WO2004076065A1 - Carbon dioxide gas absorber and process for producing the same - Google Patents

Carbon dioxide gas absorber and process for producing the same Download PDF

Info

Publication number
WO2004076065A1
WO2004076065A1 PCT/JP2004/002075 JP2004002075W WO2004076065A1 WO 2004076065 A1 WO2004076065 A1 WO 2004076065A1 JP 2004002075 W JP2004002075 W JP 2004002075W WO 2004076065 A1 WO2004076065 A1 WO 2004076065A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
dioxide gas
resin
gas absorber
absorber
Prior art date
Application number
PCT/JP2004/002075
Other languages
French (fr)
Japanese (ja)
Inventor
Hideharu Iwasaki
Nozomu Sugoh
Kazuya Shimizu
Hiroyuki Kawai
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to JP2005502870A priority Critical patent/JP4732168B2/en
Publication of WO2004076065A1 publication Critical patent/WO2004076065A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide absorber and a method for producing the same.
  • the carbon dioxide gas absorber provided by the present invention is excellent in carbon dioxide gas absorbing ability, and thus is suitably used for a device such as a secondary battery or a storage battery that generates carbon dioxide gas and deteriorates in performance. Background art
  • Japanese Patent Application Laid-Open No. 2000-2000 discloses a method in which a specific voltage is applied at a stage before a case is sealed as a final step.
  • a method of removing residual moisture that causes deterioration and a functional group that generates water due to decomposition is not an effective method because the concentration of the electrolyte in the secondary battery decreases and other problems such as a decrease in the effective capacity voltage occur. hard.
  • an object of the present invention is to provide a highly safe carbon dioxide gas absorber that can easily absorb carbon dioxide gas and can avoid problems such as reduction in electrolyte concentration.
  • Another object of the present invention is to provide an industrially advantageous production method capable of producing such a carbon dioxide gas absorber inexpensively and with good yield. Disclosure of the invention
  • the present invention is a carbon dioxide gas absorber mainly comprising an easily carbonylable resin and a catalyst for the formation of a carbonyl compound.
  • another invention of the present invention is to disperse and dissolve the catalyzed sulfonylation catalyst in an easily catalyzed rubonylation resin solution in which the easily catalyzed resin is dissolved in an organic solvent, and then remove the organic solvent. That This is a method for producing a carbon dioxide gas absorber characterized by the following. BEST MODE FOR CARRYING OUT THE INVENTION
  • carbonylation means a reaction that reacts with carbon dioxide to generate a carbonyl group in a molecule.
  • the easily carbonylable resin used in the present invention is not particularly limited as long as it is a resin having a functional group which is easily carbonylated by reacting with carbon dioxide in the presence or absence of a catalyst.
  • those having an epoxy group at the molecular terminal and Z or in the molecular chain are preferable.
  • Examples of such easily-powered resin include epoxidized resins of polygen resins such as cis-polybutadiene, trans-polybutadiene, mixed polybutadiene, cis-polyisoprene, trans-polyisoprene, and mixed polyisoprene; styrene-butadiene Epoxidized resin of block copolymer, epoxidized resin of styrene-soprene block copolymer, epoxidized resin of styrene-butadiene random copolymer, epoxidized resin of styrene-isoprene random copolymer, styrene-butadiene-styrene Epoxidized resin of block copolymer, epoxidized resin of styrene-isoprene-styrene block copolymer, polyoctenylene, polynorpolene, epoxidized
  • the epoxidation rate of carbon-carbon double bond in the resin may be 90% or more from the viewpoint of carbon dioxide absorption efficiency, but other electrochemical reactions Is preferably 98% or more in order not to cause the occurrence of the problem.
  • the easily-powered luponylated resin preferably has a number-average molecular weight in the range of 100 000 000 000, and 200 000 000 Those in the range are more preferred.
  • the carbon dioxide absorber of the present invention may be used alone, or may be supported on a carrier or another material.
  • the carbon dioxide gas absorber of the present invention can be formed into a single and free shape, and can have a low solubility in a solvent, particularly when a force-resistant resin having an average molecular weight in the above range is used.
  • a lithium salt or a quaternary ammonium salt containing octogen is preferable.
  • the halogen-containing lithium salt include lithium chloride, titanium bromide, lithium iodide, lithium perchlorate, lithium tetrafluoroborate, U-titanium hexafluorophosphate, and the like.
  • lithium bromide, lithium tetrafluoroborate and lithium hexafluorophosphate are preferred.
  • ammonium groups of the quaternary ammonium salts containing octylogen include tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium tetralanthyl.
  • Examples of the quaternary ammonium salt containing a halogen include chloride, promide, iodide, tetrafluorophosphate, perchlorate, and pentafluorophosphate of the above-mentioned ammonium group. it can.
  • the amount of the catalyst used is not particularly limited. However, in consideration of the compatibility with the above-described easily-responylated resin, 100 parts by weight of the easily-carponylated resin is used. 0.001 to 100 parts by weight In consideration of absorption efficiency, operability, and economy, 0.0250 parts by weight, more preferably 0.01 to 20 parts by weight Department. Usually an easily carbonylated resin 0.001 to 0.5 mol per 1 mol of the easily-powered luponylated functional group contained therein, and 0.00002 to 0.3 in consideration of reactivity, economy and the like. Mole, more preferably in the range of 0.005 to 0.2 mole.
  • the carbon dioxide gas absorber of the present invention is manufactured by dispersing a catalyzed ruponylation catalyst in a readily susceptible luponylated resin solution in which an easily catalyzed ruponylated resin is dissolved in an organic solvent, dissolving the resultant, and then removing the organic solvent. be able to.
