WO2002075748A1 - Polymer electrolyte gel and method for preparation thereof - Google Patents

Polymer electrolyte gel and method for preparation thereof Download PDF

Info

Publication number
WO2002075748A1
WO2002075748A1 PCT/JP2002/002335 JP0202335W WO02075748A1 WO 2002075748 A1 WO2002075748 A1 WO 2002075748A1 JP 0202335 W JP0202335 W JP 0202335W WO 02075748 A1 WO02075748 A1 WO 02075748A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
gel
electrolyte
epoxy
solution
Prior art date
Application number
PCT/JP2002/002335
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Tanaka
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2002075748A1 publication Critical patent/WO2002075748A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones

Definitions

  • the present invention relates to a polymer electrolyte gel having high ionic conductivity and a method for producing the same.
  • the gelling method by forming a crosslinked polymer by heating it is possible to gel after injecting a precursor solution of the polymer electrolyte gel into a cell assembled in advance.
  • the contact between the polymer electrolyte gel and the electrode is improved, and the interface resistance is suppressed.
  • the cells cannot be irradiated with light, so that they cannot be gelled after injection.
  • the gel prepared in advance is bonded to the electrode, but as a result, the interface resistance between the polymer electrolyte gel and the electrode increases, and the ionic conductivity decreases.
  • An object of the present invention is to provide a polymer electrolyte gel having more excellent ion conductivity than a conventionally known polymer electrolyte gel, and a method for producing the gel. Disclosure of the invention
  • the first invention of the present invention relates to a crosslink obtained by subjecting a polymer having two or more epoxy groups per molecule (hereinafter referred to as an epoxy group-containing polymer) to a ring-opening and crosslinking reaction of an epoxy ring using a supporting electrolyte as a catalyst
  • a polymer electrolyte gel comprising a polymer (hereinafter, referred to as an epoxy crosslinked polymer), the supporting electrolyte and an organic solvent.
  • an epoxy group-containing polymer is obtained by polymerizing a monomer containing a vinyl group and an epoxy group in one molecule as an essential component, and does not contain metal ions other than lithium.
  • a polymer electrolyte gel according to the invention is obtained by polymerizing a monomer containing a vinyl group and an epoxy group in one molecule as an essential component, and does not contain metal ions other than lithium.
  • a third invention is the supporting electrolyte is a polymer electrolyte gel according to any one of the first or second invention is a I-one compound containing a L i BF 4 and Z or L i PF 6.
  • a fourth invention is the polymer electrolyte gel according to any one of the first, second, and third inventions, wherein the epoxy crosslinked polymer is 2 to 20% by weight based on the polymer electrolyte gel.
  • the invention of claim 5 relates to an epoxy group-containing polymer in a solution in which an epoxy group-containing polymer and a supporting electrolyte are dissolved in an organic solvent as essential components, and a epoxide ring is subjected to ring-opening cross-linking reaction using the supporting electrolyte as a catalyst.
  • the epoxy group-containing polymer referred to in the present application needs to contain two or more epoxy groups in one molecule, which means that the polymer has an epoxy group by a polymer reaction called ring-opening bond of an epoxy ring.
  • the prerequisite of being able to form a crosslinked polymer This means that if it is two or more in one molecule, the number, the bonding position, and the type of the main chain of the polymer are not particularly limited.
  • the mixture is not limited to one type, and may be a mixture of two or more types of epoxy group-containing polymers.
  • the number average molecular weight is not particularly limited, but is generally about 500 to 100000.
  • Such an epoxy group-containing polymer can be obtained by introducing an epoxy group into an unsaturated hydrocarbon polymer or a polymer having a reactive functional group, such as a polyester, polyester, polyurethane, or vinyl polymer.
  • an epoxy group can be introduced into polybutadiene or polyisoprene having a double bond in a polymer by reacting the double bond with peracetic acid.
  • polyethylene oxide having a hydroxyl group in the polymer can be used.
  • Epoxy groups can be introduced into polypropylene oxide or the like by adding epichlorohydrin to hydroxyl groups and dehydrochlorinating with sodium hydroxide.
  • a method of directly synthesizing an epoxy group-containing polymer using vinyl polymerization can also be employed.
  • vinyl polymerization since various vinyl monomers can be used as a copolymer component, by changing the copolymer component, the required characteristics can be easily coped with, and the range of application is wide and suitable. Therefore, this case will be described below.
  • the vinyl polymer obtained by vinyl polymerization directly as an epoxy group-containing polymer
  • the vinyl polymer is a homopolymer of a monomer containing a vinyl group and an epoxy group, or the monomer is a copolymer component. It is essential that the copolymer be one of the above.
  • Examples of monomers containing a vinyl group and an epoxy group include glycidyl methacrylate, glycidyl acrylate, 2-methyldaricidyl acrylate, 1,2-epoxy-1-butene, isopreneoxide, 1,2-epoxy-1 2-methyl-3-butene, 1,2-epoxy-5-hexene, 3-ethenyl-7-oxabicyclo [4,1,0] heptane, arylglycidyl ether, [(2-propenyloxy) methyl] oxylan, etc. No.
  • the other monomer to be copolymerized with the monomer containing a vinyl group and an epoxy group is not particularly limited as long as it is a vinyl monomer. Further, the present invention is not limited to one kind, and two or more kinds of vinyl monomers may be used. Examples of such vinyl monomers Examples include acrylonitrile, methacrylonitrile, acrylates, methacrylates, and vinyl ethers. These vinyl monomers to be copolymerized are appropriately selected in consideration of the type of the organic solvent used for the polymer electrolyte gel and the properties required for the target polymer electrolyte gel.
  • the ratio of the monomer containing a vinyl group and an epoxy group to the other monomer to be copolymerized in the vinyl polymer should be determined in consideration of the hardness and other characteristics required for the polymer electrolyte gel. , Usually monomers containing vinyl and epoxy groups
  • the molar ratio of — / other vinyl monomers to be copolymerized is from 5/95 to 100, preferably from 20 to 80/85. If the ratio of the monomer containing a vinyl group and an epoxy group in the vinyl polymer is less than 5 mol%, the formation of an epoxy cross-linked polymer by a ring-opening cross-linking reaction between epoxy groups to develop a subsequent gelled state. May not be able to proceed efficiently. When the ratio is 100 mol%, that is, alone, the formation of the epoxy cross-linked polymer proceeds efficiently, but the cross-linking becomes dense, so that the amount of the organic solvent that can be retained is reduced.
  • the molecular weight of such a vinyl polymer is not particularly important since it eventually becomes a crosslinked body, and may be any value as long as it can be dissolved in a system of an organic solvent Z and a supporting electrolyte. It is in the order of 0 to 1 0 0 0 0 0 0 0.
  • a radical polymerization method is generally used.
  • the epoxy group undergoes a ring-opening bond reaction during polymerization, so that the resulting polymer cannot be crosslinked and gelled in the subsequent process, or conversely, is crosslinked during polymerization. And the resulting polymer may be insoluble in organic solvents.
  • the choice of polymerization catalyst is important because the electrochemical characteristics of the polymer electrolyte gel may be reduced depending on the type of polymerization catalyst.
  • sodium sulfonate derived from a polymerization catalyst radical is formed as a polymer terminal group, resulting in a large amount of sodium ions in the polymer.
  • metal ion impurities other than ON such as metal ions and earth metal ions, increase the interface resistance, it is desirable to reduce such sodium ions as much as possible.
  • the fact that the epoxy group-containing polymer does not contain a metal ion other than lithium does not mean that the impurity metal ion is “absolutely null”. That is, even in the case of the organic solvent used in the solution polymerization method recommended by the present invention as a useful method for producing an epoxy group-containing polymer described later, even if it is LB grade, there is no absolute absence of impurity metal ions at present. is there. Therefore, in the polymer electrolyte gel which is the final product of the present invention, the amount of the impurity metal ions derived from the epoxy group-containing polymer does not exceed the amount of the impurity metal ions derived from the coexisting supporting electrolyte or organic solvent. Therefore, it is treated as “not included”.
  • a radical polymerization catalyst that does not generate metal ions in an L.B. grade organic solvent, a monomer containing a vinyl group and an epoxy group, and in some cases, a copolymerization in addition to these.
  • a solution was prepared by dissolving the vinyl monomer to be dissolved in a ratio of approximately 6 parts by weight of the organic solvent, 0.2 part of the polymerization catalyst, and 4 parts of the monomer, and the pinyl polymer, an epoxy group-containing polymer, was dissolved by heating or light irradiation. Create a molecular solution.
  • the obtained polymer solution can be used as it is as a precursor of the polymer electrolyte gel, so there is no need to purify the polymer to remove impurities or to dry and dissolve it, simplifying the process. It is advantageous for industrial production.
  • the vinyl polymer that is the epoxy group-containing polymer described above is a polymer of the present invention.
  • the epoxy ring contained in the polymer forms an epoxy-crosslinked polymer that has undergone a ring-opening crosslinking reaction, and the entire system is in a gel state.
  • the ratio of the epoxy-crosslinked polymer to the polymer electrolyte gel is Is 2 to 20% by weight, preferably 2 to 10% by weight, based on 100% by weight of the entire polymer electrolyte gel. If the proportion is less than 2% by weight, it may be difficult to form a gel, and if it exceeds 20% by weight, the ionic conductivity may be significantly reduced.
  • the ratio to the molecular electrolyte gel is equal to the ratio of the epoxy group-containing polymer to the solution before the ring-opening crosslinking reaction.
  • the organic solvent used in the present invention means a solvent having a water content of 0.1% by weight or less and capable of dissolving the epoxy group-containing polymer and the supporting electrolyte.
  • ethylene carbonate abbreviated EC
  • propylene carbonate abbreviated FC
  • butylene carbonate abbreviated BC
  • getyl carbonate abbreviated DEC
  • dimethyl carbonate abbreviated DMC
  • Ether compounds such as carbonic acid esters such as ethylene glycol, propylene glycol, methyl sorb, and ethyl sorb, as well as gamma mabutyrolactone (abbreviated as GBL), sulfolane, dimethyl sulfoxide, adipitolyl, glutaronitrile, N —Single or two or more such as methylpyrrolidone and trimethyl phosphate Mixed solvent is recommended.
  • GBL gamma mabut
  • organic solvents have an excellent ability to dissolve the epoxy group-containing polymer and the supporting electrolyte. As long as the boiling point is high, those having a high boiling point are preferred. Organic solvents having a boiling point of 90 ° C or less are easily evaporated and may have problems due to their high vapor pressure.
  • the epoxy bridge polymer, supporting electrolyte, and organic solvent obtained by the ring-opening crosslinking reaction of the epoxy group-containing polymer described above are essential components of the polymer electrolyte gel referred to in the present application. It is possible to add a polymer compound or a conductive additive which does not form a polymer.
  • the proportion of each of these components in the polyelectrolyte gel should be determined in consideration of the target electrochemical properties and physical properties. It is appropriate to use 0% by weight, 1 to 30% by weight of the supporting electrolyte, and the remainder being organic solvents and other components.
