambridge, or in: More Gene Manipulations in Fungi [JW Bennet & LL Lasure, eds., Pp. 396-428: Academic Press: San Diego].
  • Other suitable yeast vectors are, for example, pAG-1, YEp6, YEp13 or pEMBLYe23.
  • acyl-CoA lysophospholipid acyltransferases, desaturases,,,, and / or elongases can be expressed in insect cells using baculovirus expression vectors.
  • Proteins available in cultured insect cells include the pAc series (Smith et al. (1983) Mol. Cell Bio 3: 2156-2165) and the pVL series
  • the acyl-CoA lysophospholipid acyltransferases, desaturases and / or elongases in single-cell plant cells (such as algae), see Falciatore et al., 1999, Marine Biotechnology 1 (3): 239-251 and literature references cited therein, and plant cells from higher plants (eg spermatophytes, such as crops) are expressed.
  • lance expression vectors include those described in detail in: Becker, D., Kemper, E., Schell, J., and Masterson, R. (1992) "New plant binary vectors with selective markers located proximal to the left border ", Plant Mol. Biol. 20: 1195-1197; and Bevan, M.W.
  • a plant expression cassette preferably contains regulatory sequences, which can control gene expression in Rianenzellen and are operably linked so that each sequence can fulfill its function, such as termination of the transcription, for example polyadenylation signals.
  • Preferred polyadenylation signals are those derived from Agrobacterium tumefaciens-T-DNA, such as gene 3 of the Ti plasmid pTiACH ⁇ (Gielen et al., EMBO J. 3 (1984) 835ff.) Known as octopin synthase or functional equivalents thereof, but all other terminators that are functionally active in plants are also suitable.
  • a gene expression cassette preferably contains other functionally linked sequences, such as translation enhancers, for example the overdrive sequence, which contains the 5 'untranslated leader sequence from tobacco mosaic virus which contains the protein in / RNA ratio increased (Gallie et al., 1987, Nucl. Acids Research 15: 8693-8711).
  • translation enhancers for example the overdrive sequence, which contains the 5 'untranslated leader sequence from tobacco mosaic virus which contains the protein in / RNA ratio increased (Gallie et al., 1987, Nucl. Acids Research 15: 8693-8711).
  • the plant gene expression -must as to be operatively linked with a total (, suitable promoter described above, on a timely, cell gene expression or performing tissue-specific manner.
  • suitable promoters are constitutive promoters (Benfey et al., EMBO J. 8 ( 1989) 2195-2202), such as those derived from plant viruses, such as 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (see also US Pat. No.
  • Plant gene expression can also be facilitated as described above using a chemically inducible promoter (see an overview in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 89-108).
  • Chemically inducible promoters are particularly suitable if it is desired that the gene expression be carried out in a time-specific manner. Examples of such promoters are a salicylic acid-inducible promoter (WO 95/19443), a tetracycline-inducible promoter (Gatz et al. (1992) Plant J.2, 397-404) and an ethanol-inducible promoter.
  • Promoters that react to biotic or abiotic stress conditions are also suitable promoters, for example the pathogen-induced PRP1 gene promoter (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), the heat-inducible hspSO promoter Tomato (US 5,187,267), the cold-inducible alpha amylase promoter from potato (WO 96/12814) or the wound-inducible pin III promoter (EP-A-0375091).
  • Suitable promoters are the Napingen promoter from rapeseed (US 5,608,152), the USP promoter from Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67), the oleosin promoter from Arabidopsis ( WO 98/45461), the * " phaseolin promoter from Phaseolus vulgaris (US 5,504,200), the Bce4 promoter from Brassica (WO 91/13980) or the legumin B4 promoter (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2): 233-9) and promoters which induce the seed-specific expression in monocotyledon plants, such as maize, barley, wheat, rye, rice, etc.
  • Suitable prominent promoters are the lpt2 or lpt1 gene - Barley promoter (WO 95/15389 and WO 95/23230) or those described in WO 99/16890 (promoters from the barley hordein gene, the rice glutelin gene, the rice orycin gene, the rice prolamin Gene, the wheat gliadin gene, wheat glutelin gene, the maize zein gene, the oat glutelin gene, the sorghum kasirin gene, the >>. Rye-secalin gene).
  • the multiparallel expression of the acyl- • CoA: lysophospholipid acyltransferases used in the method may be desired alone or in combination with desaturases and / or elongases.
  • Such expression cassettes can be introduced via a simultaneous transformation of several individual expression constructs or preferably by combining several expression cassettes on one construct.
  • Several vectors, each with several expression cassettes, can also be transformed and transferred to the host cell.
  • Promoters which bring about plastid-specific expression are also particularly suitable, since plastids are the compartment in which the precursors and some end products of lipid biosynthesis are synthesized.
  • Suitable promoters such as the viral RNA polymerase promoter, are described in WO 95/16783 and WO 97/06250, and the clpP promoter from Arabidopsis, described in WO 99/46394.
  • Vector DNA can be introduced into prokaryotic or eukaryotic cells using conventional transformation or transfection techniques.
  • transformation and “transfection”, conjugation and transduction, as used here, are intended to mean a large number of methods known in the prior art for introducing foreign nucleic acid (eg DNA) into a host cell, including calcium phosphate or calcium chloride coprecipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemically mediated transfer, electroporation or particle bombardment.
  • Suitable methods for transforming or transfecting host cells, including plant cells, can be found in Sambrook et al.
  • Host cells which are suitable in principle for taking up the nucleic acid according to the invention, the gene product according to the invention or the vector according to the invention are all prokaryotic or eukaryotic organisms.
  • the host organisms advantageously used are microorganisms, such as fungi or yeasts or plant cells, preferably plants or parts thereof.
  • Mushrooms, yeasts or plants are preferably used, particularly preferably plants, very particularly preferably plants, such as oleiferous plants, which contain large amounts of lipid compounds, such as oilseed rape, evening primrose, hemp, diesel, peanut, canola, flax, soy, safflower, sunflower, borage , or lances, such as corn, wheat, rye, oats, triticale, rice, barley, cotton, manioc, reefers, tagetes, solanaceae lances, such as potatoes, tobacco, eggplant and tomato, Vicia species, peas, alfalfa, bush plants ( Coffee, cocoa, tea), Salix species, trees (oil plant, coconut) as well as perennial grasses and forage crops.
  • lipid compounds such as oilseed rape, evening primrose, hemp, diesel, peanut, canola, flax, soy, safflower, sunflower, borage , or lances, such as corn, wheat, rye,
  • Particularly preferred plants according to the invention are oil fruit plants such as soybean, peanut, rapeseed, canola, flax, hemp, evening primrose, sunflower, safflower, trees (oil palm, coconut).
  • Another object of the invention is isolated nucleic acid sequences which code for polypeptides with acyl-CoA: lysophospholipid acyltransferase activity, the acyl-CoA: lysophosphoiipid acyltransferases specifically encoded by the nucleic acid sequences specifically C ⁇ 6 -, C 18 -, C 20 -.
  • C 20 - Implement C ⁇ fatty acids with at least one double bond in the fatty acid molecule.
  • nucleic acid sequences are sequences selected from the group: d) a nucleic acid sequence with the sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7, e) nucleic acid sequences which can be identified as Result of the degenerate genetic code from that in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7, e) nucleic acid sequences which can be identified as Result of the degenerate genetic code from that in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID
  • nucleic acids according to the invention come from organisms such as animals, ciliates, fungi, plants such as algae or dinoflagellates, which can synthesize PUFAs.
  • nucleic acid (molecule) also encompasses the untranslated sequence located at the 3 'and 5' ends of the coding gene region: at least 500, preferably 200, particularly preferably 100 nucleotides of the Sequence upstream of the 5 'end of the coding region and at least 100, preferably 50, particularly preferably 20 nucleotides of the sequence downstream of the 3' end of the coding gene region.
  • An "isolated" nucleic acid molecule is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid.
  • an "isolated" nucleic acid preferably has no sequences which naturally flank the nucleic acid in the genomic DNA of the organism from which the nucleic acid originates (for example sequences which are located at the 5 'and 3' ends of the nucleic acid are located).
  • the isolated acyl-CoA: lysophospholipid acyltransferase molecule may be less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 contain kb or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in the genomic DNA of the cell from which the nucleic acid originates.
  • nucleic acid molecules used in the “method for example a nucleic acid molecule * ' with a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 or a part thereof, can be used molecular biological standard techniques • and the sequence information provided here are isolated. A homologous sequence or homologous, conserved sequence regions can also be identified at the DNA or amino acid level with the aid of comparison algorithms. These can be used as hybridization probes as well as standard
  • nucleic acid molecule comprising a complete sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQilD NO: 5 or SEQ ID NO: 7 or a part thereof can be isolated by polymerase chain reaction, oligonucleotide primers which on the basis of this sequence or of parts thereof (for example, a nucleic acid molecule comprising the complete sequence or a part thereof can be isolated by polymerase chain reaction using oligonucleotide primers which have been prepared on the basis of this same sequence).
  • mRNA can be isolated from cells (e.g. using the guanidinium thiocyanate extraction method of Chirgwin et al.
  • Synthetic oligonucleotide primers for amplification by means of the polymerase chain reaction can be prepared on the basis of one of the sequences shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 or using the sequences in SEQ ID NO: 2, SEQ Create ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8 amino acid sequences shown.
  • a nucleic acid of the invention can be amplified using cDNA or alternatively genomic DNA as a template and suitable oligonucleotide primers according to standard PCR amplification techniques.
  • the nucleic acid amplified in this way can be cloned into a suitable vector and characterized by means of DNA sequence analysis.
  • Oligonucleotides which correspond to a desaturase nucleotide sequence can be produced by standard synthesis methods, for example using an automatic DNA synthesizer.
  • Homologs of the acyl-CoA used lysophospholipid acyltransferase nucleic acid sequences with the sequence SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID * ._ NO: 7 means, for example, allelic variants with at least approximately 40 to 60%, preferably at least about 60 to 70%, more preferably at least about 70 to 80%, 80 to 90% or 90 to 95% and even more preferably at least about 95%, 96%, 97%, 98%, 99 % or more homology to a nucleotide sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 or their Homologues, derivatives or analogs or parts thereof.
  • nucleic acid molecules of a nucleotide sequence that hybridize to one of the nucleotide sequences shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 or a part thereof, for example under stringent conditions Allelic variants comprise, in particular, functional variants which are deletions, insertions or substitutions of nucleotides from / in the sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 sequence can be obtained, but • the intention is that the enzyme activity of the resulting proteins synthesized is retained for the insertion of one or more genes advantageously. Proteins that still have the enzymatic activity of acyl-CoA: lysophospholipid
  • acyltransferase that is to say whose activity is essentially not reduced, means proteins with at least 10%, preferably 20%, particularly preferably 30%, very particularly preferably 40% of the original enzyme activity, compared with that by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 encoded protein.
  • Homologs of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 also mean, for example, bacterial, fungal and plant homologues, shortened sequences, single-stranded DNA or RNA of the coding and non-coding DNA Sequence.
  • Homologs of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 also mean derivatives, such as promoter variants.
  • the promoters upstream of the specified nucleotide sequences can be modified by one or more nucleotide exchanges, by insertion (s) and / or deletion (s), without however impairing the functionality or activity of the promoters. It is also possible that the activity of the promoters is increased by modification of their sequence or that they are completely replaced by more active promoters, even from heterologous organisms.
  • nucleic acids and protein molecules with acyl-CoA lysophospholipid acyltransferase activity, which are involved in the metabolism of lipids and fatty acids, PUFA cofactors and enzymes or in the transport of lipophilic compounds across membranes, are used in the method according to the invention for modulating the production of PUFAs in transgenic organisms advantageous in plants such as maize, wheat, rye, oats, triticale, rice, barley, soybean, peanut, cotton, linum species such as oil or fiber flax, Brassica species such as rapeseed, canola and turnips, pepper, sunflower, Borage, evening primrose and tagetes, sölanacaen sarcophagi, such as potatoes, tobacco, eggplant and tomato, types of vicia, peas, cassava, alfalfa, bush plants (coffee, cocoa, tea), types of salix, trees (oil palm, coconut) and perennials Grasses and forage crops, either
  • a fatty acid biosynthesis protein has a direct influence on the yield, Production and / or efficiency of the production of the fatty acid from modified organisms) and / or may have an indirect effect, which nevertheless leads to an increase in the yield, production and / or efficiency of the production of the PU FAs or a decrease in undesired compounds (e.g. if the modulation of the metabolism of lipids and fatty acids, cofactors and enzymes leads to changes in the yield, production and / or efficiency of the production or the composition of the desired compounds within the cells, which in turn leads to Production of one or more fatty acids).
  • PUFAs polyunsaturated fatty acids
  • PUFAs polyunsaturated fatty acids
  • PUFAs polyunsaturated fatty acids
  • Lipid synthesis can be divided into two sections: the synthesis of fatty acids and their binding to sn-glycerol-3-phosphate and the addition or modification of a polar head group.
  • Common lipids used in membranes include phospholipids, glycolipids, sphingolipids and phosphoglycerides.
  • Fatty acid synthesis begins with the conversion of acetyl-CoA into malonyl-CoA by the acetyl-CoA carboxylase or in acetyl-ACP by the acetyl transacylase. After a condensation reaction, these two product molecules together form acetoacetyl ACP, which is converted through a series of condensation, reduction, and dehydration reactions; so that a saturated fatty acid molecule with the desired chain length is obtained.
  • the production of the unsaturated fatty acids from these molecules is catalyzed by specific desaturases, either aerobically using molecular oxygen or anaerobically (for fatty acid synthesis in microorganisms, see FC Neidhardt et al. (1996) E.
  • Precursors for PUFA biosynthesis are, for example, oleic acid, linoleic and linolenic acid. These C 8 carbon fatty acids must be extended to C 20 and C ⁇ so that fatty acids of the Eicosa and Docosa chain type are obtained.
  • lysophospholipid acyltransferases advantageously in combination with desaturases such as the ⁇ -4, ⁇ -5, ⁇ -6 and ⁇ -8 desaturases and / or "_" the ⁇ -5 -, ⁇ -6-, ⁇ -9-elongases, arachidonic acid, eicosapentaenoic acid, docapapentaenoic acid or docosahexaenoic acid as well as various other long-chain PUFAs can be obtained, extracted and used for various purposes in food, feed, cosmetic or pharmaceutical applications ,
  • the enzymes mentioned can preferably C 8 -, C 20 -, and / or C ⁇ fatty acids with at least two advantageously at least three, four, five or six double bonds in the fatty acid molecule, preferably to C 20 and / or C 22 fatty acids with advantageously three, four or five double bonds in the fatty acid molecule.
  • Desaturation can . before or after elongation of the corresponding fatty acid.
  • Substrates of the acyl-CoA: Lysophospholipid acyltransferases in the process according to the invention are C 6 -, C 18 -, C 20 - or C 22 - fatty acids such as, for example, palmitic acid, palmitoleic acid, linoleic acid, Y-linolenic acid, ⁇ -linolenic acid, dihomo
  • Preferred substrates are linoleic acid, ⁇ -linolenic acid and / or ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid or arachidonic acid, eicosatetraenoic acid or eicosapentaenoic acid.
  • the C 18 , C 20 or Cas fatty acids with at least two double bonds in the fatty acid are obtained in the process according to the invention in the form of the free fatty acid or in the form of its esters, for example in the form of its glycerides.
  • glycolide means a glycerol esterified with one, two or three carboxylic acid residues (mono-, di- or triglyceride). “Glyceride” is also understood to mean a mixture of different glycerides. The glyceride or the glyceride mixture can contain further additives, e.g. contain free fatty acids, antioxidants, proteins, carbohydrates, vitamins and / or other substances.
  • a “glyceride” in the sense of the method according to the invention is further understood to mean derivatives derived from glycerol.
  • these also include glycerophospholipids and glyceroglycolipids.
  • Glycerophospholipids such as lecithin (phosphatidylcholine), cardiolipin, phosphatidylglycerol, phosphatidylserine and alkylacylglycerophospholipids may be mentioned here by way of example.
  • fatty acids then have to be transported to different modification sites and incorporated into the triacylglycerol storage lipid.
  • Another important step in lipid synthesis is the transfer of fatty acids to the polar head groups, for example by glycerol fatty acid acyltransferase (see Frentzen, 1998, Lipid, 100 (4-5): 161-166).
  • the PUFAs produced in the process comprise a group of molecules that higher animals can no longer synthesize and therefore have to take up or which - higher animals can no longer produce themselves sufficiently and therefore have to take up, although they are easily derived from other organisms, such as bacteria, are synthesized, for example cats can no longer synthesize arachidonic acid.
  • acyl-CoA lysophospholipid acyltransferases
  • phospholipids are to be understood as meaning phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol and / or phosphatidylinositol, advantageously phosphatidylcholine.
  • acyl-CoA lysophospholipid acyltransferase nucleic acid sequence (s) encompass nucleic acid sequences which encode an acyl-CoA: lysophospholipid acyltransferase and in which a part is a coding region and likewise corresponding 5'- and 3'-untranslated sequence regions can.
  • production or productivity are known in the art and include the concentration of the fermentation product (compounds of the formula I) which is formed in a certain time period and a certain fermentation volume (for example kg product per hour per liter).
  • production efficiency encompasses the time it takes to achieve a certain production quantity (e.g. how long it takes the cell to set up a certain throughput rate of a fine chemical).
  • yield or product / carbon yield is known in the art and encompasses the efficiency of converting the carbon source into the product (ie the fine chemical). This is usually expressed, for example, as kg of product per kg of carbon source. Increasing the yield or production of the compound increases the amount of molecules or suitable molecules of this compound obtained in a given amount of culture over a given period of time.
  • biosynthesis or biosynthetic pathway are known in the art and encompass the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds, for example in a multi-step and highly regulated process.
  • degradation or degradation route are known in the art and include the splitting of a compound, preferably an organic compound, by a cell into degradation products (more generally, smaller or less complex molecules: molecules), for example in a multi-step and highly regulated process .
  • metabolism is known in the specialist field and encompasses all of the biochemical reactions that take place in an organism.
  • the metabolism of a certain compound eg " the metabolism of a fatty acid) then comprises the totality of the biosynthetic, modification and degradation pathways of this compound in the cell, which relate to this compound.
  • encode derivatives of the nuc () fi acid molecule according to the invention again given in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 proteins with at least 40%, advantageously about 50 to 60%, preferably at least about 60 to 70%, and more preferably at least about 70 to 80%, 80 to 90%, 90 to 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homology ( Identity) to a complete amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8. The homology was calculated over the entire amino acid or nucleic acid sequence range. The PileUp program was used for the sequence comparisons (J. Mol.
  • the invention also encompasses nucleic acid molecules which differ from one of the nucleotide sequences (and parts thereof) shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 and, therefore, because of the degenerate genetic code encode the same acyl-CoA: lysophospholipid acyltransferase as that encoded by the nucleotide sequences shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7.
  • acyl-CoA lysophospholipid acyltransferase nucleotide sequences shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7, those skilled in the art recognize that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the acyl-CoA: lysophospholipid acyltransferases that can exist within a population. These genetic polymorphisms in the acyl-CoA: lysophospholipid acyltransferase gene can exist between individuals within a population due to natural variation.
  • nucleic acid molecules can be used as hybridization probe according to standard Hybridization techniques are isolated under stringent hybridization conditions.
  • isolated nucleic acid molecules can be used that are at least 15 nucleotides long and under stringent conditions with the nucleic acid molecules that have a nucleotide sequence of SEQ ID NO: 1, SEQ ID y. NO: 3, -SEQ ID NO: 5 or SEQ ID NO: 7.
  • Nucleic acids of at least 25, 50, 100, 250 or more nucleotides can also be used.
  • Hybri- • d Deutschens- and washing conditions should describe under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other.
  • the conditions are preferably such that sequences that are at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to one another usually remain hybridized to one another.
  • stringent conditions are known to the person skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989); 6.3.1-6.3.6., Find.
  • a preferred, non-limiting example of stringent hybridization conditions are hybridizations in 6 x sodium chloride / sodium citrate (SSC) at about 45 ° C., followed by one or more washing steps in 0.2 x SSC, 0.1% SDS at 50 to 65 ° C. It is known to the person skilled in the art that these hybridization conditions differ depending on the type of nucleic acid and, for example, if organic solvents are present, with regard to the temperature and the concentration of the buffer. The temperature differs, for example, under "standard hybridization conditions” depending on the type of nucleic acid between 42 ° C and 58 ° C in aqueous buffer with a concentration of 0.1 to 5 x SSC (pH 7.2).
  • the temperature is about 42 ° C under standard conditions.
  • the hybridization conditions for DNA: DNA hybrids are preferably, for example, 0.1 ⁇ SSC and 20 ° C. to 45 ° C., preferably between 30 ° C. and 45 ° C.
  • the hybridization conditions for DNA: RNA hybrids are preferably, for example, 0.1 ⁇ SSC and 30 ° C. to 55 ° C., preferably between 45 ° C. and 55 ° C.
  • the sequences are written for the purpose of optimal comparison with one another (eg gaps can be inserted into the sequence of a protein or a nucleic acid to ensure optimal alignment with the other protein or the other nucleic acid).
  • the amino acid residues or nucleotides at the corresponding amino acid positions or nucleotide positions are then compared.
  • An isolated nucleic acid molecule which encodes an acyl-CoA: lysophospholipid acyl transferase which is homologous to a protein sequence of SEQ ID NO: 2, SEQ ID NO: 4, 5 SEQ I NO: 6 or SEQ ID NO: 8 by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7, so that one or more amino acid substitutions, additions or deletions can be introduced into the encoded protein.
  • Mutations can be introduced into one of the sequences 0 of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 by standard techniques such as site-specific mutagenesis and PCR-mediated mutagenesis.
  • conservative amino acid substitutions are made on one or more of the predicted non-essential amino acid residues.
  • the amino acid residue is exchanged for 5 an amino acid residue with a similar side chain. Families of amino acid residues with similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g. lysine, arginine, histidine), acidic side chains (e.g.
  • aspartic acid glutamic acid
  • uncharged polar side chains e.g. glycine, asparagine, glutamine, serine, threonine, tyrosine, 0 cysteine
  • non-polar side chains e.g. alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • beta-branched side chains e.g. threonine, valine, isoleucine
  • aromatic side chains e.g. tyrosine, phenylalanine, tryptophan, histidine
  • a predicted non-essential amino acid residue in an acyl-CoA: lysophospholipid acyltransferase is thus preferably replaced by another 5 amino acid residue from the same side chain family.
  • the mutations can be introduced randomly over all or part of the acyl-CoA: lysophospholipid acyltransferase coding sequence, for example by saturation mutagenesis, and the resulting mutants can be converted according to the acyl-CoA: lysophospholipid acyltransferase described here CT • activity are screened to identify mutants that acyl-CoA: lyso ph ⁇ spholipid acyltransferase activity have maintained.
  • the encoded protein can be expressed recombinantly, and the activity of the protein can be used, for example, using the one described here Tests are determined.
  • This invention is further illustrated by the following examples, which should not be taken as limiting. The content of all references, patent applications, patents and published patent applications cited in this patent application is incorporated here by reference. Examples
  • Cloning processes such as restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, connection of DNA fragments, transformation of Escherichia coli and yeast cells, cultivation of bacteria and recombinant sequence analysis DNA were performed as described in Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) or Kaiser, Michaelis and Mitchell (1994) "Methods in Yeast Genetics” (Cold Spring Harbor Laboratory Press: ISBN 0-87969-451 -3) , b) chemicals
  • DNA-modifying enzymes and molecular biology kits were obtained from AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Boehringer (Mannheim), Genomed (Bad Oeynhausen), New England Biolabs (Schwalbach / Taunus), Novagen (Madison, Wisconsin, USA), Perkin- Elmer (Weiterstadt), Pharmacia (Freiburg), Qiagen (Hilden) and Stratagene (Amsterdam, Netherlands). Unless otherwise stated, they were used according to the manufacturer's instructions.
  • cerevisiae was at 30 ° C either in YPG medium or in complete minimal medium without uracil (CMdum; see in: Ausubel, FM, Brent, R., Kingston, RE, Moore, DD, Seidman, JG, Smith, JA, Struhl, K., Albright, LB, Coen, DM, and Varki, A. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York) cultivated with either 2% (w / v) raffinose or glucose. For solid media, 2% (w / v) Bacto TM agar (Difco) was added. The used for cloning and expression. Plasmids are pUC18 (Pharmacia) and pYES2 (Invitrogen Co.).
  • cDNA clones from SEQ ID NO: 9, 11 or 13 were modified in such a way that only the coding region is amplified by means of a polymerase chain reaction with the aid of two oligonucleotides. Care was taken to ensure that a consensus sequence was followed in front of the start codon for efficient translation. Either the base sequence ATA or AAA was chosen and inserted into the sequence before the ATG [Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44, 283-2929 ]. In front of this consensus triplet, a restriction junction was also introduced, which must be compatible with the interface of the target vector into which the fragment is to be cloned and with the aid of which gene expression in microorganisms or magazines is to take place.
  • the PCR reaction was carried out using plasmid DNA as a template in a thermal cycler (Biometra) with the Pf u-DNA (Stratagene) polymerase and the following temperature program: 3 min at 96 ° C., followed by 30 cycles at 30 s at 96 ° C, 30 s at 55 ° C and 2 min at 72 ° C, 1 cycle with 10 min at 72 ° C and stop at 4 ° C.
  • a thermal cycler Biometra
  • Pf u-DNA Stratagene
  • the attachment temperature was varied depending on the oligonucleotides chosen. A synthesis time of about one minute can be assumed for each kilobase pair of DNA. Other parameters that influence the PCR such as Mg ions, salt, DNA polymerase etc. are familiar to the person skilled in the art and can be varied as required.
  • the correct size of the amplified DNA fragment was confirmed by agarose TBE gel electrophoresis.
  • the amplified DNA was extracted from the gel with the QIAquick gel extraction kit (QIAGEN) and ligated into the Smal restriction site of the dephosphorylated vector pUC18 using the Sure Clone Ligation Kit (Pharmacia) to obtain the pUC derivatives.
  • QIAGEN QIAquick gel extraction kit
  • Sure Clone Ligation Kit Pharmacia
  • rape can be transformed, for example, by means of cotyledon or hypocotyl transformation (Moloney et al., Plant Cell 8 (1989) 238-242; De Block et al., Plant Physiol. 91 (1989) 694-701).
  • the use of antibiotics for the Agrobacterium and plant selenium depends on the binary vector and Agrobacterium strain used for the transformation. Rapeseed selection is usually carried out using kanamycin as a selectable plant marker.
  • Soybean transformation can be performed using, for example, a technique described in EP-A-00424047 (Pioneer Hi-Bred International) or in EP-A-00397687, US 5,376,543, US 5,169,770 (University Toledo).
  • Oxygen transformation using particle bombardment, polyethylene glycol-mediated DNA recording, or using silicon carbon fiber technology is described, for example, by Freeling and Walbot "The maize handbook” (1993) ISBN 3-540-97826-7, Springer Verlag New York).
  • Binary vectors based on the vectors pBinAR (Höfgen and Willmitzer, Plant Science 66 (1990) 221-230) or pGPTV (Becker et al ⁇ 1992, Plant Mol. Biol. 20: 1195-1197) were used for plant transformation.
  • the binary vectors which contain the nucleic acids to be expressed are constructed by ligation of the cDNA in the sense orientation into the T-DNA. 5 'of the cDNA, a plant promoter activates the transcription of the cDNA. A polyadenylation sequence is located 3 ' from the cDNA.
  • the binary vectors can carry different marker genes such as, for example, the acetolactate synthase gene (AHAS or ALS) [Ott et al., J.
  • Tissue-specific expression of the nucleic acids can be achieved using a tissue-specific promoter. Unless otherwise described, the LeB4 or USP promoter or the Phaseolin promoter 5 'of the cDNA is cloned. The NOS terminator and the OCS terminator were used as terminators (see FIG. 8).
  • FIG. 8 shows a vector map of the vector pSUN3CeLPLAT used for expression.
  • any other seed-specific promoter element such as the Napin or Arcelin promoter Goossens et al. 1999, Plant Phys. 120 (4) 1095-1 03 and Gerhardt et al. 2000, Bjochimica et Biophysica Acta 1490 (1 -2): 87-98) can be used.
  • nucleic acids used in the process which are used for the acyl-CoA: lysophospholipid acyltransferases; Coding desaturases or elongases were cloned into a binary vector by constructing several expression cassettes in order to simulate the metabolic pathway in plants.
  • the protein to be expressed can be directed into a cellular compartment using a signal peptide, for example for plastids, mitochondria or the endoplasmic reticulum (Kermode, Grit. Rev. Plant Sei. 15, 4 (1996) 285-423 ).
  • the signal peptide is cloned 5 'in frame with the cDNA in order to achieve the subcellular localization of the fusion protein.
  • Promoter-terminator cassettes consist of at least two functional units such as a promoter and a terminator. Further desired gene sequences such as targeting sequences, coding regions of genes or parts thereof, etc. can be inserted between the promoter and terminator.
  • promoters and terminators USP promoter: Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67
  • OCS terminator Gielen et al. EMBO J. 3 (1984) 835ff.
  • the following oligonucleotides can be used, for example:
  • OCS3 rear - CCCAAGCTTGGCGCGCCGAGCTCGTCGACGGAGAATCAGTAAATTGA -
  • a promoter and a terminator were amplified via PCR. Then the terminator was cloned into a recipient plasmid and in a second step the promoter was inserted in front of the terminator. An expression cassette was thereby cloned into the base plasmid. Based on the plasmid pUC19, the plasmids pUT1, 2 and 3 were created. The corresponding constructs or plasmids are defined in SEQ ID NO: 15, 16 to 17. They contain the USP promoter and the OCS terminator. On the basis of these plasmids, the construct pUT12 was created by cutting pUT1 using Sall / Scal and cutting pUT2 using Xhol / Scal.
  • the fragments containing the expression cassettes were ligated and transformed into E. coli XL1 blue MRF. After separating ampicillin-resistant colonies, DNA was prepared and those clones which contained two expression cassettes were identified by restriction analysis. The Xhol / Sall ligation of compatible ends has eliminated the two interfaces Xhol and Sall between the expression cassettes. The resulting plasmid pUT12 is shown in SEQ ID NO: 18. Then pUT12 was cut again using Sal / Scal and pUT3 cut using Xhol / Scal. The fragments containing the expression cassettes were ligated and transformed into E. coli XLI blue MRF.
  • multi-expression cassettes can be produced using the i) USP promoter or — using the ii) 700 base pairs 3 ′ fragment of the LeB4 promoter or using the iii) DC3 promoter ⁇ nd for seed-specific gene expression deploy.
  • the DC3 promoter is described in Thomas, Plant Cell 1996, 263: 359-368 and consists only of the region -117 to +26 which is why it is one of the smallest known seed-specific promoters.
  • the expression cassettes can contain the same promoter several times or can be constructed using three different promoters.
  • Polylinker or polylinker terminator polylinkers used advantageously can be found in the sequences SEQ ID NO: 23 to 25. t
  • VeMoren usable in lances with one or two or three promoter-terminator expression cassettes can be found in the sequences SEQ ID NO: 26 to SEQ ID NO: 31. ii.) Creation of expression constructs which contain the promoter, terminator and desired gene sequence for PUFA gene expression in plant expression cassettes.
  • the ⁇ -6 elongase Pp_PSE1 is first inserted into the first cassette via BstXI and Xbal.
  • Pp_des6 or Pt_des6 ⁇ -6-desaturase from Physcomitrella patens or Phaeodactylum tricornutum
  • Pp Physcomitrella patens
  • Pt Phaeodactylum tricornutum
  • Pp_PSE1 ⁇ -6-Elongase from Physcomitrella patens
  • Pt_PSE1 ⁇ -6-Elonactumum from Phaeodornum
  • Ce_des5 ⁇ -5 desaturase from Caenorhabditis elegans (Genbank Acc. No. AF078796)
  • Ce_des6 ⁇ -6-desaturase from Caenorhabditis elegans (Genbank Acc. No. AF031477,
  • Ce_PSE1 ⁇ -6-elongase from Caenorhabditis elegans (Genbank Acc. No. AF244356,
  • the constructs created in this way were inserted into the binary vector pGPTV using Ascl.
  • the multiple cloning sequence was extended by an Ascl interface.
  • the polylinker was newly synthesized as two double-stranded oligonucleotides, with an additional Ascl DNA sequence being inserted.
  • the oligonucleotide was inserted into the vector pGPTV using EcoRI and Hindill. The necessary cloning techniques are known to the person skilled in the art and can easily be read as described in Example 1.
  • nucleic acid sequences for ⁇ were the ⁇ -5-desaturase (SEQ ID NO: 13), the ⁇ -6-desaturase (SEQ ID NO: 9) and the ⁇ -6-elongase (SEQ ID NO: 11), the sequences from Physcomitrella patens and Phaedactylum tricornutum are used.
  • the corresponding amino acid sequences are the sequences SEQ ID NO: 10, SEQ ID NO: 12 and SEQ ID NO: 14.
  • a vector which contains all the aforementioned genes is shown in SEQ ID NO: 19.
  • the corresponding ones Amino acid sequences of the genes can be found in SEQ ID NO: 20, SEQ ID NO: 21 and SEQ ID NO: 22.
  • Example 2 Cloning and CharMerization of the ceLPLATs a) Database search
  • the search was limited to the nematode genome (Caenorhabditis elegans) using the BLAST-Psi algorithm (Altschul et al., J. Mol. Biol. 1990, 215: 403-410), since this organism synthesizes LCPUFAs.
  • An LPAAT protein sequence from Mus musculus (MsLPAAT Accession No.
  • NP_061350 was used as the probe for the sequence comparison.
  • LPLAT catalyzes the ATP-independent synthesis of acyl-CoAs from phospholipids using CoA as a co-factor by means of a reversible transferase reaction (Yamashita et al., J. Biol. Che. 2001, 20: 26745-26752).
  • Sequence comparisons two putative ceLPLAT sequences were identified (Accession No. T06E8.1 and F59F4.4). The identified sequences are most similar to each other and to MsLPAATs (FIG. 1) Program Clustal created b) Cloning of CeLPLATs
  • primer pairs were synthesized (Tab. 1) and the associated cDNAs were isolated from a C. elegans cDNA library using the PCR method. The corresponding primer pairs were selected so that they carried the yeast consensus sequence for highly efficient translation (Kozak, Cell 1986, 44: 283-292) next to the start codon.
  • the amplification of the LPLAT cDNAs was carried out in each case with 2 ⁇ l cDNA bank solution as template, 200 ⁇ M dNTPs, 2.5 U “proof-reading” p / u polymerase and 50 pmol of each primer in a total volume of 50 ⁇ l ,
  • the conditions for the PCR were as follows: first denaturation at 95 ° C for 5 minutes, followed by 30 cycles at 94 ° C for 30 seconds, 58 ° C for one minute and 72 ° C for 2 minutes, and a final extension step at 72 ° C for 10 minutes.
  • the sequence of the LPLAT cDNAs was confirmed by DNA sequencing.
  • Example 3 Analysis of the effect of the recombinant proteins on the production of the desired product a) Processing options
  • the effect of the genetic modification in fungi, algae, ciliates or, as described in the examples above in yeasts, on the production of the polyunsaturated fatty acids or plants can be determined by the modified microorganisms or the modified plant under suitable conditions (such as the above described above) and the medium and / or the cellular components are examined for the increased production of lipids or fatty acids.
  • suitable conditions such as the above described above
  • analysis techniques are known to the person skilled in the art and include spectroscopy, thin-layer chromatography, staining methods of various types, enzymatic and microbiological methods and analytical chromatography, such as high-performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, pp. 89-90 and p.
  • the unambiguous evidence for the presence of fatty acid products can be obtained by analysis of recombinant organisms according to standard analysis methods: GC, GC-MS or TLC, as described variously by Christie and the literature therein (1997, in: Advances on Lipid Methodology, fourth Ed .: Christie, Oily Press, Dundee, 119-169; 1998, gas chromatography-mass spectrometry method, lipids 33: 343-353).
  • the plant material to be analyzed can be broken up either by ultrasound treatment, grinding in a glass mill, liquid nitrogen and grinding or by other applicable methods.
  • the material is then centrifuged after breaking up.
  • the sediment is then distilled in aqua dest. resuspended, heated at 100 ° C for 10 min, cooled on ice and centrifuged again, followed by extraction in 0.5 M sulfuric acid in methanol with 2% dimethoxypropane for 1 hour at 90 ° C, which leads to hydrolyzed oil and lipid compounds that give transmethylated lipids.
  • fatty acid methyl esters can then be extracted into petroleum ether and finally a GC analysis using a capillary column (chrome pack, WCOT fused silica, CP-Wax-52 CB, 25 microm, 0.32 mm) at a temperature gradient between 170 ° C and 240 ° C be subjected for 20 min and 5 min at 240 ° C.
  • the identity of the fatty acid methyl esters obtained can be defined using standards available from commercial sources (i.e. Sigma).
  • the total fatty acids were extracted from plant seeds and analyzed by gas chromatography. The seeds were taken up with 1% sodium methoxide in methanol and
  • the furnace temperature was (hold 1 min) of 70 ° C ⁇ up to 200 ° C at a rate of 20 ° C / min, then (hold 5 min) to 250 ° C at a rate of 5 ° C / min and finally to 260 ° C programmed at a rate of 5 ° C / min.
  • Nitrogen was used as the carrier gas (4.5 ml / min at 70 ° C).
  • the fatty acids were identified by comparison with retention times of FAME standards (SIGMA).
  • Example 4 Functional characterization of the CeLPLATs in yeast a) Heterolo ⁇ e expression in Saccharomyces cerevisiae ⁇ To characterize the function of the CeLPLATs from C. elegans, the open reading frames of the respective cDNAs downstream of the galactose-inducible GAL1 -
  • the double construct pESCLeu-PpD6-Pse1 was further produced, which contains the open reading frames of a ⁇ 6-desaturase (PpD6) and a ⁇ 6-elongase (PSE1) from Physcomitrella patens ( see DE 102 19203).
  • the nucleic acid sequence of the ⁇ 6 desaturase (PpD6) and the ⁇ 6 elongase (Pse1) are given in SEQ ID NO: 9 and SEQ ID NO: 11, respectively.
  • the corresponding amino acid sequences can be found in SEQ ID NO: 10 and SEQ ID NO: 12.
  • the Saccharomyces cerews / ae strains C13ABYS86 (protease-deficient) and INVSd were analyzed simultaneously with the vectors pYes2-T06E8.1 and pESCLeu-PpD6-Pse1 or pYes2-F59F4.4 and pESC-Leu using a modified PEG / ethyl acetate protocol -PpD6-Pse1 transformed.
  • a yeast was used as a control, which was transformed with the vector pESCLeu-PpD6-Pse1 and the empty VeMor pYes2.
  • the transformed yeasts were selected on complete minimal medium (CMdum) agar plates with 2% glucose, but without uracil and leucine.
  • the yeast cells from the main cultures were harvested by centrifugation (100 ⁇ g, 10 min, 20 ° C.) and washed with 100 mM NaHCO 3 , pH 8.0 to remove residual medium and fatty acids.
  • Fatty acid methyl esters (FAMEs) were produced from the yeast cell sediments by acidic methanolysis. For this purpose, the cell sediments were incubated with 2 ml of 1 N methanplic sulfuric acid and 2% (v / v) dimethoxypropane for 1 h at 80 ° C.
  • the FAMES were extracted by extraction twice with petroleum ether (PE).
  • the organic phases were each washed once with 2 ml of 100 mM NaHCO 3 , pH 8.0 and 2 ml of distilled water. washed.
  • the PE phases were then dried with Na 2 SO 4 , evaporated under argon and taken up in 100 ⁇ l PE.
  • the samples were separated on a DB-23 capillary column (30 m, 0.25 mm, 0.25 ⁇ m, Agilent) in a Hewlett-Packard 6850 gas chromatograph with flame ionization detector.
  • the conditions for the GLC analysis were as follows: The oven temperature was programmed from 50 ° C to 250 ° C at a rate of 5 ° C / min and finally 10 minutes at 250 ° C (hold).
  • the signals were identified by comparing the retention times with corresponding fatty acid standards (Sigma).
  • FIGS. 2A and B and 3A and B show the fatty acid profiles of transgenic C13ABYS86 yeasts which were fed with 18: 2 ⁇ 9.12 and 18: 3 ⁇ 9.12 '15 , respectively.
  • the fed substrates can be detected in large quantities in all transgenic yeasts.
  • All four transgenic yeasts show a synthesis of 18: 3 ⁇ 6 '9,12 and 20: 3 ⁇ 8,11,14 and 18: 4 ⁇ 6' 9-12 '15 and 20: 4 ⁇ 8,11,14,17 ⁇ the products of the ⁇ -6 desäturase and ⁇ -6-elongase reactions. This means that the genes PpD6 and Pse1 could be expressed functionally.
  • Figure 2 gives the fatty acid profiles of transgenic C13ABYS86 S. * .. cerev / sae cells as described above.
  • the fatty acid methyl esters were synthesized by acid methanolysis of intact cells which had been transformed either with the vectors pESCLeu-PpD6-Pse1 / pYes2 (A) or pYes2-T06E8.1 / pESCLeu-PpD6-Pse1 (B).
  • the yeasts were grown in minimal medium 'in the presence of 18: 2 ⁇ 9,12 cultured.
  • the fatty acid methyl esters were then analyzed by GLC.
  • the fatty acid methyl esters were synthesized by acid methanolysis in inert cells which had been transformed either with the vectors pESCLeu-PpD6-Pse1 / pYes2 (A) or pYes2-T06E8.1 / pESCLeu-PpD6-Pse1 (B).
  • the yeasts were cultivated in minimal medium in the presence of 18: 3 ⁇ 9, 12, 15 .
  • the fatty acid methyl esters were then analyzed by GLC.
  • FIG. 4 shows the elongation of exogenously applied 18: 2 ⁇ 9 '12 or 18: 3 ⁇ 9,12,15 following their endogenous ⁇ -6 desaturation (data from FIGS. 2 and 3).
  • the exogenously fed fatty acids are first incorporated into phospholipids, where they are desatured to 18: 3 ⁇ 6.9 '12 and 18: 4 ⁇ 6.9 ' 12.15 .
  • LPLAT T06E8.1 is able to efficiently convert the ⁇ -6-desatured acyl groups back into CoA thioesters.
  • FIG. Y shows the acyl-CoA composition of transgenic INVSd yeasts which had been transformed with the VeMoren pESCLeu PpD6Pse1 / pYes2 (A) or pESCLeu-PpD6-Pse1 / pYes2-T06E8.1 (B).
  • the yeast cells were in minimal medium without ne uracil and leucine cultivated in the presence of 250 ⁇ M I ⁇ : ⁇ 912 .
  • the acyl-CoA derivatives were analyzed by HPLC.
  • C13ABYS86 showed only small amounts of the elongation product (20: 3 ⁇ 8,11,14 when feeding 18: 2 or 20: 4 ⁇ 8 ' 11 ' 1 - 7 when feeding 18: 3; see FIGS. 5 A and 6 A).
  • CeLPLAT T06E8.1
  • Table 6 shows that the additional expression of CeLPLAT surprisingly caused an 8-fold increase in the content of 20: 3 ⁇ 811 '14 (when feeding 18: 2) or 20: 4 ⁇ 8 ' 11 - 14 '17 (when feeding 18 : 3) causes.
  • Cl ⁇ : ⁇ 6.9 is elongated more efficiently to C18: 2 ⁇ 6.9 .
  • Table 5 Fatty acid composition (in mol%) of transgenic yeasts which had been transformed with the VeMoren pESCLeu PpD6Pse1 / pYes2 (PpD6 Psel) or pESCLeu- PpD6-Pse1 / pYes2-T06E8.1 (PpD6 Pse1 + T06E8).
  • the yeast cells were grown in minimal medium without uracil and leucine; cultivated in the presence of 250 ⁇ M 18: 2 ⁇ 9 '12 or 18: 3 ⁇ 9 - 12 - 15 .
  • FIG. 5 shows the fatty acid profile of transgenic INVSd S. cerevisiae cells.
  • the fatty acid methyl esters were synthesized by acid methanolysis in inert cells which had been transformed either with the VeMoren pESCLeu-PpD6-Pse1 / pYes2 (A) or pYes2-T06E8.1 / pESCLeu-PpD6-Pse1 (B).
  • the yeast was cultured in minimal medium in the presence of 18: 2 ⁇ 9.12 .
  • the fatty acid methyl esters were then analyzed by GLC.
  • Figure 6 shows the fatty acid profiles of transgenic INVSd S. cerevisiae ZeWen. ,
  • the fatty acid methyl esters were synthesized by acid methanolysis of intact cells which had been transformed with either the VeMoren pESCLeu-PpD6-Pse1 / pYes2 (A) or pYes2-T06E81 / pESCLeu-PpD6-Pse1 (B).
  • the yeasts were cultivated in minimal medium in the presence of 18: 3 ⁇ '12 .15 .
  • the fatty acid methyl esters were then analyzed by GLC.
  • a measure of the efficiency of LCPUFA biosynthesis in transgenic yeast is the quotient from the content of the desired ⁇ -6 elongation product after ⁇ -6 desaturation (20. 3 ⁇ 8, ⁇ , i4 b2w 20. 4 ⁇ 8, ⁇ , i4, i7) to content delivered f ütterter fatty acid (18: 2 ⁇ 9 '12 or
  • CeLPLAT bewirM not only an increase of said ElongationsproduMe 0 20: 3 ⁇ 8,11,14 , rang.20: 4 ⁇ 8,11,14,17, but also an increase in the ratio 20: 3 ⁇ 8 - 11 ' 14 : 20: 2 ⁇ 11 '14 or 20: 4 ⁇ 8 - 11 - 14 - 17 : 20: 3 ⁇ 11 - 14 - 17 .
  • the ⁇ -6-elongase preferably uses polyunsaturated fatty acids (18: 3 ⁇ 6,9,12 and 18: 4 ⁇ 6 ' 9,12 ' 15 ) as the substrate, whereas in the absence of the LPLAT none is pronounced Substrate specificity can be seen (5 18: 2 ⁇ 9,12 and 18: 3 ⁇ 9,12,15 are also elongated).
  • the reason for this may be protein-protein interactions between ⁇ -6-elongase, ⁇ -6-desturase and LPLAT or post-translational modifications (eg partial proteolysis). This would also explain why the increase in ⁇ -6 elongation products described above is less with co-expression of ⁇ -6-desaturase, ⁇ -6-elongase and LPLAT when using a protease-deficient yeast strain.
  • Table 6 shows the primers that were used to clone another clone of ceLPLAT into binary VeMoren.
  • Table 6 Nucleotide sequences of the PCR primers for cloning CeLPLAT (T06E8.1) in the binary VeMor pSUN3
  • the PCR-ProduM was cloned into a pENTRY vector between the USP promoter and the OCS terminator.
  • the expression cassette was then cloned into the binary VeMoren pSUN300.
  • the resulting VeMor was designated pSUN3CeLPLAT ( Figure 8).
  • the coding region of CeLPLAT was amplified and cloned between the LegB4 promoter and the OCS terminator. This VeMor was designated pGPTVCeLPLAT ( Figure 9A).
  • CeLPLAT was amplified by PCR and cloned between the LegB4 promoter and OCS terminator.
  • the purpose PCR used 'primers were selected so that an efficient Kosaksequenz was introduced into the PCR ProduM.
  • the CeLPLAT DNA sequence was modified to match the codon usage of higher plants. The following primers were used for the PCR:
  • Reverse primer 5'- CTAGCTAGC ⁇ ACTCAGATTTCTTCCCGTCTTTTGTTTCTC-3 '
  • the PCR ProduM was cloned into the cloning VeMor pCR script and cloned into the VeMor pGPTV LegB4-700 via the restriction enzymes Xmal and Sacl.
  • the resulting plasmid was designated pGPTV LegB4-700 + T06E8.1 ( Figure 9A).
  • PCR ProduM was also cloned into a multi-gene expression gene which already identified the genes for a delta-6 desaturase from Phaeodactylum tricornutum (SEQ ID NO: 32, amino acid sequence SEQ ID NO: 33) and a delta-6 elongase P. patens contained.
  • the resulting plasmid was made with pGPTV
  • the ⁇ -6 elongase from Physcomitrella patens ranges from nucleotide 1026 to 1898 and that of the LPLAT from Caenorhabditis elegans ranges from nucleotide 2805 to 3653 in SEQ ID NO: 34.
  • Tobacco plants were co-transformed with the VeMor pSUN3CeLPLAT and the vector containing genes coding for ⁇ -6-desaturase, ⁇ -6-elongase and ⁇ -5-desaturase described in DE 102 19203 and SEQ ID NO: 19, with the selection of transgenic plants with kanamycin.
  • Tobacco plants were also transformed with the VeMor pGPTV USP / OCS-1, 2.3 PSE1 (Pp) + D6-Des (Pt) + 2AT (T06E8-1) [see SEQ ID NO: .34, SEQ ID NO: 35, SEQ ID NO: 36 and SEQ ID NO: 37].
  • Lein was transformed with the VeMor pSUNSCeLPLAT. The resulting transgenic plants were crossed with those transgenic linseed plants which already contained small amounts of ERA and EPA due to the unionic gene expression of ⁇ -6-desaturase, ⁇ -6-elongase and ⁇ -5-desaturase.
  • Lein was also transformed with the VeMor pGPTV LegB4-700 + T06E8.1.
  • the resulting transgenic lances were crossed with those transgenic linseed plants which already contained small amounts of ERA and EPA due to the functional expression of ⁇ -6-desaturase, ⁇ -6-elongase and ⁇ -5-desaturase.
  • the funMion of acyl-CoA can be derived from the work here as shown in FIG.
  • the LCPUFAS biosynthetic pathway is as follows. Desaturases catalyze the introduction of double bonds in lipid-coupled fatty acids (s7.?- acyl-phosphatidylcholine), while the elongases exclusively catalyze the elongation of coenzyme A-esterified fatty acids (acyl-CoAs).
  • the alternating action of desaturases and elongases requires the Standing '" ⁇ * • • •' ⁇ gen exchange of acyl substrates between phospholipids and acyl-CoA pool and therefore the existence of an additional AMtechnik that the acyl substrates the necessary substrate form, ie lipids (for desaturases) or CoA thioesters (for elongases), is transferred.
  • This exchange between the acyl-CoA pool and phospholipids is made possible by LCPUFA-specific LPLAT.
  • the biosynthesis of ERA (A) is carried out analogously to EPA (B), with the difference that in EPA the ⁇ -6 desaturation is preceded by a ⁇ -15 desaturation, so that ⁇ 18: 3-PC acts as a substrate for the ⁇ -6 desäturase ..
  • the biosynthesis of DHA does one thing further exchange between phospholipids and acyl-CoA pool via LPLAT is necessary: 20: 5 ⁇ 5 ' 8 ' 11 ' 14 ' 17 is transferred from the phospholipid to the CoA pool and after ⁇ -5 elongation becomes 22: 5 D7.10 , 13,16,19 from CoA to Phospholipid pool transferred and finally converted to DHA by ⁇ -4-desaturase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Fats And Perfumes (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität codieren. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die fur Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem transgenen Organismus exprimiert werden. Die Erfindung betrifft weiterhin die Nukleinsäuresequenzen, Nukleinsäurekonstrukte enthaltend die erfindungsgemäβen Nukleinsäuresequenzen, Vektoren enthaltend die Nukleinsäuresequenzen und/oder die Nukleinsäurekonstrukte sowie transgene Organismen enthaltend die vorgenannten Nukleinsäuresequenzen, Nukleinsäurekonstrukte und/oder Vektoren. Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäβen Verfahren und deren Verwendung.