  • the organic solvent is not particularly limited as long as it does not reduce the force-ponylation activity of the force-ponylation catalyst.
  • examples of the organic solvent include pentane, hexane, cyclohexane, heptane, octane, and cyclohexane.
  • Aliphatic hydrocarbons such as octane and decane; Aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene; Jetyl ether, methyl t-butyl ether, tetrahydrofuran, tetrahydropyran, diisopropyl ether, dibutyl ether, etc.
  • the amount of the organic solvent used is preferably such that the concentration of the easily luponylated resin is 0.1 to 30% by weight in consideration of the dispersibility of the electroluponylation catalyst. It is preferable to use the compound in such an amount as to give a concentration of 0.5 to 28 weight in consideration of the operability and the cost.
  • Temperature and force of dissolving carbonylable resin in organic solvent The temperature at which the catalyst is dispersed and dissolved varies depending on the organic solvent used, but is usually in the range of 0 to 200, and in the range of 20 to 150 ° C in consideration of operability. Is preferred. These operations are usually performed in an atmosphere of an inert gas such as nitrogen or argon in consideration of safety and the like.
  • the organic solvent is removed from the solution obtained by dispersing and dissolving the catalyzed rubonylation catalyst in the easily catalyzed rubonylation resin solution. It is efficient to remove the organic solvent under reduced pressure, and it is also desirable from the viewpoint of preventing alteration and the like.
  • the degree of pressure reduction depends on the organic solvent used. It is more preferable to adjust the temperature to 50 ° C. or lower.
  • the obtained carbon dioxide gas absorbent is preferably handled under nitrogen, and if necessary, is stored in water or an organic solvent.
  • the carbon dioxide absorber obtained in this way is molded into pellets, films, fibers, woven fabrics, non-woven fabrics, etc., if necessary, as long as its function is not impaired. Applies to equipment.
  • the carbon dioxide gas absorber obtained according to the present invention is applied to, for example, a battery, it is practically sufficient if about 10% of the epoxy groups are calponylated, and stored in a film-like space in the space below the battery.
  • When used as a separator component it functions as a carbon dioxide gas absorber.
  • a carbon dioxide gas absorber was obtained in the same manner as in Example 1 except that polyglycidyl acrylate (number average molecular weight: 420) was used instead of polyglycidyl vinyl ether.
  • the absorption of carbon dioxide in the obtained carbon dioxide absorber was examined in the same manner as in Example 1.
  • 31% of the epoxy functional groups of the polyglycidyl acrylate were calponylated.
  • the carbon dioxide absorber obtained in Example 2 absorbed carbon dioxide. I understand.
  • a gas carbonate absorber was obtained in the same manner as in Example 2 except that tetrabutylammonium bromide was used instead of trioctylmethylammonium chloride.
  • tetrabutylammonium bromide was used instead of trioctylmethylammonium chloride.
  • a carbon dioxide gas absorber was obtained in the same manner as in Example 2 except that tetrabutylammonium tetrafluoroborate was used instead of trioctylmethylammonium chloride.
  • tetrabutylammonium tetrafluoroborate was used instead of trioctylmethylammonium chloride.
  • a carbon dioxide gas absorber was obtained in the same manner as in Example 2 except that tetrabutylammonium pentafluorophosphate was used in place of trioctylmethylammonium mouth lid. Examination of the absorption of carbon dioxide gas in the same manner as described above revealed that 26% of the epoxy functional groups of the polyglycidyl acrylate had been converted to phenol. This indicates that the carbon dioxide absorber obtained in Example 5 absorbed carbon dioxide.
  • Example 6 A carbon dioxide gas absorber was obtained in the same manner as in Example 2 except that lithium bromide was used instead of trioctylmethylammonium chloride. The carbon dioxide absorption of the obtained carbon dioxide gas absorber was examined in the same manner as in Example 1. As a result, 41% of the epoxy functional groups of the polyglycidyl acrylate were calponylated. This indicates that the carbon dioxide absorber obtained in Example 6 absorbed carbon dioxide.
  • a carbon dioxide gas absorber was obtained in the same manner as in Example 1 except that lithium tetrafluoroborate was used instead of trioctylmethylammonium chloride.
  • the absorption of carbon dioxide in the obtained carbon dioxide absorber was examined in the same manner as in Example 1. As a result, 33% of the epoxy functional groups of the polyglycidyl vinyl ether were calponylated. This indicates that the carbon dioxide absorber obtained in Example 7 absorbed carbon dioxide.
  • a carbon dioxide gas absorber was obtained in the same manner as in Example 1 except that lithium hexafluorophosphate was used instead of lithium tetrafluoroporate.
  • the absorption of carbon dioxide in the obtained carbon dioxide absorber was examined in the same manner as in Example 1. As a result, it was found that 27% of the epoxy functional groups of the polyglycidyl vinyl ether had been carbonylated. This indicates that the carbon dioxide absorber obtained in Example 8 absorbed carbon dioxide.
  • a carbon dioxide gas absorber was obtained in the same manner as in Example 1 except that polyepoxylated cis polyisoprene (number average molecular weight: 1000) was used instead of polyglycidyl ether.
  • the carbon dioxide absorption of the obtained carbon dioxide gas absorber was examined in the same manner as in Example 1, and it was found that 19% of the epoxy functional groups of isoprene were carbonylated. This indicates that the carbon dioxide absorber obtained in Example 9 absorbed carbon dioxide.
  • the carbon dioxide gas absorber provided by the present invention is excellent in carbon dioxide gas absorbing ability, so that it is suitably used for a device such as a secondary battery or a storage battery that generates carbon dioxide gas and deteriorates in performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Secondary Cells (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