  • the polymer electrolyte gel of the present invention is obtained by reacting the epoxy group-containing polymer in a solution in which an epoxy group-containing polymer and a supporting electrolyte are dissolved in an organic solvent as essential components, using the supporting electrolyte as a catalyst.
  • the epoxy groups can be ring-opened and crosslinked to form an epoxy crosslinked polymer, and the solution can be crosslinked to form a gel.
  • a high molecular compound that does not form crosslinks, a conductive additive, and the like may be added as other components.
  • it is important that these manufacturing processes are performed in a dry atmosphere having a dew point of 150 ° C. or less in a state where the outside air is shut off, in order to prevent an increase in moisture content due to moisture absorption.
  • the solution is changed from a solution state to a gel state (gelation) because a cross-linked structure is formed by a ring-opening cross-linking reaction between epoxy groups of the epoxy group-containing polymer as described above (cross-linked gelation).
  • cross-linked gelation causes Tertiary amines, Lewis acids, protonic acids and the like.
  • a gel is formed by heating at several tens of degrees Celsius for several hours.
  • all of these catalysts remain in the gel as impurities, hindering the movement of ions and increasing the interfacial wiping. It cannot be adopted because it causes a decrease in conductivity.
  • a supporting electrolyte as a catalyst in this reaction, and particularly to use Li BF 4 and Li PF 6.
  • the present invention using a supporting electrolyte as a catalyst enables cross-linking and gelation without leaving any impurities in the gel, and is very preferable because the above-mentioned problem is overcome.
  • the method of preparing the solution in which the essential components are dissolved is not particularly limited, but the supporting electrolyte also functions as a cross-linking gelling catalyst, and therefore, it is more preferable to mix the supporting electrolyte last.
  • a method of dissolving a supporting electrolyte in a polymer solution in which an epoxy group-containing polymer is dissolved in an organic solvent a method of adding an organic solvent in which a supporting electrolyte is dissolved in advance to the polymer solution, and the like are given.
  • the polymer solution in which the epoxy group-containing polymer is dissolved in the organic solvent used herein may be a solution in which the epoxy group-containing polymer obtained by pre-polymerization is dissolved in the organic solvent, or in an organic solvent. It may be a solution of an epoxy group-containing polymer prepared by a solution polymerization method in which a monomer is reacted. Industrially, the latter method is particularly recommended because the production efficiency is high and a homogeneous polymer solution can be easily obtained because the step of removing and purifying the polymer from the polymerization system and purifying or drying and dissolving the polymer can be omitted. Is the way.
  • the catalyst used in the formation of the epoxy group-containing polymer should be carefully considered so as not to remain as impurities as much as possible or to prevent metal ions other than lithium ions from entering. In some cases, it is also preferable to remove the catalyst residue from the polymer solution by the solution polymerization method.
  • the epoxy ring-opening and cross-linking reaction of the present invention proceeds by directly heating the solution of the epoxide group-containing polymer, the organic solvent and the supporting electrolyte mixed and dissolved by the above-described method, and the desired polymer electrolyte gel is obtained. Is obtained. Most of the conditions include a means for maintaining the temperature at 50 to 70 ° C. for 0.5 to 3 hours.
  • a supporting electrolyte to be used that is, as a catalyst, Li BF 4 or Li PF 6 has a high catalytic ability and a rapid reaction.
  • a polymer electrolyte gel can be obtained substantially without a catalyst by selecting an epoxy group-containing polymer as a starting material. Since cross-linking gelation can be performed without a catalyst, azo compounds and peroxide compounds that have been widely used as gelling catalysts so far are unnecessary, and the catalyst is decomposed in the formed gel. No product or unreacted catalyst remains. Although a particular procedure is required, a gel containing no impurities can be obtained if the epoxy group-containing polymer itself is used after purification. That is, the polymer electrolyte gel of the present invention is a gel with reduced impurities, and therefore exhibits excellent ion conductivity.
  • Example 1 An excellent feature of the present invention described in detail above is that a polymer electrolyte gel can be obtained substantially without a catalyst by selecting an epoxy group-containing polymer as a starting material. Since cross-linking gelation can be performed without a catalyst, azo compounds and peroxide compounds that have been widely used as gelling catalysts so far are unnecessary, and the catalyst is
  • a flat 0.2 mm thick lithium foil (electrode) is placed on the bottom of a stainless steel Petri dish, and a 0.2 mm thick Teflon square spacer is set on it. Then, add an appropriate amount of a solution prepared by mixing the epoxy group-containing polymer solution prepared in the following Examples and Comparative Examples and the supporting electrolyte solution in advance, and put a 0.2 mm thick Place a lithium foil (electrode), cover the petri dish so that there is no gap between the spacer and the lithium foil, and heat at 60 ° C for 1 hour to open and crosslink epoxy groups. The reaction was carried out to form a crosslinked gel, and a gel film of a polymer electrolyte gel having a thickness of 200 m was formed. The gel film sandwiched between the lithium foils is sandwiched between a 0.3 mm-thick nickel plate with a lead wire, inserted between two glass plates, and fixed with clips to evaluate the electrochemical characteristics. Cell was created.
  • the above-mentioned cell for electrochemical property evaluation was connected to an AC impedance measurement device (Solartron 1286 + 1250), and at 25, from 100 kHz to 1 Hz.
  • the impedance at the measurement frequencies of 100 kHz and 100 Hz was measured as the bulk resistance value and the interface resistance value, respectively.
  • the ionic conductivity was calculated from the bulk resistance value and the cell thickness and area.
  • the cell for evaluation was removed. Connected to an electrochemical measurement device (Solartron S 1-1280B), and subjected to polarization electrolysis using a cyclic voltammetry with an inversion voltage of ⁇ 0.5 V and a potential sweep rate of 1 OmV / s at 25 ° C.
  • the polarization current value at +0.5 V in the cycle was measured, and this was defined as the CV polarization current value for the lithium anode.
  • the value of the CV polarization current with respect to the lithium negative electrode is simply referred to as a polarization current.
  • the AC impedance was measured again, and the interface resistance 24 hours after cell formation was determined. From these measurement results, the ratio between the interface resistance value immediately after the start of the measurement and the interface resistance value after 24 hours was determined, and was defined as the rate of increase in the interface resistance.
  • the preparation of the gel film, the preparation of the cells, and the evaluation of the characteristics were performed using a glove box in an argon gas atmosphere with a dew point of 50 ° C.
  • AN Acrylonitrile
  • VAc vinyl acetate
  • GMA glycidyl methacrylate
  • BDK benzyl dimethyl ketal
  • a cell was prepared and measured in the same manner as in Example 3 except that aryl glycidyl ether was used instead of GMA.
  • an epoxy group-containing polymer solution was prepared in the same manner as in Comparative Example 1, and 2.0 g of this solution and 8.0 g of the same supporting electrolyte solution as in Comparative Example 1 were used. Then, a cell was prepared and measured according to the method described above.
  • a supporting electrolyte solution in which 1.4 g of 6 was dissolved was prepared. Using 2.0 g of the epoxy group-containing polymer solution and 8.0 g of the supporting electrolyte solution, the heating conditions were set as described above.
  • a cell was prepared with the temperature changed to 70 ° C for 18 hours, and the measurement was performed.
  • ⁇ Comparative Example 3> Add 2.84 g of AN, 16 g of VACl, and 0.2 g of BDK as a polymerization catalyst to 6 g of the same mixed solvent as in Comparative Example 1, and dissolve.Then, UV polymerization and unreacted are performed in the same manner as in Example 3. The monomer was removed to prepare an AN / V Ac copolymer solution. Separately, a crosslinkable monomer solution was prepared by dissolving 4.0 g of a polyoxyethylene dimethacrylate having a polymerization degree of 14, which is a crosslinkable monomer, in 6.0 g of the above mixed solvent.
  • a solution prepared by mixing and dissolving 1.0 g of the ANZVAc copolymer solution, 1.0 g of the crosslinkable monomer solution, 8.0 g of the supporting electrolyte solution of Comparative Example 1, and 0.04 g of azobisisobutyronitrile was used. Then, the heating conditions were changed to 70 ° C. for 5 hours in the above-described method to prepare a cell, and the measurement was performed.
  • the gel film formed by this method contained many bubbles.
  • Table 1 shows the measurement results of the ionic conductivity, the interface resistance increase rate, and the polarization current of Examples 1 to 7 and Comparative Examples 1 to 3.
  • the amount of the epoxy crosslinked polymer was 8.0% in each gel.
  • Examples 1 to 7, which are the polymer electrolyte gel of the present invention showed excellent electrochemical properties.
  • the epoxy group-containing polymer if there are two or more epoxy groups in one molecule, not only the vinyl polymer represented by Examples 3 and 4, but also the polyester of Example 1 ⁇ Example 2 Various types of organic solvents (Examples 3 and 6) and types of supporting electrolytes (Examples 3, 6, and 7) can also be selected. However, when the epoxy group-containing polymer contains a metal ion other than lithium as in Example 5, although it is superior to the conventional one, the characteristics are slightly lower than those of the other examples.
  • Comparative Example 1 Compared to the polymer electrolyte gel of the present invention, in Comparative Example 1, a polymer containing a single epoxy group was used, and there was only one epoxy group per molecule, and even if an epoxy ring caused a ring-opening reaction, It does not gel because it produces only chain polymers.
  • Comparative Example 3 is a ring-opening crosslinking reaction to catalyze the supporting electrolyte Epokishi ring Although a crosslinked gel was formed, the presence of non-removable bubbles generated in the gel by the decomposition gas of azobisisobutyronitrile deteriorated the electrochemical characteristics.
  • the epoxy group-containing polymer solution 0.5 of Example 3 and 9.5 g of the supporting electrolyte solution obtained by dissolving 0.7 g of Li BF 4 in 9.3 g of the mixed solvent of Comparative Example 1 were used.
  • a cell was prepared and measured according to the method described in (1).
  • Table 2 shows the measurement results of the epoxy cross-linked polymer concentration, the ionic conductivity, the interface resistance increase rate, and the polarization current of the gel films and cells of Examples 3 and 8 to 10.
  • the polymer electrolyte gel of the present invention has an epoxy cross-linked polymer concentration of 2.0 to 20.0% by weight, all of which are excellent. It has been demonstrated to exhibit the following characteristics. A closer look shows that the lower the epoxy-crosslinked polymer concentration, the better the properties are, but this is probably because the smaller the epoxy-crosslinked polymer, the easier the ions to move. However, if the epoxy cross-linking polymer concentration is too low, gel formation may not be possible.
  • the polymer electrolyte gel of the present invention exhibits excellent ion conductivity not only at room temperature but also at low temperature, and is very useful for electrochemical devices such as lithium polymer secondary batteries and electric double layer capacitors. Excellent electrochemical properties can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