Description

Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach ungesät- tigten Fettsäuren in einem Organismus indem Nukleinsäuren in den Organismus ein- gebracht werden, die für Polypeptide mit Acyl-CoA:Lysophospholipid-Acyltrans- feraseaktivität codieren. Vorteilhaft können diese Nukleinsauresequenzen gegebenenfalls zusammen mit weiteren Nukleinsauresequenzen, die für Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem transgenen Organismus exprimiert werden. Die Erfindung betrifft weiterhin die Nukleinsauresequenzen, Nukleinsaurekonstrukte enthaltend die erfindungsgemäßen Nukleinsauresequenzen, Vektoren enthaltend die Nukleinsauresequenzen und/oder die Nukleinsaurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsauresequenzen, Nukleinsaurekonstrukte und/oder Vektoren. i Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung.
Fettsäuren und Triglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich. Je nachdem ob es sich um freie gesättigte oder ungesättigte Fettsäuren oder um Triglyceride mit ei- nem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet, so werden beispielsweise mehrfach ungesättigte Fettsäuren Babynahrung zur Erhöhung des Nährwertes zugesetzt.. Mehrfach ungesättigte ω-3-Fettsäuren und ω-6-Fettsäuren stellen dabei einen wichtigen Bestandteil der tierischen und menschlichen Nahrung dar. Aufgrund der heute üblichen Zusammensetzung der menschlichen Nahrung ist ein Zusatz von mehrfach ungesättigten ω-3-Fettsäuren, die bevorzugt in Fischölen vorkommen, zur Nahrung besonders wichtig. So werden beispielsweise mehrfach ungesättigte Fettsäuren wie Docosahe- xaensäure (= DHA, C22:6Δ4'7,10,13,16'19) oder Eisosapentaensäure (= EPA, C20:5Δ5,8,11,14,17) Babynahrung zur Erhöhung des Nährwertes zugesetzt. Der ungesät- tigten Fettsäure DHA wird dabei ein positiver Effekt auf die Entwicklung des Gehirns zugeschrieben.
Im folgenden werden mehrfach ungesättigte Fettsäuren als PUFA, PUFAs, LCPUFA oder LCPUFAs bezeichnet (ßoly unsaturated fatty acids, PUFA. long chain ßoly unsa- turated fatty acids, LCPUFA). Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder Schizochytrium oder aus Öl-produzierenden Pflanzen wie Soja, Raps, Algen wie Crypthecodinium oder Phaeodactylum und weiteren gewonnen, wobei sie in der Regel in Form ihrer Triacylglyceride (= Triglyceride = Triglycerole) anfallen. Sie können aber auch aus Tieren wie z.B. Fischen gewonnen werden. Die freien Fettsäuren werden vorteilhaft durch Verseifung hergestellt. Höhere mehrfach ungesättigte Fettsäuren wie DHA, EPA, Arachidonsäure (= ÄRA, C20:4Δ5'8'11 14), Dihomo-γ- linolensäure (C20:3Δ8'11'14) oder Docosapentaensäure (DPA, C22:5Δ7'10'13'16'19) lassen , sich nicht aus Ölfruchtpflanzen wie Raps, Soja, Sonnenblume, Färberdistel oder ande- ren isolieren. Übliche natürliche Quellen für diese Fettsäuren sind Fische wie Hering, Lachs, Sardine, Goldbarsch, Aal, Karpfen, Forelle, Heilbutt, Makrele, Zander oder Thunfisch oder Algen.
Je nach Anwendungszweck sind Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt, so sind z.B. in der humanen Ernährung Lipide mit ungesättigten Fettsäuren speziell mehrfach ungesättigten Fettsäuren bevorzugt. Den mehrfach ungesättigten ω- 3-Fettsäuren wir dabei ein positiver Effekt auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit der Prävention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser ω-3-Fettsäuren zu Nahrung kann das Risiko einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden. Auch entzündliche speziell chronisch entzündliche Prozesse im Rahmen immunologischer Erkrankungen wie rheumatroider Arthritis lassen sich durch ω-3-Fettsäuren positiv beeinflussen. Sie werden deshalb Lebensmitteln speziell diätischen Lebensmitteln zugegeben oder finden in Medikamenten Anwendung. ω-6-Fettsäuren wie Arachidonsäure haben bei diesen rheumatischen Erkrankungen aufgrund unserer üblichen Nahrungsmittelzusam- mensetzung eher einen negativen Effekt auf diese Krankheiten. ω-3- und ω-6-Fettsäuren sind Vorläufer von Gewebshormonen, den sogenannten Ei- cosanoiden wie den Prostaglandinen, die sich von der Dihomo-γ-linolensäure, der Arachidonsäure und der Eicosapentaensäure ableiten, den Thromoxanen und Leukotrie- nen, die sich von der Arachidonsäure und der Eicosapentaensäure ableiten. Eicosa- noide (sog. PG2-Serie), die aus ω-6-Fettsäuren gebildet werden fördern in der Regel Entzündungsreaktionen, während Eicosanoide (sog. PG3-Serie) aus ω-3-Fettsäuren geringe oder keine entzündungsfördernde Wirkung haben.
Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ-9-Desaturase beschrieben. In WO 93/11245 wird eine Δ- 15-Desaturase in WO 94/11516 wird eine Δ-12-Desaturase beansprucht. Weitere Desaturasen werden beispielsweise in EP-A-0550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0794250, Stukey et al., J. Biol. Chem., 265,
1990: 20144-20149, Wada et al., Nature 347, 1990: 200-203 oder Huang et al., Lipids 34, 1999: 649-659 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als memb- ra gebundene Proteine nur sehr schwer zu isolieren und zu charakterisieren sind (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al., Plant Phy- siol. Biochem., 26, 1988: 777-792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enzymaktivität mittels Edukt- und Produktanalyse untersucht wird. Δ- 6-Desaturasen werden in WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WOOO/21557 und WO 99/27111 beschrieben und auch die Anwendung zur Produktion in transgenen Organismen beschrieben wie in WO98/46763 WO98/46764, , WO9846765. Dabei wird auch die Expression verschiedener Desaturasen wie in
WO99/64616 oder WO98/46776 und Bildung polyungesättigter Fettsäuren beschrieben und beansprucht. Bzgl. der Effektivität der Expression von Desaturasen und ihren Ein- fluss auf die Bildung polyungesättigter Fettsäuren ist anzumerken, dass durch Expression einer einzelnen Desaturase wie bisher beschrieben lediglich geringe Gehalte an ungesättigten Fettsäuren/Lipiden wie z.B. γ-Linolensäure und Stearidonsäure erreicht wurden. Weiterhin wurde in der Regel ein Gemisch aus ω-3- und ω-6-Fettsäuren erhalten.
Besonders geeignete Mikroorganismen zur Herstellung von PUFAs sind Mikroorganismen wie Thraustochytrien oder Schizochytrien-Stämme, Algen wie Phaeodactylum tricomutum oder Crypthecodinium-Arten, Ciliaten, wie Stylonychia oder Colpidium, Pilze, wie Mortierella, Entomophthora oder Mucor. Durch Stammselektion ist eine Anzahl von Mutantenstämmen der entsprechenden Mikroorganismen entwickelt worden, die eine Reihe wünschenswerter Verbindungen, einschließlich PUFAs, produzieren. Die Mutation und Selektion von Stämmen mit verbesserter Produktion eines bestimmten Moleküls wie den mehrfach ungesättigten Fettsäuren ist jedoch ein zeitraubendes und schwieriges Verfahren. Deshalb werden, wenn immer möglich wie oben beschrieben gentechnologische Verfahren bevorzugt. Mit Hilfe der vorgenannten Mikroorganismen lassen sich jedoch nur begrenzte Mengen der gewünschten mehrfach ungesättigten Fettsäuren wie DPA, EPA oder ÄRA herstellen. Wobei diese in der Regel je nach ver- wendeten Mikroorganismus als Fettsäuregemische aus beispielsweise EPA, DPA und DHA anfallen.
Alternativ kann die Produktion von Feinchemikalien im großen Maßstab vorteilhaft über die Produktion in Pflanzen durchgeführt werden, die so entwickelt werden, dass sie die vorstehend genannten PUFAs herstellen. Besonders gut für diesen Zweck geeignete Pflanzen sind Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten wie Raps, Canola, Lein, Soja, Sonnenblumen, Borretsch und Nachtkerze. Aber auch andere Nutzpflanzen, die Öle oder Lipide und Fettsäuren enthalten, sind gut geeignet, wie in der eingehenden Beschreibung dieser Erfindung erwähnt. Mittels herkömmlicher Züchtung ist eine Reihe von Mutantenpflanzen entwickelt worden, die ein Spektrum an wünschenswerten Lipiden und Fettsäuren, Cofaktoren und Enzymen produzieren.
Die Selektion neuer Pflanzensorten mit verbesserter Produktion eines bestimmten Moleküls ist jedoch ein zeitaufwändiges und schwieriges Verfahren oder sogar unmöglich, wenn die Verbindung in der entsprechenden Pflanze nicht natürlich vorkommt, wie im „. Fall von mehrfach ungesättigten C18-, C20-Fettsäuren und CarFettsäuren und solchen mit längeren Kohlenstoffketten.
Aufgrund der positiven Eigenschaften ungesättigter Fettsäuren hat es in der Vergangenheit nicht an Ansätzen gefehlt, diese Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Pflanzen mit einem geändertem Gehalt an mehrfach ungesättigten Fettsäuren verfügbar zu machen. Bisher konnten jedoch längerkettige mehrfach ungesättigte C20- und/oder , CarFettsäuren wie EPA oder ÄRA nicht in Pflanzen hergestellt werden. Aber auch in anderen Organismen wie Mikroorganismen wie Algen oder Pilzen führten die gentechnischen Veränderungen des Fettsäurestoffwechselweges über das Einbringen und die Expression beispielsweise von Desaturasen nur zu relativ geringen Steigerungen der Produktivität in diesen Organismen. Ein Grund hierfür mag in dem sehr komplexen Fettsäurestoffwechsel liegen. So ist der Einbau von mehrfach unge- sättigten Fettsäuren in Membranlipide ünd/oder in Triacylglyceride und deren Ab- und Umbau sehr komplex und bis heute biochemisch und speziell genetisch noch nicht vollständig aufgeklärt und verstanden.
Die Biosynthese von LCPUFAs und der Einbau von LCPUFAs in Membranen oder Triacylglyceride erfolgt über verschiedene Stoffwechselwege (Abbadi et al. (2001) European Journal of Lipid Science & Technology 103:106-113). In Bakterien wie Vibrio und Mikroalgen wie Schizochytrium wird Malonyl-CoA über eine LCPUFA- produzierende Polyketidsynthase zu LCPUFAs umgesetzt (Metz et al. (2001) Science 293: 290-293; WO 00/42195; WO 98/27203; WO 98/55625). In Mikroalgen wie Phaeo- dactylum und Moosen wie Physcomitrella werden ungesättigte Fettsäuren wie Linol- säure oder Linolensäure in Form ihrer Acyl-CoAs in mehreren Desaturierungs- und Elongationsschritten zu LCPUFAs umgesetzt (Zank et al. (2000) Biochemical Society Transactions 28: 654-658). Bei Säugetieren beinhaltet die Biosynthese von DHA zusätzlich zu Desaturierungs- und Elongationsschritten eine Kettenverkürzung über ß- Oxidation. LCPUFAs liegen in Mikroorganismen und niederen Pflanzen entweder ausschließlich in Form von Membranlipiden vor, wie bei Physcomitrella und Phaeodactylum oder sie sind in Membranlipiden und Triacylglyceriden vorhanden, wie bei Schizochytrium und Mortierella. Der Einbau von LCPUFAs in Lipide und Öle wird durch verschiedene - Acyltransferasen und Transacylasen katalysiert. Diese Enzyme sind bereits bekannt für den Einbau von gesättigten und ungesättigten Fettsäuren [Slabas (2001) J. Plant Phy- siology 158: 505-513; Frentzen (1998) Fett ipid 100: 161-166); Cases et al. (1998) Proc. Nat. Acad. Sei. USA 95: 13018-13023]. Bei den Acyltransferasen handelt sich um Enzyme des sogenannten Kennedy-Pathways, die an der cytoplasmatischen Seite des Membransystems des Endoplasmatischen Reticulums, nachfolgend als ,ER' bezeich- net, lokalisiert sind. Experimentell können Membranen des ER als sogenannte ,mikro- somale Fraktionen' aus verschiedenen Organismen isoliert werden (Knutzon et al.
(1995) Plant Physiology 109: 999-1006; Mishra & Kamisaka (2001) Biochemistry 355: 315-322; US 5968791 ). Diese ER-gebundenen Acyltransferasen in der mikrosomalen
Fraktion verwenden Acyl-CoA als aktivierte Form der Fettsäuren. Glycerin-3-phosphat Acyltransferase, im folgenden GPAT genannt, katalysiert den Einbau von Acylgruppen an der sn-1 Position von Glycerin-3-phosphat. 1-Acylg!ycerin-3-phosphat Acyltransferase (E.C. 2.3.1.51), auch Lysophosphatidsäure Acyltransferase, im folgenden LPAAT genannt, katalysiert den Einbau von Acylgruppen an der sn-2 Position von Ly- sophosphatidsäure, nachfolgend als LPA abgekürzt. Nach Dephosphorylierung von Phosphatidsäure durch Phosphatidsäure Phosphatase katalysiert Diacylglycerin A- cyltransferase, im folgenden DAGAT genannt, den Einbau von Acylgruppen an der sn- ,5, 3 Position von Diacylglycerins. Neben diesen Kennedy Pathway Enzymen sind weitere Enzyme am Einbau von Fettsäuren in Triacylglyceride beteiligt, die Acylgruppen aus Membranlipiden in Triacylglyceride einbauen können. Phospholipid Diacylglycerin A- cyltransferase, nachfolgend PDAT genannt, und Lysophosphatidylcholin Acyltransferase, nachfolgend LPCAT genannt. 0 Die enzymatische Aktivität einer LPCAT wurde erstmals in Ratten beschrieben [Land (1960) Journal of Biological Chemistry 235: 2233-2237]. In Pflanzen existiert eine plastidäre Isoform der LPCAT [Akermoun et al. (2000) Biochemical Society Transacti- ons 28: 713-715] sowie eine ER gebundene Isoform [Tumaney und Rajasekharan (1999) Briochimica et Biophysica Acta 1439: 47-56; Fräser und Stobart, Biochemical 5 Society Transactions (2000) 28: 715-7718]. LPCAT ist in Tieren wie auch in Pflanzen an der, Biosynthese und der Transacylierung von mehrfach ungesättigten Fettsäuren beteiligt [Stymne und Stobart (1984) Biochem. J.223: 305-314; Stymne und Stobart (1987) in The Biochemistry of Plants: a Comprehensive Treatise', Vol. 9 (Stumpf, P.K. ed.) pp. 175-214, Academic Press, New York]. Eine wichtige Funktion der LPCAT oder 0 allgemeiner gesagt einer Acyl-CoA:Lysophospholipid Acyltransferase, nachfolgend LPLAT genannt, bei der ATP-unabhängigen Synthese von Acyl-CoA aus Phospholipi- den wurde von Yamashita et al. (2001 ; Journal of Biological Chemistry 276: 26745- 26752) beschrieben.
Trotz vieler biochemischer Daten konnten bisher keine Gene kodierend für LPCAT 5 identifiziert werden. Gene anderer verschiedener pflanzlicher Acyltransferasen konnten isoliert werden und werden in WO 00/18889 (Novel Plant Acyltransferases) beschrieben.
Höhere Pflanzen enthalten mehrfach ungesättigte Fettsäuren wie Linolsäure (C18:2) und Linolensäure (C18:3). Arachidonsäure (ÄRA), Eicosapentaensäure (EPA) und Do- 0 cosahexaensäure (DHA) kommen wie oben beschrieben im Samenöl höherer Pflanzen gar nicht oder nur in Spuren vor (E. Ucciani:,Nouveau Dictionnaire des Huiles Vegeta- les. Technique & Documentation - Lavoisier, 1995. ISBN: 2-7430-0009-0). Es ist vorteilhaft, in höheren Pflanzen, bevorzugt in Ölsaaten wie Raps, Lein, Sonnenblume und Soja, LCPUFAs herzustellen, da auf diese Weise große Mengen qualitativ hochwerti- 5 ger LCPUFAs für die Lebensmittelindustrie, die Tierernährung und für pharmazeutische Zwecke kostengünstig gewonnen werden können. Hierzu werden vorteilhaft über gentechnische Methoden Gene kodierend für Enzyme der Biosynthese von LCPUFAs in Ölsaaten eingeführt und exprimiert werden. Dies sind beispielsweise Gene kodierend für Δ-6-Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5-Elongase und Δ-4- 0 Desäturase. Diese Gene können vorteilhaft aus Mikroorganismen, Tieren und niederen Pflanzen isoliert werden, die LCPUFAs herstellen und in den Membranen oder Tri- acylglyceriden einbauen. So konnten bereits Δ-6-Desaturase-Gene aus dem Moos Physcomitrella patens und Δ-6-Elongase-Gene aus P. patens und dem Nematoden C. elegans isoliert.
Erste transgene Pflanzen, die Gene kodierend für Enzyme der LCPUFA-Biosynthese enthalten und exprimieren und LCPUFAs produzieren wurden beispielsweise in 'έ'' DE 102 19203 (Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen) erstmals beschrieben. Diese Pflanzen produzieren allerdings LCPUFAs in Mengen, die für eine Aufarbeitung der in den Pflanzen enthaltenen Öle noch weiter optimiert werden müssen.
Um eine Anreicherung der Nahrung und des Futters mit diesen mehrfach ungesättigten 0 Fettsäuren zu ermöglichen, besteht daher ein großer Bedarf an einem einfachen, kostengünstigen Verfahren zur Herstellung dieser mehrfach ungesättigten Fettsäuren speziell in eukaryontischen Systemen.
Es bestand daher die Aufgabe ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem eukaryontischen Organismus zu entwickeln. Diese Aufgabe 5 wurde durch das erfindungsgemäße Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in einem Organismus, dadurch gekennzeichnet, dass das Verfahren - folgende Schritte umfasst: a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus mit der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestell- 0 ten Sequenz, die für ein Polypeptid mit einer Acyl-CoA:Lysophospholipid-
Acyltransferaseaktivität codiert; oder b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 enthaltenden codie- 5 renden Sequenz ableiten lässt, oder c) Einbringen mindestens eines Derivates der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Nukleinsäuresequenz in den Organismus, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren und 0 mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID
NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 aufweisen und eine äquivalente A- cyl-CoA:Lysophospholipid-Acyltransferaseaktivität aufweisen, und d) kultivieren und ernten des Organismus.
Vorteilhaft enthalten die im erfindungsgemäßen Verfahren hergestellten mehrfach un- 5 gesättigten Fettsäuren mindestens zwei vorteilhaft drei Doppelbindungen. Besonders vorteilhaft enthalten die Fettsäuren vier oder fünf Doppelbindungen. Im Verfahren hergestellte Fettsäuren haben vorteilhaft 16-, 18-, 20- oder 22 C-Atome in der Fettsäure- kette. Diese hergestellten Fettsäuren können als einziges Produkt im Verfahren hergestellt werden oder in einem Fettsäuregemisch vorliegen.
Bei den im erfindungsgemäßen Verfahren verwendeten Nukleinsauresequenzen handelt es sich um isolierte Nukleinsauresequenzen, die für Polypeptide mit Acyl- CoA:Lysophospholipid-Acyltransferaseaktivität codieren.
Die im Verfahren hergestellten mehrfach ungesättigten Fettsäuren sind vorteilhaft in Membranlipiden und/oder Triacylglyceriden gebunden, können aber auch als frei Fettsäuren oder aber gebunden in Form anderer Fettsäureester in den Organismen vorkommen. Dabei können sie wie gesagt als "Reinprodukte" oder aber vorteilhaft in Form von Mischungen verschiedener Fettsäuren oder Mischungen unterschiedlicher Glyceri- de vorliegen. Dabei lassen sich die in den Triacylglyceriden gebundenen verschieden Fettsäuren von kurzkettigen Fettsäuren mit 4 bis 6 C-Atomen, mittelkettigen Fettsäuren mit 8 bis ,12 C-Atomen oder langkettigen Fettsäuren mit 14 bis 24 C-Atomen ableiten, bevorzugt sind die langkettigen Fettsäuren besonders bevorzugt sind die langkettigen Fettsäuren LCPUFAs von Cι8-, C2o- und/oder C22-Fettsäuren.
Im erfindungsgemäßen Verfahren werden vorteilhaft Fettsäureester mit mehrfach ungesättigten Ci6~, Ci8-, C2o- und/oder C22-Fettsäuremolekülen mit mindestens zwei Doppelbindungen im Fettsäureester hergestellt. Bevorzugt enthalten diese Fettsäure- moieküle drei, vier oder fünf Doppelbindungen und führen vorteilhaft zur Synthese von Hexadecadiensäure (C16:2Δ9,12), γ-Linolensäure (= GLA, C18:3Δ6,9'12), Stearidonsäure (= SDA, C18:4Δ6'9'12-15)' Dihomo-γ-Linolensäure (= DGLA, 20:3 Δ8'11'14), Eicosatetraen- säure (= ETA, C20:4Δ5'8,11,14), Arachidonsäure (ÄRA), Eicosapentaensäure (EPA) oder deren Mischungen, bevorzugt EPA und/oder ÄRA.
Die Fettsäureester mit mehrfach ungesättigten C16-, C18-, C20- und/oder C^- Fettsäuremolekülen können aus den Organismen, die für die Herstellung der Fettsäureester verwendet wurden, in Form eines Öls oder Lipids beispielsweise in Form von Verbindungen wie Sphingolipide, Phosphoglyceride, Lipide, Glycolipide wie Gly- cosphingolipid, Phospholipide wie Phosphatidylethanolamin, Phosphatidylcholin, Phosphatidylserin, Phosphatidylglycerol, Phosphatidylinositol oder Diphosphatidylgly- cerol, Monoacylglyceride, Diacylglyceride, Triacylglyceride oder sonstige Fettsäureester wie die AcetylCoenzymA-Ester, die die mehrfach ungesättigten Fettsäuren mit mindestens zwei bevorzugt drei Doppelbindungen enthalten, isoliert werden. Neben diesen Estern sind die mehrfach ungesättigten Fettsäuren auch als freie Fettsäuren oder gebunden in anderen Verbindungen in den Organismen vorteilhaft den Pflanzen enthal- ten. In der Regel liegen die verschiedenen vorgenannten Verbindungen (Fettsäureester und frei Fettsäuren) in den Organismen in einer ungefähren Verteilung von 80 bis 90 Gew.-% Triglyceride, 2 bis 5 Gew.-% Diglyceride, 5 bis 10 Gew.-% Monoglyceride, 1 bis 5 Gew.-% freie Fettsäuren, 2 bis 8 Gew.-% Phospholipide vor, wobei sich die Summe der verschiedenen Verbindungen zu 100 Gew.-% ergänzt. Im erfindungsgemäßen Verfahren werden die hergestellten LCPUFAs mit einem Gehalt von mindestens 3 Gew.-%, vorteilhaft von mindestens 5 Gew.-%, bevorzugt von mindestens 8 Gew.-%, besonders bevorzugt von mindestens 10 Gew.-%, ganz besonders bevorzugt von mindestens 15 Gew.-% bezogen auf die gesamten Fettsäuren in der transgenen Organismen vorteilhaft in einer transgenen Pflanze hergestellt. Da im erfindungsgemäßen Verfahren von den Ausgangsverbindungen Hexadecadiensäure >,>. (C16:2), Linolsäure (C18:2) bzw. Linolensäure (C18:3) mehrere Reaktionsschritte durchlaufen werden, fallen die Endprodukte des Verfahrens wie beispielsweise Arachidonsäure (ÄRA) oder Eicosapentaensäure (EPA) nicht als absolute Reinprodukte an, es sind immer auch geringe Spuren der Vorstufen im Endprodukt enthalten. Sind in dem Ausgangsorganismus bzw. in der Ausgangspflanze beispielsweise sowohl Linol- säure als auch Linolensäure vorhanden, so liegen die Endprodukte wie ÄRA und EPA als Mischungen vor. Die Vorstufen sollten vorteilhaft nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 15 Gew.-%, besonders bevorzugt nicht als 10 Gew.-%, ganz besonders bevorzugt nicht mehr als 5 Gew.-% bezogen auf die Menge des jeweilige Endprodukts betragen. Vorteilhaft werden in einer transgenen Pflanze als Endpro- dukte nur ÄRA oder nur EPA im erfindungsgemäßen Verfahren gebunden oder als freie Säuren hergestellt. Werden beide Verbindungen (ÄRA + EPA) gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindesten 1:2 (EPA:ARA), vorteilhaft von mindestens 1 :3, bevorzugt von 1 :4, besonders bevorzugt von 1 :5 hergestellt.
Durch die erfindungsgemäßen Nukleinsauresequenzen kann eine Steigerung der Aus- beute an mehrfach ungesättigten Fettsäuren von mindestens 50 %, vorteilhaft von mindestens 80 %, besonders vorteilhaft von mindestens 100 %, ganz besonders vorteilhaft von mindestens 150 % gegenüber den nicht transgenen Ausgangsorganismus beim Vergleich in der GC-Analyse siehe Beispiele erreicht werden.
Auch chemisch reine mehrfach ungesättigte Fettsäuren oder Fettsäurezusammenset- zungen sind nach den vorbeschriebenen Verfahren darstellbar. Dazu werden die Fettsäuren oder die Fettsäurezusammensetzungen aus dem Organismus wie den Mikroorganismen oder den Pflanzen oder dem Kulturmedium, in dem oder auf dem die Organismen angezogen wurden, oder aus dem Organismus und dem Kulturmedium in bekannter Weise beispielsweise über Extraktion, Destillation, Kristallisation, Chroma- tographie oder Kombinationen dieser Methoden isoliert. Diese chemisch reinen Fettsäuren oder Fettsäurezusammensetzungen sind für Anwendungen im Bereich der Lebensmittelindustrie, der Kosmetikindustrie und besonders der Pharmaindustrie vorteilhaft.
Als Organismus für die Herstellung im erfindungsgemäßen Verfahren kommen prinzi- piell alle Organismen wie Pilze wie Mortierella oder Traustochytrium, Hefen wie Sac- charomyces oder Schizosaccharomyces, Moose wie Physcomitrella oder Ceratodon, nicht-humane Tiere wie Caenorhabditis, Algen wie Crypthecodinium oder Phaeodacty- _ lum oder Pflanzen wie zweikeimblättrige oder einkeimblättrige Pflanzen in Frage. Vorteilhaft werden Organismen im erfindungsgemäßen Verfahren verwendet, die zu den Öl-prόduzierenden Organismen gehören, das heißt die für die Herstellung von Ölen verwendet werden, wie Pilze wie Mortierella oder Traustochytrium, Algen wie Crypthecodinium, Phaeodactylum oder Pflanzen, insbesondere Pflanzen bevorzugt Ölfrucht- pflanzen, die große Mengen an Lipidverbindungen enthalten, wie Erdnuss, Raps, Ca- nola, Sonnenblume, Safflor (Färberdistel), Mohn, Senf, Hanf, Rizinus, Olive, Sesam, Caiendula, Punica, Nachtkerze, Königskerze, Distel, Wildrosen, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Kürbis, Lein, Soja, Pistazien, Borretsch, Bäume (Öl- ,,» palme? Kokosnuss oder Walnuss) oder Feldfrüchte, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa oder Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten sowie ausdauernde Gräser und Futterfeldfrüchte. Bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Erdnuss, Raps, Canola, Sonnenblume, Safflor (Färberdistel), Mohn, Senf, Hanf, Rhizinus, Olive, Caiendula, Punica, Nachtkerze, Kürbis, Lein, Soja, Borretsch, Bäume (Ölpalme, Kokosnuss). Besonders bevorzugt sind C18:2- und/oder C18:3-Fettsäure reiche Pflanzen wie Sonnenblume, Färberdistel, Tabak, Königskerze, Sesam, Baumwolle, Kürbis, Mohn, Nachtkerze, Walnuss, Lein, Hanf, Distel oder Färberdistel. Ganz besonders bevorzugt sind Pflanzen wie Färberdistel, Sonnenblume, Mohn, Nachtkerze, Walnuss, Lein oder
Hanf. ' t
Für das erfindungsgemäße beschriebene Verfahren ist es vorteilhaft in den Organismus zusätzlich zu den unter Verfahrensschritt (a) bis (c) eingebrachten Nukleinsäuren zusätzlich weitere Nukleinsäuren einzubringen, die für Enzyme des Fettsäure- oder üpidstoffwechsels codieren.
Im Prinzip können alle Gene des Fettsäure- oder üpidstoffwechsels vorteilhaft in Kombination mit der erfinderischen Acyl-CoA:Lysophospholipid-Acyltransferase im Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren verwendet werden vorteilhaft werden Gene des Fettsäure- oder üpidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A- Oκidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Tria- cylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure- Elongase(n) in Kombination mit der Acyl-CoA:Lysophospholipid-Acyltransferase verwendet. Besonders bevorzugt werden Gene ausgewählt aus der Gruppe der Δ-4- Desaturasen, Δ-5-Desaturasen, Δ-6-Desaturasen, Δ-8-Desatuasen, Δ-9-Desaturasen, Δ-12-Desaturasen, Δ-5-Elongasen, Δ-6-Elongasen oder Δ-9-Elongasen in Kombination mit der Acyl-CoA:Lysophospholipid-Acyltransferase im erfindungsgemäßen Verfahren verwendet.
Durch die enzymatische Aktivität der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Acyl-CoA:Lysophospholipid-Acyltransferase- ^ aktivität codieren, vorteilhaft in Kombination mit Nukleinsauresequenzen, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels wie Δ-4-, Δ-5-, Δ-6-, Δ-8-Desaturase- oder Δ-5-, Δ-6-oder Δ-9-Elongaseaktivität codieren, können unterschiedlichste mehrfach ungesättigte Fettsäuren im erfindungsgemäßen Verfahren hergestellt werden. Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten Organismen wie den vorteilhaften Pflanze lassen sich Mischungen der verschiedenen mehrfach ungesättigten Fettsäure oder einzelne mehrfach ungesättigte Fettsäuren wie EPA oder ÄRA in freier oder gebundener Form herstellen. Je nachdem welche Fettsäurezusam- , mensetzung in der Ausgangspflanze vorherrscht (C18:2- oder C18:3-Fettsäuren) ent- 5.» stehen so Fettsäuren, die sich von C18:2-Fettsäuren ableiten, wie GLA, DGLA oder ÄRA oder, die sich von C18:3-Fettsäuren ableiten, wie SDA, ETA oder EPA. Liegt in der für das Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18:2Δ9,12) vor, so können als Produkte des Verfahrens nur GLA, DGLA und ÄRA entstehen, die als freie Fettsäuren oder gebunden vorliegen können. Ist in der im 0 Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur α-Linolensäure (= ALA, C18:3Δ9,12,15) beispielsweise wie in Lein, so können als Produkte des Verfahrens nur SDA, ETA und EPA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können. Durch Modifikation der Aktivität der an der Synthese beteiligten Enzyme Acyl-CoA:Lysophospholipid-Acyltransferase vorteilhaft in Kombination 5 mit der Δ-5-, Δ-6-Desaturase und Δ-6-Elongase, oder der Δ-5-, Δ-8-Desaturase und Δ-9-Elongase oder in Kombination mit nur den ersten beiden Gene Δ-6- Desatύrase und Δ-6-Elongase oder Δ-8-Desaturase und Δ-9-Elongase der Synthesekette lassen sich gezielt in den vorgenannten Organismen vorteilhaft in den vorgenannten Pflanzen nur einzelne Produkte herstellten. Durch die Aktivität der Δ-6- 0 Desäturase und Δ-6-Elongase entstehen beispielsweise GLA und DGLA bzw. SDA und ETA, je nach Ausgangspflanze und ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder deren Mischungen. Wird die Δ-5-Desaturase zusätzlich in die Organismen vorteilhaft in die Pflanze eingebracht, so entstehen zusätzlich ÄRA oder EPA. Dies gilt auch für Organismen in die vorher die Δ-8-Desaturase und Δ-9- 5 Elongase eingebracht wurde. Vorteilhaft werden nur ÄRA oder EPA oder deren Mischungen synthetisiert, abhängig von der in im Organismus bzw. in der Pflanze vorliegenden Fettsäure, die als Ausgangssubstanz für die Synthese dient. Da es sich um Biosyntheseketten handelt, liegen die jeweiligen Endprodukte nicht als Reinsubstanzen in den Organismen vor. Es sind immer auch geringe Mengen der Vorläuferverbindun- 0 gen im Endprodukt enthalten. Diese geringen Mengen betragen weniger als 20 Gew.- %, vorteilhaft weniger als 15 Gew.-%, besonders vorteilhaft weniger als 10 Gew.-%, ganz besonders vorteilhaft weniger als 5, 4, 3, 2 oder 1 Gew.-% bezogen auf das Endprodukt DGLA, ETA oder deren Mischungen bzw. ÄRA, EPA oder deren Mischungen.
Zur Steigerung der Ausbeute im beschriebenen Verfahren zur Herstellung von Ölen 5 und/oder Triglyceriden mit einem vorteilhaft erhöhten Gehalt an mehrfach ungesättigten Fettsäuren ist es vorteilhaft die Menge an .Ausgangsprodukt für die Fettsäuresynthese zu steigern, dies kann beispielsweise durch das Einbringen einer Nukleinsäure in den Organismus, die für ein Polypeptid mit Δ-12-Desaturase codiert, erreicht werden. Dies ist besonders vorteilhaft in Öl-produzierenden Organismen wie Raps, die einen f hohen Olsäuregehalt aufweisen. Da diese Organismen nur einen geringen Gehalt an Linolsäure aufweisen (Mikoklajczak et al., Journal of the American Oil Chemical Society, 38, 1961 , 678 - 681 ) ist die Verwendung der genannten Δ-12-Desaturasen zur Herstellung des Ausgangsprodukts Linolsäure vorteilhaft. Im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren stammen vorteilhaft aus Pflanzen wie Algen wie Isochrysis oder Crypthecodinium, Algen/Diatomeen wie Phaeodactylum, Moose wie Physcomitrella oder Ceratodon oder höheren Pflanzen .wie den Primuläceae wie Aleuritia, Calendula stellata, Osteospermum spinescens oder * Osteospermum hyoseroides, Mikroorganismen wie Pilzen wie Aspergillus, Thrausto- chytrium, Phytophtora, Entomophthora, Mucor oder Mortierella, Hefen oder Tieren wie Nematoden wie Caenorhabditis, Insekten oder dem Mensch. Vorteilhaft stammen die Nukleinsäuren aus Pilzen, Tieren" oder aus Pflanzen wie Algen oder Moosen, bevorzugt aus Nematoden wie Caenorhabditis. Vorteilhaft werden im erfindungsgemäßen Verfahren die vorgenannten Nukleinsauresequenzen oder deren Derivat oder Homologe, die für Polypeptide codieren, die noch die enzymatische Aktivität der durch Nukleinsauresequenzen codierten Proteine besitzen. Diese Sequenzen werden einzeln oder in Kombination mit der für die Acyl- CoA:Lysophospholipid-Acyltransferase codierenden Nukleinsäuresquenz in Expressi- onskonstrukte cloniert und zum Einbringen und zur Expression in Organismen verwendet. Diese Expressionskonstrukte ermöglichen durch ihre Konstruktion eine vorteilhafte optimale Synthese der im erfindungsgemäßen Verfahren produzierten mehrfach ungesättigten Fettsäuren.
Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des Gewinnens einer Zelle oder eines ganzen Organismus, der die im Verfahren verwendeten Nukleinsauresequenzen enthält, wobei die Zelle und/oder der Organismus mit der erfindungsgemäßen Nukleinsäuresequenz, die für die AcyI-CoA:Lysophospholipid- Acyltransferase codiert, einem Genkonstrukt oder einem Vektor wie nachfolgend beschrieben, allein oder in Kombination mit weiteren Nukleinsauresequenzen, die für Pro- teine des Fettsäure- oder Lipidsstoffwechsels codieren, transformiert wird. Bei einer weiteren-bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Feinchemikalie aus der Kultur. Bei der Kultur kann es sich beispielsweise um eine Fermentationskultur beispielsweise im Falle der Kultivierung von Mikroorganismen wie z.B. Mortierella, Saccharomyces oder Traustochytrium oder um eine Treibhaus oder Feldkultur einer Pflanze handeln. Die so hergestellte Zelle oder der so hergestellte Organismus ist vorteilhaft eine Zelle eines Öl-produzierenden Organismus wie einer Ölfruchtpflanze wie beispielsweise Erdnuss, Raps, Canola, Lein, Hanf, Erdnuss, Soja, Safflower, Hanf, Sonnenblumen oder Borretsch.