A highly safe carbon dioxide gas absorber that can easily absorb carbon dioxide gas and can avoid problems such as lowering of electrolyte concentration; and an industrially advantageous process capable of producing such a carbon dioxide gas absorber with reduced cost in high yield. In particular, a carbon dioxide gas absorber comprised mainly of a resin capable of easy carbonylation and a carbonylation catalyst; and a process for producing the same.

Description

明 細 書 炭酸ガス吸収体及ぴその製造方法 技術分野  Description Carbon dioxide absorber and its manufacturing method
本発明は炭酸ガス吸収体及びその製造方法に関する。 本発明によ り提供される炭酸ガス吸収体は、 炭酸ガス吸収能に優れているので、 二次電池、 蓄電池など炭酸ガスが発生し、 性能劣化が起こる装置に好 適に使用される。 背景技術  The present invention relates to a carbon dioxide absorber and a method for producing the same. The carbon dioxide gas absorber provided by the present invention is excellent in carbon dioxide gas absorbing ability, and thus is suitably used for a device such as a secondary battery or a storage battery that generates carbon dioxide gas and deteriorates in performance. Background art
従来、 二次電池などでは、 初充電時及び高温貯蔵時に発生する炭 酸ガスにより内圧が上昇し、 開放弁が作動することにより、 液漏れが 生じて密閉性が低下したり、 場合によっては急激な内圧上昇により破 裂に至るという問題があった。 このような問題を解決するために、 炭 酸ガスを発生しない新規な非水電解質に関する種々の研究がなされて おり、 例えば、 特開 2 0 0 2 — 2 3 7 3 3 3号公報に、 リチウムオル ソシリケ一 ト ( L i 4 S i O 4 ) やリチウムメタシリケ一 ト (し i 2 S i 〇 3 ) を使用して、 非水電解質二次電池の使用温度範囲 (一 2 0 °C ~ 1 5 0 °C ) 内において炭酸ガスを速やかに吸収する方法が開示されて いる。 Conventionally, in secondary batteries, etc., the internal pressure rises due to the carbon dioxide gas generated during initial charging and high-temperature storage, and the opening of the open valve causes liquid leakage, resulting in reduced hermeticity and, in some cases, rapid deterioration. There was a problem that bursting could occur due to an excessive increase in internal pressure. In order to solve such a problem, various studies have been made on a novel non-aqueous electrolyte which does not generate carbon dioxide gas. For example, Japanese Patent Application Laid-Open No. 2002-237337 discloses lithium use ol Soshirike one preparative (L i 4 S i O 4 ) and lithium meta silicate are one preparative (with i 2 S i 〇 3), temperature range (one 2 0 ° C in a non-aqueous electrolyte secondary battery A method of rapidly absorbing carbon dioxide gas within a temperature of about 150 ° C.) is disclosed.
また、 特開 2 0 0 0 — 2 0 0 7 3 9号公報に、 二次電池やコンデ ンサを製造するときに、 最終工程であるケースを封止する前の段階で 特定の電圧を印加通電し、 劣化の原因となる残存水分や分解により水 分を発生する官能基を除去する方法が開示されている。 しかしながら、 電解質を炭酸ガスの吸収剤として使用する方法で は、 二次電池内の電解質濃度が低下するため、 実効容量 電圧が低下 するなど別の問題が発生するため 有効な方法であるとは言い難い。 また、 ケースを封止する前の段階で特定の電圧を印加通電し、 残存水 分や分解により水分を発生する官能基を除去する方法では、 本来禁水 条件で実施すべき作業工程中に水を発生させることになるため、 電池 生産効率が低下するだけでなく、 除去のための判断が難しく、 非生産 的である。 In addition, when manufacturing a secondary battery or a capacitor, Japanese Patent Application Laid-Open No. 2000-2000 discloses a method in which a specific voltage is applied at a stage before a case is sealed as a final step. However, there is disclosed a method of removing residual moisture that causes deterioration and a functional group that generates water due to decomposition. However, the method using an electrolyte as an absorbent for carbon dioxide gas is not an effective method because the concentration of the electrolyte in the secondary battery decreases and other problems such as a decrease in the effective capacity voltage occur. hard. In addition, in the method of applying a specific voltage and energizing before the case is sealed to remove residual water and functional groups that generate moisture due to decomposition, water must be added during the work process that should be performed under water-free conditions. This not only reduces battery production efficiency, but also makes judgment for removal difficult and unproductive.
現実には、 劣化原因となる物質を完全に除去することは不可能で あり、 微量に残存する原因物質により炭酸ガス発生が起こっており、 炭酸ガス発生の問題が十分解決されているとはいえないのが現状であ る。 したがって、 本発明の目的は、 炭酸ガスを容易に吸収することが でき、 電解質濃度低減などの問題を回避し得る安全性の高い炭酸ガス 吸収体を提供することにある。 また、 本発明の他の目的は、 このよう な炭酸ガス吸収体を安価に収率よく製造し得る工業的に有利な製造方 法を提供することにある。 発明の開示  In reality, it is impossible to completely remove the substance that causes deterioration, and carbon dioxide is generated by a trace amount of the causative substance.Although the problem of carbon dioxide generation has been sufficiently solved, There is no such thing at present. Therefore, an object of the present invention is to provide a highly safe carbon dioxide gas absorber that can easily absorb carbon dioxide gas and can avoid problems such as reduction in electrolyte concentration. Another object of the present invention is to provide an industrially advantageous production method capable of producing such a carbon dioxide gas absorber inexpensively and with good yield. Disclosure of the invention