A polymer electrolyte gel which comprises a crosslinked polymer formed through the ring-opening and crosslinking of a polymer having two or more epoxy groups in a molecule by the use of a supporting electrolyte as a catalyst, the supporting electrolyte and an organic solvent; and a method for preparing the polymer electrolyte gel. In the case of a lithium secondary cell or the like using a liquid electrolyte such as an organic solvent, it is difficult to prepare a satisfactorily lightweight cell, since the sealing of the electrolyte or the like is required for preventing the leakage of a liquid. A polymer electrolyte gel has been developed for overcoming the above defect through solidification of an electrolyte. However, the gelation by heating combined with the use of a catalyst results in the adverse effect on the conductivity of an ion due to impurities derived from the residual catalyst in the resulting polymer electrolyte gel, and the gelation by irradiation of a light needs the lamination of the resulting gel with an electrode, which leads to the reduction of the conductivity of an ion due to the interfacial resistance between electrolyte and electrode layers. The polymer electrolyte gel is free from the problems associated with above conventional polymer electrolyte gels, and thus exhibits enhanced ion conductivity.

Description

明 細 書 高分子電解質ゲルおよびその製造方法 技術分野  Description Polymer electrolyte gel and method for producing the same
本発明は、 高いイオン伝導性を有する高分子電解質ゲルおよびその製造方法に 関する。 背景技術  The present invention relates to a polymer electrolyte gel having high ionic conductivity and a method for producing the same. Background art
有機溶媒を主体とする電解液を用いるリチウムイオン二次電池、 コンデンサ、 キャパシタなどにおいては、 液漏れや短絡事故による火災防止のために、 電解液 を封入したり、 衝撃による事故を防ぐための強固なケーシングが必須となり、 軽 量化が困難であった。  For lithium ion secondary batteries, capacitors, capacitors, etc., which use electrolytes mainly composed of organic solvents, in order to prevent fires due to liquid leakage or short circuit accidents, the electrolyte is sealed or solid to prevent accidents due to impact. A simple casing was required, making it difficult to reduce the weight.
この欠点を改良するために、 電解液を固形化することが望まれている。 固形化 の一方策として、 高分子電解質ゲルの開発が進められている。 開発初期には、 特 開平 6— 6 8 9 0 6号公報ゃ特開平 7— 4 5 2 7 1号公報などに開示される、 高 分子同士の物理的相互作用により形成されるゲル (物理ゲル) が中心に検討され ていた。 しかし、 物理ゲルは熱可逆性であるため高温時にゲルが液化してしまう など、 耐熱性に大きな問題があった。  In order to improve this disadvantage, it is desired to solidify the electrolyte. As one measure for solidification, the development of polymer electrolyte gels is underway. In the early stage of development, gels formed by physical interaction between high molecules (physical gels) disclosed in Japanese Patent Application Laid-Open No. 6-68906, Japanese Patent Application Laid-Open No. 7-45271, etc. ) Was mainly considered. However, since physical gels are thermoreversible, gels liquefy at high temperatures, and there was a major problem with heat resistance.
この耐熱性を改善する方法としては、 '共有結合による三次元的構造を持つ架橋 高分子を利用することが有効である。 例えば、 特開平 1 0— 7 4 5 2 6号公報、 特開平 1 1一 2 1 4 0 3 8号公報、 特開 2 0 0 0— 8 0 1 3 8号公報など、 数多 く報告されている。 しかし、 これらの高分子電解質ゲルはイオン伝導性や安全性 の点でまだ十分ではない。 即ち、 これまでの報告には、 複数のビニル基を有する 高分子または低分子を加熱によるラジカル重合で架橋高分子とすることによるゲ ル化方法が記載されているが、 触媒として過酸化物化合物ゃァゾ化合物を使用す るため、 生成した高分子電解質ゲル中に未反応触媒や触媒の分解生成物が残存す ることは避けられない。 これらの残存物は、 ゲル中で変化し、 高分子電解質ゲル のィォン伝導性を低下させる一因となる。 ァゾ化合物を使用した場合には、 分解時に窒素ガスを発生するため、 ゲル中に 脱泡困難な気泡を発生し、 イオン伝導性が低下する。 また、 イオンの流れに偏り ができ、 過熱の恐れもある。 過酸化物化合物を使用する場合には、 ゲル化させる ためのラジカル重合の際に衝撃や摩擦による爆発の危険性があり、 取り扱いに細 心の注意が必要である。 過酸化物化合物が、 未反応のままゲル中に残存すること も製品使用上の安全性において問題となる。 As a method for improving the heat resistance, it is effective to use a crosslinked polymer having a three-dimensional structure by a covalent bond. For example, there are many reports such as Japanese Patent Application Laid-Open No. H10-74526, Japanese Patent Application Laid-open No. H11-21038, Japanese Patent Application Laid-Open No. 2000-080038, and the like. ing. However, these polymer electrolyte gels are not yet sufficient in terms of ionic conductivity and safety. That is, the previous reports describe a gelation method in which a polymer or low molecule having a plurality of vinyl groups is converted into a crosslinked polymer by radical polymerization by heating, but a peroxide compound is used as a catalyst. Since a diazo compound is used, it is inevitable that unreacted catalyst and decomposition products of the catalyst remain in the generated polymer electrolyte gel. These residues change in the gel and contribute to lowering the ion conductivity of the polyelectrolyte gel. When a azo compound is used, nitrogen gas is generated at the time of decomposition, so that bubbles that are difficult to remove are generated in the gel and ion conductivity is reduced. In addition, the flow of ions is biased, and there is a risk of overheating. When peroxide compounds are used, there is a risk of explosion due to shock or friction during radical polymerization for gelling, and special care must be taken when handling. Peroxide compounds that remain in the gel unreacted also pose a problem in product safety.
同じラジカル重合により架橋高分子とすることによるゲル化方法であつても、 特開 2 0 0 0 - 8 0 1 3 8号公報などに記載されているベンジルジメチルケタ一 ルなどの光開始剤を使用した光照射により架橋高分子とする方法の場合は、 分解 によるガス発生や爆発の危険性はないので、 前述の問題点は発生しない。 しかし ながら、 光照射により架橋高分子とすることによるゲル化方法をリチウムイオン 二次電池やキャパシタなどに適用する場合には、 以下に述べるように製造工程の 制約から不利な面が生じる。  Even in a gelation method by forming a crosslinked polymer by the same radical polymerization, a photoinitiator such as benzyl dimethyl ketal described in JP-A-2000-18038 is used. In the case of the method used for forming a crosslinked polymer by light irradiation, there is no danger of gas generation or explosion due to decomposition, so the above-mentioned problem does not occur. However, when a gelling method by forming a crosslinked polymer by light irradiation is applied to a lithium ion secondary battery, a capacitor, or the like, disadvantages arise due to restrictions on a manufacturing process as described below.
即ち加熱により架橋高分子とすることによるゲル化方法では、 あらかじめ組み 立てられたセルに高分子電解質ゲルの前駆体溶液を注入した後でゲル化させるこ とが可能である。 このような方法でゲル化させると高分子電解質ゲルと電極との 接触が良好となり、 界面抵抗も抑制される。 しかし、 光照射によるゲル化方法で は、 セル内に光を照射することができないため、 注入後にゲル化させることはで きない。 必然的に、 あらかじめ作成したゲルを電極と貼り合わせることになるが 、 その結果、 高分子電解質ゲルと電極との間の界面抵抗が大きくなり、 イオン伝 導性を低下させることになるのである。  That is, in the gelling method by forming a crosslinked polymer by heating, it is possible to gel after injecting a precursor solution of the polymer electrolyte gel into a cell assembled in advance. When the gel is formed by such a method, the contact between the polymer electrolyte gel and the electrode is improved, and the interface resistance is suppressed. However, in the gelation method by light irradiation, the cells cannot be irradiated with light, so that they cannot be gelled after injection. Inevitably, the gel prepared in advance is bonded to the electrode, but as a result, the interface resistance between the polymer electrolyte gel and the electrode increases, and the ionic conductivity decreases.
また、 以上のようなゲル化方法に起因するィォン伝導性の低下は 0 °C以下の低 温においてさらに顕著となり、 これらの方法を適用したリチウムィォン二次電池 やキャパシタは寒冷地での使用が難しくなることも考えられる。  In addition, the decrease in ion conductivity caused by the above-mentioned gelation method becomes more remarkable at low temperatures of 0 ° C or less, and lithium ion secondary batteries and capacitors using these methods are not suitable for use in cold regions. It can be difficult.
以上述べたように、 加熱によるラジカル重合でのゲル化方法では、 高分子電解 質ゲル中に残存する触媒に由来する不純物がイオン伝導性や安全性に悪影響を与 えていた。 また、 光照射によるラジカル重合でのゲル化方法では、 光照射の制約 に基づくセルにおける界面抵抗の大きさがイオン伝導性を低下させていた。 本発 明者はかかる従来の高分子電解質ゲルの欠点を克服すべく鋭意検討を進めた結果 、 特定の高分子を材料に特定の触媒で架橋を形成することにより欠点の除かれた ゲルが得られることを見出し本発明に到達した。 本発明の目的は、 従来から知ら れている高分子電解質ゲルよりも、 さらにイオン伝導性に優れている高分子電解 質ゲルと該ゲルの製造方法を提供することにある。 発明の開示 As described above, in the method of gelation by radical polymerization by heating, impurities derived from the catalyst remaining in the polymer electrolyte gel had an adverse effect on ionic conductivity and safety. In addition, in the gelation method by radical polymerization by light irradiation, the large interfacial resistance in the cell due to the restriction of light irradiation reduced the ionic conductivity. The present inventors have conducted intensive studies to overcome the disadvantages of the conventional polymer electrolyte gel. The inventors have found that a gel free from defects can be obtained by forming a crosslink of a specific polymer with a specific catalyst using a specific catalyst. An object of the present invention is to provide a polymer electrolyte gel having more excellent ion conductivity than a conventionally known polymer electrolyte gel, and a method for producing the gel. Disclosure of the invention
本発明の第 1の発明は、 エポキシ基を 1分子中に 2個以上有する高分子 (以下 、 エポキシ基含有高分子という) を、 支持電解質を触媒としてエポキシ環の開環 架橋反応させてなる架橋高分子 (以下、 エポキシ架橋高分子という) と、 前記支 持電解質およぴ有機溶媒でなる高分子電解質ゲルである。  The first invention of the present invention relates to a crosslink obtained by subjecting a polymer having two or more epoxy groups per molecule (hereinafter referred to as an epoxy group-containing polymer) to a ring-opening and crosslinking reaction of an epoxy ring using a supporting electrolyte as a catalyst A polymer electrolyte gel comprising a polymer (hereinafter, referred to as an epoxy crosslinked polymer), the supporting electrolyte and an organic solvent.
第 2の発明は、 エポキシ基含有高分子が、 1分子中にビニル基とエポキシ基を 含むモノマーを必須成分として重合されてなるものであり、 リチウム以外の金属 イオンを含まないものである第 1の発明に記載の高分子電解質ゲルである。  According to a second invention, an epoxy group-containing polymer is obtained by polymerizing a monomer containing a vinyl group and an epoxy group in one molecule as an essential component, and does not contain metal ions other than lithium. A polymer electrolyte gel according to the invention.
第 3の発明は、 支持電解質が、 L i B F 4および Zまたは L i P F 6を含むィ オン性化合物である第 1または第 2の発明のいずれかに記載の高分子電解質ゲル である。 A third invention is the supporting electrolyte is a polymer electrolyte gel according to any one of the first or second invention is a I-one compound containing a L i BF 4 and Z or L i PF 6.
第 4の発明は、 エポキシ架橋高分子が、 高分子電解質ゲルに対し 2から 2 0重 量%である第 1、 第 2、 第 3の発明のいずれかに記載の高分子電解質ゲルである 第 5の発明は、 有機溶媒にエポキシ基含有高分子と支持電解質を必須成分とし て溶解した溶液中の該エポキシ基含有高分子を、 支持電解質を触媒としてェポキ シ環の開環架橋反応させてエポキシ架橋高分子を形成させることを特徴とする第 1、 第 2、 第 3、 第 4の発明のいずれかに記載の高分子電解質ゲルの製造方法。 である。 発明を実施するための最良の形態  A fourth invention is the polymer electrolyte gel according to any one of the first, second, and third inventions, wherein the epoxy crosslinked polymer is 2 to 20% by weight based on the polymer electrolyte gel. The invention of claim 5 relates to an epoxy group-containing polymer in a solution in which an epoxy group-containing polymer and a supporting electrolyte are dissolved in an organic solvent as essential components, and a epoxide ring is subjected to ring-opening cross-linking reaction using the supporting electrolyte as a catalyst. The method for producing a polymer electrolyte gel according to any one of the first, second, third, and fourth inventions, wherein a crosslinked polymer is formed. It is. BEST MODE FOR CARRYING OUT THE INVENTION
