WO2004074866A1 - Object monitoring sensor - Google Patents

Object monitoring sensor Download PDF

Info

Publication number
WO2004074866A1
WO2004074866A1 PCT/JP2003/001790 JP0301790W WO2004074866A1 WO 2004074866 A1 WO2004074866 A1 WO 2004074866A1 JP 0301790 W JP0301790 W JP 0301790W WO 2004074866 A1 WO2004074866 A1 WO 2004074866A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring sensor
object monitoring
antenna
signal
light
Prior art date
Application number
PCT/JP2003/001790
Other languages
French (fr)
Japanese (ja)
Inventor
Hideyuki Nagaishi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2003/001790 priority Critical patent/WO2004074866A1/en
Priority to JP2004568470A priority patent/JPWO2004074866A1/en
Publication of WO2004074866A1 publication Critical patent/WO2004074866A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4454Monopulse radar, i.e. simultaneous lobing phase comparisons monopulse, i.e. comparing the echo signals received by an interferometric antenna arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens

Definitions

  • the present invention relates to an object monitoring sensor, more specifically, an optical image sensor having intermittent directivity, and a continuous wave (CW) radar system and a monopulse scanning system.
  • an optical image sensor having intermittent directivity
  • CW continuous wave
  • the present invention relates to an object monitoring sensor combined with a millimeter-wave radar for performing the above.
  • a roadside processing device including a millimeter-wave radar obstruction observation device R, an obstacle observing device V using an image measurable device, and a roadside processing device detection information selection device A technology that has a Q and uses the information obtained from each obstacle observing device with the roadside processing device Q to determine an obstacle (Japanese Patent Application Laid-Open Nos. 2000-111644 and 2001-084485),
  • Obstacle observation devices used in these vehicle detection devices vary in performance such as observation accuracy, resolution, detection probability, and false detection depending on the visibility environment and weather conditions. Low reliability accuracy. Therefore, it is necessary to mount obstacle observing devices with different sensing methods on vehicles.
  • Conventional vehicle detection devices perform information processing according to the external environment based on vehicle information obtained from these obstacle observation devices, and detect obstacle vehicles.
  • the obstacle observation device using the millimeter-wave radar S1 and the laser radar S2 has a mechanism for mechanically scanning a narrow-angle beam in order to obtain a desired angular resolution. The update time depends on the period of the machine scan.
  • Obstacle observing devices that use optical sensors require complex and enormous numerical processing, such as edge processing and motion processing, in order to detect vehicles by image processing from images obtained from infrared cameras and the like.
  • the obstacles are not limited to the front of the vehicle in the direction of travel. Care must be taken on the entire periphery of the automobile, and driver assistance should be provided to the driver.
  • the conventional vehicle detection device focuses particularly on the front in the traveling direction, widening the detection range of the obstacle observation device makes it possible to acquire a wide range of information on the outer periphery of the vehicle.
  • Obstacle observing equipment using a millimeter-wave radar or laser radar with a mechanical scanning mechanism needs to provide a moving space for moving parts, making it difficult to make the appearance of the equipment smaller and thinner, and the degree of freedom in designing it on a car is high. Is limited. In addition, it has poor mechanical strength due to its mechanical scanning mechanism. Second, obstacle observing devices that use infrared cameras have a high specific gravity for image processing, require enormous signal processing for vehicle judgment, and have an excessive amount of time for information extraction. It is not suitable for miniaturization and low power consumption at the same time.
  • Obstacle observing devices with driving parts and obstacle observing devices that require excessive information processing are systems that allow for the identification time before recognizing obstacles. May not be able to cope with situations where common events are likely to occur or driving conditions with increased blind spots
  • the monopulse patch antenna observes reflected waves from obstacles, but the relative velocity and relative distance due to Doppler shift are accurate according to the wavelength of the electromagnetic wave.
  • angle detection is defined by the amplitude ratio based on the phase difference between the electromagnetic waves obtained from the two antennas, obstacles are close or objects such as walls are large, and the scattering cross section becomes uncertain. In such situations, accurate angle measurement is difficult, and it is also difficult to specify the shape of the obstacle if the scattering cross section of the obstacle is uncertain.
  • an object of the present invention is to realize an object monitoring sensor capable of detecting a wide range of objects to be detected in a wide angle, near and far with high speed and high accuracy by using a low cost device. Disclosure of the invention
  • an object monitoring sensor includes an electromagnetic wave antenna (hereinafter simply referred to as an antenna) that utilizes a stereo effect of a plurality of antennas for angle detection, and an optical sensor having a narrow directivity. It comprises a plurality of optical sensors arranged in an array in a direction, and a signal processing device for detecting the distance, speed and angle of a detected object such as an obstacle using signals from the planar antenna and the optical sensor.
  • the stereo effect by a plurality of antennas means that a phase difference between radio waves received by the plurality of antennas is used.
  • a planar antenna can be used as the antenna.
  • a monopulse radar using a planar patch antenna can The relative distance, relative speed, and relative angle can be easily detected without correlation with the relative distance of the object.
  • the optical sensor detects a wide range of obstacles or the like at a short distance with a wide angle and high accuracy by using an optical sensor having an intermittent directivity comprising a prism lens. As a result, the vibration resistance can be improved, and the obstacle monitoring sensor itself can be made thinner and lighter.
  • an obstacle is comprehensively judged from each observation result by observing distance and speed detection by an electromagnetic wave radar, observing angle detection by an optical sensor, and sharing work of observation items.
  • a continuous scanning mechanism is not required for the optical sensor, and the image sensor having a mechanism for intermittent observation is used for the optical sensor. It can be used as a sensor.
  • the object monitoring sensor according to the present invention is mounted on a moving body such as an automobile, the external environment of the moving body can be easily grasped in real time, and the driver can be provided with a large number of outer peripheral conditions in any driving operation.
  • an automobile object monitoring sensor capable of preventing an automobile accident.
  • FIG. 1 is an exploded perspective view showing a first embodiment of the object monitoring sensor according to the present invention.
  • FIG. 2 is a top view of one embodiment of the antenna 1 of FIG.
  • FIG. 3 is a circuit diagram of one embodiment of the high-frequency circuit '2 in FIG.
  • FIG. 4 is a top view of one embodiment of the high-frequency circuit 2 of FIG.
  • FIG. 5 is a plan view showing a configuration of one embodiment of the optical sensor 3 of FIG.
  • FIG. 6 is a perspective view showing a plurality of embodiments of the optical sensor 3.
  • FIG. 7 is a diagram for explaining a configuration function of the optical lens 4.
  • FIG. 8 is a diagram for explaining the optical trajectory of a prism used as the optical lens 4.
  • FIG. 9 is a diagram for explaining an optical trajectory when assembling the light guide path cover, the optical lens, and the optical sensor.
  • FIG. 10 is a circuit configuration diagram of one embodiment of the signal processing circuit 6 of FIG.
  • FIG. 11 is an exploded perspective view showing a second embodiment of the object monitoring sensor according to the present invention.
  • FIG. 12 is a perspective view showing another embodiment of the object monitoring sensor according to the present invention.
  • FIG. 13 is a diagram showing an embodiment of an automobile equipped with the object monitoring sensor according to the present invention.
  • FIG. 14 is a diagram showing another embodiment of an automobile equipped with the object monitoring sensor according to the present invention.
  • FIG. 15 is a block diagram showing the configuration of the object monitoring processing unit in the embodiment shown in FIG.
  • FIG. 16 is a block diagram showing a first example of a conventionally known object monitoring device.
  • FIG. 17 is a block diagram showing a second example of a conventionally known object monitoring device.
  • FIG. 18 shows a top view of another embodiment of the antenna 1.
  • FIG. 19 shows a circuit diagram of another embodiment of the high-frequency circuit 2 described above.
  • FIG. 1 is an exploded perspective view showing a first embodiment of the object monitoring sensor according to the present invention.
  • the object monitoring sensor 10 includes at least an antenna 1, a high-frequency circuit 2, It comprises an optical sensor 3, an optical lens 4, a cover 5 with a light guide, and a signal processing circuit 6. The details of each unit will be described below. .
  • FIG. 2 shows a top view of one embodiment of the antenna 1.
  • the antenna 1 of the object monitoring sensor 10 has a transmitting antenna 11 for irradiating electromagnetic waves and a receiving antenna 12 for detecting electromagnetic waves reflected from an object such as an obstacle in order to perform active observation.
  • the receiving antenna 1 2 is composed of two antennas 12-1 and 12-2 to observe the angle of the reflected wave from the obstacle, and the stereo effect received by each of the two element antennas in a monopulse system is Perceived as a phase difference.
  • the number of element antennas constituting the receiving antenna 12 is not limited to two, but may be three or more.
  • the stereo effect can be detected as a phase difference by a well-known method.
  • the received reflected wave including the phase difference passes through the high-frequency circuit 2 and is processed by the signal processing circuit 6 to calculate the distance, speed, and the like between the reflecting object and the antenna.
  • any antenna having a function of transmitting and receiving electromagnetic waves can be applied, and its shape can take various forms.
  • a patch antenna in which metal pieces are periodically arranged a slot antenna in which a metal plate is periodically cut out, an electromagnetic horn antenna in which a waveguide section is gradually expanded to have a required aperture, and a rotating object surface
  • a parabolic antenna using a part of the antenna as a reflector, or a Yagi antenna or a slot antenna may be arranged side by side.
  • FIG. 3 shows a circuit diagram of one embodiment of the high-frequency circuit 2.
  • High frequency circuit 2 A circuit that supplies a part of the output of the oscillator 25 to the transmitting antenna terminal (t in Fig. 2) from the terminal 21 via the power amplifier 26-1 and a part of the output of the oscillator 25 Circuits to be added to the mixers 2 4-1 and 2 4-2 via 26-2 and 26-3 respectively, and the terminals 2 2-1 and 2 2-1 of the two receiving antennas (Fig. 2 rl and r 2) through low-noise amplifiers 23-1 and 23-2, respectively, to the mixers 24-1 and 24-2.
  • the signals obtained by the mixers 24-1 and 24-2 are applied to the signal processing circuit 6 via terminals i 1 and 12, respectively.
  • MMIC Monitoring Microwave Integrated Circuit
  • HMIC Hybrid Microwave Integrated Circuit
  • FIG. 18 shows a top view of another embodiment of the antenna 1.
  • the receiving antenna 12 corresponding to the receiving antenna 12 in the antenna 1 in FIG. 2 also has the function of the transmitting antenna 11 in FIG.
  • the receiving antenna 12 emits electromagnetic waves and receives the electromagnetic waves reflected from the object.
  • the output of the power amplifier 26 is equally distributed to form the receiving antenna 12.
  • the receiving antenna 1 2 Can function as a transmitting antenna.
  • the receiving antenna 12 shown in Fig. 18 is composed of two element antennas 12-1 and 12-2, each of the two antennas is monopulse. Can be sensed as a phase difference.
  • the number of element antennas constituting the receiving antenna 12 is not limited to two, but may be three or more. In this case, the stereo effect can be detected as a phase difference by a well-known method.
  • FIG. 19 shows a circuit diagram of one embodiment of the high-frequency circuit 2 when the embodiment shown in FIG. 18 is used as the antenna 1.
  • the high-frequency circuit 2 supplies a part of the output of the oscillator 25 to the circuits 29-1 and 29-2 via the power amplifier 26-1 and a part of the output of the oscillator 25.
  • the signals amplified by the low-noise amplifiers 23-1 and 23-2 are passed through the circulators 29-1 and 29-2 to the signals input from 22-2, respectively. Has a circuit to add to 2.
  • the signals obtained at the mixers 241-1 and 24-2 are applied to the signal processing circuit 6 via terminals il and i2, respectively.
  • the elements that make up these elements use the MMIC or HMIC form, as in FIG.
  • the configuration using the directional coupler as the transmission / reception antenna duplexer for transmitting using the reception antennas 12 has been described.However, the present invention is not limited to this mode. Means by division, means by frequency division using a filter, or means by a directional coupler using a rat race circuit may be used.