Unter Anzucht ist beispielsweise die Kultivierung im Falle von Pflanzenzellen, -gewebe oder -organe auf oder in einem Nährmedium öder der ganzen Pflanze auf bzw. in einem Substrat beispielsweise in Hydrokultur, Blumentopferde oder auf einem Ackerboden zu verstehen.
"Transgen" bzw. "Rekombinant" im Sinne der Erfindung bedeutet bezüglich zum Beispiel einer Nukleinsäuresequenz, einer Expressionskassette (= Genkonstrukt) oder einem Vektor enthaltend die erfindungsgemäße Nukleinsäuresequenz oder einem Organismus transformiert mit den erfindungsgemäßen Nukleinsauresequenzen, Expres- sionskassette oder Vektor alle solche durch gentechnische Methoden zustandegekommenen Konstruktionen, in denen sich entweder a) die erfindungsgemäße Nukleinsäuresequenz, oder b) eine mit der erfindungsgemäßen Nukleinsäuresequenz funktionell verknüpfte genetische Kontrollsequenz, zum Beispiel ein Promotor, oder c) (a) und (b) sich nicht in ihrer natürlichen, genetischen Umgebung befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitution, Addition, Deletion, Inversion oder Insertion eines oder mehrerer Nukleotidreste sein kann. Natürliche genetische Umgebung meint den natürlichen genomischen bzw. chromosomalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommende Expressionskassette - beispielsweise die natürlich vorkommende Kombination des natürlichen Promotors der erfindungsgemäßen Nukleinsäuresequenz mit dem entsprechenden Acyl-CoA:Lysophospholipid-Acyltransferase -Gen - wird zu einer transgenen Expressionskassette, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mutagenisierung geändert wird. Entsprechende Verfahren sind beispielsweise beschrieben in US 5,565,350 oder WO 00/15815.
Unter transgenen Organismus bzw. transgener Pflanze im Sinne der Erfindung ist wie vorgenannt zu verstehen, dass die im Verfahren verwendeten Nukleinsäuren nicht an ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden. Transgen bedeutet aber auch wie genannt, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Organismen sind Pilze wie Mortierella oder Pflanzen sind die Ölfruchtpflanzen. Als Organismen bzw. Wirtsorganismen für die im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die Expressionskassette oder den Vektor eignen sich prinzipiell vorteilhaft alle Organismen, die in der Lage sind Fettsäuren speziell ungesättigte Fettsäuren zu synthetisieren bzw. für die Expression rekombinanter Gene geeignet sind. Beispielhaft seien Pflanzen wie Arabidopsis, Asteraceae wie Calendula oder Kul- turpflanzen wie Soja, Erdnuss, Rizinus, Sonnenblume, Mais, Baumwolle, Flachs, Raps, Kokosnuss, Ölpalme, Färbersafflor (Carthamus tinctorius) oder Kakaobohne, Mikroorganismen wie Pilze beispielsweise die Gattung Mortierella, Saprolegnia oder Pythium, , Bakterien wie die Gattung Escherichia, Hefen wie die Gattung Saccharomyces, Cya- 5 . nobakterien, Ciliaten, Algen oder Protozoen wie Dinoflagellaten wie Crypthecodinium genannt. Bevorzugt werden Organismen, die natürlicherweise Öle in größeren Mengen synthetisieren können wie Pilze wie Mortierella alpina, Pythium insidiosum oder Pflanzen wie Soja, Raps, Kokosnuss, Ölpalme, Färbersafflor, Flachs, Hanf, Rizinus, Calendula, Erdnuss, Kakaobohne oder Sonnenblume oder Hefen wie Saccharomyces cere- 0 visiae, besonders bevorzugt werden Soja, Flachs, Raps, Färbersafflor, Sonnenblume, Calendula, Mortierella oder Saccharomyces cerevisiae. Prinzipiell sind als Wirtsorganismen neben den vorgenannten transgenen Organismen auch transgene Tiere vorteilhaft nicht-humane Tiere geeignet beispielsweise C. elegans.
Nutzbare Wirtszellen sind weiterhin genannt in: Goeddel, Gene Expression Technolo- 5 gy: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). i
Verwendbare Expressionsstämme z.B. solche, die eine geringere Proteaseaktivität aufweisen sind beschrieben in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128.
Hierzu gehören Pflanzenzellen und bestimmte Gewebe, Organe und Teile von Pflan- 0 zen in all ihren Erscheinungsformen, wie Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe und Zellkulturen, das von der eigentlichen transgenen Pflanze abgeleitet ist und/oder dazu verwendet werden kann, die transgene Pflanze hervorzubringen.
Transgene Pflanzen, die die im erfindungsgemäßen Verfahren synthetisierten mehr- 5 fach ungesättigten Fettsäuren enthalten, können vorteilhaft direkt vermarktet werden ohne dass, die synthetisierten Öle, Lipide oder Fettsäuren isoliert werden müssen. Unter Pflanzen im erfindungsgemäßen Verfahren sind ganze Pflanzen sowie alle Pflanzenteile, Pflanzenorgane oder Pflanzenteile wie Blatt, Stiel, Samen, Wurzel, Knollen, Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Ern- 0 tematerial, pflanzliches Gewebe, reproduktives Gewebe, Zellkulturen, die sich von der transgenen Pflanze abgeleiten und/oder dazu verwendet werden können, die transgene Pflanze hervorzubringen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen, Epidermis- und Samenzellen, Endosperm oder Embyrogewebe. Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den 5 Organismen vorteilhaft Pflanzen in Form ihrer Öle, Fett, Lipide und/oder freien Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte mehrfach ungesättigten Fettsäuren lassen sich durch Ernten der Organismen entweder aus der Kultur, in der sie *"*" wachsen, oder vom Feld ernten. Dies kann über Pressen oder Extraktion der Pflanzenteile bevorzugt der Pflanzensamen erfolgen. Dabei können die Öle, Fette, 0 Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Pflan- zenteile speziell die Samen leichter aufschließen lassen, werden sie vorher zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend , wird das Lösungsmittel wieder entfernt. Im Falle von Mikroorganismen werden diese nach Ernte beispielsweise direkt ohne weitere Arbeitsschritte extrahiert oder aber nach Aufschluss über verschiedene dem Fachmann bekannte Methoden extrahiert. Auf diese Weise können mehr als 96 % der im Verfahren hergestellten Verbindungen isoliert werden.. Anschließend werden die so erhaltenen Produkte weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst beispielsweise die Pflanzenschleime und Trübstoffe entfernt. Die sogenannte Entschleimung kann enzymatisch oder beispielsweise chemisch/physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behandlung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einer Bleichung mit beispielsweise Bleicherde oder Aktivkohle unterzogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf noch desodoriert.
Vorzugsweise sind die durch dieses Verfahren produzierten PUFAs bzw. LCPUFAs Cι8-, C20- oder C22-Fettsäuremoleküle mit mindestens zwei Doppelbindungen im Fett- Säuremolekül, vorzugsweise drei, vier, fünf oder sechs Doppelbindungen. Diese C18-, C20- oder CarFettsäuremoleküle lassen sich aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isolieren. Geeignete Organismen sind beispielsweise die vorstehend erwähnten. Bevorzugte Organismen sind transgene Pflanzen.
Eine Ausführungsform der Erfindung sind deshalb Öle, Lipide oder Fettsäuren oder Fraktionen davon, die durch das oben beschriebene Verfahren hergestellt worden sind, besonders bevorzugt Öl, Lipid oder eine Fettsäurezusammensetzung, die PUFAs umfassen und von transgenen Pflanzen herrühren.
Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids, der Fettsäuren und/oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungs- mittein, Kosmetika oder Pharmazeutika.
Unter dem Begriff "Öl", "Lipid" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure(n) enthält. Bevorzugt ist, dass das Öl, Lipid oder Fett einen hohen Anteil an mehrfach ungesättigten freien oder vorteilhaft veresterten Fettsäure(n), insbesondere Linolsäure, γ-ünolensäure, Dihomo- γ-linolensäure, Arachidonsäure, α-Linolensäure, Stearidonsäure, Eicosatetraensäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure hat. Vorzugsweise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30 %, mehr bevorzugt ist ein Anteil von 50 %, noch mehr bevorzugt ist ein Anteil von 60 %, 70 %, 80 %'öder mehr. Zur Bestimmung kann z.B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl, Lipid oder Fett kann verschiedene andere gesättigte oder ungesättigte Fettsäuren, z.B. Calendulasäure, Palmitin-, Palmitolein-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangsorganismus der Anteil der verschiedenen Fettsäuren in dem Öl oder Fett schwanken.
, t Bei de,n im Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft " mindestens zwei Doppelbindungen enthalten, handelt es sich beispielsweise um
Sphingolipide, Phosphoglyceride, Lipide, Glycolipide, Phospholipide, Monoacylglycerin,
Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester.
Aus den so im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens zwei Doppelbindungen lassen sich die enthalten- den mehrfach ungesättigten Fettsäuren beispielsweise über eine Alkalibehandlung beispielsweise wäßrige KOH oder NaOH oder saure Hydrolyse vorteilhaft in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und anschließender Ansäuerung über z.B. H2SO4. Die Freisetzung der Fettsäuren kann auch direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen.
Die im Verfahren verwendeten Nukleinsäuren können nach Einbringung in einem Organismus vorteilhaft einer Pflanzenzelle bzw; Pflanze entweder auf einem separaten Plasmid liegen oder in das Genom der Wirtszelle integriert sein. Bei Integration in das Genom kann die Integration zufallsgemäß sein oder durch derartige Rekombination erfolgen, dass das native Gen durch die eingebrachte Kopie ersetzt wird, wodurch die Produktion der gewünschten Verbindung durch die Zelle moduliert wird, oder durch Verwendung eines Gens in trans, so dass das Gen mit einer funktioneilen Expressionseinheit, welche mindestens eine die Expression eines Gens gewährleistende Sequenz und mindestens eine die Polyadenylierung eines funktioneil transkribierten Gens gewährleistende Sequenz enthält, funktioneil verbunden ist. Vorteilhaft werden die Nukleinsäuren über Multiexpressionskassetten oder Konstrukte zur multiparallelen Expression in die Organismen vorteilhaft zur multiparallelen samenspezifischen Expression von Genen in die Pflanzen gebracht.
Moose und Algen sind die einzigen bekannten Pflanzensysteme, die erhebliche Men- gen an mehrfach ungesättigten Fettsäuren, wie Arachidonsäure (ÄRA) und/oder Eicosapentaensäure (EPA) und/oder Docosahexaensäure (DHA) herstellen. Moose enthalten PUFAs in Membranlipiden während Algen, algenverwandte Organismen und einige Pilze auch nennenswerte Mengen an PUFAs in der Triacylglycerolfraktion akkumulieren. Daher eignen sich Nukleinsäuremoleküle; die aus solchen Stämmen isoliert wer- 5 den, die PUFAs auch in der Triacylglycerolfraktion akkumulieren, besonders vorteilhaft für das erfindungsgemäße Verfahren und damit zur Modifikation des Lipid- und PUFA- Produktionssystems in einem Wirt, insbesondere Pflanzen, wie Ölfruchtpflanzen, bei- *"" spielsweise Raps, Canola, Lein, Hanf, Soja, Sonnenblumen, Borretsch. Sie sind deshalb vorteilhaft im erfindungsgemäßen Verfahren verwendbar. 0 Als Substrate der im erfindungsgemäßen Acyl-CoA:Lysophospholipid-Acyltransferasen werden vorteilhaft C16-, C1S-, C20- oder C22-Fettsäuren verwendet. Zur Herstellung der erfindungsgemäßen langkettiger PUFAs müssen die mehrfach ungesättigten C-ι6- oder Cι8-Fettsäuren zunächst durch die enzymatische Aktivität einer Desäturase zunächst desaturiert und anschließend über eine Elongase um mindestens , zwei Kohlenstoffatome verlängert werden. Nach einer Elongationsrunde führt diese Enzymaktivität zu C18- oder C20-Fettsäuren, und nach zwei oder drei Elongationsrun- den zu C22- oder C2 -Fettsäuren. Die Aktivität der erfindungsgemäßen Verfahren verwendeten Desaturasen und Elongasen führt vorzugsweise zu Cι8-, C20- und/oder C22- Fettsäuren vorteilhaft mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen, besonders bevorzugt zu C20- und/oder C^-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen im Molekül. Nachdem eine erste Desaturierung und die Verlängerung stattgefunden hat, können weitere Desaturie- rungsschritte wie z.B. eine solche in Δ-5-Position erfolgen. Besonders bevorzugt als Produkte des erfindungsgemäßen Verfahrens sind Dihomo-γ-linolensäure, Arachidon- säure, Eicosapentaensäure, Docosapetaensäure und/oder Docosahesaensäure. Die C18-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure können durch die erfindungsgemäße enzymatische Aktivität in Form der freien Fettsäure oder in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide, Phosphoglyceride, Mo- noacylglycerin, Diacylglycerin oder Triacylglycerin, verlängert werden. Der bevorzugte Biosyntheseort von Fettsäuren, Ölen, Lipiden oder Fette in den vorteilhaft verwendeten Pflanzen ist beispielsweise im allgemeinen der Samen oder Zellschichten des Samens, so dass eine sämenspezifische Expression der im Verfahren verwendeten Nukleinsäuren sinnvoll ist. Es ist jedoch naheliegend, dass die Biosynthese von Fettsäuren, Ölen oder Lipiden nicht auf das Samengewebe beschränkt sein muss, sondern auch in allen übrigen Teilen der RIanze - beispielsweise in Epidermis- zellen oder in den Knollen - gewebespezifisch erfolgen kann.
Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismus wie Hefen wie Saccharomyces oder Schizosaccharomyces, Pilze wie Mortierella, Aspergillus, Phytophtora, Entomophthora, Mucor oder Traustochytrium Algen wie Isochrysis, Phaeodactylum oder Crypthecodinium verwendet, so werden diese Organismen vorteilhaft fermentativ angezogen.
Durch die Verwendung der erfindungsgemäßen Nukleinsäuren, die für Acyl- CoA:Lysophospholipid-Acyltransferasen codieren, können im Verfahren die hergestellten mehrfach ungesättigten Fettsäuren mindestens um 10 % , bevorzugt mindestens um 15 %, besonders bevorzugt mindestens um 20 %, ganz besonders bevorzugt um mindestens 50 % gegenüber dem Wildtyp der Organismen, die die Nukleinsäuren nicht rekombinant enthalten, erhöht werden.
Durch das erfindungsgemäße Verfahren können die hergestellten mehrfach ungesättigten Fettsäuren in den im Verfahren verwendeten Organismen prinzipiell auf zwei Arten erhöht werden. Es kann vorteilhaft der Pool an freien mehrfach ungesättigten Fettsäuren und/oder der Anteil der über das Verfahren hergestellten veresterten mehr- fach ungesättigten Fettsäuren erhöht werden. Vorteilhaft wird durch das erfindungsgemäße Verfahren der Pool an veresterten mehrfach ungesättigten Fettsäuren in den transgenen Organismen erhöht.
Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismen verwen- det, so werden sie je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente wie Eisen-, Mangan- Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0 °C und 100 °C, bevorzugt zwischen 10 °C bis 60 °C unter Sauerstoffbegasung angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden, das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann batch weise, semi batch weise oder kontinuierlich erfolgen.- Nährstoffe können zu Beginn der Fermentation vorgelegt oder semi- kontinuierlich oder kontinuierlich nachgefüttert werden. Die hergestellten mehrfach ungesättigten Fettsäuren können nach dem Fachmann bekannten Verfahren wie oben beschrieben aus den Organismen isoliert werden. Beispielsweise über Extraktion, Destillation, Kristallisation, ggf. Salzfällung und/oder Chromatographie. Die Organismen können dazu vorher noch vorteilhaft aufgeschlossen werden. Das erfindungsgemäße Verfahren wird, wenn es sich bei den Wirtsorganismen um Mikroorganismen handelt, vorteilhaft bei einer Temperatur zwischen 0 °C bis 95 °C, bevorzugt zwischen 10 °C bis 85 °C, besonders bevorzugt zwischen 15 °C bis 75 °C, ganz besonders bevorzugt zwischen 15 °C bis 45 °C durchgeführt
Der pH-Wert wird dabei vorteilhaft zwischen pH 4 und 12, bevorzugt zwischen pH 6 und 9, besonders bevorzugt zwischen pH 7 und 8 gehalten.
Das erfindungsgemäße Verfahren kann batchweise, semi-batchweise oder kontinuierlich betrieben werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreakto- ren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) zu finden.
Das zu verwendende Kulturmedium hat in geeigneter Weise den Ansprüchen der jeweiligen Stämme zu genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods für General Bacteriology" der American Society für Bacteriology (Washington D. C, USA, 1981 ) enthalten. > Diese erfindungsgemäß einsetzbaren Medien umfassen wie oben beschrieben gewöhnlich eine oder mehrere Kohlenstoffquellen, Stickstoffquellen, anorganische Salze, Vitamine und/oder Spurenelemente. Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide. Sehr gute Kohlenstoffquellen sind beispielsweise Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cel- , lulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder an- δ dere Nebenprodukte der Zucker-Raffinierung zu den Medien geben. Es kann auch vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzugeben. Andere mögliche Kohlenstoffquellen sind Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnussöl und/oder Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und/oder Linolsäure, Alkohole und/oder Polyalkohole wie z. B. Glycerin, Methanol und/oder Ethanol 0 und/oder organische Säuren wie z. B. Essigsäure und/oder Milchsäure.
Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak in flüssiger- oder gasform oder Ammoniumsalze, wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat oder 5 Ammoniumnitrat, Nitrate, Harnstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakt, Fleischextrakt und andere. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.
Anorganische Salzverbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor- oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, 0 Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen.
Als Schwefelquelle für die Herstellung von schwefelhaltigen Feinchemikalien, insbesondere von Methionin, können anorganische schwefelhaltige Verbindungen wie beispielsweise Sulfate, Sulfite, Dithionite, Tetrathionate, Thiosulfate, Sulfide aber auch organische Schwefelverbindungen, wie Mercaptane und Thiole, verwendet werden. 5 Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikali- umhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden.
Chelatbildner können zum Medium gegeben werden, um die Metallionen in Lösung zu halten. Besonders geeignete Chelatbildner umfassen Dihydroxyphenole, wie Catechol 0 oder Protocatechuat, oder organische Säuren, wie Citronensäure.
Die erfindungsgemäß zur Kultivierung von Mikroorganismen eingesetzten Fermentationsmedien enthalten üblicherweise auch andere Wachstumsfaktoren, wie Vitamine oder Wachstumsförderer, zu denen beispielsweise Biotin, Riboflavin, Thiamin, Folsäu- re, Nikotinsäure, Panthothenat und Pyridoxin gehören. Wachstumsfaktoren und Salze 5 stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt, Melassen, »-- Maisquellwasser und dergleichen. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genaue Zusammensetzung der Medienverbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden spezifischen Fall individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehr- 0 buch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) S. 53-73, ISBN 0 199635773). Wachstumsmedien lassen sich auch von kommerziellen Anbietern beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DI FCO) und dergleichen.
, , , Sämtliche Medienkomponenten werden, entweder durch Hitze (20 min bei 1 ,5 bar und 121°C) oder durch Sterilfiltration, sterilisiert. Die Komponenten können entweder zusammen oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medienkomponenten • können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.
Die Temperatur der Kultur liegt normalerweise zwischen 15°C und 45°C, vorzugsweise bei 25°C bis 40°C und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugsweise um 7,0 liegen. Der pH-Wert für die Anzucht lässt sich während der Anzucht durch Zugabe von,basischen Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Arnmoniakwasser oder sauren Verbindungen wie Phosphorsäure oder Schwefel- säure kontrollieren. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z. B. Fettsäurepolyglykolester, eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Piasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie z. B. Antibiotika, hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen, wie z. B. Umgebungsluft, in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.
Die so erhaltenen, insbesondere mehrfach ungesättigte Fettsäuren enthaltenden, Fer- mentationsbrühen haben üblicherweise eine Trockenmasse von 7,5 bis 25 Gew.-%.
Die Fermentationsbrühe kann anschließend weiterverarbeitet werden. Je nach Anforderung kann die Biomasse ganz oder teilweise durch Separationsmethoden, wie z. B. Zentrifugation, Filtration, Dekantieren oder einer Kombination dieser Methoden aus der Fermentationsbrühe entfernt oder vollständig in ihr belassen werden. Vorteilhaft wird die Biomasse nach Abtrennung aufgearbeitet.
Die Fermentationsbrühe kann aber auch ohne Zellabtrennung mit bekannten Methoden, wie z. B. mit Hilfe eines Rotationsverdampfers, Dünnschichtverdampfers, Fallfilmverdampfers, durch Umkehrosmose, oder durch Nanofiltration, eingedickt beziehungsweise aufkonzentriert werden. Diese aufkonzentrierte Fermentationsbrühe kann schließlich zur Gewinnung der darin enthaltenen Fettsäuren aufgearbeitet werden.
** Die im Verfahren gewonnenen Fettsäuren eignen sich auch als Ausgangsmaterial für die chemische Synthese von weiteren Wertprodukten. Sie können beispielsweise in Kombination miteinander oder allein zur Herstellung von Pharmaka, Nahrungsmittel, Tierfutter oder Kosmetika verwendet werden. Ein weiterer erfindungsgemäßer Gegenstand sind isolierte Nukleinsauresequenzen, die für Polypeptide mit Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität codieren, wobei die durch die Nukleinsauresequenzen codierten Acyl-CoA: Lysophospholipid- Acyltransferasen spezifisch Cι6-, Cι8-, C20- oder C^-Fettsäuren mit mindestens einer δf, Doppelbindungen im Fettsäuremolekül umsetzen.
Vorteilhafte isolierte Nukleinsauresequenzen sind Sequenzen ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID
NO: 5 oder SEQ ID NO: 7 dargestellten Sequenz, 0 b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 enthaltenden codierenden Sequenz ableiten lassen c) ' Derivate der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID 5 NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebe- ' ne mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 aufweisen und eine Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität aufweisen. 0 Vorteilhaft stammen die oben genannten Nukleinsauresequenzen aus einem eukaryontischen Organismus.
Die im Verfahren verwendeten Nukleinsauresequenzen, die für Proteine mit Acyl- CoA: Lysophospholipid-Acyltransferase-Aktivität codieren oder für Proteine des Fettsäure- oder Üpidstoffwechsels, werden vorteilhaft in einer Expressionskassette (= Nuk- 5 leinsäurekonstrukt), die die Bφression der Nukleinsäuren in einem Organismus vorteilhaft einer Pflanze oder einem Mikroorganismus ermöglicht, eingebracht.
Zum Einbringen werden die im Verfahren verwendeten Nukleinsäuren vorteilhaft einer Amplifikation und Ligation in bekannter Weise unterworfen. Vorzugsweise geht man in Anlehnung an das Protokoll der Ru-DNA-Poϊymerase oder eines Ru/Taq-DNA- 0 Polymerasegemisches vor. Die Primer werden in Anlehnung an die zu amplifizierende Sequenz gewählt. Zweckmäßigerweise sollten die Primer so gewählt werden, dass das Amplifikat die gesamte kodogene Sequenz vom Start- bis zum Stop-Kodon umfasst. Im Anschluss an die Amplifikation wird das Amplifikat zweckmäßigerweise analysiert. Beispielsweise kann die Analyse nach gelelektrophoretischer Auftrennung hinsichtlich 5- . Qualität und Quantität erfolgen. Im Anschluss kann das Amplifikat nach einem Standardprotokoll gereinigt werden (z.B. Qiagen). Ein Aliquot des gereinigten Amplifikats steht dann für die nachfolgende Klonierung zur Verfügung. Geeignete Klonierungsvek- toren sind dem Fachmann allgemein bekannt. Hierzu gehören insbesondere Vektoren, die in mikrobiellen Systemen replizierbar sind, also vor allem Vektoren, die eine effi- ziente Klonierung in Hefen oder Pilze gewährleisten, und die stabile Transformation von Pflanzen ermöglichen. Zu nennen sind insbesondere verschiedene für die T-DNA- vermittelte Transformation geeignete, binäre und co-integrierte Vektorsysteme. Derartige Vektorsysteme sind in der Regel dadurch gekennzeichnet, dass sie zumindest die ,,' für dieΑgrobakterium-vermittelte Transformation benötigten vir-Gene sowie die T-DNA begrenzenden Sequenzen (T-DNA-Border) beinhalten. Vorzugsweise umfassen diese Vektorsysteme auch weitere cis-regulatorische Regionen wie Promotoren und Termi- * natoren und/oder Selektionsmarker, mit denen entsprechend transformierte Organismen identifiziert werden können. Während bei co-integrierten Vektorsystemen vir-Gene und T-DNA-Sequenzen auf demselben Vektor angeordnet sind, basieren binäre Systeme auf wenigstens zwei Vektoren, von denen einer vir-Gene, aber keine T-DNA und ein zweiter T-DNA, jedoch kein vir-Gen trägt. Dadurch sind letztere Vektoren relativ klein, leicht zu manipulieren und sowohl in E.-coli als auch in Agrobacterium zu replizieren. Zu diesen binären Vektoren gehören Vektoren der Serien pBIB-HYG, pPZP, pBecks, pGreen. Erfindungsgemäß bevorzugt verwendet werden Bin19, pBI101 , pBi- nAR, pGPTV und pCAMBIA. Eine Übersicht über binäre Vektoren und ihre Verwendung gibt Hellens et al, Trends in Plant Science (2000) 5, 446-451. Für die Vektorpräparation können die Vektoren zunächst mit Restriktionsendonuklease(n) linearisiert und dann in geeigneter Weise enzymatisch modifiziert werden. Im Anschluss wird der Vektor gereinigt und ein Aliquot für die Klonierung eingesetzt. Bei der Klonierung wird das enzymatisch geschnittenen und erforderlichenfalls gereinigten Amplifikat mit ähnlich präparierten Vektorfragmenten mit Einsatz von Ligase kloniert. Dabei kann ein bestimmtes Nukleinsäurekonstrukt bzw. Vektor- oder Plasmidkonstruki einen oder auch mehrere kodogene Genabschnitte aufweisen. Vorzugsweise sind die kodogenen Genabschnitte in diesen Konstrukten mit regulatorischen Sequenzen funktional verknüpft. Zu den regulatorischen Sequenzen gehören insbesondere pflanzliche Sequenzen wie die oben beschriebenen Promotoren und Terminatoren. Die Konstrukte lassen sich vorteilhafterweise in Mikroorganismen, insbesondere Escherichia coli und Agrobacterium tumefaciens, unter selektiven Bedingungen stabil propagieren und ermögli- chen einen Transfer von heterologer DNA in Pflanzen oder Mikroorganismen.
Unter der vorteilhaften Verwendung von Klonierungsvektoren können die im Verfahren verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsaurekonstrukte in Organismen wie Mikroorganismen oder vorteilhaft Pflanzen eingebracht werden und damit bei der Rlanzentransformation verwendet werden, wie denjenigen, die veröffentlicht sind in und dort zitiert sind: Plant Molecular. Biology and Biotechnology (CRC Press, Boca Raten, Florida), Kapitel 6/7, S. 71-119 (1993); F.F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1 , Enginee- - ring and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-143; Potry- kus', Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225)). Die im Verfahren verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsaurekonstrukte und/oder Vektoren lassen sich damit zur gentechnologischen Veränderung eines breiten Spektrums an Organismen vorteilhaft an Pflanzen verwenden, so dass diese bessere und/oder effizientere Produzenten von PUFAs werden.
Es gibt eine Reihe von Mechanismen, durch die die Veränderung eines erfindungsge- ,., , mäßen Acyl-CoA:Lysophospholipid-Acyltransferase-Proteins die Ausbeute, Produktion und/oder Effizienz der Produktion einer Feinchemikalie aus einer Ölfruchtpflanze oder einem Mikroorganismus aufgrund eines veränderten Proteins direkt beeinflussen kann. Die Anzahl oder Aktivität des Acyl-CoA:Lysophospholipid-Acyltransferase-Proteins oder -Gens sowie von Genkombinationen von Acyl-CoA:Lysophospholipid- Acyltransferasen, Desaturasen und/oder Elongasen kann erhöht sein, so dass größere Mengen der produzierten Verbindungen de novo hergestellt werden, weil den Organismen diese Aktivität und Fähigkeit zur Biosynthese vor dem Einbringen des/der entsprechenden Gens/Gene fehlte. Entsprechendes gilt für die Kombination mit weiteren Desaturasen oder Elongasen oder weiteren Enzymen aus dem Fettsäure- und Li- pidstoffwechsel. Auch die Verwendung verschiedener divergenter, d.h. auf DNA- Sequenzebene unterschiedlicher Sequenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promotoren zur Genexpression, die eine andere zeitliche Genexpression z.B. abhängig vom Reifegrad eines Samens oder Öl-speichemden Gewebes ermöglicht.
Durch das Einbringen eines Acyl-CoA:Lysophospholipid-Acyltransferase-, Desaturase- und/oder Elongase-Gens oder mehrerer Acyl-CoA:Lysophospholipid-Acyltransferasen-, Des turase- und/oder Elongase-Gene in einen Organismus allein oder in Kombination mit anderen Genen in eine Zelle kann nicht nur den Biosynthesefluss zum Endprodukt erhöht, sondern auch die entsprechende Triacylglycerin-Zusammensetzung erhöht oder de novo geschaffen werden. Ebenso kann die Anzahl oder Aktivität anderer Ge- ne, die am Import von Nährstoffen, die zur Biosynthese einer oder mehrerer Feinchemikalien (z.B. Fettsäuren, polaren und neutralen Lipiden) nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicherkompartiments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs, wie im folgenden beschrieben, weiter gesteigert wird. Fettsäuren und Lipide sind selbst als Feinchemikalien wünschenswert; durch Optimierung der Aktivität oder Erhöhung der Anzahl einer oder mehrerer Acyl- CoA:Lysophospholipid-Acyltransferase-, Desaturasen und/oder Elongasen, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Desaturasen, die am Abbau dieser Verbindungen beteiligt sind, kann es möglich sein, die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus Organismen und vorteilhaft aus Pflanzen zu steigern.
^ Die im erfindungsgemäßen Verfahren verwendeten isolierten Nukleinsäuremoleküle codieren für Proteine oder Teile von diesen, wobei die Proteine oder das einzelne Pro- tein oder Teile davon eine Aminosäuresequenz enthält, die ausreichend homolog zu einer Aminosäuresequenz der Sequenz SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 ist, so dass das Protein oder der Teil davon eine Acyl- CoA:Lysophospholipid-Acyltransferase-Aktivität beibehält. Vorzugsweise hat das Protein oder der Teil davon, das/der von dem Nukleinsäuremolekül kodiert wird, noch seine wesentliche enzymatische Aktivität und die Fähigkeit, am Stoffwechsel von zum .Aufbau von Zellrnembranen oder Lipidkörperchen in Organismen vorteilhaft in Rlanzen 5. , notwendigen Verbindungen oder am Transport von Molekülen über diese Membranen teilzunehmen noch hat. Vorteilhaft ist das von den Nukleinsäuremolekülen kodierte Protein zu mindestens etwa 40 %, vorzugsweise mindestens etwa 60 % und stärker bevorzugt mindestens etwa 70 %, 80 % oder 90 % und am stärksten bevorzugt mindestens etwa 95 %, 96 %, 97 %, 98 %, 99 % oder mehr homolog zu einer A inosäu- 0 resequenz der Sequenz SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8. Vorteilhafte Ausführungsformen der erfindungsgemäßen Aminosäuresequenz der Sequenz SEQ ID NO: 2 sind Aminosäuresequenzen, die an Position 30 der SEQ ID NO: 2 anstelle des vorhandenen Methionin einen Valinrest haben oder in Position 100 anstelle des vorhandenen Serin einen Glycinrest haben oder in Position 170 an- 5 steile des vorhandenen Phenylalanin einen Serinrest haben. Diese werden in SEQ ID NO: 4, SEQ ID NO: 6 bzw. SEQ ID NO: 8 wiedergegeben. Im Sinne der Erfindung ist unter Homologie oder homolog, Identität oder identisch zu verstehen.