本願に言うエポキシ基含有高分子は、 1分子中に 2個以上のエポキシ基を含有 していることが必要であり、 このことは該高分子がェポキシ環の開環結合という 高分子反応によりエポキシ架橋高分子を形成し得るものであるという必要条件を 意味し、 1分子中に 2個以上であればその数とか、 結合している位置とか、 さら には該高分子の主鎖の種類等は特に限定されるものではない。 また、 1種類に限 定されず、 2種類以上のエポキシ基含有高分子の混合物であってもよい。 またそ の数平均分子量は特に限定されないが、 概ね 5 0 0 ~ 1 0 0 0 0 0 0位である。 このようなエポキシ基含有高分子は、 不飽和炭化水素系ポリマーや、 ポリエ一 テル、 ポリエステル、 ポリウレタン、 ビニルポリマ一などであって反応性官能基 を持つ高分子にエポキシ基を導入することで得ることができる。 例えば、 ポリマ 一中に二重結合を持つポリブタジエンやポリィソプレンなどには、 二重結合に過 酢酸を反応させることでエポキシ基を導入することができ、 また、 ポリマー中に 水酸基を持つポリエチレンォキシドゃポリプロピレンォキシドなどには、 水酸基 にェピクロロヒドリンを付加させ水酸化ナトリゥムで脱塩酸することでエポキシ 基を導入することができる。 The epoxy group-containing polymer referred to in the present application needs to contain two or more epoxy groups in one molecule, which means that the polymer has an epoxy group by a polymer reaction called ring-opening bond of an epoxy ring. The prerequisite of being able to form a crosslinked polymer This means that if it is two or more in one molecule, the number, the bonding position, and the type of the main chain of the polymer are not particularly limited. Further, the mixture is not limited to one type, and may be a mixture of two or more types of epoxy group-containing polymers. Further, the number average molecular weight is not particularly limited, but is generally about 500 to 100000. Such an epoxy group-containing polymer can be obtained by introducing an epoxy group into an unsaturated hydrocarbon polymer or a polymer having a reactive functional group, such as a polyester, polyester, polyurethane, or vinyl polymer. Can be. For example, an epoxy group can be introduced into polybutadiene or polyisoprene having a double bond in a polymer by reacting the double bond with peracetic acid. In addition, polyethylene oxide having a hydroxyl group in the polymer can be used. Epoxy groups can be introduced into polypropylene oxide or the like by adding epichlorohydrin to hydroxyl groups and dehydrochlorinating with sodium hydroxide.
上述のような、 既存のポリマーにエポキシ基を導入する方法のほかにも、 ビニ ル重合を利用して直接エポキシ基含有高分子を合成する方法を採ることもできる 。 ビニル重合では、 共重合成分として様々なビニルモノマーを利用できるため、 その共重合成分を変化させることで、 求められる特性に容易に対応でき、 応用の 幅が広く、 好適である。 従って、 以下ではこのケースについて説明する。  In addition to the method of introducing an epoxy group into an existing polymer as described above, a method of directly synthesizing an epoxy group-containing polymer using vinyl polymerization can also be employed. In vinyl polymerization, since various vinyl monomers can be used as a copolymer component, by changing the copolymer component, the required characteristics can be easily coped with, and the range of application is wide and suitable. Therefore, this case will be described below.
ビニル重合により得られたビニルポリマ一を直接エポキシ基含有高分子として 使用するためには、 該ビニルポリマ一が、 ビニル基とエポキシ基を含むモノマー の単独重合体であるかまたは該モノマ一を共重合成分の一つとする共重合体であ ることが必須である。 ビニル基とエポキシ基を含むモノマーの例としては、 メタ クリル酸グリシジル、 アクリル酸グリシジル、 アクリル酸 2—メチルダリシジル 、 1 , 2—エポキシ一 3—ブテン、 イソプレンォキシド、 1 , 2—エポキシ一 2 ーメチルー 3—ブテン, 1 , 2—エポキシ一 5—へキセン, 3—ェテニルー 7— ォキサビシクロ [ 4, 1 , 0 ] ヘプタン、 ァリルグリシジルエーテル、 [ ( 2— プロぺニロキシ) メチル] ォキシランなどが挙げられる。  In order to use the vinyl polymer obtained by vinyl polymerization directly as an epoxy group-containing polymer, the vinyl polymer is a homopolymer of a monomer containing a vinyl group and an epoxy group, or the monomer is a copolymer component. It is essential that the copolymer be one of the above. Examples of monomers containing a vinyl group and an epoxy group include glycidyl methacrylate, glycidyl acrylate, 2-methyldaricidyl acrylate, 1,2-epoxy-1-butene, isopreneoxide, 1,2-epoxy-1 2-methyl-3-butene, 1,2-epoxy-5-hexene, 3-ethenyl-7-oxabicyclo [4,1,0] heptane, arylglycidyl ether, [(2-propenyloxy) methyl] oxylan, etc. No.
ビニル基とエポキシ基を含むモノマーと共重合させる他のモノマ一としては、 ビニルモノマーであれば、 特に限定されない。 また、 1種類に限定されず、 2種 類以上のビニルモノマーを使用してもよい。 このようなビニルモノマーの例とし ては、 アクリロニトリル、 メタクリロニトリル、 アクリル酸エステル類、 メ夕ク リル酸エステル類、 ビニルエーテル類などが挙げられる。 これらの共重合させる ビニルモノマーは、 高分子電解質ゲルに使用される有機溶媒の種類や目標とする 高分子電解質ゲルに要求される特性を考慮して、 適宜選択される。 The other monomer to be copolymerized with the monomer containing a vinyl group and an epoxy group is not particularly limited as long as it is a vinyl monomer. Further, the present invention is not limited to one kind, and two or more kinds of vinyl monomers may be used. Examples of such vinyl monomers Examples include acrylonitrile, methacrylonitrile, acrylates, methacrylates, and vinyl ethers. These vinyl monomers to be copolymerized are appropriately selected in consideration of the type of the organic solvent used for the polymer electrolyte gel and the properties required for the target polymer electrolyte gel.
ビニルポリマー中の、 ビニル基とエポキシ基を含むモノマーとその他の共重合 させるモノマーとの比率は、 高分子電解質ゲルに要求される硬さ他の特性を考慮 して決定されるべきものであるが、 通常は、 ビニル基とエポキシ基を含むモノマ The ratio of the monomer containing a vinyl group and an epoxy group to the other monomer to be copolymerized in the vinyl polymer should be determined in consideration of the hardness and other characteristics required for the polymer electrolyte gel. , Usually monomers containing vinyl and epoxy groups
—/その他の共重合させるビニルモノマーのモル比は、 5 / 9 5〜 1 0 0ノ0で あり、 好ましくは 2 0 Z 8 0〜8 5 / 1 5である。 該ビニルポリマー中の、 ビニ ル基とエポキシ基を含むモノマーの比率が、 5モル%未満では、 後続するゲル化 状態を発現するためのエポキシ基同士の開環架橋反応によるエポキシ架橋高分子 の形成が効率よく進み難い場合がある。 また、 該比率が 1 0 0モル%即ち単独の 場合は、 エポキシ架橋高分子の形成が効率よく進むが、 架橋が密となるため、 保 持できる有機溶媒の量が少なくなる。 なお、 かかるビニルポリマーの分子量とし ては、 最終的には架橋体となることから特に重要ではなく、 有機溶媒 Z支持電解 質の系に溶解できる程度であればよく、 概ね数平均分子量で 1 0 0 0〜1 0 0 0 0 0 0位である。 The molar ratio of — / other vinyl monomers to be copolymerized is from 5/95 to 100, preferably from 20 to 80/85. If the ratio of the monomer containing a vinyl group and an epoxy group in the vinyl polymer is less than 5 mol%, the formation of an epoxy cross-linked polymer by a ring-opening cross-linking reaction between epoxy groups to develop a subsequent gelled state. May not be able to proceed efficiently. When the ratio is 100 mol%, that is, alone, the formation of the epoxy cross-linked polymer proceeds efficiently, but the cross-linking becomes dense, so that the amount of the organic solvent that can be retained is reduced. The molecular weight of such a vinyl polymer is not particularly important since it eventually becomes a crosslinked body, and may be any value as long as it can be dissolved in a system of an organic solvent Z and a supporting electrolyte. It is in the order of 0 to 1 0 0 0 0 0 0 0.
また、 かかるビニルポリマーの作成にあたっては、 エポキシ基を反応させない ように且つリチウム以外の金属イオンが入らないように重合することが肝要であ る。 このような重合方法としては、 ラジカル重合法が一般的である。 イオン重合 の場合には、 重合中にエポキシ基が開環結合反応を起こしてしまうため、 得られ たポリマーを後続工程で架橋ゲル化させることが不可能となったり、 逆に重合中 に架橋されて有機溶媒に不溶なポリマーとなったりする恐れがある。 ラジカル重 合によつて合成する場合でも、 重合触媒の種類によっては高分子電解質ゲルの電 気化学的特性を低下させる可能性があるので、 重合触媒の選択は重要である。 例えば、 亜硫酸ナトリウムと過硫酸ナトリゥムを用いたレドックス重合におい ては、 ポリマー末端基として重合触媒ラジカルに由来するスルホン酸ナトリウム が形成され、 ポリマ一中に多量のナトリウムイオンが存在する結果となる。 リチ ゥムィォン二次電池用の高分子電解質ゲルとして使用する場合には、 リチウムィ オン以外のアル力リ金属イオンやアル力リ土類金属イオンなどの金属イオン不純 物は界面抵抗を増加させるので、 かかるナトリウムイオンなどは極力減少させる ことが望ましい。 In preparing such a vinyl polymer, it is important to carry out polymerization so that the epoxy group does not react and metal ions other than lithium do not enter. As such a polymerization method, a radical polymerization method is generally used. In the case of ionic polymerization, the epoxy group undergoes a ring-opening bond reaction during polymerization, so that the resulting polymer cannot be crosslinked and gelled in the subsequent process, or conversely, is crosslinked during polymerization. And the resulting polymer may be insoluble in organic solvents. Even when synthesizing by radical polymerization, the choice of polymerization catalyst is important because the electrochemical characteristics of the polymer electrolyte gel may be reduced depending on the type of polymerization catalyst. For example, in redox polymerization using sodium sulfite and sodium persulfate, sodium sulfonate derived from a polymerization catalyst radical is formed as a polymer terminal group, resulting in a large amount of sodium ions in the polymer. When used as a polymer electrolyte gel for lithium secondary batteries, Since metal ion impurities other than ON, such as metal ions and earth metal ions, increase the interface resistance, it is desirable to reduce such sodium ions as much as possible.
どうしても上述のようなレドックス重合を採用しなければならない場合に、 高 分子中に取り込まれた金属イオン不純物を除くには、 強酸性の水溶液で洗浄する 方法もあるが、 工業生産としては効率的な方法とは言えない。 従って、 上述のポ リマーがリチウム以外の金属イオンを含まないようにするためには、 このような 重合触媒の使用量を極力減少させるか、 あるいは使用を避けるのが望ましい。 こ のような観点から、 該ビニルポリマ一を合成するに当たっては、 工業的には、 有 機過酸化物化合物やァゾ化合物のような金属イオンを発生させない重合触媒や、 紫外線照射、 電子線照射などの手段で重合することが推奨される。  When redox polymerization must be used as described above, there is a method of washing with a strongly acidic aqueous solution to remove metal ion impurities incorporated in high molecules, but it is efficient for industrial production. Not a way. Therefore, in order to prevent the above-mentioned polymer from containing metal ions other than lithium, it is desirable to minimize the use of such a polymerization catalyst or to avoid its use. From such a viewpoint, in synthesizing the vinyl polymer, industrially, a polymerization catalyst that does not generate metal ions such as an organic peroxide compound or an azo compound, ultraviolet irradiation, electron beam irradiation, or the like is used. It is recommended to polymerize by means of
なお、 本願発明においてエポキシ基含有高分子がリチウム以外の金属イオンを 『含まない』 というのは、 かかる不純物金属イオンの 『絶対無』 を意味するもの ではない。 即ち、 後述するエポキシ基含有高分子の有用な作成方法として本願発 明が推奨する溶液重合法に使用する有機溶媒でさえ、 L. B. グレードであって も不純物金属イオンは絶対無ではないのが現状である。 そこで、 本発明の最終産 物である高分子電解質ゲルにおいて、 エポキシ基含有高分子に由来する不純物金 属ィォン量が、 共存する支持電解質あるいは有機溶媒に由来する不純物金属ィォ ン量を超えないことを以て 「含まない」 と扱う。  In the present invention, the fact that the epoxy group-containing polymer does not contain a metal ion other than lithium does not mean that the impurity metal ion is “absolutely null”. That is, even in the case of the organic solvent used in the solution polymerization method recommended by the present invention as a useful method for producing an epoxy group-containing polymer described later, even if it is LB grade, there is no absolute absence of impurity metal ions at present. is there. Therefore, in the polymer electrolyte gel which is the final product of the present invention, the amount of the impurity metal ions derived from the epoxy group-containing polymer does not exceed the amount of the impurity metal ions derived from the coexisting supporting electrolyte or organic solvent. Therefore, it is treated as “not included”.
本願発明が推奨する溶液重合法では、 L . B . グレードの有機溶媒に金属ィォ ンを発生させないラジカル重合触媒、 ビニル基とエポキシ基を含むモノマーおよ び場合によってはこれらに加えて共重合させるビニルモノマーを重量比で概ね有 機溶媒 6、 重合触媒 0. 2、 モノマー 4の割合で溶解させた溶液を作成し、 加熱 または光照射によりエポキシ基含有高分子であるピニルポリマーが溶解された高 分子溶液を作成する。 得られた高分子溶液はそのまま高分子電解質ゲルの前駆体 として使用できるため、 高分子に不純物を除くための精製を施したり、 さらに乾 燥 ·溶解したりする工程が不要で工程を簡略化することができ、 工業生産に有利 である。  In the solution polymerization method recommended by the present invention, a radical polymerization catalyst that does not generate metal ions in an L.B. grade organic solvent, a monomer containing a vinyl group and an epoxy group, and in some cases, a copolymerization in addition to these. A solution was prepared by dissolving the vinyl monomer to be dissolved in a ratio of approximately 6 parts by weight of the organic solvent, 0.2 part of the polymerization catalyst, and 4 parts of the monomer, and the pinyl polymer, an epoxy group-containing polymer, was dissolved by heating or light irradiation. Create a molecular solution. The obtained polymer solution can be used as it is as a precursor of the polymer electrolyte gel, so there is no need to purify the polymer to remove impurities or to dry and dissolve it, simplifying the process. It is advantageous for industrial production.