  • FIG. 4 shows a top view of one embodiment in which the high-frequency circuit 2 is formed by an MMIC.
  • MMIC type oscillator 25 power amplifier 26-1, receiver including low noise amplifier and mixer 27-1, multilayer ceramic with 27-2 as insulating substrate They are mounted on a substrate 28 and are connected to each other by a microstrip line or a coplanar line with ground, which is a transmission line.
  • the high-frequency signal generated by the oscillator 25 is distributed to and supplied to the power amplifier 26-11 and the plurality of receivers 27-1, 27-2.
  • the high-frequency signal input to the power amplifier 26-1 is amplified, supplied to the transmitting antenna 11 of the patch antenna 1, and emitted from the transmitting antenna 11 into space.
  • I ⁇ harmful substances are present within the electromagnetic wave range radiated by the patch antenna 1, reflected waves are observed, so they are received by the receiving antennas 12-1 and 12-2, and received by the high-frequency circuit 2. It is transmitted as a radio frequency (RF) signal of the detector 27-1 and 27-2.
  • the receiver 27 inputs the high-frequency signal supplied from the oscillator 25 as a local signal, and the reflected wave transmitted from the receiving antenna 12 as an RF signal.
  • the mixer in the receiver 27 receives the Doppler signal itself.
  • the frequency of the difference is extracted as an intermediate frequency (IF) signal.
  • 19 and 20 are a chip component, a power supply and a signal terminal, respectively.
  • FIG. 5 is a plan view showing the configuration of one embodiment of the optical sensor 3 of FIG.
  • the light sensor 3 is a CCD (charge-coupled device) that responds to infrared light, visible light, or ultraviolet light, or a photo-electric signal conversion device 31 having the same function as the CCD, and a light-receiving device 32 for sensing light in the horizontal direction. It has a structure in which a plurality of one-dimensional arrays are arranged in the horizontal direction.
  • the analog / digital converter (ADC) converts the received light signal into a numerical value (ADC: Analog / Digital Converter).
  • the storage device 34 for recording the optical signal value and the program of each photoreceptor element 32, the arithmetic unit 35 for judging the pass / fail of the signal level, the analog / digital converter 33 and the recording device 34, etc. It has a controller 36 for controlling, a signal processor 6 and an input / output terminal 37 for transmitting and receiving signals.
  • FIG. 6 is a perspective view showing other plural embodiments of the optical sensor 3.
  • Figure (a) shows the opto-electric signal conversion element 31, ADC 33, recording device 34, This is a mounting form in which all the circuit elements of the calculator 35, the controller 36, and the input / output terminals 37 are formed on a semiconductor substrate, and FIG. Only the signal conversion element 31 is individually manufactured, the remaining element circuits are manufactured on a semiconductor substrate, and mounted on an insulating substrate 48.
  • FIG. The optical-electrical signal conversion element 31 is mounted thereon, and FIG. (D) is a form in which each element circuit is individually manufactured and mounted on the insulating substrate 38.
  • FIG. 7 is a diagram for explaining the constituent functions of the optical lens 4. Since the light receiving elements 32 of the optical sensor 3 are arranged as a one-dimensional array on a plane, the optical lens 4 converts a horizontal spherical wave into a parallel light so as to become a plane wave. As the optical lens 4, a concave lens or a polygonal prism lens 4 having a convex shape as shown in FIG. 7 is used.
  • the prism surface angle, which defines the angle, is defined by the prism's refractive index N and the angle of incidence,
  • the thickness ⁇ of the prism surface is
  • 0 is the resolution angle of the optical trajectory
  • d is the distance between photoreceptors in the image sensor.
  • Fig. 9 shows the arrangement and movement of the optical sensor 3, optical lens 4, and light guide path cover 5. It is a figure for explaining a work.
  • the light guide cover 5 selects the directivity of the optical sensor. When light other than a specific direction hits the light receiving body 32 of the optical sensor 3, the light is sensed as an erroneous signal. A light guide path of a random plane having a surface roughness of 0.01 or more with small irregularities is provided.
  • the light arriving from the external environment is selected in the traveling direction by the light guide path cover 5 that passes only the light in a specific direction, and only the light in the specific direction reaches the optical lens 4.
  • the light that has reached the optical lens 4 is bent by the photoreceptor 32 of the optical sensor 3 according to the angle information and received by the optical sensor 3. That is, in the present embodiment, an optical path mask (light guide path cover 5) having a slit for defining an angle according to a part of the image sensor is disposed in front of the image sensor.
  • the light-to-electric signal conversion element 31 in which the photoreceptors 32 are arranged in an array is converted from light to an electric signal, and then digitized by the ADC 33. And stored in the recording circuit 34.
  • the computing unit 35 determines whether the amount of light obtained by the photoreceptor 32 exceeds the reference value of the reflected light, and performs an operation based on the light amount data of the recording circuit 34 to temporarily determine the presence or absence of an obstacle. Then, the result is recorded in the recording circuit 34 again.
  • FIG. 10 is a block diagram showing a configuration of one embodiment of the signal processing circuit 6.
  • the signal processing circuit 6 includes an analog circuit 61 for receiving an IF signal obtained from the high-frequency circuit 2 and supplying power to the high-frequency circuit 2, and a power supply for digitizing an analog signal of the IF signal and controlling the high-frequency circuit.
  • ADC / DAC 62 which generates data, etc.
  • a computing unit 63 which performs FFT computation, etc., for converting the time axis to frequency axis of signals
  • a controller 64 which controls the optical sensor
  • a computing unit 63 which controls the optical sensor
  • It comprises a circuit 65 for comprehensively determining the obstacle information obtained and the obstacle information obtained from the optical sensor 3, a power supply circuit 66 for supplying power thereto, and an input / output circuit 67 for performing information communication with the outside.
  • the IF signal obtained from the high-frequency circuit 2 including the Doppler phenomenon indicating the behavior of the obstacle is processed by a calculator 63 to obtain the relative distance to the obstacle, the relative speed, the angle, etc. Transfer to At the same time, the light reception data of the photoreceptor in the recording device 34 of the optical sensor 3 and the result of the temporary judgment of the obstacle are called by the optical sensor controller 64 through the input / output terminal 37 of the optical sensor 3, and the integrated judgment circuit 6 Transfer to 5.
  • the comprehensive judgment circuit 65 verifies the temporary judgment result obtained by the optical sensor 3 based on the relative distance obtained by the arithmetic unit 63 and the received light amount data of the optical sensor, and determines the number of obstacles, the relative distance, and the relative angle. Determine the size and danger of obstacles.
  • Obstacle angle information corresponding to the light-receiving object of the optical sensor and comprehensive judgment of the arithmetic unit 53
  • angle + 15 degrees Relative distance and speed can be accurately obtained by detecting obstacles using the Dobler signal, and angle information can be roughly grasped within a certain error range.
  • the angle information is detected based on the light amount response of the photoreceptor of the image sensor. When the detection angle range is 70 degrees and the angle resolution is 10 degrees, the number of photoreceptors in the image sensor is 15 ((70 degrees / 10 degrees) * 2 + 1).
  • the distance between the light trajectories at 5 m Is a sine with a resolution angle of 10 degrees, so it is expressed as 5m * sin (l0), which is about 0.87 mm, and at least one superimposes on the optical trajectory of the optical sensor. Therefore, the + 10 ° photoreceptor, the + 20 ° photoreceptor, or both photoreceptors of the image sensor sense.
  • the object monitoring sensor 10 of the present invention it is determined that an obstacle is present at a distance of 5 m within a range of +10 degrees to +20 degrees and the size is about 87 cm to 1740 cm. be able to.
  • objects with a width of less than 86 cm may not exist on the optical trajectory.However, the reliability of the angle information accuracy of the Doppler signal due to the small scattering cross section of the obstacle is improved, and It is expected that obstacles of 7 cm or less will exist at a distance of 5 m within an angle of 15 degrees and soil of 5 degrees.
  • FIG. 11 is an exploded perspective view showing a second embodiment of the object monitoring sensor 10.
  • passive light reception such as sunlight or streetlights
  • malfunction of the photoreceptor due to direct sunlight can be considered.
  • the light source 7 is added to the object monitoring sensor 10 and the light emission amount of the light source 7 is given a strength on the time axis.
  • the power consumption of the light source 7 is reduced by opening and closing the light source 7 (ON / OFF) based on the obstacle detection information of the computing unit 63.
  • FIGS. 12 (a) and 12 (b) are diagrams each showing an embodiment of an object monitoring system using the object monitoring sensor according to the present invention.
  • the monitoring system 20 includes a plurality of object monitoring sensors (that is, the object monitoring sensor 10-1 and the object monitoring sensor 10-2) and the control device 18 for the monitoring sensor. Constitute.
  • the monitoring system 20 includes a single object monitoring sensor 10, two light sources 16, 17, and a monitoring sensor controller 19. Since electromagnetic waves with short wavelengths have high rectilinearity, if the obstacle is extremely flat, the reflected wave and reflected light are monitored only when facing the plane. The sensor is reachable. In particular, light with a short wavelength is fatal, so by installing multiple light sources so that reflected light can be obtained by the object monitoring sensor 10, even if the obstacle is not directly facing the obstacle, Increase detection accuracy.
  • FIG. 13 shows an embodiment of an automobile equipped with the object monitoring sensor of the present invention.
  • a plurality of object monitoring sensors that is, object monitoring sensors 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, and 3-7 are mounted on the outer periphery of the automobile 40. ing.
  • the plurality of object monitoring sensors are connected to the control device 41.
  • the object monitoring sensor 3-7 is turned backward, and the multiple object monitoring sensors 3— ;! It monitors almost the entire periphery of the car in 3-7. In every driving operation such as turning operation, route change operation, reverse driving, parking operation, etc., it is possible to prevent a car accident beforehand by giving the driver a lot of outer peripheral conditions.
  • FIG. 14 shows another embodiment of an automobile equipped with the object monitoring sensor of the present invention.
  • a Doppler radar 42 is added to the front of the vehicle in addition to the embodiment shown in FIG. 13, and the control device 41 is changed to a monitoring sensor and a Doppler radar control device 43.
  • Components that are substantially the same as those in the embodiment shown in FIG. 13 are given the same numbers, and descriptions thereof are omitted.
  • the Doppler radar 42 detects distant obstacles in the direction of travel of the vehicle. Gives the driver a large number of peripheral conditions in all driving operations such as turning, re-routing, reverse driving, parking, etc. .
  • FIG. 15 is a block diagram showing a configuration of an embodiment of an object monitoring processor in an automobile equipped with the object monitoring sensor of the present invention.
  • means for assisting driving of an automobile using information detected by the object monitoring sensor and the Dobler radar is provided.
  • the driver By measuring the driving pattern of the driver in the external environment with a gun, and analyzing the driving pattern in the external environment, the driver emphasizes acceleration, drives at a constant speed, and operates in a corner. Thus, it becomes possible to perform various actuator control according to the driver's preference.
  • the driver's safe driving index is calculated from the statistical analysis of the driver's driving pattern against the outside environment. Calculate and use this result to calculate insurance premiums for automobiles. By paying a stake according to the safe driving index, the driver can statistically calculate the financial burden on the automobile insurance contractor, and ultimately reduce the financial burden on the driver.
  • time-series sensor information to the actual survey of accidents, it is possible to judge the situation of the accident objectively.
  • the obstacle monitoring sensor using both the reflected wave of the electromagnetic wave and the reflected light of the light for obstruction monitoring is an intermittent directivity comprising a monopulse planar patch antenna and a prism lens.
  • a safe driving index for driving can be statistically derived, and vehicles that can reduce driver's insurance premiums and make objective judgments on actual conditions for accidents are possible.
  • Object monitoring sensor can be provided.