Unter wesentlicher enzymatischer Aktivität der verwendeten Acyl-CoA:Lysophospho- lipid-Acyltransferasen ist zu verstehen, dass sie gegenüber den durch die Sequenz mit 0 SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 und deren Derivate codierten Proteinen/Enzymen im Vergleich noch mindestens eine enzymatische Aktivität von mindestens 10 %, bevorzugt 20 %, besonders bevorzugt 30 % und ganz besonders 40 % aufweisen und damit am Stoffwechsel von zum Aufbau von Fettsäuren in einem Organismus vorteilhaft einer Pflanzenzelle notwendigen Verbindungen oder 5 am Transport von Molekülen über Membranen teilnehmen können, wobei desaturierte C16-, C18- oder C20-24-Kohlenstoffketten mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier oder fünf Stellen gemeint ist.
Vorteilhaft im Verfahren verwendbare Nukleinsäuren stammen aus Pilzen oder Rlanzen wie Algen oder Moosen wie den Gattungen Physcomitrella, Thraustochytrium, 0 Phytophtora, Ceratodon, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium oder aus Nematoden wie Caenorhabditis, speziell aus den Gattungen und Arten Physcomitrella patens, Phytophtora infestans, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricornutum oder besonders vorteilhaft aus Cae- 5 norhabditis elegans.
Alternativ können die verwendeten isolierten Nukleotidsequenzen für Acyl- CoA:Lysophospholipid-Acyltransferasen codieren, die an eine Nukleotidsequenz der _ SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 hybridisieren, z.B. unter stringenten Bedingungen hybridisieren. Die im Verfahren verwendeten Nukleinsauresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Organismen wie Mikroorganismen oder Pflanzen ermöglicht, eingebracht. f . Dabei,. werden die für die erfinderische Acyl-CoA:Lysophospholipid-Acyltransferasen, 5 die verwendeten Desaturasen und/oder die Elongasen codierenden Nukleinsauresequenzen mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktionell verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion 0 exprimiert und/oder überexprimiert wird, oder dass es sofort exprimiert und/oder übe- rexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den ei- 5 gentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette (= Expressionskonstrukt = Genkonstrukt) kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Nukleinsäuresequenz oder dessen Derivate inseriert 0 und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nukleinsauresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität 5 gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Die Acyl- 0 CoA:Lysophospholipid-Acyltransferase-Gene sowie die vorteilhaft verwendeten Δ-4- Desaturase-, Δ5-Desaturase-, Δ-6-Desaturase- und/oder Δ-8-Desaturase-Gene und/oder die Δ-5-Elongase-, Δ-6-Elongase- und/oder Δ-9-Elongase-Gene können in einer oder mehreren Kopien in der Expressiόnskassette (= Genkonstrukt) enthalten sein. Vorteilhaft liegt nur jeweils eine Kopie der Gene in der Expressionskassette vor. 5 Dieses Genkonstrukt oder, die Genkonstrukte können zusammen im Wirtsorganismus exprimiert werden. Dabei kann das Genkonstrukt oder die Genkonstrukte in einem - oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber im Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Genkonstrukt vorliegen. 0 Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.
, . s Eine weitere Ausführungsform der Erfindung sind ein oder mehrere Genkonstrukte, die eine oder mehrere Sequenzen enthalten, die durch SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 oder dessen Derivate definiert sind und für Polypeptide gemäß SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 kodieren. Die genannten Acyl-CoA:Lysophospholipid-Acyltransferasen führen dabei zu einem Austausch der Fettsäuren zwischen dem Mono-, Di- und/oder Triglyceridpool der Zelle und dem CoA- Fettsäureester-Pool, wobei das Substrat vorteilhaft ein, zwei, drei, vier oder fünf. Doppelbindungen aufweist und vorteilhaft 16, 18, 20, 22 oder 24 Kohlenstoffatome im Fettsäuremolekül aufweist. Gleiches gilt für ihre Homologen, Derivate oder Analoga, die funktionsfähig mit einem oder mehreren Regulationssignalen, vorteilhafterweise zur Steigerung der Genexpression, verbunden sind. Vorteilhafte Regulationssequenzen für das neue Verfahren liegen beispielsweise in Promotoren vor, wie dem cos-, tac-, trp-, tet-, trp-tet-, Ipp-, lac-, Ipp-lac-, laclq-, T7- , T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder λ-PL-Promotor und werden vorteilhafterweise in Gram-negativen Bakterien angewendet. Weitere vorteilhafte Regulationssequenzen liegen beispielsweise in den Gram-positiven Promotoren amy und SPO2, in den Hefe- oder Pilzpromotoren ADC1 , MFα, AC, P-60, CYC1 , GAPDH, TEF, rp28, ADH oder in den Rlanzenpromotoren CaMV/35S [Franck et al., Cell 21 (1980) 285- 294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, Iib4, usp, STLS1, B33, nos oder im Ubiquitin- oder Phaseolin-Promotor vor. In diesem Zusammenhang vorteilhaft sind ebenfalls induzierbare Promotoren, wie die in EP-A-0388 186 (Ben- zylsulfonamid-induzierbar), Plant J. 2, 1992:397-404 (Gatz et al., Tetracyclin- induzierbar), EP-A-0335528 (Abzisinsäure-induzierbar) oder WO 93/21334 (Ethanol- oder Cyclohexenol-induzierbar) beschriebenen Promotoren. Weitere geeignete Pflan- zenpromotoren sind der Promotor von cytosolischer FBPase oder der ST-LSI-Promotor der Kartoffel (Stockhaus et al., EMBO J. 8, 1989, 2445), der Phosphoribosylpy- rophosphatamidotransferase-Promotor aus Glycine max (Genbank-Zugangsnr.
U87999) oder der in EP-A-0249676 beschriebene nodienspezifische Promotor. Besonders vorteilhafte Promotoren sind Promotoren, welche die Expression in Geweben ermöglichen, die an der Fettsäurebiosynthese beteiligt sind. Ganz besonders vorteilhaft sind samenspezifische Promotoren, wie der ausführungsgemäße USP Promotor aber auch andere Promotoren wie der LeB4-, DC3, Phaseolin- oder Napin-Promotor. Weitere besonders vorteilhafte Promotoren sind samenspezifische Promotoren, die für monokotyle oder dikotyle Pflanzen verwendet werden können und in US 5,608,152 (Napin-Promotor aus Raps), WO 98/45461 (Oleosin-Promotor aus Arabidopsis), US . 5,504,200 (Phaseolin-Promotor aus Phaseolus vulgaris), WO 91/13980 (Bce4- Prompter aus Brassica), von Bäeumlein et al., Plant J., 2, 2, 1992:233-239 (LeB4- Promotor aus einer Leguminose) beschrieben sind, wobei sich diese Promotoren für Dikotyledonen eignen. Die "folgenden Promotoren eignen sich beispielsweise für Mono- kotyledonen lpt-2- oder lpt-1 -Promotor aus Gerste (WO 95/15389 und . WO 95/23230), Hordein-Promotor aus Gerste und andere, in WO 99/16890 beschriebene geeignete Promotoren.
Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen,
'..fc , wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls mög- lieh und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z.B. beschrie- . ben in WO 99/16890.
Um einen besonders hohen Gehalt an PUFAs vor allem in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samenspezifisch in Ölsaaten 0 exprimiert werden. Hierzu können Samen-spezifische Promotoren verwendet werden, bzw. solche Promotoren die im Embryo und/oder im Endosperm aktiv sind. Samenspezifische Promotoren können prinzipiell sowohl aus dikotolydonen als auch aus mo- nokotolydonen Rlanzen isoliert werden. Im folgenden sind vorteilhafte bevorzugte Promotoren aufgeführt: USP (= unknown seed protein) und Vicilin (Vicia faba) [Bäum- 5 lein et al., Mol. Gen Genet., 1991 , 225(3)], Napin (Raps) [US 5,608,152], Acyl-Carrier Protein (Raps) [US 5,315,001 und WO 92/18634], Oleosin (Arabidopsis thaliana) [WO 98/45461 und WO 93/20216], Phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980], Leguminosen B4 (LegB4-Promotor) [Bäumlein et al., Plant J., 2,2, 1992], Lpt2 und lpt1 (Gerste) [WO 95/15389 u. WO95/23230], Samen-spezifische Pro- motoren aus Reis, Mais u. Weizen [WO 99/16890], Amy32b, Amy 6-6 und Aleurain [US 5,677,474], Bce4 (Raps) [US 5,530,149], Glycinin (Soja) [EP 571 741], Phosphoenol- Pyruvatcarboxylase (Soja) [JP 06/62870], ADR12-2 (Soja) [WO 98/08962], Isocitratlya- se (Raps) [US 5,689,040] oder α-Amylase (Gerste) [EP 781 849].
Die Pflanzengenexpression lässt sich auch über einen chemisch induzierbaren Promo- 5 tor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspe∑ifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein 0 Ethanol-induzierbarer Promotor.
Um eine stabile Integration der Biosynthesegene in die transgene Pflanze über mehrere Generation sicherzustellen, sollte jede der im Verfahren verwendeten Nukleinsäuren, die für die Acyl-CoA: Lysophospholipid-Acyltransferase, die vorteilhafte Δ-4- Desaturase, die Δ-5-Desaturase, die Δ-6-Desaturase, die Δ-8-Desaturase und/oder die 5 Δ-5-Elongase, die Δ-6-Elongase und/oder die Δ-9-Elongase codieren, unter der Kontrolle eines eigenen bevorzugt eines unterschiedlichen Promotors exprimiert werden, da sich wiederholende Sequenzmotive zu Instabilität der T-DNA bzw. zu Rekombinationsereignissen führen können. Die Expressionskassette ist dabei vorteilhaft so aufgebaut,' dass einem Promotor eine geeignete Schnittstelle zur Insertion der zu expremier- 0 enden Nukleinsäure folgt vorteilhaft in einem Polylinker anschließend gegebenenfalls ein Terminator hinter dem Polylinker liegt. Diese Abfolge wiederholt sich mehrfach be- vorzugt drei-, vier- oder fünfmal, so dass bis zu fünf Gene in einem Konstrukt zusammengeführt werden und so zur Expression in die transgene Pflanze eingebracht werden können. Vorteilhaft wiederholt sich die Abfolge bis zu dreimal. Die Nukleinsauresequenzen werden zur Expression über die geeignete Schnittstelle beispielsweise im \*,>. Polylinker hinter den Promotor inseriert. Vorteilhaft hat jede Nukleinsäuresequenz ihren eigenen Promotor und gegebenenfalls ihren eigenen Terminator. Es ist aber auch möglich mehrere Nukleinsauresequenzen hinter einem Promotor und ggf. vor einem Terminator zu inserieren. Dabei ist die Insertionsstelle bzw. die Abfolge der inserierten Nukleinsäuren in der Expressionskassette nicht von entscheidender Bedeutung, das heißt eine Nukleinsäuresequenz kann an erster oder letzter Stelle in der Kassette inseriert sein, ohne dass dadurch die Expression wesentlich beeinflusst wird. Es können in der Expressionskassette vorteilhaft unterschiedliche Promotoren wie beispielsweise der USP-, LegB4 oder DC3-Promotor und unterschiedliche Terminatoren verwendet werden. Es ist aber auch möglich nur einen Promotortyp in der Kassette zu verwenden. Dies kann jedoch zu unerwünschten Rekombinationsereignissen führen.
Wie oben beschrieben sollte die Transkription der eingebrachten Gene vorteilhaft durch geeignete Terminatoren am 3'-Ende der eingebrachten Biosynthesegene (hinter dem Stoppcodon) abgebrochen werden. Verwendet werden kann hier z.B. der OCS1 Terminator. Wie auch für die Promotoren, so sollten hierfür jedes Gen unterschiedliche Terminatorsequenzen verwendet werden.
Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Organismen eingebracht werden sollen. Es ist möglich und vorteilhaft, in die Wirtsorganismen Regulationsgene, wie Gene für Induktoren, Repressoren oder Enzyme, welche durch ihre Enzymaktivität in die Regulation eines oder mehrerer Gene eines Biosynthesewegs eingreifen, einzubringen und darin zu exprimieren. Diese Gene können heterologen oder homologen Ursprungs sein. Weiterhin können vorteilhaft im Nuk- leinsäurekonstrukt bzw. Genkonstrukt weitere Biosynthesegene des Fettsäure- oder üpidstoffwechsels enthalten sein oder aber diese Gene können auf einem weiteren oder mehreren weiteren Nukleinsäurekonstrukten liegen. Vorteilhaft werden als Bio- synthesegene des Fettsäure- oder üpidstoffwechsels ein Gen ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]- Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Fettsäure- Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl- Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxy- genasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) oder deren Kombinationen verwendet. Besonders vorteilhafte Nukleins uresequenzen sind Biosynthesegene des Fettsäure- oder üpidstoffwechsels ausgewählt aus der Gruppe der Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, . Δ-8-Desatuase-, Δ-9-Desaturase-, Δ-12-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- oder Δ-9-Elongase. Dabei können die vorgenannten Desaturasen in Kombination mit anderen Elongasen und Desaturasen in erfindungsgemäßen Expressionskassetten Moniert werden und zur Transformation von Rlanzen mithilfe von Agrobakterium eingesetzt werden.
,,. , Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA ver- bessert wird. Die Expressionskassetten können prinzipiell direkt zum Einbringen in die RIanze verwendet werden oder aber in einen Vektoren eingebracht werden.
Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im Verfahren verwendeten Nukleinsäuren, die für Acyl-CoA:Lysophospholipid- Acyltra sferasen codieren, oder ein Nukleinsäurekonstrukt, die die verwendeten Nuk- leinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäureoder üpidstoffwechsels wie Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8- Desatuase-, Δ-9-Desaturase-, Δ-12-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- und/oder Δ-9-Elongase. Wie hier verwendet, betrifft der Begriff "Vektor" ein Nukleinsäu- remolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (z.B. Bakterienvektoren mit bakteriellem Replikation- sursprung). Andere Vektoren werden vorteilhaft beim Einbringen in die Wirtszelle in das Genom einer Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden hier als "Expressi- onsvektoren" bezeichnet. Gewöhnlich haben Expressionsvektoren, die für DNA- Rekombinationstechniken geeignet sind, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll jedoch diese anderen Expressionsvektorformen, wie virale Vektoren, die ähnliche Funktionen ausüben, umfassen. Ferner soll der Begriff Vektor auch andere Vektoren, die dem 5 Fachmann bekannt sind, wie Phagen, Viren, wie SV40, CMV, TMV, Transposons, IS- Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA, umfassen.
Die im Verfahren vorteilhaft verwendeten rekombinanten Expressionsvektoren umfassen die die unten beschriebenen Nukleinsäuren oder das oben beschriebene Gen- konstrukt in einer Form, die sich zur Expression der verwendeten Nukleinsäuren in 0 einer Wirtszelle eignen, was bedeutet, dass die rekombinanten Expressionsvektoren eine oder mehrere Regulationssequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu exprimierenden Nukleinsäuresequenz funktionsfähig verbunden ist, umfasst. In einem rekombinanten Expressionsvektor bedeutet "funktionsfähig verbunden", dass die Nukleotidsequenz von Interesse derart an die Regulationssequenz(en) gebunden ist, dass die Expression der Nukleotidsequenz .möglich ist und sie aneinander gebunden sind, so dass beide Sequenzen die vorher- ". , gesagte, der Sequenz zugeschriebene Funktion erfüllen (z.B. in einem In-vitro- Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht wird). Der Begriff "Regulationssequenz" soll Promotoren, En- hancer und andere Expressionskontrollelemente (z.B. Polyadenylierungssignale) umfassen. Diese Regulationssequenzen sind z.B. beschrieben in Goeddel: Gene Expres- sion Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), oder siehe: Gruber und Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raten, Florida, Hrsgb.: Glick und Thompson, Kapitel 7, 89-108, einschließlich der Literaturstellen darin. Regulationssequenzen umfassen solche, welche die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, welche die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen unter bestimmten Bedingungen steuern. Der Fachmann weiß, dass die Gestaltung des Expressionsvektors von Faktoren, wie der Auswahl der zu transformierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw., abhängen kann. Die verwendeten rekombinanten Expressionsvektoren können zur Expression von A- cyl-CoA:Lysophospholipid-Acyltransferasen, Desaturasen und Elongasen in prokaryo- tischen oder eukaryotischen Zellen gestaltet sein. Dies ist vorteilhaft, da häufig Zwischenschritte der Vektorkonstruktion der Einfachheithalber in Mikroorganismen durchgeführt werden. Beispielsweise können AcyI-CoA:Lysophospholipid-Acyltransferase-, Desäturase- und/oder Elongase-Gene in bakteriellen Zellen, Insektenzellen (unter Verwendung von Baculovirus-Expressionsvektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M.A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8:423-488; van den Hondel, C.A.M.J.J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, J.W. Bennet & L.L Lasure, Hrsgb., S. 396-428: Academic Press: San Diego; und van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F., et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al., 1999, Marine Biotechnology.1, 3:239-251), Ciliaten der Typen: Holotrichia, Peritrichia, Spirotri- chia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Poto- macus, Desaturaseudocohnilembus, Euplotes, Engelmanieila und Stylonychia, insbesondere der Gattung Stylonychia lemnae, mit Vektoren nach einem Transformationsverfahren, wie beschrieben in WO 98/01572, sowie bevorzugt in Zellen vielzelliger Pflanzen (siehe Schmidt, R. und Willmitzer, L (1988) "High efficiency Agrobacterium *-- tumefaciens-mediated .transformation of Arabidopsis thaliana leaf and cotyledon ex- plants" Plant Cell Rep.:583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raten, Florida, Kapitel 6/7, S.71-119 (1993); F.F. White, B. Jenes et al., Tech- niques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol.42 (1991), 205-225 (und darin zitierte Literaturstellen)) exprimiert werden. Geeignete Wirtszellen werden ferner erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Der rekσmbinante Expressionsvektor kann alternativ, zum Beispiel unter Ver- „,>, wendung von T7-Promotor-Regulationssequenzen und T7-Polymerase, in vitro transkribiert und translatiert werden.
Die Expression von Proteinen in Prokaryoten erfolgt meist mit Vektoren, die konstituti- ve oder induzierbare Promotoren enthalten, welche die Expression von Fusions- oder nicht-Fusionsproteinen steuern. Typische Fusions-Expressionsvektoren sind u.a. pGEX (Pharmacia Biotech Ine; Smith, D.B., und Johnson, K.S. (1988) Gene 67:31- 40), pMAL (New England Biolabs, Beverly, MA) und pRIT5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.
Beispiele für geeignete induzierbare nicht-Fusions-E. coli-Expressionsvektoren sind u.a. pTfc (Amann et al. (1988) Gene 69:301-315) und pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89). Die Zielgenexpression vom pTrc- Vektor beruht auf der Transkription durch Wirts-RNA-Polyrherase von einem Hybrid-trp-lac-Fusionspromotor. Die Zielgenexpression aus dem pET 11d- Vektor beruht auf der Transkription von ei- nem T7-gn10-lac-Fusions-Promotor, die von einer coexprimierten viralen RNA-
Polymerase (T7 gn1 ) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen bereitgestellt, der ein T7 gn1-Gen unter der Transkriptionskontrolle des lacUV 5-Promotors birgt. Andere in prokaryotischen Organismen geeignete Vektoren sind dem Fachmann bekannt, diese Vektoren sind beispielsweise in E. coli pLG338, pACYC184, die pBR- Reihe, wie pBR322, die pUC-Reihe, wie pUC18 oder pUC19, die M113mp-Reihe, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-llll 13-B1 , λgt11 or pBdCI, in Streptomyces plJ101, plJ364, plJ702 oder plJ361, in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667.
Bei einer weiteren Ausführungsform ist der Expressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYe- Desaturased (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie den filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hon- ^ del, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge, oder in: More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego]. Weitere geeignete Hefevektoren sind beispielsweise pAG-1, YEp6, YEp13 oder pEMBLYe23.
Alternativ können die Acyl-CoA:Lysophospholipid-Acyltransferasen, Desaturasen , , , und/oder Elongasen in Insektenzellen unter Verwendung von Baculovirus- Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von
Proteinen in gezüchteten Insektenzellen (z.B. Sf9-Zelien) verfügbar sind, umfassen die • pAc-Reihe (Smith et al. (1983) Mol. Cell Bio 3:2156-2165) und die pVL-Reihe
(Luckiow und Summers (1989) Virology 170:31-39).
Die oben genannten Vektoren bieten nur einen kleinen Überblick über mögliche geeig- nete Vektoren. Weitere Plasmide sind dem Fachmann bekannt und sind zum Beispiel beschrieben in: Cloning Vectors (Hrsgb. Pouwels, P.H., et al., Elsevier, Amsterdam- New York-Oxford, 1985, ISBN 0444904018). Weitere geeignete Expressionssysteme für prokaiyotische und eukaryotische Zellen siehe in den Kapiteln 16 und 17 von Sambropk, J., Fritsch, E.F., und Maniatis, T., Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
Bei einer weiteren Ausführungsform des Verfahrens können die Acyl-CoA:Lyso- phospholipid-Acyltransferasen, Desaturasen und/oder Elongasen in einzelligen Pflanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechnology 1 (3):239- 251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen (z.B. Spermatophyten, wie Feldfrüchten) exprimiert werden. Beispiele für Rlanzen- Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J., und Masterson, R. (1992) "New plant binary vectors with selec- table markers located proximal to the left border", Plant Mol. Biol.20:1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721 ; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, S. 15-38.
Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen, wel- ehe die Genexpression in Rianzenzellen steuern können und funktionsfähig verbunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadenylierungssignale sind diejenigen, die aus Agrobacterium tumefaciens-T-DNA stammen, wie das als Oc- topinsynthase bekannte Gen 3 des Ti-Plasmids pTiACHδ (Gielen et al., EMBO J. 3 (1984) 835ff .) oder funktionelle Äquivalente davon, aber auch alle anderen in Pflanzen funktionell aktiven Terminatoren sind geeignet. " Da die Rlanzengenexpression sehr oft nicht auf Transkriptionsebenen beschränkt ist, enthält eine Rlanzen-Expressionskassette vorzugsweise andere funktionsfähig verbunden Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive-Sequenz, welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Prote- in/RNA- Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15:8693- 8711).
, Die Pflanzengenexpression -muss wie oben beschrieben funktionsfähig mit einem ge- ( , , eigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zell- oder gewebespezifische Weise durchführt. Nutzbare Promotoren sind konstitutive Promotoren (Benfey et al., EMBO J. 8 (1989) 2195-2202), wie diejenigen, die von Rlanzenviren • stammen, wie 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (siehe auch US 5352605 und WO 84/02913) oder RIanzenpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco. Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des Genproduktes in sein entsprechendes Zellkompartiment notwendig sind (siehe eine Übersicht in Kermode, Crit. Rev. Plant Sei. 15, 4 (1996) 285-423 und darin zitierte Literaturstellen), beispielsweise in die Vakuole, den Zellkern, alle Arten von Piastiden, wie Amyloplasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, die Mito- chondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen.
Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J.2, 397-404) und ein Ethanol-induzierbarer Promotor. Auch Promotoren, die auf biotische oder abiotische Stressbedingungen reagieren, sind geeignete Promotoren, beispielsweise der pathogeninduzierte PRP1 -Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), der hitzeinduzierbare hspSO- Promotor aus Tomate (US 5,187,267), der kälteinduzierbare Alphaamylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinll-Promotor (EP-A-0375091).
Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in Geweben und Organen herbeiführen, in denen die Fettsäure-, Lipid- und Ölbiosynthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich entwickelnden Embryos. Geeignete Promotoren sind der Napingen-Promotor aus Raps (US 5,608,152), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67), der Oleosin-Promotor aus Arabidopsis (WO 98/45461), der *" Phaseolin-Promotor aus Phaseolus vulgaris (US 5,504,200), der Bce4-Promotor aus Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9) sowie Promotoren, welche die samenspezifische Ex- pression in Monokotyledonen-Rlanzen, wie Mais, Gerste, Weizen, Roggen, Reis usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der lpt2- oder lpt1 -Gen- Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 beschriebenen (Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, dem Reis-Oryzin-Gen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen-Glutelin- Gen, dem Mais-Zein-Gen, dem Hafer-Glutelin-Gen, dem Sorghum-Kasirin-Gen, dem >>. Roggen-Secalin-Gen).
Insbesondere kann die multiparallele Expression der im Verfahren verwendeten Acyl- • CoA:Lysophospholipid-Acyltransferasen allein oder in Kombination mit Desaturasen und/oder Elongasen gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt durch Kombination mehrerer Expressionskassetten auf einem Konstrukt. Auch können mehrere Vektoren mit jeweils mehreren Expressionskassetten transformiert und auf die Wirtszelle übertragen werden.
Ebenfalls .besonders geeignet sind Promotoren, welche die plastidenspezifische Expression herbeiführen, da Piastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren, wie der virale RNA-Polymerase-Promotor, sind beschrieben in WO 95/16783 und WO 97/06250, und der clpP-Promotor aus Arabidopsis, beschrieben in WO 99/46394.
Vektor-DNA lässt sich in prokaryotische oder eukaryotische Zellen über herkömmliche Transformations- oder Transfektionstechniken einbringen. Die Begriffe "Transformati- on" und "Transfektion", Konjugation und Transduktion, wie hier verwendet, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nuk- leinsäure (z.B. DNA) in eine Wirtszelle, einschließlich Calciumphosphat- oder Calcium- chlorid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion, Lipofektion, natürliche Kompetenz, chemisch vermittelter Transfer, Elektroporation oder Teilchenbe- schuss, umfassen. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen, einschließlich Pflanzenzellen, lassen sich finden in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor- Handbüchern, wie Methods in Molecular Biology, 1995, Bd. 44, Agrobacterium proto- cols, Hrsgb: Gartland und Davey, Humana Press, Totowa, New Jersey.
Wirtszellen, die im Prinzip zum Aufnehmen der erfindungsgemäßen Nukleinsäure, des erfindungsgemäßen Genproduktes oder des erfindungsgemäßen Vektors geeignet sind, sind alle prokaryotischen oder eukaryotischen Organismen. Die vorteilhafterweise verwendeten Wirtsorganismen sind Mikroorganismen, wie Pilze oder Hefen oder Pflan- zenzellen vorzugsweise Pflanzen oder Teile davon. Pilze, Hefen oder Pflanzen werden vorzugsweise verwendet, besonders bevorzugt Pflanzen, ganz besonders bevorzugt Pflanzen, wie Ölfrüchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Raps, Nachtkerze, Hanf, Diestel, Erdnuss, Canola, Lein, Soja, Safflor, Sonnenblume, Borretsch, oder Rlanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Reffer, Tagetes, Solanaceen-Rlanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölplame, Kokosnuss) sowie ausdauernde Gräser und Futterfeldfrüchte. Besonders bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Soja, Erdnuß, Raps, Canola, Lein, Hanf, Nachtkerze, Sonnenblume, Safflor, Bäume , (Ölpalme, Kokosnuß). Ein weiterer erfindungsgemäßer Gegenstand sind wie oben beschrieben isolierte Nukleinsauresequenzen, die für Polypeptide mit Acyl-CoA:Lysophospholipid- Acyltraηsferaseaktivität codieren, wobei die durch die Nukleinsauresequenzen codierten Acyl-CoA:Lysophosphoiipid-Acyltransferasen spezifisch Cι6-, C18-, C20- oder C∑∑- Fettsäuren mit mindestens einer Doppelbindungen im Fettsäuremolekül umsetzen. Vorteilhafte isolierte Nukleinsauresequenzen sind Sequenzen ausgewählt aus der Gruppe: d) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Sequenz, e) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID
NO: 7 enthaltenden codierenden Sequenz ableiten lassen f) Derivate der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 dargestellten Amino- säuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 aufweisen und eine Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität aufweisen.
Die oben genannte erfindungsgemäßen Nukleinsäuren stammen von Organismen, wie Tieren, Ciliaten, Pilzen, Pflanzen wie Algen oder Dinoflagellaten, die PUFAs synthetisieren können.
Der Begriff "Nukleinsäure(molekül)", wie hier verwendet, umfasst in einer vorteilhaften Ausführungsform zudem die am 3'- und am 5'-Ende des kodierenden Genbereichs gelegene untranslatierte Sequenz: mindestens 500, bevorzugt 200, besonders bevor- zugt 100 Nukleotide der Sequenz stromaufwärts des 5'-Endes des kodierenden Bereichs und mindestens 100, bevorzugt 50, besonders bevorzugt 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des kodierenden Genbereichs. Ein "isoliertes" Nuk- leinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsaure vorliegen. Eine "isolierte" Nukleinsaure hat vorzugs- - - weise keine Sequenzen, welche die Nukleinsaure in der genomischen DNA des Organismus, aus dem die Nukleinsaure stammt, natürlicherweise flankieren (z.B. Sequenzen, die sich an den 5'- und 3'-Enden der Nukleinsaure befinden). Bei verschiedenen Ausführungsformen kann das isolierte Acyl-CoA:Lysophospholipid- Acyltransferasemolekül zum Beispiel weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb an Nukleotidsequenzen enthalten, die natürlicherweise das Nukieinsäu- remolekül in der genomischen DNA der Zelle, aus der die Nukleinsaure stammt flankieren.
,., Die im„Verfahren verwendeten Nukleinsäuremoleküle, z.B. ein Nukleinsäuremolekül *' mit einer Nukleotidsequenz der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 oder eines Teils davon, kann unter Verwendung molekularbiologischer • Standardtechniken und der hier bereitgestellten Sequenzinformation isoliert werden. Auch kann mithilfe von Vergleichsalgorithmen beispielsweise eine homologe Sequenz oder homologe, konservierte Sequenzbereiche auf DNA oder Aminosäureebene identi- fiziert werden. Diese können als Hybridisierungssonde sowie Standard-
Hybridisierungstechniken (wie z.B. beschrieben in Sambrook et al., Molecular Cloning: A Laboratory Manual.2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) zur Isolierung weiterer im Verfahren nützlicher* Nukleinsauresequenzen verwendet werden. Überdies lässt sich ein Nuklein- Säuremolekül, umfassend eine vollständige Sequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQilD NO: 5 oder SEQ ID NO: 7 oder einen Teil davon, durch Polymeraseketten- reaktion isolieren, wobei Oligonukleotidprimer, die auf der Basis dieser Sequenz oder von Teilen davon, verwendet werden (z.B. kann ein Nukleinsäuremolekül, umfassend die vollständigen Sequenz oder einen Teil davon, durch Polymerasekettenreaktion unter Verwendung von Oligonukleotidprimern isoliert werden, die auf der Basis dieser gleichen Sequenz erstellt worden sind). Zum Beispiel lässt sich mRNA aus Zellen isolieren (z.B. durch das Guanidiniumthiocyanat-Extraktionsverfahren von Chirgwin et al. (1979) Biochemistry 18:5294-5299) und cDNA mittels Reverser Transkriptase (z.B. Moloney-MLV-Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Transkriptase, erhältlich von Seikagaku America, Inc., St. Petersburg, FL) herstellen. Synthetische Oligonukleotidprimer zur Amplifizierung mittels Polymerasekettenreaktion lassen sich auf der Basis einer der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 gezeigten Sequenzen oder mithilfe der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 dargestellten Aminosäurese- quenzen erstellen. Eine erfindungsgemäße Nukleinsaure kann unter Verwendung von cDNA oder alternativ von genomischer DNA als Matrize und geeigneten Oligonukleotidprimern gemäß Standard-PCR-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsaure kann in einen geeigneten Vektor kloniert werden und mittels DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die einer Desatura- se-Nukleotidsequenz entsprechen, können durch Standard-Syntheseverfahren, beispielsweise mit einem automatischen DNA-Synthesegerät, hergestellt werden.