以上説明したエポキシ基含有高分子であるビニルポリマ一は、 本発明の高分子 電解質ゲルの中では該ポリマーの含有するエポキシ環が開環架橋反応したェポキ シ架橋高分子となつて系全体をゲル状態にしているのであるが、 かかるエポキシ 架橋高分子の高分子電解質ゲルに対する割合は、 高分子電解質ゲル全体を 100 重量%としたとき、 2〜20重量%であり、 好ましくは 2〜10重量%である。 割合が 2重量%よりも低いとゲルを形成することが困難となったり、 20重量% を超えるとイオン伝導性が著しく低下するケースが生じることがある。 また、 ェ ポキシ基含有高分子の含有するエポキシ環が開環架橋反応する際には、 副生成物 が脱離したり、 別の分子が付加したりすることはないので、 エポキシ架橋高分子 の高分子電解質ゲルに対する割合は、 エポキシ基含有高分子の開環架橋反応前の 溶液に対する割合に等しくなる。 The vinyl polymer that is the epoxy group-containing polymer described above is a polymer of the present invention. In the electrolyte gel, the epoxy ring contained in the polymer forms an epoxy-crosslinked polymer that has undergone a ring-opening crosslinking reaction, and the entire system is in a gel state.The ratio of the epoxy-crosslinked polymer to the polymer electrolyte gel is Is 2 to 20% by weight, preferably 2 to 10% by weight, based on 100% by weight of the entire polymer electrolyte gel. If the proportion is less than 2% by weight, it may be difficult to form a gel, and if it exceeds 20% by weight, the ionic conductivity may be significantly reduced. In addition, when the epoxy ring contained in the epoxy group-containing polymer undergoes a ring-opening cross-linking reaction, no by-product is eliminated or another molecule is added. The ratio to the molecular electrolyte gel is equal to the ratio of the epoxy group-containing polymer to the solution before the ring-opening crosslinking reaction.
次に本発明に採用される支持電解質としては、 L i C l〇4、 L i BF4、 L i PF6、 L i As F6などの無機化合物や L i S〇3CF3、 L iN (S〇2CF 3) 2、 L i C (S〇2CF3) 3などのフッ素リチウム塩、 テトラエチルアンモニ ゥムテトラフルォロホウ酸塩、 テトラェチルアンモニゥムへキサフルォロリン酸 塩、 モノメチルトリェチルアンモニゥムテトラフルォロホウ酸塩、 モノメチルト リエチルアンモニゥムへキサフルォロリン酸塩などであって有機溶媒に溶解する ものが好適に使用されるが、 特に好適なのは L i BF4、 L i FF6、 あるいは これらの併用である。 As a supporting electrolyte is employed in the present invention is then, L i C L_〇 4, L i BF 4, L i PF 6, L i inorganic compound such as As F 6 and L i S_〇 3 CF 3, L iN (S_〇 2 CF 3) 2, L i C fluorine lithium salts such as (S_〇 2 CF 3) 3, tetraethylammonium Ann monitor © beam tetrafluoropropoxy O b borate, Kisafuruororin salt to tetra E chill ammonium Niu arm, monomethyl Triethylammonium tetrafluoroborate, monomethyltriethylammonium hexafluorophosphate and the like which are dissolved in an organic solvent are preferably used, and particularly preferred are L i BF 4 and L i FF 6 , or a combination of these.
次に本発明に採用される有機溶媒とは、 水分含有量が 0. 1重量%以下で、 ェ ポキシ基含有高分子および支持電解質を溶解し得る溶媒の意であり、 このような 有機溶媒としては、 エチレンカーボネート (略称 EC) 、 プロピレン力一ポネー ト (略称 FC) 、 ブチレンカーボネート (略称 BC) 、 ジェチルカーボネ一ト ( 略称 DEC) 、 ジメチルカ一ボネート (略称 DMC) 、 ェチルメチルカ一ボネー ト (略称 EMC) などの炭酸エステル、 エチレングリコール、 プロピレングリコ ール、 メチルセ口ソルブ、 ェチルセ口ソルブなどのエーテル化合物のほか、 ガン マブチロラクトン (略称 GBL) 、 スルホラン、 ジメチルスルホキシド、 アジポ 二卜リル、 グルタロニトリル, N—メチルピロリ ドン、 トリメチルホスフェート などの単独あるいは 2種以上の混合溶媒が推奨される。  Next, the organic solvent used in the present invention means a solvent having a water content of 0.1% by weight or less and capable of dissolving the epoxy group-containing polymer and the supporting electrolyte. Are ethylene carbonate (abbreviated EC), propylene carbonate (abbreviated FC), butylene carbonate (abbreviated BC), getyl carbonate (abbreviated DEC), dimethyl carbonate (abbreviated DMC), and ethyl methyl carbonate (abbreviated EMC) Ether compounds such as carbonic acid esters such as ethylene glycol, propylene glycol, methyl sorb, and ethyl sorb, as well as gamma mabutyrolactone (abbreviated as GBL), sulfolane, dimethyl sulfoxide, adipitolyl, glutaronitrile, N —Single or two or more such as methylpyrrolidone and trimethyl phosphate Mixed solvent is recommended.
これらの有機溶媒は、 エポキシ基含有高分子および支持電解質の溶解能が優れ ている限り、 その沸点が高温のものが好ましい。 沸点が 9 0 °C以下の有機溶媒は 蒸発しやすく、 またその高い蒸気圧のために不具合が生じることがある。 These organic solvents have an excellent ability to dissolve the epoxy group-containing polymer and the supporting electrolyte. As long as the boiling point is high, those having a high boiling point are preferred. Organic solvents having a boiling point of 90 ° C or less are easily evaporated and may have problems due to their high vapor pressure.
以上に説明したエポキシ基含有高分子が開環架橋反応して得られたエポキシ架 橋高分子、 支持電解質および有機溶媒が本願に言う高分子電解質ゲルの必須成分 であるが、 その他の成分として架橋を形成しない高分子化合物や導電性添加物な どを加えても構わない。  The epoxy bridge polymer, supporting electrolyte, and organic solvent obtained by the ring-opening crosslinking reaction of the epoxy group-containing polymer described above are essential components of the polymer electrolyte gel referred to in the present application. It is possible to add a polymer compound or a conductive additive which does not form a polymer.
これらの各成分が高分子電解質ゲル中に占める割合は、 目標とする電気化学的 特性や物性を勘案して決定されるべきものであるが、 通常は前述の通りエポキシ 架橋高分子が 2から 2 0重量%、 支持電解質を 1から 3 0重量%とし、 残部を有 機溶媒およびその他の成分とするのが適正である。  The proportion of each of these components in the polyelectrolyte gel should be determined in consideration of the target electrochemical properties and physical properties. It is appropriate to use 0% by weight, 1 to 30% by weight of the supporting electrolyte, and the remainder being organic solvents and other components.
本発明の高分子電解質ゲルは、 有機溶媒にエポキシ基含有高分子および支持電 解質を必須成分として溶解した溶液中の、 該エポキシ基含有高分子を前記支持電 解質を触媒として反応させることによりエポキシ基同士を開環架橋させてェポキ シ架橋高分子を形成し、 該溶液を架橋ゲル化させることで得ることができる。 な お、 上述したように溶液の調合に際し、 その他の成分として架橋を形成しない高 分子化合物や導電性添加物などを加えても構わない。 また、 これらの製造工程は 、 吸湿による水分率の増加を防止するために、 外気を遮断した状態あるいは露点 が一 5 0 °C以下の乾燥した雰囲気中で行うことが重要である。  The polymer electrolyte gel of the present invention is obtained by reacting the epoxy group-containing polymer in a solution in which an epoxy group-containing polymer and a supporting electrolyte are dissolved in an organic solvent as essential components, using the supporting electrolyte as a catalyst. Thus, the epoxy groups can be ring-opened and crosslinked to form an epoxy crosslinked polymer, and the solution can be crosslinked to form a gel. As described above, in preparing the solution, a high molecular compound that does not form crosslinks, a conductive additive, and the like may be added as other components. In addition, it is important that these manufacturing processes are performed in a dry atmosphere having a dew point of 150 ° C. or less in a state where the outside air is shut off, in order to prevent an increase in moisture content due to moisture absorption.
該溶液を、 溶液状態からゲル状態にする (ゲル化させる) のは、 上述の通りェ ポキシ基含有高分子の有するエポキシ基同士の開環架橋反応で架橋構造が形成さ れること (架橋ゲル化を起こすこと) による。 この種の架橋ゲル化反応の通常の 触媒としては、 3級ァミン、 ルイス酸、 プロトン酸などが使用でき、 数十 °Cで数 時間加熱することによりゲルを生成する。 しかし、 この場合架橋ゲル化後は、 こ れらの触媒はいずれも不純物としてゲル中に残留し、 イオンの移動を妨げたり、 界面抵拭を増加させたりするので、 高分子電解質ゲルとしてはイオン伝導性を低 下させる原因となり採用できない。 そこで本発明では、 この反応において支持電 解質を触媒として使用すること、 特に L i B F 4と L i P F 6の使用を推奨する 。 支持電解質を触媒として使用する本発明は、 ゲル中に不純物を残留させること なく架橋ゲル化させることが可能であり、 前記の問題が克服され大変好ましい。 上記必須成分を溶解した溶液の調合方法は特に限定されるものではないが、 支 持電解質は、 架橋ゲル化触媒としても機能するため、 一番最後に混合するのがよ り好ましい。 例えば、 有機溶媒にエポキシ基含有高分子が溶解された高分子溶液 に支持電解質を溶解させる方法、 予め支持電解質を溶解した有機溶媒を高分子溶 液に加える方法などが挙げられる。 The solution is changed from a solution state to a gel state (gelation) because a cross-linked structure is formed by a ring-opening cross-linking reaction between epoxy groups of the epoxy group-containing polymer as described above (cross-linked gelation). Cause). Tertiary amines, Lewis acids, protonic acids and the like can be used as a usual catalyst for this kind of cross-linking gelation reaction, and a gel is formed by heating at several tens of degrees Celsius for several hours. However, in this case, after cross-linking and gelation, all of these catalysts remain in the gel as impurities, hindering the movement of ions and increasing the interfacial wiping. It cannot be adopted because it causes a decrease in conductivity. Therefore, in the present invention, it is recommended to use a supporting electrolyte as a catalyst in this reaction, and particularly to use Li BF 4 and Li PF 6. The present invention using a supporting electrolyte as a catalyst enables cross-linking and gelation without leaving any impurities in the gel, and is very preferable because the above-mentioned problem is overcome. The method of preparing the solution in which the essential components are dissolved is not particularly limited, but the supporting electrolyte also functions as a cross-linking gelling catalyst, and therefore, it is more preferable to mix the supporting electrolyte last. For example, a method of dissolving a supporting electrolyte in a polymer solution in which an epoxy group-containing polymer is dissolved in an organic solvent, a method of adding an organic solvent in which a supporting electrolyte is dissolved in advance to the polymer solution, and the like are given.
ここで用いる有機溶媒にエポキシ基含有高分子が溶解された高分子溶液とは、 予め重合して得られたエポキシ基含有高分子を有機溶媒に溶解したものであって も、 あるいは有機溶媒中で単量体を反応させる溶液重合法により作成したェポキ シ基含有高分子の溶液であつてもよい。 工業的には後者の方が重合系から高分子 を取り出して精製したり、 乾燥や溶解する工程を省略できるので生産効率が高く 、 しかも均質な高分子溶液が得られやすいので、 特に推奨される方法である。 但 し、 エポキシ基含有高分子の形成にあたって採用する触媒については十分留意し 、 極力不純物として残らないよう、 あるいはリチウムイオン以外の金属イオンが 入らないようにすべきである。 場合によっては溶液重合法による高分子溶液に対 し、 触媒残留物の除去処理を施すのも好ましい。  The polymer solution in which the epoxy group-containing polymer is dissolved in the organic solvent used herein may be a solution in which the epoxy group-containing polymer obtained by pre-polymerization is dissolved in the organic solvent, or in an organic solvent. It may be a solution of an epoxy group-containing polymer prepared by a solution polymerization method in which a monomer is reacted. Industrially, the latter method is particularly recommended because the production efficiency is high and a homogeneous polymer solution can be easily obtained because the step of removing and purifying the polymer from the polymerization system and purifying or drying and dissolving the polymer can be omitted. Is the way. However, the catalyst used in the formation of the epoxy group-containing polymer should be carefully considered so as not to remain as impurities as much as possible or to prevent metal ions other than lithium ions from entering. In some cases, it is also preferable to remove the catalyst residue from the polymer solution by the solution polymerization method.
本発明のエポキシ環開環架橋反応は、 前述の方法により混合 ·溶解されたェポ キシ基含有高分子、 有機溶媒および支持電解質の溶液をそのまま加熱することで 進行し、 目的の高分子電解質ゲルが得られる。 大概の条件としては、 5 0〜7 0 °Cで 0. 5〜3時間維持する手段が例示される。 使用する支持電解質即ち触媒と しては L i B F 4や L i P F 6が触媒能が高く反応が速い。 支持電解質の種類に よっては、 架橋ゲル化の発現に高温長時間が必要となるが、 微量の L i B F 4ま たは L i P F 6を添加することでこの反応を促進することが可能である。 また、 エポキシ環は反応性が高く、 この開環架橋反応においてもエポキシ基含有高分子 に存在するエポキシ環はほぼすベて反応すると思われるが、 立体的阻害のため一 部のエポキシ環では架橋しないこともあると考えられる。 The epoxy ring-opening and cross-linking reaction of the present invention proceeds by directly heating the solution of the epoxide group-containing polymer, the organic solvent and the supporting electrolyte mixed and dissolved by the above-described method, and the desired polymer electrolyte gel is obtained. Is obtained. Most of the conditions include a means for maintaining the temperature at 50 to 70 ° C. for 0.5 to 3 hours. As a supporting electrolyte to be used, that is, as a catalyst, Li BF 4 or Li PF 6 has a high catalytic ability and a rapid reaction. Depending on the type of supporting electrolyte, high temperature and long time are required for the cross-linking gelation to develop, but this reaction can be promoted by adding a small amount of Li BF 4 or Li PF 6. is there. Epoxy rings are highly reactive, and even in this ring-opening cross-linking reaction, almost all of the epoxy rings present in the epoxy group-containing polymer are likely to react, but some epoxy rings are cross-linked due to steric hindrance. It is thought that there are times when it does not.