本発明者らは鋭意検討し、 易被力ルポニル化樹脂及びカルポニル 化触媒からなる炭酸ガス吸収体及びその製造方法によって上記目的を 達成することができることを見出し本発明に至った。 すなわち本発明 は、 主として易被カルボニル化樹脂及び力ルポ二ル化触媒からなる炭 酸ガス吸収体である。 そして、 本発明のもう一つの発明は 易被カル ポニル化樹脂を有機溶媒に溶解した易被力ルポ二ル化樹脂溶液に力ル ポニル化触媒を分散させ、 溶解し、 次いで有機溶媒を除去することを 特徴とする炭酸ガス吸収体の製造方法である。 発明を実施するための最良の形態 Means for Solving the Problems The present inventors diligently studied and found that the above object can be achieved by a carbon dioxide gas absorber comprising an easily-powered luponylated resin and a calponylation catalyst, and a method for producing the same, and reached the present invention. That is, the present invention is a carbon dioxide gas absorber mainly comprising an easily carbonylable resin and a catalyst for the formation of a carbonyl compound. Further, another invention of the present invention is to disperse and dissolve the catalyzed sulfonylation catalyst in an easily catalyzed rubonylation resin solution in which the easily catalyzed resin is dissolved in an organic solvent, and then remove the organic solvent. That This is a method for producing a carbon dioxide gas absorber characterized by the following. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において 「カルポニル化」 とは、 二酸化炭素と反応して分 子内に力ルポ二ル基を生成する反応を意味する。 本発明に用いられる 易被カルボニル化樹脂としては、 触媒の存在下あるいは非存在下にお いて二酸化炭素と反応して容易にカルポニル化される官能基を有する 樹脂であれば特に制限されるものではないが、 カルポニル化の容易性、 樹脂としての安定性を考慮して、 分子末端及び Z又は分子鎖中にェポ キシ基を有しているものが好ましい。 このような易被力ルポ二ル化樹 脂としては、 例えばシスポリブタジエン、 トランスポリブタジエン、 混合ポリブタジエン、 シスポリイソプレン、 トランスポリイソプレン、 混合ポリイソプレンなどのポリジェン系樹脂のエポキシ化樹脂 ; スチ レン一ブタジエンブロック共重合体のエポキシ化樹脂、 スチレンーィ ソプレンブロック重合体のエポキシ化樹脂、 スチレン—ブタジエンラ ンダム共重合体のエポキシ化樹脂、 スチレン一イソプレンランダム共 重合体のエポキシ化樹脂、 スチレン一ブタジエン一スチレンブロック 共重合体のエポキシ化樹脂、 スチレン—イソプレン一スチレンブロッ ク共重合体のエポキシ化樹脂、 ポリオクテニレン、 ポリ ノルポルネン 開環重合体のエポキシ化樹脂、 ポリグリシジルァク リ レ一ト、 ポリグ リシジルメタァク リ レート、 ポリグリ シジルビニルエーテルなどが挙 げられる。 これらの中でも、 特にポリ グリシジルピニルエーテル、 ポ リグリシジルメ夕ァク リ レート及びポリグリ シジルァク リ レートが好 ましい。  In the present invention, “carbonylation” means a reaction that reacts with carbon dioxide to generate a carbonyl group in a molecule. The easily carbonylable resin used in the present invention is not particularly limited as long as it is a resin having a functional group which is easily carbonylated by reacting with carbon dioxide in the presence or absence of a catalyst. However, in view of the easiness of carbonylation and the stability as a resin, those having an epoxy group at the molecular terminal and Z or in the molecular chain are preferable. Examples of such easily-powered resin include epoxidized resins of polygen resins such as cis-polybutadiene, trans-polybutadiene, mixed polybutadiene, cis-polyisoprene, trans-polyisoprene, and mixed polyisoprene; styrene-butadiene Epoxidized resin of block copolymer, epoxidized resin of styrene-soprene block copolymer, epoxidized resin of styrene-butadiene random copolymer, epoxidized resin of styrene-isoprene random copolymer, styrene-butadiene-styrene Epoxidized resin of block copolymer, epoxidized resin of styrene-isoprene-styrene block copolymer, polyoctenylene, polynorpolene, epoxidized resin of ring-opening polymer, polyglycidyl acrylate, poly Examples include glycidyl methacrylate and polyglycidyl vinyl ether. Among these, polyglycidyl pinyl ether, polyglycidyl methacrylate and polyglycidyl acrylate are particularly preferred.
これらの易被力ルポニル化樹脂のうち、 ポリブタジエンのような 不飽和結合を有する樹脂のエポキシ化物においては、 樹脂中の炭素一 炭素二重結合のエポキシ化率は炭酸ガス吸収能率の観点からは 9 0 % 以上であればよいが、 他の電気化学的反応を起こさないためには 9 8 %以上であることが好ましい。 Of these easily-powered luponylated resins, such as polybutadiene In the case of epoxidized resin having unsaturated bonds, the epoxidation rate of carbon-carbon double bond in the resin may be 90% or more from the viewpoint of carbon dioxide absorption efficiency, but other electrochemical reactions Is preferably 98% or more in order not to cause the occurrence of the problem.
本発明の炭酸ガス吸収体において、 易被力ルポニル化樹脂は、 数 平均分子量が 1 0 0 0 3 0 0 0 0 0の範囲にあるものが好ましく、 2 0 0 0 2 0 0 0 0 0の範囲にあるものがより好ましい。 本発明の 炭酸ガス吸収体を使用する際は、 単独で使用しても良いし、 担体や他 の材料に担持させても良い。 本発明の炭酸ガス吸収体は、 特に上記範 囲の平均分子量を有する 被力ルポ二ル化樹脂を使用した場合に、 単 独で自由な形状に成形でさ 、 溶剤への溶解性 小さ <できるため、 こ れを二次電池、 蓄電池などに使用する 口、 機物質や低分子量物質 を担体に'担持して用いた場合などに比ベ、 電解液 m解質の吸着分解 を起こす心配もなく、 高い容積効率、 設計の白由度を得ることができ る。  In the carbon dioxide gas absorbent of the present invention, the easily-powered luponylated resin preferably has a number-average molecular weight in the range of 100 000 000 000, and 200 000 000 Those in the range are more preferred. When using the carbon dioxide absorber of the present invention, it may be used alone, or may be supported on a carrier or another material. The carbon dioxide gas absorber of the present invention can be formed into a single and free shape, and can have a low solubility in a solvent, particularly when a force-resistant resin having an average molecular weight in the above range is used. Therefore, compared to the case where this is used for secondary batteries, storage batteries, etc., and when mechanical substances and low molecular weight substances are supported on a carrier, there is no fear of causing the adsorbed decomposition of the electrolyte m , High volumetric efficiency and design freedom.
本発明に使用されるカルポニル化触媒としては 、 八ロゲンを含 有するリチウム塩又は第 4級アンモニゥム塩が好ましい。 ハロゲンを 含有するリチウム塩としては、 塩化リチウム、 臭化 チウム、 ゥ化 リチウム、 過塩素酸リチウム、 リチウムテトラフルォロボレ一卜 U チウムへキサフルォロホスフエ トなどを挙げる とができる 中で も、 臭化リチウム、 リチウムテトラフルォロボレ ―卜 、 リチウムへキ サフルォロホスフエ一卜が好ましい。  As the carbonylation catalyst used in the present invention, a lithium salt or a quaternary ammonium salt containing octogen is preferable. Examples of the halogen-containing lithium salt include lithium chloride, titanium bromide, lithium iodide, lithium perchlorate, lithium tetrafluoroborate, U-titanium hexafluorophosphate, and the like. However, lithium bromide, lithium tetrafluoroborate and lithium hexafluorophosphate are preferred.
八ロゲンを含有する第 4級アンモニゥム塩のァンモニゥム基とし てはテトラメチルアンモニゥム、 テトラエチルァンモ二ゥム、 テ卜ラ プロピルアンモニゥム 、 テトラプチルアンモニゥム テ トラぺンチル アンモニゥム、 テ トラへキシルアンモニゥム、 テトラへプチルアンモ 二ゥム、 卜リ メチルェチルアンモニゥム、 ト U メチルプロピルアンモ 二ゥム、 卜リ メチルブチルアンモニゥム、 ト U メチルベンジルアンモ 二ゥム、 ト リェチルメチルアンモニゥム、 ト U チルプロピルアンモ 二ゥム、 卜リェチルプチルアンモニゥム、 卜 U Xチリレベンジリレアンモ 二ゥム、 卜リプロピルメチルアンモニゥム、 卜 Uプロピルェチルアン モニゥム、 卜 リ プロピルべンジルアンモニゥム 、 ト リプチルメチルァ ンモニゥム、 ト リプチルェチルアンモニゥム 、 卜リブチルプロピルァ ンモニゥム、 卜 リブチルベンジルアンモニゥム 、 ト リオクチルメチル アンモニゥム 、 トリオクチルェチルァンモニクム 、 ト リオクチルプロ ピルアンモニゥム、 ト リオクチルペンジルァンモ二ゥム、 ジメチルジ ェチルアンモ二ゥム、 ジメチルジプロピルァンモ二ゥム、 ジメチルジ プチルアンモ二ゥム、 ジメチルジォクチルァンモ二ゥム、 ジメチルジ ベンジルアンモニゥム、 ジェチルジプ口ピルァンモニゥム、 ジェチル ジブチルアンモニゥム、 ジェチルジべンジルァンモニゥム、 メチルピ リジニゥム、 セチルピリジニゥムの各アンモ ―ゥム基が挙げられる。 ハロゲンを含有する第 4級アンモニゥム塩としては、 上記アンモニゥ ム基のクロリ ド、 プロミ ド、 ィォダイ ド、 テ卜ラフルォロポレー ト、 パ一クロレイ ト、 ペンタフルォロホスフエ一 卜などを例示することが できる。 The ammonium groups of the quaternary ammonium salts containing octylogen include tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium tetralanthyl. Ammonium, tetrahexylammonium, tetraheptylammonium, trimethylethylammonium, U-methylpropylammonium, trimethylbutylammonium, u-methylbenzylammonium Trimethylmethylammonium, triethylpropylammonium, triethylbutylammonium, triux-butyl benzylammonium, tripropylmethylammonium, tripropylmethylammonium, trimethylpropylammonium Ammonia, tripropylbenzylammonium, triptylmethylammonium, triptylethylammonium, tributylpropylammonium, tributylbenzylammonium, trioctylmethylammonium, trioctyljem Chillammonium, Trioctylpropyrarnmonium Trioctyl pentaammonium, dimethyldiethylammonium, dimethyldipropylammonium, dimethyldibutylammonium, dimethyldioctylammonium, dimethyldibenzylammonium, getylzip Examples include pyrammonium, getyl dibutylammonium, getyldibenzylammonium, methylpyridinium, and cetylpyridinium ammonium groups. Examples of the quaternary ammonium salt containing a halogen include chloride, promide, iodide, tetrafluorophosphate, perchlorate, and pentafluorophosphate of the above-mentioned ammonium group. it can.
力ルポ二ル化触媒の使用量は特に制限されるものではないが、 先 述した易被力ルポニル化樹脂との相溶性を考慮して、 易被カルポニル 化樹脂 1 0 0重量部に対して、 0 . 0 0 1 〜 1 0 0重量部 吸収の効 率、 操作性、 経済性を考慮して、 0 . 0 0 2 5 0重量部、 より好ま しくは、 0 . 0 1 〜 2 0重量部である 。 通常 、 易被カルボニル化樹脂 中に含まれる易被力ルポニル化官能基量 1モルに対して 0 . 0 0 0 1 〜 0 . 5モル、 反応性、 経済性などを考慮して、 0 . 0 0 0 2〜 0 . 3モル、 より好ましくは 0 . 0 0 0 5〜 0 . 2モルの範囲で使用され る。 The amount of the catalyst used is not particularly limited. However, in consideration of the compatibility with the above-described easily-responylated resin, 100 parts by weight of the easily-carponylated resin is used. 0.001 to 100 parts by weight In consideration of absorption efficiency, operability, and economy, 0.0250 parts by weight, more preferably 0.01 to 20 parts by weight Department. Usually an easily carbonylated resin 0.001 to 0.5 mol per 1 mol of the easily-powered luponylated functional group contained therein, and 0.00002 to 0.3 in consideration of reactivity, economy and the like. Mole, more preferably in the range of 0.005 to 0.2 mole.
本発明の炭酸ガス吸収体は、 易被力ルポニル化樹脂を有機溶媒に 溶解した易被力ルポニル化樹脂溶液に力ルポニル化触媒を分散させ、 溶解し、 次いで有機溶媒を除去することにより製造することができる。  The carbon dioxide gas absorber of the present invention is manufactured by dispersing a catalyzed ruponylation catalyst in a readily susceptible luponylated resin solution in which an easily catalyzed ruponylated resin is dissolved in an organic solvent, dissolving the resultant, and then removing the organic solvent. be able to.
有機溶媒としては、 力ルポニル化触媒の力ルポニル化活性を低下 させないものであれば特に制限されるものではなく、 有機溶媒として は、 例えばペンタン、 へキサン、 シクロへキサン、 ヘプタン、 ォクタ ン、 シクロオクタン、 デカンなどの脂肪族炭化水素類 ; ベンゼン、 ト ルェン、 キシレン、 メシチレンなどの芳香族炭化水素類 ; ジェチルェ 一テル、 メチル t一ブチルエーテル、 テ 卜ラヒ ドロフラン、 テトラヒ ドロピラン、 ジイソプロピルエーテル、 ジブチルエーテルなどのエー テル類 ; 酢酸メチル、 酢酸ェチル、 酢酸ブチルなどのエステル類 ; ジ メチルカーボネ一 ト、 ジェチルカ一ポネ一 ト、 エチレン力一ポネー ト、 プロピレン力一ポネ一 トなどの力一ポネ一 ト類などを例示することが できる。 中でも、 易被力ルポニル化樹脂の溶解度、 炭酸ガス吸収体へ の残存性、 操作性などを考慮して、 テトラヒ ドロフラン又はプロピレ ンカーボネートを使用するのが好ましい。  The organic solvent is not particularly limited as long as it does not reduce the force-ponylation activity of the force-ponylation catalyst.Examples of the organic solvent include pentane, hexane, cyclohexane, heptane, octane, and cyclohexane. Aliphatic hydrocarbons such as octane and decane; Aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene; Jetyl ether, methyl t-butyl ether, tetrahydrofuran, tetrahydropyran, diisopropyl ether, dibutyl ether, etc. Esters of methyl acetate, ethyl acetate, butyl acetate, etc .; powers of dimethyl carbonate, getylcapone, ethylene, polyethylene, propylene, etc. And the like. Above all, it is preferable to use tetrahydrofuran or propylene carbonate in consideration of the solubility of the easily applied luponylated resin, the persistence in the carbon dioxide gas absorber, the operability, and the like.
有機溶媒の使用量は、 力ルポニル化触媒の分散性を考慮して、 易 被力ルポニル化樹脂の濃度が 0 . 1〜 3 0重量%となるような量で使 用するのが好ましく、 さらに操作性、 籙済性などを考慮して、 0 . 5 ~ 2 8重量 の濃度となるような量で使用するのが好ましい。  The amount of the organic solvent used is preferably such that the concentration of the easily luponylated resin is 0.1 to 30% by weight in consideration of the dispersibility of the electroluponylation catalyst. It is preferable to use the compound in such an amount as to give a concentration of 0.5 to 28 weight in consideration of the operability and the cost.
易被カルボニル化樹脂を有機溶剤に溶解させる温度及び力ルポ二 ル化触媒を分散し、 溶解させる温度は、 使用する有機溶媒によっても 異なるが、 通常 0 〜 2 0 0での範囲であり、 操作性を考慮して、 2 0 〜 1 5 0 °Cの範囲が好ましい。 これらの操作は、 安全性等を考慮し て、 通常、 窒素、 アルゴンなどの不活性ガス雰囲気下で実施される。 Temperature and force of dissolving carbonylable resin in organic solvent The temperature at which the catalyst is dispersed and dissolved varies depending on the organic solvent used, but is usually in the range of 0 to 200, and in the range of 20 to 150 ° C in consideration of operability. Is preferred. These operations are usually performed in an atmosphere of an inert gas such as nitrogen or argon in consideration of safety and the like.