Homologe der verwendeten Acyl-CoA:Lysophospholipid-Acyltransferase-Nukleinsäure- sequenzen mit der Sequenz SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID *._ NO: 7 bedeutet beispielsweise allelische Varianten mit mindestens etwa 40 bis 60 %, vorzugsweise mindestens etwa 60 bis 70 %, stärker bevorzugt mindestens etwa 70 bis 80 %, 80 bis 90 % oder 90 bis 95 % und noch stärker bevorzugt mindestens etwa 95 %, 96 %, 97 %, 98 %, 99 % oder mehr Homologie zu einer in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 gezeigten Nukleotidsequenzen oder ihren Homologen, Derivaten oder Analoga oder Teilen davon. Weiterhin sind isolierte Nuk- leinsäuremoleküle einer Nukleotidsequenz, die an eine der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 gezeigten Nukleotidsequenzen oder einen Teil davon hybridisieren, z.B. unter stringenten Bedingungen hybridisiert. Allelische >, Varianten umfassen insbesondere funktioneile Varianten, die sich durch Deletion, In- sertion oder Substitution von Nukleotiden aus/in der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Sequenz erhalten lassen, wobei aber die Absicht ist, dass die Enzymaktivität der davon herrührenden synthetisierten Proteine für die Insertion eines oder mehrerer Gene vorteilhafterweise beibehalten wird. Pro- teine, die noch die enzymatische Aktivität der Acyl-CoA:Lysophospholipid-
Acyltransferase besitzen, das heißt deren Aktivität im wesentlichen nicht reduziert ist, bedeutet Proteine mit mindestens 10 %, vorzugsweise 20 %, besonders bevorzugt 30 %, ganz besonders bevorzugt 40 % der ursprünglichen Enzymaktivität, verglichen mit dem durch SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 ko- dierten Protein.
Homologen der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 bedeuten beispielsweise auch bakterielle, Pilz- und Pflanzenhomologen, verkürzte Sequenzen, einzelsträngige DNA oder RNA der kodierenden und nicht-kodierenden DNA- Sequenz. Homologen der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 bedeutet auch Derivate, wie beispielsweise Promotorvarianten. Die Promotoren stromaufwärts der angegebenen Nukleotidsequenzen können durch einen oder mehrere Nukleotidaustausche, durch lnsertion(en) und/oder Deletion(en) modifiziert werden, ohne dass jedoch die Funktionalität oder Aktivität der Promotoren gestört wird. Es ist weiterhin möglich, dass die Aktivität der Promotoren durch Modifikation ihrer Sequenz erhöht ist oder dass sie vollständig durch aktivere Promotoren, sogar aus hete- rologen Organismen, ersetzt werden.
Die vorgenannten Nukleinsäuren und Proteinmoleküle mit Acyl-CoA:Lysophospholipid- Acyltransferaseaktivität, die am Stoffwechsel von Lipiden und Fettsäuren, PUFA- Cofaktoren und Enzymen oder am Transport lipophiler Verbindungen über Membranen beteiligt sind, werden im erfindungsgemäßen Verfahren zur Modulation der Produktion von PUFAs in transgenen Organismen vorteilhaft in Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Sojabohne, Erdnuss, Baumwolle, Linum Arten wie Öl- oder Faserlein, Brassicä-Arten, wie Raps, Canola und Rübsen, Pfeffer, Sonnen- blume, Borretsch, Nachtkerze und Tagetes, Sölanacaen-Rlanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Maniok, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölpalme, Kokosnuss) und ausdauernden Grä- ^ sern und Futterfeldfrüchten, entweder direkt (z.B. wenn die Überexpression oder Optimierung eines Fettsäurebiosynthese-Proteins einen direkten Einfluss auf die Ausbeute, Produktion und/oder Effizienz der Produktion der Fettsäure aus modifizierten Organismen hat) verwendet und/oder können eine indirekt Auswirkung haben, die dennoch zu einer Steigerung der Ausbeute, Produktion und/oder Effizienz der Produktion der PU- FAs oder einer Abnahme unerwünschter Verbindungen führt (z.B. wenn die Modulation des Stoffwechsels von Lipiden und Fettsäuren, Cofaktoren und Enzymen zu Veränderungen der Ausbeute, Produktion und/oder Effizienz der Produktion oder der Zusammensetzung der gewünschten Verbindungen innerhalb der Zellen führt, was wiederum >. die Produktion einer oder mehrerer Fettsäuren beeinflussen kann).
Die Kombination verschiedener Vorläufermoleküle und Biosyntheseenzyme führt zur Herstellung verschiedener Fettsäuremoleküle, was eine entscheidende Auswirkung auf die Zusammensetzung der Lipide hat. Da mehrfach ungesättigte Fettsäuren (= PUFAs) nicht nur einfach in Triacylglycerin sondern auch in Membranlipide eingebaut werden. Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäuren und ihre Bindung an sn-Glycerin-3-Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Acetoacetyl- ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydratisierungs- reaktionen umgewandelt wird; so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F.C. Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D.C., S. 612-636 und darin enthaltene Literaturstellen; Lengeier et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York, und die enthaltene Literaturstellen, sowie Magnuson, K., et al. (1993) Microbiological Reviews 57:522-542 und die enthaltenen Literaturstellen). Die so hergestellten an Phospholipide gebundenen Fettsäuren müssen anschließend wieder für die weitere Elongationen aus den Phospholipiden in den FettsäureCoA-Ester-Pool überführt werden. Dies ermöglichen die erfindungsgemäßen Acyl-CoA:Lysophospholipid- Acyltransferasen. Weiterhin können diese Enzyme die elongierten Fettsäuren wieder von den CoA-Estern auf die Phospholipide übertragen. Diese Reaktionsabfolge kann gegebenenfalls mehrfach durchlaufen werden (siehe Figur 10).
Vorläufer für die PUFA-Biosynthese sind beispielsweise Ölsäure, Linol- und Linolensäure. Diese Cι8-Kohlenstoff-Fettsäuren müssen auf C20 und C∑∑ verlängert werden, damit Fettsäuren vom Eicosa- und Docosa-Kettentyp erhalten werden. Mithilfe der im Verfahren verwendeten Acyl-CoA:Lysophospholipid-Acyltransferasen, vorteilhaft in Kombination mit Desaturasen wie der Δ-4-, Δ-5-, Δ-6- und Δ-8-Desaturasen und/oder „_„ der Δ-5-, Δ-6-, Δ-9-Elongase können Arachidonsäure, Eicosapentaensäure, Docosa- pentaensäure oder Docosahexaensäure sowie verschiedene andere langkettige PU- FAs erhalten, extrahiert und für verschiedene Zwecke bei Nahrungsmittel-, Futter-, Kosmetik- oder pharmazeutischen Anwendungen verwendet werden. Mit den genannten Enzymen können vorzugsweise Cι8-, C20-, und/oder C^-Fettsäuren mit mindestens zwei vorteilhaft mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül, vorzugsweise zu C20-, und/oder C22-Fettsäuren mit vorteilhaft drei, vier oder fünf Doppelbindungen im Fettsäuremolekül hergestellt werden. Die Desaturierung kann .vor oder nach Elongation der entsprechenden Fettsäure erfolgen. Daher führen die *,>. Produkte der Desaturaseaktivitäten und der möglichen weiteren Desaturierung und Elongation zu bevorzugten PUFAs mit höherem Desaturierungsgrad, einschließlich einer weiteren Elongation von C20 zu C22-Fettsäuren,zu Fettsäuren wie γ-ünolensäure, DihomO'Y-linolensäure, Arachidonsäure, Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Substrate Substrat der Acyl-CoA: Lysophospholipid- Acyltransferasen im erfindungsgemäßen Verfahren sind Cι6-, C18-, C20- oder C22- Fettsäuren wie zum Beispiel Palmitinsäure, Palmitoleinsäure, Linolsäure, Y- Linolensäure, α-Linolensäure, Dihomo-γ-linolensäure, Eicosatetraensäure oder Stearidonsäure. Bevorzugte Substrate sind Linolsäure, γ-Linolensäure und/oder α- Linolensäure, Dihomo-γ-linolensäure bzw. Arachidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Die C18-, C20- oder Cas-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure fallen im erfindungsgemäßen Verfahren in Form der freien Fettsäure oder in Form ihrer Ester beispielsweise in Form ihrer Glyceride an.
Unter dem Begriff "Glycerid" wird ein mit ein, zwei oder drei Carbonsäureresten ver- estertes Glycerin verstanden (Mono-, Di- oder Triglycerid). Unter "Glycerid" wird auch ein Gemisch an verschiedenen Glyceriden verstanden. Das Glycerid oder das Gylce- ridgemisch kann weitere Zusätze, z.B. freie Fettsäuren, Antioxidantien, Proteine, Kohlenhydrate, Vitamine und/oder andere Substanzen enthalten.
Unter einem "Glycerid" im Sinne des erfindungsgemäßen Verfahrens werden ferner vom Glycerin abgeleitete Derivate verstanden. Dazu zählen neben den oben beschrie- benen Fettsäureglyceriden auch Glycerophospholipide und Glyceroglycolipide. Bevorzugt seien hier die Glycerophospholipide wie Lecithin (Phosphatidylcholin), Cardiolipin, Phosphatidylglycerin, Phosphatidylserin und Alkylacylglycerophospholipide beispielhaft genannt.
Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transpor- tiert und in das Triacylglycerin-Speicherlipid eingebaut werden. Ein weiterer wichtiger Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyltransferase (siehe Frentzen, 1998, Lipid, 100(4-5):161-166).
Veröffentlichungen über die Pflanzen-Fettsäurebiosynthese, Desaturierung, den ü- pidstoffwechsel und Membrantransport von fetthaltigen Verbindungen, die Betaoxidati- on, Fettsäuremodifikation und Cofaktoren, Triacylglycerin-Speicherung und -Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln: Kiηney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19:149-166; Ohlrogge und Browse, 1995, Plant Cell 7:957-970; Shanklin und Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Voelker, 1996, Genetic Engeneering, Hrsgb.: JK Setlow, 18:111-13; Gerhardt, 1992, Prag. Lipid R. 31:397-417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res. 34:267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13(1)1-16. ,*.'. Die im Verfahren hergestellten PUFAs, umfassen eine Gruppe von Molekülen, die höhere Tiere nicht mehr synthetisieren können und somit aufnehmen müssen oder die - höhere Tiere nicht mehr ausreichend selbst herstellen können und somit zusätzlich aufnehmen müssen, obwohl sie leicht von anderen Organismen, wie Bakterien, synthetisiert werden, beispielsweise können Katzen Arachidonsäure nicht mehr synthetisie- ren.
Der Begriff " Acyl-CoA:Lysophospholipid-Acyltransferasen " im Sinne der Erfindung umfasst Proteine, die am Transfer der an Phospholipide gebundenen Fettsäuren in den CoA-Ester-Pool und vice versa teilnehmen, sowie ihre Homologen, Derivaten oder A- naloga. ,Unter Phosphoiipiden im Sinne der Erfindung sind zu verstehen Phosphatidyl- cholin, Phosphatidylethanolamin, Phosphatidylserin, Phosphatidylglycerin, und/oder Phosphatidylinositol vorteilhafterweise Phosphatidylcholin. Die Begriffe Acyl-CoA: Lyso- phospholipid-Acyltransferase-Nukleinsäuresequenz(en) umfassen Nukleinsauresequenzen, die eine Acyl-CoA:Lysophospholipid-Acyltransferase kodieren und bei denen ein Teil eine kodierende Region und ebenfalls entsprechende 5'- und 3'-untranslatierte Sequenzbereiche sein können. Die Begriffe Produktion oder Produktivität sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermehtationsproduktes (Verbindungen der Formel I), das in einer bestimmten Zeitspanne und einem bestimmten Fermentationsvolumen gebildet wird (z.B. kg Produkt pro Stunde pro Liter). Der Begriff Effizienz der Produktion umfasst die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (z.B. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff Ausbeute oder Produkt/Kohlenstoff-Ausbeute ist im Fachgebiet bekannt und umfasst die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d.h. die Feinchemikalie). Dies wird gewöhnlich beispielsweise ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Erhöhen der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe Biosynthese oder Biosyntheseweg sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle aus Zwischenverbindungen, beispielsweise in einem Mehrschritt- und stark regulierten Pro- zess. Die Begriffe Abbau oder Abbauweg sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Mo- ι- : leküle) beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Der Begriff Stoffwechsel ist im Fachgebiet bekannt und umfasst die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden. Der Stoffwechsel einer bestimmten Verbindung (z.B." der Stoffwechsel einer Fettsäure) umfasst dann die Ge- samtheit der Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle, die diese Verbindung betreffen.
. Bei einer weiteren Ausführungsform kodieren Derivate des erfindungsgemäßen Nuk- ( )fi leinsäuremoleküls wieder gegeben in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 Proteine mit mindestens 40 %, vorteilhaft etwa 50 bis 60 %, vorzugsweise mindestens etwa 60 bis 70 % und stärker bevorzugt mindestens etwa 70 bis • 80 %, 80 bis 90 %, 90 bis 95 % und am stärksten bevorzugt mindestens etwa 96 %, 97 %, 98 %, 99 % oder mehr Homologie (= Identität) zu einer vollständigen Aminosäuresequenz der SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math.2; 482-489 (1981)], die im GCG Software- Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm BestFit über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 8, Length Weight: 2.
Die Erfindung umfasst zudem Nukleinsäuremoleküle, die sich von einer der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 gezeigten Nukleotidsequenzen (und Teilen davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit die gleiche Acyl-CoA:Lysophospholipid-Acyltransferase kodieren wie diejenige, die von den in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 gezeigten Nukleotidsequenzen kodiert wird. Zusätzlich zu den in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 gezeigten Acyl-CoA:Lysophospholipid-Acyltransferase-Nukleotidsequenzen erkennt der Fachmann, dass DNA-Sequenzpolymorphismen, die zu Änderungen in den Aminosäuresequenzen der Acyl-CoA:Lysophospholipid-Acyltransferasen führen, innerhalb einer Population existieren können. Diese genetischen Polymorphismen im Acyl- CoA:Lysophospholipid-Acyltransferase-Gen können zwischen Individuen innerhalb einer Population aufgrund von natürlicher Variation existieren. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz des Acyl-CoA:Lysophospholipid-Acyltransferase-Gens. Sämtliche und alle dieser Nukieo- tidvariationen und daraus resultierende Aminosäurepolymorphismen in der Acyl- CoA:Lysophospholipid-Acyltransferase, die das Ergebnis natürlicher Variation sind und die funktioneile Aktivität von Acyl-CoA:Lysophospholipid-Acyltransferasen nicht verändern, sollen im Umfang der Erfindung enthalten sein.
Für das erfindungsgemäße Verfahren vorteilhafte Nukleinsäuremoleküle können auf der Grundlage ihrer Homologie zu den hier offenbarten Acyl- CoA:LysophosphoIipid-Acyltransferase-Nukleinsäuren unter Verwendung der Sequenzen oder eines Teils davon als Hybridisierungssonde gemäß Standard- Hybridisierungstechniken unter stringenten Hybridisierungsbedingungen isoliert werden. Dabei können beispielsweise isolierte Nukleinsäuremoleküle verwendet werden, die mindestens 15 Nukleotide lang sind und unter stringenten Bedingungen mit dem Nukleinsäuremolekülen, die eine Nukleotidsequenz der SEQ ID NO: 1, SEQ ID y. NO: 3, -SEQ ID NO: 5 oder SEQ ID NO: 7 umfassen, hybridisieren. Es können auch Nukleinsäuren mindestens 25, 50, 100, 250 oder mehr Nukleotide verwendet werden. Der Begriff "hybridisiert unter stringenten Bedingungen", wie hier verwendet, soll Hybri- disierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60 % homolog zueinander sind, gewöhnlich aneinander hybridisiert bleiben. Die Bedingungen sind vorzugsweise derart, dass Sequenzen, die mindestens etwa 65 %, stärker bevorzugt mindestens etwa 70 % und noch stärker bevorzugt mindestens etwa 75 % oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und lassen sich in Current Protocols in Molecular Biology, John Wiley & Sons, N. Y. (1989); 6.3.1-6.3.6., finden. Ein bevorzugtes, nicht einschränkendes Beispiel für stringente Hybridisierungsbedingungen sind Hybridisierungen in 6 x Natriumchlo- rid/Natriumcitrat (sodium chloride/sodiumcitrate = SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 x SSC, 0,1 % SDS bei 50 bis 65°C. Dem Fachmann ist bekannt, dass diese Hybridisierungsbedingungen sich je nach dem Typ der Nukleinsaure und, wenn beispielsweise organische Lösungsmittel vorliegen, hinsichtlich der Temperatur und der Konzentration des Puffers unterscheiden. Die Temperatur unterscheidet sich beispielsweise unter "Standard-Hybridisierungsbedingungen" je nach dem Typ der Nukleinsaure zwischen 42°C und 58°C in wässrigem Puffer mit einer Konzentration von 0,1 bis 5 x SSC (pH 7,2). Falls organisches Lösungsmittel im obengenannten Puffer vorliegt, zum Beispiel 50 % Formamid, ist die Temperatur unter Standardbedingungen etwa 42°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:DNA-Hybride zum Beispiel 0,1 x SSC und 20°C bis 45°C, vorzugsweise zwischen 3Ö°C und 45°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:RNA-Hybride zum Beispiel 0,1 x SSC und 30°C bis 55°C, vorzugsweise zwischen 45°C und 55°C. Die vorstehend genannten Hybridisierungstemperaturen sind beispielsweise für eine Nukleinsaure mit etwa 100 bp (= Basenpaare) Länge und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid bestimmt. Der Fachmann weiß, wie die erforderlichen Hybridisierungsbedingungen anhand von Lehrbüchern, wie dem vorstehend erwähnten oder aus den folgenden Lehrbüchern Sambrook et al., "Molecu- lar Cloning", Cold Spring Harbor Laboratory, 1989; Harnes und Higgins (Hrsgb.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (Hrsgb.) 1991, "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University Press, Oxford, bestimmt werden können.
Zur Bestimmung der prozentualen Homologie (= Identität) von zwei Aminosäurese- <- quenzen (z.B. einer der Sequenzen der SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 odeΥ SEQ ID NO: 8) oder von zwei Nukleinsäuren (z.B. SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7) werden die Sequenzen zum Zweck des optimalen Vergleichs untereinander geschrieben (z.B. können Lücken in die Sequenz eines Proteins oder einer Nukleinsaure eingefügt werden, um ein optimales Alignment mit dem anderen Protein oder der anderen Nukleinsaure zu erzeugen). Die Aminosäurereste oder Nukleotide an den entsprechenden Aminosäurepositionen oder Nukleotidpositio- nen werden dann verglichen. Wenn eine Position in einer Sequenz durch den gleichen Aminosäurerest oder das gleiche Nukleotid wie die entsprechende Stelle in der ande- 5.,,,', ren Sequenz belegt wird, dann sind die Moleküle an dieser Position homolog (d.h. A- minosäure- oder Nukleinsäure-'Ηomologie", wie hier verwendet, entspricht Aminosäure- oder Nukleinsäure-"ldentitäf ). Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl an identischen Positionen, die den Sequenzen gemeinsam sind (d.h. % Homologie = Anzahl der identischen Positio- 0 nen/Gesamtanzahl der Positionen x 100). Die Begriffe Homologie und Identität sind damit als Synonym anzusehen. Die verwendeten Programme bzw. Algorithmen sind oben beschrieben.
Ein isoliertes Nukleinsäuremolekül, das eine Acyl-CoA: Lysophospholipid-Acyl- transferase kodiert, die zu einer Proteinsequenz der SEQ ID NO: 2, SEQ ID NO: 4, 5 SEQ I NO: 6 oder SEQ ID NO: 8 homolog ist, kann durch Einbringen einer oder mehrerer Nükleotidsubstitutionen, -additionen oder -deletionen in eine Nukleotidsequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 erzeugt werden, so dass eine oder mehrere Aminosäuresubstitutionen, -additionen oder -deletionen in das kodierte Protein eingebrächt werden. Mutationen können in eine der Sequenzen 0 der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 durch Standardtechniken, wie stellenspezifische Mutagenese und PCR-vermittelte Mutagenese, eingebracht werden. Vorzugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nicht-essentiellen Aminosäureresten hergestellt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest gegen 5 einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z.B. Lysin, Arginin, Histidin), sauren Seitenketten (z.B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z.B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin, 0 Cystein), unpolaren Seitenketten, (z.B. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryptophan), beta-verzweigten Seitenketten (z.B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z.B. Tyrosin, Phenylalanin, Tryptophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einer Acyl- CoA:Lysophospholipid-Acyltransferase wird somit vorzugsweise durch einen anderen 5 Aminosäurerest aus der gleichen Seitenkettenfamilie ausgetauscht. Alternativ können bei einer anderen Ausführungsform die Mutationen zufallsgemäß über die gesamte oder einen Teil der Acyl-CoA:Lysophospholipid-Acyltransferase-kodierenden Sequenz eingebracht werden, z.B. durch Sättigungsmutagenese, und die resultierenden Mutanten können nach der hier beschriebenen Acyl-CoA:Lysophospholipid-Acyltransferase- CT Aktivität durchmustert werden, um Mutanten zu identifizieren, die die Acyl-CoA: Lyso- phόspholipid-Acyltransferase-Aktivität beibehalten haben. Nach der Mutagenese einer der Sequenzen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 kann das kodierte Protein rekombinant exprimiert werden, und die Aktivität des Proteins kann z.B. unter Verwendung der hier beschriebenen Tests bestimmt werden. Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als beschränkend aufgefasst werden sollten. Der Inhalt sämtlicher in dieser Patentanmeldung zitierten Literaturstellen, Patentanmeldungen, Patente und veröffent- lichten Patentanmeldungen ist hier durch Bezugnahme aufgenommen. Beispiele
. Beispiel 1 : Allgemeine Verfahren a) Allgemeine Klonierungsverfahren:
Klonierungsverfahren, wie beispielsweise Restriktionsspaltungen, Agarosegele- lekt ophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitro- cellulose- und Nylonmembranen, Verbindung von DNA-Fragmenten, Transformation von Escherichia coli- und Hefe-Zellen, Anzucht von Bakterien und Sequenzanalyse rekombinanter DNA, wurden durchgeführt wie beschrieben in Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) oder Kaiser, Michaelis und Mitchell (1994) "Methods in Yeast Genetics" (Cold Spring Harbor Laboratory Press: ISBN 0-87969-451 -3). b) Chemikalien
Die verwendeten Chemikalien wurden, wenn im Text nicht anders angegeben, in p. A.Qualität von den Firmen Fluka (Neu-Ulm), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg) und Sigma (Deisenhofen) bezogen. Lösungen wurden unter Verwendung von reinem pyrogenfreiem Wasser, im nachstehenden Text als H2O bezeichnet, aus einer Milli-Q-Wassersystem-Wasserreinigungsanlage (Millipore, Eschborn) hergestellt. Restriktionsendonukleasen, DNA-modifizierende Enzyme und molekularbiologische Kits wurden bezogen von den Firmen AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Boehringer (Mannheim), Genomed (Bad Oeynhausen), New England Biolabs (Schwalbach/Taunus), Novagen (Madison, Wisconsin, USA), Perkin- Elmer (Weiterstadt), Pharmacia (Freiburg), Qiagen (Hilden) und Stratagene (Amsterdam, Niederlande). Wenn nicht anders angegeben, wurden sie nach den Anweisungen des Herstellers verwendet. c) Klonierung und Expression von Desaturasen und Elongasen Der Escherichia coli-Stamm XL1 Blue MRF kan (Stratagene) wurde zur Subklonierung der Δ-6-Desaturase aus Physcomitrella patens verwendet. Für die funktioneile Expression dieses Gens wurde der Saccharomyces cerevisiae-Stamm INVSc 1 (Invitrogen Co.) verwendet. E. coli wurde in Luria-Bertani-Brühe (LB, Duchefa, Haarlem, Nieder- ,,. lande) bei 37°C kultiviert. Wenn nötig, wurde Ampicillin (100 mg/Liter) zugegeben, und 1 ,5, % Agar (Gew./Vol.) wurde für feste LB-Medien hinzugefügt. S. cerevisiae wurde bei 30°C entweder in YPG-Medium oder in komplettem Minimalmedium ohne Uracil (CMdum; siehe in: Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K., Albright, L.B., Coen, D.M., und Varki, A. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York) mit entweder 2 % (Gew/Vol.) Raffinose oder Glucose kultiviert. Für feste Medien wurden 2 % (GewJVol.) Bacto™-Agar (Difco) hinzugefügt. Die zur Klonierung und Expression verwendeten . Plasmide sind pUC18 (Pharmacia) und pYES2 (Invitrogen Co.).
v. d) Klonierung und Expression PUFA-spezifischer Desaturasen und Elongaen
Für die Expression in Rlanzen wurden cDNA Klone aus SEQ ID NO: 9, 11 oder 13 so modifiziert, dass lediglich die Codierregion mittels Polymerase Kettenreaktion unter Zuhilfenahme zweier Oligonukleotide amplifiziert werden. Dabei wurde darauf geachtet, dass eine Konsensusequenz vor dem Startcodon zur effizienten Translation ein- gehalten wurde. Entweder wurde hierzu die Basenfolge ATA oder AAA gewählt und vor das ATG in die Sequenz eingefügt [Kozak, M. (1986) Point mutations define a sequen- ce flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44, 283-2929]. Vor diesem Konsensustriplett wurde zusätzlich eine Restriktions- schnittsjelle eingeführt, die kompatibel sein muss zur Schnittstelle des Zielvektors, in den das Fragment kloniert werden soll und mit dessen Hilfe die Genexpression in Mikroorganismen oder Rlanzen erfolgen soll.
Die PCR-Reaktion wurde mit Plasmid-DNA als Matrize in einem Thermocycler (Biometra) mit der Pf u-DNA-(Stratagene) Polymerase und dem folgenden Temperaturprogramm durchgeführt: 3 min bei 96°C, gefolgt von 30 Zyklen mit 30 s bei 96°C, 30 s bei 55°C und 2 min bei 72°C, 1 Zyklus mit 10 min bei 72°C und Stop bei 4°C. Die
Anlagerungstemperatur wurde je nach gewählten Oligonukleotiden variiert. Pro Kilobasenpaare DNA ist von einer Synthesezeit von etwa einer Minute auszugehen. Weitere Parameter, die Einfluss auf die PCR haben wie z.B. Mg-Ionen, Salz, DNA Polymerase etc., sind dem Fachmann auf dem Gebiet geläufig und können nach Bedarf variiert werden.
Die korrekte Größe des amplifizierten DNA-Fragments wurde mittels Agarose-TBE- Gelelektrophorese bestätigt. Die amplifizierte DNA wurde aus dem Gel mit dem QIA- quick-Gelextraktionskit (QIAGEN) extrahiert und in die Smal-Restriktionsstelle des dephosphorylierten Vektors pUC18 unter Verwendung des Sure Clone Ligations Kit (Pharmacia) ligiert, wobei die pUC-Derivate erhalten wurden. Nach der Transformation von E. coli XL1 Blue MRF kan wurde eine DNA-Minipräparation [Riggs, M.G., & McLachlan, A. (1986) A simplified screening procedure for large numbers of plasmid mini-preparation. BioTechniques 4, 310-313] an ampicillinresistenten Transformanden durchgeführt, und positive Klone mittels BamHI-Restriktionsanalyse identifiziert. Die Sequenz des Monierten PCR-Produktes wurde mittels Resequenzierung unter Verwendung des ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Weiterstadt) bestätigt. e) Transformation von Agrobacterium
Die Agrobacterium-vermittelte Pflanzentransformation wurde, wenn nicht anders beschrieben, wie von Deblaere et al. (1984, Nucl. Acids Res. 13, 4777-4788) mit Hilfe , , , eines Agrobacterium tumefaciens-Stamms durchgeführt. f) Pflanzentransformation
Die Agrobacterium-vermittelte Pflanzentransformation wurde, wenn nicht anders beschrieben, unter Verwendung von Standard-Transformations- und Regenerationstechniken durchgeführt (Gelvin, Stanton B., Schilperoort, Robert A., Plant Molecular Biology Manual, 2. Aufl., Dordrecht: Kluwer Academic Publ., 1995, in Sect., Ringbuc Zentrale Signatur: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R., Thompson, John E., Methods in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, 1993, 360 S., ISBN 0-8493-5164-2).
Nach diesen kann beispielsweise Raps mittels Kotyledonen- oder Hypokotyltransfor- mation iransformiert werden (Moloney et al., Plant Cell 8 (1989) 238-242; De Block et al., Plant Physiol. 91 (1989) 694-701 ). Die Verwendung von Antibiotika für die Agrobacterium- und PflanzenseleMion hängt von dem für die Transformation verwendeten binären Vektor und Agrobacterium-Stamm ab. Die Rapsselektion wird dabei gewöhnlich unter Verwendung von Kanamycin als selektierbarem Rlanzenmarker durchgeführt. Die Transformation von Soja kann unter Verwendung von beispielsweise einer in EP-A-00424047 (Pioneer Hi-Bred International) oder in EP-A-00397687, US 5,376,543, US 5,169,770 (University Toledo) beschriebenen Technik durchgeführt werden.
Die Rlanzentransformation unter Verwendung von Teilchenbeschuss, Polyethylen- glycol-vermittelter DNA-Aufnahme oder über die Sili∑iumcarbonatfaser-Technik ist beispielsweise beschrieben von Freeling und Walbot "The maize handbook" (1993) ISBN 3-540-97826-7, Springer Verlag New York).
Der Agrobacterium-vermittelte Gentransfer in Lein (Linum usitatissimum) wurde, wenn nicht anders beschrieben, wie bei Mlynarova et al. [(1994) Plant Cell Report 13:282- 285] beschriebenen Technik durchführt. g) Plasmide für die Pflanzentransformation
Zur Pflanzentransformation wurden binäre Vektoren auf Basis der Vektoren pBinAR (Höfgen und Willmitzer, Plant Science 66 (1990) 221-230) oder pGPTV (Becker et al ^ 1992, Plant Mol. Biol. 20:1195-1197) verwendet. Die Konstruktion der binären Vekto- ren, die die zu exprimierenden Nukleinsäuren enthalten, erfolgt durch Ligation der cDNA in Sense-Orientierung in die T-DNA erfolgen. 5' der cDNA aktiviert ein Pflanzen- promotor die Transkription der cDNA. Eine Polyadenylierungssequenz befindet sich 3' von der cDNA. Die binären Vektoren können unterschiedliche Markergene tragen wie beispielsweise das Acetolactat Synthasegens (AHAS oder ALS) [Ott et al., J. Mol. Biol. 1996, 263:359-360], das eine Resistenz gegen die Imidazolinone vermittelt oder das , nptll-Markergen, das für eine Kanamycin-Resistenz vermittelt durch Neomy- ,μ cinphosphotransferase codiert.
Die gewebespezifische Expression der Nukleinsäuren lässt sich unter Verwendung eines gewebespezifischen Promotors erzielen. Wenn nicht anders beschrieben wurde der LeB4- oder der USP-Promotor oder der Phaseolin-Promotor 5' der cDNA einkloniert wird. Als Terminatoren wurde der NOS-Ter inator und der OCS-Terminator ver- wendet (siehe Figur 8). Figur 8 zeigt eine Vektorkarte des zur Expression verwendeten Vektor pSUN3CeLPLAT.
Auch jedes andere samenspezifische Promotorelement wie z.B. der Napin- oder Arce- lin Promotor Goossens et al. 1999, Plant Phys. 120(4)1095-1 03 und Gerhardt et al. 2000, Bjochimica et Biophysica Acta 1490(1 -2):87-98) kann verwendet werden. t Zur konstitutiven Expression in der ganzen Rlanzen lässt sich der CaMV-35S-
Promotor oder ein v-ATPase C1 Promotor verwenden.
Die im Verfahren verwendeten Nukleinsäuren, die für die Acyl-CoA:Lysophospholipid- Acyltransferasen; Desaturasen oder Elongasen codieren, wurden durch Konstruktion mehrerer Expressionskassetten hintereinander in einen binären Vektor kloniert, um den Stoffwechselweg in Pflanzen nachzubilden.
Innerhalb einer Expressionskassette kann das zu exprimierende Protein unter Verwendung eines Signalpeptids, beispielsweise für Piastiden, Mitochondrien oder das En- doplasmatische Retikulum, in ein zelluläres Kompartiment dirigiert werden (Kermode, Grit. Rev. Plant Sei. 15, 4 (1996) 285-423). Das Signalpeptid wird 5' im Leseraster mit der cDNA einkloniert, um die subzelluläre Lokalisierung des Fusionsprotein zu erreichen.