以上詳述してきた本発明の優れた特徴は、 出発物質としてエポキシ基含有高分 子を選んだことにより実質的に無触媒で高分子電解質ゲルが得られる点にある。 無触媒での架橋ゲル化が可能なため、 これまでのゲル化触媒として広く用いられ てきたァゾ化合物や過酸化物化合物は不要であり、 生成したゲル中に触媒の分解 生成物や未反応触媒が残らない。 特に手順は掛かるがエポキシ基含有高分子自体 を精製してから用いれば、 全く不純物の無いゲルも可能である。 すなわち、 本発 明の高分子電解質ゲルは、 不純物を減少させたゲルであり、'このため、 優れたィ オン伝導性を示すのである。 実施例 An excellent feature of the present invention described in detail above is that a polymer electrolyte gel can be obtained substantially without a catalyst by selecting an epoxy group-containing polymer as a starting material. Since cross-linking gelation can be performed without a catalyst, azo compounds and peroxide compounds that have been widely used as gelling catalysts so far are unnecessary, and the catalyst is decomposed in the formed gel. No product or unreacted catalyst remains. Although a particular procedure is required, a gel containing no impurities can be obtained if the epoxy group-containing polymer itself is used after purification. That is, the polymer electrolyte gel of the present invention is a gel with reduced impurities, and therefore exhibits excellent ion conductivity. Example
以下、 代表的な実施例および比較例によって、 本発明をさらに具体的に説明す るが、 本発明はこれらの実施例に限定されるものではない。 なお、 以下の実施例 に記載の部は、 特にことわりのない限り重量部であり、 %は重量パーセントであ る。 実施例で得られた電解質ゲルは、 以下に示すセルを作成しそのセルについて 電気化学特性を評価した。  Hereinafter, the present invention will be described more specifically with reference to representative examples and comparative examples, but the present invention is not limited to these examples. Parts described in the following examples are parts by weight unless otherwise specified, and% is percent by weight. From the electrolyte gel obtained in the examples, the following cells were prepared, and the electrochemical characteristics of the cells were evaluated.
〔電気化学特性評価用セルの作成方法〕  (Creation method of electrochemical characteristic evaluation cell)
ステンレス製のシャーレの底部に厚さ 0. 2 mmの平板状のリチウム箔 (電極 ) を置き、 その上に厚さ 0. 2 mmのテフロン製の角型スぺーサ一をセットし、 この中に以下の実施例や比較例で作成したエポキシ基含有高分子溶液と、 支持電 解質溶液を予め混合して作成しておいた溶液を適量入れ、 この上にも厚さ 0. 2 mmのリチウム箔 (電極) を置き、 スぺーサ一とリチウム箔の間に隙間ができな いようにしてシャーレのふたをした後、 6 0 °Cで 1時間加熱してエポキシ基同士 の開環架橋反応を行わせることにより架橋ゲル化させ、 厚さ 2 0 0 mの高分子 電解質ゲルのゲル膜を作成した。 このリチウム箔に挟まれたゲル膜を、 リード線 の付いた厚さ 0. 3 mmのニッケル板で挟み、 これを 2枚のガラス板の間に揷入 し、 クリップで固定し、 電気化学特性評価用のセルを作成した。  A flat 0.2 mm thick lithium foil (electrode) is placed on the bottom of a stainless steel Petri dish, and a 0.2 mm thick Teflon square spacer is set on it. Then, add an appropriate amount of a solution prepared by mixing the epoxy group-containing polymer solution prepared in the following Examples and Comparative Examples and the supporting electrolyte solution in advance, and put a 0.2 mm thick Place a lithium foil (electrode), cover the petri dish so that there is no gap between the spacer and the lithium foil, and heat at 60 ° C for 1 hour to open and crosslink epoxy groups. The reaction was carried out to form a crosslinked gel, and a gel film of a polymer electrolyte gel having a thickness of 200 m was formed. The gel film sandwiched between the lithium foils is sandwiched between a 0.3 mm-thick nickel plate with a lead wire, inserted between two glass plates, and fixed with clips to evaluate the electrochemical characteristics. Cell was created.
〔電気化学特性の評価〕  (Evaluation of electrochemical characteristics)
上述の電気化学特性評価用のセルを、 交流インピーダンス測定装置 (ソーラト ロン社製 1 2 8 6 + 1 2 5 0 ) に接続して、 2 5でで、 1 0 0 k H zから 1 H z までの交流ィンピーダンスを測定し、 測定周波数 1 0 0 k H zおよび 1 0 0 H z におけるインピ一ダンスをそれぞれバルク抵抗値および界面抵抗値とした。 この バルク抵抗値と、 セルの厚さと面積から、 イオン伝導率を算出した。  The above-mentioned cell for electrochemical property evaluation was connected to an AC impedance measurement device (Solartron 1286 + 1250), and at 25, from 100 kHz to 1 Hz. The impedance at the measurement frequencies of 100 kHz and 100 Hz was measured as the bulk resistance value and the interface resistance value, respectively. The ionic conductivity was calculated from the bulk resistance value and the cell thickness and area.
上記交流ィンピーダンス測定を 2 5 °Cで 2 4時間継続した後、 該評価用セルを 電気化学測定装置 (ソーラトロン社製 S 1— 1280B) に接続して、 25°Cで 反転電圧 ±0. 5V、 電位掃引速度 1 OmV/sのサイクリックボルタンメ トリ —により分極電解を行い、 3サイクル目の +0. 5 Vでの分極電流値を測定し、 これを対リチウム負極 CV分極電流値とした。 以下、 この対リチウム負極 CV分 極電流値を、 単に分極電流と称する。 After the above AC impedance measurement was continued at 25 ° C for 24 hours, the cell for evaluation was removed. Connected to an electrochemical measurement device (Solartron S 1-1280B), and subjected to polarization electrolysis using a cyclic voltammetry with an inversion voltage of ± 0.5 V and a potential sweep rate of 1 OmV / s at 25 ° C. The polarization current value at +0.5 V in the cycle was measured, and this was defined as the CV polarization current value for the lithium anode. Hereinafter, the value of the CV polarization current with respect to the lithium negative electrode is simply referred to as a polarization current.
さらにこの分極電流の測定後に、 再び交流インピーダンス測定を行い、 セル作 成 24時間後の界面抵抗値を求めた。 これらの測定結果から、 測定開始直後の界 面抵抗値と 24時間後の界面抵抗値の比率を求め、 界面抵抗値の増加率とした。 なお、 ゲル膜の作成、 セルの作成、 特性の評価は、 露点一 50°Cのアルゴンガス 雰囲気のグローブボックスを用いて実施した。  After the measurement of the polarization current, the AC impedance was measured again, and the interface resistance 24 hours after cell formation was determined. From these measurement results, the ratio between the interface resistance value immediately after the start of the measurement and the interface resistance value after 24 hours was determined, and was defined as the rate of increase in the interface resistance. The preparation of the gel film, the preparation of the cells, and the evaluation of the characteristics were performed using a glove box in an argon gas atmosphere with a dew point of 50 ° C.
<比較例 1 > <Comparative Example 1>
水酸化ナトリウム 0. 22 gを水 20 gに溶解させた水溶液にポリエチレング リコールモノメチルェ一テル (数平均分子量 2000) 10 gを添加した。 これ を 45°Cに加熱し、 0. 46 gのェピクロロヒドリンを激しくかき混ぜながら速 やかに添加し、 95°Cに加温し、 80分間かき混ぜを続けた。 得られた溶液をべ ンゼンで抽出し、 凍結乾燥法により抽出液からポリエチレングリコールモノメチ ルェ一テルの末端の水酸基部分がグリシジル基に置換修飾された 1分子中に 1個 のエポキシ基を有する単エポキシ基含有高分子を得た。  10 g of polyethylene glycol monomethyl ether (number average molecular weight 2000) was added to an aqueous solution in which 0.22 g of sodium hydroxide was dissolved in 20 g of water. This was heated to 45 ° C, 0.46 g of epichlorohydrin was added rapidly with vigorous stirring, heated to 95 ° C, and continued to stir for 80 minutes. The resulting solution is extracted with benzene, and a glycidyl-substituted terminal hydroxyl group of the polyethylene glycol monomethyl ester is substituted with a glycidyl group from the extract. An epoxy group-containing polymer was obtained.
エチレンカーボネート (EC) とプロピレンカーボネート (PC) を容量比で 2Z1に混合した混合溶媒 6 gに上記の高分子 4 gを溶解させて単エポキシ基含 有高分子溶液とした。 これとは別に上記の混合溶媒 9. 22gに L i BF4を 0 . 78 g溶解した支持電解質溶液を作成した。 該単エポキシ基含有高分子溶液 2 . Ogと該支持電解質溶液 8. Ogを使用して、 上述の方法に則り、 ゲル膜を作 成しようとしたが、 ゲル化できなかった。 4 g of the above polymer was dissolved in 6 g of a mixed solvent in which ethylene carbonate (EC) and propylene carbonate (PC) were mixed in a volume ratio of 2Z1 to obtain a single epoxy group-containing polymer solution. This A separately from a mixed solvent 9. 22 g of the the L i BF 4 creates a 0. 78 g dissolved supporting electrolyte solution. A gel film was prepared using the monoepoxy group-containing polymer solution (2.0 Og) and the supporting electrolyte solution (8 Og) in accordance with the above-mentioned method, but could not be gelled.
く実施例 1 > Example 1>
水酸化ナトリウム 0. 9 gを水 20 gに溶解させた水溶液にポリエチレングリ コール (数平均分子量 1000) 10 gを添加した。 これを 45°Cに加熱し、 1 . 85 gのェピクロロヒドリンを激しくかき混ぜながら速やかに添加し、 95°C に加温し、 80分間かき混ぜを続けた。 得られた溶液をベンゼンで抽出し、 凍結 乾燥法により抽出液からポリエチレンダリコールの両末端の水酸基部分がグリシ ジル基に置換修飾された 1分子中に 2個のエポキシ基を有するエポキシ基含有高 分子を得た。 この高分子を使用して比較例 1と同様の方法で作成したエポキシ基 含有高分子溶液 2. 0 gと比較例 1と同じ支持電解質溶液 8. 0gを使用して、 上述の方法に則り、 セルを作成し、 測定を行った。 10 g of polyethylene glycol (number average molecular weight: 1000) was added to an aqueous solution in which 0.9 g of sodium hydroxide was dissolved in 20 g of water. This was heated to 45 ° C., and 1.85 g of epichlorohydrin was added rapidly with vigorous stirring, heated to 95 ° C., and continued to stir for 80 minutes. Extract the resulting solution with benzene and freeze An epoxy group-containing high molecule having two epoxy groups in one molecule in which the hydroxyl groups at both ends of polyethylene dalicol were substituted and modified with glycidyl groups was obtained from the extract by the drying method. Using 2.0 g of the epoxy group-containing polymer solution prepared in the same manner as in Comparative Example 1 using this polymer and 8.0 g of the same supporting electrolyte solution as in Comparative Example 1, according to the method described above, A cell was created and measurements were made.
く実施例 2 > Example 2>
比較例 1の混合溶媒 6. 0 gに両末端がダリシジル基であるビスフヱノール A ーェピクロ口'ヒドリン共重合体 (Poly(Bisphenol A-co-epichlorohydrin), gly-ci dyl end-capped、 数平均分子量 1075) 4. 0 gを溶解させてエポキシ基含 有高分子溶液とした。 この溶液 2. 0gと比較例 1と同じ支持電解質溶液 8. 0 gを使用して、 上述の方法に則り、 セルを作成し、 測定を行った。  In the mixed solvent of Comparative Example 1, 6.0 g of bisphenol A-epiclo-mouth hydrin copolymer in which both terminals are daricidyl groups (Poly (Bisphenol A-co-epichlorohydrin), gly-ci dyl end-capped, number average molecular weight 1075 ) 4.0 g was dissolved to obtain an epoxy group-containing polymer solution. Using 2.0 g of this solution and 8.0 g of the same supporting electrolyte solution as in Comparative Example 1, a cell was prepared according to the method described above, and measurement was performed.
く実施例 3 > Example 3>
比較例 1と同じ混合溶媒 6 gにアクリロニトリル (以下 ANと略称する) 2. 0g、 酢酸ビニル (以下 VAcと略称する) 0. 4g、 メタクリル酸グリシジル (以下 GMAと略称する) 1. 6 g、 重合触媒としてべンジルジメチルケタール (以下 BDKと略称する) 0. 2 gを加えて溶解した。 これに 360 nmにピ一 ク波長を持ち、 この波長における照度が 1 OmWZcm2の紫外線を 10分間照 射して重合した後、 50°Cで、 ゲージ圧一 0. 09 MP aの減圧容器に入れ、 未 反応モノマ一を除去し、 エポキシ基含有高分子の高分子溶液を作成した。 該ェポ キシ基含有高分子溶液 2. 0gと比較例 1の支持電解質溶液 8. 0gを使用して 、 上述の方法に則り、 セルを作成し、 測定を行った。 Acrylonitrile (hereinafter abbreviated as AN) 2.0 g, vinyl acetate (hereinafter abbreviated as VAc) 0.4 g, glycidyl methacrylate (hereinafter abbreviated as GMA) 1.6 g, in 6 g of the same mixed solvent as in Comparative Example 1, 0.2 g of benzyl dimethyl ketal (hereinafter abbreviated as BDK) as a polymerization catalyst was added and dissolved. It has a peak one peak wavelength in 360 nm, after illumination at this wavelength is polymerized shines irradiation 10 minutes of 1 OmWZcm 2 UV at 50 ° C, the vacuum vessel of the gauge-pressure 0. 09 MP a The unreacted monomer was removed to prepare a polymer solution of an epoxy group-containing polymer. Using 2.0 g of the epoxy group-containing polymer solution and 8.0 g of the supporting electrolyte solution of Comparative Example 1, a cell was prepared according to the method described above, and measurement was performed.
<実施例 4> <Example 4>