易被力ルポニル化樹脂溶液に力ルポニル化触媒を分散させ溶解し て得られた液から有機溶媒が除去される。 有機溶媒の除去は減圧下で 行うのが効率的であり、 変質分解などを防ぐ意味でも望ましい。 減圧 度は、 使用する有機溶媒により異なるが、 力ルポニル化触媒の安定性 を維持するために、 有機溶媒の除去温度が 8 0 °C以下になるように減 圧度を調整するのが好ましく、 5 0 °C以下になるように調整するのが より好ましい。  The organic solvent is removed from the solution obtained by dispersing and dissolving the catalyzed rubonylation catalyst in the easily catalyzed rubonylation resin solution. It is efficient to remove the organic solvent under reduced pressure, and it is also desirable from the viewpoint of preventing alteration and the like. The degree of pressure reduction depends on the organic solvent used. It is more preferable to adjust the temperature to 50 ° C. or lower.
本発明において、 有機溶媒を除去した後、 得られた炭酸ガス吸収 体は窒素下で取扱うのが好ましく、 必要に応じて、 水中や有機溶媒中 に保存するのが好ましい。 このようにして得られた炭酸ガス吸収体は、 その機能を損わない範囲内において、 必要に応じて、 ペレッ ト、 フィ ルム、 繊維、 織布、 不織布などの形に成型され、 加圧密閉装置に適用 される。 本発明により得られた炭酸ガス吸収体を、 例えば電池に適用 する場合、 エポキシ基の 1 0 %程度がカルポニル化されていれば実用 的には十分であり、 電池下部の空間にフィルム状に格納したり、 セパ レ一タ成分として使用することにより、 炭酸ガス吸収体としての機能 が発揮される。 以下、 本発明を実施例により具体的に説明するが、 本 発明はこれらの実施例により何ら制限されるものではない。 実施例 1  In the present invention, after removing the organic solvent, the obtained carbon dioxide gas absorbent is preferably handled under nitrogen, and if necessary, is stored in water or an organic solvent. The carbon dioxide absorber obtained in this way is molded into pellets, films, fibers, woven fabrics, non-woven fabrics, etc., if necessary, as long as its function is not impaired. Applies to equipment. When the carbon dioxide gas absorber obtained according to the present invention is applied to, for example, a battery, it is practically sufficient if about 10% of the epoxy groups are calponylated, and stored in a film-like space in the space below the battery. When used as a separator component, it functions as a carbon dioxide gas absorber. Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. Example 1
攪拌器、 温度計及び蒸留塔を装着した内容積 1 0 0 ミ リ リ ッ トル ( m L ) の三ッ□フラスコにポ•Jグ U シジルビ二ルェ一テル (数平均 分子量 3 0 0 0 ) 2 gを取り、 テ卜ラヒ ドロフラン 3 0 gを添加して100 milliliters internal volume equipped with stirrer, thermometer and distillation column Take 2 g of POJ U sidylvinyl ether (number-average molecular weight: 300,000) into a 3 ml flask of (mL), and add 30 g of tetrahydrofuran.
4 0 で溶解した 得られた溶液に 1、 リオクチルメチルアンモニゥ ムク U ド 0 2 gを加え、 3 0 °Cで攪拌し均一に分散させた (ポ リ グ U シジルピ一ルエーテル中の ポキシ基 1 モルに対し 0 . 0 2モ ル) 系内を 7 T o r r ( 0 . 9 3 k P a ) まで減圧し 、 テトラヒ ド40 g of 1, octylmethylammonium amide U was added to the resulting solution dissolved at 40 ° C., and the mixture was stirred at 30 ° C. and uniformly dispersed (polyoxy group in poly (U) sidyl propyl ether). The pressure in the system was reduced to 7 Torr (0.93 kPa), and
Πフランを蒸発除去した。 テ卜ラヒ F口フランの蒸発が観測されなく なつた後 、 さらに 4 0 。C 、 7 T o r rで 5時間乾燥して 、 炭酸ガス吸 収体を得た。 Π The furan was removed by evaporation. Another 40 after the evaporation of the Tetrahi F-mouth franc ceased to be observed. C, dried at 7 Torr for 5 hours to obtain a carbon dioxide absorber.
、)曰 its;  ,) Says its;
度計、 圧力計及び気体導 f  Pressure gauge, pressure gauge and gas conductor f
入官を 着した内容積 1 0 m Lのステ ンレス製 ( s U S 3 1 6 ) 耐圧容 に 、 炭酸ガス吸収体 1 gを取り、 系内を窒素で置換した後、 炭酸ガスで置換し、 系内を 3気圧に加圧し Take 10 g of stainless steel (s US3116) with an internal volume of 10 ml and put 1 g of carbon dioxide gas absorber in the pressure vessel, replace the inside of the system with nitrogen, and then replace with carbon dioxide. Pressurize the system to 3 atmospheres
/し 反応器内部を 3 0 °Cに調節し 、 反応器内圧を 3気圧に保ちながら/ Adjust the inside of the reactor to 30 ° C and keep the pressure inside the reactor at 3 atm.
8時間 置した 次いで、 系内を窒 置換した後、 反応器内から炭酸 ガス吸収体を取り出し、 その一部を重クロ口ホルムに溶解し、 ェ!!— N M Rで測定したところ、 ポリダリシジルビ二ルェ一テルが有するェ ポキシ官能基の 2 6 %がカルポニル化されていた。 これにより実施例 1で得た炭酸ガス吸収体は炭酸ガスを吸収したことがわかる。 After 8 hours, the inside of the system was purged with nitrogen, then the carbon dioxide absorber was taken out of the reactor, and a part of it was dissolved in a heavy-mouthed form. ! — As measured by NMR, 26% of the epoxy functional groups of the polydaricidyl vinyl ether were calponylated. This indicates that the carbon dioxide gas absorber obtained in Example 1 absorbed carbon dioxide gas.
実施例 2  Example 2
ポリ グリ シジルビニルエーテルに代えてポリグリシジルァク リ レ ー ト (数平均分子量 4 2 0 0 ) を使用する以外は実施例 1 と同様にし て炭酸ガス吸収体を得た。 得られた炭酸ガス吸収体について実施例 1 と同様にして炭酸ガスの吸収を調べたところ、 ポリ グリ シジルァクリ レー 卜が有するエポキシ官能基の 3 1 %がカルポニル化されていた。 これにより実施例 2で得た炭酸ガス吸収体は炭酸ガスを吸収したこと がわかる。 A carbon dioxide gas absorber was obtained in the same manner as in Example 1 except that polyglycidyl acrylate (number average molecular weight: 420) was used instead of polyglycidyl vinyl ether. The absorption of carbon dioxide in the obtained carbon dioxide absorber was examined in the same manner as in Example 1. As a result, 31% of the epoxy functional groups of the polyglycidyl acrylate were calponylated. As a result, the carbon dioxide absorber obtained in Example 2 absorbed carbon dioxide. I understand.
実施例 3  Example 3
ト リオクチルメチルアンモニゥムクロリ ドに代えてテトラプチル アンモニゥムブロミ ドを使用する以外は実施例 2 と同様にして炭酸ガ ス吸収体を得た。 得られた炭酸ガス吸収体について実施例 1 と同様に して炭酸ガスの吸収を調べたところ、 ポリ グリ シジルアタ リ レートが 有するエポキシ官能基の 3 4 %がカルボニル化されていた。 これによ り実施例 3で得た炭酸ガス吸収体は炭酸ガスを吸収したことがわかる。  A gas carbonate absorber was obtained in the same manner as in Example 2 except that tetrabutylammonium bromide was used instead of trioctylmethylammonium chloride. When the carbon dioxide absorption of the obtained carbon dioxide absorbent was examined in the same manner as in Example 1, 34% of the epoxy functional groups of the polyglycidyl acrylate were carbonylated. This indicates that the carbon dioxide absorber obtained in Example 3 absorbed carbon dioxide.
実施例 4  Example 4
ト リオクチルメチルアンモニゥムクロリ ドに代えてテトラブチル アンモニゥムテトラフルォロボレ一 トを使用する以外は実施例 2 と同 様にして炭酸ガス吸収体を得た。 得られた炭酸ガス吸収体について実 施例 1 と同様にして炭酸ガスの吸収を調ベたところ、 ポリダリ シジル ァク リ レー トが有するエポキシ官能基の 3 2 %がカルポニル化されて いた。 これにより実施例 4で得た炭酸ガス吸収体は炭酸ガスを吸収し たことがわかる。  A carbon dioxide gas absorber was obtained in the same manner as in Example 2 except that tetrabutylammonium tetrafluoroborate was used instead of trioctylmethylammonium chloride. When the absorption of carbon dioxide was measured for the obtained carbon dioxide absorbent in the same manner as in Example 1, it was found that 32% of the epoxy functional groups of polydaricydyl acrylate were calponylated. This indicates that the carbon dioxide absorber obtained in Example 4 absorbed carbon dioxide.
実施例 5  Example 5
ト リオクチルメチルアンモニゥムク口リ ドに代えてテトラブチル アンモニゥムペン夕フルォロホスフ 一卜を使用する以外は実施例 2 と同様にして炭酸ガス吸収体を得た 得られた炭酸ガス吸収体につい て実施例 1 と同様にして炭酸ガスの吸収を調べたところ、 ポリ グリ シ ジルァク リ レートが有するエポキシ官能基の 2 6 %が力ルポ二ル化さ れていた。 これにより実施例 5で得た炭酸ガス吸収体は炭酸ガスを吸 収したことがわかる。  A carbon dioxide gas absorber was obtained in the same manner as in Example 2 except that tetrabutylammonium pentafluorophosphate was used in place of trioctylmethylammonium mouth lid. Examination of the absorption of carbon dioxide gas in the same manner as described above revealed that 26% of the epoxy functional groups of the polyglycidyl acrylate had been converted to phenol. This indicates that the carbon dioxide absorber obtained in Example 5 absorbed carbon dioxide.
実施例 6 ト リオクチルメチルアンモニゥムクロリ ドに代えて臭化リチウム を使用する以外は実施例 2 と同様にして炭酸ガス吸収体を得た。 得ら れた炭酸ガス吸収体について実施例 1 と同様にして炭酸ガスの吸収を 調べたところ、 ポリ グリシジルァクリ レートが有するエポキシ官能基 の 4 1 %がカルポニル化されていた。 これにより実施例 6で得た炭酸 ガス吸収体は炭酸ガスを吸収したことがわかる。 Example 6 A carbon dioxide gas absorber was obtained in the same manner as in Example 2 except that lithium bromide was used instead of trioctylmethylammonium chloride. The carbon dioxide absorption of the obtained carbon dioxide gas absorber was examined in the same manner as in Example 1. As a result, 41% of the epoxy functional groups of the polyglycidyl acrylate were calponylated. This indicates that the carbon dioxide absorber obtained in Example 6 absorbed carbon dioxide.
実施例 7  Example 7
トリオクチルメチルアンモニゥムクロリ ドに代えてリチウムテト ラフルォロボレートを使用する以外は実施例 1 と同様にして炭酸ガス 吸収体を得た。 得られた炭酸ガス吸収体について実施例 1 と同様にし て炭酸ガスの吸収を調べたところ、 ポリグリ シジルビ二ルエーテルが 有するエポキシ官能基の 3 3 %がカルポニル化されていた。 これによ り実施例 7で得た炭酸ガス吸収体は炭酸ガスを吸収したことがわかる。  A carbon dioxide gas absorber was obtained in the same manner as in Example 1 except that lithium tetrafluoroborate was used instead of trioctylmethylammonium chloride. The absorption of carbon dioxide in the obtained carbon dioxide absorber was examined in the same manner as in Example 1. As a result, 33% of the epoxy functional groups of the polyglycidyl vinyl ether were calponylated. This indicates that the carbon dioxide absorber obtained in Example 7 absorbed carbon dioxide.
実施例 8  Example 8
リチウムテトラフルォロポレー トに代えてリチウムへキサフルォ 口ホスフェートを使用する以外は実施例 1 と同様にして炭酸ガス吸収 体を得た。 得られた炭酸ガス吸収体について実施例 1 と同様にして炭 酸ガスの吸収を調べたところ、 ポリグリシジルビ二ルェ一テルが有す るエポキシ官能基の 2 7 %がカルポニル化されていた。 これにより実 施例 8で得た炭酸ガス吸収体は炭酸ガスを吸収したことがわかる。  A carbon dioxide gas absorber was obtained in the same manner as in Example 1 except that lithium hexafluorophosphate was used instead of lithium tetrafluoroporate. The absorption of carbon dioxide in the obtained carbon dioxide absorber was examined in the same manner as in Example 1. As a result, it was found that 27% of the epoxy functional groups of the polyglycidyl vinyl ether had been carbonylated. This indicates that the carbon dioxide absorber obtained in Example 8 absorbed carbon dioxide.
実施例 9  Example 9
ポリ グリシジルェ一テルに代えてポリェポキシ化シスポリィソプ レン (数平均分子量 1 0 0 0 0 ) を使用する以外は実施例 1 と同様に して炭酸ガス吸収体を得た。 得られた炭酸ガス吸収体について実施例 1 と同様にして炭酸ガスの吸収を調べたところ、 ポリエポキシ化ポリ イソプレンが有するエポキシ官能基の 1 9 %がカルポニル化されてい た。 これにより実施例 9で得た炭酸ガス吸収体は炭酸ガスを吸収した ことがわかる。 A carbon dioxide gas absorber was obtained in the same manner as in Example 1 except that polyepoxylated cis polyisoprene (number average molecular weight: 1000) was used instead of polyglycidyl ether. The carbon dioxide absorption of the obtained carbon dioxide gas absorber was examined in the same manner as in Example 1, and it was found that 19% of the epoxy functional groups of isoprene were carbonylated. This indicates that the carbon dioxide absorber obtained in Example 9 absorbed carbon dioxide.
実施例 1 0  Example 10
ポリグリシジルェ一テルに代えてポリグリ シジルメタァク リ レー ト (数平均分子量 4 0 0 0 0 ) を使用し、 卜 リオクチルメチルアンモ ニゥムクロリ ドに代えてリチウムへキサフルォロホスフェートを使用 する以外は実施例 1 と同様にして炭酸ガス吸収体を得た。 得られた炭 酸ガス吸収体について実施例 1 と同様にして炭酸ガスの吸収を調べた ところ、 ポリエポキシ化ポリイソプレンが有するエポキシ官能基の 2 1 %がカルボニル化されていた。 これにより実施例 1 0で得た炭酸ガ ス吸収体は炭酸ガスを吸収したことがわかる。 産業上の利用可能性  Implemented except that polyglycidyl methacrylate (number average molecular weight: 400000) was used in place of polyglycidyl ether and lithium hexafluorophosphate was used in place of trioctylmethylammonium chloride A carbon dioxide gas absorber was obtained in the same manner as in Example 1. The absorption of carbon dioxide in the obtained carbon dioxide absorber was examined in the same manner as in Example 1. As a result, 21% of the epoxy functional groups of the polyepoxidized polyisoprene were carbonylated. This indicates that the carbon dioxide gas absorber obtained in Example 10 absorbed carbon dioxide gas. Industrial applicability
本発明により提供される炭酸ガス吸収体は、 炭酸ガス吸収能に優 れているので、 二次電池、 蓄電池など炭酸ガスが発生し、 性能劣化が 起こる装置に好適に使用される。  The carbon dioxide gas absorber provided by the present invention is excellent in carbon dioxide gas absorbing ability, so that it is suitably used for a device such as a secondary battery or a storage battery that generates carbon dioxide gas and deteriorates in performance.

Claims

請 求 の 範 囲 The scope of the claims
1 . 主として易被力ルポニル化樹脂及び力ルポニル化触媒からなる炭 酸ガス吸収体。 1. A carbon dioxide gas absorber mainly composed of easily luponylated resin and a strong luponylation catalyst.
2 . 該カルポニル化触媒がハロゲンを含有するリチウム塩又は第 4級 アンモニゥム塩である請求項 1記載の炭酸ガス吸収体。  2. The carbon dioxide absorber according to claim 1, wherein the carbonylation catalyst is a lithium salt or a quaternary ammonium salt containing halogen.
3 . 該易被力ルポニル化樹脂の数平均分子量が 2 0 0 0以上 2 0 0 0 0 0以下の範囲にある請求項 1又は 2記載の炭酸ガス吸収体。  3. The carbon dioxide gas absorber according to claim 1 or 2, wherein the number-average molecular weight of the easily applied luponylated resin is in the range of 200 to 2000.
4 . 該易被力ルポニル化樹脂がポリグリシジルァクリ レート、 ポリグ リ シジルメタァク リ レー卜又はポリダリシジルビ二ルェ一テルである 請求項 1 〜 3記載の炭酸ガス吸収体。  4. The carbon dioxide gas absorber according to any one of claims 1 to 3, wherein the easily-powered luponylated resin is polyglycidyl acrylate, polyglycidyl methacrylate, or polydaricidyl vinyl ether.
5 . 易被力ルポニル化樹脂を有機溶媒に溶解した易被力ルポニル化樹 脂溶液に力ルポニル化触媒を分散させ、 溶解し、 次いで有機溶媒を除 去することを特徴とする炭酸ガス吸収体の製造方法。  5. A carbon dioxide absorber characterized by dispersing and dissolving a catalyzed luponylation catalyst in a readily susceptible luponylated resin solution in which an easily catalyzed luponylated resin is dissolved in an organic solvent, and then removing the organic solvent. Manufacturing method.
PCT/JP2004/002075 2003-02-28 2004-02-23 Carbon dioxide gas absorber and process for producing the same WO2004076065A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005502870A JP4732168B2 (en) 2003-02-28 2004-02-23 Carbon dioxide absorber and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-052127 2003-02-28
JP2003052127 2003-02-28

Publications (1)

Publication Number Publication Date
WO2004076065A1 true WO2004076065A1 (en) 2004-09-10

Family

ID=32923389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002075 WO2004076065A1 (en) 2003-02-28 2004-02-23 Carbon dioxide gas absorber and process for producing the same

Country Status (2)

Country Link
JP (1) JP4732168B2 (en)
WO (1) WO2004076065A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152438A (en) * 2019-02-21 2019-08-23 邬佩希 A kind of integrated conduct method of industrial waste gas and old and useless battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253327A (en) * 1985-08-31 1987-03-09 Res Dev Corp Of Japan Curable composition
JPH0753757A (en) * 1993-08-20 1995-02-28 Matsushita Electric Ind Co Ltd Foamed thermal insulator and its production
JPH07173314A (en) * 1993-11-18 1995-07-11 Matsushita Electric Ind Co Ltd Expanded heat insulator and its production
JPH10265606A (en) * 1997-03-26 1998-10-06 Matsushita Refrig Co Ltd Foamed heat insulation material, its production and heat insulation box
JP2002327121A (en) * 2001-05-02 2002-11-15 Hiroki Koma Functional material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3720088B2 (en) * 1995-09-01 2005-11-24 松下電器産業株式会社 Carbon dioxide fixing agent, carbon dioxide fixing method using the same, and method for producing heat insulating resin foam
JPH10255860A (en) * 1997-03-13 1998-09-25 Asahi Chem Ind Co Ltd Nonaqueous battery
JP4226792B2 (en) * 2001-02-09 2009-02-18 株式会社東芝 Nonaqueous electrolyte secondary battery
JP4953525B2 (en) * 2001-07-23 2012-06-13 パナソニック株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4164005B2 (en) * 2002-07-30 2008-10-08 大日精化工業株式会社 Electrolyte composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253327A (en) * 1985-08-31 1987-03-09 Res Dev Corp Of Japan Curable composition
JPH0753757A (en) * 1993-08-20 1995-02-28 Matsushita Electric Ind Co Ltd Foamed thermal insulator and its production
JPH07173314A (en) * 1993-11-18 1995-07-11 Matsushita Electric Ind Co Ltd Expanded heat insulator and its production
JPH10265606A (en) * 1997-03-26 1998-10-06 Matsushita Refrig Co Ltd Foamed heat insulation material, its production and heat insulation box
JP2002327121A (en) * 2001-05-02 2002-11-15 Hiroki Koma Functional material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152438A (en) * 2019-02-21 2019-08-23 邬佩希 A kind of integrated conduct method of industrial waste gas and old and useless battery

Also Published As

Publication number Publication date
JPWO2004076065A1 (en) 2006-06-01
JP4732168B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
CN107433205B (en) Covalent organic framework supported cobalt catalyst and preparation and application thereof
US9469722B2 (en) Metal cyanide complex catalyst and its preparation and application
CN112341394A (en) Method for preparing cyclic carbonate ester by catalysis of hydrogen bond donor functionalized polymeric ionic liquid
RU2008107713A (en) ABSORBING SYSTEMS CONTAINING A GAS-ABSORBING PHASE IN THE PORES OF A POROUS MATERIAL DISTRIBUTED IN THE PERMITTED MEANS
US10464045B1 (en) Hydrolyzed divinylbenzene/maleic anhydride polymeric sorbents for carbon dioxide
CN108440485B (en) Production method of cyclic carbonate
WO2008024363A2 (en) Copolymerization of propylene oxide and carbon dioxide and homopolymerization of propylene oxide
CN107537563B (en) Quaternary phosphonium salt organic polymer catalyst and preparation method and application thereof
WO2015008853A1 (en) Method for continuously producing cyclic carbonate
EP1560236B1 (en) Electric double layer capacitor and electrolyte solution therefor
CN108299375B (en) Method for preparing cyclic carbonate by combined catalysis of succinimide and halide
Jiang et al. Amino acid-paired dipyridine polymer as efficient metal-and halogen-free heterogeneous catalysts for cycloaddition of CO2 and epoxides into cyclic carbonates
CN111686774A (en) High-stability monatomic platinum-based catalytic material, preparation method and application in purification of oxygen-containing volatile hydrocarbon
WO2004076065A1 (en) Carbon dioxide gas absorber and process for producing the same
Ding et al. Olefin epoxidation with ionic liquid catalysts formed by supramolecular interactions
JPS6065478A (en) Polymer secondary battery
CN113070101B (en) Catalyst for decomposing formaldehyde and preparation method and application thereof
Zhao et al. One-pot synthesis of cyclic carbonates from olefins and CO2 catalyzed by silica-supported imidazolium hydrogen carbonate ionic liquids
RU2688937C2 (en) Magnesium halide solution and method for production thereof and use thereof
Li et al. Semi-heterogeneous asymmetric organocatalysis: Covalent immobilization of BINOL-derived chiral phosphoric acid (TRIP) to polystyrene brush grafted on SiO2 nanoparticles
Gupta Cyclic carbonates: Treasure of fine chemicals obtained from waste stream CO2 over carbon-based heterogeneous catalysts
WO2003040210A1 (en) Polyether polymer and process for producing the same
CN114276322A (en) Method for preparing cyclic carbonate by photo-initiated polymerization of ionic liquid material
CN102049303B (en) Catalyst used in synthesis of propylene carbonate and preparation method and application thereof
WO2002075748A1 (en) Polymer electrolyte gel and method for preparation thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502870

Country of ref document: JP

122 Ep: pct application non-entry in european phase