Beispiele für Multiexpressionskassetten wurden in DE 102 19203 offenbart und sind im folgenden nochmals wiedergegeben. i.) Promotor-Terminator-Kassetten Expressionskassetten bestehen aus wenigstens zwei funktiönellen Einheiten wie einem Promotor und einem Terminator. Zwischen Promotor und Terminator können weitere gewünschte Gensequenzen wie Targetting-Sequenzen, Codierregionen von Genen oder Teilen davon etc. eingefügt werden. Zum Aufbau der Expressionskassetten ^ wurden Promotoren und Terminatoren (USP Promotor: Baeumlein et al., Mol Gen Ge- net, 1991 , 225 (3):459-67); OCS Terminator: Gielen et al. EMBO J. 3 (1984) 835ff.) mithilfe der Polymerasekettenreaktion isoliert und mit flankierenden Sequenzen nach Wahl auf Basis von synthetischen Oligonukleotiden maßgeschneidert. Folgende Oligonukleotide können beispielsweise verwendet werden:
USP1 vorne: , - CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA -
"*' USP2 vorne: - CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA -
USP3 vόrne:
- CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA -
USP1 hinten:
- AAAACTGCAGGCGGCCGCCCACCGCGGTGGGCTGGCTATGAAGAAATT - USP2 hinten:
- CGCGGATCCGCTGGCTATGAAGAAATT -
USP3 Hinten:
- TCCCCCGGGATCGATGCCGGCAGATCTGCTGGCTATGAAGAAATT -
OCS1. vorne: - AAAACTGCAGTCTAGAAGGCCTCCTGCTTTAATGAGATAT -
OCS2 vorne:
- CGCGGATCCGATATCGGGCCCGCTAGCGTTAACCCTGCTTTAATGAGATAT -
OCS3 vorne:
- TCCCCCGGGCCATGGCCTGCTTTAATGAGATAT - OCS1 hinten:
- CCCAAGCTTGGCGCGCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA -
0CS2 hinten:
- CCCAAGCTTGGCGCGCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA -
OCS3 hinten: - CCCAAGCTTGGCGCGCCGAGCTCGTCGACGGAGAATCAGTAAATTGA -
Die Methoden sind dem Fachmann auf dem Gebiet bekannt und sind allgemein literaturbekannt.
In einem ersten Schritt wurden ein Promotor und ein Terminator über PCR amplifiziert. Dann wurde der Terminator in ein Empfängerplasmid kloniert und in einem zweiten Schritt der Promotor vor den Terminator inseriert. Dadurch wurde eine Expressionskassette in das Basis-Plasmid cloniert. Auf Basis des Plamides pUC19 wurden so die Plasmide pUT1, 2 und 3 erstellt. Die entsprechenden Konstrukte bzw. Plasmide sind in SEQ ID NO: 15, 16 bis 17 definiert. Sie enthalten den USP-Promotor und den OCS Terminator. Auf Basis dieser Plasmide wurde das Konstrukt pUT12 erstellt, indem pUT1 mittels Sall/Scal geschnit- , ten wurde und pUT2 mittels Xhol/Scal geschnitten wurde. Die die Expressionskassetten enthaltenden Fragmente wurden ligiert und in E. coli XL1 blue MRF transformiert. Es wurde nach Vereinzelung von ampicillinresistenten Kolonien DNA präpariert und per Restriktionsanalyse solche Klone identifiziert, die zwei Expressionskassetten enthalten. Die Xhol/Sall Ligation kompatibler Enden hat dabei die beiden Schnittstellen Xhol und Sall zwischen den Expressionskassetten eleminiert. Das resultierende Plasmid pUT12 wird in SEQ ID NO: 18 wiedergegeben. Anschließend wurde pUT12 wiederum mittels Sal/Scal geschnitten und pUT3 mittels Xhol/Scal geschnitten. Die die Expressionskassetten enthaltenden Fragmente wurden ligiert und in E. coli XLI blue MRF transformiert. Es wurde wieder nach Vereinzelung aus ampicillinresistenten Kolonien DNA präpariert und per RestriMionsanalyse solche Klone identifiziert, die drei Expressionskassetten enthalten. Auf diese Weise wurde ein Set von Multiexpressions- kassetten geschaffen, dass für die Insertion gewünschter DNA genutzt werden kann und in Tabelle 1 beschrieben wird und zudem noch weitere Expressionskassetten aufnehmen kann.
Diese^ enthalten folgende Elemente: Tabelle 1
Figure imgf000049_0001
Weiterhin lassen sich wie beschrieben und wie in Tabelle 2 näher spezifiziert weitere Multiexpressionskassetten mithilfe des i) USP-Promotors oder-mithilfe des ii) 700 Basenpaare 3'-Fragmentes des LeB4-Promotors oder mithilfe des iii) DC3-Promotors erzeugen μnd für samenspezifische Genexpression einsetzen.
Der DC3-Promotor ist beschrieben bei Thomas, Plant Cell 1996, 263:359-368 und besteht lediglich aus der Region -117 bis +26 weshalb er mithin einer der kleinsten bekannten samenspezifischen Promotoren darstellt. Die Expressionskassetten können mehrfach den selben Promotor enthalten oder aber über drei verschiedene Promotoren aufgebaut werden.
Vorteilhaft verwendete Polylinker- bzw. Polylinker-Terminator-Polylinker sind den Sequenzen SEQ ID NO: 23 bis 25 zu entnehmen. t
Tabelle 2: Multiple Expressionskassetten
Figure imgf000050_0001
EcoRV Schnittstelle schneidet im 700 Basenpaarfragment des LeB4 Promotors (LeB4-700) Analog lassen sich weitere Promotoren für Multigenkonstrukte erzeugen insbesondere unter Verwendung des a) 2,7 kB Fragmentes des LeB4-Promotors oder mithilfe des b) Phaseolin-Promotors oder mithilfe des c) konstitutiven v-ATPase d -Promotors.
Es kann insbesondere wünschenswert sein, weitere besonders geeignete Promotoren zum Aufbau samenspezifischer Multiexpressionskassetten wie z.B. den Napin- Promotor oder den Arcelin-5 Promotor zu verwenden.
Weitere in Rlanzen nutzbare VeMoren mit einer bzw. zwei oder drei Promotor- Terminator-Expressionkassetten sind den Sequenzen SEQ ID NO: 26 bis SEQ ID NO: 31 zu entnehmen. ii.) Erstellung von Expressionskonstrukten, die Promotor, Terminator und gewünschte Gensequenz zur PUFA Genexpression in pflanzlichen Expressionskassetten enthalten. In pUT123 wird zunächst über BstXI und Xbal die Δ-6-Elongase Pp_PSE1 in die erste Kassette inseriert. Dann wird die Δ-6-Desaturase aus Moos (Pp_des6) über Bam- Hl/Nael in die zweite Kassette inseriert und schließlich die Δ-5-Desaturase aus Phaeodactylum (Pt_des5) über Bglll/Ncol in die dritte Kassette inseriert (siehe SEQ ID NO: 19). Das Dreifachkonstrukt erhält den Namen pARA1. Unter Berücksichti- gung sequenzspezifischer Restriktionsschnittstellen können weitere Expressionskassetten gemäß Tabelle 3 mit der Bezeichnung pARA2, pARA3 und pARA4 erstellt werden.
Tabelle 3: Kombinationen von Desaturasen und Elongasen
Figure imgf000052_0001
des5 = PUFA spezifische Δ-5-Desaturase des6 = PUFA spezifische Δ-6-Desaturase PSE = PUFA spezifische Δ-6-Elongase Pt_des5 = Δ-5-Desaturase aus Phaeodactylum tricornutum
Pp_des6 oder Pt_des6 = Δ-6-Desaturase aus Physcomitrella patens bzw. Phaeodactylum tricornutum Pp = Physcomitrella patens, Pt = Phaeodactylum tricornutum Pp_PSE1 = Δ-6-Elongase aus Physcomitrella patens Pt_PSE1 = Δ-6-Elongase aus Phaeodactylum tricornutum
Ce_des5 = Δ-5-Desaturase aus Caenorhabditis elegans (Genbank Acc. Nr. AF078796) Ce_des6 = Δ-6-Desaturase aus Caenorhabditis elegans (Genbank Acc. Nr. AF031477,
Basen 11-1342) Ce_PSE1 = Δ-6-EIongase aus Caenorhabditis elegans (Genbank Acc. Nr. AF244356,
Basen 1-867)
Auch weitere Desaturasen oder Elongasegensequenzen können in Expressionskassetten beschriebener Art inseriert werden wie z.B. Genbank Acc. Nr. AF231981, NM_013402, AF206662, AF268031 , AF226273, AF110510 oder AF110509. iii.) Transfer von Expressionskassetten in VeMoren zur Transformation von Agrobak- terium tumefaciens und zur Transformation von Pflanzen
Die so erstellten KonstruMe wurden mittels Ascl in den binären Vektor pGPTV inseriert. Die multiple Klonierungssequenz wurde zu diesem Zweck um eine Ascl Schnittstelle erweitert. Zu diesem Zweck wurde der Polylinker als zwei doppelsträngige Oligo- nukleotide neu synthetisiert, wobei eine zusätzliche Ascl DNA Sequenz eingefügt wird. Das Oligonukleotid wurde mittels EcoRI und Hindill in den Vektor pGPTV inseriert. Die notwendigen Kloniertechniken sind dem Fachmann bekannt und können einfach wie in Beispiel 1 beschrieben nachgelesen werden.
Für die im folgenden beschriebenen Versuche wurden als Nukleinsauresequenzen für ^ die Δ-5-Desaturase (SEQ ID NO: 13), die Δ-6-Desaturase (SEQ ID NO: 9) und die Δ-6- Elongase (SEQ ID NO: 11), die Sequenzen aus Physcomitrella patens und Phaedacty- lum tricornutum verwendet. Die entsprechenden Aminosäuresequenzen sind den Sequenzen SEQ ID NO: 10, SEQ ID NO: 12 und SEQ ID NO: 14. Ein Vektor der alle vorgenannten Gene enthält ist in SEQ ID NO: 19 wiedergegeben. Die korrespondierenden Aminosäurensequenzen der Gene sind SEQ ID NO: 20, SEQ ID NO: 21 und SEQ ID NO: 22 zu entnehmen. Beispiel 2: Klonierung und CharaMerisierung der ceLPLATs a) Datenbanken-Suche Die Identifizierung der ceLPLATs,(= Acyl-CoA:Lysophospholipid-Acyltransferase aus Caenorhabditis elegans) erfolgte durch Sequenzvergleiche mit bekannten LPA-ATs. Die Suche wurde mit Hilfe des BLAST-Psi-Algorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403-410) auf das Nematodengenom (Caenorhabditis elegans) beschränk, da dieser Organismus LCPUFAs synthetisiert. Für den Sequenzvergleich diente als Sonde eine LPAAT Proteinsequenz aus Mus musculus (MsLPAAT Accession Nr. NP_061350). LPLAT katalysiert durch eine reversible Transferasereaktion die ATP- unabhängige Synthese von Acyl-CoAs aus Phospholipiden mit Hilfe von CoA als Co- factor (Yamashita et al., J. Biol. Che .2001, 20: 26745-26752). Durch Sequenzver- gleiche( konnten zwei putative ceLPLAT-Sequenzen identifiziert werden (Accession Nr. T06E8.1 bzw. F59F4.4). Die identifizierten Sequenzen weisen die größte Ähnlichkeit jeweils zueinander und zu MsLPAATs auf (Figur 1). Das Alignment wurde mit dem Programm Clustal erstellt. b) Klonierung der CeLPLATs
Auf der Basis der ceLPLAT-Nukleinsäuresequen∑en wurden Primerpaare synthetisiert (Tab. 1) und mittels PCR- Verfahren die zugehörigen cDNAs aus einer C. elegans- cDNA-Bank isoliert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283- 292) neben dem Startcodon trugen. Die Amplifizierung der LPLAT-cDNAs wurde jeweils mit 2 μl cDNA-Bank-Lösung als Template, 200 μM dNTPs, 2,5 U "proof-reading" p/ü-Polymerase und 50 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 58°C für eine Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten. Die Sequenz der LPLAT-cDNAs wurde durch DNA-Sequenzierung bestätigt.
Tabelle 4: Nukleotidsequenzen der PCR-Primer zur Klonierung von CeLPLATs
Figure imgf000054_0001
* f: forward, r: reverse
Beispiel 3: Analyse der Auswirkung der rekombinanten Proteine auf die Produktion des gewünschten Produktes a) Aufarbeitungsmöglichkeiten
Die Auswirkung der genetischen Modifikation in Pilzen, Algen, Ciliaten oder wie in den Beispielen weiter oben beschrieben in Hefen auf die Produktion der mehrfach ungesättigten Fettsäuren oder Pflanzen kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte RIanze unter geeigneten Bedingungen (wie den vor- stehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion der Lipide oder Fettsäuren untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs- Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemis- try and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., und Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11 , S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).
Neben den oben erwähnten Verfahren zum Nachweis von Fettsäuren in Hefen werden Pfianzenlipide aus Pflanzehmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sei. USA 96 (22)12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141- 145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chro- matography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. t.> 1992.1X, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Per- gamon Press, 1 (1952) - 16 (1977) u.d.T.: Progress in the Chemistry of Fats and Other Lipids CODEN.
So kann die Analyse von Fettsäuren oder Triacylglycerin (= TAG, Abkürzungen in Klammern angegeben) z.B. mittels Fettsäuremethylester (= FAME), Gas-Flüssigkeits- chromatographie-MassenspeMrometrie (= GC-MS) oder Dünnschichtchromatographie (TLC) erfolgen.
Der unzweideutige Nachweis für das Vorliegen von FettsäureproduMen kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Litera- turstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie- Verfahren, Lipide 33:343-353).
Das zu analysierende Pflanzenmaterial kann dazu entweder durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere an- wendbare Verfahren aufgebrochen werden. Das Material wird dann anschließend nach dem Aufbrechen zentrif ugiert. Das Sediment wird danach in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrif ugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester können anschließend in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen werden. Die Identität der erhaltenen Fettsäuremethylester lassen sich unter Verwen- düng von Standards, die aus kommerziellen Quellen erhältlich sind (d.h. Sigma), definieren.
Bei Fettsäuren, für die keine Standards verfügbar sind, kann die Identität über Derivati- sierung und anschließende GC-MS-Analyse gezeigt werden. Beispielsweise wird die Lokalisierung von Fettsäuren mit Dreifachbindung über GC-MS nach Derivatisierung mit 4,4-Dimethoxyoxazolin-Derivaten (Christie, 1998, siehe oben) gezeigt. b) Fettsäureanalyse in Pflanzen
Die Gesamt-Fettsäuren wurden aus Pflanzensamen extrahiert und mittels Gaschromatographie analysiert. Die Samen wurden mit 1 % Natriummethanolat in Methoanol aufgenommen und
20 min bei RT (ca.22 °C) inkubiert. Anschließend wurde mit NaCI Lösung gewaschen und die FAME in 0,3 ml Heptan aufgenommen. ,,> Die Proben wurden auf einer ZEBRON-ZB-Wax-Kapillarsäule (30 m, 0,32 mm, 0,25 mikro m; Phenomenex) in einem Hewlett Packard-6850-Gaschromatograph mit einem Flammenionisationsdetektor aufgetrennt. Die Ofentemperatur wurde von 70°C (1 min halten) bis 200°C mit einer Rate von 20°C/min, dann auf 250°C (5 min halten) mit einer Rate von 5°C/min und schließlich auf 260°C mit einer Rate von 5°C/min programmiert. Stickstoff wurde als Trägergas verwendet (4,5 ml/min bei 70°C). Die Fett- säuren wurden durch Vergleich mit Retentionszeiten von FAME-Standards (SIGMA) identifiziert.
Beispiel 4: Funktionelle Charakterierung der CeLPLATs in Hefe a) Heteroloαe Expression in Saccharomyces cerevisiae ι Zur Charakterisierung der Funktion der CeLPLATs aus C. elegans wurden die offenen Leserahmen der jeweilgen cDNAs stromabwärts des Galactose-induzierbaren GAL1 -
Promotors von pYes2.1Topo unter Verwendung des pYes2.1TOPO TA Expression Kit
(Invitrogen) kloniert, wobei pYes2-T06E8.1 und pYes2-F59F4.4 erhalten wurden.
Da die Expression der CeLPLATs zu einem effizienten Austausch der Acyl-Substrate führen sollte, wurde weiterhin das Doppelkonstrukt pESCLeu-PpD6-Pse1 hergestellt, das die offenen Leserahmen einer Δ6-Desaturase (PpD6) und einer Δ6-Elongase (PSE1) aus Physcomitrella patens (siehe DE 102 19203) beinhaltet. Die Nukleinsäuresequenz der Δ6-Desaturase (PpD6) und der Δ6-Elongase (Pse1) werden jeweils in SEQ ID NO: 9 und SEQ ID NO: 11 wiedergegeben. Die korrespondierenden Aminosäuresequenzen sind SEQ ID NO: 10 und SEQ ID NO: 12 zu entnehmen. Die Saccharomyces cerews/ae-Stämme C13ABYS86 (Protease-defizient) und INVSd wurde mittels eines modifizierten PEG/üthiumacetat-Protokolls gleichzeitig mit den Vektoren pYes2-T06E8.1 und pESCLeu-PpD6-Pse1 bzw. pYes2-F59F4.4 und pESC- Leu-PpD6-Pse1 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem Vektor pESCLeu-PpD6-Pse1 und dem leeren VeMor pYes2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)- Agarplatten mit 2% Glucose, aber ohne Uracil und Leucin. Nach der Selektion wurden 4 Transformanten, zwei pYes2-T06E8.1/pESCLeu-PpD6-Pse1 und zwei pYes2- F59F4.4/pESCLeu-PpD6-Pse1 und eine pESCLeu-PpD6-Pse1/ pYes2 zur weiteren funktionellen Expression ausgewählt. Die beschriebenen Experimente wurden auch im Hefestamm INVSd durchgeführt.
»~
Für die Expresssion der CeLPAATs wurden zunächst Vorkulturen aus jeweils 2 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose, aber ohne Uracil und Leucin mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil und Leucin) mit 2% Raffinose, 1% (v/v) Tergitol NP-40 und 250 μM Linolsäure (18:2Δ912) oder Linolensäure (18:3Δ9,12'15) wurden dann mit den Vorkulturen auf eine OD60oVon 0,08 angeimpft. Die Expression wurde bei einer OD6oo von 0,2-0,4 durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen • wurden für weitere 48 h bei "20°C inkubiert. Fettsäureanalvse
Die Hefezellen aus den Hauptkulturen wurden durch Zentrif ugation (100 x g, 10 min, 20°C) geerntet und mit 100 mM NaHCO3, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethyl- ester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanplischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO3, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na2SO4 getrocknet, unter Argon ein- gedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23- Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850- Gaschromatographen mit FlammenionisationsdeteMor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate 5°C/min und schließlich 10 min bei 250°C (halten) programmiert. Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma).
Acyl-CoA Analyse
Die Acyl-CoA-Analyse erfolgte wie bei Larson and Graham (2001 ; Plant Journal 25: 115-125) beschrieben. Expressionsanalvse
Figuren 2 A und B sowie 3 A und B zeigen die Fettsäureprofile von transgenen C13ABYS86 Hefen, die mit 18:2Δ9,12 bzw. 18:3Δ9,12'15 gefüttert wurden. Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Alle vier transgenen Hefen zeigen eine Synthese von 18:3Δ6'9,12 und 20:3Δ 8,11,14 bzw. 18:4Δ6'9-12'15 und 20:4Δ8,11,14,17 Ϊ den Produkten der Δ-6- Desäturase und Δ-6-Elongase ReaMionen. Dies bedeutet, dass die Gene PpD6 und Pse1 funktional exprimiert werden konnten.
Figur 2 gibt wie oben beschrieben die Fettsäureprofile von transgenen C13ABYS86 S. *.. cerev/sae-Zellen. Die Synthese der Fettsäuremethylester erfolgte durch saure Metha- nolyse intakter Zellen, die entweder mit den Vektoren pESCLeu-PpD6-Pse1/pYes2 (A) oder pYes2-T06E8.1/pESCLeu-PpD6-Pse1 (B) transformiert worden waren. Die Hefen wurden in Minimalmedium' in Gegenwart von 18:2Δ9,12 kultiviert. Anschließend wurden die Fettsäuremethylester über GLC analysiert. In den Kontroll-Hefen, die mit den VeMoren pESCLeu-PpD6-Pse1/pYes2 transformiert wurden, ist der Anteil von 20:3Δ8,11'14, zu dem 18:3Δ6'912 durch Pse1 elongiert wird, wesentlich niedriger als in den Hefen, die zusätzlich die LPLAT T06E8.1 exprimieren. Tatsächlich konnte die Elongation von 18:3Δ6,9,12 und 18:4Δ6-9'12'15 durch die zusätzliche - *■'■ Expression von CeLPLAT (T06E8.1) um 100-150% verbessert werden (Figur 4). Diese signifikante Erhöhung des LCPUFA-Gehalts ist nur wie folgt zu erklären: die exogen gefütterten Fettsäuren (18:2Δ9,12 bzw. 18:3Δ9,12'15) werden zunächst in Phospholipide eingebaut und dort von der Δ-6-Desaturase zu 18:3Δ6,912 und 18:4Δ6'9'12-15 desaturiert. Erst nach Reäquilibrierung mit dem Acyl-CoA-Pool können 18:3Δ6-9'12 und 18:4Δ69,12,15 durch die Elongase zu 20:3Δ8'11,14- bzw. 20:4Δ8,11,H17-CoA elongiert und dann wieder in die Lipide eingebaut werden. Die LPLAT T06E8.1 ist in der Lage, die Δ6-desaturierten Acylgruppen sehr effizient in CoA-Thioester zurückzuverwandeln. Interessanterweise konnte auch die Elongation der gefütterten Fettsäuren 18:2Δ912 und 18:3Δ9,12,15 verbessert werden. (Figur 2 A und B bzw. 3 A und B). Figur 3 gibt die Fettsäureprofile von transgenen C13ABYS86 S. cerev/s/ae-Zellen. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intaMer Zellen, die entweder mit den Vektoren pESCLeu-PpD6-Pse1/pYes2 (A) oder pYes2- T06E8.1/pESCLeu-PpD6-Pse1 (B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von 18:3Δ9,12,15 kultiviert. Anschließend wurden die Fett- säuremethylester über GLC analysiert.
Die Expression einer anderen CeLPLAT (F59F4.4) hat dagegen keinen Einfluss auf die Elongation (Figur 4). Offenbar kodiert F59F4.4 nicht für eine LPLAT. Nicht jede der putativen LPLAT Nukleinsauresequenzen ist also enzymatisch aMiv in der erfindungsgemäß gefundenen ReaMion. Figur 4 gibt die Elongation exogen applizierter 18:2Δ9'12 bzw. 18:3Δ9,12,15 im Anschluss an ihre endogene Δ-6-Desaturierung (Daten aus Fig.2 und 3) wieder. Die exogen gefütterten Fettsäuren werden zunächst in Phospholipide eingebaut und dort zu 18:3Δ6,9'12 und 18:4Δ6,9'12,15 desaturiert. Erst nach Reäquilibrierung mit dem Acyl-CoA-Pool können 18:3Δ6,9'12 und 18:4Δ6-9-12'15 durch die Elongase zu 20:3Δ8'11-14- bzw. 20:4Δ81 ' 17-CoA elongiert und dann wieder in die Lipide eingebaut werden. Die LPLAT T06E8.1 ist in der Lage, die Δ-6-desaturierten Acylgruppen effizient in CoA-Thioester zurückzuverwandeln.
Diese Ergebnisse zeigen, dass die CeLPLAT (T06E8.1) nach Co-expression mit der Δ-6-Desaturase und Δ-6-Elongase zu einer effizienten ProduMion von C20-PUFAs führt. Diese Ergebnisse sind dadurch zu erklären, dass die CeLPLAT (T06E8.1 ) einen effizienten Austausch der neusynthetisierten Fettsäuren zwischen Lipiden und dem ^ Acyl-CoA-Pool ermöglicht (siehe Figur 7).
Figur Y gibt die Acyl-CoA-Zusammensetzung transgener INVSd Hefen, die mit den VeMoren pESCLeu PpD6Pse1/pYes2 (A) oder pESCLeu-PpD6-Pse1/pYes2-T06E8.1 (B) transformiert worden waren, wieder. Die Hefezellen wurden in Minimalmedium oh- ne Uracil und Leucin in Gegenwart von 250 μM Iδ:^912 kultiviert. Die Acyl-CoA- Derivate wurden über HPLC analysiert.
Bei Verwendung des Hefe-Stammes INVSd zur Co-Expression von CeLPLAT , . , λ (T06E8-1) zusammen mit PpD6 und Psel ergibt sich folgendes Bild: Kontrollhefen, die 5 PpD6 und Psel exprimieren, enthalten wie schon bei Verwendung des Stammes
C13ABYS86 gezeigt nur geringe Mengen des ElongationsproduMs (20:3Δ8,11,14 bei Fütterung von 18:2 bzw.20:4Δ8'11 ' 1-7 bei Fütterung von 18:3; siehe Figur 5 A und 6 A). Bei zusätzlicher Expression von CeLPLAT (T06E8.1) erfolgt ein deutlicher Anstieg dieser ElongationsproduMe (siehe Figur 5 B und 6 B). Tabelle 6 zeigt, dass die zusätzliche Expression von CeLPLAT überraschenderweise eine 8-fache Erhöhung des Gehaltes an 20:3Δ811'14 (bei Fütterung von 18:2) bzw.20:4Δ8'11-14'17 (bei Fütterung von 18:3) bewirkt. Daneben zeigt sich, dass auch Clβ:^6,9 zu C18:2Δ6,9 effizienter elongiert wird.
Tabelle 5: Fettsäure-Zusammensetzung (in mol %) transgener Hefen, die mit den VeMoren pESCLeu PpD6Pse1/pYes2 (PpD6 Psel) oder pESCLeu- PpD6-Pse1/pYes2-T06E8.1 (PpD6 Pse1 + T06E8) transformiert worden waren. Die Hefezellen wurden in Minimalmedium ohne Uracil und Leucin ,; in Gegenwart von 250 μM 18:2 Δ9'12 oder 18:3Δ9-12-15 kultiviert. Die Fett- säuremethylester wurden durch saure Methanolyse ganzer Zellen gewonnen und über GLC analysiert. Jeder Wert gibt den Mittelwert (n = 4) ± Standardabweichung wieder.
Figure imgf000060_0001
^ Figur 5 ist das Fettsäure-Profile von transgenen INVSd S. cerevisiae-Zellen zu entnehmen. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intaMer Zellen, die entweder mit den VeMoren pESCLeu-PpD6-Pse1/pYes2 (A) oder pYes2-T06E8.1/pESCLeu-PpD6-Pse1 (B) transformiert worden waren. Die Hefen wur- den in Minimalmedium in Gegenwart von 18:2Δ9,12 kultiviert. Anschließend wurden die Fettsäuremethylester über GLC analysiert.
Figur 6 gibt die Fettsäure-Profile von transgenen INVSd S. cerevisiae-ZeWen wieder. , , , Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zel- 5 len, die entweder mit den VeMoren pESCLeu-PpD6-Pse1/pYes2 (A) oder pYes2- T06E81/pESCLeu-PpD6-Pse1 (B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von 18:3Δ'12,15 kultiviert. Anschließend wurden die Fettsäuremethylester über GLC analysiert.
Ein Maß für die Effizienz der LCPUFA-Biosynthese in transgener Hefe stellt der Quo- 0 tient aus Gehalt der erwünschten Δ-6-ElongationsproduM nach Δ-6-Desaturierung (20.3Δ8,ιι,i4 b2w 20.4Δ8,ι ,i4,i7) zu Gehalt an zugefütterter Fettsäure (18:2Δ9 ' 12 bzw.
18:3Δ9'12'15) dar. Dieser Quotient beträgt 0,04 in INVSd Kontrollhefen, die PpD6 und Psel exprimieren, und 0,60 in Hefen die zusätzlich zu PpD6 und Psel CeLPLAT exprimieren. In anderen Worten: der Gehalt an erwünschtem Δ-6-ElongationsproduM 5 nach Δ,-6-Desaturierung bei Co-Expression von CeLPLAT beträgt 60% des Gehalts der jeweils zugefütterten Fettsäure. In Kontrollhefen beträgt dieser Gehalt nur ca. 4%. Dies bedeutet eine 15-fache Erhöhung der Effizienz der LCPUFA-Biosynthese in transgener Hefe durch Co-Expression von LPLAT.
Interessanterweise bewirM die Co-Expression von CeLPLAT nicht nur eine Erhöhung 0 der genannten ElongationsproduMe 20:3Δ8,11,14 bzw.20:4Δ8,11,14,17, sondern auch eine Erhöhung des Verhältnisses 20:3Δ8-11'14 : 20:2Δ11'14 bzw. 20:4Δ8-11-14-17 : 20:3Δ11-14-17. Dies bedeutet, dass in Anwesenheit der LPLAT die Δ-6-Elongase bevorzugt mehrfach ungesättigte Fettsäuren (18:3Δ6,9,12 und 18:4Δ6'9,12'15) als Substrat verwendet, während bei Abwesenheit der LPLAT keine ausgeprägte Substratspezifität zu erkennen ist (auch 5 18:2Δ9,12 und 18:3Δ9,12,15 werden elongiert). Grund hierfür können Protein-Protein- Wechselwirkungen zwischen Δ-6-Elongase, Δ-6-Desturase und LPLAT oder posttrans- lationale Modifikationen (z.B. partielle Proteolyse) sein. Dies würde auch erklären, warum der oben beschriebene Anstieg von Δ-6-ElongationsproduMen bei Co-Expression von Δ-6-Desaturase, Δ-6-Elongase und LPLAT bei Verwendung eines protease- 0 defizienten Hefestamms geringer ausfällt.
Acyl-CoA Analysen von transgenen INVSd Hefen, die mit 18:2Δ9,12 gefüttert wurden, ergaben folgendes Ergebnis: in Kontrollhefen, die PpD6 und Psel exprimieren, ist kein 18:3Δ6'9'12-CoA und 20:3Δ8'11'14-CoA nachweisbar. Dies weist darauf hin, dass weder das Substrat (18:3Δ6'9-12-CoA) noch das Produkt (20:3Δ8- 1,14-CoA) der Δ-6-Elongase in 5 Kontrollhefen in nachweisbaren Mengen vorhanden ist. Dies lässt darauf schließen, das der Transfer von 18:3Δ6,9,12 aus Membranlipiden in den Acyl-CoA Pool nicht oder nicht richtig stattfindet. Das bedeutet, dass kaum Substrat für die vorhandene Δ-6- Elongase zur Verfügung steht, was wiederum den geringen Gehalt an Elongationspro- dukt in Kontrollhefen erklärt. INVSd Hefen, die zusätzlich zur PpD6 und Psel die 0 CeLPLAT exprimieren und mit 18:2Δ9,12 gefüttert worden waren, weisen keine signifikanten Mengen an 18:3Δ6'912-CoA auf, wohl aber 20:3Δ811'14-CoA. Dies deutet darauf hin, dass LPLAT sehr effizient 18:3Δ6,9,12 aus den Membranlipiden in den Acyl-CoA- Pool überführt. 18:3Δ6,9'12-CoA wird dann von der Δ-6-Elongase elongiert, so dass kein 18:3 Δ6,9,i2.CoA woh, aDer 20:3Δ8 ' 1 ' 14-CoA nachweisbar ist.
b) FunMionelle Charakterierung der CeLPLATs in transgenen Rlanzen Expression funMionaler CeLPLAT in transgenen Pflanzen
In DE 102 19203 wurden transgene Rlanzen beschrieben, deren Samenöl durch samenspezifische Expression funktioneller Gene kodierend für Δ-6-Desaturase, Δ-6- Elongase und Δ-5-Desaturase geringe Mengen an ÄRA und EPA enthält. Der zur Transformation dieser Rlanzen benutzte VeMor ist SEQ ID NO: 19 zu entnehmen. Um den Gehalt an diesen LCPUFAs zu erhöhen, wurde in den genannten transgenen Pflanzen zusätzlich das Gen CeLPLAT (T06E8.1) in Samen exprimiert.
Zu diesem Zweck wurde der kodierende Bereich von CeLPLAT über PCR amplifiziert. t
In Tabelle 6 sind die Primer wiedergegeben, die zur Klonierung eines weiteren Clones der ceLPLAT in binäre VeMoren verwendet wurden. Tabelle 6: Nukleotidsequenzen der PCR-Primer zur Klonierung von CeLPLAT (T06E8.1) in den binären VeMor pSUN3
Figure imgf000062_0001
* f: forward, r: reverse
Das PCR-ProduM wurde in einen pENTRY Vektor zwischen USP Promotor und OCS- Terminator kloniert. Anschließend wurde die Expressionskassette in die binären VeMo- ren pSUN300 kloniert. Der entstandene VeMor wurde mit pSUN3CeLPLAT (Figur 8) bezeichnet. Darüber hinaus wurde der kodierende Bereiche von CeLPLAT amplifiziert und zwischen LegB4 Promoter und OCS-Terminator kloniert. Dieser VeMor wurde mit pGPTVCeLPLAT bezeichnet (Figur 9A).
Darüberhinaus wurde der kodierende Bereich von CeLPLAT über PCR amplifiziert und zwischen LegB4 Promotor und OCS-Terminator kloniert. Die hierfür verwendeten PCR ' Primer wurden so ausgewählt, dass in das PCR-ProduM eine effiziente Kosaksequenz eingeführt wurde. Außerdem wurde die DNA-Sequenz von CeLPLAT so verändert, dass sie der codon usage von höheren Pflanzen angepasst war. Folgende Primer wurden für die PCR verwendet:
Forward primer: 5'-ACATAATGGAGAACTTCTGGTCTATTGTTGTG I I I I I I CTA-3'
Reverse primer: 5'- CTAGCTAGCπACTCAGATTTCTTCCCGTCTTTTGTTTCTC-3'
Das PCR ProduM wurde in den KlonierungsveMor pCR Script kloniert und über die Restriktionsenzyme Xmal und Sacl in den VeMor pGPTV LegB4-700 kloniert. Das entstandene Plasmid wurde mit pGPTV LegB4-700 + T06E8.1 bezeichnet (Figur 9A).
Das gleiche PCR ProduM wurde darüber hinaus in einen Multigen-ExpressionsveMor kloniert, der bereits die Gene für eine Delta-6-Desaturase aus Phaeodactylum tricornutum (SEQ ID NO: 32, Aminosäuresequenz SEQ ID NO: 33) und einer Delta-6- Elongase aus P. patens enthielt. Das entstandene Plasmid wurde mit pGPTV
USP/OCS-1,2,3 PSE1(Pp)+D6-Des(Pt)+2AT (T06E8-1) bezeichnet (Figur 9B). Die Sequenzen des VeMors sowie der Gene sind SEQ ID NO:.34, SEQ ID NO: 35, SEQ ID NO: 36 und SEQ ID NO: 37 zu entnehmen. Die Δ-6-Desaturase aus Phaeodactylum tricornutum reicht von Nukleotid 4554 bis 5987 in der SEQ ID NO: 34. Die Δ-6- Elongase aus Physcomitrella patens reicht von Nukleotid 1026 bis 1898 und die der LPLAT aus Caenorhabditis elegans reicht von Nukleotid 2805 bis 3653 in der SEQ ID NO: 34.
Tabakpflanzen wurden co-transformiert mit dem VeMor pSUN3CeLPLAT und dem in DE 102 19203 und SEQ ID NO: 19 beschriebenen Vektor enthaltend Gene kodierend für Δ-6-Desaturase, Δ-6-Elongase und Δ-5-Desaturase, wobei die Selektion transgener Pflanzen mit Kanamycin erfolgte.
Tabakpflanzen wurden außerdem transformiert mit dem VeMor pGPTV USP/OCS- 1 ,2,3 PSE1(Pp)+D6-Des(Pt)+2AT (T06E8-1) [siehe SEQ ID NO:.34, SEQ ID NO: 35, SEQ ID NO: 36 und SEQ ID NO: 37]. Lein wurde mit dem VeMor pSUNSCeLPLAT transformiert. Die entstandenen transgenen Pflanzen wurden mit solchen transgenen Leinpflanzen gekreuzt, die bereits geringe Mengen an ÄRA und EPA aufgrund der f unMionellen Genexpression von Δ-6- Desaturase, Δ-6-Elongase und Δ-5-Desaturase enthielten.
Weiterhin wurde Lein mit dem VeMor pGPTV LegB4-700 + T06E8.1 transformiert. Die entstandenen transgenen Rlanzen wurden mit solchen transgenen Leinpflanzen gekreuzt, die bereits geringe Mengen an ÄRA und EPA aufgrund der funMionellen Expression von Δ-6-Desaturase, Δ-6-Elongase und Δ-5-Desaturase enthielten.
Die Samen von transgenen Tabak- und Leinpflanzen wurden wie weiter vorne beschrieben [Beispiel 3 b)] auf erhöhte Gehalte an LCPUFAs in untersucht. Aus den hier vorliegenden.Arbeiten lässt sich die FunMion der Acyl-CoA: Lyso- phopholipid-Acyltranserase (LPLAT) wie in Figur 10 dargestellt ableiten. Der Biosynthese-Weg der LCPUFAS stellt sich damit wie folgt dar. Desaturasen katalysieren die Einführung von Doppelbindungen in lipidgekoppelte Fettsäuren (s7.?-Acyl-Phosphatidylcholin), während die Elongasen exklusiv die Elongation Coenzym A-veresterter Fettsäuren (Acyl-CoAs) katalysieren. Nach diesem Mechanismus erfordert die alternierende Wirkung von Desaturasen und Elongasen einen ständi- '"■* •'■ gen Austausch von Acyl-Substraten zwischen Phospholipiden und Acyl-CoA-Pool und somit die Existenz einer zusätzlichen AMivität, die die Acyl-Substrate in die jeweils notwendige Substratform, d.h. Lipide (für Desaturasen) oder CoA-Thioester (für Elongasen), überführt. Dieser Austausch zwischen Acyl-CoA Pool und Phospholipiden wird durch LCPUFA-spezifische LPLAT ermöglicht. Die Biosynthese von ÄRA (A) erfolgt analog zu EPA (B), mit dem Unterschied, dass bei EPA der Δ-6-Desaturierung eine Δ- 15-Desaturierung vorgeschaltet ist, so dass α18:3-PC als Substrat für die Δ-6- Desäturase fungiert. Die Biosynthese von DHA macht einen weiteren Austausch zwischen Phospholipiden und Acyl-CoA-Pool über LPLAT notwendig: 20:5Δ5'8'11'14'17 wird vom Phospholipid- zum CoA-Pool transferiert und nach erfolgter Δ-5-Elongation wird 22:5D7,10,13,16,19 vom CoA- zum Phospholipid-Pool transferiert und schließlich durch Δ-4- Desaturase zu DHA umgesetzt. Gleiches gilt für den Austausch im Biosyntheseweg unter Verwendung der Δ-8-Desaturase, der Δ-9-Elongase und der Δ-5-Desaturase.
Äquivalente
Der Fachmann erkennt oder kann viele Äquivalente der hier beschriebenen erfin- dungsgemäßen spezifischen Ausführungsformen feststellen, indem er lediglich Routineexperimente verwendet. Diese Äquivalente sollen von den Patentansprüchen umfasst sein.