GM Aの代わりにァリルグリシジルェ一テルを使用すること以外は実施例 3と同 様の方法でセルを作成し、 測定を行った。  A cell was prepared and measured in the same manner as in Example 3 except that aryl glycidyl ether was used instead of GMA.
く実施例 5 > Example 5>
2リットルのフラスコに水 800m 1を入れ、 これに、 AN50g、 VA c 1 0g、 GMA40 gの混合溶液、 重合触媒としてピロ亜硫酸ナトリウム 0. 6g と過硫酸アンモニゥム 0. 2 gをそれぞれ水 120mlに溶解した溶液をいずれ も 2時間に渡つて連続的に供給した。 この供給が終わつてからさらに 65 °Cで 2 時間重合を継続した。 重合を終了したフラスコを常温まで水冷した後、 内容物の 濾過 ·水洗を 3回繰り返して、 未反応モノマーと重合触媒残渣を除去し、 得られ たェポキシ基含有高分子を 70 °Cの減圧乾燥器で 1夜乾燥して水分を除去した。 なお、 この高分子中には重合触媒由来のスルホン基が導入されており、 イオン交 換していないため、 スルホン基はナトリウムと塩を形成している。 800 ml of water is placed in a 2 liter flask, and a mixed solution of 50 g of AN, 10 g of VAc, and 40 g of GMA, and 0.6 g of sodium pyrosulfite and 0.2 g of ammonium persulfate as polymerization catalysts are dissolved in 120 ml of water. Each of the solutions thus obtained was continuously supplied over 2 hours. After this supply is completed, The polymerization was continued for hours. After the polymerization was completed, the flask was cooled to room temperature, and the contents were filtered and washed three times to remove unreacted monomers and polymerization catalyst residues, and the resulting epoxy group-containing polymer was dried under reduced pressure at 70 ° C. Water was removed by drying overnight in a vessel. In this polymer, a sulfone group derived from a polymerization catalyst was introduced and was not ion-exchanged. Therefore, the sulfone group formed a salt with sodium.
得られたエポキシ基含有高分子を用いて比較例 1と同様の方法でエポキシ基含 有高分子溶液を作成し、 この溶液 2. 0 gと比較例 1と同じ支持電解質溶液 8. 0gを使用して、 上述の方法に則り、 セルを作成し、 測定を行った。  Using the obtained epoxy group-containing polymer, an epoxy group-containing polymer solution was prepared in the same manner as in Comparative Example 1, and 2.0 g of this solution and 8.0 g of the same supporting electrolyte solution as in Comparative Example 1 were used. Then, a cell was prepared and measured according to the method described above.
<実施例 6> <Example 6>
ECとジェチルカ一ボネート (DEC) を容量比で 1Z3に混合した混合溶媒 A mixed solvent of EC and Jetyl carbonate (DEC) mixed in a volume ratio of 1Z3
68に八 1. 0 g、 メタクリル酸ステアリル (以下 SMAと略称する) 0. 8 g、 GMA2. 2g、 重合触媒として BDKO. 2 gを加えて溶解した後、 実施 例 3と同様の方法で紫外線重合、 未反応モノマー除去を行い、 エポキシ基含有高 分子の高分子溶液を作成した。 これとは別に上記の混合溶媒 8. 6 gtL i PFAfter adding 1.0 g of 68, stearyl methacrylate (hereinafter abbreviated as SMA) 0.8 g, GMA 2.2 g, and BDKO. 2 g as a polymerization catalyst and dissolving, ultraviolet light was obtained in the same manner as in Example 3. Polymerization and removal of unreacted monomers were performed to prepare a high-molecular solution containing epoxy group-containing high molecules. Separately, the mixed solvent 8.6 gtL i PF
6を 1. 4 g溶解した支持電解質溶液を作成した。 該エポキシ基含有高分子溶液 2. 0 gと該支持電解質溶液 8. 0 gを使用し、 上述の方法において加熱条件をA supporting electrolyte solution in which 1.4 g of 6 was dissolved was prepared. Using 2.0 g of the epoxy group-containing polymer solution and 8.0 g of the supporting electrolyte solution, the heating conditions were set as described above.
70°C 18時間に変更してセルを作成し、 測定を行った。 A cell was prepared with the temperature changed to 70 ° C for 18 hours, and the measurement was performed.
<実施例 7> <Example 7>
実施例 3のエポキシ基含有高分子溶液 2. 0 gと、 比較例 1の混合溶媒 8. 7 5 gに L i S03CF3を 1. 25 g溶解した支持電解質溶液 8. 0 gを混合し た溶液に、 架橋ゲル化促進目的の支持電解質として L i BF4を 0. 02 g溶解 した。 この溶液を使用して、 上述の方法に則り、 セルを作成し、 測定を行った。 <比較例 2> And the epoxy group-containing polymer solution 2. 0 g of Example 3, a mixed solvent 8. 7 5 g of Comparative Example 1 L i S0 3 CF 3 and 1. 25 g dissolved supporting electrolyte solution 8. 0 g mixed the solution was 0. 02 g dissolved L i BF 4 as a supporting electrolyte of crosslinked gelling purposes. Using this solution, a cell was prepared and measured according to the method described above. <Comparative Example 2>
実施例 3のエポキシ基含有高分子溶液 2. 0 gと、 比較例 1の混合溶媒 8. 7 5 gに L i S〇3CF3を 1. 25 g溶解した支持電解質溶液 8. 0 gを混合し た溶液に、 架橋ゲル化触媒として電解質 L i S03CF3より圧倒的に強力な開 環触媒であるルイス酸の 1種の四塩化スズを 0. 02 gを溶解した。 この溶液を 使用して、 上述の方法に則り、 セルを作成し、 測定を行った。 And the epoxy group-containing polymer solution 2. 0 g of Example 3, a mixed solvent 8. 7 5 g of Comparative Example 1 L i S_〇 3 CF 3 and 1. 25 g dissolved supporting electrolyte solution 8. 0 g the mixed solution was dissolved 0. 02 g of one of the tin tetrachloride electrolyte L i S0 3 CF 3 are more overwhelmingly powerful ring opening catalyst Lewis acid as a crosslinking gelling catalyst. Using this solution, a cell was prepared and measured according to the method described above.
<比較例 3> 比較例 1と同様の混合溶媒 6 gに AN 2. 84g、 VAc l. 16g、 重合触 媒として BDK0. 2 gを加えて溶解した後、 実施例 3と同様の方法で紫外線重 合、 未反応モノマー除去を行い、 A N/V Ac共重合体溶液を作成した。 これと は別に上記の混合溶媒 6. 0 gに架橋性モノマ一である重合度 14のポリオキシ エチレンジメタクリレ一ト 4. 0 gを溶解した架橋性モノマー溶液を作成した。 該 ANZVAc共重合体溶液 1. 0 g、 該架橋性モノマー溶液 1. 0g、 比較例 1の支持電解質溶液 8. 0 gおよびァゾビスイソプチロニトリル 0. 04gを混 合溶解させた溶液を使用して、 上述の方法において加熱条件を 70°C5時間に変 更してセルを作成し、 測定を行った。 なお、 この方法で作成したゲル膜には多数 の気泡が含まれていた。 <Comparative Example 3> Add 2.84 g of AN, 16 g of VACl, and 0.2 g of BDK as a polymerization catalyst to 6 g of the same mixed solvent as in Comparative Example 1, and dissolve.Then, UV polymerization and unreacted are performed in the same manner as in Example 3. The monomer was removed to prepare an AN / V Ac copolymer solution. Separately, a crosslinkable monomer solution was prepared by dissolving 4.0 g of a polyoxyethylene dimethacrylate having a polymerization degree of 14, which is a crosslinkable monomer, in 6.0 g of the above mixed solvent. A solution prepared by mixing and dissolving 1.0 g of the ANZVAc copolymer solution, 1.0 g of the crosslinkable monomer solution, 8.0 g of the supporting electrolyte solution of Comparative Example 1, and 0.04 g of azobisisobutyronitrile was used. Then, the heating conditions were changed to 70 ° C. for 5 hours in the above-described method to prepare a cell, and the measurement was performed. The gel film formed by this method contained many bubbles.
表 1に実施例 1〜7および比較例 1〜3のイオン伝導率、 界面抵抗増加率、 分 極電流の測定結果を示した。 なお、 いずれのゲルにおいてもエポキシ架橋高分子 の量は 8. 0%である。 表 1の通り本発明の高分子電解質ゲルである実施例 1〜 7はいずれも優れた電気化学特性を示した。 エポキシ基含有高分子としては、 ェ ポキシ基が 1分子中に 2個以上あれば、 実施例 3や 4に代表されるビニルポリマ 一のみならず、 実施例 1のポリェ一テルゃ実施例 2のようなポリマーなども使用 でき、 有機溶媒の種類 (実施例 3および 6) や支持電解質の種類 (実施例 3、 6 および 7) も選択することができる。 ただし、 実施例 5のようにエポキシ基含有 高分子にリチウム以外の金属イオンが含まれている場合には、 従来より優れては いるものの、 他の実施例に比べるとやや特性が低くなる。  Table 1 shows the measurement results of the ionic conductivity, the interface resistance increase rate, and the polarization current of Examples 1 to 7 and Comparative Examples 1 to 3. The amount of the epoxy crosslinked polymer was 8.0% in each gel. As shown in Table 1, Examples 1 to 7, which are the polymer electrolyte gel of the present invention, showed excellent electrochemical properties. As the epoxy group-containing polymer, if there are two or more epoxy groups in one molecule, not only the vinyl polymer represented by Examples 3 and 4, but also the polyester of Example 1 ゃ Example 2 Various types of organic solvents (Examples 3 and 6) and types of supporting electrolytes (Examples 3, 6, and 7) can also be selected. However, when the epoxy group-containing polymer contains a metal ion other than lithium as in Example 5, although it is superior to the conventional one, the characteristics are slightly lower than those of the other examples.
本発明の高分子電解質ゲルに対して、 比較例 1では単エポキシ基含有高分子を 使用しており、 エポキシ基が 1分子に 1個しかなく、 エポキシ環が開環反応を起 こしても直鎖状の高分子しか生成しないためゲル化しない。 また、 比較例 2では L i S〇3CF3に優先して作用した四塩化スズに由来する多量の金属イオンの 存在が、 比較例 3はェポキシ環の支持電解質を触媒とする開環架橋反応によらな い架橋ゲルを形成したものであるが、 ァゾビスイソプチロニトリルの分解ガスに よりゲル中に発生する除去不能の気泡の存在が電気化学特性を低下させている。 表 1 Compared to the polymer electrolyte gel of the present invention, in Comparative Example 1, a polymer containing a single epoxy group was used, and there was only one epoxy group per molecule, and even if an epoxy ring caused a ring-opening reaction, It does not gel because it produces only chain polymers. The presence of large amounts of metal ions derived from tin tetrachloride which acts in preference to Comparative Example 2, L i S_〇 3 CF 3 are, Comparative Example 3 is a ring-opening crosslinking reaction to catalyze the supporting electrolyte Epokishi ring Although a crosslinked gel was formed, the presence of non-removable bubbles generated in the gel by the decomposition gas of azobisisobutyronitrile deteriorated the electrochemical characteristics. table 1
Figure imgf000017_0001
Figure imgf000017_0001
<実施例 8〉 <Example 8>
実施例 3のエポキシ基含有高分子溶液 0. 5 と、 比較例 1の混合溶媒 9. 3 gに L i BF4を 0. 7 g溶解した支持電解質溶液 9. 5 gを使用して、 上述の 方法に則り、 セルを作成し、 測定を行った。 The epoxy group-containing polymer solution 0.5 of Example 3 and 9.5 g of the supporting electrolyte solution obtained by dissolving 0.7 g of Li BF 4 in 9.3 g of the mixed solvent of Comparative Example 1 were used. A cell was prepared and measured according to the method described in (1).
く実施例 9〉 Example 9>
実施例 3のエポキシ基含有高分子溶液 3. 5 gと、 比較例 1の混合溶媒 9. 1 gに L i BF4を 0. 9 g溶解した支持電解質溶液 6. 5 gを使用して、 上述の 方法に則り、 セルを作成し、 測定を行った。 Using 3.5 g of the supporting electrolyte solution obtained by dissolving 0.9 g of Li BF 4 in 9.1 g of the mixed solvent of Comparative Example 1 and 3.5 g of the epoxy group-containing polymer solution of Example 3, A cell was prepared and measured according to the method described above.
<実施例 10> <Example 10>
実施例 3のエポキシ基含有高分子溶液 5. O gと、 比較例 1の混合溶媒 8. 9 l gに L i BF4を 1. 09 g溶解した支持電解質溶液 5. Ogを使用して、 上 述の方法に則り、 セルを作成し、 測定を行った。 Using the epoxy-containing polymer solution 5. O g Example 3, the supporting electrolyte solution 5. Og was 1. 09 g dissolved L i BF 4 in a mixed solvent 8. 9 lg of Comparative Example 1, above A cell was prepared and measured according to the method described above.
表 2に実施例 3および 8〜10のゲル膜やセルのエポキシ架橋高分子濃度、 ィ オン伝導率、 界面抵抗増加率、 分極電流の測定結果を示した。 本発明の高分子電 解質ゲルはエポキシ架橋高分子濃度が 2. 0〜20. 0重量%で、 いずれも優れ た特性を示すことが実証された。 さらに詳しく見るとエポキシ架橋高分子濃度が 低いほどよりよい特性を示すことがわかるが、 これはエポキシ架橋高分子の少な い方がイオンが移動しやすいためであると考えられる。 ただし、 エポキシ架橋高 分子濃度があまりにも低いとゲルを形成できなくなってしまう場合がある。 Table 2 shows the measurement results of the epoxy cross-linked polymer concentration, the ionic conductivity, the interface resistance increase rate, and the polarization current of the gel films and cells of Examples 3 and 8 to 10. The polymer electrolyte gel of the present invention has an epoxy cross-linked polymer concentration of 2.0 to 20.0% by weight, all of which are excellent. It has been demonstrated to exhibit the following characteristics. A closer look shows that the lower the epoxy-crosslinked polymer concentration, the better the properties are, but this is probably because the smaller the epoxy-crosslinked polymer, the easier the ions to move. However, if the epoxy cross-linking polymer concentration is too low, gel formation may not be possible.
表 2  Table 2
Figure imgf000018_0001
産業上の利用分野
Figure imgf000018_0001
Industrial applications
本発明の高分子電解質ゲルは、 常温のみならず低温においても優れたィォン伝 導性を示し、 リチウムポリマー二次電池や電気二重層キャパシタなどの電気化学 デバイスに対して、 非常に有用であり、 優れた電気化学特性が期待できる。  The polymer electrolyte gel of the present invention exhibits excellent ion conductivity not only at room temperature but also at low temperature, and is very useful for electrochemical devices such as lithium polymer secondary batteries and electric double layer capacitors. Excellent electrochemical properties can be expected.