Abstract

A small and low-power object monitoring sensor capable of detecting an object with high accuracy at high speed over a wide range. The object monitoring sensor comprises a combination of a patch antenna (1) employing a plurality of monopulse systems sensing a stereo effect as a phase difference, a Doppler radar having a high frequency circuit and detecting the relative speed and the relative distance from the reflected wave of a radiated electromagnetic wave, a prism lens (4) for defining the intrusion angle of light, and an optical image sensor including light receiving bodies (3) arranged on a one-dimensional array.

Description

物体監視センサ Object monitoring sensor
技術分野 Technical field
本発明は、 物体監視センサ、更に詳しく言えば、 指向性が断続的な光 学イメージセンサと、 連続波 (CW) レーダ方式とモノパルス方式で走査 明  The present invention relates to an object monitoring sensor, more specifically, an optical image sensor having intermittent directivity, and a continuous wave (CW) radar system and a monopulse scanning system.
を行うミリ波レーダを組み合わせた物体監視センサに関する。 The present invention relates to an object monitoring sensor combined with a millimeter-wave radar for performing the above.
背景技術 書 異種の検出装置を組み合わせ車両等の物体を検出する技術として、 次 のような技術が提案されている。 BACKGROUND ART The following technology has been proposed as a technology for detecting an object such as a vehicle by combining different types of detection devices.
( 1 ) 第 1 6図に示すように、 ミリ波レーダの障害物観測装置 Rと、 画 像力メラを用いた障害物観測装置 Vと、 路側処理装置検出情報選択装置 等を含む路側処理装置 Qをもち、 それぞれの障害物観測装置から得られ た情報を路側処理装置 Qで、 障害物の判定を行う技術 (特開 2000- 111644号公報、 特開 2001-084485号公報) 、  (1) As shown in Fig. 16, a roadside processing device including a millimeter-wave radar obstruction observation device R, an obstacle observing device V using an image measurable device, and a roadside processing device detection information selection device A technology that has a Q and uses the information obtained from each obstacle observing device with the roadside processing device Q to determine an obstacle (Japanese Patent Application Laid-Open Nos. 2000-111644 and 2001-084485),
( 2 ) ミリ波レーダ装置 S 1及びレーザレーダ S 2を採用する技術 (特 開 2000-131432号公報, 特開 2000-131433号公報及び特開平 11-249740 号公報が上げられる。 ) 。  (2) A technology employing the millimeter-wave radar device S1 and the laser radar S2 (Japanese Patent Application Laid-Open No. 2000-131432, Japanese Patent Application Laid-Open No. 2000-131433, and Japanese Patent Application Laid-Open No. 11-249740).
これらの車両検出装置に用いる障害物観測装置は、 視程環境や気象状 態に依存して、 観測精度、 分解能、 検出確率、 誤検出等の諸性能が変化 するため、 個々の障害物監視装置の信頼確度が低い。 従って、 車両には センシング方式の異なる障害物観測装置を搭載する必要がある。 従来の 車両検出装置はそれら障害物観測装置から得られる車両情報を基に外環 境に応じた情報処理を行い、 障害物車両の検出を行っている。 · 上記ミリ波レーダ S 1及びレーザレーダ S 2を利用した障害物観測装 置は、 所望な角度分解能を得るために狭角ビームを機械的に走査する機 構を有しており、 障害物情報の更新時間は機械走査の周期に依存する。 また、 光学センサを用いた障害物観測装置は、 赤外線カメラ等から得る 映像から画像処理による車両検出するためにエツジ処理ゃモ一ション処 理等複雑膨大な数値処理が必要である。 Obstacle observation devices used in these vehicle detection devices vary in performance such as observation accuracy, resolution, detection probability, and false detection depending on the visibility environment and weather conditions. Low reliability accuracy. Therefore, it is necessary to mount obstacle observing devices with different sensing methods on vehicles. Conventional vehicle detection devices perform information processing according to the external environment based on vehicle information obtained from these obstacle observation devices, and detect obstacle vehicles. · The obstacle observation device using the millimeter-wave radar S1 and the laser radar S2 has a mechanism for mechanically scanning a narrow-angle beam in order to obtain a desired angular resolution. The update time depends on the period of the machine scan. Obstacle observing devices that use optical sensors require complex and enormous numerical processing, such as edge processing and motion processing, in order to detect vehicles by image processing from images obtained from infrared cameras and the like.
自動車が走行中の場合において障害物となる車両は走行方向前方に限 ることはなく、 自動車の外周全てにおいて注意が必要であり、 運転者へ の運転支援を行うべきである。 従来の車両検出装置は特に走行方向前方 に注力しているが、 障害物観測装置の検知範囲を広角にすることにより、 自動車外周の状況を広範囲に取得可能となる。 しかしながら外周全ての 状況を取得するには、 障害物観測装置の守備範囲に応じて装置を複数個 装備することが必要となり、 視程ゃ気象環境に対応する異種の障害物観 測装置も合わせて搭載しなければならない。  When an automobile is running, the obstacles are not limited to the front of the vehicle in the direction of travel. Care must be taken on the entire periphery of the automobile, and driver assistance should be provided to the driver. Although the conventional vehicle detection device focuses particularly on the front in the traveling direction, widening the detection range of the obstacle observation device makes it possible to acquire a wide range of information on the outer periphery of the vehicle. However, in order to acquire the situation of the entire circumference, it is necessary to equip multiple devices according to the coverage area of the obstacle observing device, and also to install different types of obstacle observing devices corresponding to visibility / weather environment Must.
機械式走査機構を有するミリ波レーダやレーザレーダを用いた障害物 観測装置は、 可動部の移動空間を設ける必要があり、 装置外観の小型薄 型化が難しく、 自動車への搭載はデザイン自由度が制限される。 また、 機械式走査機構を有するために振動耐性に弱い。 次に、 赤外線カメラを 用いた障害物観測装置は、 画像処理の比重が高く車両判定に膨大な信号 処理を必要とし、 情報抽出に要する過大な時間を有するため、 障害物検 知のリアルタイム性が低いと共に小型化低電力化に不向きである。  Obstacle observing equipment using a millimeter-wave radar or laser radar with a mechanical scanning mechanism needs to provide a moving space for moving parts, making it difficult to make the appearance of the equipment smaller and thinner, and the degree of freedom in designing it on a car is high. Is limited. In addition, it has poor mechanical strength due to its mechanical scanning mechanism. Second, obstacle observing devices that use infrared cameras have a high specific gravity for image processing, require enormous signal processing for vehicle judgment, and have an excessive amount of time for information extraction. It is not suitable for miniaturization and low power consumption at the same time.
駆動部分を有する障害物観測装置や過大な情報処理を必要とする障害 物観測装置は、 障害物を認知するまでの識別時間を見込んだシステムと なり、 市街地走行や後退走行等、 運転者にとって突発的な事象が発生し やすい状態や死角が増えた走行状態には対応できない事態になりかねな い モノパルス方式のパッチアンテナは障害物からの反射波を観測するが、 ドップラーシフトによる相対速度と相対距離は、 電磁波の波長に応じて 正確である。 しかしながら、 角度検知は 2つのアンテナから得られた電 磁波の位相差による振幅比により定義するため、 障害物が近接する、 も しくは、 壁等対象物が大きく、 散乱断面積が不確定になりうる状態では、 正確な角度計測が困難であり、 障害物の散乱断面積が不確定の場合は障 害物形状を特定することも困難である。 Obstacle observing devices with driving parts and obstacle observing devices that require excessive information processing are systems that allow for the identification time before recognizing obstacles. May not be able to cope with situations where common events are likely to occur or driving conditions with increased blind spots The monopulse patch antenna observes reflected waves from obstacles, but the relative velocity and relative distance due to Doppler shift are accurate according to the wavelength of the electromagnetic wave. However, since angle detection is defined by the amplitude ratio based on the phase difference between the electromagnetic waves obtained from the two antennas, obstacles are close or objects such as walls are large, and the scattering cross section becomes uncertain. In such situations, accurate angle measurement is difficult, and it is also difficult to specify the shape of the obstacle if the scattering cross section of the obstacle is uncertain.
ミリ波帯電磁波より波長の短い電磁波を用いて角度解像度を上げるこ とも考えられるが、 1 0 0 G H z以上の電磁波を用いた高周波回路を民 生応用するには製品コストが高く、 レーザ波を用いた観測装置のみでは レーザの狭指向性のために走査機構が必要である。  Although it is conceivable to increase the angular resolution by using electromagnetic waves having a shorter wavelength than the millimeter-wave band electromagnetic waves, product cost is high for consumer applications of high-frequency circuits using electromagnetic waves of 100 GHz or higher, and laser waves must be used. Only the observation equipment used requires a scanning mechanism due to the narrow directivity of the laser.
従って、本発明の目的は、 広角、 遠近の広範囲の被検出物体を低コス トの装置を用いて、高速かつ高精度で検知できる物体監視センサを実現 することである。 発明の開示  Therefore, an object of the present invention is to realize an object monitoring sensor capable of detecting a wide range of objects to be detected in a wide angle, near and far with high speed and high accuracy by using a low cost device. Disclosure of the invention
上記目的を達成するため、本発明の物体監視センサは、 角度検知に複 数のアンテナによるステレオ効果を利用した電磁波アンテナ (以下単に アンテナと略称) と、 狭角の指向性を有する光センサを角度方向にァレ ィ状に複数配置した光学センサと、 上記平面アンテナと光学センサから の信号を用いて、 障害物等の被検出物体の距離や速度及び角度検知を行 う信号処理装置を備える。 ここで、 複数のアンテナによるステレオ効果 とは、 複数のアンテナに受信される電波の位相差を利用しすることを意 味する。  In order to achieve the above object, an object monitoring sensor according to the present invention includes an electromagnetic wave antenna (hereinafter simply referred to as an antenna) that utilizes a stereo effect of a plurality of antennas for angle detection, and an optical sensor having a narrow directivity. It comprises a plurality of optical sensors arranged in an array in a direction, and a signal processing device for detecting the distance, speed and angle of a detected object such as an obstacle using signals from the planar antenna and the optical sensor. Here, the stereo effect by a plurality of antennas means that a phase difference between radio waves received by the plurality of antennas is used.
特に、 アンテナとしては、 平面アンテナを用いることができ、 中でも 平面パッチアンテナを用いたモノパルス方式レーダによって、 障害物と の相対距離に相関なく相対距離、 相対速度、 相対角度を容易に検知する ことができる。 また、 上記光学センサは、 プリズムレンズからなる断続 的な指向性を付加した光センサを利用することにより、 近距離での広範 囲な障害物等を広角かつ高精度で検知を行う。 これにより耐振動特性の 向上と障害物監視センサ自身の薄型化と軽量化が実現できる。 In particular, a planar antenna can be used as the antenna. Above all, a monopulse radar using a planar patch antenna can The relative distance, relative speed, and relative angle can be easily detected without correlation with the relative distance of the object. In addition, the optical sensor detects a wide range of obstacles or the like at a short distance with a wide angle and high accuracy by using an optical sensor having an intermittent directivity comprising a prism lens. As a result, the vibration resistance can be improved, and the obstacle monitoring sensor itself can be made thinner and lighter.
本発明では、 距離及び速度検知を電磁波レーダにより観測し、 角度検 知を光センサにより観測し、 観測項目の作業分担を行うことによって、 それぞれの観測結果から総合的に障害物を判断する。 すなわち、 電磁波 の反射波から得られるドッブラー信号から障害物を大まかに把握するこ とで、 光センサには連続的な走査機構は不要となるため、 断続的に観測 する機構を有するィメージセンサを光センサとして代用できる。 また、 本発明による物体監視センサを自動車等の移動体に搭載すれば、 移動体 の外環境をリアルタイムに容易に把握することができ、 あらゆる運転動 作においても多くの外周状況を運転者へ与えることができ、 自動車事故 を未然に防止することができる自動車用物体監視センサを提供すること ができる。 図面の簡単な説明  In the present invention, an obstacle is comprehensively judged from each observation result by observing distance and speed detection by an electromagnetic wave radar, observing angle detection by an optical sensor, and sharing work of observation items. In other words, by roughly grasping the obstacle from the Doppler signal obtained from the reflected wave of the electromagnetic wave, a continuous scanning mechanism is not required for the optical sensor, and the image sensor having a mechanism for intermittent observation is used for the optical sensor. It can be used as a sensor. In addition, if the object monitoring sensor according to the present invention is mounted on a moving body such as an automobile, the external environment of the moving body can be easily grasped in real time, and the driver can be provided with a large number of outer peripheral conditions in any driving operation. Thus, it is possible to provide an automobile object monitoring sensor capable of preventing an automobile accident. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明による物体監視センサの第 1の実施例を示す分解斜 視図である。  FIG. 1 is an exploded perspective view showing a first embodiment of the object monitoring sensor according to the present invention.
第 2図は、 第 1図のアンテナ 1の 1実施例の上面図である。  FIG. 2 is a top view of one embodiment of the antenna 1 of FIG.
第 3図は、 第 1図の高周波回路' 2の 1実施例の回路図である。  FIG. 3 is a circuit diagram of one embodiment of the high-frequency circuit '2 in FIG.
第 4図は、 第 1図の高周波回路 2の 1実施例の上面図である。  FIG. 4 is a top view of one embodiment of the high-frequency circuit 2 of FIG.
第 5図は、 第 1 図の光センサ 3の 1実施例の構成を示す平面図である。 第 6図は、 光センサ 3の複数個の実施の形態を示した斜視図である。 第 7図は、 光学レンズ 4の構成機能を説明するための図である。 第 8図は、 光学レンズ 4として用いるプリズムの光軌道を説明するた めの図である。 FIG. 5 is a plan view showing a configuration of one embodiment of the optical sensor 3 of FIG. FIG. 6 is a perspective view showing a plurality of embodiments of the optical sensor 3. FIG. 7 is a diagram for explaining a configuration function of the optical lens 4. FIG. 8 is a diagram for explaining the optical trajectory of a prism used as the optical lens 4.
第 9図は、 導光路カバーと光学レンズ及び光センサ組み上げ時の光軌 道を説明するための図である。  FIG. 9 is a diagram for explaining an optical trajectory when assembling the light guide path cover, the optical lens, and the optical sensor.
第 1 0図は、 第 1 図の信号処理回路 6の 1実施例の回路構成図である。 第 1 1図は、 本発明による物体監視センサの第 2の実施の形態を示す 分解斜視図である。  FIG. 10 is a circuit configuration diagram of one embodiment of the signal processing circuit 6 of FIG. FIG. 11 is an exploded perspective view showing a second embodiment of the object monitoring sensor according to the present invention.
第 1 2図は、 本発明による物体監視センサの他の実施の形態を示す斜 視図である。  FIG. 12 is a perspective view showing another embodiment of the object monitoring sensor according to the present invention.
第 1 3図は、 本発明による物体監視センサを搭載した自動車の一実施 形態を示す図である。  FIG. 13 is a diagram showing an embodiment of an automobile equipped with the object monitoring sensor according to the present invention.
第 1 4図は、 本発明による物体監視センサを搭載した自動車の他の実 施形態を示す図である。  FIG. 14 is a diagram showing another embodiment of an automobile equipped with the object monitoring sensor according to the present invention.
第 1 5図は、 第 1 4図に示した実施形態における物体監視処理部の構 成を示すブロック図である。  FIG. 15 is a block diagram showing the configuration of the object monitoring processing unit in the embodiment shown in FIG.
第 1 6図は、 従来知られている物体監視装置の第 1例を示すブロック 図である。  FIG. 16 is a block diagram showing a first example of a conventionally known object monitoring device.
第 1 7図は、 従来知られている物体監視装置の第 2例を示すブロック 図である。  FIG. 17 is a block diagram showing a second example of a conventionally known object monitoring device.
第 1 8図は上記アンテナ 1の他の実施例の上面図を示す。  FIG. 18 shows a top view of another embodiment of the antenna 1.
第 1 9図は上記高周波回路 2の他の実施例の回路図を示す。 発明を実施するための最良の形態  FIG. 19 shows a circuit diagram of another embodiment of the high-frequency circuit 2 described above. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図は、 本発明による物体監視センサの第 1の実施例を示す分解斜 視図である。  FIG. 1 is an exploded perspective view showing a first embodiment of the object monitoring sensor according to the present invention.
物体監視センサ 1 0は、 少なくとも、 アンテナ 1 と、 高周波回路 2、 光センサ 3、 光学レンズ 4、 導光路付カバ一 5、 信号処理回路 6を具備 して構成される。 以下各部の詳細について述べる。 . The object monitoring sensor 10 includes at least an antenna 1, a high-frequency circuit 2, It comprises an optical sensor 3, an optical lens 4, a cover 5 with a light guide, and a signal processing circuit 6. The details of each unit will be described below. .
第 2図は、 上記アンテナ 1の一実施例の上面図を示す。物体監視セン サ 1 0のアンテナ 1 は能動的な観測を行うため、 電磁波を照射する送信 アンテナ 1 1 と、 障害物等の被検出物から反射した電磁波を検知する受 信アンテナ 1 2をもつ。  FIG. 2 shows a top view of one embodiment of the antenna 1. The antenna 1 of the object monitoring sensor 10 has a transmitting antenna 11 for irradiating electromagnetic waves and a receiving antenna 12 for detecting electromagnetic waves reflected from an object such as an obstacle in order to perform active observation.
特に、 受信アンテナ 1 2は障害物からの反射波角度を観測するため、 2つのアンテナ 1 2— 1 , 1 2— 2から構成され、 モノパルス方式で 2 つの要素アンテナそれぞれに受信されるステレオ効果を位相差として感 知する。 ここで、 受信アンテナ 1 2を構成する要素アンテナは 2つと限 らず、 3 つ以上でもよい。 その場合もよく知られた方法でステレオ効果 を位相差として感知することができる。 その位相差を含め、 受信した反 射波は高周波回路 2を経由して、 信号処理回路 6で反射物体とアンテナ との間のの距離、 速度等が計算処理される。  In particular, the receiving antenna 1 2 is composed of two antennas 12-1 and 12-2 to observe the angle of the reflected wave from the obstacle, and the stereo effect received by each of the two element antennas in a monopulse system is Perceived as a phase difference. Here, the number of element antennas constituting the receiving antenna 12 is not limited to two, but may be three or more. In this case, the stereo effect can be detected as a phase difference by a well-known method. The received reflected wave including the phase difference passes through the high-frequency circuit 2 and is processed by the signal processing circuit 6 to calculate the distance, speed, and the like between the reflecting object and the antenna.
第 1 図及び第 2図に示す物体監視センサのアンテナとしては、 電磁波 の送受信機能を有するアンテナであれば、 適用可能であり、 その形状と しては種種の態様を取り得る。 例えば、 金属片を周期的に配したパッチ アンテナ、 金属板に周期的に切りかきを設けたスロッ トアンテナ、 導波 管断面を漸次広げ所要の開口を持たせた電磁ホーンアンテナ、 回転方物 面の一部を反射鏡として用いたパラボラアンテナ、 或いは八木アンテナ やスロッ トアンテナ等を並べて配置してもよい。 特に物体監視センサの 小型軽量化には、 パッチアンテナやスロッ トアンテナ等の平面アンテナ の態様が有効であることから、 本実施例ではパッチアンテナを採用した 物体監視センサの構成について説明したが、 本発明はその態様に限定さ れない。  As an antenna of the object monitoring sensor shown in FIGS. 1 and 2, any antenna having a function of transmitting and receiving electromagnetic waves can be applied, and its shape can take various forms. For example, a patch antenna in which metal pieces are periodically arranged, a slot antenna in which a metal plate is periodically cut out, an electromagnetic horn antenna in which a waveguide section is gradually expanded to have a required aperture, and a rotating object surface A parabolic antenna using a part of the antenna as a reflector, or a Yagi antenna or a slot antenna may be arranged side by side. In particular, since the form of a planar antenna such as a patch antenna or a slot antenna is effective in reducing the size and weight of the object monitoring sensor, the configuration of the object monitoring sensor using the patch antenna has been described in this embodiment. The invention is not limited to that embodiment.
第 3図は、 高周波回路 2の 1実施例の回路図を示す。 高周波回路 2は 発振器 2 5の出力の一部を電力増幅器 2 6 -1 を介して端子 2 1から送 信アンテナの端子 (第 2図 t ) へ供給する回路と、 発振器 2 5の出力の 一部を電力増幅器 2 6 - 2及び 2 6 -3を介してそれぞれ混合器 2 4-1 及び 2 4-2に加える回路と、 2つの受信アンテナの端子 2 2 -1 及び 2 2-1 (第 2図 r l 及び r 2 に接続) の信号をそれぞれ低ノイズ増幅器 2 3 - 1及び 23-2 を介して、 混合器 24-1及び 2 4— 2に加える回路をも つ。 混合器 2 4-1 及び 24 - 2で得られた信号は、 それぞれ端子 i 1及 び 12 を介して信号処理回路 6に加えられる。これらの回路を構成する素 子は、 半導体基板上にトランジスタ等の能動素子と共にキャパシタ等の 受動素子を一体に形成した回路である MMIC(Monolithic Microwave Integrated Circuit)形態や、 能動素子と受動素子を個別に絶縁性ある いは半絶縁性の実装基板上に形成 した HMIC(Hybrid Microwave Integrated Circui t)形態を用いる。 FIG. 3 shows a circuit diagram of one embodiment of the high-frequency circuit 2. High frequency circuit 2 A circuit that supplies a part of the output of the oscillator 25 to the transmitting antenna terminal (t in Fig. 2) from the terminal 21 via the power amplifier 26-1 and a part of the output of the oscillator 25 Circuits to be added to the mixers 2 4-1 and 2 4-2 via 26-2 and 26-3 respectively, and the terminals 2 2-1 and 2 2-1 of the two receiving antennas (Fig. 2 rl and r 2) through low-noise amplifiers 23-1 and 23-2, respectively, to the mixers 24-1 and 24-2. The signals obtained by the mixers 24-1 and 24-2 are applied to the signal processing circuit 6 via terminals i 1 and 12, respectively. The elements that make up these circuits are MMIC (Monolithic Microwave Integrated Circuit), which is a circuit in which active elements such as transistors and passive elements such as capacitors are integrally formed on a semiconductor substrate, or separate active elements and passive elements. An HMIC (Hybrid Microwave Integrated Circuit) formed on an insulating or semi-insulating mounting substrate is used.
第 1 8図は上記アンテナ 1の他の実施例の上面図を示す。 第 2図のァ ンテナ 1 における受信アンテナ 1 2に相当する受信アンテナ 1 2が、 第 1 8図においては、 送信アンテナ 1 1の機能も兼ね備える。 受信アンテ ナ 1 2は電磁波を放射すると共に、 被検出物から反射した電磁波を受信 する。 第 3図の高周波回路 2に示した電力増幅器 2 6 -1を介して送信 アンテナの端子 2 1へ供給する回路において、 電力増幅器 2 6の出力を 等分配し、 受信アンテナ 1 2を構成する 2つの要素アンテナ 1 2 - 1及 び 1 2— 2に供給するためにアンテナ端子に方向性結合させるサーキュ レー夕、 もしくはスィッチ、 または周波数フィル夕などの回路を追加す ることにより、 受信アンテナ 1 2を送信アンテナとして機能させること ができる。  FIG. 18 shows a top view of another embodiment of the antenna 1. The receiving antenna 12 corresponding to the receiving antenna 12 in the antenna 1 in FIG. 2 also has the function of the transmitting antenna 11 in FIG. The receiving antenna 12 emits electromagnetic waves and receives the electromagnetic waves reflected from the object. In the circuit for supplying to the transmitting antenna terminal 21 via the power amplifier 26-1 shown in the high-frequency circuit 2 of FIG. 3, the output of the power amplifier 26 is equally distributed to form the receiving antenna 12. By adding a circuit such as a circulator or switch or a frequency filter that is directionally coupled to the antenna terminals to supply the two element antennas 12-1 and 12-2, the receiving antenna 1 2 Can function as a transmitting antenna.
第 1 8図に示す受信アンテナ 1 2は 2つの要素アンテナ 1 2— 1, 1 2 - 2から構成されるため、 モノパルス方式で 2つのアンテナそれぞれ に受信されるステレオ効果を位相差として感知することができる。 ここ で、 受信アンテナ 1 2を構成する要素アンテナは 2つとは限らず 3っ以 上でもよい。 その場合もよく知られた方法でステレオ効果を位相差とし て感知することができる。 Since the receiving antenna 12 shown in Fig. 18 is composed of two element antennas 12-1 and 12-2, each of the two antennas is monopulse. Can be sensed as a phase difference. Here, the number of element antennas constituting the receiving antenna 12 is not limited to two, but may be three or more. In this case, the stereo effect can be detected as a phase difference by a well-known method.
第 1 9図はアンテナ 1として第 1 8図の態様を用いた場合の高周波回 路 2の一実施例の回路図を示す。 高周波回路 2は、 発振器 2 5の出力の 一部を電力増幅器 26 - 1を介してサーキユレ一夕 2 9-1及び 2 9-2 へ供給する回路と、 発振器 2 5の出力の一部を電力増幅器 2 6- 2及び 26 - 3を介して混合器 24— 1及び 24— 2に加える回路と、 電力増 幅器 2 6 - 1カゝら出力される信号をサーキユレ一夕 2 9-1及び 2 9 - 2 を介して 2つの受信アンテナの端子 2 2- 1及び 2 2— 2 (第 1 8図 r 1及び r 2に接続) に供給し、 2つの受信アンテナの端子 2 2-1及び 22 - 2から入力された信号それぞれにサーキュレータ 2 9-1及び 2 9-2を介して低ノイズ増幅器 2 3-1及び 2 3 - 2で増幅された信号を それぞれ混合器 24— 1及び 24— 2に加える回路を持つ。 混合器 24 一 1及び 24 - 2で得られた信号は、 それぞれ端子 il及び i2を介して 信号処理回路 6に加えられる。 これらを構成する素子は第 3図と同じく MM I C形態や HM I C形態を用いる。 本実施例では、 受信アンテナ 1 2を用いて送信するための送受信アンテナ共用器として方向性結合器を 用いた構成について説明したが、 本発明はその態様に限定されず、 スィ ツチを用いた時分割による手段や、 フィル夕を用いた周波数分割による 手段、 あるいはラッ 卜レース回路による方向性結合器による手段を用い てもよい。  FIG. 19 shows a circuit diagram of one embodiment of the high-frequency circuit 2 when the embodiment shown in FIG. 18 is used as the antenna 1. The high-frequency circuit 2 supplies a part of the output of the oscillator 25 to the circuits 29-1 and 29-2 via the power amplifier 26-1 and a part of the output of the oscillator 25. A circuit to be added to the mixers 24-1 and 24-2 via the amplifiers 26-2 and 26-3, and a signal output from the power amplifier 26-1 to the circuit 29-1 and 2 9-2 to the two receiving antenna terminals 22-1 and 22-2 (connected to r 1 and r 2 in Fig. 18) and the two receiving antenna terminals 22-1 and 22-1 The signals amplified by the low-noise amplifiers 23-1 and 23-2 are passed through the circulators 29-1 and 29-2 to the signals input from 22-2, respectively. Has a circuit to add to 2. The signals obtained at the mixers 241-1 and 24-2 are applied to the signal processing circuit 6 via terminals il and i2, respectively. The elements that make up these elements use the MMIC or HMIC form, as in FIG. In the present embodiment, the configuration using the directional coupler as the transmission / reception antenna duplexer for transmitting using the reception antennas 12 has been described.However, the present invention is not limited to this mode. Means by division, means by frequency division using a filter, or means by a directional coupler using a rat race circuit may be used.
第 4図は、 高周波回路 2を MMIC で形成した 1実施例の上面図を示す。  FIG. 4 shows a top view of one embodiment in which the high-frequency circuit 2 is formed by an MMIC.
MMIC 形態の発振器 2 5、 電力増幅器 2 6— 1、 低ノィズ増幅器と混合 器を含む受信器 2 7— 1, 27 - 2が絶縁性基板である多層セラミック 基板 2 8上に搭載され、 伝送線路であるマイクロストリップ線路あるい はグランド付コプレーナ線路で互いに結線されている。 発振器 2 5で生 成された高周波信号は、 電力増幅器 2 6 一 1 と複数の受信器 2 7— 1, 2 7 - 2に分配されて供給される。 電力増幅器 2 6— 1に入力された高 周波信号は増幅されたのち、 パッチアンテナ 1の送信アンテナ 1 1に給 電され、 送信アンテナ 1 1から空間へ放出される。 パッチアンテナ 1が 放射する電磁波到達範囲内に I ^害物が存在する場合には、 反射波が観測 されるため、 受信アンテナ 1 2— 1, 1 2— 2で受信し、 高周波回路 2 の受信器 2 7— 1, 2 7— 2の高周波 (RF) 信号として伝送される。 受 信器 2 7は発振器 2 5から供給された高周波信号をローカル信号として、 受信アンテナ 1 2から伝送された反射波を RF 信号として入力し、 受信 器 2 7内の混合器において、 ドップラー信号そのものである差分の周波 数を抽出し、 中間周波 (IF) 信号として取り出す。 なお、 1 9及び 2 0 は、 それぞれチップ部品及び電源、 信号端子である。 MMIC type oscillator 25, power amplifier 26-1, receiver including low noise amplifier and mixer 27-1, multilayer ceramic with 27-2 as insulating substrate They are mounted on a substrate 28 and are connected to each other by a microstrip line or a coplanar line with ground, which is a transmission line. The high-frequency signal generated by the oscillator 25 is distributed to and supplied to the power amplifier 26-11 and the plurality of receivers 27-1, 27-2. The high-frequency signal input to the power amplifier 26-1 is amplified, supplied to the transmitting antenna 11 of the patch antenna 1, and emitted from the transmitting antenna 11 into space. If I ^ harmful substances are present within the electromagnetic wave range radiated by the patch antenna 1, reflected waves are observed, so they are received by the receiving antennas 12-1 and 12-2, and received by the high-frequency circuit 2. It is transmitted as a radio frequency (RF) signal of the detector 27-1 and 27-2. The receiver 27 inputs the high-frequency signal supplied from the oscillator 25 as a local signal, and the reflected wave transmitted from the receiving antenna 12 as an RF signal.The mixer in the receiver 27 receives the Doppler signal itself. The frequency of the difference is extracted as an intermediate frequency (IF) signal. 19 and 20 are a chip component, a power supply and a signal terminal, respectively.
第 5図は第 1 図の光センサ 3の 1実施例の構成を示す平面図である。 光センサ 3は赤外線、 可視光、 紫外線に反応する CCD (電荷結合素子) もしくはそれと同機能の光-電気信号変換素子 3 1であり、 水平方向の 光を感知するための受光体素子 3 2を複数個、 水平方向に 1次元のァレ ィ状に配置した構造であり、 受光信号を数値化するアナログ /デジタル コンパ一夕(ADC : Ana l og/D i gi t a l Conver t er) 3 3と、 受光体素子 3 2そ れぞれの光信号数値やプログラムを記録する記憶装置 3 4、 信号レベル の合否判定する演算器 3 5、 アナログ ·ディジタルコンバータ 3 3及び 記録装置 3 4等をプログラムに従って制御するコン卜ローラ 3 6、 信号 処理装置 6と信号の送受を行う入出力端子 3 7を有する。  FIG. 5 is a plan view showing the configuration of one embodiment of the optical sensor 3 of FIG. The light sensor 3 is a CCD (charge-coupled device) that responds to infrared light, visible light, or ultraviolet light, or a photo-electric signal conversion device 31 having the same function as the CCD, and a light-receiving device 32 for sensing light in the horizontal direction. It has a structure in which a plurality of one-dimensional arrays are arranged in the horizontal direction. The analog / digital converter (ADC) converts the received light signal into a numerical value (ADC: Analog / Digital Converter). According to the program, the storage device 34 for recording the optical signal value and the program of each photoreceptor element 32, the arithmetic unit 35 for judging the pass / fail of the signal level, the analog / digital converter 33 and the recording device 34, etc. It has a controller 36 for controlling, a signal processor 6 and an input / output terminal 37 for transmitting and receiving signals.
第 6図は、 光センサ 3の他の複数個の実施の形態を示した斜視図であ る。 図(a)は光-電気信号変換素子 3 1、 A D C 3 3、 記録装置 3 4、 演 算器 3 5、 コントローラ 3 6、 入出力端子 3 7の全ての回路要素を半導 体基板上に形成した実装形態であり、 図(b)は受光する光の波長に合わ せて光-電気信号変換素子 3 1のみを個別に作製し、 残りの要素回路を 半導体基板上に作製し、 絶縁性基板 4 8上に実装した形態、 図(c)は図 (b)の形態において、 半導体基板上に光-電気信号変換素子 3 1を搭載し た形態、 図(d)は、 それぞれの要素回路を個別作製し、 絶縁性基板 3 8 に搭載した形態である。 FIG. 6 is a perspective view showing other plural embodiments of the optical sensor 3. Figure (a) shows the opto-electric signal conversion element 31, ADC 33, recording device 34, This is a mounting form in which all the circuit elements of the calculator 35, the controller 36, and the input / output terminals 37 are formed on a semiconductor substrate, and FIG. Only the signal conversion element 31 is individually manufactured, the remaining element circuits are manufactured on a semiconductor substrate, and mounted on an insulating substrate 48. FIG. The optical-electrical signal conversion element 31 is mounted thereon, and FIG. (D) is a form in which each element circuit is individually manufactured and mounted on the insulating substrate 38.
第 7図は光学レンズ 4の構成機能を説明するための図である。 光セン サ 3の受光素子 3 2が平面に一次元アレイとして配置されるため、 光学 レンズ 4は、 水平方向の球面波を平面波になるよう、 平行光線に変換す る。 光学レンズ 4は、 凹レンズもしくは第 7図に示すような凸型形状の 多面プリズムレンズ 4を用いる。  FIG. 7 is a diagram for explaining the constituent functions of the optical lens 4. Since the light receiving elements 32 of the optical sensor 3 are arranged as a one-dimensional array on a plane, the optical lens 4 converts a horizontal spherical wave into a parallel light so as to become a plane wave. As the optical lens 4, a concave lens or a polygonal prism lens 4 having a convex shape as shown in FIG. 7 is used.
プリズムレンズの屈折率 N、 光センサ 3の受光体間隔 d、 及び角度分 解度数 Θによってプリズム入射角 θ 2を定義すると、 プリズムレンズに 入射する光は、 第 8図に示すように、 光イメージセンサの受光体 3 2へ 垂直に照射するようにプリズム内を通過する。 角度を定義するプリズム の面角度 はプリズムの屈折率 Nと入射角 に定義され、 Refractive index of the prism lens N, photoreceptor spacing d of the optical sensor 3, and when defining a prism angle of incidence theta 2 by the angle decomposition degree theta, light incident on the prism lens, as shown in FIG. 8, the light image The light passes through the prism so as to irradiate the photoreceptor 32 of the sensor vertically. The prism surface angle, which defines the angle, is defined by the prism's refractive index N and the angle of incidence,
( θ , + θ 2 ) = Θ 2 = > θ2 = - となる。 (θ, + θ 2 ) = Θ 2 => θ 2 =-
N -1 ここで、 0 1は光の入射角である。  N -1 where 0 1 is the incident angle of light.
また、 プリズム面の厚み Ηは  Also, the thickness Η of the prism surface is
Η= — θ ^- * d * c o t ( 0,)となる。 Η = — θ ^-* d * cot (0,).
Θ ここで 0は光軌線の分解角、 dはィメージセンサ内受光体間隔であ る。  0 Here, 0 is the resolution angle of the optical trajectory, and d is the distance between photoreceptors in the image sensor.
第 9図は光センサ 3、 光学レンズ 4及び導光路カバー 5の配置及び動 作を説明するための図である。 導光路カバー 5は光センサの指向性を選 択する。 特定方向以外の光が光センサ 3の受光体 3 2に当たると誤信号 として感知するため、 角度検知の誤差を抑えるため、 導光路内面は光を 吸収する黒色であり、 内面反射しても拡散するよう小さな凹凸のある表 面粗さ 0. 01 以上のランダムな平面の導光路が設けられる。 外環境から 到達した光は、 特定方向の光のみを通過する導光路カバ一 5により進行 方向の選択を受け、 特定方向の光のみ光学レンズ 4に到達する。 光学レ ンズ 4に到達した光は、 角度情報に応じた光センサ 3の受光体 3 2へ屈 折され、 光センサ 3で受光される。 即ち本実施例は、 イメージセンサの 部位による角度定義を行うためのスリッ トが空いた光路マスク (導光路 カバー 5 ) をイメージセンサの前に配置したものである。 Fig. 9 shows the arrangement and movement of the optical sensor 3, optical lens 4, and light guide path cover 5. It is a figure for explaining a work. The light guide cover 5 selects the directivity of the optical sensor. When light other than a specific direction hits the light receiving body 32 of the optical sensor 3, the light is sensed as an erroneous signal. A light guide path of a random plane having a surface roughness of 0.01 or more with small irregularities is provided. The light arriving from the external environment is selected in the traveling direction by the light guide path cover 5 that passes only the light in a specific direction, and only the light in the specific direction reaches the optical lens 4. The light that has reached the optical lens 4 is bent by the photoreceptor 32 of the optical sensor 3 according to the angle information and received by the optical sensor 3. That is, in the present embodiment, an optical path mask (light guide path cover 5) having a slit for defining an angle according to a part of the image sensor is disposed in front of the image sensor.
第 6図に示したように、 光センサ 3では、 受光体 3 2をアレイ状に配 置した光-電気信号変換素子 3 1において、 光から電気信号に変換され、 その後 A D C 3 3で数値化され、 記録回路 3 4に記憶される。 演算器 3 5は、 受光体 3 2で得られた光量が反射光の基準値を超えているか判断 し、 障害物の有無を一時決定するため、 '記録回路 3 4の光量データを基 に演算し、 結果を再び記録回路 3 4に記録する。  As shown in FIG. 6, in the optical sensor 3, the light-to-electric signal conversion element 31 in which the photoreceptors 32 are arranged in an array is converted from light to an electric signal, and then digitized by the ADC 33. And stored in the recording circuit 34. The computing unit 35 determines whether the amount of light obtained by the photoreceptor 32 exceeds the reference value of the reflected light, and performs an operation based on the light amount data of the recording circuit 34 to temporarily determine the presence or absence of an obstacle. Then, the result is recorded in the recording circuit 34 again.
第 1 0図は、 信号処理回路 6の 1実施例の構成を示すブロック図であ る。 信号処理回路 6は、 高周波回路 2から得られる IF 信号受信や、 高 周波回路 2への電源供給等を司るアナログ回路 6 1 と、 IF 信号のアナ ロク信号を数値化したり高周波回路をコントロールする電源等を生成す る A D C /D A C 6 2、 信号の時間軸-周波数軸変換する FFT演算等を行 う演算器 6 3と、 光センサを制御するコントロ一ラ 6 4、 演算器 6 3か ら得られる障害物情報と光センサ 3から得られる障害物情報を総合判断 する回路 6 5、 それらに電源を供給する電源回路 6 6及び外部と情報通 信を行う入出力回路 6 7からなる。 障害物の挙動を示すドップラー現象を含む高周波回路 2から得た IF 信号を、 演算器 6 3で、 信号処理し、 障害物との相対距離、 相対速度、 角度等を得て総合判断回路 6 5に転送する。 これと同時に、 光センサ 3 の記録装置 3 4内の受光体の受光量データ及び障害物一時判断結果を光 センサ 3の入出力端子 3 7を通して、 光センサコントローラ 6 4で呼び 出し、 総合判断回路 6 5に転送する。 総合判断回路 6 5では、 演算器 6 3で得られた相対距離及び光センサの受光量データを元に、 光センサ 3 で得た一時判断結果を検証し、 障害物数、 相対距離、 相対角度、 障害物 の大きさ、 危険度を確定する。 FIG. 10 is a block diagram showing a configuration of one embodiment of the signal processing circuit 6. The signal processing circuit 6 includes an analog circuit 61 for receiving an IF signal obtained from the high-frequency circuit 2 and supplying power to the high-frequency circuit 2, and a power supply for digitizing an analog signal of the IF signal and controlling the high-frequency circuit. ADC / DAC 62, which generates data, etc., a computing unit 63, which performs FFT computation, etc., for converting the time axis to frequency axis of signals, a controller 64, which controls the optical sensor, and a computing unit 63. It comprises a circuit 65 for comprehensively determining the obstacle information obtained and the obstacle information obtained from the optical sensor 3, a power supply circuit 66 for supplying power thereto, and an input / output circuit 67 for performing information communication with the outside. The IF signal obtained from the high-frequency circuit 2 including the Doppler phenomenon indicating the behavior of the obstacle is processed by a calculator 63 to obtain the relative distance to the obstacle, the relative speed, the angle, etc. Transfer to At the same time, the light reception data of the photoreceptor in the recording device 34 of the optical sensor 3 and the result of the temporary judgment of the obstacle are called by the optical sensor controller 64 through the input / output terminal 37 of the optical sensor 3, and the integrated judgment circuit 6 Transfer to 5. The comprehensive judgment circuit 65 verifies the temporary judgment result obtained by the optical sensor 3 based on the relative distance obtained by the arithmetic unit 63 and the received light amount data of the optical sensor, and determines the number of obstacles, the relative distance, and the relative angle. Determine the size and danger of obstacles.
すなわち、  That is,
障害物距離、 速度 =演算器 6 3の結果  Obstacle distance, speed = Result of calculator 6 3
障害物角度 =光センサの受光体に対応した情報と演算器 53 の総合判 断 ·  Obstacle angle = information corresponding to the light-receiving object of the optical sensor and comprehensive judgment of the arithmetic unit 53
Obj ec t一 l engt h = L* (光センサの反応した受光体数) * s i n (角度分解度 数)  Obj ec t-l engt h = L * (number of photoreceptors reacted by optical sensor) * s i n (angle resolution)
誤差範囲 = L* s i n (角度分解度数) Error range = L * s i n (angle resolution)
で求まる。 Is determined by
本実施例の物体監視センサを用いた障害物の検知の具体的数値例につ いて述べる。  A specific numerical example of obstacle detection using the object monitoring sensor according to the present embodiment will be described.
相対距離 5 m、 角度 + 1 5度地点にある障害物が存在すると仮定する。 ドッブラー信号による障害物検知により、 相対距離と速度は正確に求め られ、 角度情報はある誤差範囲で大まかに把握できる。 角度情報は、 ィ メージセンサの受光体の光量反応により検知する。 検知角度範囲土 7 0 度, 角度分解度数 1 0度の場合には、 イメージセンサ内受光体数は 1 5 個( ( 7 0度/ 1 0度) * 2 + 1 )である。  Assume that there is an obstacle at a relative distance of 5 m, angle + 15 degrees. Relative distance and speed can be accurately obtained by detecting obstacles using the Dobler signal, and angle information can be roughly grasped within a certain error range. The angle information is detected based on the light amount response of the photoreceptor of the image sensor. When the detection angle range is 70 degrees and the angle resolution is 10 degrees, the number of photoreceptors in the image sensor is 15 ((70 degrees / 10 degrees) * 2 + 1).
障害物の幅が 9 0 cm以上の物体の場合は、 5 m地点での光軌線の間隔 が分解角 1 0度の正弦であるため、 5m* sin(l 0)で表され、 約 0. 8 7ミリであり、 光センサの光軌線上に少なくとも 1個以上重畳すること になる。 従って、 イメージセンサの + 1 0度の受光体か、 + 2 0度の受 光体、 もしくは両方の受光体が感知する。 本発明の物体監視センサ 1 0 では、 + 1 0度〜 + 2 0度の範囲で距離 5m 地点に障害物が存在し、 大 きさは 8 7 cm〜 1 7 4 cm程度であると判断することができる。 For obstacles with a width of more than 90 cm, the distance between the light trajectories at 5 m Is a sine with a resolution angle of 10 degrees, so it is expressed as 5m * sin (l0), which is about 0.87 mm, and at least one superimposes on the optical trajectory of the optical sensor. Therefore, the + 10 ° photoreceptor, the + 20 ° photoreceptor, or both photoreceptors of the image sensor sense. In the object monitoring sensor 10 of the present invention, it is determined that an obstacle is present at a distance of 5 m within a range of +10 degrees to +20 degrees and the size is about 87 cm to 1740 cm. be able to.
また、 幅 8 6 cm 未満の物体は光軌線上に存在しない場合が考えられ るが、 障害物の散乱断面積が小さいことによるドッブラー信号の角度情 報精度の信頼性が向上し、 大きさ 8 7 cm 以下の障害物が角度 1 5度土 5度の範囲で距離 5m地点に存在することが予想される。  In addition, objects with a width of less than 86 cm may not exist on the optical trajectory.However, the reliability of the angle information accuracy of the Doppler signal due to the small scattering cross section of the obstacle is improved, and It is expected that obstacles of 7 cm or less will exist at a distance of 5 m within an angle of 15 degrees and soil of 5 degrees.
ドップラーレーダによる障害物情報 Obstacle information by Doppler radar
距離 L=5m、 角度 1 5度付近  Distance L = 5m, Angle around 15 degrees
光センサの反 Optical sensor anti
Figure imgf000015_0001
障害物大きさは
Yes
Figure imgf000015_0001
Obstacle size is
Objecし length = I ^(反応した受光体数) *sin(10) = 5m*2=i=0.174=1.74 m Objec length = I ^ (number of photoreceptors reacted) * sin (10) = 5m * 2 = i = 0.174 = 1.74m
誤差範囲=1^3 (10) = ±0.86m  Error range = 1 ^ 3 (10) = ± 0.86m
で計算される。 より正確な角度分解能と大きさを判断する場合には、 プリズムレンズの光軌線分解角を小さく設定することで、 近距離におけ る障害物検知ができる。 また、 障害物の相対動作を時系列的に把握すれば障害物の動作予測が 可能となるため、 自車周辺の外環境が正確に把握でき、 より安全な安全 支援が達成できる。 Is calculated by When determining the more accurate angular resolution and size, it is possible to detect obstacles in a short distance by setting the optical trajectory resolution angle of the prism lens small. Also, if the relative movement of obstacles is grasped in a time series, it is possible to predict the movement of the obstacles, so that the outside environment around the vehicle can be grasped accurately, and safer safety support can be achieved.
第 1 1図は、 物体監視センサ 1 0の第 2の実施の形態を示す分解斜視 図である。 太陽光や街灯等受動的な受光においては、 直射による受光体 の誤動作が考えられる。 この誤動作を防止するため、 本実施形態では、 物体監視センサ 1 0に光源 7を付加し、 光源 7の発光量を時間軸で強弱 をつける。 受光体の受光量データが光源発光量と連動性を検証すること により、 障害物による反射光の確認を行い、 障害物検知の精度を上げる。 また、 演算器 6 3の障害物検知情報を元に、 光源 7の開閉 (O N / O F F ) を行うことで光源 7の消費電力低減を図る。  FIG. 11 is an exploded perspective view showing a second embodiment of the object monitoring sensor 10. In passive light reception such as sunlight or streetlights, malfunction of the photoreceptor due to direct sunlight can be considered. In order to prevent this malfunction, in the present embodiment, the light source 7 is added to the object monitoring sensor 10 and the light emission amount of the light source 7 is given a strength on the time axis. By verifying the interrelation between the received light amount data of the photoreceptor and the light emission amount of the light source, the reflected light from the obstacle is confirmed and the accuracy of the obstacle detection is improved. The power consumption of the light source 7 is reduced by opening and closing the light source 7 (ON / OFF) based on the obstacle detection information of the computing unit 63.
第 1 2図 (a) 及び (b) は、 いずれも本発明による物体監視センサを 用いた物体監視システムの実施形態を示す図である。  FIGS. 12 (a) and 12 (b) are diagrams each showing an embodiment of an object monitoring system using the object monitoring sensor according to the present invention.
( a) の実施形態では、物体監視センサを複数 (即ち、 物体監視センサ 1 0— 1 と物体監視センサ 1 0— 2 ) と監視センサのコントロール装置 1 8 とを有して監視システム 2 0を構成する。  In the embodiment of (a), the monitoring system 20 includes a plurality of object monitoring sensors (that is, the object monitoring sensor 10-1 and the object monitoring sensor 10-2) and the control device 18 for the monitoring sensor. Constitute.
波長の短い電磁波及び光は直進性が高いため、 障害物の形状が極めて 平面状である場合には平面の正対峙のみ、 反射波や反射光が監視センサ へ到達可能である。 障害物が正対峙以外の場合においても、 複数個の物 体監視装置を搭載することによって、 他方の物体監視センサから照射さ れた電磁波や光源を元に反射波及び反射光を得る-ことで、 障害物検知の 精度を上げる。  Since electromagnetic waves and light having a short wavelength have high rectilinearity, if the shape of the obstacle is extremely flat, the reflected wave or reflected light can reach the monitoring sensor only by directly facing the plane. Even when the obstacle is not directly facing, by installing multiple object monitoring devices, it is possible to obtain reflected waves and reflected light based on electromagnetic waves and light sources emitted from the other object monitoring sensor. Increase the accuracy of obstacle detection.
( b ) の実施形態では、 監視システム 2 0は、 単一の物体監視センサ 1 0 と、 2つの光源 1 6 、 1 7、 監視センサのコントロール装置 1 9力 らなる。 波長の短い電磁波及ぴ光は直進性が高いため、 障害物の形状が 極めて平面状である場合には平面の正対時のみ、 反射波や反射光が監視 センサへ到達可能である。 特に波長の短い光は致命的であるため、 物体 監視センサ 1 0に反射光を得ることができるように複数個の光源を搭載 することによって、 障害物が正対時以外の場合においても障害物検知の 精度を上げる。 In the embodiment of (b), the monitoring system 20 includes a single object monitoring sensor 10, two light sources 16, 17, and a monitoring sensor controller 19. Since electromagnetic waves with short wavelengths have high rectilinearity, if the obstacle is extremely flat, the reflected wave and reflected light are monitored only when facing the plane. The sensor is reachable. In particular, light with a short wavelength is fatal, so by installing multiple light sources so that reflected light can be obtained by the object monitoring sensor 10, even if the obstacle is not directly facing the obstacle, Increase detection accuracy.
第 1 3図は、 本発明の物体監視センサを装備した自動車の一実施形態 を示す。 自動車 4 0の外周部に、 複数の物体監視センサ、 即ち、 物体監 視センサ 3— 1、 3— 2、 3— 3、 3— 4、 3— 5、 3— 6及び 3— 7 が搭載されている。 上記複数の物体監視センサはコントロール装置 4 1 に接続ざれている。  FIG. 13 shows an embodiment of an automobile equipped with the object monitoring sensor of the present invention. A plurality of object monitoring sensors, that is, object monitoring sensors 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, and 3-7 are mounted on the outer periphery of the automobile 40. ing. The plurality of object monitoring sensors are connected to the control device 41.
移動体である自動車 4 0が障害物に衝突することなく運転できるよう、 運転者の死角を補う方向へ、 物体監視センサ 3— 1を左前方方向へ、 物 体監視センサ 3— 2を右前方方向へ、 物体監視センサ 3— 3を左側面方 向へ、 物体監視センサ 3— 4を右側面方向へ、 物体監視センサ 3— 5を 左後方方向へ、 物体監視センサ 3— 6を右後方方向へ、 物体監視センサ 3— 7を後方へ向け、 複数の物体監視センサ 3—;!〜 3— 7で自動車外 周ほぼ全体を監視する。 旋回運転、 路線変更運転、 後進運転、 駐車運転 等あらゆる運転動作において、 運転者へ多くの外周状況を与えることに より、 自動車事故を未然に防止することができる。  Move the object monitoring sensor 3-1 to the left front and the object monitoring sensor 3-2 to the right to compensate for the driver's blind spot so that the vehicle 40, which is a moving object, can drive without colliding with obstacles. Direction, object monitoring sensor 3-3 to the left side, object monitoring sensor 3-4 to the right side, object monitoring sensor 3-5 to the left rear, object monitoring sensor 3-6 to the right rear. , The object monitoring sensor 3-7 is turned backward, and the multiple object monitoring sensors 3— ;! It monitors almost the entire periphery of the car in 3-7. In every driving operation such as turning operation, route change operation, reverse driving, parking operation, etc., it is possible to prevent a car accident beforehand by giving the driver a lot of outer peripheral conditions.
第 1 4図は、 本発明の物体監視センサを装備した自動車の他の実施形 態を示す。 本実施形態は、 第 1 3図で示した実施形態に、 自動車の前部 にドップラーレーダ 4 2を付加し、 コントロール装置 4 1を監視センサ 及びドップラーレーダのコントロール装置 4 3に変えたものである。第 1 3図で示した実施形態と実質的に同じ構成部には同じ番号を付して説 明を省く。  FIG. 14 shows another embodiment of an automobile equipped with the object monitoring sensor of the present invention. In this embodiment, a Doppler radar 42 is added to the front of the vehicle in addition to the embodiment shown in FIG. 13, and the control device 41 is changed to a monitoring sensor and a Doppler radar control device 43. . Components that are substantially the same as those in the embodiment shown in FIG. 13 are given the same numbers, and descriptions thereof are omitted.
ドップラーレーダ 4 2は、 自動車の進行方向の遠方障害物の検知を行 レ 自動車外周環境において、 特に前方障害物に注力し、 徐行運転や縦 列運転、 渋滞内運転を重^的に、 旋回運転、 路線変更運転、 後進運転、 駐車運転等あらゆる運転動作において、 運転者へ多くの外周状況を与え ることにより; 自動車事故を未然に防止する。 The Doppler radar 42 detects distant obstacles in the direction of travel of the vehicle. Gives the driver a large number of peripheral conditions in all driving operations such as turning, re-routing, reverse driving, parking, etc. .
第' 1 5図は、 本発明の物体監視センサを搭載した自動車における物体 監視処理部の 1実施形態構成を示すプロック図である。 本実施例では、 上記物体監視センサやドッブラレーダで検出した情報を用いて自動車の 運転支援を行う手段を設けたものである。  FIG. 15 is a block diagram showing a configuration of an embodiment of an object monitoring processor in an automobile equipped with the object monitoring sensor of the present invention. In the present embodiment, means for assisting driving of an automobile using information detected by the object monitoring sensor and the Dobler radar is provided.
同図において、 第 1 4図の構成部分と同一部には第 1 4図の番号と同 じ番号を付けている。  14, the same parts as those in FIG. 14 are given the same numbers as those in FIG.
エンジンの回転数を監視する回転センサ 5 1、 タイヤの回転数を監視 するタイヤセンサ 5 2、 自動車の加速度を監視する加速度センサ 5 3、 自動車の絶対車速を監視する車速センサ 5 9、 自動車の回転を監視する 回転加速度センサ 4 7、 自動車の外気温や湿度を監視する気候センサ 4 9、 アクセルペダルやハンドル、 方向指示器等運転者の操作を監視する 位置センサ群 5 0、 VICS 等の通信による交通情報を送受する通信装置 5 7、 これらセンサの動作状況を時系列に記録する記録装置 5 6、 運転 状況や交通情報を運転者に伝達するための表示装置 5 4、 加給器ゃブレ ーキ、 ランプ等の制動を行うァクチユエ一タコントロール装置 5 8、 セ ンサの動作状況をリアルタイムに状況把握して、 自動車の運転パターン 解析や、 エンジンやブレーキ等のァクチユエータの制御を行なう状況判 断及び運転制御用装置 5 5を備える。  Revolution sensor 51 for monitoring engine speed, tire sensor 52 for monitoring tire speed, acceleration sensor 53 for monitoring vehicle acceleration 53, vehicle speed sensor 59 for monitoring absolute vehicle speed, vehicle rotation Rotation acceleration sensor 47, climate sensor 49 to monitor the outside temperature and humidity of the vehicle, position sensors 50 to monitor the driver's operation such as accelerator pedal, steering wheel, turn signal, etc. Communication device for transmitting and receiving traffic information 57, Recording device 56 for recording the operation status of these sensors in chronological order, Display device 54 for transmitting driving status and traffic information to the driver 54, Charger brake Actuator control device for braking of lamps, lamps, etc. 58, Real-time monitoring of sensor operation status, analysis of driving patterns of automobiles, analysis of engine and brakes, etc. Comprising the status decisions and the operation control device 5 5 controls the Kuchiyueta.
外環境に対する運転者の自動車運転パターンを銃計し、 外環境'に対す る運転パターンの解析を行うことによって、 加速度重視の運転や、 等速 度重視の運転や、 コーナー通過時の運転方法等、 運転者の嗜好に合わせ た各種ァクチユエータ制御を実施することが可能となる。 また、 外環境 に対する運転者の運転パターンの統計解析から運転者の安全運転指数を 算出し、 この結果を自動車の保険掛け金算出に用いる。 安全運転指数に 応じた掛け金を運転者は払うことにより、 自動車保険請負会社の金銭的 負担を統計的に算出でき、 最終的には運転者の金銭的な負担を低減でき る。 また、 時系列のセンサ情報を事故の実態調査に提供することで、 事 故の客観的な状況判断ができる。 産業上の利用可能性 By measuring the driving pattern of the driver in the external environment with a gun, and analyzing the driving pattern in the external environment, the driver emphasizes acceleration, drives at a constant speed, and operates in a corner. Thus, it becomes possible to perform various actuator control according to the driver's preference. In addition, the driver's safe driving index is calculated from the statistical analysis of the driver's driving pattern against the outside environment. Calculate and use this result to calculate insurance premiums for automobiles. By paying a stake according to the safe driving index, the driver can statistically calculate the financial burden on the automobile insurance contractor, and ultimately reduce the financial burden on the driver. In addition, by providing time-series sensor information to the actual survey of accidents, it is possible to judge the situation of the accident objectively. Industrial applicability
以上述べたとおり、 本発明によれば、 電磁波の反射波と光の反射光を 両方を障害物監視に用いる障害物監視センサは、 モノパルス方式の平面 パッチアンテナと、 プリズムレンズからなる断続的な指向性を付加した 光センサを利用することにより、 機械的な走査機構を用いずに広範囲の 障害物検知が可能となり、 耐振動特性の向上と、 障害物監視センサ自身 の薄型化と軽量化ができる。 また、 障害物との相対距離に相関なく相対 距離、 相対速度、 相対角度が用意に検知することが可能であり、 特に近 距離においては、 光センサによる角度情報の高精度化と物体大きさの検 出が可能となる。  As described above, according to the present invention, the obstacle monitoring sensor using both the reflected wave of the electromagnetic wave and the reflected light of the light for obstruction monitoring is an intermittent directivity comprising a monopulse planar patch antenna and a prism lens. By using an optical sensor with added characteristics, it is possible to detect a wide range of obstacles without using a mechanical scanning mechanism, improving the vibration resistance characteristics and making the obstacle monitoring sensor itself thinner and lighter. . In addition, relative distance, relative speed, and relative angle can be easily detected without correlation with the relative distance to the obstacle. Detection becomes possible.
その結果、 画像処理に伴う複雑な信号処理技術を用いずとも、 自動車 の外環境をリアルタイムに容易に把握することができ、 渋滞運転、 旋回 運転、 路線変更運転等あらゆる運転動作において、 運転者へ多くの外周 状況を与え、 自動車事故を未然に防止することができる自動車用物体監 視センサを提供することができる。  As a result, it is possible to easily grasp the outside environment of the vehicle in real time without using complicated signal processing technology associated with image processing, and to provide the driver with all kinds of driving operations such as traffic jam driving, turning driving, route changing driving, etc. It is possible to provide an object monitoring sensor for an automobile that can provide many peripheral conditions and prevent an automobile accident before it occurs.
また、 外環境における運転者の運行パターンを把握できることから、 運転に対する安全運転指数が統計的に導く ことができ、 運転者の自動車 保険掛け金の低減や、 事故に対する客観的実況判断が可能となる自動車 用物体監視センサを提供することができる。  In addition, since the driver's driving patterns in the external environment can be ascertained, a safe driving index for driving can be statistically derived, and vehicles that can reduce driver's insurance premiums and make objective judgments on actual conditions for accidents are possible. Object monitoring sensor can be provided.

Claims

1 . 電磁波を放射すると共に、 ステレオ効果を用いて対象物の角度検知 を行うために前記電磁波の前記対象物からの反射波を受信するアンテナ と、 . - 指向性を有する複数の光センサがアレイ状に配置され、 前記複数の光 センサが互いに異なる角度方向からの光を受光可能となるように構成さ の 1. An antenna that emits an electromagnetic wave and receives a reflected wave of the electromagnetic wave from the object in order to detect an angle of the object using a stereo effect; and-an array of a plurality of optical sensors having directivity. And the plurality of optical sensors are configured to be able to receive light from different angular directions.
れた光センサと Light sensor and
前記アンテナからの情報及び前記光センサからの情報に基づいて前記 対象物との距離、 速度、'又は角度を検出する囲信号処理回路を具備して成 ることを特徴とする物体監視センサ。  An object monitoring sensor, comprising: a surrounding signal processing circuit that detects a distance, a speed, an angle, or an angle with the object based on information from the antenna and information from the optical sensor.
2 . 請求項 1記載の物体監視センサにおいて、  2. The object monitoring sensor according to claim 1,
前記アンテナは送信アンテナ及び受信アンテナを含んで成り、 前記受信アンテナは、 ステレオ効果を用いた角度検出を行うために、 前記信号処理回路と電気的に接続された端子を独立に具備する複数の要 素アンテナから成ることを特徴とする物体監視センサ。  The antenna includes a transmission antenna and a reception antenna, and the reception antenna has a plurality of elements each independently having a terminal electrically connected to the signal processing circuit in order to perform angle detection using a stereo effect. An object monitoring sensor comprising an elementary antenna.
3 . 請求項 2記載の物体監視センサにおいて、 - 前記物体監視センサは、 送信信号と受信信号とを混合して前記信号処 理回路に出力するための高周波回路を更に具備して成り、  3. The object monitoring sensor according to claim 2, further comprising:-the object monitoring sensor further includes a high frequency circuit for mixing a transmission signal and a reception signal and outputting the mixed signal to the signal processing circuit;
前記高周波回路は、 発振器と、 前記発振器の出力の一部を.送信信号と して入力して前記送信アンテナに出力する第 1の電力増幅器と、 前記発 振器の出力の一部を送信信号として入力する第 2の電力増幅器と、 前記 受信アンテナから伝達された受信信号を入力する低ノィズ増幅器と、 前 記第 2の電力増幅器の出力及び前記低ノィズ増幅器の出力をそれぞれ送 信信号及び受信信号として入力し、 入力した送信信号と受信信号を混合 訂正された用鹩 (規則 91) して前記信号処理回路へ出力する混合器とを具備して成ることを特徴と する物体監視センサ。 The high-frequency circuit includes: an oscillator; a first power amplifier that inputs a part of the output of the oscillator as a transmission signal and outputs the transmission signal to the transmission antenna; and a transmission signal that outputs a part of the output of the oscillator. A low power amplifier for inputting a received signal transmitted from the receiving antenna, and a transmission signal and a reception power of the output of the second power amplifier and the output of the low noise amplifier, respectively. Input as a signal, and mix the input transmit and receive signals for corrected use (Rule 91) And a mixer that outputs the signal to the signal processing circuit.
4 . 請求項 1記載の物体監視センサにおいて、  4. The object monitoring sensor according to claim 1,
前記アンテナは受信アンテナを含んで成り、  The antenna comprises a receiving antenna;
前記受信アンテナは、 ステレオ効果を用いた角度検知を行うために、 前記信号処理回路と電気的に接続された端子をそれぞれ独立に具備する 複数の要素アンテナから成り、 前記複数の要素アンテナから電磁波を放 射すると共に、前記電磁波が前記対象物で反射して生じた反射波を前記 複数の要素アンテナで受信することを特徴とする物体監視センサ。  In order to perform angle detection using a stereo effect, the reception antenna includes a plurality of element antennas each independently having a terminal electrically connected to the signal processing circuit, and transmits electromagnetic waves from the plurality of element antennas. An object monitoring sensor that radiates and receives, at the plurality of element antennas, reflected waves generated by the electromagnetic waves being reflected by the object.
5 . 請求項 4記載の物体監視センサにおいて、  5. The object monitoring sensor according to claim 4,
前記物体監視センサは、 送信信号と受信信号とを混合して前記信号処 理回路に出力するための高周波回路を更に具備して成り、  The object monitoring sensor further includes a high-frequency circuit for mixing a transmission signal and a reception signal and outputting the mixed signal to the signal processing circuit.
前記高周波回路は、 発振器と、 前記発振器の出力の一部を送信信号と して入力する第 1の電力増幅器と、 前記発振器の出力の一部を送信信号 として入力する第 2の電力増幅器と、 前記受信アンテナから伝達された 受信信号を入力する低ノイズ増幅器と、 前記第 2の電力増幅器の出力及 び前記低ノイズ増幅器の出力をそれぞれ送信信号及び受信信号として入 力し、 入力した送信信号と受信信号を混合して前記信号処理回路へ出力 する混合器と、 前記第 1の電力増幅器の出力端子、前記受信アンテナの 端子、及び前記低ノィズ増幅器の入力端子に接続された送受信アンテナ 共用器とを具備して成ることを特徴とする物体監視センサ。  An oscillator; a first power amplifier that inputs a part of the output of the oscillator as a transmission signal; and a second power amplifier that inputs a part of the output of the oscillator as a transmission signal. A low-noise amplifier for inputting a received signal transmitted from the receiving antenna; and an output of the second power amplifier and an output of the low-noise amplifier input as a transmission signal and a reception signal, respectively. A mixer that mixes a received signal and outputs the mixed signal to the signal processing circuit; a transmit / receive antenna duplexer connected to an output terminal of the first power amplifier, a terminal of the receiving antenna, and an input terminal of the low noise amplifier. An object monitoring sensor, comprising:
6 . 請求項 5記載の物体監視センサにおいて、 6. The object monitoring sensor according to claim 5,
前記送受信アンテナ共用器は方向性結合器であることを特徴とする物 体監視センサ。  The object monitoring sensor, wherein the duplexer is a directional coupler.
7 . 請求項 1乃至 6のいずれかに記載の物体監視センサにおいて、 前記ァンテナは平面アンテナであることを特徴とする物体監視センサ。 7. The object monitoring sensor according to claim 1, wherein the antenna is a planar antenna.
8 . 請求項 7に記載の物体監視センサにおいて、 8. The object monitoring sensor according to claim 7,
前記平面アンテナはパッチ素子がアレイ状に配置されてなるパッチァ ンテナであることを特徴とする物体監視センサ。  An object monitoring sensor, wherein the planar antenna is a patch antenna in which patch elements are arranged in an array.
9 . 請求項 1乃至 8のいずれかに記載の物体監視センサにおいて、 前記光センサは光を電気信号に変換するィメージセンサと光学レンズ とを組み合わせて構成されていることを特徴とする物体監視センサ。 9. The object monitoring sensor according to claim 1, wherein the optical sensor is configured by combining an image sensor that converts light into an electric signal and an optical lens. .
1 0 . 請求項 9に記載の物体監視センサにおいて、 10. The object monitoring sensor according to claim 9,
前記光センサは前記イメージセンサの部位による角度定義を行うため のスリッ トの空いた光路マスクが前記イメージセンサの入力側に配置さ れてなることを特徴とする物体監視センサ。  The object monitoring sensor according to claim 1, wherein the optical sensor includes a slit-free optical path mask for defining an angle based on a part of the image sensor, which is disposed on an input side of the image sensor.
1 1 . 請求項 1 0に記載の物体監視センサにおいて、  11. The object monitoring sensor according to claim 10,
前記光路マスクは、 角度検知の検知誤差を抑えるため、 光を誘導する 内面黒色の導光路が設けられていることを特徴とする物体監視センサ。 The object monitoring sensor, wherein the optical path mask is provided with an inner black light guide path for guiding light in order to suppress a detection error of angle detection.
1 2 . 請求項 1乃至 1 1のいずれかに記載の物体監視センサにおいて、 前記光学センサの近傍に、 所定の期間、 光を照射する光源が配置され て成ることを特徴とする物体監視センサ。 12. The object monitoring sensor according to any one of claims 1 to 11, wherein a light source that emits light for a predetermined period is arranged near the optical sensor.
1 3 . 請求項 1 乃至 1 2のいずれかに記載の物体監視センサを搭載して 成ることを特徴とする移動体。  13. A moving object comprising the object monitoring sensor according to any one of claims 1 to 12.
1 4 . 請求項 1 3記載の移動体において、  1 4. In the mobile object according to claim 13,
前記物体監視センサで検出した情報を用いて運転支援することを特徴 とする移動体。  A moving object, which assists driving using information detected by the object monitoring sensor.
1 5 . 請求項 1 乃至 1 2のいずれかに記載の物体監視センサを搭載して 成り、 前記物体監視センサで検出した情報を用いて運転支援を行う自動 車であって、  15. An automobile, comprising the object monitoring sensor according to any one of claims 1 to 12 and supporting driving using information detected by the object monitoring sensor,
前記物体監視センサが外周部に複数個設けられ、 前記物体監視センサ よりも検知可能距離が長いレーダ装置が前方に設けられていることを特 徴とする自動車。 A plurality of the object monitoring sensors are provided on an outer peripheral portion, and a radar device having a longer detectable distance than the object monitoring sensor is provided in front. The car to be called.
1 6 . 請求項 1 5記載の自動車において、  1 6. In the vehicle according to claim 15,
前記物体監視センサと、 前記レーダ装置と、 前記物体監視センサ及ぴ 前記レーダ装置から得られた情報を記録する情報記憶装置とを用いて前 記運転支援を行うことを特徴とする自動車。  A vehicle, wherein the driving assistance is performed using the object monitoring sensor, the radar device, the information monitoring device, and an information storage device that records information obtained from the radar device.
1 7 . 請求項 1 5記載の自動車において、  17. In the vehicle according to claim 15,
前記情報記憶装置に記録された情報に基づき運転者及び周囲の行動パ ターンを解析し、 自動車事故に対する経過を算出す.る手段を更に具備す るすることを特徴とする自動車。  An automobile further comprising means for analyzing a behavior pattern of a driver and surroundings based on the information recorded in the information storage device and calculating a course for an automobile accident.
PCT/JP2003/001790 2003-02-19 2003-02-19 Object monitoring sensor WO2004074866A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2003/001790 WO2004074866A1 (en) 2003-02-19 2003-02-19 Object monitoring sensor
JP2004568470A JPWO2004074866A1 (en) 2003-02-19 2003-02-19 Object monitoring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/001790 WO2004074866A1 (en) 2003-02-19 2003-02-19 Object monitoring sensor

Publications (1)

Publication Number Publication Date
WO2004074866A1 true WO2004074866A1 (en) 2004-09-02

Family

ID=32894226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001790 WO2004074866A1 (en) 2003-02-19 2003-02-19 Object monitoring sensor

Country Status (2)

Country Link
JP (1) JPWO2004074866A1 (en)
WO (1) WO2004074866A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288195A (en) * 2008-05-30 2009-12-10 Fujitsu Ltd Radio wave direction detector and antenna movable device
KR100983788B1 (en) 2008-12-26 2010-09-27 전자부품연구원 an interface circuit for multi-element gas sensor
EP3490061A1 (en) * 2017-11-27 2019-05-29 Panasonic Intellectual Property Management Co., Ltd. Antenna device
RU2729704C1 (en) * 2019-09-05 2020-08-11 Открытое акционерное общество "Центральное научно-производственное объединение "Ленинец" Mobile radar station
CN112534296A (en) * 2018-08-14 2021-03-19 昕诺飞控股有限公司 Microwave sensor device, and sensing method and lighting system using the same
JP2021529309A (en) * 2018-06-21 2021-10-28 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh How to calibrate MIMO radar sensors for automobiles

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381555A (en) * 1979-04-10 1983-04-26 Audi Nsu Auto Union Aktiengesellschaft Apparatus for measuring the braking time of a motor vehicle
JPS618691A (en) * 1984-06-22 1986-01-16 Nippon Denso Co Ltd Photodetecting device
JPS6323607U (en) * 1986-07-30 1988-02-16
JPS63132310U (en) * 1987-02-23 1988-08-30
JPH02263286A (en) * 1989-04-03 1990-10-26 Hitachi Ltd Automobile drive recorder
JPH054061U (en) * 1991-04-11 1993-01-22 三菱電機株式会社 Transceiver
JPH0738332A (en) * 1993-07-23 1995-02-07 Nec Corp Simple monopulse tracking antenna
JPH0791950A (en) * 1993-09-27 1995-04-07 Matsuda Kogyo Gijutsu Kenkyusho:Kk Photodetecting sensor
JPH0744113U (en) * 1991-02-15 1995-10-31 防衛庁技術研究本部長 Combined sensor
US5815112A (en) * 1995-12-05 1998-09-29 Denso Corporation Planar array antenna and phase-comparison monopulse radar system
JPH1116099A (en) * 1997-06-27 1999-01-22 Hitachi Ltd Automobile traveling supporting device
JPH11160426A (en) * 1997-12-01 1999-06-18 Mitsubishi Electric Corp Car radar
WO2000073818A1 (en) * 1999-05-26 2000-12-07 Robert Bosch Gmbh Object detection system
JP2001194457A (en) * 2000-01-14 2001-07-19 Sogo Jidosha Anzen Kogai Gijutsu Kenkyu Kumiai Vehicle circumference monitor

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381555A (en) * 1979-04-10 1983-04-26 Audi Nsu Auto Union Aktiengesellschaft Apparatus for measuring the braking time of a motor vehicle
JPS618691A (en) * 1984-06-22 1986-01-16 Nippon Denso Co Ltd Photodetecting device
JPS6323607U (en) * 1986-07-30 1988-02-16
JPS63132310U (en) * 1987-02-23 1988-08-30
JPH02263286A (en) * 1989-04-03 1990-10-26 Hitachi Ltd Automobile drive recorder
JPH0744113U (en) * 1991-02-15 1995-10-31 防衛庁技術研究本部長 Combined sensor
JPH054061U (en) * 1991-04-11 1993-01-22 三菱電機株式会社 Transceiver
JPH0738332A (en) * 1993-07-23 1995-02-07 Nec Corp Simple monopulse tracking antenna
JPH0791950A (en) * 1993-09-27 1995-04-07 Matsuda Kogyo Gijutsu Kenkyusho:Kk Photodetecting sensor
US5815112A (en) * 1995-12-05 1998-09-29 Denso Corporation Planar array antenna and phase-comparison monopulse radar system
JPH1116099A (en) * 1997-06-27 1999-01-22 Hitachi Ltd Automobile traveling supporting device
JPH11160426A (en) * 1997-12-01 1999-06-18 Mitsubishi Electric Corp Car radar
WO2000073818A1 (en) * 1999-05-26 2000-12-07 Robert Bosch Gmbh Object detection system
JP2001194457A (en) * 2000-01-14 2001-07-19 Sogo Jidosha Anzen Kogai Gijutsu Kenkyu Kumiai Vehicle circumference monitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288195A (en) * 2008-05-30 2009-12-10 Fujitsu Ltd Radio wave direction detector and antenna movable device
KR100983788B1 (en) 2008-12-26 2010-09-27 전자부품연구원 an interface circuit for multi-element gas sensor
EP3490061A1 (en) * 2017-11-27 2019-05-29 Panasonic Intellectual Property Management Co., Ltd. Antenna device
JP2021529309A (en) * 2018-06-21 2021-10-28 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh How to calibrate MIMO radar sensors for automobiles
JP7101828B2 (en) 2018-06-21 2022-07-15 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング How to calibrate MIMO radar sensors for automobiles
CN112534296A (en) * 2018-08-14 2021-03-19 昕诺飞控股有限公司 Microwave sensor device, and sensing method and lighting system using the same
RU2729704C1 (en) * 2019-09-05 2020-08-11 Открытое акционерное общество "Центральное научно-производственное объединение "Ленинец" Mobile radar station

Also Published As

Publication number Publication date
JPWO2004074866A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US9395727B1 (en) Single layer shared aperture beam forming network
US10935650B2 (en) Radar based three dimensional point cloud for autonomous vehicles
US7132976B2 (en) Automotive radar
US8009082B2 (en) Mobile radar and planar antenna
EP1548458A2 (en) Vehicle-mounted radar
US7084761B2 (en) Security system
US20210184340A1 (en) Radome For Automotive Radar Patch Antenna
US11385325B2 (en) Corrugated radomes
JP2014227000A (en) Vehicle control device, method and program
JP6957820B2 (en) Radio sensor, adjustment method and adjustment program
WO2006030832A1 (en) Monitor
KR100759757B1 (en) An active automotive safety system using a short range radar and an image sensor
CN112654888A (en) Electronic device, control method for electronic device, and control program for electronic device
CN112639914A (en) Detection device, mobile body system, and detection method
US7091900B2 (en) Radar
WO2004074866A1 (en) Object monitoring sensor
EP3865909A1 (en) Electronic device, method for controlling electronic device, and program for controlling electronic device
US20220390587A1 (en) Sensor cluster device and vehicle including the same
CN115524666A (en) Method and system for detecting and mitigating automotive radar interference
JP4246051B2 (en) Radar equipment
US11226397B2 (en) Slanted radomes
EP4254006A1 (en) Electronic device, method for controlling electronic device, and program
US20220308207A1 (en) Radar control device and method
WO2020054108A1 (en) Sensing device, mobile body system, and sensing method
KR20230043991A (en) Radar system, antenna array for radar system, vehicle having at least one radar system, and method of operating at least one radar system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004568470

Country of ref document: JP

122 Ep: pct application non-entry in european phase