Claims

Patentansprüche
. 1. Isolierte Nukleinsauresequenzen, die für Polypeptide mit Acyl-CoA:Lyso- • y. phospholipid-AcyltransferaseaMivität codieren, wobei die durch die Nuklein- säuresequenzen codierten Acyl-CoA:Lysophospholipid-Acyltransferasen spezifisch C16-, Ci8-, C2o- oder C22-Fettsäuren mit mindestens einer Doppelbindung im . Fettsäuremolekül umsetzen.
2. Isolierte Nukleinsauresequenzen gemäß Anspruch 1 ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ
ID NO: 5 oder SEQ ID NO: 7 dargestellten Sequenz, b^ Nukleinsauresequenzen, die sich als Ergebnis des degenerierten geneti- , sehen Codes von der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 enthaltenden codierenden Sequenz ableiten lassen c) Derivate der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID
NO: 7 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 aufweisen und eine Acyl-CoA:Lysophospholipid-
AcyltransferaseaMivität aufweisen.
3. Isolierte Nukleinsäuresequenz nach Anspruch 1 oder 2, wobei die Sequenz aus einem Eukaryont stammt.
4. Aminosäuresequenz, die von einer isolierten Nukleinsäuresequenz nach einem der Ansprüche 1 bis 3 codiert wird.
5. GenkonstruM, enthaltend eine isolierte Nukleinsaure nach einem der Ansprüche 1 bis 3, wobei die Nukleinsaure funMionsfähig mit einem oder mehreren Regulationssignalen verbunden ist.
6. GenkonstruM nach Anspruch 5, dadurch gekennzeichnet, dass das Nukleinsäu- 0 rekonstruM zusätzliche Biosynthesegerie des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl- „. Transferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-
, t Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure- 5 Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-
Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure- Elongase(n).
12 Fig/37 Seq
7. GenkonstruM nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Nuk- leinsäurekonstruM zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe der Δ-4-Desaturase-, Δ-5- Desaturase-, Δ-6-Desaturase-, Δ-8-Desatuase-, Δ-9-Desaturase-, Δ-12- v».> Desäturase-, Δ-5-Elongase-, Δ-6-Elongase- oder Δ-9-Elongase.
8. VeMor, enthaltend eine Nukleinsaure nach den Ansprüchen 1 bis 3 oder ein GenkonstruM nach den Ansprüchen 5 bis 7.
9. Transgener nicht-humaner Organismus, enthaltend mindestens eine Nukleinsaure nach den Ansprüchen 1 bis 3, ein GenkonstruM nach den Ansprüchen 5 bis 7 oder einen Vektor nach Anspruch 8.
10. Transgener nicht-humaner Organismus nach Anspruch 9, wobei der Organismus ein Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze ist.
11. Transgener nicht-humaner Organismus nach Anspruch 9 oder 10, wobei der Organismus eine Pflanze ist.
12. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in einem Organismus, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst: a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Sequenz, die für ein Polypeptid mit einer Acyl- CoA:Lysophospholipid-AcyltransferaseaMivität codiert; oder b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 enthaltenden codierenden Sequenz ableiten lässt, oder c) Einbringen mindestens eines Derivates der in SEQ ID NO: 1 , SEQ ID NO:
3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Nukleinsäuresequenz in den Organismus, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO:
4, SEQ ID NO: 6 oder SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 aufweisen und eine äquivalente Acyl-CoA:Lysophospholipid-AcyltransferaseaMivität aufweisen, und d) kultivieren und ernten des Organismus.
13. "Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach Anspruch 12, dadurch gekennzeichnet, dass zusätzlich zu den unter (a) bis (c) genannten
Nukleinsauresequenzen weitere Nukleinsauresequenzen in den Organismus eingebracht wurden, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl- Transferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl- Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure- '. Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-
Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure- Elongase(n) codieren.
14. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass zusätzlich zu den unter (a) bis (c) ge- nannten Nukleinsauresequenzen weitere Nukleinsauresequenzen in den Organismus eingebracht wurden, die für Polypeptide ausgewählt aus der Gruppe Δ-4- Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desatuase-, Δ-9- Desaturase-, Δ-12-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- oderΔ-9- ElongaseaMivität codieren.
15. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 12 bis 14, dadurch gekennzeichnet, dass als Substrat der Acyl-CoA:Lyso- phospholipid-Acyltransferasen Ci6-, C-ι8-, C2o- oder C22-Fettsäuren verwendet werden.
16. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprü- chen 12 bis 15, dadurch gekennzeichnet, dass die mehrfach ungesättigten Fettsäuren aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isoliert werden.
17. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 12 bis 16, dadurch gekennzeichnet, dass die im Verfahren hergestellte mehrfach ungesättigten Fettsäure eine C18-, C2o- oder C22-Fettsäuren mit mindestens zwei Doppelbindungen im Molekül ist.
18. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 12 bis 17, dadurch gekennzeichnet, dass im Verfahren eine mehrfach ungesättigte Fettsäure ausgewählt aus der Gruppe Dihomo-γ-linolensäure, Arachi- donsäure, Eisosapentaensäure, Docosapentaensäure und Docosahexaensäure hergestellten wird.
19. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 12 bis 18, dadurch gekennzeichnet, dass der Organismus ein Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze ist. -
20. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprü- ' v chen 12 bis 19, dadurch gekennzeichnet, dass der Organismus eine transgene Pflanze ist.
21. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 12 bis 20, dadurch gekennzeichnet, dass die transgene Pflanze eine Ölfruchtpflanze ist.
,*,'.
22. Ql, Lipide oder Fettsäuren oder eine FraMion davon, hergestellt durch das Ver- fahren nach einem der Ansprüche 12 bis 21.
.
23. Öl-, Lipid- oder Fettsäurezusammensetzung, die mehrfach ungesättigter Fettsäuren hergestellt nach einem Verfahren nach einem der Ansprüche 12 bis 21 umfasst und von transgenen Rlanzen stammt.
24. Verwendung von Öl, Lipide oder Fettsäuren hergestellt nach einem Verfahren nach einem der Ansprüche 12 bis 21 oder Öl-, Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 23 in Futter, Nahrungsmitteln, Kosmetika oder Phar- mazeutika.
PCT/EP2004/000771 2003-02-27 2004-01-29 Verfahren zur herstellung mehrfach ungesättigter fettsäuren WO2004076617A2 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/547,447 US7537920B2 (en) 2003-02-27 2004-01-29 Method for the production of polyunsaturated fatty acids
AT04706146T ATE517984T1 (de) 2003-02-27 2004-01-29 Verfahren zur herstellung mehrfach ungesättigter fettsäuren
BR0407138-7A BRPI0407138A (pt) 2003-02-27 2004-01-29 Sequência de ácido nucleico isolada, sequência de aminoácido, construção de gene, vetor, organismo transgênico não humano, processo para produzir ácidos graxos poliinsaturados, óleo, lipìdeo, ou um ácido graxo poliinsaturado ou uma fração dos mesmos, composições de óleo, de lipìdeos, ou de ácido graxo, e, uso do óleo, lipìdeos ou ácidos graxos ou de composições de óleo, de lipìdeos ou de ácido graxo
AU2004215705A AU2004215705B2 (en) 2003-02-27 2004-01-29 Method for the production of polyunsaturated fatty acids
CA2517253A CA2517253C (en) 2003-02-27 2004-01-29 Method for the production of polyunsaturated fatty acids
EP04706146A EP1599582B1 (de) 2003-02-27 2004-01-29 Verfahren zur herstellung mehrfach ungesättigter fettsäuren
NO20053149A NO20053149D0 (no) 2003-02-27 2005-06-28 Fremgangsmate for fremstilling av flerumettede fettesyrer.
US12/417,171 US8486671B2 (en) 2003-02-27 2009-04-02 Method for the production of polyunsaturated fatty acids
US13/912,731 US20140026259A1 (en) 2003-02-27 2013-06-07 Method for the Production of Polyunsaturated Fatty Acids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10308836.9 2003-02-27
DE10308836 2003-02-27

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/547,447 A-371-Of-International US7537920B2 (en) 2003-02-27 2004-01-29 Method for the production of polyunsaturated fatty acids
US10/547,477 A-371-Of-International US20060083981A1 (en) 2003-08-29 2004-08-24 Battery can and manufacturing method thereof and battery using the same
US12/417,171 Division US8486671B2 (en) 2003-02-27 2009-04-02 Method for the production of polyunsaturated fatty acids

Publications (2)

Publication Number Publication Date
WO2004076617A2 true WO2004076617A2 (de) 2004-09-10
WO2004076617A3 WO2004076617A3 (de) 2004-10-28

Family

ID=32920641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/000771 WO2004076617A2 (de) 2003-02-27 2004-01-29 Verfahren zur herstellung mehrfach ungesättigter fettsäuren

Country Status (8)

Country Link
US (3) US7537920B2 (de)
EP (1) EP1599582B1 (de)
AT (1) ATE517984T1 (de)
AU (1) AU2004215705B2 (de)
BR (1) BRPI0407138A (de)
CA (1) CA2517253C (de)
NO (1) NO20053149D0 (de)
WO (1) WO2004076617A2 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069936A2 (de) * 2004-12-23 2006-07-06 Basf Plant Science Gmbh Verfahren zur herstellung von mehrfach ungesättigten langkettigen fettsäuren in transgenen organismen
EP1809756A2 (de) * 2004-11-04 2007-07-25 E.I. Dupont De Nemours And Company Docosahexaensäure-produzierende stämme von yarrowia lipolytica
WO2007136671A3 (en) * 2006-05-17 2008-04-03 Du Pont Delta5 desaturase and its use in making polyunsaturated fatty acids
WO2010023202A2 (en) 2008-08-26 2010-03-04 Basf Plant Science Gmbh Nucleic acids encoding desaturases and modified plant oil
EP2182071A1 (de) * 2007-07-23 2010-05-05 Suntory Holdings Limited Fettsäurezusammensetzung mit neuem fettsäuregehalt
WO2010147907A1 (en) 2009-06-16 2010-12-23 E. I. Du Pont De Nemours And Company High eicosapentaenoic acid oils from improved optimized strains of yarrowia lipolytica
WO2010147900A1 (en) 2009-06-16 2010-12-23 E. I. Du Pont De Nemours And Company IMPROVEMENT OF LONG CHAIN OMEGA-3 AND OMEGA-6 POLYUNSATURATED FATTY ACID BIOSYNTHESIS BY EXPRESSION OF ACYL-CoA LYSOPHOSPHOLIPID ACYLTRANSFERASES
WO2010147904A1 (en) 2009-06-16 2010-12-23 E. I. Du Pont De Nemours And Company Improved optimized strains of yarrowia lipolytica for high eicosapentaenoic acid production
US7879591B2 (en) 2004-11-04 2011-02-01 E.I. Du Pont De Nemours And Company High eicosapentaenoic acid producing strains of Yarrowia lipolytica
WO2011023800A1 (en) 2009-08-31 2011-03-03 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for enhancing seed-specific gene expression in plants promoting enhanced polyunsaturated fatty acid synthesis
EP2412804A1 (de) * 2009-03-26 2012-02-01 Suntory Holdings Limited Neue lysophospholipid-acyltransferase
US8110388B2 (en) 2007-05-25 2012-02-07 Suntory Holdings Limited Lysophosphatidic acid acyltransferase genes
WO2012027689A1 (en) 2010-08-26 2012-03-01 E. I. Du Pont De Nemours And Company Recombinant microbial host cells for high eicosapentaenoic acid production
US8524485B2 (en) 2009-06-16 2013-09-03 E I Du Pont De Nemours And Company Long chain omega-3 and omega-6 polyunsaturated fatty acid biosynthesis by expression of acyl-CoA lysophospholipid acyltransferases
WO2013192007A1 (en) 2012-06-19 2013-12-27 E. I. Du Pont De Nemours And Company MUTANT ACYL-CoA:LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASES
WO2014100061A1 (en) 2012-12-21 2014-06-26 E. I. Du Pont De Nemours And Company Down-regulation of a polynucleotide encoding a sou2 sorbitol utilization protein to modify lipid production in microbial cells
EP2166089B1 (de) 2003-08-01 2015-07-01 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
US9701989B2 (en) 2012-12-21 2017-07-11 E I Du Pont De Nemours And Company Recombinant microbial cells that produce at least 28% eicosapentaenoic acid as dry cell weight

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2868312A1 (en) * 2003-03-31 2004-10-14 University Of Bristol Novel plant acyltransferases specific for long-chained, multiply unsaturated fatty acids
US11952581B2 (en) 2003-08-01 2024-04-09 Basf Plant Science Gmbh Process for the production of polyunsaturated fatty acids in transgenic organisms
EP3543324B1 (de) 2004-02-27 2022-11-30 BASF Plant Science GmbH Verfahren zur herstellung mehrfach ungesättigten fettsäuren in transgenen pflanzen
ATE528403T1 (de) 2004-02-27 2011-10-15 Basf Plant Science Gmbh Verfahren zur herstellung von ungesättigten omega-3-fettsäuren in transgenen organismen
EP2357243B1 (de) 2004-04-22 2018-12-12 Commonwealth Scientific and Industrial Research Organisation Synthese von langkettigen polyungesättigten Fettsäuren durch rekombinante Zellen
DK1756280T3 (en) 2004-04-22 2015-02-02 Commw Scient Ind Res Org SYNTHESIS OF CHAIN, polyunsaturated fatty acids BY RECOMBINANT CELLS
DK1766023T3 (da) * 2004-06-04 2010-12-13 Fluxome Sciences As Metabolisk manipulerede celler til fremstillingen af polyumættede fedtsyrer
AR059376A1 (es) 2006-02-21 2008-03-26 Basf Plant Science Gmbh Procedimiento para la produccion de acidos grasos poliinsaturados
US7695950B2 (en) * 2006-05-17 2010-04-13 E. I. Du Pont De Nemours And Company Δ5 desaturase and its use in making polyunsaturated fatty acids
TW200820913A (en) * 2006-08-25 2008-05-16 Martek Biosciences Corp Food fortification with polyunsaturated fatty acids
EP2059588A4 (de) 2006-08-29 2010-07-28 Commw Scient Ind Res Org Fettsäuresynthese
CN101528913B (zh) * 2006-09-18 2013-02-13 亚利桑那董事会,代表亚利桑那州立大学行事的亚利桑那州法人团体 藻类中链长脂肪酸和烃
WO2009001315A2 (en) * 2007-06-26 2008-12-31 Staahl Ulf Use of a class of genes encoding lysophospholipid acyl transferases for application in agriculture, biotechnology, and medicine
KR100877957B1 (ko) * 2007-07-31 2009-01-12 김봉호 황금달맞이
WO2009140770A1 (en) * 2008-05-21 2009-11-26 National Research Council Of Cananda Reduction of lyso-phosphatidylcholine acyltransferase activity
CN113957105B (zh) * 2008-11-18 2024-11-01 联邦科学技术研究组织 产生ω-3脂肪酸的酶和方法
WO2010130725A1 (en) 2009-05-13 2010-11-18 Basf Plant Science Company Gmbh Acyltransferases and uses thereof in fatty acid production
IN2012DN05162A (de) * 2009-12-24 2015-10-23 Du Pont
US9096834B2 (en) 2012-02-24 2015-08-04 Exxonmobil Research And Engineering Company Recombinant microorganisms comprising thioesterase and lysophosphatidic acid acyltransferase genes for fatty acid production
EP2814972B1 (de) * 2012-02-24 2020-04-22 ExxonMobil Research and Engineering Company Erhöhte produktion von fettsäuren und fettsäurederivaten durch rekombinante mikroorganismen
UA127917C2 (uk) 2012-06-15 2024-02-14 Коммонвелт Сайнтіфік Енд Індастріел Рісерч Організейшн Рекомбінантна клітина brassica napus, яка містить довголанцюгові поліненасичені жирні кислоти, трансгенна рослина та насіння brassica napus, спосіб отримання екстрагованого ліпіду рослин, харчового продукту та етилового ефіру поліненасичених жирних кислот
US9725399B2 (en) 2013-12-18 2017-08-08 Commonwealth Scientific And Industrial Research Organisation Lipid comprising long chain polyunsaturated fatty acids
KR102527795B1 (ko) 2014-06-27 2023-05-02 커먼웰쓰 사이언티픽 앤 인더스트리알 리서치 오거니제이션 도코사펜타에노산을 포함하는 지질
CN108251401B (zh) * 2016-12-28 2022-11-04 丰益(上海)生物技术研发中心有限公司 脂肪酶及其应用
US10513718B2 (en) 2017-06-06 2019-12-24 City University Of Hong Kong Method of producing polyunsaturated fatty acid

Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984002913A1 (en) 1983-01-17 1984-08-02 Monsanto Co Chimeric genes suitable for expression in plant cells
EP0249676A2 (de) 1986-01-28 1987-12-23 Sandoz Ltd. Verfahren zur Genexpression in Pflanzen
EP0335528A2 (de) 1988-03-29 1989-11-15 E.I. Du Pont De Nemours And Company DNS-Promotorfragmente aus Weizen
EP0375091A1 (de) 1988-12-21 1990-06-27 Institut Für Genbiologische Forschung Berlin Gmbh Wundinduzierbare und kartoffelknollenspezifische transkriptionale Regulation
EP0388186A1 (de) 1989-03-17 1990-09-19 E.I. Du Pont De Nemours And Company Externe Regulierung der Genexpression
US4962028A (en) 1986-07-09 1990-10-09 Dna Plant Technology Corporation Plant promotors
EP0397687A1 (de) 1987-12-21 1990-11-22 Upjohn Co Transformation von keimenden pflanzensamen mit hilfe von agrobacterium.
EP0424047A1 (de) 1989-10-17 1991-04-24 Pioneer Hi-Bred International, Inc. Pflanzengewebekulturverfahren zur Transformation von Pflanzenzellen
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
WO1991013980A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Novel sequences preferentially expressed in early seed development and methods related thereto
WO1992018634A1 (en) 1991-04-09 1992-10-29 Unilever Plc Plant promoter involved in controlling lipid biosynthesis in seeds
US5187267A (en) 1990-06-19 1993-02-16 Calgene, Inc. Plant proteins, promoters, coding sequences and use
WO1993006712A1 (en) 1991-10-10 1993-04-15 Rhone-Poulenc Agrochimie Production of gamma linolenic acid by a δ6-desaturase
WO1993011245A1 (en) 1991-12-04 1993-06-10 E.I. Du Pont De Nemours And Company Fatty acid desaturase genes from plants
EP0550162A1 (de) 1991-12-31 1993-07-07 University of Kentucky Research Foundation Änderung von Fettsäuren durch eine Desaturase in transgenischem Pflanzengewebe
WO1993020216A1 (en) 1991-02-22 1993-10-14 University Technologies International, Inc. Oil-body protein cis-elements as regulatory signals
WO1993021334A1 (en) 1992-04-13 1993-10-28 Zeneca Limited Dna constructs and plants incorporating them
EP0571741A2 (de) 1992-03-27 1993-12-01 Sumitomo Chemical Company, Limited Samen-Expressionsplasmid
JPH0662870A (ja) 1992-08-18 1994-03-08 Mitsui Giyousai Shokubutsu Bio Kenkyusho:Kk 大豆ホスホエノールピルビン酸カルボキシラーゼ遺伝子のプロモーター領域及び5’非翻訳領域
US5315001A (en) 1986-07-31 1994-05-24 Calgene Inc. Acyl carrier protein - DNA sequence and synthesis
WO1994011516A1 (en) 1992-11-17 1994-05-26 E.I. Du Pont De Nemours And Company Genes for microsomal delta-12 fatty acid desaturases and related enzymes from plants
WO1994018337A1 (en) 1993-02-05 1994-08-18 Monsanto Company Altered linolenic and linoleic acid content in plants
US5352605A (en) 1983-01-17 1994-10-04 Monsanto Company Chimeric genes for transforming plant cells using viral promoters
WO1995015389A2 (en) 1993-12-02 1995-06-08 Olsen Odd Arne Promoter
WO1995016783A1 (en) 1993-12-14 1995-06-22 Calgene Inc. Controlled expression of transgenic constructs in plant plastids
WO1995018222A1 (fr) 1993-12-28 1995-07-06 Kirin Beer Kabushiki Kaisha Gene pour acide gras-desaturase, vecteur contenant ledit gene, vegetal contenant ledit gene lui ayant ete transfere, et procede pour creer ledit vegetal
WO1995019443A2 (en) 1994-01-13 1995-07-20 Ciba-Geigy Ag Chemically regulatable and anti-pathogenic dna sequences and uses thereof
WO1995023230A1 (en) 1994-02-24 1995-08-31 Olsen Odd Arne Promoter from a lipid transfer protein gene
US5504200A (en) 1983-04-15 1996-04-02 Mycogen Plant Science, Inc. Plant gene expression
WO1996012814A1 (en) 1994-10-21 1996-05-02 Danisco A/S Promoter sequence from potato
US5530149A (en) 1992-03-13 1996-06-25 Bayer Aktiengesellschaft Azolylmethyl-fluorocyclopropyl derivatives
WO1996021022A2 (en) 1994-12-30 1996-07-11 Rhone-Poulenc Agrochimie Production of gamma linolenic acid by a δ6-desaturase
WO1997006250A1 (en) 1995-08-10 1997-02-20 Rutgers University Nuclear-encoded transcription system in plastids of higher plants
US5608152A (en) 1986-07-31 1997-03-04 Calgene, Inc. Seed-specific transcriptional regulation
WO1997021340A1 (en) 1995-12-14 1997-06-19 Cargill, Incorporated Plants having mutant sequences that confer altered fatty acid profiles
EP0781849A1 (de) 1995-07-05 1997-07-02 Sapporo Breweries Ltd. Gewebsspezifischer promotor
WO1997030582A1 (en) 1996-02-06 1997-08-28 Carnegie Institution Of Washington Production of hydroxylated fatty acids in genetically modified plants
EP0794250A1 (de) 1996-03-04 1997-09-10 Soremartec S.A. Isolierung und Sequenzierung des FAd2-N Gens der Haselnuss
US5677474A (en) 1988-07-29 1997-10-14 Washington University Producing commercially valuable polypeptides with genetically transformed endosperm tissue
US5689040A (en) 1995-02-23 1997-11-18 The Regents Of The University Of California Plant promoter sequences useful for gene expression in seeds and seedlings
WO1998001572A1 (de) 1996-07-03 1998-01-15 Hoechst Research & Technology Deutschland Gmbh & Co. Kg Genetische transformation von ciliatenzellen durch microcarrier- bombardement mit dna-beladenen goldpartikeln
WO1998008962A1 (en) 1996-08-30 1998-03-05 Monsanto Company Early seed 5' regulatory sequence
WO1998027203A1 (en) 1996-12-18 1998-06-25 Kosan Biosciences Production of polyketides in bacteria and yeast
WO1998045461A1 (en) 1997-04-09 1998-10-15 Rhone-Poulenc Agro An oleosin 5' regulatory region for the modification of plant seed lipid composition
WO1998046764A1 (en) 1997-04-11 1998-10-22 Calgene Llc Methods and compositions for synthesis of long chain polyunsaturated fatty acids in plants
WO1998046776A2 (en) 1997-04-11 1998-10-22 Calgene Llc Plant fatty acid synthases and use in improved methods for production of medium-chain fatty acids
WO1998046765A1 (en) 1997-04-11 1998-10-22 Calgene Llc Methods and compositions for synthesis of long chain polyunsaturated fatty acids
WO1998046763A1 (en) 1997-04-11 1998-10-22 Calgene Llc Methods and compositions for synthesis of long chain polyunsaturated fatty acids
WO1998055625A1 (en) 1997-06-04 1998-12-10 Calgene, Llc Production of polyunsaturated fatty acids by expression of polyketide-like synthesis genes in plants
WO1999016890A2 (en) 1997-09-30 1999-04-08 The Regents Of The University Of California Production of proteins in plant seeds
WO1999027111A1 (en) 1997-11-24 1999-06-03 University Of Bristol Desaturase genes and their use
WO1999046394A1 (en) 1998-03-11 1999-09-16 Novartis Ag Novel plant plastid promoter sequence
US5968791A (en) 1994-04-06 1999-10-19 Calgene, Inc. Plant lysophosphatidic acid acyltransferases
WO1999064616A2 (en) 1998-06-12 1999-12-16 Abbott Laboratories Polyunsaturated fatty acids in plants
WO2000018889A2 (en) 1998-09-25 2000-04-06 Calgene Llc Sequenzes of putative plant acyltransferases
WO2000021557A1 (en) 1998-10-09 2000-04-20 Merck & Co., Inc. Delta 6 fatty acid desaturase
WO2000042195A2 (en) 1999-01-14 2000-07-20 Omegatech, Inc. Schizochytrium pks genes
DE10219203A1 (de) 2002-04-29 2003-11-13 Basf Plant Science Gmbh Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070970B2 (en) * 1999-08-23 2006-07-04 Abbott Laboratories Elongase genes and uses thereof
KR20020073580A (ko) 2000-02-09 2002-09-27 바스프 악티엔게젤샤프트 신규 연장효소 유전자 및 다가불포화 지방산의 제조 방법
DE60138602D1 (de) * 2001-03-09 2009-06-18 Nestle Sa Öl, das langkettige, mehrfach ungesättigte Fettsäuren aus Biomassen enthält, Verfahren zur Herstellung, Lebensmittel, Nahrungsmittelzusammensetzung, kosmetische oder pharmazeutische Zusammensetzung, die dieses enthält

Patent Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352605A (en) 1983-01-17 1994-10-04 Monsanto Company Chimeric genes for transforming plant cells using viral promoters
WO1984002913A1 (en) 1983-01-17 1984-08-02 Monsanto Co Chimeric genes suitable for expression in plant cells
US5504200A (en) 1983-04-15 1996-04-02 Mycogen Plant Science, Inc. Plant gene expression
EP0249676A2 (de) 1986-01-28 1987-12-23 Sandoz Ltd. Verfahren zur Genexpression in Pflanzen
US4962028A (en) 1986-07-09 1990-10-09 Dna Plant Technology Corporation Plant promotors
US5608152A (en) 1986-07-31 1997-03-04 Calgene, Inc. Seed-specific transcriptional regulation
US5315001A (en) 1986-07-31 1994-05-24 Calgene Inc. Acyl carrier protein - DNA sequence and synthesis
US5169770A (en) 1987-12-21 1992-12-08 The University Of Toledo Agrobacterium mediated transformation of germinating plant seeds
US5376543A (en) 1987-12-21 1994-12-27 The University Of Toledo Agrobacterium mediated transformation of germinating plant seeds
EP0397687A1 (de) 1987-12-21 1990-11-22 Upjohn Co Transformation von keimenden pflanzensamen mit hilfe von agrobacterium.
EP0335528A2 (de) 1988-03-29 1989-11-15 E.I. Du Pont De Nemours And Company DNS-Promotorfragmente aus Weizen
US5677474A (en) 1988-07-29 1997-10-14 Washington University Producing commercially valuable polypeptides with genetically transformed endosperm tissue
EP0375091A1 (de) 1988-12-21 1990-06-27 Institut Für Genbiologische Forschung Berlin Gmbh Wundinduzierbare und kartoffelknollenspezifische transkriptionale Regulation
EP0388186A1 (de) 1989-03-17 1990-09-19 E.I. Du Pont De Nemours And Company Externe Regulierung der Genexpression
EP0424047A1 (de) 1989-10-17 1991-04-24 Pioneer Hi-Bred International, Inc. Pflanzengewebekulturverfahren zur Transformation von Pflanzenzellen
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
WO1991013980A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Novel sequences preferentially expressed in early seed development and methods related thereto
US5187267A (en) 1990-06-19 1993-02-16 Calgene, Inc. Plant proteins, promoters, coding sequences and use
WO1993020216A1 (en) 1991-02-22 1993-10-14 University Technologies International, Inc. Oil-body protein cis-elements as regulatory signals
WO1992018634A1 (en) 1991-04-09 1992-10-29 Unilever Plc Plant promoter involved in controlling lipid biosynthesis in seeds
US5614393A (en) 1991-10-10 1997-03-25 Rhone-Poulenc Agrochimie Production of γ-linolenic acid by a Δ6-desaturase
WO1993006712A1 (en) 1991-10-10 1993-04-15 Rhone-Poulenc Agrochimie Production of gamma linolenic acid by a δ6-desaturase
WO1993011245A1 (en) 1991-12-04 1993-06-10 E.I. Du Pont De Nemours And Company Fatty acid desaturase genes from plants
EP0550162A1 (de) 1991-12-31 1993-07-07 University of Kentucky Research Foundation Änderung von Fettsäuren durch eine Desaturase in transgenischem Pflanzengewebe
US5530149A (en) 1992-03-13 1996-06-25 Bayer Aktiengesellschaft Azolylmethyl-fluorocyclopropyl derivatives
EP0571741A2 (de) 1992-03-27 1993-12-01 Sumitomo Chemical Company, Limited Samen-Expressionsplasmid
WO1993021334A1 (en) 1992-04-13 1993-10-28 Zeneca Limited Dna constructs and plants incorporating them
JPH0662870A (ja) 1992-08-18 1994-03-08 Mitsui Giyousai Shokubutsu Bio Kenkyusho:Kk 大豆ホスホエノールピルビン酸カルボキシラーゼ遺伝子のプロモーター領域及び5’非翻訳領域
WO1994011516A1 (en) 1992-11-17 1994-05-26 E.I. Du Pont De Nemours And Company Genes for microsomal delta-12 fatty acid desaturases and related enzymes from plants
WO1994018337A1 (en) 1993-02-05 1994-08-18 Monsanto Company Altered linolenic and linoleic acid content in plants
WO1995015389A2 (en) 1993-12-02 1995-06-08 Olsen Odd Arne Promoter
WO1995016783A1 (en) 1993-12-14 1995-06-22 Calgene Inc. Controlled expression of transgenic constructs in plant plastids
WO1995018222A1 (fr) 1993-12-28 1995-07-06 Kirin Beer Kabushiki Kaisha Gene pour acide gras-desaturase, vecteur contenant ledit gene, vegetal contenant ledit gene lui ayant ete transfere, et procede pour creer ledit vegetal
WO1995019443A2 (en) 1994-01-13 1995-07-20 Ciba-Geigy Ag Chemically regulatable and anti-pathogenic dna sequences and uses thereof
WO1995023230A1 (en) 1994-02-24 1995-08-31 Olsen Odd Arne Promoter from a lipid transfer protein gene
US5968791A (en) 1994-04-06 1999-10-19 Calgene, Inc. Plant lysophosphatidic acid acyltransferases
WO1996012814A1 (en) 1994-10-21 1996-05-02 Danisco A/S Promoter sequence from potato
WO1996021022A2 (en) 1994-12-30 1996-07-11 Rhone-Poulenc Agrochimie Production of gamma linolenic acid by a δ6-desaturase
US5689040A (en) 1995-02-23 1997-11-18 The Regents Of The University Of California Plant promoter sequences useful for gene expression in seeds and seedlings
EP0781849A1 (de) 1995-07-05 1997-07-02 Sapporo Breweries Ltd. Gewebsspezifischer promotor
WO1997006250A1 (en) 1995-08-10 1997-02-20 Rutgers University Nuclear-encoded transcription system in plastids of higher plants
WO1997021340A1 (en) 1995-12-14 1997-06-19 Cargill, Incorporated Plants having mutant sequences that confer altered fatty acid profiles
WO1997030582A1 (en) 1996-02-06 1997-08-28 Carnegie Institution Of Washington Production of hydroxylated fatty acids in genetically modified plants
EP0794250A1 (de) 1996-03-04 1997-09-10 Soremartec S.A. Isolierung und Sequenzierung des FAd2-N Gens der Haselnuss
WO1998001572A1 (de) 1996-07-03 1998-01-15 Hoechst Research & Technology Deutschland Gmbh & Co. Kg Genetische transformation von ciliatenzellen durch microcarrier- bombardement mit dna-beladenen goldpartikeln
WO1998008962A1 (en) 1996-08-30 1998-03-05 Monsanto Company Early seed 5' regulatory sequence
WO1998027203A1 (en) 1996-12-18 1998-06-25 Kosan Biosciences Production of polyketides in bacteria and yeast
WO1998045461A1 (en) 1997-04-09 1998-10-15 Rhone-Poulenc Agro An oleosin 5' regulatory region for the modification of plant seed lipid composition
WO1998046764A1 (en) 1997-04-11 1998-10-22 Calgene Llc Methods and compositions for synthesis of long chain polyunsaturated fatty acids in plants
WO1998046765A1 (en) 1997-04-11 1998-10-22 Calgene Llc Methods and compositions for synthesis of long chain polyunsaturated fatty acids
WO1998046763A1 (en) 1997-04-11 1998-10-22 Calgene Llc Methods and compositions for synthesis of long chain polyunsaturated fatty acids
WO1998046776A2 (en) 1997-04-11 1998-10-22 Calgene Llc Plant fatty acid synthases and use in improved methods for production of medium-chain fatty acids
WO1998055625A1 (en) 1997-06-04 1998-12-10 Calgene, Llc Production of polyunsaturated fatty acids by expression of polyketide-like synthesis genes in plants
WO1999016890A2 (en) 1997-09-30 1999-04-08 The Regents Of The University Of California Production of proteins in plant seeds
WO1999027111A1 (en) 1997-11-24 1999-06-03 University Of Bristol Desaturase genes and their use
WO1999046394A1 (en) 1998-03-11 1999-09-16 Novartis Ag Novel plant plastid promoter sequence
WO1999064616A2 (en) 1998-06-12 1999-12-16 Abbott Laboratories Polyunsaturated fatty acids in plants
WO2000018889A2 (en) 1998-09-25 2000-04-06 Calgene Llc Sequenzes of putative plant acyltransferases
WO2000021557A1 (en) 1998-10-09 2000-04-20 Merck & Co., Inc. Delta 6 fatty acid desaturase
WO2000042195A2 (en) 1999-01-14 2000-07-20 Omegatech, Inc. Schizochytrium pks genes
DE10219203A1 (de) 2002-04-29 2003-11-13 Basf Plant Science Gmbh Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen

Non-Patent Citations (124)

* Cited by examiner, † Cited by third party
Title
"Applied Microbiol. Physiology, A Practical Approach", 1997, IRL PRESS, pages: 53 - 73
"Biology of Procaryotes", 1999, THIEME
"Cloning Vectors", 1985, EISEVIER
"Current Protocols in Molecular Biology", 1989, JOHN WILEY & SONS, pages: 6.3.1 - 6.3.6
"Essential Molecular Biology: A Practical Approach", 1991, IRL PRESS AT OXFORD UNIVERSITY PRESS
"Manual of Methods für General Bacteriology", 1981, AMERICAN SOCIETY FÜR BACTERIOLOGY
"Methods in Molecular Biology", vol. 44, 1995, HUMANA PRESS, article "Agrobacterium protocols"
"More Gene Manipulations in Fungi", ACADEMIC PRESS, pages: 396 - 428
"Nucleic Acids Hybridization: A Practical Approach", 1985, IRL PRESS AT OXFORD UNIVERSITY PRESS
"Plant Molecular Biology and Biotechnology", 1993, C PRESS, pages: 71 - 119
"Progress in Lipid Research", vol. 1, 1952, PERGAMON PRESS, pages: 16
"Transgenic Plants, Bd. 1, Engineering and Utilization", vol. 1, 1993, ACADEMIC PRESS, article "Vectors for Gene Transfer in Higher Plants", pages: 15 - 38
ABBADI ET AL., EUROPEAN JOUMAL OF UPID SCIENCE & TECHNOLOGY, vol. 103, 2001, pages 106 - 113
AKERMOUN ET AL., BIOCHEMICAL SOCIETY TRANSACTIONS, vol. 28, 2000, pages 713 - 715
ÄLTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
AMANN ET AL., GENE, vol. 69, 1988, pages 301 - 315
AUSUBEL, F.M.; BRENT, R.; KINGSTON, R.E.; MOORE, D.D.; SEIDMAN, J.G.; SMITH, J.A.; STRUHL, K.; ALBRIGHT, L.B.; COEN, D.M.; VARKI,: "Current Protocols in Molecular Biology", 1995, JOHN WILEY & SONS
BAEUMLEIN ET AL., MOL GEN GENET, vol. 225, no. 3, 1991, pages 459 - 67
BÄEUMLEIN ET AL., PLANT J., vol. 2, no. 2, 1992, pages 233 - 239
BAEUMLEIN ET AL., PLANT JOURNAL, vol. 2, no. 2, 1992, pages 233 - 9
BALDARI ET AL., EMBO J., vol. 6, 1987, pages 229 - 234
BÄUMLEIN ET AL., PLANT J., vol. 2, 1992, pages 2
BECKER ET AL., PLANT MOL. BIOL., vol. 20, 1992, pages 1195 - 1197
BECKER, D.; KEMPER, E.; SCHELL, J.; MASTERSON, R.: "New plant binary vectors with selectable markers located proximal to the left border", PLANT MOL. BIOL., vol. 20, 1992, pages 1195 - 1197
BEITER, P.A. ET AL.: "Bioseparations: downstream processing for Biotechnology", 1988, JOHN WILEY AND SONS
BENFEY ET AL., EMBO J., vol. 8, 1989, pages 2195 - 2202
BEVAN, M.W.: "Binary Agrobacterium vectors for plant transformation", NUCL. ACIDS RES., vol. 12, 1984, pages 8711 - 8721
BROWSE ET AL., ANALYTIC BIOCHEMISTRY, vol. 152, 1986, pages 141 - 145
CAHOON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 96, no. 22, 1999, pages 12935 - 12940
CASES ET AL., PROC. NAT. ACAD. SCI. USA., vol. 95, 1998, pages 13018 - 13023
CHIRGWIN ET AL., BIOCHEMISTRY, vol. 18, 1979, pages 5294 - 5299
CHMIEL: "Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik", 1991, GUSTAV FISCHER VERLAG
CHRISTIE, WILLIAM W.: "Advances in Lipid Methodology", OILY PRESS
CHRISTIE, WILLIAM W.: "Gas Chromatography arid Lipids. A Practical Guide - Ayr", vol. 1X, 1989, OILY PRESS, pages: 307
CHRISTIE; DUNDEE: "Advances on Upid Methodology", 1997, OILY PRESS, pages: 119 - 169
DE BLOCK ET AL., PLANT PHYSIOL., vol. 91, 1989, pages 694 - 701
DEBLAERE ET AL., NUCL. ACIDS RES., vol. 13, 1984, pages 4777 - 4788
DECHOW, F.J.: "Separation and purification techniques in biotechnology", 1989, NOYES PUBLICATIONS
F.C. NEIDHARDT ET AL.: "E. coli und Salmonella", 1996, ASM PRESS, pages: 612 - 636
F.F. WHITE; B. JENES ET AL.: "Transgenic Plants, Bd. 1, Engineering and Utilization", vol. 1, 1993, ACADEMIC PRESS, article "Techniques for Gene Transfer", pages: 128 - 43
FALCIATORE ET AL., MARINE BIOTECHNOLOGY, vol. 1, no. 3, 1999, pages 239 - 251
FALCIATORE ET AL., MARINE BIOTECHNOLOGY.1, vol. 3, 1999, pages 239 - 251
FALLON, A. ET AL.: "Applications of HPLC in Biochemistry", LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 17, 1987
FRANCK ET AL., CELL, vol. 21, 1980, pages 285 - 294
FRASER; STOBART, BIOCHEMICAL SOCIETY TRANSACTIONS, vol. 28, 2000, pages 715 - 7718
FREELING; WALBOT: "The maize handbook", 1993, SPRINGER VERLAG
FRENTZEN, FETT/LIPID:.IPID, vol. 100, 1998, pages 161 - 166
GALLIE ET AL., NUD. ACIDS RESEARCH, vol. 15, 1987, pages 8693 - 8711
GASCHROMATOGRAPHIE-MASSENSPEKTROMETRIE-VERFAHREN, LIPIDE, vol. 33, 1998, pages 343 - 353
GATZ ET AL., PLANT J., vol. 2, 1992, pages 397 - 404
GATZ ET AL.: "Tetracyclininduzierbar", PLANT J., vol. 2, 1992, pages 397 - 404
GATZ, ANNU. REV. PLANT PHYSIOL. PLANT MOL. BIOL., vol. 48, 1997, pages 89 - 108
GELVIN, STANTON B.; SCHILPEROORT, ROBERT A.: "Plant Molecular Biology Manual", 1995, KLUWER ACADEMIC PUBL.
GERHARDT ET AL., BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1490, no. 1-2, 2000, pages 87 - 98
GERHARDT, PROG. LIPID R., vol. 31, 1992, pages 397 - 417
GIELEN ET AL., EMBO J., vol. 3, 1984, pages 835FF
GLICK, BEMARD R.; THOMPSON, JOHN E.: "Methods in Plant Molecular Biology and Biotechnology", 1993, CRC PRESS
GOEDDEL: "Gene Expression Technology: Methods in Enzymology", vol. 185, 1990, ACADEMIC PRESS
GOEDDEL: "Gene Expression Technology: Methods in Enzymology", vol. 185, 1990, ACÄDEMIC PRESS
GOOSSENS ET AL., PLANT PHYS., vol. 120, no. 4, 1999, pages 1095 - 1103
GOTTESMAN, S.: "Gene Expression Technology: Methods in Enzymology", vol. 185, 1990, ACADEMIC PRESS, pages: 119 - 128
GRUBER; CROSBY: "Methods in Plant Molecular Biology and Biotechnolgy", CRC PRESS, pages: 89 - 108
GÜHNEMANN-SCHÄFER; KINDL, BIOCHIM. BIOPHYS ACTA, vol. 1256, 1995, pages 181 - 186
HELLENS ET AL., TRENDS IN PLANT SCIENCE, vol. 5, 2000, pages 446 - 451
HÖFGEN; WILLMITZER, PLANT SCIENCE, vol. 66, 1990, pages 221 - 230
HUANG ET AL., LIPIDS, vol. 34, 1999, pages 649 - 659
KAISER; MICHAELIS; MITCHEIL: "Methods in Yeast Genetics", 1994, COLD SPRING HARBOR LABORATORY PRESS
KENNEDY, J.F.; CABRAL, J.M.S.: "Recovery processes for biological Materials", 1992, JOHN WILEY AND SONS
KERMODE, CRIT. REV. PLANT SCI., vol. 15, no. 4, 1996, pages 285 - 423
KINNEY: "Genetic Engeneering", vol. 19, 1997, pages: 149 - 166
KNUTZON ET AL., PLANT PHYSIOLOGY, vol. 109, 1995, pages 999 - 1006
KOZAK, CELL, vol. 44, 1986, pages 283 - 292
KOZAK, M.: "Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes", CELL 44, vol. 283, 1986, pages 2929
KUNAU ET AL., PROG. LIPID RES., vol. 34, 1995, pages 267 - 342
KURJAN; HERSKOWITZ, CELL, vol. 30, 1982, pages 933 - 943
LAND, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 235, 1960, pages 2233 - 2237
LARSON; GRAHAM, PLANT JOURNAL, vol. 25, 2001, pages 115 - 125
LUCKIOW; SUMMERS, VIROLOGY, vol. 170, 1989, pages 31 - 39
MAGNUSON, K ET AL., MICROBIOLOGICAL REVIEWS, vol. 57, 1993, pages 522 - 542
MCKEON ET AL., METHODS IN ENZYMOL., vol. 71, 1981, pages 12141 - 12147
METZ ET AL., SCIENCE, vol. 293, 2001, pages 290 - 293
MIKOKLAJCZAK ET AL., JOURNAL OF THE AMERICAN OIL CHEMICAL SOCIETY, vol. 38, 1961, pages 678 - 681
MISHRA; KAMISAKA, BIOCHEMISTRY, vol. 355, 2001, pages 315 - 322
MLYNAROVA ET AL., PLANT CELL REPORT, vol. 13, 1994, pages 282 - 285
MOLONEY ET AL., PLANT CELL, vol. 8, 1989, pages 238 - 242
MURPHY; ROSS, PLANT JOUMAL., vol. I 3, no. 1, 1998, pages 1 - 16
OHLROGGE; BROWSE, PLANT CELL, vol. 7, 1995, pages 957 - 970
OTT ET AL., J. MOL. BIOL., vol. 263, 1996, pages 359 - 360
POTRYKUS, ANNU. REV. PLANT PHYSIOL. PLANT MOLEC. BIOL., vol. 42, 1991, pages 205 - 225
REHM: "Biotechnology", vol. 3, 1993, VCH, article "Product recovery and purification", pages: 469 - 714
RIGGS, M.G.; MCLACHLAN, A.: "A simplified screening procedure for large numbers of plasmid mini-preparation", BIOTECHNIQUES, vol. 4, 1986, pages 310 - 313
ROMANOS, M.A. ET AL.: "Foreign gene expression in yeast: a review", YEAST, vol. 8, 1992, pages 423 - 488, XP002939357, DOI: doi:10.1002/yea.320080602
SAMB.ROPK, J.; FRITSCH, E.F.; MANIATIS, T.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK ET AL.: "Molecular Cloning", 1989, COLD SPRING HARBOR LABORATORY
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual.", 1989, COLD SPRING HARBOR LABORATORY PRESS
SCHMIDT, R.; WILLMITZER, L: "High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants", PLANT CELL REP., vol. 7, 1988, pages 583 - 586
SCHULTZ ET AL., GENE, vol. 54, 1987, pages 113 - 123
SHAEIWITZ, JA.; HENRY, J.D.: "Ullmann's Encyclopedia of Industrial Chemistry", vol. B3, 1988, VCH, article "Biochemical Separations", pages: 1 - 27
SHANKLIN; CAHOON, ANNU. REV. PLANT PHYSIOL. PLANT MOL. BIOL., vol. 49, 1998, pages 611 - 641
SLABAS, J. PLANT PHYSIOLOGY, vol. 158, 2001, pages 505 - 513
SMITH ET AL., MOL. CELL BIOL., vol. 3, 1983, pages 2156 - 2165
SMITH, D.B.; JOHNSON, K.S., GENE, vol. 67, 1988, pages 31 - 40
STOCKHAUS ET AL., EMBO J., vol. 8, 1989, pages 2445
STORHAS: "Bioreaktoren und periphere Einrichtungen", 1994, VIEWEG VERLAG
STUDIER ET AL.: "Gene Expression Technology: Methods in.Enzymology", vol. 185, 1990, ACADEMIC PRESS, pages: 60 - 89
STUKEY ET AL., J. BIOL. CHEM., vol. 265, 1990, pages 20144 - 20149
STYMNE ET AL.: "Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants", 1993, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, pages: 150 - 158
STYMNE; STOBART, BIOCHEM. J., vol. 223, 1984, pages 305 - 314
STYMNE; STOBART: "The Biochemistry of Plants: a Comprehensive Treatise", vol. 9, 1987, ACADEMIC PRESS, pages: 175 - 214
THOMAS, PLANT CELL, vol. 263, 1996, pages 359 - 368
TUMANEY; RAJASEKHARAN, BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1439, 1999, pages 47 - 56
ULLMAN: "Encyclopedia of Industrial Chemistry", vol. A2, 1985, VCH, pages: 89 - 90,443-6
VAN DEN HONDEL, C.A.M.J.J. ET AL.: "More Gene Manipulations in Fungi", 1991, ACADEMIC PRESS, article "Heterologous gene expression in filamentous fungi", pages: 396 - 428
VAN DEN HONDEL, C.A.M.J.J.; PUNT, P.J. ET AL.: "Applied Molecular Genetics of fungi", 1991, CAMBRIDGE UNIVERSITY PRESS, article "Gene transfer systems and vector development for filamehtous fungi", pages: 1 - 28
VAN DEN HONDEL, C.A.M.J.J.; PUNT, P.J. ET AL.: "Applied Molecular Genetics of Fungi", 1991, CAMBRIDGE UNIVERSITY PRESS, article "Gene transfer systems and vector development for filamentous fungi", pages: 1 - 28
VOELKER: "Genetic Engeneering", vol. 18, 1996, pages: 111 - 13
WADA ET AL., NATURE, vol. 347, 1990, pages 200 - 203
WANG ET AL., PLANT PHYSIOL. BIOCHEM., vol. 26, 1988, pages 777 - 792
WARD ET AL., PLANT. MOL. BIOL., vol. 22, 1993
WARD ET AL., PLANT. MOL. BIOL., vol. 22, 1993, pages 361 - 366
YAMASHITA ET AL., J. BIOL. CHEM., vol. 20, 2001, pages 26745 - 26752
YAMASHITA ET AL., JOUMAL OF BIOLOGICAL CHEMISTRY, vol. 276, 2001, pages 26745 - 26752
ZANK ET AL., BIOCHEMICAL SOCIETY TRANSACTIONS, vol. 28, 2000, pages 654 - 658

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2166089B1 (de) 2003-08-01 2015-07-01 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
US7879591B2 (en) 2004-11-04 2011-02-01 E.I. Du Pont De Nemours And Company High eicosapentaenoic acid producing strains of Yarrowia lipolytica
EP1809756A2 (de) * 2004-11-04 2007-07-25 E.I. Dupont De Nemours And Company Docosahexaensäure-produzierende stämme von yarrowia lipolytica
EP2649887A2 (de) 2004-11-04 2013-10-16 E. I. du Pont de Nemours and Company Stämme von Yarrowia lipolytica zur Herstellung hochkonzentrierter Eicosapentaensäure
EP1809756A4 (de) * 2004-11-04 2010-10-27 Du Pont Docosahexaensäure-produzierende stämme von yarrowia lipolytica
EP2458000A1 (de) 2004-11-04 2012-05-30 E. I. du Pont de Nemours and Company Grosse Mengen an Arachidonsäure produzierende Yarrowia lipolytica Stämme
US7871804B2 (en) 2004-12-23 2011-01-18 Basf Plant Science Gmbh Method for producing polyunsaturated long-chain fatty acids in transgenic organisms
WO2006069936A3 (de) * 2004-12-23 2007-03-22 Basf Plant Science Gmbh Verfahren zur herstellung von mehrfach ungesättigten langkettigen fettsäuren in transgenen organismen
EP2180046A1 (de) 2004-12-23 2010-04-28 BASF Plant Science GmbH Verfahren zur Herstellung von mehrfach ungesättigten langkettigen Fettsäuren in transgenen Organismen
WO2006069936A2 (de) * 2004-12-23 2006-07-06 Basf Plant Science Gmbh Verfahren zur herstellung von mehrfach ungesättigten langkettigen fettsäuren in transgenen organismen
US8962917B2 (en) 2006-05-17 2015-02-24 E. I. Du Pont De Nemours And Company Delta-5 desaturase and its use in making polyunsaturated fatty acids
WO2007136671A3 (en) * 2006-05-17 2008-04-03 Du Pont Delta5 desaturase and its use in making polyunsaturated fatty acids
US7678560B2 (en) 2006-05-17 2010-03-16 E.I. Du Pont De Nemours And Company Δ 5 desaturase and its use in making polyunsaturated fatty acids
US8110388B2 (en) 2007-05-25 2012-02-07 Suntory Holdings Limited Lysophosphatidic acid acyltransferase genes
EP2182071A1 (de) * 2007-07-23 2010-05-05 Suntory Holdings Limited Fettsäurezusammensetzung mit neuem fettsäuregehalt
EP2182071A4 (de) * 2007-07-23 2010-08-25 Suntory Holdings Ltd Fettsäurezusammensetzung mit neuem fettsäuregehalt
US8551744B2 (en) 2007-07-23 2013-10-08 Suntory Holdings Limited Method of preparing a fatty acid composition
CN101578372B (zh) * 2007-07-23 2013-06-26 三得利控股株式会社 具有新型脂肪酸组成的脂肪酸组合物
WO2010023202A2 (en) 2008-08-26 2010-03-04 Basf Plant Science Gmbh Nucleic acids encoding desaturases and modified plant oil
DE112009002048T5 (de) 2008-08-26 2012-01-26 Basf Plant Science Gmbh Nukleinsäure, die Desaturasen kodieren, und modifiziertes Planzenöl
WO2010023202A3 (en) * 2008-08-26 2010-06-24 Basf Plant Science Gmbh Nucleic acids encoding desaturases and modified plant oil
US9090902B2 (en) 2008-08-26 2015-07-28 Basf Plant Science Gmbh Nucleic acids encoding desaturases and modified plant oil
US8790906B2 (en) 2009-03-26 2014-07-29 Suntory Holdings Limited Lysophospholipid acyltransferase
EP2412804A4 (de) * 2009-03-26 2012-09-12 Suntory Holdings Ltd Neue lysophospholipid-acyltransferase
CN102388137A (zh) * 2009-03-26 2012-03-21 三得利控股株式会社 新型溶血磷脂酰基转移酶
US9315835B2 (en) 2009-03-26 2016-04-19 Suntory Holdings Limited Lysophospholipid acyltransferase
JP5539961B2 (ja) * 2009-03-26 2014-07-02 サントリーホールディングス株式会社 新規なリゾリン脂質アシル基転移酵素
EP2412804A1 (de) * 2009-03-26 2012-02-01 Suntory Holdings Limited Neue lysophospholipid-acyltransferase
EP2676554A3 (de) * 2009-03-26 2014-02-26 Suntory Holdings Limited Neuartige Lysophospholipid-Acyltransferase
WO2010147904A1 (en) 2009-06-16 2010-12-23 E. I. Du Pont De Nemours And Company Improved optimized strains of yarrowia lipolytica for high eicosapentaenoic acid production
US8524485B2 (en) 2009-06-16 2013-09-03 E I Du Pont De Nemours And Company Long chain omega-3 and omega-6 polyunsaturated fatty acid biosynthesis by expression of acyl-CoA lysophospholipid acyltransferases
US9029122B2 (en) 2009-06-16 2015-05-12 E I Du Pont De Nemours And Company Long chain omega-3 and omega-6 polyunsaturated fatty acid biosynthesis by expression of acyl-CoA lysophospholipid acyltransferases
WO2010147900A1 (en) 2009-06-16 2010-12-23 E. I. Du Pont De Nemours And Company IMPROVEMENT OF LONG CHAIN OMEGA-3 AND OMEGA-6 POLYUNSATURATED FATTY ACID BIOSYNTHESIS BY EXPRESSION OF ACYL-CoA LYSOPHOSPHOLIPID ACYLTRANSFERASES
WO2010147907A1 (en) 2009-06-16 2010-12-23 E. I. Du Pont De Nemours And Company High eicosapentaenoic acid oils from improved optimized strains of yarrowia lipolytica
EP3178937A1 (de) 2009-08-31 2017-06-14 BASF Plant Science Company GmbH Regulatorische nukleinsäuremoleküle zur erhöhung der samenspezifischen genexpression bei pflanzen,welche die synthese von mehrfach ungesättigten fettsäuren begünstigen
EP3418387A1 (de) 2009-08-31 2018-12-26 Basf Plant Science Company GmbH Regulatorische nukleinsäuremoleküle zur erhöhung der samenspezifischen genexpression in pflanzen zur förderung der erhöhten synthese von mehrfach ungesättigten fettsäuren
EP3121283A1 (de) 2009-08-31 2017-01-25 BASF Plant Science Company GmbH Regulatorische nukleinsäuremoleküle für erhöhte samenspezifische genexpression bei pflanzen, welche die erhöhte synthese von mehrfach ungesättigten fettsäuren unterstützen
WO2011023800A1 (en) 2009-08-31 2011-03-03 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for enhancing seed-specific gene expression in plants promoting enhanced polyunsaturated fatty acid synthesis
WO2012027689A1 (en) 2010-08-26 2012-03-01 E. I. Du Pont De Nemours And Company Recombinant microbial host cells for high eicosapentaenoic acid production
US9416382B2 (en) 2012-06-19 2016-08-16 E I Du Pont De Nemours And Company Production of polyunsaturated fatty acids by coexpression of acyl-CoA:lysophosphatidylcholine acyltransferases and phospholipid:diacylglycerol acyltransferases
US9347075B2 (en) 2012-06-19 2016-05-24 E I Du Pont De Nemours And Company Nucleic acids encoding mutant acyl-CoA:lysophosphatidylcholine acyltransferases
WO2013192002A1 (en) 2012-06-19 2013-12-27 E. I. Du Pont De Nemours And Company IMPROVED PRODUCTION OF POLYUNSATURATED FATTY ACIDS BY COEXPRESSION OF ACYL-CoA:LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASES AND PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASES
WO2013192007A1 (en) 2012-06-19 2013-12-27 E. I. Du Pont De Nemours And Company MUTANT ACYL-CoA:LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASES
US9005940B2 (en) 2012-12-21 2015-04-14 E I Du Pont De Nemours And Company Down-regulation of a polynucleotide encoding a Sou2 sorbitol utilization protein to modify lipid production in microbial cells
US9441209B2 (en) 2012-12-21 2016-09-13 E I Du Pont De Nemours And Company Down-regulation of a polynucleotide encoding a Sou2 sorbitol utilization protein to modify lipid production in microbial cells
WO2014100061A1 (en) 2012-12-21 2014-06-26 E. I. Du Pont De Nemours And Company Down-regulation of a polynucleotide encoding a sou2 sorbitol utilization protein to modify lipid production in microbial cells
US9701989B2 (en) 2012-12-21 2017-07-11 E I Du Pont De Nemours And Company Recombinant microbial cells that produce at least 28% eicosapentaenoic acid as dry cell weight

Also Published As

Publication number Publication date
CA2517253C (en) 2018-07-03
CA2517253A1 (en) 2004-09-10
AU2004215705A1 (en) 2004-09-10
US20090209774A1 (en) 2009-08-20
US8486671B2 (en) 2013-07-16
US7537920B2 (en) 2009-05-26
EP1599582B1 (de) 2011-07-27
US20060168687A1 (en) 2006-07-27
WO2004076617A3 (de) 2004-10-28
EP1599582A2 (de) 2005-11-30
AU2004215705B2 (en) 2009-11-12
ATE517984T1 (de) 2011-08-15
US20140026259A1 (en) 2014-01-23
BRPI0407138A (pt) 2006-01-10
NO20053149D0 (no) 2005-06-28

Similar Documents

Publication Publication Date Title
EP1599582B1 (de) Verfahren zur herstellung mehrfach ungesättigter fettsäuren
EP2180046B1 (de) Verfahren zur Herstellung von mehrfach ungesättigten langkettigen Fettsäuren in transgenen Organismen
EP2365063B1 (de) Neue pflanzliche Acyltransferase spezifisch für langkettige mehrfach ungesättigte Fettsäuren
US7893320B2 (en) Method for producing multiple unsaturated fatty acids in plants
EP2177605B1 (de) Delta-5 Desaturasen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen nicht-humanen Organismen
WO2008009600A1 (de) Verfahren zur herstellung von arachidonsäure und/oder eicosapentaensäure in pflanzen
WO2002057465A2 (de) Verfahren zur herstellung mehrfach ungesaettigter fettsaeuren, neue biosynthesegene sowie neue pflanzliche expressionskonstrukte
DE102004017518A1 (de) Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 169244

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2004706146

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004215705

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2517253

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2006168687

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10547447

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004215705

Country of ref document: AU

Date of ref document: 20040129

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004215705

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004706146

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0407138

Country of ref document: BR

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 10547447

Country of ref document: US