Claims

請 求 の 範 囲 The scope of the claims
1 . エポキシ基を 1分子中に 2個以上有する高分子 (以下、 エポキシ基含有高分 子という) を、 支持電解質を触媒としてエポキシ環の開環架橋反応させてなる架 橋高分子 (以下、 エポキシ架橋高分子という) と、 前記支持電解質および有機溶 媒でなる高分子電解質ゲル。 1. A bridging polymer (hereinafter, referred to as an epoxy group-containing polymer) obtained by subjecting a polymer having two or more epoxy groups to an epoxy ring-containing cross-linking reaction with a supporting electrolyte as a catalyst. A polymer electrolyte gel comprising the supporting electrolyte and an organic solvent.
2. エポキシ基含有高分子が、 1分子中にビニル基とエポキシ基を含むモノマー を必須成分として重合されてなるものであり、 リチウム以外の金属イオンを含ま ないものである請求項 1に記載の高分子電解質ゲル。 2. The epoxy group-containing polymer according to claim 1, wherein the polymer is obtained by polymerizing a monomer containing a vinyl group and an epoxy group in one molecule as an essential component, and does not contain metal ions other than lithium. Polymer electrolyte gel.
3. 支持電解質が、 L i B F 4および/または L i P F 6を含むイオン性化合物 である請求項 1または 2のいずれかに記載の高分子電解質ゲル。 3. The polymer electrolyte gel according to claim 1, wherein the supporting electrolyte is an ionic compound containing Li BF 4 and / or Li PF 6 .
4. エポキシ架橋高分子が、 高分子電解質ゲルに対し 2から 2 0重量%である請 求項 1、 2、 3のいずれかに記載の高分子電解質ゲル。 4. The polymer electrolyte gel according to any one of claims 1, 2, and 3, wherein the epoxy cross-linked polymer accounts for 2 to 20% by weight based on the polymer electrolyte gel.
5. 有機溶媒にエポキシ基含有高分子と支持電解質を必須成分として溶解した溶 液中の該エポキシ基含有高分子を、 支持電解質を触媒としてエポキシ環の開環架 橋反応させてエポキシ架橋高分子を形成させることを特徴とする請求項 1、 2、 3、 4のいずれかに記載の高分子電解質ゲルの製造方法。 5. An epoxy-crosslinked polymer obtained by subjecting the epoxy-group-containing polymer in a solution in which an epoxy-group-containing polymer and a supporting electrolyte are dissolved in an organic solvent as essential components to a ring-opening bridge reaction of an epoxy ring using the supporting electrolyte as a catalyst. The method for producing a polymer electrolyte gel according to any one of claims 1, 2, 3, and 4, wherein
PCT/JP2002/002335 2001-03-19 2002-03-13 Polymer electrolyte gel and method for preparation thereof WO2002075748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-78908 2001-03-19
JP2001078908A JP2002279826A (en) 2001-03-19 2001-03-19 Polymer electrolyte gel and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2002075748A1 true WO2002075748A1 (en) 2002-09-26

Family

ID=18935445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002335 WO2002075748A1 (en) 2001-03-19 2002-03-13 Polymer electrolyte gel and method for preparation thereof

Country Status (3)

Country Link
JP (1) JP2002279826A (en)
TW (1) TW540175B (en)
WO (1) WO2002075748A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840152A1 (en) * 2006-03-31 2007-10-03 Sony Deutschland Gmbh A method of forming a crosslinked polymer gel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4653425B2 (en) * 2004-06-24 2011-03-16 日東電工株式会社 Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate
US20100196794A1 (en) * 2006-08-07 2010-08-05 Masahiro Kurokawa Electrode for fuel cell, method for producing the same, and fuel cell
JP5164638B2 (en) * 2008-03-31 2013-03-21 中国電力株式会社 Hybrid hot water heater
JP6159199B2 (en) * 2013-08-27 2017-07-05 積水化学工業株式会社 Gel electrolyte precursor, method for producing gel electrolyte, method for producing lithium ion secondary battery, and lithium ion secondary battery
US20210043934A1 (en) * 2018-04-27 2021-02-11 Lg Chem, Ltd. Lithium secondary battery and manufacturing method thereof
JP7357231B2 (en) 2020-03-04 2023-10-06 パナソニックIpマネジメント株式会社 Biological electrode and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396754A (en) * 1981-12-14 1983-08-02 Shell Oil Company Rapid curing epoxy compositions
WO1997042251A1 (en) * 1996-05-08 1997-11-13 Daiso Co., Ltd. Cross-linked solid polyelectrolyte and use thereof
JPH10176105A (en) * 1996-12-17 1998-06-30 Daiso Co Ltd Solid polyelectrolyte
JPH11171912A (en) * 1997-12-12 1999-06-29 Showa Denko Kk Polymerizable composition and use thereof
JPH11219725A (en) * 1998-02-02 1999-08-10 Mitsubishi Chemical Corp Lithium secondary battery
WO2000031186A1 (en) * 1998-11-20 2000-06-02 Mitsubishi Paper Mills Limited Ionically conductive composition and a cell manufactured by using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396754A (en) * 1981-12-14 1983-08-02 Shell Oil Company Rapid curing epoxy compositions
WO1997042251A1 (en) * 1996-05-08 1997-11-13 Daiso Co., Ltd. Cross-linked solid polyelectrolyte and use thereof
JPH10176105A (en) * 1996-12-17 1998-06-30 Daiso Co Ltd Solid polyelectrolyte
JPH11171912A (en) * 1997-12-12 1999-06-29 Showa Denko Kk Polymerizable composition and use thereof
JPH11219725A (en) * 1998-02-02 1999-08-10 Mitsubishi Chemical Corp Lithium secondary battery
WO2000031186A1 (en) * 1998-11-20 2000-06-02 Mitsubishi Paper Mills Limited Ionically conductive composition and a cell manufactured by using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840152A1 (en) * 2006-03-31 2007-10-03 Sony Deutschland Gmbh A method of forming a crosslinked polymer gel
US7893125B2 (en) 2006-03-31 2011-02-22 Sony Deutschland Gmbh Method of forming a crosslinked polymer gel

Also Published As

Publication number Publication date
JP2002279826A (en) 2002-09-27
TW540175B (en) 2003-07-01

Similar Documents

Publication Publication Date Title
JP3215436B2 (en) Crosslinked polymer solid electrolyte and its use
JP3215440B2 (en) Polymer solid electrolyte
JP4848735B2 (en) Polymers for electrochemical devices of polymerizable imidazole salts
WO2010113971A1 (en) Method of producing fluorinated polymer
JP5991314B2 (en) Polyether compounds, crosslinkable compositions and electrolytes
JPH11269263A (en) Polyether copolymer and crosslinked solid polyelectrolyte
KR19990082380A (en) Polyether copolymer and polymer solid electrolyte
CN110563938B (en) Polyether copolymer, crosslinkable polyether copolymer composition, electrolyte, and composite
JP4005192B2 (en) Solid battery
KR20040011381A (en) Electrolyte compositions
EP0714149B1 (en) Solid ion conductive polymer electrolyte and composition and production method therefor
JP3282565B2 (en) Crosslinked polymer solid electrolyte and its use
WO2002075748A1 (en) Polymer electrolyte gel and method for preparation thereof
KR101720049B1 (en) Solid polymer electrolytes comprising polymer crosslinked tannic acid derivative for secondary lithium battery
JP2007122902A (en) Manufacturing method of lithium ion battery
CN113228371A (en) Solid electrolyte for organic battery
JP2002100404A (en) Resin composition for gel high polymer solid electrolyte, composition for the gel high polymer solid electrolyte, the gel high polymer solid electrolyte using them, composite electrode and electrochemical device
WO2012133769A1 (en) Polyether compound and electrolyte composition
JP2002249742A (en) Adhesive porous membrane, polymeric gel electrolyte obtained therefrom and application thereof
Tanaka et al. Design of metal salt/amide-based deep eutectic monomers toward sustainable production of ion-conductive polymers by radical polymerization
KR20130081549A (en) Composition of polymer electrolyte having excellent durability and stability in high temperature and lithium battery using the same
JP2004162019A (en) Electrolyte composition
JPH10176105A (en) Solid polyelectrolyte
JP2000100246A (en) Solid electrolyte, and manufacture thereof
JP2014197661A (en) Gel electrolyte, process of manufacturing the same, and electrochemical element using the gel electrolyte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase