WO2004074485A1 - Novel proteins and dnas encoding the same - Google Patents

Novel proteins and dnas encoding the same Download PDF

Info

Publication number
WO2004074485A1
WO2004074485A1 PCT/JP2004/002133 JP2004002133W WO2004074485A1 WO 2004074485 A1 WO2004074485 A1 WO 2004074485A1 JP 2004002133 W JP2004002133 W JP 2004002133W WO 2004074485 A1 WO2004074485 A1 WO 2004074485A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
dna
amino acid
seq
sequence
Prior art date
Application number
PCT/JP2004/002133
Other languages
French (fr)
Japanese (ja)
Inventor
Takao Isogai
Tomoyasu Sugiyama
Ai Wakamatsu
Ryotaro Irie
Shizuko Ishii
Kunji Kawai
Jun Kondo
Takahide Kaji
Midori Nakajima
Naoko Miyama
Toshimitsu Kishimoto
Original Assignee
Research Association For Biotechnology
Zoegene Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association For Biotechnology, Zoegene Corporation filed Critical Research Association For Biotechnology
Publication of WO2004074485A1 publication Critical patent/WO2004074485A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/485Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)

Definitions

  • the present invention relates to a novel protein, a DNA encoding the protein, a full-length cDNA encoding the protein, a recombinant vector having the DNA, an oligonucleotide comprising a partial sequence of the DNA,
  • the present invention relates to a transgenic cell into which NA has been introduced, an antibody that specifically binds to the protein, and the like. Background art
  • genomic sequences of various organisms are being elucidated and analyzed on a global level.
  • the purpose of clarifying the genome sequence is to understand the complex life phenomena as a network of interactions and functions among all genes, between proteins, between cells, and even between individuals. Elucidating life phenomena from the genomic information of various species is not only important as a research topic in the academic field, but also how to develop the research results obtained therefrom into industrial applications. In that respect, its social significance is also great.
  • Such information is used from various angles, such as elucidation of the human gene structure, prediction of the exon region in the genome sequence, and estimation of its expression profile.
  • human EST information is concentrated near the 3 'end of cDNA, information on the mRNA, especially near the 5' end, is extremely insufficient.
  • cDNAs have been identified as a result of analyzes conducted at research institutions around the world (Helix Research Institute, Kazusa DNA Research Institute, The University of Tokyo Medical Research Institute, German Cancer Research Center, MGC Project, etc.) Thousands of them are considered to cover most of the 30,000 thousands of loci, but the percentage of cDNAs obtained as full-length clones is around 80%, ⁇ Considering that splicing variants are included, it is considered that there are many cDNAs that have not yet been obtained.
  • the transcription start point of the mRNA on the genomic sequence can be estimated from the 5 'terminal sequence, and it is involved in the stability of mRNA contained in the sequence and the regulation of expression at the translation stage. Factor analysis is possible. Also, since the translation initiation codon atg is included on the 5 side, translation into protein can be performed in the correct frame. Therefore, by applying an appropriate gene expression system, it becomes possible to mass-produce the protein encoded by the cDNA or to express the protein and analyze its biological activity. Thus, analysis of full-length cDNA provides important information that complements genomic sequence analysis. In addition, the total length that can be expressed cDNA clones are of great importance in empirical analysis of the function of their genes and their application to industrial applications.
  • splicing variant mRNA a plurality of similar proteins (hereinafter sometimes referred to as “splicing variants”) produced by translating these mRNAs have been identified in vivo. Splicing variants are expressed in a tissue-specific, developmental-stage or disease-specific manner, and are thought to have different functions.
  • the JAK3 gene which is a tyrosine kinase, has three types of splicing variants, S-type, B-type, and M-type.
  • S-type is expressed in hematopoietic cells
  • S-type is expressed in hematopoietic cells.
  • the type is expressed on hematopoietic cells and epithelial cells.
  • Antibodies co-precipitate S-type and M-type and express them in the same cell, allowing multiple splicing variants to work together, further increasing the complexity of intracellular cytokine signaling. (See, for example, Lai KS et al., J. Biol. Chem., 270: 25028-25036 (1995)).
  • the mRNA or cDNA of such a splicing variant is also difficult to obtain from a conventional cDNA library or EST, and is a clone that is likely to be obtained from a full-length cDNA library including the transcription start site. (See, for example, WO 98Z2250 7 (SEQ ID NO. 1 and NO. 2)).
  • protein kinase is an enzyme that phosphorylates serine, threonine, or tyrosine residues of a protein as a substrate, and an extremely large number of families are known.
  • protein kinases are known to be involved in the control of various life phenomena by regulating intracellular signal transduction systems via protein phosphorylation. Many (for example, Hunter, T., Cell, 50: 823-829 (1987)).
  • human genes are said to be protein kinase genes, and it is estimated that about 1,000 different protein kinases exist in the human body, and there are still many protein kinase genes. Are left uncloaked.
  • protein kinases can be expected to be useful as therapeutic target molecules and proteins themselves as pharmaceuticals. Therefore, it is of great significance to determine the full length of the cDNAs encoding these proteins. Disclosure of the invention
  • the present invention analyzes the nucleotide sequence of a cDNA clone contained in a full-length cDNA library, and analyzes and identifies the physiological activity of a protein encoded by a cDNA having a novel full-length sequence including a splicing variant.
  • An object of the present invention is to propose a protein based on the physiological activity and a method of using DNA encoding the protein.
  • the present inventors have proposed the oligocap method (Maruyama, K., et al., Gene, 138: 171-174 (1994); Suzuki, Y. et al., Gene, 200: 149-156 (1997)).
  • a database containing the splicing variant obtained using the novel cDNA was searched in a database based on the homology of the nucleotide sequence of the cDNA clone, a sequence specific to a protein having kinase activity was found in the sequence. And identified that the protein encoded by these cDNAs was a protein kinase.
  • the present invention has been accomplished based on these findings.
  • a protein consisting of the amino acid sequence of any one of SEQ ID NOs: 13 to 24,
  • a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted, or added to the amino acid sequence of any one of SEQ ID NOs: 13 to 24, and which has kinase activity.
  • a sense oligonucleotide having the same sequence as 5 to 100 consecutive nucleotides in the nucleotide sequence of DNA according to any one of (2) to (4), and an antisense having a sequence complementary to the sense oligonucleotide.
  • An oligonucleotide selected from the group consisting of an oligonucleotide and an oligonucleotide derivative of the sense or antisense oligonucleotide.
  • a method for screening a substance that regulates the expression of DNA characterized in that:
  • At least one or more amino acid sequence information selected from the amino acid sequence of the protein according to (1) and / or at least one selected from the nucleotide sequence of DNA according to any of (2) to (4) A computer-readable recording medium that stores one or more base sequence information.
  • FIG. 1 is a diagram comparing the structure of a protein having the amino acid sequence of SEQ ID NO: 15 with the structure of a known protein BC010640.
  • FIG. 2 is a diagram comparing the exon structures obtained by mapping and analyzing the DNA having the nucleotide sequence of SEQ ID NO: 3 and the cDNA encoding the known protein BC 010640 to the human genomic sequence.
  • FIG. 3 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 16 with the structure of the known protein AX405737.
  • FIG. 4 is a diagram comparing the exon structures obtained by mapping the DNA having the nucleotide sequence of SEQ ID NO: 4 and the cDNA encoding the known protein AX405573 to the human genome sequence and analyzing them.
  • FIG. 5 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 17 with the structure of the known protein AX262516.
  • FIG. 6 is a diagram comparing the exon structures obtained by mapping the DNA having the base sequence of SEQ ID NO: 5 and the cDNA encoding the known protein AX262516 to the human genome sequence and analyzing them.
  • FIG. 7 is a diagram comparing the structure of a protein having the amino acid sequence of SEQ ID NO: 18 with the structures of known proteins AAV32449, AAW48841, and AAW48842.
  • FIG. 8 is a diagram comparing the exon structures obtained by mapping the DNA having the base sequence of SEQ ID NO: 6 and the cDNA encoding the known protein AAV32449 to human genomic sequences, respectively.
  • FIG. 9 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 19 with the structure of the known protein cdk10.
  • FIG. 10 is a diagram comparing exon structures obtained by mapping and analyzing the DNA having the nucleotide sequence of SEQ ID NO: 7 and the cDNA encoding the known protein cdk10 to the human genome sequence, respectively.
  • FIG. 11 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 20 with the structure of the known protein AX327993.
  • FIG. 12 is a diagram comparing the exon structures obtained by mapping the DNA having the nucleotide sequence of SEQ ID NO: 8 and the cDNA encoding the known protein AX327993 to human genomic sequences, respectively.
  • FIG. 13 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 21 with the structure of the known protein SGK040.
  • FIG. 14 is a diagram comparing exon structures obtained by mapping a DNA having the nucleotide sequence of SEQ ID NO: 9 and a cDNA encoding the known protein SGK040 to a human genome sequence and analyzing them, respectively (a). In addition, a diagram comparing the structure of both proteins as seen from the exon structure is shown (b).
  • FIG. 15 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 22 with the structure of the known protein ACK1.
  • FIG. 16 is a diagram comparing the etason structures obtained by mapping the DNA having the base sequence of SEQ ID NO: 10 and the cDNA encoding the known protein ACK1 to the human genome sequence and analyzing them.
  • FIG. 17 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 23 with the structure of the known protein MAP KK4.
  • FIG. 18 is a diagram comparing the exon structures analyzed by mapping the DNA encoding the nucleotide sequence of SEQ ID NO: 11 and the cDNA encoding the known protein MAPKK4 to the human genome sequence, respectively.
  • FIG. 19 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 24 with the structure of the known protein PKACa.
  • FIG. 20 is a diagram comparing the exon structures obtained by mapping the DNA having the nucleotide sequence of SEQ ID NO: 12 and the cDNA encoding the known protein PKAC a to the human genome sequence and analyzing them.
  • Figure 21 shows the standard polypeptides (Cdc2, Arg2-OH PKA, PKC, DNA—PK :, PTK1, PTK2, MLCKS, CaMKII, The peak of Syntide2) is shown.
  • Figure 23 shows that the standard polypeptide (Cdc2, Arg2-OH, PKA, PKC, DNA-PK :, PTK1, PTK2, MLCKS, CaMKII, Syntide2) as a substrate
  • the figure shows the results obtained by adding a protein having an amino acid sequence and causing a reaction to proceed, and then measuring peaks on reversed-phase HPLC.
  • Figure 24 shows the standard polypeptides as substrates (Cdc2, Arg2—OH, PKA, PKC, DNA—PK :, PTK1, PTK2, MLCKS, CaMKII, The results obtained by adding a protein having the amino acid sequence of SEQ ID NO: 7 to Syntide 2) and reacting the resulting mixture, and measuring the peak on a reverse-phase HPLC.
  • Figure 25 shows that the standard polypeptides (Cdc2, Arg2-OH, PKA, PKC, DNA-PK :, PTK1, PTK2, MLCKS, CaMKII, Syntide2) as substrates are the amino acids of SEQ ID NO: 8.
  • the figure shows the results of peaks measured on reversed-phase HPLC after a protein having a sequence was added and reacted.
  • Figure 26 shows that the standard polypeptide (Cdc2, Arg2-OH, PKA, PKC, DNA-PK :, PTK1, PTK2 N MLCKS, CaMKII, Syntide2) as a substrate has the amino acid of SEQ ID NO: 9.
  • the figure shows the results of peaks measured on reversed-phase HP LC after a protein having a sequence was added and reacted.
  • Figure 27 shows that the standard polypeptide (C dc2, Arg2—OH, PKA, PKC, DNA—PK1, PTK1, PTK2, MLCKS, CaMKII, Syntide2) as a substrate has the amino acid of SEQ ID NO: 10.
  • the figure shows the results of peaks measured on reversed-phase HP LC after a protein having a sequence was added and reacted.
  • FIG. 28 shows that the standard polypeptide (Cdc2, Arg2-OH, PKA, PKC, DNA_PK, PTK1, PTK2, MLCKS, CaMKII, Syntide2) as a substrate has the amino acid sequence of SEQ ID NO: 11.
  • the figure shows the results of peaks measured on reversed-phase HP LC after protein addition and reaction.
  • Figure 29 shows the amino acid sequence of SEQ ID NO: 1 in the standard polypeptide (Cdc2, Arg2—OH, PKA, PKC, DNA—PK :, PTK1, PTK2, MLCKS, CaMKII, Syntide2) as a substrate.
  • the figure shows the results of peaks measured on a reversed-phase HPLC after a protein having the above-mentioned property was added and reacted.
  • Figure 30 shows the amino acid sequence of SEQ ID NO: 2 in the standard polypeptide (Cdc2, Arg2-OH, PKA, PKC, DNA-PK :, PTK1, PTK2, MLCKS, CaMKII, Syntide2) as a substrate.
  • the figure shows the results of peaks measured on reversed-phase HPLC after a protein having the above was added and reacted.
  • Figure 31 shows c-testi siRNA with target gene 2053667 (testi 205366 7-964 alone, testi 2053667-1-190 alone, and testi 2053667-964 and test 1 20553667-1190 (Equivalent mixture) was introduced into HEK293 cells and HeLa cells, and the results of measuring the expression level of c-testi 2053667 gene in the cells are shown.
  • Figure 32 shows that c-siRNA (testi 2053667-964 alone, a mixture of equal amounts of testi 2053667-964 and testi 2053667-1190) with testi 2053667 as the target gene was introduced into HEK293 cells and HeLa cells.
  • 3 shows the results of quantifying the proliferation of the cells into which the cells were introduced, using the intracellular ATP content as an index.
  • Fig. 33 shows that c-siRNA (testi 2053667-964 alone, a mixture of testi 2053667-964 and testi 2053667-1 190 in the same amount) with testi 2053667 as the target gene was introduced into HEK293 cells and HeLa cells. 5 shows the results of quantifying the cell death of the cells into which the siRNA was introduced, using the LDH activity released into the culture supernatant as an index.
  • the DNA of the present invention may be a protein comprising the amino acid sequence of any one of SEQ ID NOs: 13 to 24, or one or several amino acids in the amino acid sequence of any of SEQ ID NOs: 13 to 24 (here, The term “several” means, for example, 5 amino acids or less, preferably 3 amino acids or less, and more preferably 2 amino acids or less. Any substance may be used as long as it can encode a protein having kinase activity. Specifically, the It may be only the translation region encoding the amino acid sequence, or may include the full length of its cDNA.
  • examples of the DNA containing the full-length cDNA include a DNA having the nucleotide sequence of any one of SEQ ID NOS: 1 to 12, and the like.
  • the translation regions include nucleotide numbers 39 to 2159 of SEQ ID NO: 1, nucleotide numbers 36 to 1454 of SEQ ID NO: 2, nucleotide numbers 401 to 1960 of SEQ ID NO: 3, nucleotide numbers 42 to 1733 of SEQ ID NO: 4, Nucleotide numbers 371 to 3874 of SEQ ID NO: 5, Nucleotide numbers 81 to 2720 of SEQ ID NO: 6, Nucleotide numbers 1744 to 2685 of SEQ ID NO: 7, Nucleotide numbers 254 to 2554 of SEQ ID NO: 8, Nucleotide numbers 32 to 3898 of SEQ ID NO: 9, Examples include those having the sequences represented by base numbers 146 to 3406 of SEQ ID NO: 10, base numbers 55 to 1287 of SEQ ID NO: 11, and base numbers 407 to 1690 of SEQ ID NO
  • those containing the above-mentioned translation region and a portion adjacent to the 3 ′ and Z or 5 ′ end thereof, which is the minimum necessary for the expression of the translation region, are also included in the DNA of the present invention. included.
  • the DNA of the present invention may be obtained by any method as long as it can be obtained, and specifically, for example, can be obtained by the method described below.
  • mRNA is prepared from human tissues or cultured cells by a method known per se and commonly used.
  • the oligo cap method is prepared from human tissues or cultured cells by a method known per se and commonly used.
  • RNA ligase for the RNA molecule having no cap structure at the 5 'end, the phosphate group existing at the 5' end in advance is not removed from the 5 'cap so that the oligocap linker will not bind, 5. It is effective to remove using a phosphatase that has the activity to remove only the phosphate group at the end.
  • RNA molecule as type III, as a primer on the 3 side After reverse transcription is performed with reverse transcriptase using oligo dT primer, the RNA strand is degraded and removed.
  • a full-length cDNA library can be prepared by performing PCR (PCR).
  • the 5 'primer and the 3 primer are not complementary to the full length of the synthetic oligonucleotide and the reverse transcription primer, and it is preferable to use a sequence shifted by 3 to 10 bases on the 3 side.
  • the chain length of the primer is usually 15 to 100 nucleotides, preferably 15 to 30 nucleotides. If the length of the cDNA to be amplified is long, it is preferably 25 to 35 nucleotides.
  • Long and Accurate PCR (LA PCR: Takeshi Hayashi, Separate Volume on Experimental Medicine ⁇ The latest technology in PCR, Yodosha; Cheng, S., et al., Nature 369: 684-685 (1994)) Is preferred.
  • the cDNA thus obtained is inserted into an appropriate cloning vector and cloned.
  • a protein expression vector that can express the protein encoded by the cDNA by introducing the obtained cDNA clone into a cell is preferably used.
  • the host is a mammalian cell or the like
  • pME18SFL3 Genebank AB O09864
  • E. coli E. coli
  • pET3 and pETll manufactured by Stratagene
  • PGEX Amersham Pharmacia Biotech
  • yeast pESP-I expression vector (Stratagene) and the like.
  • Bac PAK6 (Clontech) And the like are used.
  • ZAP Express manufactured by Stratagene
  • SVK3 manufactured by Amersham Pharmacia Biotech
  • the nucleotide sequence of the thus obtained cDNA library is analyzed by a commonly used method known per se.
  • the DNA of the present invention analyzes the nucleotide sequence at the 5, 5 or 3 ends of the obtained cDNA and converts it to NCBI (National Center for Biotechnology Information; http: // www. Ncbi. Nlm. Nih. Gov).
  • BLAST Basic local alignment search tool; Altschul, SF, et al., J. Mol.
  • Examples of the DNA having such a full-length cDNA nucleotide sequence include those having the nucleotide sequence of SEQ ID NOS: 1 to 12.
  • base numbers 146 to 3406 of SEQ ID NO: 10 base numbers 55 to 1287 of SEQ ID NO: 11, and base numbers 407 to 1690 of SEQ ID NO: 12.
  • the novel nucleotide sequence obtained as the full-length cDNA obtained in this manner is used for homology search (homology search) using BLAST or HMMER (sequence analysis method using hidden Markov model; Eddy, SR, Bioinformatics 14: 755-763 (1998) HMM PF AM, one of the functions of))
  • ttp // pf am. wustl. edu), etc., to estimate the function of the protein encoded by the nucleotide sequence.
  • the function of the clone to be analyzed can be estimated from various annotation information accompanying the hit sequence whose homology is sufficiently significant as a result of the search.
  • a sufficiently significant hit sequence is T / JP2004 / 002133 Whether the identity between the catalytic domain portion of the registered sequence and the corresponding portion of the DNA of the present invention is 30% or more, e-value (query sequence as the expected value) present accidentally in the database showing the 1 0-4 or less.
  • HMMP FAM is an analysis based on the method of identifying whether the amino acid sequence encoded by the nucleotide sequence to be analyzed has the characteristics of the amino acid sequence of an entry in a database that integrates protein profiles called P fam. . Profiles are extracted from a series of proteins with the same characteristics. Even if a function cannot be clearly identified by comparing the full length of one sequence to one sequence, if the characteristic region is present in the sequence, the function can be identified and predicted. . Thus, the cDNA activity of a cDNA which is predicted to have the kinase activity of the protein encoded thereby can be confirmed by a biochemical experiment described later.
  • clone determined to be novel as the full-length cDNA above include those having the nucleotide sequence shown in any one of SEQ ID NOS: 1 to 12.
  • amino acid sequences encoded by these nucleotide sequences include those shown in any of SEQ ID NOS: 13 to 24.
  • the DNA of the present invention thus obtained, whose base sequence is determined, and whose function is estimated, is the base sequence described in any one of SEQ ID NOS: 1 to 12, or the base sequence shown above as its translation region.
  • the term "number" means, for example, 15 or less, preferably 9 or less, more preferably 6 or less
  • a DNA encoding a protein having a base sequence in which Z or an additional base or Z has been added and having a kinase activity, and a DNA which hybridizes with these under stringent conditions, and DNAs encoding proteins having activity are also included.
  • amino acid sequence of any of SEQ ID NOS: 13 to 24 is added to the DNA.
  • the sequences include amino acid sequences in which one or several amino acid sequences have been deleted, substituted, and / or added, and include those encoding proteins having kinase activity.
  • hybridization under stringent conditions refers to a reaction in a normal hybridization buffer at a temperature of 40 to 70 ° C, preferably 60 to 65 ° C, and the like. Washing can be performed according to a method of washing in a washing solution having a salt concentration of 15 mM to 300 mM, preferably 15 mM to 60 mM.
  • DNA of the present invention may be obtained by the above-described method or may be synthesized.
  • the DNA base sequence can be easily replaced with a sales kit such as a site-directed mutagenesis kit (Takara Shuzo) or a quick change site-directed mutagenesis kit (Stratagene). it can.
  • the translation region of the protein encoded by the DNA of the present invention is, for example, the nucleotide sequence of the DNA which is converted into amino acids by three reading frames and the range encoding the longest polypeptide of the present invention is
  • the amino acid sequence can be deduced as a protein translation region. Examples of such an amino acid sequence include those described in any of SEQ ID NOS: 13 to 24.
  • the protein of the present invention is not limited to the above amino acid sequence, but comprises an amino acid sequence in which one or several amino acids have been substituted, deleted, Z or added in the amino acid sequence. And those having kinase activity.
  • the method of transcribing and translating the DNA of the present invention described in (1) by an appropriate method is preferably used. Specifically, it was inserted into an appropriate expression vector or an appropriate vector together with an appropriate promoter. It can be obtained by producing a recombinant vector, transforming a suitable host microorganism with this recombinant vector, or introducing it into a suitable cultured cell, expressing it, and purifying it.
  • the protein of the present invention also includes a protein that is inserted into a vector or the like designed to fuse an appropriate tag to the N-terminus or C-terminus and has a tag added thereto.
  • a tag include glutathione-1S-transferase, polyhistidine, F1ag, and the like.
  • the protein produced by the transformant can be modified by incorporating an amino acid substituted / modified with a heavy atom or the like during protein synthesis.
  • a protein can be converted into a modified protein by arbitrarily modifying the protein or partially removing the polypeptide by applying an appropriate protein modifying enzyme before or after purification.
  • an appropriate protein modifying enzyme for example, N-terminal acetylation, terminal modification such as C-terminal amidation, glycosylation, lipid addition, acylation, methylation, sulfonation, carboxylation, hydroxylation, phosphorylation, ADP-ribosylation, etc.
  • modified proteins are also included in the scope of the present invention as long as they have the kinase activity described above.
  • the protein produced by the above transformant may be modified by arbitrarily modifying the protein before or after purification by the action of an appropriate protein modifying enzyme or by partially removing the polypeptide. It can be a protein. These modified proteins are also included in the scope of the present invention as long as they have the kinase activity described above.
  • the vector used for the production of the recombinant vector containing the DNA of the present invention is not particularly limited as long as the DNA is expressed in the transformant. Any of phage vectors. Of these, usually, a commercially available protein expression vector into which an expression control region DNA such as a promoter suitable for a host into which the DNA is introduced has already been inserted is used. As such a protein expression vector, specifically, for example, the host is Escherichia coli In the case of yeast, ET3, pETll (manufactured by Stratagene), GEX (manufactured by Amersham Pharmacia Biotech) and the like.
  • pESP-I expression vector manufactured by Stratagene
  • Bac PAK6 Bac PAK6 (Clontech) or the like is used.
  • ZAP Express Java Pharmacia Biotech
  • SVK3 Amersham Pharmacia Biotech
  • the host is a mammalian cell, ⁇ 18 SFL 3 (Ge nb nk AB 009864) and the like.
  • a promoter possessed by a host microorganism or a cultured cell can be used, but is not limited thereto.
  • the host is Escherichia coli, T3, T7, tac, 1ac promoter and the like can be used, and in the case of yeast, nmt1 promoter, Ga11 promoter and the like can be used.
  • a polyhedrin promoter or the like can be used.
  • the host is an animal cell, SV40 promoter, CMV promoter and the like are preferably used.
  • a promoter specific to the gene of the present invention can also be used. Insertion of the DNA of the present invention into these vectors may be performed by connecting the DNA or a DNA fragment containing the DNA to the amino acid sequence of the protein encoded by the gene DNA downstream of the open motor in the vector.
  • the recombinant vector thus prepared can be used to transform a host described below by a method known per se to prepare a DNA-introduced form.
  • Examples of the method for introducing the vector into a host include a heat shock method (J. Mol. Biol., 53: 154 (1970)), a calcium phosphate method (Science, 221: 551 (1983)), DEAE Dextran method (Science, 215: 166 (1982)), in vitro packaging method (Pro atl. Acad. Sci. USA, 72: 581 (1975)), virus vector method
  • the host for producing the DNA-introduced host is not particularly limited as long as the DNA of the present invention is expressed in the body.
  • Escherichia coli, yeast, baculovirus for example, Escherichia coli, yeast, baculovirus
  • BL21 and XL-2B 1 ue (Stratagene) for E. coli, SP-Q01 (Stratagene) for yeast, and AcN PV (J. Biol. Chem., 263) for baculovirus. : 7406 (1988)) and its host Sf9 (ATC C CRL-17111; J. Biol. Chem., 263: 7406 (1988)).
  • mouse fibroblast cell line C127 ATCC CRL-1804; J. Viol., 26: 291 (1978)
  • Chinese hamster ovary cell line CHO-K1 (ATC C CCL-61; Proc Natl.
  • African green monkey kidney-derived cell line COS-7 (ATCC CRL 1651: American type culture) because of its expression level and simple screening. Collection follicle cells), human fetal kidney-derived cell line HEK293 (ATCC CRL 1573; hereinafter sometimes referred to as “HEK293 cells”) transformed with human adenovirus type 5, or cells derived from human cervical cancer. Strain HeLa (ATCC CCL-12; hereinafter sometimes referred to as "HeLa cell”) is used.
  • a homologous recombination technique for directly inserting a DNA fragment of the present invention linked to a promoter directly into the chromosome of a host microorganism (Vertes, AA et al., Biosci. Biotec nol. Biochem., 57: 2036 (1993)), or transposon or inserted rooster (Vertes, AA et al., Molecular Microbiol., 11: 739 (1994)), etc. You can also.
  • the culture obtained above is obtained by collecting cells or cells by a method such as centrifugation, suspending the cells or cells in a suitable buffer, and sonicating, lysozyme, and Z or freeze-thawing or other suitable method. After the disruption by a suitable method, a crude protein solution is obtained by centrifugation, filtration, or the like, and further purified by a combination of appropriate purification methods.
  • the protein of the present invention is obtained.
  • the DNA of the present invention obtained in (1) above may be used in a cell-free transcription / translation system (also referred to as a “cell-free protein synthesis system”).
  • a cell-free transcription / translation system also referred to as a “cell-free protein synthesis system”.
  • the cell-free transcription / translation system used in the present invention is a system containing all elements necessary for transcription from DNA to mRNA and translation of mRNA to protein, and by adding DNA thereto, It refers to any system in which the protein encoded by the DNA is synthesized.
  • the cell-free transcription / translation system include a transcription / translation system prepared on the basis of an extract from a eukaryotic cell, a bacterium, or a part thereof.
  • Specific examples of the cell-free protein synthesis system include known ones such as Escherichia coli, plant seed embryos, and cell extracts such as egret reticulocytes. These can be used commercially, or a method known per se, specifically, an E. coli extract can be obtained from Pratt, JM, Transcription and Translation (Ed. By Hames, BD and Higgins, SJ), 179-209. , IRL Press, Oxford (1984).
  • Examples of commercially available cell-free protein synthesis systems or cell extracts include those derived from Escherichia coli such as E. coli S30 extract system (manufactured by Promega) and RTS500 Rapid Translation System (manufactured by Roche). Those derived from Rabbit Reticulocyte Lysate System (Promega) and those derived from wheat germ include PR0TEI0S TM (T0Y0B0).
  • concrete 3 includes epitope peptides (for example, polyhistidine peptide, daltathione
  • a DNA region encoding S-transferase (GST), maltose binding protein, etc.) is introduced into the above-mentioned DNA to be transcribed and translated, expressed as described above, and subjected to affinity with a substance having affinity for the protein. It can be purified using two teas.
  • the expression of the target protein is separated by SDS-polyacrylamide gel electrophoresis and stained with Coomassie brilliant blue (manufactured by Sigma) or by using an antibody that specifically binds to the protein of the present invention described later. It can be confirmed by the detection method. It is generally known that the expressed protein is cleaved (processed) by a proteolytic enzyme present in the living body.
  • the protein of the present invention is naturally included in the protein of the present invention as long as it has a kinase activity, even if it is a partial fragment of the cleaved amino acid sequence.
  • the protein of the present invention is produced as a recombinant protein as described in (2) above, and by analyzing this, it can be confirmed that it has the activity estimated in (1). . Furthermore, analysis can also be performed by combination with the antibodies and the like described in (4) below.
  • Whether the protein of the present invention has kinase activity can be confirmed by a conventional method known per se.
  • a substrate is brought into contact with the recombinant protein, and the amount of ATP and the amount of product consumed when the substrate is phosphorylated by the kinase activity of the recombinant protein are measured. The method and the like will be described below.
  • the phosphorylation site of the substrate is serine Z-threonine.
  • magnesium ion for example, 5 to 10 OmM magnesium chloride or magnesium acetate, and Neutral to weakly basic buffer solution containing 1 to 10 OmM 2-mercaptoethanol or 1 to 10 mM dithiothreitol as a reagent, in the absence of phosphate ions, such as 5 OmM Tris monohydrochloride or HE PES Buffer (pH 7.0-8.
  • the purified protein of the present invention was added, and the mixture was reacted at room temperature to 37 ° C for about 24 hours, and then consumed by the kinase reaction of the protein. Measure the amount of ATP or the product of the kinase reaction performed by the protein.
  • cyclic nucleotide-dependent protein kinase that is a serine / threonine protein kinase
  • cyclic AMP cyclic AMP
  • cGMP cyclic GMP
  • phospholipid-dependent protein kinase a phospholipid is added to the reaction solution.
  • C-kinase phosphatidylserine is added and histone is used as a substrate.
  • calmodulin is added to the reaction solution, and myosin light chain is used as a substrate. This includes myosin light chain kinase and calmodulin kinase.
  • tyrosine protein kinase tubulin, histone, casein, myosin L chain, gastrin, angiotensin, tyrosine monoglutamic acid (1: 4) polymer, etc. are used as substrates.
  • kinase activity In the measurement of kinase activity, the hydrolysis of ATP to ADP by the kinase occurs before the transfer of the phosphate group to the substrate.
  • the kinase activity can be defined by measuring the amount of hydrolyzed ATP here. In this case, the substrate The amount of ATP in the reaction solution performed in the absence of the enzyme was measured, and the amount of ATP consumed was defined as the kinase activity (Whitehoouse, S., et al., J. Biol. Chem., 258: 3693-3701 (1983) ).
  • luciferin and luciferase are added to the above-mentioned kinase reaction solution, and after reacting for a certain period of time, the fluorescence intensity is measured at the fluorescence wavelength specific to the added luciferin, and the amount of fluorescence due to residual ATP is determined.
  • the value obtained by subtracting the above fluorescence intensity from the total ATP fluorescence intensity present in the reaction solution measured in the absence of protein kinase and substrate is defined as the amount of ATP consumed by the kinase activity, and is defined as the kinase activity of the enzyme. .
  • the reaction solution after the completion of the kinase reaction can be separated by chromatography, and the activity can be measured by changing the elution position of the phosphorylated substrate and the amount of change It is.
  • the chromatography ion exchange chromatography or reverse phase chromatography can be used. It is also possible to measure the activity by measuring the change in mass due to phosphorylation of the substrate with a mass spectrometer. In this case, the measurement accuracy is further increased by using the above-mentioned chromatography separation in combination.
  • Such a kinase activity analysis system can also be used to evaluate agonists and antagonists of the protein having the kinase activity of the present invention.
  • the confirmation of the activity of the protein of the present invention is not limited to the method described above. (4) Functional analysis of the protein of the present invention
  • novel proteins including those identified as splicing variants thus obtained, and having kinase activity,
  • Proteins to be analyzed are referred to as “proteins to be analyzed.” ”).
  • the protein of the present invention includes a splicing variant of a known protein, it is important to identify what functions this variant has with the known variant.
  • Specific methods for analyzing functions include, for example, (1) a method for comparative analysis of the expression state at each tissue, disease, or developmental stage, and (ii) a method for analyzing interactions with other proteins and DNA. (Iii) a method of analyzing a phenotypic change by introducing the protein into an appropriate cell or individual, and (iv) a method of analyzing a phenotypic change by inhibiting the expression of the protein in an appropriate cell or individual. No.
  • expression of the protein of the present invention can be analyzed at the mRNA or protein level.
  • the expression level is analyzed at the mRNA level, for example, the in situ hybridization method (3 ⁇ 4 situ
  • Hybridization Application to Developmental Biology & Medicine (Ed. by Harris, N. and Wilkinson, D.G.), Cambridge University Press (1990)), a hybridization method using a DNA chip, a quantitative PCR method, and the like are used.
  • the protein to be analyzed is a splicing variant in which a known variant is present
  • the method is performed by selecting primers that can generate amplified fragments of different lengths between the target variant and the known variant.
  • the protein Tissue staining using an antibody that binds specifically when analyzing at the protein level, the protein Tissue staining using an antibody that binds specifically. In this case, it is preferable to use an antibody that reacts only with the target protein and does not react with a known variant.
  • the function of the protein of the present invention can be analyzed by examining the presence or absence of interaction between the protein of the present invention and a known protein or DNA.
  • a conventional method known per se can be used. Specifically, for example, yeast two-hybrid method, fluorescence depolarization method, surface plasmon method, phage display method, liposomal The display method is an example.
  • the protein to be analyzed is a splicing variant in which a known variant is present, the known variant is similarly analyzed for interacting substances, and a substance that specifically interacts with the target protein is identified. It is preferable.
  • the cells into which the cDNA of the present invention is introduced are not particularly limited, but human cultured cells and the like are particularly preferably used. Methods for introducing DNA into cells include those described in (2) above.
  • the phenotype of the transfected cells can be observed with a microscope, such as cell viability, cell growth rate, cell differentiation, neurite elongation, localization and migration of intracellular proteins, etc. And those that can be analyzed by biochemical experiments, such as changes in the expression of specific proteins in cells.
  • the known phenotype in the case of a splicing variant in which a known variant exists, the known phenotype is also introduced into cells, and the phenotype associated with the variant to be analyzed is identified by comparative analysis. Can be.
  • the protein of the present invention since it is known that the protein of the present invention has kinase activity, it is also preferable to analyze by paying attention to the phenotype and the like found in diseases associated with kinase.
  • the method (iv) can be efficiently performed by a method using an oligonucleotide described below or an RNA interference method.
  • the target protein to be analyzed is a splicing variant in which a known variant exists, the same applies to the known variant and other variants. 2004/002133 By performing analysis and comparative analysis, it is possible to identify the function specific to the target protein.
  • oligonucleotides having a partial sequence of the DNA of the present invention can be prepared by a conventional method.
  • the oligonucleotide include DNA having the same sequence as 5 to 100 consecutive nucleotides in the nucleotide sequence of DNA, or DNA having a sequence complementary to the DNA.
  • Specific examples include a DNA having the same sequence as the consecutive 5 to 100 bases in the base sequence represented by any of SEQ ID NOS: 1 to 12, or a DNA having a sequence complementary to the DNA.
  • the target protein is a splicing variant in which a known variant DNA is present, it is preferable to select a base sequence different from that of the known variant.
  • the above-mentioned oligonucleotides whose melting temperature (Tm) and number of bases do not extremely change are preferred.
  • the length of the sequence is generally 5 to 100 bases, preferably 10 to 60 bases, and more preferably 15 to 50 bases.
  • oligonucleotide derivatives of these oligonucleotides can also be used as the oligonucleotide of the present invention.
  • the oligonucleotide derivative include an oligonucleotide derivative in which a phosphodiester bond in an oligonucleotide is converted to a phosphorothioate bond, and a phosphodiester bond in an oligonucleotide in which an N 3, 1 P 5 ′ phosphoramidate bond is used.
  • Oligonucleotide derivative in which ribose and phosphodiester bond in oligonucleotide are converted to peptide nucleic acid bond Oligonucleotide in which peracyl in oligonucleotide is substituted by C-15 propynyl peracyl Derivatives, oligonucleotide derivatives in which peracyl in the oligonucleotide is substituted with C-15 thiazoleperacyl, Oligonucleotide derivatives in which cytosine in the oligonucleotide is substituted with C-5-propynylcytosine, oligonucleotide derivatives in which cytosine in the oligonucleotide is substituted with phenoxazine-modified cytosine, and ribose in the oligonucleotide are Oligonucleotide derivatives substituted with 2,1-O-propylribose, or oligonucle
  • the oligonucleotide of the present invention can be applied to the RNA interference method by preparing it as a double-stranded RNA.
  • the method for preparing double-stranded RNA and the RNA interference method for example, the method described in Elbashir, S., et al., Nature, 411: 494-498 (2001) can be used.
  • the double-stranded RNAs need not all be RNAs. Specifically, as a part of which is a DNA, those described in WO 02/10374 can be used.
  • the gene to be targeted in the RNA interference method may be any DNA as long as it is the DNA of the present invention.
  • a gene predicted to be an ortholog of the gene DNA can also be a target gene.
  • a double-stranded oligonucleotide consisting of RNA having a sequence substantially identical to at least a part of the base sequence of these DNAs (hereinafter, may be referred to as “double-stranded oligonucleotide”)
  • double-stranded oligonucleotide a sequence substantially the same as a sequence of 15 bp or more, which may be any part of the base sequence of the target gene, is obtained.
  • substantially the same means having 80% or more homology with the sequence of the target gene.
  • the double-stranded oligonucleotide sequence can be set at the insertion site where the insertion is present.
  • the sequence spanning the deletion should be By arranging the sequences, it is possible to select a sequence that is effective specifically for the protein. Furthermore, by selecting a nucleotide sequence specific to the DNA encoding the protein to be analyzed by comparison with the nucleotide sequence of the DNA encoding each of the protein to be analyzed and the known protein, Its expression can be inhibited.
  • the nucleotide length may be any length from 15 bp to the entire length of the open reading frame (ORF) of the target gene, but a length of about 15 to 500 bp is preferably used.
  • ORF open reading frame
  • mammalian-derived cells have a signal transduction system that activates in response to a long double-stranded RNA of 30 bp or more.
  • a double-stranded oligonucleotide of 15 to 30 bp, preferably 19 to 24 bp, more preferably 21 bp is used. But preferred.
  • the double-stranded oligonucleotide does not need to be entirely double-stranded, and includes those whose 5 'or 3' ends are partially protruded, but those whose 3 'ends are protruded by 2 bases are preferably used.
  • the double-stranded oligonucleotide refers to a double-stranded oligonucleotide having complementarity, but may be a self-annealed single-stranded oligonucleotide having self-complementarity.
  • Single-stranded oligonucleotides having self-complementarity include, for example, those having inverted repeat sequences.
  • the method for preparing the double-stranded oligonucleotide is not particularly limited, but a known chemical synthesis method is preferably used.
  • Chemical synthesis is complementary single-stranded Ligonucleotides can be separately synthesized and assembled into a double strand by associating them by an appropriate method. Examples of the method of association include a method in which the above oligonucleotides are mixed, heated to a temperature at which the double strand dissociates, and then gradually cooled.
  • the associated double-stranded oligonucleotide is confirmed using an agarose gel or the like, and the remaining single-stranded oligonucleotide is removed by, for example, decomposing with a suitable enzyme.
  • the transfectant into which the double-stranded oligonucleotide prepared in this manner is introduced may be any as long as the target gene can be transcribed into RNA or translated into protein in the cell.
  • Good, but specific examples include those belonging to plants and animals.
  • the plant can be a monocotyledonous, dicotyledonous or gymnosperm
  • the animal can be a vertebrate or invertebrate.
  • vertebrates include mammals, including fish, sea lions, goats, stags, sheep, hamsters, mice, rats, and humans
  • invertebrates include nematodes, mosquitoes, Drosophila) and other insects.
  • the cells are vertebrate cells.
  • the transfectant means a cell, tissue or individual.
  • the cells may be germline cells or somatic cells, and may be totipotent or pluripotent, divided or undivided, parenchymal or epithelial, immortalized or transformed, and the like.
  • the cell may be a gamete or an embryo, in the case of an embryo, a single cell embryo or a constitutive cell, or a cell from a multicellular embryo, including fetal silk tissue.
  • it may be an undifferentiated cell such as a stem cell, or a differentiated cell such as a cell of an organ or tissue including fetal tissue, or any other cell present in an organism.
  • Differentiating cell types include fat cells, fibroblasts, muscle cells, cardiomyocytes, endothelial cells, nerve cells, glial cells, blood cells, megakaryocytes, lymphocytes, macrophages, neutrophils, eosinophils, Includes basophils, mast cells, leukocytes, granulocytes, keratinocytes, osteoblasts, osteoclasts, hepatocytes and cells of the endocrine or exocrine glands.
  • a method for introducing a double-stranded oligonucleotide into a recipient when the recipient is a cell or tissue, calcium phosphate method, electoral poration method, lipofection method, virus infection, double-stranded polynucleotide. Immersion in a solution, Alternatively, a transformation method or the like is used. Examples of the method for introduction into an embryo include a microphone-injection, an elect-portation method, and a virus infection.
  • a method of injecting or perfusing the plant into the body cavity or stromal cells, or spraying is used.
  • an animal individual in the case of an animal individual, it is introduced systemically by oral, topical, parenteral (including subcutaneous, intramuscular and intravenous administration), vaginal, rectal, nasal, ocular, intraperitoneal administration, etc.
  • a method such as electrophoresis or virus infection is used.
  • the double-stranded oligonucleotide can be mixed directly with the food of the organism.
  • it when introduced into an individual, it can be administered, for example, by administration as an implanted long-term release preparation or by ingesting an introduced body into which a double-stranded oligonucleotide has been introduced.
  • the amount of the double-stranded oligonucleotide to be introduced can be appropriately selected depending on the transductant and the target gene, but it is preferable to introduce an amount sufficient to introduce at least one copy per cell. Specifically, for example, when the transfectant is a cultured human cell and the double-stranded polynucleotide is introduced by the calcium phosphate method, 0.1 to 100 nM is preferable.
  • the function of the protein encoded by the DNA of the present invention can be confirmed, or a new function can be analyzed.
  • an antibody that specifically binds to the protein of the present invention As a method for preparing an antibody that specifically binds to the protein of the present invention, a commonly used known method can be used.
  • the polypeptide used as an antigen also has a high antigenicity according to a known method and is used for epitope ( An appropriate sequence can be selected and used as the antigenic determinant.
  • An appropriate sequence can be selected and used as the antigenic determinant.
  • commercially available software such as Epitope Adviser (manufactured by Fujitsu Kyushu System Engineering Co., Ltd.) can be used.
  • the target protein is a splicing variant in which a known variant exists, only the target protein reacts. However, by using an antibody that does not react with a known or other variant, a function specific to the target protein can be identified.
  • an epitope of such an antibody for example, when there is an amino acid sequence in which the target protein is missing as compared with a known variant, an amino acid sequence before and after the deleted portion (junction portion) is preferable.
  • the target protein has an amino acid sequence to which a known variant is added with the N-terminal or C-terminal, it is preferable to use the added amino acid sequence as an epitope.
  • an antibody that reacts only with the target protein can be obtained by removing an antibody that reacts with a known or other variant from the polyclonal antibody obtained with respect to the target protein. .
  • affinity chromatography in which a known or other variant is immobilized as a ligand, or immunoprecipitation using a known or other variant is used.
  • polypeptide used as the antigen a synthetic peptide synthesized according to a known method or the protein of the present invention itself can be used.
  • a polypeptide serving as an antigen may be prepared in an appropriate solution or the like according to a known method and immunized to a mammal, for example, a heron, a mouse, a rat, or the like.
  • the route of administration of the antigen upon immunization is not particularly limited, and any route such as subcutaneous, intraperitoneal, intravenous, or intramuscular route may be used. Specifically, for example, a method of inoculating a BALB / c mouse several times every several days to several weeks with an antigen polypeptide is used.
  • the antigen intake is preferably about 0.3 to 0.5 mg / l when the antigen is a polypeptide, but is appropriately adjusted depending on the type of the polypeptide and the animal species to be immunized.
  • a polyclonal antibody can be obtained by subjecting this to an appropriate treatment used for the preparation of the antibody. Specifically, for example, there is a method of obtaining a purified antibody obtained by purifying an antibody component from serum according to a known method. For purification of the antibody component, methods such as salting out, ion exchange chromatography, and affinity chromatography can be used.
  • Monoclonal antibodies can also be prepared by using a hybridoma fused with spleen cells and myeloma cells of the animal according to a known method (Milstein, et al., Ature, 256: 495 (1975)). it can.
  • a monoclonal antibody can be obtained, for example, by the following method.
  • antibody-producing cells are obtained from an animal whose antibody titer has been raised by immunization with the above-mentioned antigen.
  • the antibody-producing cells are plasma cells and lymphocytes which are precursor cells thereof, which may be obtained from any of individuals, but preferably obtained from spleen, lymph nodes, peripheral blood and the like.
  • the myeloma to be fused with these cells is generally a cell line obtained from a mouse, for example, P3X63-Ag8.653 (ATCC: CR L-1580), P 3-NS 1/1 Ag 4.1 (RIKEN cell punk: RCB 009 5) and the like are preferably used.
  • antibody-producing cells and myeloma cells are mixed at an appropriate ratio, and mixed in an appropriate cell fusion medium, such as RPMI 1640, Iscove's modified Dulbecco's medium (IMDM), or Dulbecco's modified Eagle's medium (DMEM).
  • cell fusion medium such as RPMI 1640, Iscove's modified Dulbecco's medium (IMDM), or Dulbecco's modified Eagle's medium (DMEM).
  • % By dissolving polyethylene glycol (PEG). It can also be performed by the electrofusion method (Zi ermann, U. et al., Naturwissenschaften, 68: 577 (1981)).
  • High Priestess dormer is normal medium (HAT medium) in 5% C0 2 containing an appropriate amount of hypoxanthine 'aminopterin' thymidine (HAT) solution by utilizing the myeloma cell line is a 8-Azaguanin resistant strain used, It can be selected by culturing at 37 ° C for an appropriate time. This selection method can be appropriately selected and used depending on the myeloma cell line to be used.
  • Antibodies produced by the selected hybridomas The antibody titer is analyzed by the method described above, the hybridoma producing an antibody with a high antibody titer is separated by a limiting dilution method or the like, and ammonium sulfate is obtained from a culture supernatant obtained by culturing the separated fused cells in an appropriate medium.
  • a monoclonal antibody can be obtained by purification by an appropriate method such as fractionation and affinity chromatography. For purification, a commercially available monoclonal antibody purification kit can also be used.
  • a human-derived protein When a human-derived protein is obtained as the protein of the present invention, the polypeptide or a partial peptide thereof is used as an antigen, and Severe combined immune deficiency (a method adapted to SCID mice) transplanted with human peripheral blood lymphocytes.
  • a humanized antibody can also be prepared by immunization in the same manner as described above and preparing a hybridoma of antibody-producing cells of the immunized animal and human myeloma cells.
  • RNA is extracted from the obtained hybridoma producing the human antibody, the gene encoding the target human antibody is cloned, and this gene is inserted into an appropriate vector.
  • a human antibody By introducing the protein into a host and expressing it, a larger amount of a human antibody can be produced.
  • an antibody with low binding to an antigen can be obtained as an antibody with even higher binding by using an evolutionary engineering technique known per se.
  • a partial fragment such as a transient antibody can be prepared by, for example, cleaving the Fab and Fc portions using papain or the like, and collecting the Fab portion using an affinity column or the like.
  • the thus-obtained antibody that specifically binds to the protein of the present invention can also be used as a neutralizing antibody that specifically binds to the protein of the present invention and thereby inhibits the kinase activity or the like of the protein.
  • the method selected in (2) above Methods include contacting or introducing an antibody into a DNA transfectant, and analyzing whether or not the function of the target protein in the transfectant is inhibited.
  • Such a neutralizing antibody can be used alone when the clinical application is used, or can be used as a pharmaceutical composition by mixing with a pharmaceutically acceptable carrier. At this time, the ratio of the active ingredient to the carrier can be varied between 1 and 90% by weight.
  • Such drugs can be administered in various forms, such as tablets, capsules, granules, powders, or syrups for oral administration, or injections, infusions, ribosomes, Parenteral administration with suppositories and the like can be mentioned. In addition, the dose can be appropriately selected depending on symptoms, age, weight, and the like.
  • the screening method of the modulator may be any method as long as it can obtain a substance that specifically binds to the protein of the present invention and has an activity of inhibiting, antagonizing or enhancing the activity of the protein. Good.
  • the protein of the present invention is brought into contact with a substance to be subjected to screening (hereinafter, this may be referred to as “test substance”), and after selection using the binding property to the protein as an index, A method for selecting a test substance using the change in the activity of the protein of the present invention as an index can be used.
  • test substance may be any substance as long as it can interact with the protein of the present invention and affect the activity of the protein.
  • examples thereof include peptides, proteins, non-peptidic compounds, low-molecular compounds, synthetic compounds, fermentation products, cell extracts, animal tissue extracts, and the like. These substances may be novel substances or known substances.
  • Test object As a method for analyzing the interaction between the protein and the protein of the present invention, a conventional method known per se can be used. Specifically, for example, a yeast two-hybrid method, a fluorescence depolarization method, a surface plasmon method, Examples include the phage display method, the liposomal display method, and the competition analysis method with the antibody described in the above (6).
  • a substance found to bind to the protein of the present invention is then analyzed by analyzing how the activity of the protein of the present invention is affected in the presence of the substance. Whether it is used as a modulator or not is identified.
  • the target protein is a splicing variant in which a known variant is present
  • the ability to analyze the effect of a substance that binds only to the target protein and does not bind to a known or other variant or a known substance is used.
  • it is possible to analyze the effect of the substance on the target protein by identifying whether or not it binds to the same or another variant, and analyzing the difference in the effect of the binding when binding.
  • the effect on the target protein and known or other variants can be analyzed.
  • a protein serving as a substrate is introduced into the DNA-introduced gene described in (2) in the same manner.
  • the phosphorylation of the substrate protein in the presence / absence of the selected substance of this transductant is analyzed by a commonly used method known per se. Specifically, it can be performed using the method described in the above (3). If the phosphorylation of the substrate protein is increased as compared to the absence of the substance, the substance may function as a kinase activator and may be reduced or inhibited. Can be identified as having the potential to function as a kinase inhibitor.
  • the DNA of the present invention when using the DNA of the present invention or a recombinant protein used for screening a regulatory substance for the purpose of obtaining a pharmaceutically active ingredient, it is preferable to use human DNA or a protein.
  • the leaked substance may be further selected as a drug candidate by screening in vivo.
  • the evaluation of the function regulating substance of the protein of the present invention is not limited to the above-described method.
  • the kinase activity of the protein of the present invention includes, for example, signaling functions on pathways related to cancer, signaling functions on pathways related to myocardial development, signaling on pathways controlling sperm motility. Functions, signaling on pathways that regulate germ cell differentiation, signaling on pathways that regulate cell differentiation, signaling on pathways that regulate sperm differentiation, pathways that regulate the onset of Alzheimer's disease Signal transduction function, Glycerol 3-phosphate generating function, Signal transduction function on pathways controlling brain cortex development, migration of nerve cells, etc., Function related to fatty acid sterol synthesis, Pathway related to cell death Signal transduction function, insulin signaling, immune and inflammatory disease Is a function, etc. related to the answer.
  • compounds that can be identified by this screening method include anticancer drugs, therapeutic agents for heart disease, therapeutic agents for infertility, regenerative tissue inducers, therapeutic agents for Alzheimer's disease, therapeutic agents for neurodegenerative diseases, therapeutic agents for diabetes, and therapeutics for immune and inflammatory diseases. It can be used as an agent.
  • the DNA encoding the protein of the present invention may be a cDNA constructed from RNA derived from tissues or organs such as the adrenal gland, uterus, testis, and brain (whole brain, caudate nucleus, amygdala, thalamus, and cerebellum). Since the obtained protein of the present invention, which is cloned from the NA library, may have a specific function in the above-mentioned tissues or organs, the function-regulating substance of the protein of the present invention is It can be used as a therapeutic agent for diseases specific to the tissue or organ.
  • modulators can be used alone as the active ingredient when applied to clinical applications, but can also be used as a pharmaceutical composition by mixing with a pharmaceutically acceptable carrier. At this time, the ratio of the active ingredient to the carrier can be varied between 1 and 90% by weight.
  • the drug can be administered in various forms, such as tablets, capsules, granules, powders, or syrups. Or parenteral administration by injection, infusion, ribosome, suppository and the like. In addition, the dose can be appropriately selected depending on symptoms, age, weight, and the like.
  • Examples of the screening method include a method of analyzing the expression level of the protein of the present invention or the mRNA encoding the same in the presence of a test substance.
  • a method of analyzing the expression level of the protein of the present invention or the mRNA encoding the same in the presence of a test substance Specifically, for example, cells expressing the protein of the present invention described in (2) are cultured in an appropriate medium containing a test substance, and the amount of the protein of the present invention expressed in the cells is determined by ELISA. Or by analyzing the amount of mRNA encoding the protein of the present invention in the cells by quantitative reverse transcription PCR, Northern blotting, or the like. .
  • test substance those described in (7) can be used. According to this analysis, if the amount of the protein or mRNA expressed in the cells cultured in the absence of the test substance increases as compared with the amount of the mRNA, the test substance of the present invention It may function as a DNA expression promoting substance, and when it decreases, it can be determined that this test substance can be used as a DNA expression inhibiting substance of the present invention.
  • the above-mentioned active ingredient can be used alone for clinical application, but can also be used as a pharmaceutical composition by blending it with a pharmaceutically acceptable carrier. At this time, the ratio of the active ingredient to the carrier can be varied between 1 and 90% by weight.
  • powerful drugs can be administered in various forms, such as tablets, capsules, granules, powders, or syrups, orally, injections, drops, Parenteral administration with ribosomes, suppositories and the like can be mentioned.
  • the dose can be appropriately selected depending on the condition, age, weight, and the like.
  • the introduced DNA containing the DNA of the present invention described in the above (1) is constructed, introduced into a fertilized egg of a mammal other than a human, and transplanted into a female individual oviduct to generate it.
  • a non-human mammal into which the DNA of the present invention has been introduced can be produced. More specifically, for example, a female individual is superovulated by hormone administration, then mated with a male, a fertilized egg is removed from the oviduct on the first day after mating, and DNA is introduced into the fertilized egg by microinjection. And so on. After culturing by an appropriate method, the surviving fertilized eggs are transplanted into the oviduct of a pseudopregnant female individual (foster parent) to give birth.
  • Non-human mammals include, for example, mice, rats, guinea pigs, hamsters, rabbits, goats, pigs, dogs, cats, and the like.
  • the thus-obtained DNA-introduced animal of the present invention is used to breed this individual and subculture them in a normal breeding environment while confirming that the introduced DNA is stably maintained, thereby obtaining the offspring. Obtainable. It is also possible to obtain offspring by repeating in vitro fertilization and maintain the strain.
  • the non-human mammal into which the DNA of the present invention has been introduced can be used as an analysis of the function of the DNA of the present invention in a living body, or as a screening system for a substance that regulates the function.
  • the protein of the present invention can be used as a carrier on which it is bound.
  • a nucleotide sequence encoding the protein of the present invention for example, a DNA having the nucleotide sequence of any one of SEQ ID NOs: 1 to 12 and a partial fragment thereof can be used as a carrier obtained by binding them on a substrate.
  • proteins proteins
  • DNA chips DNA arrays
  • DNA microarrays and DNA macroarrays DNA microarrays and DNA macroarrays.
  • the target protein is a splicing variant in which a known variant exists
  • the amino acid sequence partial fragment specific to the target protein can be used for the step
  • the full length of the amino acid sequence fragment may be used because it may have a steric structure different from other variants.
  • a resin substrate such as a nylon film or a polypropylene film, a nitrocellulose film, a glass plate, a silicon plate, or the like is used as a substrate for binding proteins and DNA, but the detection of hybridization is non-RI.
  • a glass plate or a silicon plate containing no fluorescent substance is preferably used.
  • the binding of the protein or DNA to the substrate can be easily carried out by a commonly used method known per se.
  • These protein chips, DNA chips, or DNA arrays are also included in the scope of the present invention.
  • the amino acid sequence of the protein of the present invention and the nucleotide sequence of the DNA can also be used as sequence information.
  • the base sequence of this DNA includes the base sequence of the corresponding RNA. That is, by storing the obtained amino acid sequence or base sequence in an appropriate recording medium in a predetermined format readable by a computer, a database of the amino acid sequence or base sequence can be constructed. This database may contain the nucleotide sequences of other types of proteins and the DNA that encodes them. Further, in the present invention, the database also means a computer system that writes the above-mentioned sequence on an appropriate recording medium and performs a search according to a predetermined program.
  • Suitable recording media include, for example, magnetic media such as flexible disks, hard disks, and magnetic tapes; optical disks such as CD-ROM, MO, CD-R, CD-RW, DVD-R, and DVD-RAM; and semiconductors. Examples include a memory. Example Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited by these Examples. The results of the following experiments performed on each of the obtained cDNA clones are summarized in Example 7.
  • RNA extracted from human tissues as total RNA (Clontech: adrenal gland (# 640 16-1), uterus (# 640 29-1), testis (# 640 27-1), cerebellum (# 6403 5-1) and whole brain (# 64020-1)), and extracted from human tissues as poly (A) + RNA 'Purified commercial mRNA (Clontech: Caudate) Poly (A) + RNA oligo d T from whole RNA to whole nucleus (# 6575-1), amygdala (# 6574-1), thalamus (# 65882-1) From the RNA mixed with poly (A) -RNA prepared by removing with cellulose, the cDNA library was obtained by the oligocap method (Maruyama, K., et al., Gene, 138: 171-174 (1994)). Each was produced.
  • oligocaplinker-1 SEQ ID NO: 25 was ligated using RNA ligase.
  • the first strand cDNA was synthesized by reverse transcription using oligo dT primer (SEQ ID NO: 26), and the RNA strand was degraded and removed (Suzuki et al., Protein Nucleic Acid Enzyme, 41: 603- 607 (1996); Suzuki, Y. et al., Gene, 200: 149-156.
  • pME18SFL3 (GenBank ABO09864), which is an expression vector, to prepare a cDNA library.
  • the pME18SFL3 vector used above contains the SR ⁇ promoter and SV40 sma11t intron upstream of the cloning site, and the SV40 poly (A) downstream. An attached signal sequence is inserted.
  • the cloning site of pME18SFL3 is an asymmetric DraIII site, and a complementary SfiI site is added to the end of the cDNA fragment. Is unidirectionally inserted downstream of the SRa promoter. Therefore, in a clone containing full-length cDNA, the gene can be transiently expressed by directly introducing the obtained plasmid into COS cells. In other words, it is very easy to experimentally analyze proteins as gene products or their biological activities.
  • the nucleotide sequence of the 5 'end or the 3' end of the cDNA was converted to a DNA sequencing reagent (Dye Terminator Cycle Sequencing FS Ready Reaction Kit, dRhodamine_Terminator Cycle).
  • the nucleotide sequence at the 5 'end of the human cDNA library prepared in Example 1 was compared with the sequence of the known human mRNA in the public database. If the 5 'end is longer than the known mRNA sequence, or if the 5' end is shorter but has a translation initiation codon, it is judged as "full length”. Full length ".
  • EST iMate FL was used by Helix Research to select clones with a high probability of full-length cDNA by comparing them with the EST 5, 5 or 3 terminal sequences in public databases. This is a method developed by Nishikawa Ota et al. The sequence of the 5, 5 and 3 'ends of the cDNA clone analyzed in Example 1 was compared with the base sequence registered in the EST database, and the sequence of the obtained cDNA clone was found to be 5, 5 or 3, If ESTs extending to the side were present, the clone was determined to be "possibly not full length".
  • the length is longer if the end of the EST sequence is 5 or shorter than the EST sequence in the public database, or if the difference is within 50 bases, and if the difference is shorter than 50 bases, the non-full length if the difference is shorter than 50 bases. It was.
  • Example 3 Analysis of base sequence and amino acid sequence of cDNA clone
  • the present DNA c-adrgl 200 155 54
  • the protein encoded by the DNA is referred to as “the present protein”
  • SEQ ID NO: 1 from 2168 bases.
  • the open reading frame (including the stop codon) is composed of nucleotides 39 to 219.
  • the amino acid sequence predicted from the open reading frame consists of 706 amino acid residues (SEQ ID NO: 13).
  • SWISS- (I) Database registration symbols AXO 40998 and the amino acid sequence described in WOO 0/65040 in PROT, PIR, TREMBL, GENPEPT, and PDB Was.
  • the amino acid sequence described in AX040998 and WO 00/65040 consists of 626 amino acids, and the amino acid number 17 to 616 in the amino acid sequence is the amino acid sequence described in SEQ ID NO: 13. with 32% degree of coincidence over 3 X 10- 82 and 655 amino acid residues (identity): value (expected value query sequence is present by chance in a database) - amino acid numbers 25 to 66 1 of SEQ, e It was recognized that. (Ii) Database registration gd- ⁇ -P 50528 and Serine / threonine-protein kinase plol (Fission yeast) were hits.
  • P50528 is composed of 683 amino acids, wherein amino acid numbers 47 to 674 in the amino acid sequence correspond to amino acid numbers 45 to 695 of the amino acid sequence described in SEQ ID NO: 13, and e-value: 6 X it has been found that with a 32% degree of coincidence over 10 _75 Chikaratsu 670 amino acid residues.
  • Serine / threonine-protein kinase (reproduced by foot force. Its content is that Q9R011 consists of 615 amino acids, and amino acid numbers 31 to 558 in the amino acid sequence are the same as those in SEQ ID NO: 13. and amino acid numbers 39-645 No. amino acid sequence, e- value:. 7 X 1 ( ⁇ 71 Chikaratsu 6 13 to have an ⁇ 30% over amino acid residues was observed sequences from these results The protein consisting of the amino acid sequence shown in No. 13 was presumed to be a novel serine / threonine protein kinase.
  • PROS I TE (Nucleic Acids Res., 30: 235-8 (2002)) is a database of amino acid patterns that classify the domain structure ⁇ family according to the similarity of protein functions and search for functionally important sites. According to), amino acids 45-69 are the ATP region (ATP binding site), and amino acids 158-171 are the ST region (the site that phosphorylates the serine-threonine substrate). Yes, it possesses a functionally important site for serine threonine protein kinase, and is considered to have kinase activity.
  • HMMPFAM search also found a sequence that shows the characteristics of the POLO box duplicated region in the amino acid sequence represented by amino acid numbers 511 to 585 (the amino acid sequence entered as POLO-box in P fam).
  • POLO box is known to be a sub-gnorape of serine Z-threonine protein kinase involved in cell cycle, especially G2ZM phase transition and cytokinesis (cytokinesis). Further analysis by P SORT II (Trends Biochem.
  • c-testi 2053667 (hereinafter referred to as “present DNA” and the protein encoded by the DNA is referred to as “present protein”) comprises 2135 bases, as shown in SEQ ID NO: 2, of which base number Nos. 36 to 1454 are open reading frames (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 472 amino acid residues (SEQ ID NO: 14).
  • a homology search was performed for the amino acid sequence of SEQ ID NO: 14 using BLAST.
  • AYO61183 is composed of 790 amino acids, and the amino acid numbers 325 to 788 in the amino acid sequence correspond to the amino acid numbers 7 to 468 of the amino acid sequence described in SEQ ID NO: 14; value: It was found to have 52% identity over 5X10 135 and 471 amino acid residues.
  • the protein consisting of the amino acid sequence shown in SEQ ID NO: 14 was a protein kinase.
  • the protein of the above (ii) is considered to be involved in the function of shortening mRNA polyA in vivo from the literature information in the database (Mol. Cell. Biol., 16: 5744-5753 (1996)).
  • the above-mentioned protein (iii) has been revealed to be involved in the regulation of mitosis, respectively, from literature information in the database (Genomics, 68: 187-196 (2000)). All show involvement in the cell cycle.
  • cu teru 200801 9 (hereinafter referred to as “present DNA” and the protein encoded by the DNA is referred to as “present protein”) comprises 3165 bases as shown in SEQ ID NO: 3, of which base number 401 Numbers 1 to 1960 are open reading frames (including the stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 519 amino acid residues (SEQ ID NO: 15).
  • a homology search was performed for the amino acid sequence of SEQ ID NO: 15 using BLAST.
  • BC010640 was composed of 491 amino acid residues. Amino acid numbers 9 to 491 in the amino acid sequence corresponded to amino acid numbers 37 to 519 in the amino acid sequence described in SEQ ID NO: 15. The difference between the two sequences is the N-terminal 36 residues of this protein and the N-terminal 8 residues of BC010640 (Fig. 1).
  • a protein characteristic search was performed on the amino acid sequence of SEQ ID NO: 15 using HMMPFAM.
  • PRO SITE Nucleic Acids Res., 30: 235-8. (2002)
  • sim4 Gene Res., 8: 967-74 (1998)
  • this DNA is mapped to 13 exons on human chromosome 8, and BC010640 shares its 4th to 13th exons, but has another 3rd and 3rd exons. It was found that the exon containing the translation initiation site differs between this DNA and BC010640, resulting in a difference in the terminal amino acid sequences of both proteins. This difference may lead to differences in enzyme activity, binding interaction with other proteins, and expression tissues. Based on the above, this protein is a splicing variant of BC010640, serine / threonine kinase 3 (Ste 20, yeast homolog) (Human).
  • BC010640 is a member of the human Ste20-like kinase (MST), a homolog of the budding yeast Ste20, which is a substrate for caspase and increases susceptibility to apoptosis (J. Biol. Chem., 276: 19276-19285 (2001)). Based on the above, this protein is considered to be a Ste20-like serine-threonine protein kinase involved in apoptosis.
  • the location of the mapped DNA on chromosome 8 (Q 22.2), and q 22 -q 23 contain cohen's syndrome, and q 22.2 contains Talippel-Fail syndrome (with laryngeal malformation) causative loci. It was speculated that these genes may be the causative genes of these diseases and that the mutations of this DNA, including splicing variants, can be applied to diagnostics for these diseases.
  • db EST (Nature Genetics, 4: 332-3 (1993)) performed B LA ST searched for, e - value: 1 where X 10- 50 Dehi Tsu preparative human EST were extracted 5 more than a certain tissue, normal bone marrow, Kidney ⁇ prostate ⁇ placenta 'whole brain, cancerous uterus was obtained. In addition, this DNA was cloned from a library derived from a child.
  • This protein is a function or disease specific to these tissues and cells, such as uterine cancer, prostate cancer, brain tumor, myeloma, leukemia, malignant lymphoma, and other neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease.
  • Diseases depression, central diseases such as schizophrenia, autoimmune diseases, inflammatory diseases, allergic diseases, glomerulonephritis, nephrotic syndrome, kidney diseases such as renal failure, bone marrow diseases such as Gaucher's disease, etc. It can be used as a target for diagnostics and therapeutics. ⁇
  • present DNA the protein encoded by the DNA is referred to as “present protein”
  • SEQ ID NO: 4 the protein encoded by the DNA is referred to as “present protein”
  • SEQ ID NO: 4 consisting of 2817 bases, of which base number 42 Numbers 1 to 733 are open reading frames (including a stop codon).
  • Amino acid sequence predicted from open reading frame consists of 563 amino acid residues
  • SEQ ID NO: 16 A homology search was performed for the amino acid sequence of SEQ ID NO: 16 using BLAST, and it was found in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB). Database registration symbol AX 405737
  • this protein lacks the amino acid corresponding to amino acid Nos. 35 to 51 of AX405737 and 1 residue of No. 489, and amino acid No. 510 of AX405737. , 51 Nos. 5, 512, and 51 No substitution of Glycine Zalanine, Isoleucine / Lanine, Serine Zleucine, and Alanine Z glycine at amino acids ( Figure 3).
  • this DNA has the base number of AX405737 of 209 to 2
  • HMMPFAM was used to perform a protein feature search on the amino acid sequence of SEQ ID NO: 16, and the amino acid sequence represented by amino acids 132 to 379 showed a protein kinase domain characteristic sequence (Pfam! As kiIIase. Amino acid sequence to be entered).
  • PX domain an amino acid sequence entered as PX in Pfam
  • the PX domain is a phosphoinositide binding domain and is known to be involved in intracellular signal transduction. Since this protein lacks a part of the PX domain compared to AX405737, it may have a different interaction from AX405737.
  • the cD ⁇ sequence of the D D and AX405737 was mapped to the genomic sequence.
  • this DNA was aligned to 18 exons, and AX405737 was aligned to 19 exons on the database registration code AC135507, clone RP11-1-80203 of human chromosome 3 (Fig. 4).
  • the exons corresponding to the 2nd to 16th exons of this DNA are also present in AX405405737, but this DNA lacks one exon between the 1st and 2nd exons.
  • the 17th exon of this DNA is deleted in AX405737, but this region is composed of 34 bases, so the frame is shifted, and the C-terminal amino acid sequence of both is different.
  • the present DNA of SEQ ID NO: 4 is AX405737 and WO02 / 226
  • No. 60 is a splicing variant of the nucleotide sequence described in It turned out that I was coding Ize. Both have different amino acid sequences at the N-terminal and C-terminal, and therefore may have different binding, interaction, and expression tissues with other proteins.
  • p21-14 always contains the position (pl4.3) on chromosome 3 where this DNA was mapped. It is found that there is a locus that causes chromosomal recessive hearing loss, suggesting that this DNA may be the causative gene of these diseases, and that mutations of this DNA including splicing variants may be applied to diagnostics for these diseases Was done.
  • This protein is used for functions and diseases unique to these tissues and cells, for example, cancer such as lymphoma, leukemia, brain tumor, testicular cancer, muscular dystrophy 'myopathy' tetany, skeletal muscle disease such as myasthenia gravis, immunity It can be speculated that it may be related to systemic diseases, infertility, autosomal recessive hearing loss, etc., and is expected to be useful as a target for diagnostics and therapeutics for these diseases.
  • cancer such as lymphoma, leukemia, brain tumor, testicular cancer, muscular dystrophy 'myopathy' tetany, skeletal muscle disease such as myasthenia gravis, immunity It can be speculated that it may be related to systemic diseases, infertility, autosomal recessive hearing loss, etc., and is expected to be useful as a target for diagnostics and therapeutics for these diseases.
  • cb race 3003920 (hereinafter, referred to as “present DNA” and a protein encoded by the DNA is referred to as “present protein”) is represented by SEQ ID NO: 5. As shown, it consists of 5342 bases, of which bases 371 to 3874 are the open reading frame (including the stop codon). The amino acid sequence predicted from the open reading frame consists of 1167 amino acid residues (SEQ ID NO: 17). A homology search was performed for the amino acid sequence of SEQ ID NO: 17 using BLAST, and it was found in the NRDB protein database (a database of non-redundant amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB).
  • the amino acid sequence described in AX 26251 6 (unnamed 0RF) and WO 01/73050 has an e-value of 0.0, and 99% identity over 1160 amino acid residues. Hit in degrees. From this BLAST search alignment, this protein shows that amino acids corresponding to amino acid numbers 309, 456, and 557 of AX 262516 have substitutions for threonine Z isoleucine, threonine alanine, and lysine Z asparagine, respectively. It was found that the N-terminal 3 residues differ from the N-terminal 72 residues of AX262516, and the C-terminal 4 residues of this protein and the C-terminal 12 residues of AX262516 differ (Fig. 5).
  • this DNA lacks the base corresponding to 148 bases of base numbers 386 to 533 of AX262516.
  • a protein characteristic search by HMMP FAM was performed on the amino acid sequence of SEQ ID NO: 17, and the amino acid sequence represented by amino acid numbers 1-221 was found to be a sequence exhibiting the characteristics of a protein kinase domain.
  • PRO SITE According to Nucleic Acids Res., 30: 235-8 (2002), of the protein kinase domain of AX262516, amino acids 27 to 51 were ATP regions (ATP binding sites). It corresponds to the 3 'hexon of AX 262516, and is deleted in this DNA.
  • AX 26251 6 starts near the center of the third exon of this DNA, and the reading frame at the N-terminal of both is different . Since AX262516 has an insertion consisting of 148 bases not present in this DNA immediately after the third exon equivalent, a frame shift occurs, and the translation frames after the fourth exon correspond to both. Also, AX2
  • this protein is a function or disease specific to these tissues or cells, for example, cancer such as lymphoma, leukemia, myeloma, lung cancer, brain tumor, spinal cerebellar degeneration, inflammatory disease, allergic disease, autoimmune disease, muscle atrophy It may be related to sex lateral sclerosis, congenital erythrocyte dysplasia anemia, etc., and is expected to be useful as a diagnostic or therapeutic target for these diseases.
  • cancer such as lymphoma, leukemia, myeloma, lung cancer, brain tumor, spinal cerebellar degeneration, inflammatory disease, allergic disease, autoimmune disease, muscle atrophy It may be related to sex lateral sclerosis, congenital erythrocyte dysplasia anemia, etc., and is expected to be useful as a diagnostic or therapeutic target for these diseases.
  • present DNA cb race 3038687
  • present protein protein encoded by the DNA
  • the gene for human LMR 1-h (GENE SEQ database nucleotide sequence registration code AA V32449) described as SEQ ID NO. 2 in WO 98Z22507 consists of 5267 bases and is open reading at base numbers 515 to 4138 The frame may encode a protein of 1207 amino acids (LMR1-h).
  • the amino acid sequence described in the publication (GENESEQ database amino acid sequence registration code AAW48842) discloses a protein consisting of 1383 amino acids by virtually synthesizing a protein sequence linked to the rat upstream sequence 176 amino acid. (This is called LMR 1— r + h) ( Figure 7).
  • the rat LMR1-r gene (AAV32448) described as S EQ ID NO. 1 in WO 98/22507 consists of 2572 bases and takes the largest open reading frame, base numbers 13 to 2571. There is no stop codon, and the number of amino acid residues in this part is 853.
  • the publication describes a protein (LMR11r) consisting of 848 amino acids derived from base numbers 13 to 2556 of this base sequence (AAW48841).
  • Rat LMR 1-r (AA W48841) has a short C-terminus, indicating an incomplete length due to an unknown stop codon. As described above, human LMR1-h has an incomplete N-terminus, and rat LMR1-r has an incomplete C-terminus. It's just The amino acid sequence of SEQ ID NO: 18 differs from the amino acid sequence of LMR1-r + h in the following points.
  • This protein lacks the N-terminal 9 amino acids of LMR1-r + h, but the sequence difference in this region is considered to reflect the species difference between human and rat. From the genomic mapping described below, the sequence near the translation initiation site of the cDNA corresponds to the human genome sequence.
  • LMR1 is a membrane receptor tyrosine kinase with little extracellular domain. Analysis of this protein with the transmembrane domain prediction software TMp red (Biol. Chem. Hoppe-Seyler, 374: 166 (1993)) reveals that the transmembrane domain consisting of LAVVAVS FSG LFAV I VLMLA CL at amino acids 32 to 53 It was hit. In addition, when the HMMP F AM search, to amino acid number 12 No. 5-395 of the protein e- value: protein kinase domain was hit by 3. 3 X 10- 47. Since this protein and LMR1-h have a difference on the C-terminal side from the intracellular protein kinase domain, this protein may be involved in signal transduction different from LMR1-h.
  • NRNEE nucleotide sequence database a non-overlapping nucleotide sequence database excluding ESTs created from EMB L GenBank and DDB J
  • it is derived from human chromosome 17 Mapped to RPCI-13 Human Female BAC (database registration code AC 1 299 9). Therefore, on the sequence of AC1299919, which is the genome sequence, the DNA encoding this DNA and the DNA encoding LMR1-h (WO 98/98) were obtained using sim4 (Genome Res. 8: 967-74 (1998)). No. 22507) (Fig. 8).
  • LMR 1-h had a long exon, including exons 11, 12, and 13 of this DNA.
  • this DNA has a deletion of 108 bases and 36 amino acids by splicing between bases 11 and 12 (base No. 1481Z1482) and a splice of 263 bases between bases 12 and 13 (base No. 1481Z1482).
  • 2660 2661 causes a deletion of 88 amino acids and a frame shift, and ends the translation by adding 19 amino acids at the 13th exon (base Nos. 266 1-3344) after splicing.
  • LMR1-h continues translation and produces a long C-terminal protein.
  • LMR1 LMR1 restricted to nerve cells.
  • This DNA is a full-length LMR1 isolated from a cerebellar cDNA library and having a different sequence in its intracellular domain. From this fact, this protein is used for cancers such as brain tumors, neuroblastomas and melanomas, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, spinocerebellar degeneration, central diseases such as depression, anxiety, and schizophrenia. It may be involved in endocrine diseases such as diabetes, inflammation, etc., and can be used as targets for diagnostics and therapeutics for these diseases. (7) c ⁇ brace 3050764 (SEQ ID NOs: 7, 19)
  • cb race 3050764 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) comprises 3346 bases as shown in SEQ ID NO: 7, of which base number 1744
  • the open reading frame (including the stop codon) is from No. 2685 to No. 2685.
  • the amino acid sequence predicted from the open reading frame consists of 313 amino acid residues (SEQ ID NO: 19).
  • a homology search was performed for the amino acid sequence of SEQ ID NO: 19 using BLAST.
  • Cell division kinaselO / PISSLRE (cdk 10, Human) registered under database registration code Q15131, with a S e-value: 5 X 10 179 with a 99% match over 306 amino acids
  • the cdk10 protein is a cyclin dependent kinase consisting of 360 amino acid residues and having a protein kinase domain at amino acids 39-323. At amino acids 80 to 86 there is a PIS SLR E sequence to which a growth inhibitory factor binds. Since amino acid sequence numbers 55 to 360 of cdk10 correspond to amino acid numbers 8 to 313 of this protein, this protein was considered to be a variant that differs from cdk10 at the N-terminus.
  • HMMPF AM search was performed on the amino acid sequence of SEQ ID NO: 19, and a protein kinase domain was found at amino acids 8 to 276. It is shorter on the N-terminal side than the protein kinase domain of cdk10 (amino acids 39-323).
  • the difference between the N-terminal amino acid sequences of the two proteins is due to the difference in the ethasons that encode them.
  • This DNA is a splicing variant of cdk10.
  • This protein and cdk10 may differ in substrate specificity and activity due to differences in the N-terminal part of the protein kinase domain.
  • cdk10 protein is involved in the progression of the cell cycle from G2 to M, and that overexpression suppresses growth (Cancer Res., 55: 3992-3995 (1995)). Although its protein is expressed ubiquitously in adult fibroblasts, it is expected to be a tumor suppressor because it is particularly high in cells that have undergone terminal differentiation, but no mutation has been observed in breast cancer ( Genomics, 56: 90-97 (1999)), but details of its function are unknown. However, this protein has an N-terminal sequence (derived from the first exon) that is different from cdk10, and may be under different expression control. Therefore, this protein has an important role in cell proliferation, differentiation, carcinogenesis, and tumor suppressor function. It can be used as a target for diagnostics and therapeutics for involvement, immuno-inflammation, and neurodegenerative diseases.
  • c-bra my 3018357 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) comprises 3576 bases as shown in SEQ ID NO: 8, of which base number Nos. 254 to 2554 are open reading frames (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 766 amino acid residues (SEQ ID NO: 20).
  • a homology search was performed for the amino acid sequence of SEQ ID NO: 20 using BLAST.
  • SWISS a database of non-overlapping amino acid sequences created from PROT, PIR, TREMBL, GENPEPT, and PDB
  • Serine / threonine protein kinase 29 (human; listed as registration code Q 8 I WQ 3 also hits higher with 93% identity over e-value: 0 and 749 amino acids.
  • This sequence is composed of 736 amino acids, whose amino acid numbers 3 to 736 correspond to the amino acid numbers 34 to 766 of this protein. It seems that the C-terminal variant is different.
  • the ORF derived from this DNA is present in the 1st to 20th exons, and the ORF of AX327993 is present in the 1st, 2nd to 18th and 18th exons.
  • the difference in N-terminus is due to the initiation of translation from a different exon
  • the difference in C-terminus is that this DNA skips the 18th and 18th exons and continues translation downstream from the 19th exon.
  • the translation ends at the 18th ⁇ xon. From the above, it was found that this DNA and AX327993 are splicing variants from the same gene.
  • AX327993 is composed of 2219 bases, and their base numbers are 141 to 1992, 2084 to 2219, and 99% and 100%, which correspond to the 480 to 2331 and 2328 to 2463 of the present DNA, respectively.
  • the registration number A X 7 66346 (DNA described as SEQ ID NO. 42 in Patent WOO 2Z18557) is higher than AX 327993.
  • AX 766 346 consists of 2647 bases, whose base numbers 77 to 1975 and 1975 to 2647 correspond to 100% and 99% of 480 to 2378 and 2800 to 3470 of the present DNA, respectively.
  • the registration number AX661191 (DNA described as SEQU ID NO.1 in Patent WO 02/059287) is higher than AX327993.
  • AX661191 is composed of 2007 bases, and base numbers 89 to 1987 correspond 100% to 480 to 2378.
  • This DNA was isolated from tonsils of the brain, but a homology search was performed on human dbEST (Nature Genetics, 4: 332-3 (1993)) to examine its expression distribution. 10 1M 1 clone a ratio of 3 clones and derived from fetal brain from the eye to the following I did it. Based on the above, this DNA and this protein function in the development and differentiation of the brain, diagnostic and therapeutic drugs for anxiety, depression, schizophrenia, neurodegenerative diseases, cancer, inflammation, diabetes, and ophthalmology. (Glaucoma, cataract, retinopathy, etc.) can be used as a diagnostic or therapeutic target.
  • present DNA cb r awh 3022866
  • present protein consists of 4547 bases as shown in SEQ ID NO: 9; Nos. 3898 to 3898 are open reading frames (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 1288 amino acid residues (SEQ ID NO: 21).
  • a homology search was performed on the amino acid sequence of SEQ ID NO: 21 using BLAST. Sequence database) In the Chuo patent database GENESEQ (amino acid sequence), a human protein kinase (SGK040, 909 amino acids) described as SEQ ID NO.
  • diagnosis and treatment of diseases related to cell division such as cancer, and use as target of diagnostics and therapeutics for immunoinflammation (eg, autoimmune diseases, nephritis, etc.), hypertension, neurodegenerative diseases, etc., based on the tissue information of the expression Conceivable.
  • present DNA cb r awh 3043827
  • present protein consists of 4222 bases, as shown in SEQ ID NO: 10, of which base number 146 Numbers 3406 are open reading frames (including the stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 1086 amino acid residues (SEQ ID NO: 22).
  • a homology search was performed for the amino acid sequence of SEQ ID NO: 22 using BLAST, and the results were obtained from the NRDB protein database (a database of non-overlapping amino acid sequences created from SWISS-PROTs PIR, TREMBL, GENPEPT, and PDB).
  • ACK1 Homo sapiens activated p21cdc42Hs kinase (ACK1) of 1036 amino acids registered in the database registration code L1378 was hit with e-value: 0 and 953 concordance over 1053 amino acids.
  • amino acid numbers 64 to 577 correspond to amino acid numbers 1 to 513 of ACK1
  • amino acid numbers 578 to 592 It has the insertion and insertion of 55 amino-amino acids
  • ((cc)) amino-amino acid number 559933 ⁇ 11004422 is the amino-amino acid number of AACCKK 11 551144 ⁇ 996622 And ((dd)) aaminominonic acid number no.
  • 11004422ZZ110044 having no deletion of 3300 aaminominonic acid between number 33, ((ee ))
  • the number of aminoaminoic acid number 11004433 ⁇ 11008866 is identical to the number of aminoaminoic acid number 999933 ⁇ 11003366 of AACCKK11 ((Fig. 1155)). .
  • This DNA has a 15 amino acid insertion by having the first exon not present in ACK1.
  • ACK 1 has another insertion of the first 2 'ethathon between twelfth and thirteenth exons of the present DNA. This is a 30 amino acid deletion for this protein.
  • ACK1 contains the tyrosine protein kinase domain, SH3 domain, and cdc42Hs binding domain ⁇ clathrin binding domain from the N-terminus.
  • hMMP F AM of the protein kinase domain is amino acid number 180 to 450 No., 45 No. 4 to 509 SH3 domain amino acid number, also paper information (Nature, 363: 364-367 (1993))
  • the cdc42Hs binding region was found at amino acids 509-552
  • the clathrin binding region was found at amino acids 639-723.
  • ACK1 is an activated p21cdc42Hs kinase that phosphorylates the activated small G protein and inhibits its conversion to the inactivated form, keeping the G protein in the activated form.
  • Rho family of low molecular weight G proteins GTP binding protein p2l
  • RACI Rho
  • Rho Cdc42Hs
  • GTP-bound type active form
  • GDP-bound type active form
  • GEF guanine nucleotide exchange factor
  • ACK1 is a tyrosine kinase that binds to activated Cdc42Hs and inhibits its GTPase activity, and is involved in cytoskeleton, cell differentiation, cell proliferation and the like. Further, ACK1 will accumulate the Db 1 phosphorylates active small G protein is a GEF (cdc 42H S) induces Akuchin fibers cytoskeletal. ACK1 is known to have a short C-terminal variant, ACK2.
  • phosphoric acid is phosphorylated by epidermal growth factor and bradykinin, and regulates cytoskeletal formation in response to extracellular signals.
  • ACK 1 also binds to clathrin and fc) exerts it on receptor mediated endocytosis by clathrin-coated vehicles.
  • Clathrin is an organelle-backed protein called coated vehicle or coated pit in which receptors form clusters. Involved in Itsis. Endocytosis of receptors into cells is known for many receptors that also function as HIV receptors, including chemokine receptors, adrenergic receptors, insulin receptors, and LDL receptors. Incorporation of the ligand-bound receptor regulates extracellular signaling or recycles the receptor.
  • This protein has a 15 amino acid insertion between the cdc42 binding region and clathrin binding region, and its binding and interaction with cdc42 and clathrin may be different from ACK1. Based on the above, this protein can be used to diagnose cancer, arteriosclerosis, diabetes, HIV, inflammation, diseases related to receptor uptake, diseases related to neurotransmission disorders, dementia such as Alzheimer's disease, hypertension, glaucoma, etc. Drugs ⁇ They can be used as targets for therapeutic drugs.
  • c—brtha 2034874 (hereinafter referred to as “present DNA” and the protein encoded by the DNA is referred to as “present protein”) is composed of 3857 bases as shown in SEQ ID NO: 11; Nos. 55 to 1287 are open reading frames (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 410 amino acid residues (SEQ ID NO: 23).
  • a homology search was performed using the BLAST for the amino acid sequence of SEQ ID NO: 23.
  • MAP kinase kinase 4 Dual specincity mitogen-activated protein kinase kinase 4, MAP kinase kinase 4 (MAP KK 4), JNK activating kinase 1, c-Jun N-terminal kinase kinase 1 ( J NKK) and SAPK / ERK kinase 1 (SEK1)) hit 97% of e-value: 0 and 410 amino acids with 97% agreement.
  • MAP KK4 is 399 amino acids in length. This protein is a variant with an insertion of 11 amino acids between amino acids 39 and 40 of MAP KK4 (amino acids 40-50 of this protein) (Fig. 17).
  • HMMP FAM search of the amino acid sequence of SEQ ID NO: 23 reveals a protein kinase domain at amino acid number 113 to 378, and amino acid number 236 to ST region (characteristic sequence of serine / threonine protein kinase) at No. 249 ATP region (ATP binding site of protein kinase) was detected at amino acids 119-143.
  • the nucleotide sequence was compared to determine whether the insertion of 11-amino acid in this protein was due to splicing (Fig. 18).
  • this DNA and L36870cDNA encoding MAPKK4 were mapped to the genome using sim4 (Genome Res., 8: 967-74 (1998))
  • this DNA was found to be on human chromosome 17 Although it has 12 exons, ⁇ A ⁇ 4 lacks its second exon (base Nos. 170-203 of this DNA, corresponding to 11 amino acids). This indicates that the present DNA has 11 amino acids that are not present in MAP KK4 by adding an exon.
  • the nucleotide sequence of cDNA including EST) having homology with this specific etason portion was searched, but was not found. This suggests that this exon is a rare molecule, and that this DNA is a novel molecule.
  • MAPKK4 is a dual specificity protein kinase belonging to serine / threonine protein kinase.
  • MAPK Serine Z threonine of K4 is phosphorylated and activated by MAP3K / MEKK, and J NK1 (MAPK 8), J NK2 corresponding to MAPK (MAPK 9),]]] ⁇ 3 is activated in the same way as 1) 38 (MAPK 14).
  • transcription factors downstream thereof are activated, and genes involved in apoptosis are expressed. Analysis of MAPKK4 knockout mice has been shown to be involved in T cell differentiation, survival signals and liver organogenesis.
  • MAPKK 4 is highly expressed in skeletal muscle, but is also found in other tissues. MAP KK4 also phosphorylates JNK3, which associates with and binds to ⁇ -arrestin2, a protein involved in receptor internalization (related to GPCR desensitization). 133 This results in crosstalk between GPCR signaling and the MAPK signaling cascade.
  • This protein is used for apoptosis against immune, liver, brain and other stress, cell proliferation, cancer, abnormal signal transduction by GPCR, elongation of nerve cells, dementia, liver regeneration, diabetes, blood pressure regulation, amyotrophic lateral sclerosis Or, it is presumed to be involved in self-immune diseases, immuno-inflammatory diseases such as allergies, etc., and it can be used as a diagnostic or therapeutic drug target for these diseases.
  • the present DNA c-test 1 40 5 2 1 9 7
  • the protein encoded by the DNA is referred to as “the present protein”
  • SEQ ID NO: 12 It consists of 05 bases, of which base numbers 407 to 1690 are the open reading frame (including the stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 427 amino acid residues (SEQ ID NO: 24).
  • a homology search was performed for this protein using BLAST, and the database was registered in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMB L, GENPEPT, and PDB).
  • ⁇ ⁇ is a serine Z-threonine pruiten kinase consisting of two regulatory subunits (R) and two catalytic subunits (C) .
  • the tetramer (R 2 C 2) exists in the cytoplasm as an inactive form, but Gs-coupled.
  • adenylyl cyclase Upon receipt of a signal from the receptor, adenylyl cyclase is activated and cAMP is generated from ATP, which binds to the PKA Regulatory subunit (R) to release the catalytic subunit (C) and activates it.
  • R is a protein that stays in the cytoplasm and anchors C to the cytoplasm. When C moves away from R, it interacts with PKI (protein kinase inhibitor) through another region (PRS1 domain; arginine at position 134, glutamic acid at position 204, and tyrosine at position 236) to enter the cytoplasm. Anchored.
  • PKI protein kinase inhibitor
  • the RI type (RIa, RI ⁇ ) involved in cell proliferation and the RII type (RII ⁇ , RII) involved in differentiation are known, and for the C subunit, C and C ⁇ are known.
  • Literature sources report that C ⁇ translocation to the nucleus when inhibition of C anchored in the cytoplasm by R by antisense oligonucleotides of RI ⁇ .
  • Substrates for PKA include Glycogen phosphorylase kinase (GPK) and cAMP responisible element binding protein (CREB).
  • Glycogen is hydrolyzed by Glycogen phosphorylase, which is activated by phosphorylation by PKA, and glycogen degradation proceeds.
  • CREB binds two molecules to the cAMP responsible element, phosphorylates serine No. 133 by proteinase such as PKA, and activates genes such as somatostatin and SF-I (steroid genie factor-1). .
  • amino acid numbers 1 to 91 are a novel sequence. It may have a function different from that of the original PKA catalytic subunit ⁇ by a protein that specifically binds to this region or by subjecting it to specific expression regulation.
  • this DNA was isolated from testis, and it was estimated from experiments on knockout mice of PKA catalytic subunit that this protein is involved in sperm maturation, regulation of liver and kidney protein expression, regulation of glycogen synthesis, and IGF Use as a target for diagnosis and treatment of cancers such as liver cancer, kidney cancer, testicular cancer, hepatitis, cirrhosis, nephritis, diabetes, inflammatory diseases, infertility, diseases related to GPCR signaling, etc. Can be considered.
  • Example 4 Measurement of kinase activity
  • Example 3 For the cDNA clone presumed to have kinase activity in Example 3, the protein that it encodes was synthesized using a cell-free protein synthesis system, and it was determined whether the protein had kinase activity. was analyzed by the following biochemical experiments.
  • the open reading frame (ORF) fragment of the cDNA clone presumed to have kinase activity in Example 3 was used as a primer on the 5 side and the following primers specific to each clone. Obtained by PCR using primers.
  • This is used to cleave the translation control region containing the SP6 promoter, glutathione, S-transferase gene, PreScission Protease (Amersham Pharmacia Biotech), cleavage site, DNA closing site (Sma.I, Sf_iI) It was inserted into the clonindustite of a vector (pEU-SS4) having a poly (A) signal sequence.
  • RNA polymerase manufactured by Promega
  • the resulting RNA was extracted with phenolic clonal honolem, precipitated with ethanol and precipitated with Nick Column (Amersham Pharmacia Biotech).
  • the method of cell-free protein synthesis using a wheat germ extract by a dialysis method followed the method described previously (Endo, Y. et al., J. Biotech., 25: 221-230 (1992)).
  • the reaction solution contains 24% of the wheat germ extract by volume, and has the following composition according to the method of Erickson et al.
  • the above reaction solution was placed in a floater riser (Spectra / Float-A-Lyzer (Biotech RC), molecular weight cut off: 10 kDa, volume: 1 ml), and the dialysis solution was 40 times as large as the reaction solution.
  • the reaction was performed in a dialysis system against 2 mM ATP, 0.25 mM GTP, and 16 mM creatine phosphate at 26 ° C for 48 hours.
  • the dialysate was centrifuged at 16,000 rpm for 5 minutes, and the supernatant was separated.
  • This supernatant is diluted 5-fold with 50 mM Tris-HCl buffer (pH 8.5) containing 15 OmM sodium chloride and 1 OmM dithiothreitol, and Darfin, an affinity resin equilibrated with the same buffer, is used.
  • the affinity resin half the amount of the obtained centrifugal supernatant was used as the affinity resin.
  • the column was washed with 2 units of sZ1 concentration of PreScission protease (manufactured by Amersham Biosciences) in the same buffer. An equal volume of the double-diluted solution was added to the affinity resin, and a cleavage reaction was performed at 4 ° C. for 40 hours. Then, the target protein was eluted with the buffer solution.
  • PreScission protease manufactured by Amersham Biosciences
  • the target protein isolated in (1) above was quantified using serum albumin as a standard. 0.1 g of the target protein was diluted with 0.1 mM SrngZm 1 ⁇ serum albumin and 8 mM magnesium chloride in 5 OmM Tris.HCl buffer (pH 7.4) to a final concentration of 1 to 1 OmM. After adding threitol, 1] ⁇ After incubation at room temperature for 24 hours, luciferase / luciferin kit
  • B430206E18 (SEQ ID NO: 57, Nature, 420: 563-573 (2002)), which is a mouse full-length cDNA encoding the serine protease in the system of (1) above, was used as a negative control.
  • 0.1 ⁇ g of isolated protein was used. Those that did not perform the experiment are denoted as rrt. table 1
  • the target protein isolated in (1) above was quantified using serum albumin as a standard.
  • 0.1 Zg of target protein is converted to a standard polypeptide (Cdc2, Arg2-OH, PKA, PKC, DNA-PK, PTK1, PTK2) as a substrate: Promega, MLCKS, Ca MK II: Sigma, Syntide2: BACHEM
  • the peptides were separated at a flow rate of 1 m 1 / min by a linear concentration gradient of / 0 acetonitrile over 60 min. Peptide elution was measured by absorbance at 215 nm. As a control, the reaction solution without addition of the target protein was similarly separated, and the absorbance at 215 ⁇ was measured (FIG. 21).
  • Polypeptides in which a decrease in peak and a change in elution position are detected can be determined to be substrates for kinase activity of the target protein.
  • Human cervical cancer cell line HeLa (ATCC CCL-2), human fetal kidney cell line HEK293 (ATCC CRL 1573), neuroblastoma cell line SH-S Y5 Y (ATCC CRL-2266), promyelocytic leukemia-derived cell line HL 60 (ATCC CCL-240), liver cancer-derived cell line Hep G 2 (ATCC HB-8065), astrocytoma-derived cell line KI NGS-1
  • RNA was extracted from strain SW620 (ATCC CCL-227), breast cancer-derived cell line BT-474 (ATCC HT B-20) and metastatic ovarian adenocarcinoma-derived cell line AsPC_l (ATCC CRL-1682).
  • Type II cDNA was synthesized using random primers.
  • cDNAs derived from human tissues were purchased from Clontech (normal breast, breast cancer, normal colon, colon cancer, normal kidney, kidney cancer, normal liver, lung cancer, normal rectum, rectum cancer, normal small intestine, small intestine cancer, normal Stomach, gastric cancer and placenta).
  • Clontech normal breast, breast cancer, normal colon, colon cancer, normal kidney, kidney cancer, normal liver, lung cancer, normal rectum, rectum cancer, normal small intestine, small intestine cancer, normal Stomach, gastric cancer and placenta.
  • the following human tissue-derived cDNA was purchased from Biochain (fetal brain, normal brain, normal frontal lobe, Alzheimer's disease frontal lobe, normal hippocampus, Alzheimer's disease hippocampus, normal thalamus, normal kidney, lupus disease kidney, normal liver, cirrhosis liver , Normal spleen, normal skeletal muscle, normal fat, normal spleen, heart and leukocytes).
  • Double labeled probe AACATCGGCATCCTGTTCMCGAC (SEQ ID NO: 42)
  • Double-labeled probe TGCTCCCTGGATTGACCTCAGTC (SEQ ID NO: 45)
  • the mRNA level of ca drgl 2001554 is very low overall, but it is a gastrointestinal tissue such as gastric cancer, normal small intestine, normal rectum, and colon cancer. , And weak expression was observed in the neuroblastoma-derived cell line SH-SY5Y and the like.
  • the mRNA of c-testi 2053667 is expressed in all cells and tissues as far as it is examined. High expression was also observed in the cell line SW 620 derived from cervix and colorectal adenocarcinoma, the cell line derived from metastatic knee adenocarcinoma As PC-1 and the cell line derived from neuroblastoma SH-SY5Y. From these results, the above cDNA and the protein encoded by the cDNA can be applied to the treatment and diagnosis of cancer, immunity, inflammatory diseases, neurodegenerative diseases, respiratory diseases, diabetes and the like. In addition, the protein encoded by the cDNA may be involved in the above-mentioned diseases involving tissues with high mRNA expression levels.
  • Example 6 Inhibition of Expression by Introducing s ⁇ RNA into Cells and Effects on Cell Death and Cell Proliferation
  • siRNA designed to target c-testi 2053667 into HEK293 cells and HeLa cells After introducing siRNA designed to target c-testi 2053667 into HEK293 cells and HeLa cells, and confirming the effect of introducing the siRNA into c-testi 205 3667 mRNA, the proliferation of HEK293 cells and HeLa cells And the effect of inducing cell death were examined.
  • those designed corresponding to the sequence of lucif erase 3 ⁇ 4f ⁇ (P. pyralis luc gene: SEQ ID NO: 55) of the negative control siRNA (Photinus pyralis) were used. The synthesis was outsourced to Proligo or Qiagen.
  • sequences shown in SEQ ID NO: 49 and SEQ ID NO: 51 correspond to the target gene c-testi 2053667 (translation region is 1419 base pairs in full length from base number 36 in SEQ ID NO: 2), counted from the translation start site of the sense strand 966 to 966. These correspond to bases 986 and 1192-1212, respectively.
  • sequences shown in SEQ ID NO: 50 and SEQ ID NO: 52 correspond to the bases at positions 984 to 964 and 1210 to 1190 of the antisense strand, respectively, counted from the translation initiation site of c-testi 2053667.
  • sequences shown in SEQ ID NO: 53 and SEQ ID NO: 54 correspond to the P.
  • pyralis luc gene (the translation region is 1653 base pairs in full length from nucleotide number 1 to 1653 of SEQ ID NO: 55) counted from the translation initiation site of the sense strand.
  • the 58th to 58th bases correspond to the 56th to 36th bases of the antisense strand, respectively.
  • siRNA of testi 205366 7-964 was prepared.
  • siRNA of c-testi 20 53 66 7-190 can be obtained by combining the siRNA of SEQ ID NO: 53
  • a negative control siRNA was prepared by associating the sense strand with the antisense strand of SEQ ID NO: 54.
  • siRNA For the production of siRNA, for the contract of Proligo, sense single-stranded RNA and antisense single-stranded RNA were each received as a single item, and they met themselves.
  • the company commissioned a meeting. When his meeting, a mixture of the sense strand RNA and antisense strand RNA 10 ⁇ ⁇ Tris-HCl ( pH7.5), was heated 2 min at 20 ⁇ NaCl reaction liquid at 9 0 ° C, further gradually After lowering the temperature to 37 ° C, the mixture was incubated at 37 ° C for 1 hour, and then left to reach room temperature. The formation of double-stranded RNA by association of the sense strand and the antisense strand was detected by 2% agarose gel electrophoresis in a TBE buffer.
  • HEK293 cells and HeLa cells were used as the culture cells, and Dulbecco's modified Eagle's medium (manufactured by Sigma) supplemented with non-deprived 10% fetal bovine serum (manufactured by JRH) was used. 3 7 ° C, 5% C0 2 and cultured in the presence.
  • HEK293 cells were seeded at a density of 1.4 ⁇ 10 5 cells / ml on a 24-well plate (collagen type 1 coated, Iwaki Glass Co., Ltd.) at a volume of 1 ml per 1 ⁇ l, and after 1 day GeneSilencer siRNA Transfection Reagent (Gene Therapy Systems) was used to introduce a total of 50 nM of each siRNA.
  • the concentration of siRNA was expressed as a molar concentration in the presence of 1 ml of medium per 1 ⁇ l, considering the state of double-stranded RNA as one molecule.
  • HeLa cells are seeded at a density of 0.7 ⁇ 10 5 cells / ml on a 24-well plate (24-well plate (manufactured by Greiner)) at a volume of lml / well, and siRNA is introduced in the same manner as for HEK293 cells. did.
  • the DNA was recovered by solubilization using a Solution (manufactured by Applied Biosystems), and total RNA was extracted and purified using a nucleic acid extractor ABI PRISM 6100 Nucleic Acid PrepStation (manufactured by Applied Biosystems). Further
  • ReverseTranscriptaseXL (AMV) for RT-PCR, Ribonuclease inhibitor Random Primer, 25 mM MgCl 2 solution, lOxPCR Buffer (TaKaRa), dNTP
  • Reverse transcription reaction was performed using Mixture (lOmM) (manufactured by T0Y0B0) to obtain a cDNA preparation.
  • a quantitative PCR device ABI PRISM 7000
  • c-testi 2053667 gene in HEK293 and HeLa cells was inhibited by either testi 2053667-964 or testi 2053667-1190 siRNA, or by a mixture of these siRNAs (Fig. 31). All values are relative to the expression level of the c-testi 2053667 gene (normalized by GAPDH amount), with the value of the cell group not transfected with siRNA (non-transfected group) as 100%. expressed. In addition, these data show the average value of the 3 ⁇ -well experiment, and the vertical line in the figure shows the standard deviation.
  • c— testi 2 In the group to which siRNA for 053667 was added at 50 nM, testi 20 53667-964 alone, testi 2053667-1190 alone, and 74%, 51%, and 85%, respectively, of a mixture of equal amounts of the two types were used. Inhibition of 1 esti 2053667 gene expression was observed. In HeLa cells, 91%, 80%, and 90% inhibition of c-testi 2053667 gene expression was observed for test # 2053667-964 alone, testi 2053667_1 190 alone, and a mixture of these two equal amounts, respectively. In the group into which the negative control siRNA was introduced, no inhibition of c-testi 2053667 gene expression was observed.
  • HEK293 cells 0. IX 10 5, 0. 15 10 5 or 0. 2 X 10 5 cells Zml density in 96-well plates (collagen type 1 coated already, manufactured by Iwaki Glass Co., Ltd.) in. To 1 Ueru per 0. 25 m l One day later, a total of 50 nM siRNA was introduced using GeneSilencer siRNA Transfection Reagent (Gene Therapy Systems). As the siRNA, a negative control siRNA alone, testi 2053667-964 alone, and an equal mixture of testi 2053667-964 and testi 2053667-1190 were used, respectively. For HeLa cells the 0. 1 X 10 5, were plated at 0.15 10 5 or 0. 2 X 10 5 cellsZml density in 96-well plates (Greiner Co.) in 1 Ueru per 0 ⁇ 25m l, HEK293 cells The siRNA was introduced in the same manner as described above.
  • FIG. 32 shows the results when the cell seeding density was 0.2 ⁇ 10 5 cells / ml. Similar results were obtained with other cell seeding densities. The values are shown as the ATP concentration when ATP derived from living cells in each cell eluted in a 100 ⁇ 1 liquid medium. In addition, these show the average value of the 8 ⁇ -well experiment, and the vertical line in the figure shows the standard deviation.
  • HEK293 cells are seeded at a density of 1.2 ⁇ 10 5 cellsZml on a 96-well plate (one coated with collagen type, manufactured by Iwaki Glass Co., Ltd.) at a rate of 250 cells per 1 ⁇ l. Was introduced. Confluency at the time of introduction was around 50-60%. The same siRNA as that used in the cell proliferation evaluation system was used. HeLa cells were applied to a 96-well plate (Greiner) at a density of 0.5 x 10 5 cells / ml in 1 ⁇ el. PT / JP2004 / 002133 was seeded at 0.25 ml, and siRNA was introduced in the same manner as in HEK293 cells. The confluency at the time of introduction was around 60-70%.
  • LDH lactate dehydrogenase
  • the total LDH activity is a measured value of the LDH activity in a sample obtained by freeze-thawing the cells in the untreated group set for each experiment and completely disrupting the cells.
  • the LDH Positive Control contained in the above product was diluted with PBS containing 1% bovine albumin (Sigma) or a serum-containing medium used for cell culture.
  • the results of the cell death evaluation are shown in FIG.
  • the results are measured 3 days after siRNA introduction.
  • the values indicate the results obtained by converting the LDH activity released from dead cells in each well to the average of all LDH activities as 100%. In addition, these are the average values of the experiment of 8 mm, and the vertical line in the figure indicates the standard deviation.
  • the siRNA-transferred groups only 7% and less than 14% of the maximum value of LDH activity in HEK293 cells and HeLa cells were shown, respectively. Therefore, induction of cell death of HEK293 cells and HeLa cells was not observed by the introduction of siRNA into c-t e sti 2053667.
  • present DNA and the protein encoded by the DNA is referred to as “present protein”
  • SEQ ID NO: 1 is represented by SEQ ID NO: 1. As shown, it consists of 2168 bases, of which the base number from 39 to 2159 is an open reading frame (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 706 amino acid residues (SEQ ID NO: 13).
  • a homology search was performed for the amino acid sequence of SEQ ID NO: 13 using BLAST, and the results were obtained from the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB).
  • amino acid sequences described in the database registration symbols AXO 40998 and WO 00/65040 were hits.
  • the amino acid sequences described in AX040998 and WO 00Z65040 consist of 626 amino acids, and the amino acid numbers 17 to 616 in the amino acid sequence are the amino acid sequences described in SEQ ID NO: 13. and amino acid number 25-661 incense sequence, e- value (Us expected value sequence is present by chance in a database) to have 32% of the degree of coincidence over 3 X 10- 82 and 655 amino acid residues (identity) Was observed.
  • Q9R011 is composed of 615 amino acids, and amino acid numbers 31 to 558 in the amino acid sequence correspond to amino acid numbers 39 to 645 of the amino acid sequence described in SEQ ID NO: 13; - value: over 7 X 10- 71 and 61 3 amino acid residues have a 30% one ⁇ was observed. From these results, it was inferred that the protein having the amino acid sequence shown in SEQ ID NO: 13 was a novel serine-threonine protein kinase.
  • the protein of (ii) above is obtained from literature information in the database.
  • Example 4 Using this protein expressed and prepared in the cell-free protein synthesis system described in Example 4 (1), the kinase activity was measured using the ATP consuming activity as an index in the system of Example 4 (2). i tZd ay. Next, Example 4
  • Example 5 From the expression analysis of the present DNA in Example 5 (2), the expression level of the mRNA of the present DNA is very low overall, but the digestive system tissues such as stomach cancer, normal small intestine, normal rectum, and colon cancer and lung, kidney, And weak expression was observed in neuroblastoma-derived cell line SH-SY5Y.
  • this protein is a novel serine Z-threonine protein kinase having functions related to cell cycle and nerve function.
  • This protein The digestive system ⁇ Respiratory system ⁇ Cancer of the nervous system, cell proliferation ⁇ Atherosclerosis as a disease caused by abnormal cell differentiation or cell cycle ⁇ Diabetic retinopathy ⁇ Endometriosis ⁇ Glomerulonephritis ⁇ Heart Hypertrophy ⁇ Mental illness such as brain dysplasia, depression, schizophrenia, Parkinson's disease * Neurodegenerative disease such as Alzheimer's disease, immunity such as asthma ⁇ Gastrointestinal disease such as Crohn's disease May be involved.
  • c-testi 2053667 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) comprises 2135 bases as shown in SEQ ID NO: 2, of which base number 36 Numbers 1 to 1454 are open reading frames (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 472 amino acid residues (SEQ ID NO: 14).
  • a homology search was performed for the amino acid sequence of SEQ ID NO: 14 using BLAST.
  • AY061183 consists of 790 amino acids, and amino acid numbers 325 to 788 in the amino acid sequence correspond to amino acid numbers 7 to 468 in the amino acid sequence described in SEQ ID NO: 14, and e-value. : to have 52% of the degree of coincidence over 5 X 10- 135 and 471 amino acid residues was observed.
  • Example 5 (2) According to the expression analysis of the present DNA in Example 5 (2), it was expressed in all cells and tissues as far as it was examined, and tissues involved in immunity and inflammation such as leukocyte, spleen, and promyelocytic leukemia-derived cell line HL60 And high expression in cells, as well as in the cell line SWW620, a cell line derived from the colon and colorectal adenocarcinoma, the cell line A s PC-1, a cell line derived from the metastatic knee adenocarcinoma, and the SH-SY5Y cell line derived from the neuroblastoma. it was high.
  • HEK293 cells cell line derived from human fetal kidney
  • HeLa cells cell line derived from human cervical cancer
  • this protein is a novel serine Z-sleonine protein kinase having functions related to the cell cycle and the like.
  • This protein is DiseasesGastrointestinal cancer
  • Various types of cancers such as neuroblastoma, cell proliferationArteriosclerosis as a disease caused by abnormal cell differentiation or cell cyclePeripheral diabetic retinopathyEndometriotic hyperplasiaGlomerulonephritis Hypertrophy, brain dysplasia, depression, mental disorders such as schizophrenia, Parkinson's disease Neurodegenerative diseases such as Alzheimer's disease, immunity such as asthma, inflammatory diseases, digestive system diseases such as Crohn's disease there is a possibility.
  • present DNA and the protein encoded by the DNA is referred to as “present protein”
  • present protein comprises 3165 bases as shown in SEQ ID NO: 3, of which base number 401 Numbers 1 to 1960 are open reading frames (including the stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 519 amino acid residues (SEQ ID NO: 15).
  • a homology search was performed on the amino acid sequence of SEQ ID NO: 15 using BLAST, and the results were found in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB).
  • BC010640 serine / threonine kinase 3, Ste20, yeast homolog
  • BC010640 was composed of 491 amino acid residues, and amino acid numbers 9 to 491 in the amino acid sequence corresponded to amino acid numbers 37 to 519 in the amino acid sequence described in SEQ ID NO: 15.
  • the differences in the sequence are the N-terminal 36 residues of this protein and the N-terminal 8 residues of BC010640 (Fig. 1) . This difference causes differences in enzyme activity, binding / interaction with other proteins, and expression tissues. I think it could bring That the.
  • the protein B C010640, serine / threonine kinase 3 (S t e 20, yeast homolog) Ru splicing variant der of (Human).
  • BC010640 is a member of the human Ste20-like kinase (MST), a homolog of the budding yeast Ste20, which is a caspase substrate. It is known to increase the sensitivity of potosis (J. Biol. Chem., 276: 19276-19285 (2001)). From the above, this protein is considered to be a Ste 20-like serine Z threonine protein kinase involved in apoptosis.
  • MST human Ste20-like kinase
  • a homolog of the budding yeast Ste20 which is a caspase substrate. It is known to increase the sensitivity of potosis (J. Biol. Chem., 276: 19276-19285 (2001)). From the above, this protein is considered to be a Ste 20-like serine Z threonine protein kinase involved in apoptosis.
  • this DNA was used as a query and dbEST
  • Functions and diseases such as childhood cancer ⁇ prostate cancer ⁇ brain tumor ⁇ myeloma ⁇ leukemia ⁇ cancer such as malignant lymphoma, Alzheimer's disease ⁇ Parkinson's disease ⁇ neurodegenerative diseases such as Huntington's chorea, depression ⁇ central illness such as schizophrenia, Autoimmune diseases, inflammatory diseases, allergic diseases, glomerulonephritis, nephrotic syndrome, kidney diseases such as renal failure, bone marrow diseases such as Gaucher disease, etc. La That.
  • present DNA the protein encoded by the DNA is referred to as “present protein”
  • SEQ ID NO: 4 the protein encoded by the DNA is referred to as “present protein”
  • SEQ ID NO: 4 consisting of 2817 bases, of which base number 42 From 1 to 733 are open reading frames (including the stop codon).
  • Amino acid sequence predicted from open reading frame consists of 563 amino acid residues
  • SEQ ID NO: 16 A homology search was performed for the amino acid sequence of SEQ ID NO: 16 using BLAST, and it was found in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB). Database registration symbol AX 405737
  • this protein is AX4057 Amino acid corresponding to 17 amino acid residues 35 to 51 and 1 residue of 489 is deleted, and amino acid numbers 510, 511, 512, 513 of AX405737 are deleted. It was found that glycine Z-alanine, isoleucine Z-alanine, serine Z-leucine, and alanine Z-glycine were substituted for the amino acids corresponding to (Fig. 3).
  • this DNA lacks the bases corresponding to bases 209 to 259 of AX405737 and three bases of bases 1569-1571, and is located at the position corresponding to bases 1634/1635 of AX405737. 34 bases have been inserted. This insertion shifts the frame, resulting in a difference between the C-terminal 67 residues of this protein and the C-terminal 64 residues of AX405737.
  • c-brace 3003920 (SEQ ID NOS: 5, 17) cb race 3003920 (hereinafter, referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) comprises 5342 bases, as shown in SEQ ID NO: 5, among which base number 371 To 3874 are open reading frames (including the stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 1167 amino acid residues (SEQ ID NO: 17).
  • a homology search was performed for the amino acid sequence of SEQ ID NO: 17 using BLAST.
  • the database in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB)
  • the amino acid sequence described in the registration symbol AX 26251 6 (unnamed 0RF) and WO 01/73050 has an e-value of 0.0, and 99% identity over 1160 amino acid residues. It was hit. From this BLAST search alignment, this protein shows that amino acids corresponding to amino acids 309, 456, and 557 of AX262516 have substitutions for threonine noisoleucine, threonine Zalanine, and lysine asparagine, respectively.
  • PRO SITE Nucleic Acids Res., 30: 235-8 (2002)
  • PRO SITE Nucleic Acids Res., 30: 235-8 (2002)
  • amino acids 27 to 51 were ATP regions (ATP binding sites).
  • This The region of 2004/002133 corresponds to the third exon of AX262516 and is deleted in this DNA.
  • this protein is a variant of the amino acid sequence described in AX 262516 and WO 01/73050, and is estimated to be a protein kinase or an endogenous inhibitor of protein kinase.
  • a BLAST search was performed for db EST (Nature Genetics, 4: 332-3 (1993)) using this DNA as a query, and hit with e-value: ⁇ 1 CT 5 ° Extraction of tissues with five or more human ESTs resulted in normal immune system, lymphoid tissue, and cancerous lung. This DNA was cloned from the cerebellum.
  • this protein is used for functions and diseases unique to these tissues and cells, such as lymphoma, leukemia, myeloma, lung cancer, brain tumors, spinal cerebellar degeneration, inflammatory diseases, allergic diseases, autoimmune diseases, It is possible to speculate that it may be involved in amyotrophic lateral sclerosis, congenital erythroid dysplasia anemia, etc., and is expected to be useful as a diagnostic or therapeutic target for these diseases.
  • present DNA cb race 3038687
  • present protein protein encoded by the DNA
  • LMR1 is a membrane receptor tyrosine kinase with little extracellular domain. Analysis of this protein with the transmembrane domain prediction software TMp red (Biol. Chem. Hoppe-Seyler, 374: 166 (1993)) shows that the transmembrane domain consists of LAVVAVS FSG LF AV I VLMLA CL at amino acids 32 to 53. Hit. In addition, when the HMMPFAM search, to amino acid number 12 No. 5-395 of the protein e- value: protein kinase domain was hit by 3. 3 X 10- 47. Since this protein and LMR1-h differ at the C-terminal side from the intracellular protein kinase domain, this protein may be involved in signal transduction different from LMR1_h.
  • Human LMR l__h is an incomplete N-terminal clone, but this protein is considered to be a variant and full-length.
  • Example 4 (1) When this protein was expressed using the wheat germ cell-free protein synthesis system of Example 4 (1), ATP consuming activity was observed by Example 4 (2) (> 100 units / day). In Example 4 (3), no peak shift of HP LC due to transphosphorylation using a synthetic peptide as a substrate was observed (Fig. 23). Therefore, this protein is a protein kinase targeting a special substrate. The possibility was suggested.
  • LMR1 the expression of LMR1 is restricted to nerve cells.
  • This DNA is a full-length LMR1 isolated from a cerebellar cDNA library and having a different sequence in the cell ⁇ domain.
  • this protein is used in brain tumors, neuroblastoma, melanoma and other cancers, Alhaima's disease, Parkinson's disease, neurodegenerative diseases such as spinocerebellar degeneration, depression, anxiety, and schizophrenia. It may be involved in endocrine diseases such as diabetes, inflammation, etc., and may be used as targets for diagnostics and therapeutics for these diseases. (7) cb race 3050764 (SEQ ID NOs: 7, 19)
  • cb race 3050764 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) comprises 3346 bases as shown in SEQ ID NO: 7, of which base number 1744
  • the open reading frame (including the stop codon) is from No. 2685 to No. 2685.
  • the amino acid sequence predicted from the open reading frame consists of 313 amino acid residues (SEQ ID NO: 19).
  • a homology search was performed for the amino acid sequence of SEQ ID NO: 19 using BLAST, and the results were obtained from the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB).
  • Cell division kinaselO / PISSLRE (cdk 10, Human) registered with database registration number Q 15131 hits with 99% concordance over 306 amino acids with e-value: 5 X 10 179
  • the cdk10 protein is a cyclin dependent kinase consisting of 360 amino acid residues and having a protein kinase domain at amino acids 39-323. At amino acids 80 to 86 there is a PISSLE sequence to which a growth inhibitory factor binds. Since the amino acid sequence numbers 55 to 360 of cdk10 correspond to the amino acid numbers 8 to 313 of the present protein, this protein was considered to be a variant having a different N-terminal from cdk10.
  • a protein kinase domain was found at amino acids 8 to 276. It is shorter on the N-terminal side than the protein kinase domain of cdk10 (amino acids 39-323). This protein and cdk10 may differ in substrate specificity and activity due to differences in the N-terminal of the protein kinase domain.
  • cdk10 protein is involved in the progression of the cell cycle from G2 to M, and that overexpression suppresses growth (Cancer Res., 55: 3992-3995 (1995)). Although its protein is ubiquitously expressed in adult tissues, it is expected to be a tumor suppressor because it is particularly high in terminally differentiated cells. However, no mutation was found in breast cancer (Genomics, 56: 90-97 (1999)), and the details of its function are unknown.
  • Example 4 (1) When this protein was expressed in the wheat germ cell-free protein synthesis system of Example 4 (1), it was confirmed that it had ATP consuming activity by the method of Example 4 (2) (39 units / day). According to the method of (3), peak shift of HP LC due to transphosphorylation was recognized using syntide2 as a substrate (FIG. 24), indicating that the present protein is a kinase.
  • This protein has a different N-terminal sequence from cdk10, and may be under different expression control.Involvement in cell proliferation, differentiation, carcinogenesis, tumor suppressor function, immunity, inflammation, diagnosis of neurodegenerative diseases, etc. It can be used as a target for drugs and therapeutics.
  • present DNA comprises 3576 bases as shown in SEQ ID NO: 8, of which base number 254 Numbers 2554 are open reading frames (including the stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 766 amino acid residues (SEQ ID NO: 20).
  • a homology search was performed for the amino acid sequence of SEQ ID NO: 20 using BLAST, and it was found in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB).
  • 183 to 196 found a sequence specific to serine / threonine protein kinase.
  • the protein kinase domain was searched for 799327993 by HMMPFAM, it was predicted that ⁇ 327993 was present at amino acids 19 to 270.
  • the protein kinase domain covers different regions of the N-terminal sequences of both, and it is presumed that the substrate specificity and the activity are different.
  • Example 4 When this protein was expressed in the cell-free protein synthesis system of Example 4 (1), ATP consuming activity (69 units / day) was observed by the method described in Example 4 (2). According to the method described in (3), peak shift due to phosphate group transfer was observed using syntide2 as a substrate (FIG. 25), indicating that the present protein is a kinase.
  • this DNA and this protein are functions in the development and differentiation of the brain, anxiety disorders, depression, schizophrenia, neurodegenerative diseases, cancer, inflammation, diabetes and other diagnostic and therapeutic agents, or ophthalmology (glaucoma). Cataracts, retinopathy, etc.) as targets for diagnostics and therapeutics.
  • present DNA cb r awh 3022866
  • present protein consists of 4547 bases as shown in SEQ ID NO: 9; Nos. 3898 to 3898 are open reading frames (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 1288 amino acid residues. (SEQ ID NO: 21).
  • Example 4 When this protein was expressed in the cell-free protein synthesis system of Example 4 (1), ATP consumption activity (217 unit / ⁇ ay) was observed in Example 4 (2). According to 3), a peak shift in HPLC by phosphoryl transfer using syntide2 as a substrate was confirmed (Fig. 26), confirming that it is a kinase.
  • This DNA is derived from the brain, but db EST (Nature Genetics, 4) : 332-3
  • BLAST searches against the immune system, skin, kidney, brain, adrenal gland, and other hit clones were found throughout.
  • this protein is present in the nucleus and is expected to be involved in the aggregation of chromosomes.
  • the present DNA and the present protein can be used as targets for diagnostics and therapeutics for cancer, immune inflammation (eg, autoimmune diseases, nephritis, etc.), hypertension, and neurodegenerative diseases.
  • a homology search using BLAST was performed on the amino acid sequence of SEQ ID NO: 22, which was found in the NRDB protein database (SWISS—a database of non-overlapping amino acid sequences created from PROT, PIR, TREMBL, GENPEPT, and PDB).
  • SWISS a database of non-overlapping amino acid sequences created from PROT, PIR, TREMBL, GENPEPT, and PDB.
  • This protein is a protein with 15 amino acids between the cdc42 binding region and clathrin binding region. Its binding and interaction with cdc42 and clathrin may be different from ACK1.
  • this protein When this protein was expressed in the cell-free protein synthesis system of Example 4 (1), no ATP consuming activity was observed in Example 4 (2). It was suggested that sufficient activation of this protein requires modifications such as phosphoric acid or protease cleavage, or that it is a protein kinase targeting a special substrate. Based on the above, this protein is a diagnostic agent for cancer, arteriosclerosis, diabetes, HIV, inflammation, diseases related to receptor uptake, diseases related to neurotransmission disorders, dementia such as Alzheimer's disease, hypertension, glaucoma, etc. It can be used as a target for therapeutic drugs.
  • c-brtha 2034874 (hereinafter referred to as “present DNA” and the protein encoded by the DNA is referred to as “present protein”) consists of 3857 bases, as shown in SEQ ID NO: 11, of which base number Nos. 55 to 1287 are open reading frames (including a stop codon). Open 04002133
  • the amino acid sequence predicted from the coding frame consists of 410 amino acid residues (SEQ ID NO: 23). A homology search was performed for the amino acid sequence of SEQ ID NO: 23 using BLAST.
  • MA P KK 4 has a total length of 399 amino acids. This protein is a variant that has an insertion of 11 amino acids between amino acids 39 and 40 of MAP KK4 (amino acids 40-50 of this protein) ( Figure 17).
  • Example 4 When this protein was expressed in the cell-free protein synthesis system of Example 4 (1), ATP consuming activity (33 units / day) was detected by the method of Example 4 (2). As a result, a peak shift in HPLC due to transphosphorylation using syntide2 as a substrate was observed (FIG. 28), indicating that this protein has kinase activity.
  • This protein is used for apoptosis against immune, liver, brain and other stress, cell proliferation, cancer, abnormal signal transduction by GPCR, elongation of nerve cells, dementia, liver regeneration, diabetes, blood pressure regulation, amyotrophic lateral sclerosis
  • GPCR GPCR-specific kinase
  • elongation of nerve cells dementia, liver regeneration, diabetes, blood pressure regulation, amyotrophic lateral sclerosis
  • immune inflammatory diseases such as allergic diseases, etc.
  • it can be used as a target for diagnostics and therapeutics for these diseases.
  • c-testi 4052197 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) comprises 3105 bases as shown in SEQ ID NO: 12, of which base number 407 Numbers 1690 to 1690 are open reading frames (including stop codons). open The amino acid sequence predicted from the reading frame consists of 427 amino acid residues (SEQ ID NO: 24). A homology search was performed on this protein using BLAST, and the database registration symbol in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB) was obtained.
  • Example 4 When this protein was expressed by the cell-free protein synthesis system of Example 4 (1), no ATP consuming activity was observed in Example 4 (2). It is thought that the function of this protein requires stimulation such as phosphorylation or activation such as protease cleavage.
  • This protein has a novel sequence at amino acids 1 to 91. It may have a function different from that of the original PKA catalytic subunit ⁇ by a protein that specifically binds to this region or by subjecting it to specific expression regulation. Although this DNII was isolated from the testis, experiments on PKA catalytic subunit chick knockout mice suggest that this protein is involved in sperm maturation, regulation of liver, and kidney protein expression.
  • this protein is targeted for diagnosis and treatment of cancers such as liver cancer, kidney cancer, testis cancer, hepatitis, cirrhosis, nephritis, diabetes, immunity, inflammatory diseases, infertility, and diseases related to GPCR signaling. It can be used as Industrial potential
  • the protein of the present invention and the DNA encoding the same have kinase activity and the like, the activity is regulated by using the protein or the DNA encoding the protein. It is useful for the development of a medicament that can screen for a substance that can act on diseases associated with the protein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

It is intended to analyze the base sequences of cDNA clones contained in a full-length cDNA library, analyze and identify the physiological activity of a protein encoded by a cDNA thus obtained which has a novel full-length sequence containing a splicing variant, and thus propose a method of using the protein and DNA encoding the same based on the physiological activity. Namely, the following proteins (a) or (b). (a) A protein having an amino acid sequence represented by any of SEQ ID NOS:13 to 24. (b) A protein having an amino acid sequence derived from an amino acid sequence represented by any of SEQ ID NOS:13 to 24 by deletion, substitution and/or addition of one to several amino acids and having a kinase activity.

Description

明細書  Specification
新規タンパク質およびそれをコードする D NA 技術分野  Novel proteins and DNA fields that encode them
本発明は、 新規なタンパク質、 該タンパク質をコードする D NA、 該タンパク 質をコードする完全長 c D NA、 該 D NAを有する組換えベクター、 該 D NAの 部分配列から成るオリゴヌクレオチド、 該 D NAを導入した遺伝子導入細胞、 お よび該タンパク質に特異的に結合する抗体等に関する。 背景技術  The present invention relates to a novel protein, a DNA encoding the protein, a full-length cDNA encoding the protein, a recombinant vector having the DNA, an oligonucleotide comprising a partial sequence of the DNA, The present invention relates to a transgenic cell into which NA has been introduced, an antibody that specifically binds to the protein, and the like. Background art
現在、 世界的なレベルで様々な生物のゲノム配列の解明とその解析が進められ ている。 既に約百数十の原核微生物、 下等真核生物の出芽酵母、 多細胞性真核生 物である線虫で、 その全ゲノム配列が決定された。 3 0億塩基対といわれるヒト のゲノムについては 2 0 0 1年 2月にその塩基配列のドラフトが発表されていた が、 2 0 0 3年 4月に完全配列が解読され公表された。 ゲノム配列を明らかにす る目的は、 全ての遺伝子の機能や制御、 あるいは遺伝子間、 タンパク質間、 細胞 間さらには個体間における相互作用のネットワークとして複雑な生命現象を理解 するところにある。 種々の生物種のゲノム情報から生命現象を解明していくこと は、 単に学術分野における研究課題として重要であるのみならず、 そこで得られ る研究成果をいかに産業上の応用へと発展させていくかという点で、 その社会的 な意義も大きい。  At present, genomic sequences of various organisms are being elucidated and analyzed on a global level. The genome sequence of about a hundred prokaryotic microorganisms, lower eukaryotic budding yeast and nematodes, multicellular eukaryotes, have already been determined. A draft of the nucleotide sequence of the human genome, which is said to be 300 billion base pairs, was published in February 2001, but the complete sequence was deciphered and published in April 2003. The purpose of clarifying the genome sequence is to understand the complex life phenomena as a network of interactions and functions among all genes, between proteins, between cells, and even between individuals. Elucidating life phenomena from the genomic information of various species is not only important as a research topic in the academic field, but also how to develop the research results obtained therefrom into industrial applications. In that respect, its social significance is also great.
ところが単にゲノム配列を決定しただけでは、 全ての遺伝子の機能を明らかに できるわけではない。 例えば酵母では、 ゲノム配列から推定された約 6 , 0 0 0 の遺伝子の約半数しか、 その機能を推定できなかった。 一方、 ヒ トには約 1 0万 種類のタンパク質が存在するといわれる。 そこで、 ゲノム配列から明らかにされ てくる膨大な量の新しい遺伝子の機能を、 迅速かつ効率的に解明していくための 「ハイスループット遺伝子機能解析システム」 の確立が、 強く望まれている。 真核生物のゲノム配列では、 多くの場合、 一つの遺伝子がイントロンによって 複数のェクソンに分断されている。 そのため、 ゲノム配列情報だけからそこにコ ードされるタンパク質の構造を正確に予測するには、 多くの問題がある。 一方、 イントロンが除かれた mRNAから作製される cDNAでは、 タンパク質のアミ ノ酸配列の情報が一つの連続した配列情報として得られるため、 容易にその一次 構造を明らかにすることが可能である。 ヒ トの cDNAの研究では、 これまでに 500万以上の EST (Expressed Sequence Tag) データが公共データベース に公開されている。 However, simply determining the genome sequence cannot clarify the functions of all genes. For example, in yeast, only about half of the about 6,000 genes estimated from the genome sequence could estimate its function. On the other hand, it is said that there are about 100,000 types of proteins in humans. Therefore, there is a strong demand for the establishment of a “high-throughput gene function analysis system” for quickly and efficiently elucidating the functions of a huge amount of new genes revealed from genome sequences. In eukaryotic genomic sequences, one gene is often divided into multiple exons by introns. Therefore, there are many problems in accurately predicting the structure of the encoded protein from the genome sequence information alone. On the other hand, in cDNA produced from mRNA from which introns have been removed, the amino acid sequence information of the protein is obtained as one continuous sequence information, so that the primary structure can be easily clarified. In human cDNA studies, more than 5 million Expressed Sequence Tag (EST) data have been published on public databases so far.
これらの情報は、 ヒト遺伝子構造の解明やゲノム配列におけるェクソン領域の 予測、 あるいはその発現プロファイルの推定など、 様々な角度から利用されてい る。 ところが、 これらのヒト EST情報の多くは cDNAの 3' 末端側近傍に集 中しているため、 特に mRNAの 5, 末端近傍の情報が極端に不足している状況 にある。 また、 世界の研究機関 (ヘリックス研究所、 かずさ DNA研究所、 東大 医科学研究所、 ドイツ癌研究センター、 MGCプロジェクトなど) で行われてい る解析の結果明らかにされている c DNAは 4万数千に上り、 数的には 3万数千 と言われる遺伝子座の大半をカバーしていると思われるが、 全長クローンとして 取得されている c DNAの割合は 80%程度であることや、 重複ゃスプライシン グバリアントが含まれていることを考慮すると、 まだ取得されていない c DNA は多数存在していると考えられる。  Such information is used from various angles, such as elucidation of the human gene structure, prediction of the exon region in the genome sequence, and estimation of its expression profile. However, since most of these human EST information is concentrated near the 3 'end of cDNA, information on the mRNA, especially near the 5' end, is extremely insufficient. In addition, 40,000 cDNAs have been identified as a result of analyzes conducted at research institutions around the world (Helix Research Institute, Kazusa DNA Research Institute, The University of Tokyo Medical Research Institute, German Cancer Research Center, MGC Project, etc.) Thousands of them are considered to cover most of the 30,000 thousands of loci, but the percentage of cDNAs obtained as full-length clones is around 80%,と Considering that splicing variants are included, it is considered that there are many cDNAs that have not yet been obtained.
完全長 c DNAを取得できれば、 その 5 ' 末端配列からゲノム配列上での mR NA転写開始点が推定できる上、 その配列の中に含まれる mRNAの安定性や翻 訳段階での発現制御に関わる因子の解析が可能である。 また、 翻訳開始コドンで ある a t gを 5, 側に含むことから、 正しいフレームでタンパク質への翻訳を行 うことができる。 したがって、 適当な遺伝子発現系を適用することで、 その cD NAがコードするタンパク質を大量に生産したり、 タンパク質を発現させてその 生物学的活性を解析することも可能になる。 このように、 完全長 cDNAの解析 からはゲノム配列解析を相補する重要な情報が得られる。 また、 発現可能な全長 c DNAクローンは、 その遺伝子の機能の実証的な解析や産業分野での応用への 展開において、 その重要性はきわめて高い。 If the full-length cDNA can be obtained, the transcription start point of the mRNA on the genomic sequence can be estimated from the 5 'terminal sequence, and it is involved in the stability of mRNA contained in the sequence and the regulation of expression at the translation stage. Factor analysis is possible. Also, since the translation initiation codon atg is included on the 5 side, translation into protein can be performed in the correct frame. Therefore, by applying an appropriate gene expression system, it becomes possible to mass-produce the protein encoded by the cDNA or to express the protein and analyze its biological activity. Thus, analysis of full-length cDNA provides important information that complements genomic sequence analysis. In addition, the total length that can be expressed cDNA clones are of great importance in empirical analysis of the function of their genes and their application to industrial applications.
一方、 同一の遺伝子から転写修飾された mRNAであっても、 転写直後の前駆 RNAから成熟 mRNAを生成する過程でスプライシングを受ける際、 遺伝子配 列中一部のェクソンが挿入 '欠失して結合する異性体 (以下、 これを 「スプライ シングバリアント mRNA」 と称することがある) がある。 実際、 これらの mR NAが翻訳されて生成される、 複数種の類似のタンパク質 (以下、 これらを 「ス プライシングバリアント」 と称することがある) が生体内において確認されてい る。 スプライシングバリアントは、 組織特異的、 発生段階特異的、 あるいは疾患 特異的に発現し、 それぞれ異なる機能を有していると考えられている。  On the other hand, even when mRNA is transcriptionally modified from the same gene, some exons in the gene sequence are inserted and deleted when splicing during the process of producing mature mRNA from the precursor RNA immediately after transcription. (Hereinafter, this may be referred to as “splicing variant mRNA”). In fact, a plurality of similar proteins (hereinafter sometimes referred to as “splicing variants”) produced by translating these mRNAs have been identified in vivo. Splicing variants are expressed in a tissue-specific, developmental-stage or disease-specific manner, and are thought to have different functions.
例えば、 チロシンキナーゼである J AK 3遺伝子は、 S型、 B型、 M型の 3種 類のスプライシングバリアントが存在し、 S型は造血細胞で発現しているのに対 し、 B型と M型は造血細胞と上皮細胞で発現している。 S型と M型が抗体によつ て共沈し、 同じ細胞で発現していることから、 複数のスプライシングバリアント が共に機能し、 細胞内におけるサイトカインのシグナル伝達反応の複雑性をより 高めていると推測されている (例えば、 Lai K. S. et al. , J. Biol. Chem. , 270: 25028-25036 (1995)を参照) 。  For example, the JAK3 gene, which is a tyrosine kinase, has three types of splicing variants, S-type, B-type, and M-type.S-type is expressed in hematopoietic cells, whereas S-type is expressed in hematopoietic cells. The type is expressed on hematopoietic cells and epithelial cells. Antibodies co-precipitate S-type and M-type and express them in the same cell, allowing multiple splicing variants to work together, further increasing the complexity of intracellular cytokine signaling. (See, for example, Lai KS et al., J. Biol. Chem., 270: 25028-25036 (1995)).
このようなスプライシングバリアントの mRNAあるいは c DN Aも、 従来の c DNAライブラリーや E STからは取得されにくく、 転写開始点を含む完全長 c DNAライブラリ一により取得される可能性の高いクローンである (例えば、 WO 98Z2250 7号公報 (SEQ I D NO. 1および NO. 2) を参 照) 。  The mRNA or cDNA of such a splicing variant is also difficult to obtain from a conventional cDNA library or EST, and is a clone that is likely to be obtained from a full-length cDNA library including the transcription start site. (See, for example, WO 98Z2250 7 (SEQ ID NO. 1 and NO. 2)).
特に、 プロテインキナーゼは、 基質であるタンパク質のセリン、 スレオニンあ るいはチロシン残基をリン酸ィ匕する酵素であり、 極めて多くのフアミリーが知ら れている。 また、 一般にプロテインキナーゼはタンパク質リン酸化を介する細胞 内シグナル伝達系を調節することにより、 種々の生命現象の制御に関わっている ことが知られており、 疾患との関係が解明されている遺伝子が多い (例えば、 Hunter, T. , Cell, 50: 823 - 829 (1987)を参照) 。 し力 し、 ヒ トの遺伝子の約 3〜4%はプロテインキナーゼの遺伝子であると言われ、 ヒトの体内には約千種 もの異なるプロテインキナーゼが存在すると推定されており、 まだ多くのプロテ ィンキナーゼ遺伝子がクローユングされないままに残されている。 したがって、 ヒトにおいて分離が進んでいないスプライシングバリアントを含む新規なプロテ インキナーゼの全長 c DNAを提供する意義は大きい。 また、 プロテインキナー ゼは、 治療のための標的分子として、 またタンパク質自身に医薬品としての有用 性を期待できる。 したがって、 これらのタンパク質をコードする c DNAの全長 を明らかにすることには大きな意義がある。 発明の開示 In particular, protein kinase is an enzyme that phosphorylates serine, threonine, or tyrosine residues of a protein as a substrate, and an extremely large number of families are known. In general, protein kinases are known to be involved in the control of various life phenomena by regulating intracellular signal transduction systems via protein phosphorylation. Many (for example, Hunter, T., Cell, 50: 823-829 (1987)). However, about 3 to 4% of human genes are said to be protein kinase genes, and it is estimated that about 1,000 different protein kinases exist in the human body, and there are still many protein kinase genes. Are left uncloaked. Therefore, it is significant to provide a full-length cDNA of a novel protein kinase including a splicing variant that has not progressed in humans. In addition, protein kinases can be expected to be useful as therapeutic target molecules and proteins themselves as pharmaceuticals. Therefore, it is of great significance to determine the full length of the cDNAs encoding these proteins. Disclosure of the invention
本発明は、 完全長 cDNAライブラリーに含まれる cDNAクローンの塩基配 列を解析し、 このうちスプライシングバリアントを含む全長として配列が新規な cDNAについては、 これがコードするタンパク質の生理活性を解析及び同定し、 該生理活性に基づくタンパク質およびそれをコードする DN Aの利用方法を提案 することを目的とする。  The present invention analyzes the nucleotide sequence of a cDNA clone contained in a full-length cDNA library, and analyzes and identifies the physiological activity of a protein encoded by a cDNA having a novel full-length sequence including a splicing variant. An object of the present invention is to propose a protein based on the physiological activity and a method of using DNA encoding the protein.
本発明者らは、 オリゴキャップ法 (Maruyama, K. , et al. , Gene, 138: 171-174(1994); Suzuki, Y. et al. , Gene, 200: 149-156 (1997)) を用いて取 得されたスプライシングバリアントを含む配列が新規な c DNAについて、 該 c D N Aクローンの塩基配列の相同性に基づきデータベースを検索したところ、 該 配列にキナーゼ活性を有するタンパク質に特異的な配列を見出し、 これらの c D NAがコードするタンパク質がプロテインキナーゼであると同定した。 本発明は、 これらの知見に基づいて成し遂げられたものである。  The present inventors have proposed the oligocap method (Maruyama, K., et al., Gene, 138: 171-174 (1994); Suzuki, Y. et al., Gene, 200: 149-156 (1997)). When a database containing the splicing variant obtained using the novel cDNA was searched in a database based on the homology of the nucleotide sequence of the cDNA clone, a sequence specific to a protein having kinase activity was found in the sequence. And identified that the protein encoded by these cDNAs was a protein kinase. The present invention has been accomplished based on these findings.
すなわち本発明によれば、 以下の (1) 〜 (1 5) に記載の発明が提供される。 That is, according to the present invention, the following inventions (1) to (15) are provided.
(1) 以下の (a) または (b) のタンパク質; (1) The following protein of (a) or (b);
(a) 配列番号 13〜 24のいずれかに記載のアミノ酸配列からなるタンパク質、 (b) 配列番号 1 3〜24のいずれかに記載のアミノ酸配列において 1もしくは 数個のアミノ酸が欠失、 置換おょぴ Zまたは付加されたアミノ酸配列からなり、 かつキナーゼ活性を有するタンパク質。 (a) a protein consisting of the amino acid sequence of any one of SEQ ID NOs: 13 to 24, (b) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted, or added to the amino acid sequence of any one of SEQ ID NOs: 13 to 24, and which has kinase activity.
(2) (1) に記載のタンパク質をコードする DNA。  (2) A DNA encoding the protein of (1).
(3) (1) に記載のタンパク質をコードする完全長 cDNA。  (3) A full-length cDNA encoding the protein of (1).
(4) 以下の (a) 、 (b) または (c) のいずれかの DNA ;  (4) any one of the following DNAs (a), (b) or (c);
(a) 配列番号 1〜12のいずれかに記載の塩基配列を有する DNA、  (A) DNA having the nucleotide sequence of any one of SEQ ID NOs: 1 to 12,
( b ) 配列番号 1〜 12のいずれかに記載の塩基配列において、 1もしくは数個 の塩基が欠失、 置換および Zまたは付加された塩基配列を有し、 かつキナーゼ活 性を有するタンパク質をコードする DNA、  (b) coding for a protein having a kinase activity having a base sequence in which one or several bases are deleted, substituted and Z or added in the base sequence set forth in any one of SEQ ID NOs: 1 to 12; DNA,
( c ) 配列番号 1〜 12のいずれかに記載の塩基配列あるいはその相捕配列を有 する DNAをストリンジェントな条件下でハイブリダイズすることができる塩基 配列を有し、 かつキナーゼ活性を有するタンパク質をコードする DNA。  (c) a protein having a nucleotide sequence capable of hybridizing a DNA having the nucleotide sequence of any one of SEQ ID NOs: 1 to 12 or its complementary sequence under stringent conditions, and having a kinase activity DNA that encodes
(5) (2) 〜 (4) のいずれかに記載の DN Aを含む組換えベクター。 (5) A recombinant vector containing the DNA according to any one of (2) to (4).
(6) (2) 〜 (4) のいずれかに記載の DN Aまたは (5) に記載の組換え ベクターを導入した遺伝子導入細胞または該細胞からなる個体。 (6) A transgenic cell into which the DNA according to any one of (2) to (4) or the recombinant vector according to (5) has been introduced, or an individual comprising the cell.
(7) (6) に記載の細胞により産生される、 (1) に記載のタンパク質。 (7) The protein according to (1), which is produced by the cell according to (6).
(8) (2) 〜 (4) のいずれかに記載の DN Aの塩基配列中の連続した 5〜 100塩基と同じ配列を有するセンスオリゴヌクレオチド、 当該センスオリゴヌ クレオチドと相補的な配列を有するアンチセンスオリゴヌクレオチド、 および、 当該センスまたはアンチセンスオリゴヌクレオチドのオリゴヌクレオチド誘導体 から成る群から選ばれるオリゴヌクレオチド。 (8) A sense oligonucleotide having the same sequence as 5 to 100 consecutive nucleotides in the nucleotide sequence of DNA according to any one of (2) to (4), and an antisense having a sequence complementary to the sense oligonucleotide. An oligonucleotide selected from the group consisting of an oligonucleotide and an oligonucleotide derivative of the sense or antisense oligonucleotide.
(9) (1) または (7) に記載のタンパク質に特異的に結合する抗体あるい はその部分フラグメント。  (9) An antibody or a partial fragment thereof that specifically binds to the protein of (1) or (7).
(10) 抗体がモノクローナル抗体である ( 9 ) に記載の抗体。  (10) The antibody according to (9), wherein the antibody is a monoclonal antibody.
(1 1) モノクローナル抗体が (1) または (7) に記載のタンパク質のキナ ーゼ活性を中和する作用を有することを特徴とする (10) に記載の抗体。 (12) (1) または (7) に記載のタンパク質と被検物質を接触させ、 該被 検物質による該タンパク質が有する活性の変化を測定することを特徴とする、 該 タンパク質の活性調節物質のスクリー ング方法。 (11) The antibody according to (10), wherein the monoclonal antibody has an action of neutralizing the kinase activity of the protein according to (1) or (7). (12) A method for controlling the activity of a protein according to (1) or (7), comprising: Screening method.
(13) (1) に記載のタンパク質を発現する細胞または (6) に記載の遺伝 子導入細胞と被検物質を接触させ、 該細胞に導入されている D N Aの発現レベル の変化を検出することを特徴とする、 該 DN Aの発現調節物質のスクリーニング 方法。  (13) Contacting a test substance with a cell that expresses the protein according to (1) or the gene-introduced cell according to (6), and detecting a change in the expression level of DNA introduced into the cell. A method for screening a substance that regulates the expression of DNA, characterized in that:
(14) (1) に記載のタンパク質のアミノ酸配列から選択される少なくとも 1以上のァミノ配列情報および/または (2) 〜 (4) のいずれかに記載の DN Aの塩基配列から選択される少なくとも 1以上の塩基配列情報を保存したコンビ ユータ読み取り可能記録媒体。  (14) At least one or more amino acid sequence information selected from the amino acid sequence of the protein according to (1) and / or at least one selected from the nucleotide sequence of DNA according to any of (2) to (4) A computer-readable recording medium that stores one or more base sequence information.
(15) (1) に記載のタンパク質および または (2) 〜 (4) のいずれか に記載の D N Aを結合させた担体。 図面の簡単な説明  (15) A carrier to which the protein according to (1) and / or the DNA according to any of (2) to (4) are bound. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 配列番号 1 5のアミノ酸配列を有するタンパク質の構造と既知タンパ ク質 BC 010640の構造を比較した図である。  FIG. 1 is a diagram comparing the structure of a protein having the amino acid sequence of SEQ ID NO: 15 with the structure of a known protein BC010640.
図 2は、 配列番号 3の塩基配列を有する DN Aと既知タンパク質 BC 0106 40をコードする cDNAをそれぞれヒトゲノム配列にマッピングして解析した ェクソン構造を比較した図である。  FIG. 2 is a diagram comparing the exon structures obtained by mapping and analyzing the DNA having the nucleotide sequence of SEQ ID NO: 3 and the cDNA encoding the known protein BC 010640 to the human genomic sequence.
図 3は、 配列番号 1 6のアミノ酸配列を有するタンパク質の構造と既知タンパ ク質 AX405737の構造を比較した図である。  FIG. 3 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 16 with the structure of the known protein AX405737.
図 4は、 配列番号 4の塩基配列を有する DNAと既知タンパク質 AX 4057 37をコードする cDNAをそれぞれヒトゲノム配列にマッピングして解析した ェクソン構造を比較した図である。  FIG. 4 is a diagram comparing the exon structures obtained by mapping the DNA having the nucleotide sequence of SEQ ID NO: 4 and the cDNA encoding the known protein AX405573 to the human genome sequence and analyzing them.
図 5は、 配列番号 1 7のアミノ酸配列を有するタンパク質の構造と既知タンパ ク質 AX 262516の構造を比較した図である。 図 6は、 配列番号 5の塩基配列を有する DNAと既知タンパク質 AX 2625 16をコードする c DNAをそれぞれヒトゲノム配列にマッピングして解析した ェクソン構造を比較した図である。 FIG. 5 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 17 with the structure of the known protein AX262516. FIG. 6 is a diagram comparing the exon structures obtained by mapping the DNA having the base sequence of SEQ ID NO: 5 and the cDNA encoding the known protein AX262516 to the human genome sequence and analyzing them.
図 7は、 配列番号 18のアミノ酸配列を有するタンパク質の構造と既知タンパ ク質 A AV 32449、 AAW48841、 AAW48842の構造を比較した 図である。  FIG. 7 is a diagram comparing the structure of a protein having the amino acid sequence of SEQ ID NO: 18 with the structures of known proteins AAV32449, AAW48841, and AAW48842.
図 8は、 配列番号 6の塩基配列を有する DNAと既知タンパク質 AAV 324 49をコードする c DNAをそれぞれヒトゲノム配列にマッピングして解析した ェクソン構造を比較した図である。  FIG. 8 is a diagram comparing the exon structures obtained by mapping the DNA having the base sequence of SEQ ID NO: 6 and the cDNA encoding the known protein AAV32449 to human genomic sequences, respectively.
図 9は、 配列番号 19のアミノ酸配列を有するタンパク質の構造と既知タンパ ク質 c d k 10の構造を比較した図である。  FIG. 9 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 19 with the structure of the known protein cdk10.
図 10は、 配列番号 7の塩基配列を有する DN Aと既知タンパク質 c d k 10 をコードする c DNAをそれぞれヒトゲノム配列にマッピングして解析したェク ソン構造を比較した図である。  FIG. 10 is a diagram comparing exon structures obtained by mapping and analyzing the DNA having the nucleotide sequence of SEQ ID NO: 7 and the cDNA encoding the known protein cdk10 to the human genome sequence, respectively.
図 11は、 配列番号 20のアミノ酸配列を有するタンパク質の構造と既知タン パク質 AX327993の構造を比較した図である。  FIG. 11 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 20 with the structure of the known protein AX327993.
図 12は、 配列番号 8の塩基配列を有する DNAと既知タンパク質 AX327 993をコードする c DN Aをそれぞれヒトゲノム配列にマッピングして解析し たェクソン構造を比較した図である。  FIG. 12 is a diagram comparing the exon structures obtained by mapping the DNA having the nucleotide sequence of SEQ ID NO: 8 and the cDNA encoding the known protein AX327993 to human genomic sequences, respectively.
図 13は、 配列番号 21のアミノ酸配列を有するタンパク質の構造と既知タン パク質 SGK040の構造を比較した図である。  FIG. 13 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 21 with the structure of the known protein SGK040.
図 14は、 配列番号 9の塩基配列を有する DNAと既知タンパク質 SGK04 0をコードする cDNAをそれぞれヒトゲノム配列にマッピングして解析したェ クソン構造を比較した図である (a) 。 さらに、 ェクソン構造から見た両タンパ ク質の構造を比較した図も示す (b) 。  FIG. 14 is a diagram comparing exon structures obtained by mapping a DNA having the nucleotide sequence of SEQ ID NO: 9 and a cDNA encoding the known protein SGK040 to a human genome sequence and analyzing them, respectively (a). In addition, a diagram comparing the structure of both proteins as seen from the exon structure is shown (b).
図 15は、 配列番号 22のアミノ酸配列を有するタンパク質の構造と既知タン パク質 ACK 1の構造を比較した図である。 図 1 6は、 配列番号 1 0の塩基配列を有する DNAと既知タンパク質 AC K 1 をコードする c DNAをそれぞれヒトゲノム配列にマッピングして解析したエタ ソン構造を比較した図である。 FIG. 15 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 22 with the structure of the known protein ACK1. FIG. 16 is a diagram comparing the etason structures obtained by mapping the DNA having the base sequence of SEQ ID NO: 10 and the cDNA encoding the known protein ACK1 to the human genome sequence and analyzing them.
図 1 7は、 配列番号 23のアミノ酸配列を有するタンパク質の構造と既知タン パク質 MAP KK 4の構造を比較した図である。  FIG. 17 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 23 with the structure of the known protein MAP KK4.
図 1 8は、 配列番号 1 1の塩基配列を有する DN Aと既知タンパク質 MAP K K4をコードする c DNAをそれぞれヒトゲノム配列にマッピングして解析した ェクソン構造を比較した図である。  FIG. 18 is a diagram comparing the exon structures analyzed by mapping the DNA encoding the nucleotide sequence of SEQ ID NO: 11 and the cDNA encoding the known protein MAPKK4 to the human genome sequence, respectively.
図 1 9は、 配列番号 24のアミノ酸配列を有するタンパク質の構造と既知タン パク質 PKAC aの構造を比較した図である。  FIG. 19 is a diagram comparing the structure of the protein having the amino acid sequence of SEQ ID NO: 24 with the structure of the known protein PKACa.
図 20は、 配列番号 1 2の塩基配列を有する DNAと既知タンパク質 PKAC a をコードする c DNAをそれぞれヒトゲノム配列にマッピングして解析した ェクソン構造を比較した図である。  FIG. 20 is a diagram comparing the exon structures obtained by mapping the DNA having the nucleotide sequence of SEQ ID NO: 12 and the cDNA encoding the known protein PKAC a to the human genome sequence and analyzing them.
図 2 1は、 逆相 HP LC上で測定した、 基質としての標準ポリペプチド (C d c 2、 A r g 2 -OH PKA、 PKC、 DNA— PK:、 PTK 1、 PTK2、 MLCKS、 C aMK I I、 Syntide2) のピークを示す。  Figure 21 shows the standard polypeptides (Cdc2, Arg2-OH PKA, PKC, DNA—PK :, PTK1, PTK2, MLCKS, CaMKII, The peak of Syntide2) is shown.
図 2 2は、 基質としての標準ポリペプチド (C d c 2、 Ar g 2— OH、 PK A、 PKC、 DNA— PK:、 PTK 1、 PTK2S MLCKS、 C aMK I I、 Syntide2) に配列番号 4のァミノ酸配列を有するタンパク質を添加して反応さ せた後、 逆相 H P L C上でピークを測定した結果を示す。 2 2, reference polypeptide as a substrate (C dc 2, Ar g 2- OH, PK A, PKC, DNA- PK :, PTK 1, PTK2 S MLCKS, C aMK II, Syntide2) in SEQ ID NO: 4 The figure shows the results obtained by adding and reacting a protein having an amino acid sequence and then measuring peaks on reversed-phase HPLC.
図 2 3は、 基質としての標準ポリペプチド (C d c 2、 A r g 2— OH、 PK A、 PKC、 DNA— PK:、 PTK 1、 PTK2、 MLCKS、 C aMK I I、 Syntide2) に配列番号 6のァミノ酸配列を有するタンパク質を添加して反応さ せた後、 逆相 H P L C上でピークを測定した結果を示す。  Figure 23 shows that the standard polypeptide (Cdc2, Arg2-OH, PKA, PKC, DNA-PK :, PTK1, PTK2, MLCKS, CaMKII, Syntide2) as a substrate The figure shows the results obtained by adding a protein having an amino acid sequence and causing a reaction to proceed, and then measuring peaks on reversed-phase HPLC.
図 24は、 基質としての標準ポリペプチド (C d c 2、 Ar g 2— OH、 PK A、 PKC、 DNA— PK:、 PTK1、 PTK2、 MLCKS、 C aMK I I、 Syntide2) に配列番号 7のァミノ酸配列を有するタンパク質を添加して反応さ せた後、 逆相 H PLC上でピークを測定した結果を示す。 Figure 24 shows the standard polypeptides as substrates (Cdc2, Arg2—OH, PKA, PKC, DNA—PK :, PTK1, PTK2, MLCKS, CaMKII, The results obtained by adding a protein having the amino acid sequence of SEQ ID NO: 7 to Syntide 2) and reacting the resulting mixture, and measuring the peak on a reverse-phase HPLC.
図 25は、 基質としての標準ポ ペプチド (C d c 2、 Ar g 2—OH、 PK A、 PKC、 DNA—PK:、 PTK1、 PTK2、 MLCKS、 C aMK I I、 Syntide2) に配列番号 8のァミノ酸配列を有するタンパク質を添加して反応さ せた後、 逆相 H PLC上でピークを測定した結果を示す。  Figure 25 shows that the standard polypeptides (Cdc2, Arg2-OH, PKA, PKC, DNA-PK :, PTK1, PTK2, MLCKS, CaMKII, Syntide2) as substrates are the amino acids of SEQ ID NO: 8. The figure shows the results of peaks measured on reversed-phase HPLC after a protein having a sequence was added and reacted.
図 26は、 基質としての標準ポリペプチド (C d c 2、 Ar g 2— OH、 PK A、 PKC、 DNA—PK:、 PTK1、 PTK2N MLCKS、 C aMK I I、 Syntide2) に配列番号 9のァミノ酸配列を有するタンパク質を添加して反応さ せた後、 逆相 HP LC上でピークを測定した結果を示す。 Figure 26 shows that the standard polypeptide (Cdc2, Arg2-OH, PKA, PKC, DNA-PK :, PTK1, PTK2 N MLCKS, CaMKII, Syntide2) as a substrate has the amino acid of SEQ ID NO: 9. The figure shows the results of peaks measured on reversed-phase HP LC after a protein having a sequence was added and reacted.
図 27は、 基質としての標準ポリぺプチド (C d c 2、 Ar g 2— OH、 PK A、 PKC、 DNA— PK、 PTK1、 PTK2、 MLCKS、 C aMK I I、 Syntide2) に配列番号 10のァミノ酸配列を有するタンパク質を添加して反応 させた後、 逆相 HP LC上でピークを測定した結果を示す。  Figure 27 shows that the standard polypeptide (C dc2, Arg2—OH, PKA, PKC, DNA—PK1, PTK1, PTK2, MLCKS, CaMKII, Syntide2) as a substrate has the amino acid of SEQ ID NO: 10. The figure shows the results of peaks measured on reversed-phase HP LC after a protein having a sequence was added and reacted.
図 28は、 基質としての標準ポリペプチド (C d c 2、 A r g 2—OH、 PK A、 PKC、 DNA_PK、 PTK1、 PTK2、 MLCKS、 C aMK I I、 Syntide2) に配列番号 1 1のアミノ酸配列を有するタンパク質を添加して反応 させた後、 逆相 HP LC上でピークを測定した結果を示す。  FIG. 28 shows that the standard polypeptide (Cdc2, Arg2-OH, PKA, PKC, DNA_PK, PTK1, PTK2, MLCKS, CaMKII, Syntide2) as a substrate has the amino acid sequence of SEQ ID NO: 11. The figure shows the results of peaks measured on reversed-phase HP LC after protein addition and reaction.
図 29は、 基質としての標準ポリペプチド (C d c 2、 Ar g 2— OH、 PK A、 PKC、 DNA— PK:、 PTK1、 PTK2、 MLCKS、 C aMK I I、 Syntide2) に配列番号 1のアミノ酸配列を有するタンパク質を添カ卩して反応さ せた後、 逆相 H PLC上でピークを測定した結果を示す。  Figure 29 shows the amino acid sequence of SEQ ID NO: 1 in the standard polypeptide (Cdc2, Arg2—OH, PKA, PKC, DNA—PK :, PTK1, PTK2, MLCKS, CaMKII, Syntide2) as a substrate. The figure shows the results of peaks measured on a reversed-phase HPLC after a protein having the above-mentioned property was added and reacted.
図 30は、 基質としての標準ポリペプチド (C d c 2、 Ar g 2 -OH, PK A、 PKC、 DNA— PK:、 PTK1、 PTK2、 MLCKS、 C aMK I I、 Syntide2) に配列番号 2のアミノ酸配列を有するタンパク質を添カ卩して反応さ せた後、 逆相 H P L C上でピークを測定した結果を示す。 P T/JP2004/002133 図 31は、 c一 t e s t i 2053667を標的遺伝子とした s i RNA ( t e s t i 205366 7-964単独、 t e s t i 2053667— 1 1 90単 独、 および t e s t i 2053667— 964と t e s t 1 2053667- 1 190の等量の混合物) を HEK293細胞および HeLa細胞に導入し、 当該細 胞内の c一 t e s t i 2053667遺伝子発現量を測定した結果を示す。 Figure 30 shows the amino acid sequence of SEQ ID NO: 2 in the standard polypeptide (Cdc2, Arg2-OH, PKA, PKC, DNA-PK :, PTK1, PTK2, MLCKS, CaMKII, Syntide2) as a substrate. The figure shows the results of peaks measured on reversed-phase HPLC after a protein having the above was added and reacted. PT / JP2004 / 002133 Figure 31 shows c-testi siRNA with target gene 2053667 (testi 205366 7-964 alone, testi 2053667-1-190 alone, and testi 2053667-964 and test 1 20553667-1190 (Equivalent mixture) was introduced into HEK293 cells and HeLa cells, and the results of measuring the expression level of c-testi 2053667 gene in the cells are shown.
図 32は、 c一 t e s t i 2053667を標的遺伝子とした s i RNA ( t e s t i 2053667-964単独、 t e s t i 2053667— 964と t e s t i 2053667- 1 190の等量の混合物) を HEK293細胞および HeLa細胞に導入し、 s i RNAが導入された当該細胞の増殖を細胞内 AT P含 量を指標として定量した結果を示す。  Figure 32 shows that c-siRNA (testi 2053667-964 alone, a mixture of equal amounts of testi 2053667-964 and testi 2053667-1190) with testi 2053667 as the target gene was introduced into HEK293 cells and HeLa cells. 3 shows the results of quantifying the proliferation of the cells into which the cells were introduced, using the intracellular ATP content as an index.
図 33は、 c一 t e s t i 2053667を標的遺伝子とした s i RNA ( t e s t i 2053667-964単独、 t e s t i 2053667— 964と t e s t i 2053667-1 1 90の等量の混合物) を HEK293細胞おょぴ HeLa細胞に導入し、 s i R N Aが導入された当該細胞の細胞死を培養上清中に 放出された L D H活性を指標として定量した結果を示す。 発明を実施するための最良の形態  Fig. 33 shows that c-siRNA (testi 2053667-964 alone, a mixture of testi 2053667-964 and testi 2053667-1 190 in the same amount) with testi 2053667 as the target gene was introduced into HEK293 cells and HeLa cells. 5 shows the results of quantifying the cell death of the cells into which the siRNA was introduced, using the LDH activity released into the culture supernatant as an index. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明をさらに詳細に説明するが、 これらの記載は本発明の実施態様の 一例 (代表例) であり、 本発明の範囲を限定するものではない。  Hereinafter, the present invention will be described in more detail. However, these descriptions are merely examples (representative examples) of the embodiments of the present invention, and do not limit the scope of the present invention.
( 1 ) 完全長 c DN Aの取得およぴ塩基配列の解析  (1) Acquisition of full-length cDNA and analysis of nucleotide sequence
本発明の DN Aは、 配列番号 13〜 24のいずれかに記載のァミノ酸配列から なるタンパク質、 または配列番号 13〜24のいずれかに記載のアミノ酸配列に おいて 1もしくは数個 (ここで、 数個とは、 例えば 5個以下、 好ましくは 3個以 下、 より好ましくは 2個以下を意味する) のアミノ酸残基の置換、 欠失おょぴ Z または付加を含むァミノ酸配列からなり、 かつキナーゼ活性を有するタンパク質 をコードし得るものであればいかなるものであってもよい。 具体的には、 該アミ ノ酸配列をコードする翻訳領域のみでも、 あるいはその c D N Aの全長を含むも のでもよい。 The DNA of the present invention may be a protein comprising the amino acid sequence of any one of SEQ ID NOs: 13 to 24, or one or several amino acids in the amino acid sequence of any of SEQ ID NOs: 13 to 24 (here, The term "several" means, for example, 5 amino acids or less, preferably 3 amino acids or less, and more preferably 2 amino acids or less. Any substance may be used as long as it can encode a protein having kinase activity. Specifically, the It may be only the translation region encoding the amino acid sequence, or may include the full length of its cDNA.
具体的には、 c DNAの全長を含む DNAとしては、 例えば配列番号 1〜12 のいずれかに記載の塩基配列からなる DNA等が挙げられる。 また、 その翻訳領 域としては、 配列番号 1の塩基番号 39〜 2159、 配列番号 2の塩基番号 36 〜 1454、 配列番号 3の塩基番号 401〜 1960、 配列番号 4の塩基番号 4 2〜 1733、 配列番号 5の塩基番号 371〜 3874、 配列番号 6の塩基番号 81〜 2720、 配列番号 7の塩基番号 1744〜 2685、 配列番号 8の塩基 番号 254〜 2554、 配列番号 9の塩基番号 32〜 3898、 配列番号 10の 塩基番号 146〜 3406、 配列番号 11の塩基番号 55〜 1287、 配列番号 12の塩基番号 407〜1690に示される配列を有するものが挙げられる。 さ らに上記の cDNAの全長でなくても、 上記翻訳領域とその 3' および Zまたは 5' 端に隣接する、 翻訳領域の発現に最低限必要な部分を含むもの等も本発明の DNAに含まれる。  Specifically, examples of the DNA containing the full-length cDNA include a DNA having the nucleotide sequence of any one of SEQ ID NOS: 1 to 12, and the like. The translation regions include nucleotide numbers 39 to 2159 of SEQ ID NO: 1, nucleotide numbers 36 to 1454 of SEQ ID NO: 2, nucleotide numbers 401 to 1960 of SEQ ID NO: 3, nucleotide numbers 42 to 1733 of SEQ ID NO: 4, Nucleotide numbers 371 to 3874 of SEQ ID NO: 5, Nucleotide numbers 81 to 2720 of SEQ ID NO: 6, Nucleotide numbers 1744 to 2685 of SEQ ID NO: 7, Nucleotide numbers 254 to 2554 of SEQ ID NO: 8, Nucleotide numbers 32 to 3898 of SEQ ID NO: 9, Examples include those having the sequences represented by base numbers 146 to 3406 of SEQ ID NO: 10, base numbers 55 to 1287 of SEQ ID NO: 11, and base numbers 407 to 1690 of SEQ ID NO: 12. Furthermore, even if not the full length of the above-mentioned cDNA, those containing the above-mentioned translation region and a portion adjacent to the 3 ′ and Z or 5 ′ end thereof, which is the minimum necessary for the expression of the translation region, are also included in the DNA of the present invention. included.
本発明の DN Aは、 これを取得できる方法であればいかなる方法により取得し たものでもよいが、 具体的には例えば下述の方法により取得することができる。 まず、 ヒトの組織あるいは培養細胞等からそれ自体既知の通常用いられる方法に より mRNAを調製する。 次に、 この mRNAを铸型としてオリゴキャップ法 The DNA of the present invention may be obtained by any method as long as it can be obtained, and specifically, for example, can be obtained by the method described below. First, mRNA is prepared from human tissues or cultured cells by a method known per se and commonly used. Next, the oligo cap method
(Maruyama, K. , et al. , Gene, 138: 171-174 (1994)) により c DNAを取得 する。 具体的には、 取得した mRNAについて酸性ピロフォスファターゼにより 5, キャップをはずし、 その後露出した 5' 末端のリン酸基を標的に、 オリゴキ ヤップリンカ一を RNAライゲースを用いて連結する。 ここで、 キャップ構造を 5, 末端に有していない RN A分子について、 上記オリゴキャップリンカ一が結 合しないように、 予め 5, 末端に存在するリン酸基を、 5' キャップは外さない が 5, 端のリン酸基のみ外す活性を有するフォスファタ一ゼ等を用いて外してお くことは有効である。 この RNA分子を铸型として、 3, 側のプライマーとして オリゴ dTプライマーを用いて逆転写酵素により逆転写を行った後、 RNA鎖を 分解除去する。 (Maruyama, K., et al., Gene, 138: 171-174 (1994)). Specifically, the cap is removed from the obtained mRNA with acid pyrophosphatase, and then the oligocap linker is ligated to the exposed 5'-terminal phosphate group using RNA ligase. Here, for the RNA molecule having no cap structure at the 5 'end, the phosphate group existing at the 5' end in advance is not removed from the 5 'cap so that the oligocap linker will not bind, 5. It is effective to remove using a phosphatase that has the activity to remove only the phosphate group at the end. Using this RNA molecule as type III, as a primer on the 3 side After reverse transcription is performed with reverse transcriptase using oligo dT primer, the RNA strand is degraded and removed.
さらに取得された 1本鎖 DNAを铸型として、 上記オリゴキャップリンカーの 部分配列を有するオリゴヌクレオチドを 5, プライマーとし、 3, 末端に特異的 なプライマー (オリゴ dTプライマー等) を用いてポリメラーゼチェインリアク シヨン (PCR) を行うことにより完全長 cDNAライブラリーを作製すること ができる。 ここで、 5' プライマーおよび 3, プライマーは、 上記合成オリゴヌ クレオチドおよび逆転写プライマーの全長に対して相補的なものではなく、 3, 側に 3〜10塩基ずらした配列を用いることが好ましい。 プライマーの鎖長とし ては、 通常 15〜100塩基、 好ましくは 1 5〜 30塩基が挙げられるが、 増幅 する c DN Aの鎖長が長い場合には 25〜35塩基の長さとすることが好ましく、 また、 Long and Accurate PCR (LA PCR:林健志、 実験医学別冊 · PCR の最新技術、 羊土社; Cheng, S. , et al. , Nature 369: 684-685 (1994)) を用 いることが好ましい。  Furthermore, using the obtained single-stranded DNA as type III, the oligonucleotide having a partial sequence of the above oligocap linker as a primer 5, and a polymerase chain reaction using a specific primer (oligo dT primer, etc.) A full-length cDNA library can be prepared by performing PCR (PCR). Here, the 5 'primer and the 3 primer are not complementary to the full length of the synthetic oligonucleotide and the reverse transcription primer, and it is preferable to use a sequence shifted by 3 to 10 bases on the 3 side. The chain length of the primer is usually 15 to 100 nucleotides, preferably 15 to 30 nucleotides.If the length of the cDNA to be amplified is long, it is preferably 25 to 35 nucleotides. And Long and Accurate PCR (LA PCR: Takeshi Hayashi, Separate Volume on Experimental Medicine · The latest technology in PCR, Yodosha; Cheng, S., et al., Nature 369: 684-685 (1994)) Is preferred.
このようにして取得された c DNAは、 これを適当なクローニングベクターに 挿入してクローユングを行う。 ここで用いられるベクターとしては、 取得された c DNAクローンを細胞に導入して該 c DNAがコードするタンパク質を発現で きるようなタンパク質発現用ベクターが好ましく用いられる。 具体的には例えば、 宿主が哺乳動物細胞等の場合には p ME 18 S F L 3 (Ge nb a nk AB O 09864) 等が好ましく、 また大腸菌の場合では、 p ET3、 pET l l (ス トラタジーン社製) 、 p GEX (アマシャムファルマシアバイォテク社製) 等が 挙げられ、 酵母の場合では p E S P— Iエクスプレッションベクター (ストラタ ジーン社製) 等が挙げられ、 さらに昆虫細胞の場合では B a c PAK6 (クロン テック社製) 等が用いられる。 また宿主が動物細胞の場合では、 ZAP Ex p r e s s (ストラタジーン社製) 、 S VK 3 (アマシャムフアルマシアバイオ テク社製) 等が挙げられる。 かくして取得される cDNAライブラリ一は、 それ自体既知の通常用いられる 方法により塩基配列の解析を行う。 本発明の DN Aは、 取得された cDNAの 5, 末端あるいは 3, 末端の塩基配列を解析し、 これを NCB I (National Center for Biotechnology Information;http://www. ncbi. nlm. nih. gov/) で 運用している G e n b a n k、 EMBL、 DDB J、 PDB、 d b E S T等のデ ータべースを BLAST (Basic local alignment search tool; Altschul, S.F. , et al. , J. Mol. Biol., 215, 403-410(1990)) を用いて検索し、 その全 長について完全に一致する配列が見出されない場合は新規として以下の解析に供 することとした。 The cDNA thus obtained is inserted into an appropriate cloning vector and cloned. As the vector used here, a protein expression vector that can express the protein encoded by the cDNA by introducing the obtained cDNA clone into a cell is preferably used. Specifically, for example, when the host is a mammalian cell or the like, pME18SFL3 (Genbank AB O09864) is preferable, and when E. coli is used, pET3 and pETll (manufactured by Stratagene). ), PGEX (Amersham Pharmacia Biotech) and the like. In the case of yeast, pESP-I expression vector (Stratagene) and the like. In the case of insect cells, Bac PAK6 (Clontech) And the like are used. When the host is an animal cell, ZAP Express (manufactured by Stratagene), SVK3 (manufactured by Amersham Pharmacia Biotech) and the like can be mentioned. The nucleotide sequence of the thus obtained cDNA library is analyzed by a commonly used method known per se. The DNA of the present invention analyzes the nucleotide sequence at the 5, 5 or 3 ends of the obtained cDNA and converts it to NCBI (National Center for Biotechnology Information; http: // www. Ncbi. Nlm. Nih. Gov). BLAST (Basic local alignment search tool; Altschul, SF, et al., J. Mol. Biol.), Which is operated by Genbank, EMBL, DDB J, PDB, db EST etc. , 215, 403-410 (1990)), and when a sequence that completely matches the entire length is not found, it was decided to submit a new sequence for the following analysis.
このような完全長 c DN Aの塩基配列を有する DN Aとしては、' 例えば、 配列 番号 1〜1 2に記載の塩基配列を有するものが挙げられる。 また、 その翻訳領域 としては、 配列番号 1の塩基番号 39〜 21 59、 配列番号 2の塩基番号 36〜 1454、 配列番号 3の塩基番号 401〜 1960、 配列番号 4の塩基番号 42 〜1 733、 配列番号 5の塩基番号 371〜3874、 配列番号 6の塩基番号 8 1〜 2720、 配列番号 7の塩基番号 1 744〜 2685、 配列番号 8の塩基番 号 254〜 2554、 配列番号 9の塩基番号 32〜 3898、 配列番号 10の塩 基番号 146〜 3406、 配列番号 1 1の塩基番号 55〜 1287、 配列番号 1 2の塩基番号 407〜1690に示される配列を有するものが挙げられる。 かくして取得された cDN Aの全長として新規な塩基配列を、 BLASTによ る相同性検索 (homology search) や、 HMMER (隠れ Markovモデルによる 配列解析手法; Eddy, S. R. , Bioinformatics 14: 755-763(1998)) の機能群の ひとつである HMM P F AMによるタンパク質特徴検索 (prof i le  Examples of the DNA having such a full-length cDNA nucleotide sequence include those having the nucleotide sequence of SEQ ID NOS: 1 to 12. In addition, as the translation region, nucleotide numbers 39 to 2159 of SEQ ID NO: 1, nucleotide numbers 36 to 1454 of SEQ ID NO: 2, nucleotide numbers 401 to 1960 of SEQ ID NO: 3, nucleotide numbers 42 to 1733 of SEQ ID NO: 4, Nucleotide Nos. 371 to 3874 of SEQ ID No. 5, Nucleotide Nos. 81 to 2720 of SEQ ID No. 6, 1744 to 2685 of Nucleotide No. 7 To 3898, base numbers 146 to 3406 of SEQ ID NO: 10, base numbers 55 to 1287 of SEQ ID NO: 11, and base numbers 407 to 1690 of SEQ ID NO: 12. The novel nucleotide sequence obtained as the full-length cDNA obtained in this manner is used for homology search (homology search) using BLAST or HMMER (sequence analysis method using hidden Markov model; Eddy, SR, Bioinformatics 14: 755-763 (1998) HMM PF AM, one of the functions of))
search : ttp://pf am. wustl. edu) 等を行うことにより、 該塩基配列がコードす るタンパク質の機能を推定することができる。 search: ttp: // pf am. wustl. edu), etc., to estimate the function of the protein encoded by the nucleotide sequence.
B LASTによる相同性検索においては、 検索の結果得られた相同性が十分有 意なヒット配列に付随する種々のァノテーション情報から、 解析対象としている クローンの機能を推定することができる。 ここで、 十分有意なヒット配列とは、 T/JP2004/002133 登録されている配列の触媒ドメイン部分と本発明の D NAのこれに対応する部分 との一致度 (identity) が 3 0 %以上のものか、 e- value (問い合わせ配列がデ ータベース中に偶然存在する期待値) として 1 0— 4以下のものを示す。 In the homology search by BLAST, the function of the clone to be analyzed can be estimated from various annotation information accompanying the hit sequence whose homology is sufficiently significant as a result of the search. Here, a sufficiently significant hit sequence is T / JP2004 / 002133 Whether the identity between the catalytic domain portion of the registered sequence and the corresponding portion of the DNA of the present invention is 30% or more, e-value (query sequence as the expected value) present accidentally in the database showing the 1 0-4 or less.
例えば、 上位にヒットした触媒ドメイン配列の多くがキナーゼとしての機能を 確認されたものであるならば、 それと配列上類似である解析対象クローンもまた 同じ機能、 すなわち、 キナーゼ活性を持つであろうという予測が成り立つ。  For example, if many of the top hit catalytic domain sequences have been confirmed to function as kinases, the clone to be analyzed that is similar in sequence to that will also have the same function, that is, kinase activity. The prediction holds.
HMMP F AMは、 P f a mというタンパク質プロファイルを集積したデータ ベース中にあるエントリーが有するアミノ酸配列の特徴を、 解析対象である塩基 配列のコードするアミノ酸配列が有するかどうかを洗い出す方法による解析であ る。 プロファイルは一連の同一特徴を持つタンパク質群から抽出されており、 一 配列対一配列の全長に亘る比較では明確ィヒできない機能でも、 配列中にその特徴 領域があればこれを見出し機能予測ができる。 このように、 それがコードするタ ンパク質がキナーゼ活性を有すると予測される c D NAは、 後述する生化学的実 験によりそのキナーゼ活性を確認することができる。  HMMP FAM is an analysis based on the method of identifying whether the amino acid sequence encoded by the nucleotide sequence to be analyzed has the characteristics of the amino acid sequence of an entry in a database that integrates protein profiles called P fam. . Profiles are extracted from a series of proteins with the same characteristics. Even if a function cannot be clearly identified by comparing the full length of one sequence to one sequence, if the characteristic region is present in the sequence, the function can be identified and predicted. . Thus, the cDNA activity of a cDNA which is predicted to have the kinase activity of the protein encoded thereby can be confirmed by a biochemical experiment described later.
上記で c D NAの全長として新規であるとされたクローンとして具体的には、 配列番号 1〜 1 2のいずれかに示す塩基配列を有するものが挙げられる。 また、 これらの塩基配列がコ一ドするァミノ酸配列は配列番号 1 3〜 2 4のいずれかに 示すものが挙げられる。  Specific examples of the clone determined to be novel as the full-length cDNA above include those having the nucleotide sequence shown in any one of SEQ ID NOS: 1 to 12. The amino acid sequences encoded by these nucleotide sequences include those shown in any of SEQ ID NOS: 13 to 24.
かくして取得され、 塩基配列が決定され、 また機能が推定される本発明の D N Aは上記の配列番号 1〜 1 2のいずれかに記載の塩基配列、 あるいはその翻訳領 域として上記に示した塩基配列を有するものだけでなく、 これらの塩基配列にお いて、 1もしくは数個 (ここで言う数個とは、 例えば 1 5個以下、 好ましくは 9 個以下、 より好ましくは 6個以下を意味する) の塩基が欠失、 置換おょぴ Zまた は付加された塩基配列を有し、 かつキナーゼ活性を有するタンパク質をコードす る D NA、 ならびに、 これらとストリンジェントな条件下でハイブリダィズし、 かつキナーゼ活性を有するタンパク質をコードする D NA等も含まれる。 これら The DNA of the present invention thus obtained, whose base sequence is determined, and whose function is estimated, is the base sequence described in any one of SEQ ID NOS: 1 to 12, or the base sequence shown above as its translation region. As well as one or more in these base sequences (the term "number" means, for example, 15 or less, preferably 9 or less, more preferably 6 or less) A DNA encoding a protein having a base sequence in which Z or an additional base or Z has been added and having a kinase activity, and a DNA which hybridizes with these under stringent conditions, and DNAs encoding proteins having activity are also included. these
D N Aには前記したとおり、 配列番号 1 3〜2 4のいずれかに記載のアミノ酸配 列において 1もしくは数個のァミノ酸配列が欠失、 置換および/または付加され たアミノ酸配列からなり、 かつキナーゼ活性を有するタンパク質をコードするも のが含まれる。 As described above, the amino acid sequence of any of SEQ ID NOS: 13 to 24 is added to the DNA. The sequences include amino acid sequences in which one or several amino acid sequences have been deleted, substituted, and / or added, and include those encoding proteins having kinase activity.
ここで、 ストリンジェントな条件でハイブリダイズする D N Aとは、 配列番号 ;!〜 1 2に記載の塩基配列と B L A S T解析で 8 0 %以上、 好ましくは 9 0 %以 上、 さらに好ましくは 9 5 %以上の相同性を有する塩基配列を含む D NA等が挙 げられる。 また、 ストリンジェントな条件下のハイプリダイゼーシヨンとは、 通 常のハイブリダイゼーション緩衝液中で、 温度が 4 0〜 7 0 °C、 好ましくは 6 0 〜 6 5 °C等で反応を行い、 塩濃度が 1 5 mM〜 3 0 0 mM、 好ましくは 1 5 mM 〜6 O mM等の洗浄液中で洗浄を行う方法に従って行うことができる。  Here, the DNA that hybridizes under stringent conditions is: SEQ ID NO: 80% or more, preferably 90% or more, more preferably 95% or more by BLAST analysis with the base sequence described in! DNAs containing the nucleotide sequences having the above homology are listed. Hybridization under stringent conditions refers to a reaction in a normal hybridization buffer at a temperature of 40 to 70 ° C, preferably 60 to 65 ° C, and the like. Washing can be performed according to a method of washing in a washing solution having a salt concentration of 15 mM to 300 mM, preferably 15 mM to 60 mM.
さらに、 本発明の D NAは、 上述の方法により取得されたものでも、 また合成 されたものでもよい。 D NAの塩基配列の置換は、 例えばサイトダイレクテッド ミュータジエネシスキット (宝酒造社製) や、 クイックチェンジサイトダイレク テッドミュータジエネシスキット (ストラタジーン社製) 等の巿販キットで容易 に行うことができる。  Further, the DNA of the present invention may be obtained by the above-described method or may be synthesized. The DNA base sequence can be easily replaced with a sales kit such as a site-directed mutagenesis kit (Takara Shuzo) or a quick change site-directed mutagenesis kit (Stratagene). it can.
( 2 ) 新規 c D NAがコードするタンパク質  (2) The protein encoded by the novel cDNA
本発明の D N Aがコードするタンパク質の翻訳領域は、 例えば、 該 D NAが有 する塩基配列について 3種類の読み枠によりアミノ酸に変換していき、 最も長い ポリぺプチドをコードする範囲を本発明のタンパク質の翻訳領域としてそのアミ ノ酸配列を推定することができる。 このようなァミノ酸配列として例えば、 配列 番号 1 3〜2 4のいずれかに記載のもの等が挙げられる。 また、 本発明のタンパ ク質は、 上記のアミノ酸配列に限られるものではなく、 該アミノ酸配列において 1もしくは数個のァミノ酸が置換、 欠失、 および Zまたは付加されたァミノ酸配 列からなり、 かつキナーゼ活性を有するものも含まれる。  The translation region of the protein encoded by the DNA of the present invention is, for example, the nucleotide sequence of the DNA which is converted into amino acids by three reading frames and the range encoding the longest polypeptide of the present invention is The amino acid sequence can be deduced as a protein translation region. Examples of such an amino acid sequence include those described in any of SEQ ID NOS: 13 to 24. Further, the protein of the present invention is not limited to the above amino acid sequence, but comprises an amino acid sequence in which one or several amino acids have been substituted, deleted, Z or added in the amino acid sequence. And those having kinase activity.
本発明のタンパク質の取得方法としては、 (1 ) に記載の本発明の D NAを適 当な方法により転写 翻訳する方法が好ましく用いられる。 具体的には、 適当な 発現用ベクターもしくは適当なベクターに適当なプロモーターとともに挿入した 組換えベクターを作製し、 この組換えべクターで適当な宿主微生物を形質転換し たり、 適当な培養細胞に導入することにより発現させ、 これを精製することによ り取得することができる。 As a method for obtaining the protein of the present invention, the method of transcribing and translating the DNA of the present invention described in (1) by an appropriate method is preferably used. Specifically, it was inserted into an appropriate expression vector or an appropriate vector together with an appropriate promoter. It can be obtained by producing a recombinant vector, transforming a suitable host microorganism with this recombinant vector, or introducing it into a suitable cultured cell, expressing it, and purifying it.
また、 その N末端または C末端に適当なタグが融合するように設計されたべク ターなどに挿入してタグを付加したタンパク質も本発明のタンパク質に含まれる。 タグとして具体的には、 グルタチオン一 S—トランスフェラーゼ、 ポリヒスチジ ン、 F 1 a gなどが挙げられる。  The protein of the present invention also includes a protein that is inserted into a vector or the like designed to fuse an appropriate tag to the N-terminus or C-terminus and has a tag added thereto. Specific examples of the tag include glutathione-1S-transferase, polyhistidine, F1ag, and the like.
上記形質転換体が産生するタンパク質には、 タンパク質合成時に重原子などで 置換 ·修飾したァミノ酸を取り込ませることにより修飾することができる。 また、 タンパク質を、 精製の前または後に適当なタンパク質修飾酵素を作用させること により、 任意に修飾を加えたり、 ポリペプチドを部分的に除去することにより修 飾タンパク質とすることができる。 例えば、 N末端ァセチル化、 C末端アミド化 などの末端修飾、 糖鎖付加、 脂質付加、 ァシル化、 メチル化、 スルホン化、 カル ポキシル化、 水酸化、 リン酸化、 AD P—リボシル化などであるが、 必ずしもこ れらに限定されない。 これらの修飾タンパク質も上記したキナーゼ活性を有する ものであれば本発明の範囲に含まれる。  The protein produced by the transformant can be modified by incorporating an amino acid substituted / modified with a heavy atom or the like during protein synthesis. In addition, a protein can be converted into a modified protein by arbitrarily modifying the protein or partially removing the polypeptide by applying an appropriate protein modifying enzyme before or after purification. For example, N-terminal acetylation, terminal modification such as C-terminal amidation, glycosylation, lipid addition, acylation, methylation, sulfonation, carboxylation, hydroxylation, phosphorylation, ADP-ribosylation, etc. However, it is not necessarily limited to these. These modified proteins are also included in the scope of the present invention as long as they have the kinase activity described above.
また、 上記形質転換体が産生するタンパク質を、 精製の前または後に適当なタ ンパク質修飾酵素を作用させることにより、 任意に修飾を加えたり、 ポリべプチ ドを部分的に除去することにより修飾タンパク質とすることができる。 これらの 修飾タンパク質も上記したキナーゼ活性を有するものであれば本発明の範囲に含 まれる。  Further, the protein produced by the above transformant may be modified by arbitrarily modifying the protein before or after purification by the action of an appropriate protein modifying enzyme or by partially removing the polypeptide. It can be a protein. These modified proteins are also included in the scope of the present invention as long as they have the kinase activity described above.
本発明のタンパク質の産生を行う際、 本発明の D N Aを含む組換えベクターの 作製に用いるベクターとしては、 形質転換体内で該 D N Aが発現されるものであ れば特に制限はなく、 プラスミドベクター、 ファージベクターのいずれでもよレ、。 これらのうち通常は、 該 D NAが導入される宿主に適したプロモーター等の発現 制御領域 D NAが既に挿入されている市販のタンパク質発現用ベクターを用いる。 このようなタンパク質発現用ベクターとして、 具体的には例えば、 宿主が大腸菌 の場合では、 ; ET3、 pET l l (ストラタジーン社製) 、 GEX (アマシ ャムフアルマシアバイオテク社製) 等が挙げられ、 酵母の場合では pESP— I エクスプレッションベクター (ストラタジーン社製) 等が挙げられ、 さらに昆虫 細胞の場合では B a c PAK6 (クロンテック社製) 等が用いられる。 また宿主 が動物細胞の場合では、 ZAP Exp r e s s (ストラタジーン社製) 、 S VK3 (アマシャムフアルマシアバイオテク社製) が挙げられ、 宿主が哺乳動物 細胞等の場合には ρΜΕ 18 S F L 3 (Ge nb a nk AB 009864) 等 が好ましい。 When producing the protein of the present invention, the vector used for the production of the recombinant vector containing the DNA of the present invention is not particularly limited as long as the DNA is expressed in the transformant. Any of phage vectors. Of these, usually, a commercially available protein expression vector into which an expression control region DNA such as a promoter suitable for a host into which the DNA is introduced has already been inserted is used. As such a protein expression vector, specifically, for example, the host is Escherichia coli In the case of yeast, ET3, pETll (manufactured by Stratagene), GEX (manufactured by Amersham Pharmacia Biotech) and the like. In the case of yeast, pESP-I expression vector (manufactured by Stratagene) is used. In the case of insect cells, Bac PAK6 (Clontech) or the like is used. When the host is an animal cell, ZAP Express (Stratagene) and SVK3 (Amersham Pharmacia Biotech) can be mentioned. When the host is a mammalian cell, ρΜΕ18 SFL 3 (Ge nb nk AB 009864) and the like.
発現制御領域が挿入されていないベクターを用いる場合には、 発現制御領域と して少なくともプロモーターを挿入する必要がある。 ここでプロモーターとして は、 宿主微生物または培養細胞が保有するプロモーターを用いることができるが、 これに限られるものではなく、 具体的には例えば、 宿主が大腸菌の場合には T 3、 T7、 t a c、 1 a cプロモーター等を用いることができ、 酵母の場合には nm t 1プロモーター、 Ga 1 1プロモーター等を用いることができる。 昆虫細胞の 場合には、 ポリヘドリンプロモーター等を用いることができる。 また宿主が動物 細胞の場合には SV 40プロモーター、 CMVプロモーター等が好ましく用いら れる。  When using a vector into which an expression control region has not been inserted, it is necessary to insert at least a promoter as the expression control region. Here, as the promoter, a promoter possessed by a host microorganism or a cultured cell can be used, but is not limited thereto.Specifically, for example, when the host is Escherichia coli, T3, T7, tac, 1ac promoter and the like can be used, and in the case of yeast, nmt1 promoter, Ga11 promoter and the like can be used. In the case of insect cells, a polyhedrin promoter or the like can be used. When the host is an animal cell, SV40 promoter, CMV promoter and the like are preferably used.
また哺乳動物由来のプロモーターが機能可能な宿主を用いる場合には、 本発明 の遺伝子に固有のプロモーターを用いることもできる。 これらのベクターへの本 発明の DNAの挿入は、 該 DNAまたはこれを含む DNA断片をベクター中のプ 口モーターの下流に該遺伝子 DNAがコードするタンパク質のアミノ酸配列を連 結して行えばよい。  When a host capable of functioning as a mammalian promoter is used, a promoter specific to the gene of the present invention can also be used. Insertion of the DNA of the present invention into these vectors may be performed by connecting the DNA or a DNA fragment containing the DNA to the amino acid sequence of the protein encoded by the gene DNA downstream of the open motor in the vector.
このようにして作製した組換えベクターは、 それ自体既知の方法により後述す る宿主を形質転換して、 DN A導入体を作製することができる。 宿主への該べク ターの導入方法として、 具体的には、 ヒートショック法 (J. Mol. Biol., 53: 154 (1970)) 、 リン酸カルシウム法 (Science, 221: 551 (1983)) 、 DEAE デキストラン法 (Science, 215: 166 (1982)) 、 インビトロパッケージング法 (Pro atl. Acad. Sci. USA, 72: 581 (1975)) 、 ウィルスベクター法 The recombinant vector thus prepared can be used to transform a host described below by a method known per se to prepare a DNA-introduced form. Examples of the method for introducing the vector into a host include a heat shock method (J. Mol. Biol., 53: 154 (1970)), a calcium phosphate method (Science, 221: 551 (1983)), DEAE Dextran method (Science, 215: 166 (1982)), in vitro packaging method (Pro atl. Acad. Sci. USA, 72: 581 (1975)), virus vector method
(Cell, 37: 1053 (1984)) 、 および電気パルス法 (Chu. et al. , Nuc. Acids Res., 15: 1331 (1987)) 等が挙げられる。  (Cell, 37: 1053 (1984)) and the electric pulse method (Chu. Et al., Nuc. Acids Res., 15: 1331 (1987)).
DN A導入体を作製するための宿主としては、 本発明の DN Aが体内で発現す るものであれば特に限定されないが、 例えば大腸菌、 酵母、 バキュロウィルス The host for producing the DNA-introduced host is not particularly limited as long as the DNA of the present invention is expressed in the body. For example, Escherichia coli, yeast, baculovirus
(節足動物多角体ウィルス) 一昆虫細胞、 あるいは動物細胞等が挙げられる。 具 体的には、 大腸菌では BL21、 XL-2B 1 u e (ストラタジーン社製) 等、 酵母では SP— Q01 (ストラタジーン社製) 等、 バキュロウィルスでは AcN PV (J. Biol. Chem. , 263: 7406 (1988)) とその宿主である S f 9 (ATC C CRL- 1 71 1 ; J. Biol. Chem. , 263: 7406 (1988)) 等が挙げられる。 また動物細胞としてはマウス繊維芽細胞株 C 127 (ATCC CRL—180 4 ; J. Viol., 26: 291 (1978)) やチャイニーズハムスター卵巣細胞株 C HO -K 1 (ATC C CCL— 61 ; Proc. Natl. Acad. Sci. USA, 77: 4216 (1980)) 等が挙げられるが、 発現量やスクリーニングの簡便さから好ましくは アフリカミ ドリザル腎臓由来細胞株 COS— 7 (ATCC CRL 1651 :ァ メリカン タイプ カルチャー コレクション保存細胞) 、 ヒ トアデノウイルス 5型でトランスフォームしたヒ ト胎児腎臓由来細胞株 HEK293 (ATCC CRL 1573 ;以下、 「HEK293細胞」 と称することがある。 ) またはヒ ト子宫頸部癌由来細胞株 H e L a (ATCC CCL一 2 ;以下、 「He L a細 胞」 と称することがある。 ) が用いられる。 (Arthropod Polyhedrovirus) One insect cell or animal cell. Specifically, BL21 and XL-2B 1 ue (Stratagene) for E. coli, SP-Q01 (Stratagene) for yeast, and AcN PV (J. Biol. Chem., 263) for baculovirus. : 7406 (1988)) and its host Sf9 (ATC C CRL-17111; J. Biol. Chem., 263: 7406 (1988)). As animal cells, mouse fibroblast cell line C127 (ATCC CRL-1804; J. Viol., 26: 291 (1978)) and Chinese hamster ovary cell line CHO-K1 (ATC C CCL-61; Proc Natl. Acad. Sci. USA, 77: 4216 (1980)), etc., but preferably African green monkey kidney-derived cell line COS-7 (ATCC CRL 1651: American type culture) because of its expression level and simple screening. Collection follicle cells), human fetal kidney-derived cell line HEK293 (ATCC CRL 1573; hereinafter sometimes referred to as “HEK293 cells”) transformed with human adenovirus type 5, or cells derived from human cervical cancer. Strain HeLa (ATCC CCL-12; hereinafter sometimes referred to as "HeLa cell") is used.
上記したようなタンパク質発現用ベクターを用いる発現方法の他に、 プロモー タ一を連結した本発明の D N A断片を宿主微生物の染色体中に直接挿入する相同 組換え技術 (Vertes, A. A. et al. , Biosci. Biotec nol. Biochem. , 57: 2036 (1993)) 、 あるいはトランスポゾンや挿入酉己列 (Vertes, A. A. et al., Molecular Microbiol. , 11: 739 (1994)) 等を用いて D N A導入体を作製する こともできる。 上記で得られた培養物は細胞または菌体を遠心分離等の方法により収集し、 こ れを適当な緩衝液に懸濁し、 超音波、 リゾチーム、 および Zまたは凍結融解等の それ自体既知の適当な方法により破壊した後、 遠心分離や濾過等によりタンパク 質粗精製液を得、 さらに適当な精製方法を組み合わせることにより精製すること ができる。 In addition to the above-described expression method using a protein expression vector, a homologous recombination technique for directly inserting a DNA fragment of the present invention linked to a promoter directly into the chromosome of a host microorganism (Vertes, AA et al., Biosci. Biotec nol. Biochem., 57: 2036 (1993)), or transposon or inserted rooster (Vertes, AA et al., Molecular Microbiol., 11: 739 (1994)), etc. You can also. The culture obtained above is obtained by collecting cells or cells by a method such as centrifugation, suspending the cells or cells in a suitable buffer, and sonicating, lysozyme, and Z or freeze-thawing or other suitable method. After the disruption by a suitable method, a crude protein solution is obtained by centrifugation, filtration, or the like, and further purified by a combination of appropriate purification methods.
かくして、 本発明のタンパク質が取得される。 上記したタンパク質発現組換え ベクターを用いる発現方法の他に、 上記 (1 ) で取得された本発明の D NAを無 細胞転写翻訳系 (または 「無細胞タンパク質合成系」 とも称する) に供すること によりタンパク質発現を誘導し、 本発明のタンパク質を取得することができる。 本発明で用いられる無細胞転写翻訳系とは、 D N Aから mR NAへの転写、 およ ぴ m R N Aからタンパク質への翻訳に必要な全ての要素を含む系であり、 そこに D N Aを加えることによってその D N Aがコードしているタンパク質が合成され るようなあらゆる系を指す。 無細胞転写翻訳系の具体例としては、 真核細胞、 お ょぴパクテリア細胞、 またはそれらの一部からの抽出液に基づいて調製された転 写翻訳系が挙げられる。 無細胞タンパク質合成系として具体的には、 大腸菌、 植 物種子の胚芽、 ゥサギ網状赤血球等の細胞抽出液等の既知のものが用いられる。 これらは市販のものを用いることもできるし、 それ自体既知の方法、 具体的には 大腸菌抽出液は、 Pratt, J. M., Transcription and Translation (Ed. by Hames, B. D. and Higgins, S. J. ) , 179 - 209, IRL Press, Oxford (1984)に 記載の方法等に準じて調製することもできる。 市販の無細胞タンパク質合成系、 または細胞抽出液としては、 大腸菌由来のものは、 E. coli S30 extract system (Promega社製) と RTS500 Rapid Translation System (Roche社製) 等 が挙げられ、 ゥサギ網状赤血球由来のものは Rabbit Reticulocyte Lysate System (Promega社製) 等、 さらにコムギ胚芽由来のものは PR0TEI0S™ (T0Y0B0 社製) 等が挙げられる。  Thus, the protein of the present invention is obtained. In addition to the above-described expression method using a protein expression recombinant vector, the DNA of the present invention obtained in (1) above may be used in a cell-free transcription / translation system (also referred to as a “cell-free protein synthesis system”). By inducing protein expression, the protein of the present invention can be obtained. The cell-free transcription / translation system used in the present invention is a system containing all elements necessary for transcription from DNA to mRNA and translation of mRNA to protein, and by adding DNA thereto, It refers to any system in which the protein encoded by the DNA is synthesized. Specific examples of the cell-free transcription / translation system include a transcription / translation system prepared on the basis of an extract from a eukaryotic cell, a bacterium, or a part thereof. Specific examples of the cell-free protein synthesis system include known ones such as Escherichia coli, plant seed embryos, and cell extracts such as egret reticulocytes. These can be used commercially, or a method known per se, specifically, an E. coli extract can be obtained from Pratt, JM, Transcription and Translation (Ed. By Hames, BD and Higgins, SJ), 179-209. , IRL Press, Oxford (1984). Examples of commercially available cell-free protein synthesis systems or cell extracts include those derived from Escherichia coli such as E. coli S30 extract system (manufactured by Promega) and RTS500 Rapid Translation System (manufactured by Roche). Those derived from Rabbit Reticulocyte Lysate System (Promega) and those derived from wheat germ include PR0TEI0S ™ (T0Y0B0).
得られた無細胞転写翻訳系の転写翻訳産物からの、 本発明のタンパク質の分離、 および精製は、 それ自体既知の通常用いられる方法で行うことができる。 具体的 3 には、 ェピトープペプチド (例えば、 ポリヒスチジンペプチド、 ダルタチオン一Separation and purification of the protein of the present invention from the obtained transcription-translation product of the cell-free transcription / translation system can be performed by a method known per se and generally used. concrete 3 includes epitope peptides (for example, polyhistidine peptide, daltathione
S—トランスフェラーゼ (GST) 、 マルトース結合タンパク質等) をコードす る DNA領域を、 前記した転写翻訳されるべき DN Aに導入し、 前記の通り発現 させ、 該タンパク質と親和性を有する物質とのァフィ二ティーを利用して精製す ることができる。 A DNA region encoding S-transferase (GST), maltose binding protein, etc.) is introduced into the above-mentioned DNA to be transcribed and translated, expressed as described above, and subjected to affinity with a substance having affinity for the protein. It can be purified using two teas.
目的とするタンパク質の発現は、 SDS—ポリアクリルアミドゲル電気泳動等 で分離し、 クマシ一ブリリアントブルー (シグマ社製) 等で染色するか、 または 後述する本発明のタンパク質に特異的に結合する抗体により検出する方法等によ つて確認できる。 また一般的に、 発現されたタンパク質は生体内に存在するタン パク質分解酵素により切断されること (プロセッシング) が知られている。 本発 明のタンパク質も当然のことながら切断されたァミノ酸配列の部分断片であって も、 キナーゼ活性を有するものであれば、 本発明のタンパク質に含まれる。  The expression of the target protein is separated by SDS-polyacrylamide gel electrophoresis and stained with Coomassie brilliant blue (manufactured by Sigma) or by using an antibody that specifically binds to the protein of the present invention described later. It can be confirmed by the detection method. It is generally known that the expressed protein is cleaved (processed) by a proteolytic enzyme present in the living body. The protein of the present invention is naturally included in the protein of the present invention as long as it has a kinase activity, even if it is a partial fragment of the cleaved amino acid sequence.
(3) 本発明のタンパク質が有する活性の確認  (3) Confirmation of the activity of the protein of the present invention
本発明のタンパク質は、 これを上記 (2) に記載のとおり組換えタンパク質と して作製し、 これを解析することにより (1) で推測した活性を有していること を確認することができる。 さらに下記 (4) に記載の抗体等との組み合わせによ り解析することもできる。  The protein of the present invention is produced as a recombinant protein as described in (2) above, and by analyzing this, it can be confirmed that it has the activity estimated in (1). . Furthermore, analysis can also be performed by combination with the antibodies and the like described in (4) below.
本発明のタンパク質が、 キナーゼ活性を有することは、 それ自体既知の常法を 用いて確認することができる。 具体的な方法の例として、 基質を該組換えタンパ ク質に接触させ、 該組換えタンパク質のキナーゼ活性により基質がリン酸化され る際に消費される AT P量、 生成物の量を測定する方法等を以下に説明する。 反応液としては、 基質のリン酸化部位がセリン Zスレオニンである、 セリン/ スレオニンプロテインキナーゼの活性を測定する場合は、 マグネシウムイオン、 例えば 5〜10 OmMの塩化マグネシウムあるいは酢酸マグネシウム、 およぴ還 元剤として 1〜10 OmMの 2—メルカプトエタノールあるいは 1〜10 mMの ジチオスレィトールを含む、 リン酸イオンの存在しない、 中性から弱塩基性緩衝 液、 例えば 5 OmMのトリス一塩酸あるいは HE PES緩衝液 (pH7. 0〜8. 0) を用い、 また、 基質のリン酸化部位がチロシンであるチロシンプロテインキ ナーゼの活性を測定する場合は、 塩化マンガン、 塩化亜鉛、 NaVO3、 ジチォ スレイ トールを含むトリスー塩酸あるいは HEP E S緩衝液 (pH7. 0〜8. 0) を用いることができる。 Whether the protein of the present invention has kinase activity can be confirmed by a conventional method known per se. As a specific example of the method, a substrate is brought into contact with the recombinant protein, and the amount of ATP and the amount of product consumed when the substrate is phosphorylated by the kinase activity of the recombinant protein are measured. The method and the like will be described below. As a reaction solution, the phosphorylation site of the substrate is serine Z-threonine. When measuring the activity of serine / threonine protein kinase, magnesium ion, for example, 5 to 10 OmM magnesium chloride or magnesium acetate, and Neutral to weakly basic buffer solution containing 1 to 10 OmM 2-mercaptoethanol or 1 to 10 mM dithiothreitol as a reagent, in the absence of phosphate ions, such as 5 OmM Tris monohydrochloride or HE PES Buffer (pH 7.0-8. When measuring the activity of tyrosine protein kinase where the phosphorylation site of the substrate is tyrosine, use tris-HCl containing manganese chloride, zinc chloride, NaVO 3 , dithiothreitol or HEPES buffer ( pH 7.0-8.0) can be used.
この反応液に、 AT Pおよびそれぞれに適した基質を加えた後、 精製した本発 明のタンパク質を添加し、 室温〜 37 °Cで 24時間程度反応後、 該タンパク質が 有するキナーゼ反応により消費した AT P量、 あるいは該タンパク質により行わ れるキナーゼ反応による生成物を測定する。 ここで、 受容体型キナーゼと予想さ れるタンパク質のキナーゼ活性を測定する場合には、 該タンパク質の細胞内部分、 あるいはキナーゼ活性中心部分のみを組換えタンパク質として発現させて上記の 反応に用いることが好ましい。  After adding ATP and a substrate suitable for each to this reaction solution, the purified protein of the present invention was added, and the mixture was reacted at room temperature to 37 ° C for about 24 hours, and then consumed by the kinase reaction of the protein. Measure the amount of ATP or the product of the kinase reaction performed by the protein. Here, when measuring the kinase activity of a protein that is expected to be a receptor kinase, it is preferable to express only the intracellular portion of the protein or the kinase activity center portion as a recombinant protein and use it in the above reaction. .
キナーゼ反応に関して、 セリン /スレオニンプロテインキナーゼである環状ヌ クレオチド依存性プロティンキナーゼの場合、 各キナーゼに対応する環状ヌクレ ォチドを反応液中に添加することが必要である。 例えば、 A—キナーゼの場合は 環状 AMP (c AMP) を、 G—キナーゼの場合は環状 GMP (cGMP) を添 加し、 基質としてヒス トンを用いる。  Regarding the kinase reaction, in the case of a cyclic nucleotide-dependent protein kinase that is a serine / threonine protein kinase, it is necessary to add a cyclic nucleotide corresponding to each kinase to the reaction solution. For example, cyclic AMP (cAMP) is added for A-kinase and cyclic GMP (cGMP) is added for G-kinase, and histone is used as a substrate.
リン脂質依存性プロティンキナーゼの場合は、 リン脂質を反応液中に添加する。 例えば、 C—キナーゼの場合、 ホスファチジルセリンを添加し、 基質としてヒス トンを用いる。 カルシウム依存性プロテインキナーゼの場合には、 カルモジユリ ンを反応液に添加し、 基質としてミオシン L鎖を用いる。 ここには、 ミオシン L 鎖キナーゼ、 カルモジュリンキナーゼが含まれる。 チロシンプロテインキナーゼ の場合は、 基質としてチューブリン、 ヒストン、 カゼイン、 ミオシン L鎖、 ガス トリン、 アンギオテンシン、 チロシン一グルタミン酸 (1 : 4) 重合物等を用い る。  In the case of phospholipid-dependent protein kinase, a phospholipid is added to the reaction solution. For example, in the case of C-kinase, phosphatidylserine is added and histone is used as a substrate. In the case of calcium-dependent protein kinase, calmodulin is added to the reaction solution, and myosin light chain is used as a substrate. This includes myosin light chain kinase and calmodulin kinase. In the case of tyrosine protein kinase, tubulin, histone, casein, myosin L chain, gastrin, angiotensin, tyrosine monoglutamic acid (1: 4) polymer, etc. are used as substrates.
キナーゼ活性測定において、 基質へのリン酸基の転移に先立ち、 キナーゼによ る ATPの ADPへの加水分解反応が起こる。 ここで加水分解された ATP量を 測定することで、 キナーゼ活性を定義づけることも可能である。 この場合、 基質 非存在下で行つた反応液中の A T P量を測定し、 費 AT P量をキナーゼ活性と する (Whitehoouse, S. , et al., J. Biol. Chem. , 258: 3693—3701 (1983) ) 。 キナーゼ反応により消費した A T P量を測定する場合、 上記キナーゼ反応液に ルシフェリン、 ルシフェラーゼを加え、 一定時間反応後、 添加したルシフェリン 特有の蛍光波長で蛍光強度を測定し、 残存 A T Pによる蛍光量とする。 プロティ ンキナーゼおよぴ基質非存在下で測定した、 反応液中に存在する全 A T P蛍光強 度から上記蛍光強度を差し引いた値を、 キナーゼ活性により消費した A T P量と し、 酵素のキナーゼ活性とする。 In the measurement of kinase activity, the hydrolysis of ATP to ADP by the kinase occurs before the transfer of the phosphate group to the substrate. The kinase activity can be defined by measuring the amount of hydrolyzed ATP here. In this case, the substrate The amount of ATP in the reaction solution performed in the absence of the enzyme was measured, and the amount of ATP consumed was defined as the kinase activity (Whitehoouse, S., et al., J. Biol. Chem., 258: 3693-3701 (1983) ). When measuring the amount of ATP consumed by the kinase reaction, luciferin and luciferase are added to the above-mentioned kinase reaction solution, and after reacting for a certain period of time, the fluorescence intensity is measured at the fluorescence wavelength specific to the added luciferin, and the amount of fluorescence due to residual ATP is determined. The value obtained by subtracting the above fluorescence intensity from the total ATP fluorescence intensity present in the reaction solution measured in the absence of protein kinase and substrate is defined as the amount of ATP consumed by the kinase activity, and is defined as the kinase activity of the enzyme. .
キナーゼ反応による生成物を測定する場合は、 反応液に添加する A T Pとして 放射性同位元素である 32 Pを A T Pの r位に含んだ [ — 32 P〕 A T Pを用いる。 キナーゼ反応終了後、 反応液を S D S—ポリアクリルアミ ドゲル電気泳動により 分離し、 泳動後のゲルを X線フィルムによりオートラジオグラフィーを行い32 P の取り込まれたタンパク質バンドを検出する。 また、 反応液に 1 0 %トリクロ口 酢酸、 あるいは終濃度 9 0 %となるようにエタノールまたはアセトンを加え、 タ ンパク質を沈殿させる。 その後遠心あるいはフィルター濾過により上清を除き、 さらに同溶液で数回洗浄した後乾燥し、 基質タンパク質がリン酸化されたために 不溶性画分に移行した32 Pを液体シンチレーシヨンカウンターで測定する。 放射 性同位元素を用いない方法としては、 キナーゼ反応終了後の反応液を、 クロマト グラフィ一により分離し、 リン酸化された基質の溶出位置の変化おょぴ変化量で 活性を測定することも可能である。 この場合、. クロマトグラフィーとしては、 ィ オン交換クロマトグラフィー、 逆相クロマトグラフィーを用いることができる。 また、 基質のリン酸化による質量変化を質量分析装置で測定することにより、 活 性測定することも可能である。 この場合、 前述のクロマトグラフィー分離と併用 することで、 測定精度がさらに上昇する。 When measuring the product of the kinase reaction, use [— 32 P] ATP that contains the radioactive isotope 32 P at the r-position of ATP as ATP to be added to the reaction solution. After the completion of the kinase reaction, the reaction solution is separated by SDS-polyacrylamide gel electrophoresis, and the gel after the electrophoresis is subjected to autoradiography using an X-ray film to detect the 32 P-incorporated protein band. To the reaction mixture, add 10% trichloroacetic acid or ethanol or acetone to a final concentration of 90% to precipitate the protein. Thereafter, the supernatant is removed by centrifugation or filtration with a filter, washed with the same solution several times, and dried, and 32 P transferred to the insoluble fraction due to phosphorylation of the substrate protein is measured with a liquid scintillation counter. As a method that does not use radioisotopes, the reaction solution after the completion of the kinase reaction can be separated by chromatography, and the activity can be measured by changing the elution position of the phosphorylated substrate and the amount of change It is. In this case, as the chromatography, ion exchange chromatography or reverse phase chromatography can be used. It is also possible to measure the activity by measuring the change in mass due to phosphorylation of the substrate with a mass spectrometer. In this case, the measurement accuracy is further increased by using the above-mentioned chromatography separation in combination.
このようなキナーゼ活性の解析系は、 本発明のキナーゼ活性を有するタンパク 質のァゴニストやアンタゴニストの評価にも用いることができる。 なお、 本発明 のタンパク質が有する活性の確認は、 上記した方法に限定されるものではない。 ( 4 ) 本発明のタンパク質の機能解析 Such a kinase activity analysis system can also be used to evaluate agonists and antagonists of the protein having the kinase activity of the present invention. The confirmation of the activity of the protein of the present invention is not limited to the method described above. (4) Functional analysis of the protein of the present invention
かくして得られたスプライシングバリアントとして同定されたものを含む新規 タンパク質であって、 かつキナーゼ活性を有する本発明のタンパク質は、 上記 The novel proteins, including those identified as splicing variants thus obtained, and having kinase activity,
( 3 ) で確認されたキナーゼ活性以外の機能を解析することによりその新規の利 用法が提供される (このキナーゼ活性以外の機能をさらに解析する対象となるタ ンパク質を、 以下 「解析対象タンパク質」 と称することがある) 。 特に、 本癸明 のタンパク質には、 公知のタンパク質のスプライシングバリアントが含まれるた め、 このバリアントが公知のバリアントとどのような異なる機能があるかを同定 することは重要である。 Analysis of the function other than the kinase activity identified in (3) provides a new use of the protein. (Proteins for which functions other than the kinase activity are further analyzed are referred to as “proteins to be analyzed.” ”). In particular, since the protein of the present invention includes a splicing variant of a known protein, it is important to identify what functions this variant has with the known variant.
具体的な機能の解析方法としては、 例えば、 . (1) 各組織、 疾患、 あるいは発 生段階における発現状態を比較解析する方法、 (ii) 他のタンパク質、 D N A との相互作用を解析する方法、 (iii) 適当な細胞あるいは個体へ導入し、 表現 型の変化を解析する方法、 (iv) 適当な細胞あるいは個体において該タンパク 質の発現を阻害して表現型の変化を解析する方法などが挙げられる。  Specific methods for analyzing functions include, for example, (1) a method for comparative analysis of the expression state at each tissue, disease, or developmental stage, and (ii) a method for analyzing interactions with other proteins and DNA. (Iii) a method of analyzing a phenotypic change by introducing the protein into an appropriate cell or individual, and (iv) a method of analyzing a phenotypic change by inhibiting the expression of the protein in an appropriate cell or individual. No.
(i) の方法においては、 本発明のタンパク質の発現を、 mR N Aレベルある いはタンパク質レベルで解析することができる。 mR N Aレベルで発現量を角军析 する場合は、 例えば、 i situハイブリダイゼーシヨン法 (¾ situ  In the method (i), expression of the protein of the present invention can be analyzed at the mRNA or protein level. When the expression level is analyzed at the mRNA level, for example, the in situ hybridization method (¾ situ
hybridization: Application to Developmental Biology & Medicine (Ed. by Harris, N. and Wilkinson, D. G. ), Cambridge University Press (1990) ) 、 D N Aチップを利用したハイブリダィゼーション法、 定量 P C R法等が用いられ る。 ここで、 解析の対象タンパク質が公知のバリアントが存在するスプライシン グバリアントである場合には、 解析対象タンパク質をコードする c D N Aにのみ 存在し、 公知のバリアントをコードする c D NAとはハイブリダィズしないプロ ーブを用いることが好ましい。 定量 P C R法の場合には、 対象バリアントと公知 バリアント間で異なる長さの増幅断片ができるプライマーを選択して行う方法Hybridization: Application to Developmental Biology & Medicine (Ed. by Harris, N. and Wilkinson, D.G.), Cambridge University Press (1990)), a hybridization method using a DNA chip, a quantitative PCR method, and the like are used. Here, when the protein to be analyzed is a splicing variant in which a known variant is present, a protein that is present only in the cDNA encoding the protein to be analyzed and does not hybridize to the cDNA encoding the known variant It is preferable to use a probe. In the case of the quantitative PCR method, the method is performed by selecting primers that can generate amplified fragments of different lengths between the target variant and the known variant.
(Wong, Y. , Neuroscience Let. , 320: 141-145 (2002) ) 等が挙げられる。 ま た、 タンパク質レベルで解析する場合には、 後述する本発明のタンパク質に特異 的に結合する抗体を用いた組織染色法などが挙げられる。 この場合、 対象タンパ ク質にのみ反応し、 公知のバリアントには反応しない抗体を用いることが好まし レ、。 (Wong, Y., Neuroscience Let., 320: 141-145 (2002)). Also, when analyzing at the protein level, the protein Tissue staining using an antibody that binds specifically. In this case, it is preferable to use an antibody that reacts only with the target protein and does not react with a known variant.
(ii) の方法においては、 本発明のタンパク質と既知のタンパク質または D NAとの相互作用の有無を調べて、 本発明のタンパク質の機能を解析することが できる。 相互作用の解析法としては、 それ自体既知の常法を用いることができる が、 具体的には、 例えば、 酵母ツーハイブリッド法、 蛍光偏光解消法、 表面ブラ ズモン法、 ファージディスプレイ法、 リポソ一マルディスプレイ法等が挙げられ る。 該方法においても、 解析対象タンパク質が公知のバリアントが存在するスプ ライシングバリアントの場合には、 公知のバリアントも同様にして相互作用する 物質を解析し、 対象タンパク質特異的に相互作用する物質を同定することが好ま しレ、。  In the method (ii), the function of the protein of the present invention can be analyzed by examining the presence or absence of interaction between the protein of the present invention and a known protein or DNA. As a method for analyzing the interaction, a conventional method known per se can be used. Specifically, for example, yeast two-hybrid method, fluorescence depolarization method, surface plasmon method, phage display method, liposomal The display method is an example. Also in this method, when the protein to be analyzed is a splicing variant in which a known variant is present, the known variant is similarly analyzed for interacting substances, and a substance that specifically interacts with the target protein is identified. It is preferable.
(iii) の方法では、 本発明の c D NAを導入する細胞は特に制限はないが、 ヒト培養細胞等が特に好ましく用いられる。 D NAの細胞への導入法としては、 上記 (2 ) に記載のものが挙げられる。 さらに導入細胞の表現型としては、 細胞 の生死、 細胞の増殖速度、 細胞の分化、 細胞が神経細胞の場合には神経突起の伸 長度、 細胞内タンパク質の局在や移行など顕微鏡等で観察可能なものや、 細胞内 の特定タンパク質の発現変化など生化学的実験により解析可能なものも含む。 こ れらの表現型は、 公知のバリアントが存在するスプライシングバリアントの場合 には、 公知のものも同様に細胞へ導入し、 比較解析することにより解析対象バリ アントに関連する表現型を同定することができる。 また、 本発明のタンパク質は キナーゼ活性を有するものであることがわかっているので、 キナーゼが関連する 疾患に見られる表現型等に注目して解析することも好ましい。  In the method (iii), the cells into which the cDNA of the present invention is introduced are not particularly limited, but human cultured cells and the like are particularly preferably used. Methods for introducing DNA into cells include those described in (2) above. In addition, the phenotype of the transfected cells can be observed with a microscope, such as cell viability, cell growth rate, cell differentiation, neurite elongation, localization and migration of intracellular proteins, etc. And those that can be analyzed by biochemical experiments, such as changes in the expression of specific proteins in cells. For these phenotypes, in the case of a splicing variant in which a known variant exists, the known phenotype is also introduced into cells, and the phenotype associated with the variant to be analyzed is identified by comparative analysis. Can be. In addition, since it is known that the protein of the present invention has kinase activity, it is also preferable to analyze by paying attention to the phenotype and the like found in diseases associated with kinase.
(iv) の方法では、 後述するオリゴヌクレオチドを用いた方法や、 R NAィ ンターフェアレンス法により効率的に行うことができる。 この方法においても、 解析する対象タンパク質が、 公知のバリアントが存在するスプライシングバリア ントである場合には、 公知のバリアントやその他のバリアントについても同様の 2004/002133 解析を行い、 比較解析することにより対象タンパク質特異的な機能を同定するこ とができる。 The method (iv) can be efficiently performed by a method using an oligonucleotide described below or an RNA interference method. In this method, if the target protein to be analyzed is a splicing variant in which a known variant exists, the same applies to the known variant and other variants. 2004/002133 By performing analysis and comparative analysis, it is possible to identify the function specific to the target protein.
( 5 ) オリゴヌクレオチドの調製おょぴ該オリゴヌクレオチドを用いる機能解析 上記 (1 ) に記載の方法で取得した本努明の D NAまたはその断片の塩基配列 情報を基に、 核酸合成機などを用いる常法により、 本発明の D NAの一部の配列 を有するアンチセンス ·オリゴヌクレオチド、 センス ·オリゴヌクレオチド等の オリゴヌクレオチドを調製することができる。 該オリゴヌクレオチドとしては、 上記 D N Aの有する塩基配列中の連続した 5〜1 0 0塩基と同じ配列を有する D N Aまたは該 D N Aと相捕的な配列を有する D N Aを挙げることができる。 具体 例としては、 配列番号 1〜1 2のいずれかで表される塩基配列中の連続した 5〜 1 0 0塩基と同じ配列を有する D N Aまたは該 D N Aと相補的な配列を有する D N Aを挙げることができる。 ここで、 対象タンパク質が、 公知のバリアント D N Aが存在するスプライシングバリアントの場合には、 公知のバリアントと異なる 部分の塩基配列を選択することが好ましい。 センスプライマーおよびァンチセン スプライマーとして用いる場合には、 両者の融解温度 (Tm) および塩基数が極 端に変わることのない上記のオリゴヌクレオチドが好ましい。 また、 配列の長さ は、 一般的には 5〜1 0 0塩基であり、 好ましくは 1 0〜6 0塩基であり、 より 好ましくは 1 5〜5 0塩基である。  (5) Preparation of oligonucleotides and functional analysis using the oligonucleotides Based on the nucleotide sequence information of DNA or fragments thereof obtained by the method described in (1) above, a nucleic acid synthesizer, etc. Oligonucleotides having a partial sequence of the DNA of the present invention, such as antisense oligonucleotides and sense oligonucleotides, can be prepared by a conventional method. Examples of the oligonucleotide include DNA having the same sequence as 5 to 100 consecutive nucleotides in the nucleotide sequence of DNA, or DNA having a sequence complementary to the DNA. Specific examples include a DNA having the same sequence as the consecutive 5 to 100 bases in the base sequence represented by any of SEQ ID NOS: 1 to 12, or a DNA having a sequence complementary to the DNA. Can be. Here, when the target protein is a splicing variant in which a known variant DNA is present, it is preferable to select a base sequence different from that of the known variant. When used as a sense primer and an antisense primer, the above-mentioned oligonucleotides whose melting temperature (Tm) and number of bases do not extremely change are preferred. The length of the sequence is generally 5 to 100 bases, preferably 10 to 60 bases, and more preferably 15 to 50 bases.
また、 これらオリゴヌクレオチドの誘導体も本発明のオリゴヌクレオチドとし て利用することができる。 該オリゴヌクレオチド誘導体としては、 オリゴヌタレ ォチド中のリン酸ジエステル結合がホスホロチォエート結合に変換されたオリゴ ヌクレオチド誘導体、 オリゴヌクレオチド中のリン酸ジエステル結合が N 3, 一 P 5 ' ホスフォアミデート結合に変換されたオリゴヌクレオチド誘導体、 オリゴ ヌクレオチド中のリボースとリン酸ジエステル結合がぺプチド核酸結合に変換さ れたォリゴヌクレオチド誘導体、 オリゴヌクレオチド中のゥラシルが C一 5プロ ピニルゥラシルで置換されたオリゴヌクレオチド誘導体、 オリゴヌクレオチド中 のゥラシルが C一 5チアゾールゥラシルで置換されたォリゴヌクレオチド誘導体、 オリゴヌクレオチド中のシトシンが C一 5プロピニルシトシンで置換されたォリ ゴヌクレオチド誘導体、 オリゴヌクレオチド中のシトシンがフエノキサジン修飾 シトシン (phenoxazine-modified cytosine) で置換されたオリゴヌクレオチド 誘導体、 オリゴヌクレオチド中のリボースが 2, 一 O—プロピルリボースで置換 されたオリゴヌクレオチド誘導体、 あるいはオリゴヌクレオチド中のリボースが 2, 一メ トキシエトキシリポースで置換されたオリゴヌクレオチド誘導体等をあ げることができる。 In addition, derivatives of these oligonucleotides can also be used as the oligonucleotide of the present invention. Examples of the oligonucleotide derivative include an oligonucleotide derivative in which a phosphodiester bond in an oligonucleotide is converted to a phosphorothioate bond, and a phosphodiester bond in an oligonucleotide in which an N 3, 1 P 5 ′ phosphoramidate bond is used. Oligonucleotide derivative in which ribose and phosphodiester bond in oligonucleotide are converted to peptide nucleic acid bond, Oligonucleotide in which peracyl in oligonucleotide is substituted by C-15 propynyl peracyl Derivatives, oligonucleotide derivatives in which peracyl in the oligonucleotide is substituted with C-15 thiazoleperacyl, Oligonucleotide derivatives in which cytosine in the oligonucleotide is substituted with C-5-propynylcytosine, oligonucleotide derivatives in which cytosine in the oligonucleotide is substituted with phenoxazine-modified cytosine, and ribose in the oligonucleotide are Oligonucleotide derivatives substituted with 2,1-O-propylribose, or oligonucleotide derivatives substituted with 2,1-methoxyethoxylipose in the oligonucleotide can be used.
また、 本発明のオリゴヌクレオチドは、 これを 2本鎖 R NAとして調製するこ とにより、 R N Aインターフェアレンス法に適用することができる。 2本鎖 R N Aの作製方法、 及ぴ R NAインターフェアレンス法については、 例えば、 Elbashir, S. , et al. , Nature, 411: 494-498 (2001)に記載の方法等を用いる ことができる。 上記 2本鎖 R N Aは、 そのすべてが R NAである必要はない。 具 体的には、 その一部が D NAであるものとして、 WO 0 2 / 1 0 3 7 4号公報に 記載のものを用いることができる。  Moreover, the oligonucleotide of the present invention can be applied to the RNA interference method by preparing it as a double-stranded RNA. For the method for preparing double-stranded RNA and the RNA interference method, for example, the method described in Elbashir, S., et al., Nature, 411: 494-498 (2001) can be used. . The double-stranded RNAs need not all be RNAs. Specifically, as a part of which is a DNA, those described in WO 02/10374 can be used.
この R NAインターフェアランス法において標的となる遺伝子 (以下これを 「標的遺伝子」 と称することがある) は、 本発明の D N Aであれば、 いかなるも のであってもよい。 また、 該遺伝子 D NAのオルソログと予想される遺伝子も標 的遺伝子とすることができる。 これらの D NAの少なくとも一部の塩基配列と実 質的に同一な配列を有する R N Aからなる 2本鎖オリゴヌクレオチド (以下、 こ れを 「2本鎖オリゴヌクレオチド」 と称することがある) とは、 標的遺伝子の塩 基配列のうち、 いずれの部分でもよい 1 5 b p以上の配列と実質的に同一な配列 がらなるものである。 ここで、 実質的に同一とは、 標的遺伝子の配列と 8 0 %以 上の相同性を有することを意味する。  The gene to be targeted in the RNA interference method (hereinafter sometimes referred to as “target gene”) may be any DNA as long as it is the DNA of the present invention. In addition, a gene predicted to be an ortholog of the gene DNA can also be a target gene. A double-stranded oligonucleotide consisting of RNA having a sequence substantially identical to at least a part of the base sequence of these DNAs (hereinafter, may be referred to as “double-stranded oligonucleotide”) However, a sequence substantially the same as a sequence of 15 bp or more, which may be any part of the base sequence of the target gene, is obtained. Here, “substantially the same” means having 80% or more homology with the sequence of the target gene.
また、 解析対象タンパク質が公知タンパク質と比較して、 挿入型あるいは置換 型バリアントである場合は、 2本鎖ォリゴヌクレオチド配列は挿入ある ヽは置換 部位に設定することができる。 また、 解析対象タンパク質が公知タンパク質の欠 失型バリアントである場合は、 欠失部を跨ぐ配列を 2本鎖オリゴヌクレオチド配 列とすることにより、 該タンパク質特異的に効果のある配列を選定することがで きる。 さらに、 解析対象タンパク質と公知タンパク質のそれぞれをコードする D NAの塩基配列と比較して、 角军析対象タンパク質をコードする DNAに特異的な 塩基配列を選定することによれば、 解析対象タンパク質特異的にその発現を阻害 することができる。 Further, when the protein to be analyzed is an insertion type or substitution type variant as compared with a known protein, the double-stranded oligonucleotide sequence can be set at the insertion site where the insertion is present. If the protein to be analyzed is a deletion variant of a known protein, the sequence spanning the deletion should be By arranging the sequences, it is possible to select a sequence that is effective specifically for the protein. Furthermore, by selecting a nucleotide sequence specific to the DNA encoding the protein to be analyzed by comparison with the nucleotide sequence of the DNA encoding each of the protein to be analyzed and the known protein, Its expression can be inhibited.
ヌクレオチドの鎖長は 15 b pから標的遺伝子のオープンリーディングフレー ム (ORF) の全長までのいかなる長さでもよいが、 15〜500 b p程度のも のが好ましく用いられる。 ただし、 哺乳類動物由来の細胞においては、 30 b p 以上の長い 2本鎖 RN Aに反応して活性化するシグナル伝達系の存在が知られて いる。 これはインターフェロン反応と呼ばれており (Mareus, P. I. , et al. , Interferon, 5: 115-180 (1983)) 、 該 2本鎖 R N Aが細胞内に侵入すると、 P KR (dsR A-responsive protein kinase: Bass, B. L. , Nature, 411: 428 - 429 (2001)) を介して多くの遺伝子の翻訳開始が非特異的に阻害され、 それと 同時に 2' - 5' oligoadenylate synthetase (Bass, B. L. , Nature, 411: 428 - 429(2001)) を介して RNa s e Lの活性化が起こり、 細胞内の RNAの非特異 的な分解が惹起される。 これらの非特異的な反応のために、 標的遺伝子の特異的 反応が隠蔽されてしまう。 従って哺乳類動物または該動物由来の細胞あるいは組 織を被導入体として用いる場合には 1 5〜30 b p、 好ましくは 1 9〜24 b p、 さらに好ましくは 2 1 b pの 2本鎖オリゴヌクレオチドを用いることが好ましレ、。 2本鎖ォリゴヌクレオチドはその全体が 2本鎖である必要はなく、 5 ' または 3, 末端が一部突出したものも含むが、 3, 末端が 2塩基突出したものを用いる ことが好ましい。 2本鎖ォリゴヌクレオチドは相補性を有する 2本鎖のオリゴヌ クレオチドを意味するが、 自己相補性を有する 1本鎖ォリゴヌクレオチドが自己 アニーリングしたものでもよい。 自己相補性を有する 1本鎖オリゴヌクレオチド としては、 例えば、 逆方向反復配列を有するもの等が挙げられる。  The nucleotide length may be any length from 15 bp to the entire length of the open reading frame (ORF) of the target gene, but a length of about 15 to 500 bp is preferably used. However, it is known that mammalian-derived cells have a signal transduction system that activates in response to a long double-stranded RNA of 30 bp or more. This is called an interferon reaction (Mareus, PI, et al., Interferon, 5: 115-180 (1983)), and when the double-stranded RNA enters the cell, P KR (dsR A-responsive protein) kinase: Bass, BL, Nature, 411: 428-429 (2001)), the initiation of translation of many genes is non-specifically inhibited, and at the same time, 2 '-5' oligoadenylate synthetase (Bass, BL, Nature, 411: 428-429 (2001)), which activates RNase L, causing nonspecific degradation of intracellular RNA. These non-specific reactions mask the specific response of the target gene. Therefore, when a mammal or a cell or a tissue derived from the animal is used as the transfectant, a double-stranded oligonucleotide of 15 to 30 bp, preferably 19 to 24 bp, more preferably 21 bp is used. But preferred. The double-stranded oligonucleotide does not need to be entirely double-stranded, and includes those whose 5 'or 3' ends are partially protruded, but those whose 3 'ends are protruded by 2 bases are preferably used. The double-stranded oligonucleotide refers to a double-stranded oligonucleotide having complementarity, but may be a self-annealed single-stranded oligonucleotide having self-complementarity. Single-stranded oligonucleotides having self-complementarity include, for example, those having inverted repeat sequences.
2本鎖オリゴヌクレオチドの調製方法としては特に制限はないが、 それ自体既 知の化学合成方法を用いることが好ましい。 化学合成は相補性を有する 1本鎖ォ リゴヌクレオチドを別個に合成し、 これを適当な方法で会合させることにより 2 本鎖とすることができる。 会合の方法としては上記オリゴヌクレオチドを混合し、 2本鎖が解離する温度にまで加熱し、 その後徐々に冷却する方法等が挙げられる。 会合した 2本鎖オリゴヌクレオチドは、 ァガロースゲル等を用いて確認し、 残存 する 1本鎖オリゴヌクレオチドを適当な酵素により分解する等して除去する。 このようにして調製した 2本鎖オリゴヌクレオチドを導入する被導入体として は、 標的遺伝子がその細胞内で R NAに転写、 またはタンパク質に翻訳を受け得 るものであればいかなるものであってもよいが、 具体的には、 植物、 動物に属す るものが挙げられる。 植物は単子葉植物、 双子葉植物または裸子植物であってよ く、 動物は、 脊椎動物または無脊椎動物であってよい。 脊椎動物の例には、 魚類、 ゥシ、 ャギ、 プタ、 ヒッジ、 ハムスター、 マウス、 ラット及びヒトを含む哺乳動 物が含まれ、 無脊椎動物には、 線虫、 キイ口ショウジヨウバエ (Drosophila) 、 及ぴ他の昆虫が含まれる。 好ましくは、 細胞は脊椎動物細胞である。 The method for preparing the double-stranded oligonucleotide is not particularly limited, but a known chemical synthesis method is preferably used. Chemical synthesis is complementary single-stranded Ligonucleotides can be separately synthesized and assembled into a double strand by associating them by an appropriate method. Examples of the method of association include a method in which the above oligonucleotides are mixed, heated to a temperature at which the double strand dissociates, and then gradually cooled. The associated double-stranded oligonucleotide is confirmed using an agarose gel or the like, and the remaining single-stranded oligonucleotide is removed by, for example, decomposing with a suitable enzyme. The transfectant into which the double-stranded oligonucleotide prepared in this manner is introduced may be any as long as the target gene can be transcribed into RNA or translated into protein in the cell. Good, but specific examples include those belonging to plants and animals. The plant can be a monocotyledonous, dicotyledonous or gymnosperm, and the animal can be a vertebrate or invertebrate. Examples of vertebrates include mammals, including fish, sea lions, goats, stags, sheep, hamsters, mice, rats, and humans, and invertebrates include nematodes, mosquitoes, Drosophila) and other insects. Preferably, the cells are vertebrate cells.
被導入体は、 細胞、 組織あるいは個体を意味する。 ここで細胞とは、 生殖系列 細胞または体細胞であってよく、 分化全能または多分化能、 分割または非分割、 実質組織または上皮、 不滅化したものまたは形質転換したもの等であってよい。 細胞は、 配偶子または胚であってよく、 胚の場合、 単一細胞胚または構成性細胞、 または多重細胞胚からの細胞であり、 胎児糸且織を含む。 さらには、 幹細胞のよう な未分化細胞、 または胎児組織を含む器官または組織の細胞のような分化細胞、 または生物内に存在する任意の他の細胞であってよい。 分化している細胞型には、 脂肪細胞、 繊維芽細胞、 筋細胞、 心筋細胞、 内皮細胞、 神経細胞、 グリア細胞、 血液細胞、 巨核球、 リンパ球、 マクロファージ、 好中球、 好酸球、 好塩基球、 マ スト細胞、 白血球、 顆粒球、 ケラチン生成細胞、 軟骨細胞、 骨芽細胞、 破骨細胞、 肝細胞およぴ内分泌腺または外分泌腺の細胞が含まれる。  The transfectant means a cell, tissue or individual. Here, the cells may be germline cells or somatic cells, and may be totipotent or pluripotent, divided or undivided, parenchymal or epithelial, immortalized or transformed, and the like. The cell may be a gamete or an embryo, in the case of an embryo, a single cell embryo or a constitutive cell, or a cell from a multicellular embryo, including fetal silk tissue. Furthermore, it may be an undifferentiated cell such as a stem cell, or a differentiated cell such as a cell of an organ or tissue including fetal tissue, or any other cell present in an organism. Differentiating cell types include fat cells, fibroblasts, muscle cells, cardiomyocytes, endothelial cells, nerve cells, glial cells, blood cells, megakaryocytes, lymphocytes, macrophages, neutrophils, eosinophils, Includes basophils, mast cells, leukocytes, granulocytes, keratinocytes, chondrocytes, osteoblasts, osteoclasts, hepatocytes and cells of the endocrine or exocrine glands.
被導入体への 2本鎖オリゴヌクレオチドの導入法としては、 被導入体が細胞、 あるいは組織の場合は、 カルシウムフォスフェート法、 エレクト口ポレーシヨン 法、 リポフエクシヨン法、 ウィルス感染、 2本鎖ポリ.ヌクレオチド溶液への浸漬、 あるいは形質転換法等が用いられる。 また、 胚に導入する方法としては、 マイク 口インジェクション、 エレクト口ポレーシヨン法、 あるいはウィルス感染等が挙 げられる。 被導入体が植物の場合には、 植物体の体腔または間質細胞等への注入 または灌流、 あるいは噴霧による方法が用いられる。 また、 動物個体の場合には、 経口、 局所、 非経口 (皮下、 筋肉内及ぴ静脈内投与を含む) 、 経膣、 経直腸、 経 鼻、 経眼、 腹膜内投与等によって全身的に導入する方法、 あるいはエレクトロボ レーシヨン法やウィルス感染等が用いられる。 経口導入のための方法には、 2本 鎖オリゴヌクレオチドを生物の食物と直接混合することができる。 さらに、 個体 に導入する場合には、 例えば埋め込み長期放出製剤等として投与することや、 2 本鎖ォリゴヌクレオチドを導入した導入体を摂取させることにより行うこともで さる。 As a method for introducing a double-stranded oligonucleotide into a recipient, when the recipient is a cell or tissue, calcium phosphate method, electoral poration method, lipofection method, virus infection, double-stranded polynucleotide. Immersion in a solution, Alternatively, a transformation method or the like is used. Examples of the method for introduction into an embryo include a microphone-injection, an elect-portation method, and a virus infection. When the recipient is a plant, a method of injecting or perfusing the plant into the body cavity or stromal cells, or spraying is used. In addition, in the case of an animal individual, it is introduced systemically by oral, topical, parenteral (including subcutaneous, intramuscular and intravenous administration), vaginal, rectal, nasal, ocular, intraperitoneal administration, etc. For example, a method such as electrophoresis or virus infection is used. For methods for oral introduction, the double-stranded oligonucleotide can be mixed directly with the food of the organism. Furthermore, when introduced into an individual, it can be administered, for example, by administration as an implanted long-term release preparation or by ingesting an introduced body into which a double-stranded oligonucleotide has been introduced.
導入する 2本鎖ォリゴヌクレオチドの量は、 導入体や、 標的遺伝子によって適 宜選択することができるが、 細胞あたり少なくとも 1コピー導入されるに充分量 を導入することが好ましい。 具体的には、 例えば、 被導入体がヒト培養細胞で、 カルシウムフォスフェート法により 2本鎖ポリヌクレオチドを導入する場合、 0 . 1〜 1 0 0 0 n Mが好ましレヽ。  The amount of the double-stranded oligonucleotide to be introduced can be appropriately selected depending on the transductant and the target gene, but it is preferable to introduce an amount sufficient to introduce at least one copy per cell. Specifically, for example, when the transfectant is a cultured human cell and the double-stranded polynucleotide is introduced by the calcium phosphate method, 0.1 to 100 nM is preferable.
R N Aィンターフェアレンスによる本発明の D NAの導入体内での発現抑制に より、 本発明の D NAがコードするタンパク質の機能の確認、 あるいは新たな機 能の解析等を行うことができる。  By suppressing the expression of the DNA of the present invention in the transfected body by the RNA interference, the function of the protein encoded by the DNA of the present invention can be confirmed, or a new function can be analyzed.
( 6 ) 本発明のタンパク質に特異的に結合する抗体  (6) an antibody that specifically binds to the protein of the present invention
本発明のタンパク質と特異的に結合する抗体の調製方法としては、 通常用いら れる公知の方法を用いることができ、 抗原として用いられるポリペプチドについ ても、 公知の方法に従って抗原性が高くェピトープ (抗原決定基) として適した 配列を選択して用いることができる。 ェピトープの選択方法としては、 例えば Epitope Adviser (富士通九州システムエンジニアリング社製) 等の市販のソフ トウエアを用いることができる。 また、 対象タンパク質が、 公知のバリアントが 存在するスプライシングバリアントである場合には、 対象タンパク質にのみ反応 し、 公知の、 またはそれ以外のバリアントには反応しない抗体を用いることによ り、 対象タンパク質に特異的な機能を同定することができる。 このような抗体の ェピトープとしては、 例えば、 対象タンパク質が公知のバリアントと比較して欠 失しているアミノ酸配列がある場合、 欠失部分の前後のアミノ酸配列 (ジャンク シヨン部分) 等が好ましい。 また、 対象タンパク質が公知のバリアントの N末ま たは C末が添加されているアミノ酸配列を有する場合、 添加されているアミノ酸 配列をェピトープとすることも好ましい。 上記以外の方法として、 対象タンパク 質に対して取得したポリクローナル抗体から、 公知の、 またはそれ以外のバリア ントに反応する抗体を除去することにより、 対象タンパク質にのみ反応する抗体 を取得することができる。 除去する方法としては、 公知の、 またはそれ以外のバ リアントをリガンドとして固定したァフィ二ティークロマトグラフィー、 あるい は、 公知の、 またはそれ以外のバリアントによる免疫沈降法等が用いられる。 上記の抗原として用いるポリペプチドは、 公知の方法に従って合成した合成ぺ プチドでも、 また本発明のタンパク質そのものを用いることもできる。 抗原とな るポリペプチドは、 公知の方法に従って適当な溶液等に調製して、 哺乳動物、 例 えばゥサギ、 マウス、 ラット等に免疫を行えばよいが、 安定的な免疫を行ったり 抗体価を高めるために抗原べプチドを適当なキャリアタンパク質とのコンジュゲ ートにして用いたり、 アジュパント等を加えて免疫を行うのが好ましい。 As a method for preparing an antibody that specifically binds to the protein of the present invention, a commonly used known method can be used. The polypeptide used as an antigen also has a high antigenicity according to a known method and is used for epitope ( An appropriate sequence can be selected and used as the antigenic determinant. As a method for selecting an epitope, for example, commercially available software such as Epitope Adviser (manufactured by Fujitsu Kyushu System Engineering Co., Ltd.) can be used. In addition, when the target protein is a splicing variant in which a known variant exists, only the target protein reacts. However, by using an antibody that does not react with a known or other variant, a function specific to the target protein can be identified. As an epitope of such an antibody, for example, when there is an amino acid sequence in which the target protein is missing as compared with a known variant, an amino acid sequence before and after the deleted portion (junction portion) is preferable. When the target protein has an amino acid sequence to which a known variant is added with the N-terminal or C-terminal, it is preferable to use the added amino acid sequence as an epitope. As a method other than the above, an antibody that reacts only with the target protein can be obtained by removing an antibody that reacts with a known or other variant from the polyclonal antibody obtained with respect to the target protein. . As a method for removal, affinity chromatography in which a known or other variant is immobilized as a ligand, or immunoprecipitation using a known or other variant is used. As the polypeptide used as the antigen, a synthetic peptide synthesized according to a known method or the protein of the present invention itself can be used. A polypeptide serving as an antigen may be prepared in an appropriate solution or the like according to a known method and immunized to a mammal, for example, a heron, a mouse, a rat, or the like. In order to increase the immunity, it is preferable to use the antigen peptide as a conjugate with an appropriate carrier protein or to carry out immunization by adding an adjuvant or the like.
免疫に際しての抗原の投与経路は特に限定されず、 例えば皮下、 腹腔内、 静脈 内、 あるいは筋肉内等のいずれの経路を用いてもよい。 具体的には、 例えば B A L B / cマウスに抗原ポリぺプチドを数日〜数週間おきに数回接種する方法等が 用いられる。 また、 抗原の摂取量としては、 抗原がポリペプチドの場合 0 . 3〜 0 . 5 m g / l回程度が好ましいが、 ポリペプチドの種類、 また免疫する動物種 によっては適宜調節される。  The route of administration of the antigen upon immunization is not particularly limited, and any route such as subcutaneous, intraperitoneal, intravenous, or intramuscular route may be used. Specifically, for example, a method of inoculating a BALB / c mouse several times every several days to several weeks with an antigen polypeptide is used. The antigen intake is preferably about 0.3 to 0.5 mg / l when the antigen is a polypeptide, but is appropriately adjusted depending on the type of the polypeptide and the animal species to be immunized.
免疫後、 適宜試験的に採血を行ってオクタローニ一法、 固相酵素免疫検定法 (以下、 これを 「E L I S A法」 と称することがある) やウェスタンプロッティ ング等の方法で抗体価の上昇を確認し、 十分に抗体価の上昇した動物から採血を 行う。 これに抗体の調製に用いられる適当な処理を行えばポリクローナル抗体を 得ることができる。 具体的には、 例えば、 公知の方法に従い血清から抗体成分を 精製した精製抗体を取得する方法等が挙げられる。 抗体成分の精製は、 塩析、 ィ オン交換クロマトグラフィー、 ァフィ二ティークロマトグラフィ一等の方法を用 いることができる。 After immunization, test blood is collected as appropriate, and the increase in antibody titer is confirmed by methods such as the Octaloni method, enzyme-linked immunosorbent assay (hereinafter sometimes referred to as “ELISA”), and Western blotting. Blood from animals with sufficiently raised antibody titers. Do. A polyclonal antibody can be obtained by subjecting this to an appropriate treatment used for the preparation of the antibody. Specifically, for example, there is a method of obtaining a purified antibody obtained by purifying an antibody component from serum according to a known method. For purification of the antibody component, methods such as salting out, ion exchange chromatography, and affinity chromatography can be used.
また、 該動物の脾臓細胞とミエローマ細胞とを用いて公知の方法に従って融合 させたハイプリ ドーマを用いる (Milstein, et al. , ature, 256: 495 (1975)) ことによりモノクローナル抗体を作製することもできる。 モノクロ一 ナル抗体は、 例えば以下の方法により取得することができる。  Monoclonal antibodies can also be prepared by using a hybridoma fused with spleen cells and myeloma cells of the animal according to a known method (Milstein, et al., Ature, 256: 495 (1975)). it can. A monoclonal antibody can be obtained, for example, by the following method.
まず、 上記した抗原の免疫により抗体価の高まった動物から抗体産生細胞を取 得する。 抗体産生細胞は、 形質細胞、 及ぴその前駆細胞であるリンパ球であり、 これは個体のいずれから取得してもよいが、 好ましくは脾臓、 リンパ節、 末梢血 等から取得する。 これらの細胞と融合させるミエローマとしては、 一般的にはマ ウスから得られた株化細胞、 例えば 8—ァザグァニン耐性マウス (BALBZc 由来等) ミエローマ細胞株である P 3X63— Ag 8. 653 (ATCC : CR L- 1580) 、 P 3-NS 1/1 Ag 4. 1 (理研セルパンク : RCB 009 5) 等が好ましく用いられる。 細胞の融合は、 抗体産生細胞とミエローマ細胞を 適当な割合で混合し、 適当な細胞融合培地、 例えば RPMI 1640やイスコフ 改変ダルベッコ培地 (IMDM) 、 あるいはダルベッコ改変イーグル培地 (DM EM) 等に、 50%ポリエチレングリコール (PEG) を溶解したもの等を用い ることにより行うことができる。 また電気融合法 (Zi膽 ermann, U. et al. , Naturwissenschaften, 68: 577 (1981)) によっても行うことができる。  First, antibody-producing cells are obtained from an animal whose antibody titer has been raised by immunization with the above-mentioned antigen. The antibody-producing cells are plasma cells and lymphocytes which are precursor cells thereof, which may be obtained from any of individuals, but preferably obtained from spleen, lymph nodes, peripheral blood and the like. The myeloma to be fused with these cells is generally a cell line obtained from a mouse, for example, P3X63-Ag8.653 (ATCC: CR L-1580), P 3-NS 1/1 Ag 4.1 (RIKEN cell punk: RCB 009 5) and the like are preferably used. For cell fusion, antibody-producing cells and myeloma cells are mixed at an appropriate ratio, and mixed in an appropriate cell fusion medium, such as RPMI 1640, Iscove's modified Dulbecco's medium (IMDM), or Dulbecco's modified Eagle's medium (DMEM). % By dissolving polyethylene glycol (PEG). It can also be performed by the electrofusion method (Zi ermann, U. et al., Naturwissenschaften, 68: 577 (1981)).
ハイプリ ドーマは、 用いたミエローマ細胞株が 8—ァザグァニン耐性株である ことを利用して適量のヒポキサンチン 'アミノプテリン 'チミジン (HAT) 液 を含む正常培地 (HAT培地) 中で 5%C02、 37 °Cで適当時間培養すること により選択することができる。 この選択方法は用いるミエローマ細胞株によって 適宜選択して用いることができる。 選択されたハイプリ ドーマが産生する抗体の 抗体価を上記した方法により解析し、 抗体価の高い抗体を産生するハイプリ ドー マを限界希釈法等により分離し、 分離した融合細胞を適当な培地で培養して得ら れる培養上清から硫安分画、 ァフィ二テイクロマトググラフィ一等の適当な方法 により精製してモノクローナル抗体を得ることができる。 また精製には市販のモ ノクローナル抗体精製キットを用いることもできる。 さらには、 免疫した動物と 同系統の動物、 またはヌードマウス等の腹腔内で上記で得られた抗体産生ハイブ リ ドーマを増殖させることにより、 本発明のモノクローナル抗体を大量に含む腹 水を得ることもできる。 High Priestess dormer is normal medium (HAT medium) in 5% C0 2 containing an appropriate amount of hypoxanthine 'aminopterin' thymidine (HAT) solution by utilizing the myeloma cell line is a 8-Azaguanin resistant strain used, It can be selected by culturing at 37 ° C for an appropriate time. This selection method can be appropriately selected and used depending on the myeloma cell line to be used. Antibodies produced by the selected hybridomas The antibody titer is analyzed by the method described above, the hybridoma producing an antibody with a high antibody titer is separated by a limiting dilution method or the like, and ammonium sulfate is obtained from a culture supernatant obtained by culturing the separated fused cells in an appropriate medium. A monoclonal antibody can be obtained by purification by an appropriate method such as fractionation and affinity chromatography. For purification, a commercially available monoclonal antibody purification kit can also be used. Furthermore, by growing the antibody-producing hybridoma obtained above in the abdominal cavity of an animal of the same strain as the immunized animal or a nude mouse, ascites containing a large amount of the monoclonal antibody of the present invention can be obtained. You can also.
また、 本発明のタンパク質としてヒト由来のものを取得した場合には、 かかる ポリペプチド、 あるいはその部分ペプチドを抗原として、 ヒト末梢血リンパ球を 移植した Severe combined immune deficiency ( S C I D マウスに上己した 方法と同様にして免疫し、 該免疫動物の抗体産生細胞とヒトのミエローマ細胞と のハイプリ ドーマを作製することによってもヒト型抗体を作製することができる When a human-derived protein is obtained as the protein of the present invention, the polypeptide or a partial peptide thereof is used as an antigen, and Severe combined immune deficiency (a method adapted to SCID mice) transplanted with human peripheral blood lymphocytes. A humanized antibody can also be prepared by immunization in the same manner as described above and preparing a hybridoma of antibody-producing cells of the immunized animal and human myeloma cells.
(Mosier, D. E. , et al., Nature, 335: 256—259 (1988) ; Duchosal, M. A. , et al. , ature, 355: 258-262 (1992) ) 。 (Mosier, DE, et al., Nature, 335: 256-259 (1988); Duchosal, MA, et al., Ature, 355: 258-262 (1992)).
また、 取得したヒト型抗体を産生するハイプリ ドーマから R NAを抽出し、 目 的のヒト型抗体をコードする遺伝子をクローユングして、 この遺伝子を適当なベ クタ一に挿入し、 これを適当な宿主に導入して発現させることにより、 さらに大 量にヒ ト型抗体を作製することができる。 ここで、 抗原との結合性の低い抗体は、 それ自体既知の進化工学的手法を用いることによりさらに結合性の高い抗体とし て取得することもできる。 一過性抗体等の部分フラグメントは、 例えばパパイン 等を用いて F a b部分と F c部分を切断し、 ァフィ二ティカラム等を用いて F a b部分を回収することによって作製することができる。  In addition, RNA is extracted from the obtained hybridoma producing the human antibody, the gene encoding the target human antibody is cloned, and this gene is inserted into an appropriate vector. By introducing the protein into a host and expressing it, a larger amount of a human antibody can be produced. Here, an antibody with low binding to an antigen can be obtained as an antibody with even higher binding by using an evolutionary engineering technique known per se. A partial fragment such as a transient antibody can be prepared by, for example, cleaving the Fab and Fc portions using papain or the like, and collecting the Fab portion using an affinity column or the like.
• かくして得られる本発明のタンパク質と特異的に結合する抗体は、 本発明のタ ンパク質に特異的に結合することによって該タンパク質が有するキナーゼ活性等 を阻害する中和抗体として用いることもできる。 タンパク質が有する活性を阻害 するものの選択方法としては特に制限はないが、 例えば、 上記 (2 ) で作製した D N A導入体に抗体を接触または導入し、 導入体中の目的タンパク質の機能が阻 害されるか否かを解析する方法等が挙げられる。 • The thus-obtained antibody that specifically binds to the protein of the present invention can also be used as a neutralizing antibody that specifically binds to the protein of the present invention and thereby inhibits the kinase activity or the like of the protein. There is no particular limitation on the method of selecting a substance that inhibits the activity of the protein. For example, the method selected in (2) above Methods include contacting or introducing an antibody into a DNA transfectant, and analyzing whether or not the function of the target protein in the transfectant is inhibited.
かかる中和抗体は、 臨床へ応用するに際し、 上記有効成分を単独で用いること も可能であるが、 薬学的に許容され得る担体と配合して医薬品組成物として用い ることもできる。 この時の有効成分の担体に対する割合は、 1〜9 0重量%の間 で変動され得る。 また、 かかる薬剤は種々の形態で投与することができ、 それら の投与形態としては、 錠剤、 カプセル剤、 顆粒剤、 散剤、 あるいはシロップ剤等 による経口投与、 または注射剤、 点滴剤、 リボソーム剤、 坐薬剤等による非経口 投与を挙げることができる。 また、 その投与量は、 症状、 年齢、 体重等によって 適宜選択することができる。  Such a neutralizing antibody can be used alone when the clinical application is used, or can be used as a pharmaceutical composition by mixing with a pharmaceutically acceptable carrier. At this time, the ratio of the active ingredient to the carrier can be varied between 1 and 90% by weight. Such drugs can be administered in various forms, such as tablets, capsules, granules, powders, or syrups for oral administration, or injections, infusions, ribosomes, Parenteral administration with suppositories and the like can be mentioned. In addition, the dose can be appropriately selected depending on symptoms, age, weight, and the like.
( 7 ) 本発明のタンパク質が有する活性を調節する分子のスクリーニング 本発明のタンパク質に特異的に結合し、 かつ本発明のタンパク質の機能 (活 性) を阻害、 拮抗または増強する作用を有する物質をスクリーニングすることに より本発明のタンパク質の機能調節物質 (以下、 これを 「調節物質」 と称するこ とがある) を得ることができる。  (7) Screening for a molecule that regulates the activity of the protein of the present invention. A substance that specifically binds to the protein of the present invention and that has an action of inhibiting, antagonizing, or enhancing the function (activity) of the protein of the present invention. By performing the screening, a function modulator of the protein of the present invention (hereinafter, this may be referred to as “modulator”) can be obtained.
この調節物質のスクリーユング方法は、 本発明のタンパク質に特異的に結合し、 かつ該タンパク質の活性を阻害、 拮抗または増強する作用を有する物質が得られ る方法であればいかなるものであってもよい。 例えば、 まずはじめに本発明のタ ンパク質とスクリーニングに供する物質 (以下、 これを 「被検物質」 と称するこ とがある) とを接触させ、 該タンパク質との結合性を指標として選抜した後に、 本発明のタンパク質が有する活性の変化を指標として被検物質を選抜する方法を 用いることができる。  The screening method of the modulator may be any method as long as it can obtain a substance that specifically binds to the protein of the present invention and has an activity of inhibiting, antagonizing or enhancing the activity of the protein. Good. For example, first, the protein of the present invention is brought into contact with a substance to be subjected to screening (hereinafter, this may be referred to as “test substance”), and after selection using the binding property to the protein as an index, A method for selecting a test substance using the change in the activity of the protein of the present invention as an index can be used.
被検物質としては、 本発明のタンパク質と相互作用して、 該タンパク質が有す る活性に影響を及ぼす可能性のある物質であればいかなるものであってもよレ、が、 具体的には、 例えば、 ペプチド、 タンパク質、 非ペプチド性化合物、 低分子化合 物、 合成化合物、 発酵生産物、 細胞抽出液、 動物組織抽出液等が挙げられる。 こ れらの物質は新規な物質であってもよいし、 公知の物質であってもよい。 被検物 質と本発明のタンパク質の相互作用の解析法としては、 それ自体既知の常法を用 いることができるが、 具体的には、 例えば、 酵母ツーハイブリッド法、 蛍光偏光 解消法、 表面プラズモン法、 ファージディスプレイ法、 リポソ一マルディスプレ ィ法、 あるいは上記 (6 ) に記載した抗体との競合解析法等が挙げられる。 この ような方法により、 本発明のタンパク質に結合する活性を見いだされた物質は、 次に該物質の存在下で本発明のタンパク質が有する活性がどのような影響を受け るかを解析することによって、 調節物質として用いられるか否かが同定される。 ここで、 対象タンパク質が、 公知のバリアントが存在するスプライシングバリア ントである場合には、 対象タンパク質にのみ結合し、 公知のまたは他のバリアン トには結合しない物質についてその影響を解析する力 または公知のあるいは他 のバリアントにおいても同様に結合するか否かを同定し、 結合した場合にはその 影響の相違を解析することによって、 対象タンパク質に対する該物質の影響を解 析することができる。 また、 該物質の個体内での分布を検討することにより、 対 象タンパク質や公知のまたは他のバリアントに対する影響を解析することができ る。 The test substance may be any substance as long as it can interact with the protein of the present invention and affect the activity of the protein. Examples thereof include peptides, proteins, non-peptidic compounds, low-molecular compounds, synthetic compounds, fermentation products, cell extracts, animal tissue extracts, and the like. These substances may be novel substances or known substances. Test object As a method for analyzing the interaction between the protein and the protein of the present invention, a conventional method known per se can be used. Specifically, for example, a yeast two-hybrid method, a fluorescence depolarization method, a surface plasmon method, Examples include the phage display method, the liposomal display method, and the competition analysis method with the antibody described in the above (6). By such a method, a substance found to bind to the protein of the present invention is then analyzed by analyzing how the activity of the protein of the present invention is affected in the presence of the substance. Whether it is used as a modulator or not is identified. Here, when the target protein is a splicing variant in which a known variant is present, the ability to analyze the effect of a substance that binds only to the target protein and does not bind to a known or other variant or a known substance is used. Similarly, it is possible to analyze the effect of the substance on the target protein by identifying whether or not it binds to the same or another variant, and analyzing the difference in the effect of the binding when binding. In addition, by examining the distribution of the substance in an individual, the effect on the target protein and known or other variants can be analyzed.
具体的な解析方法としては、 例えば、 キナーゼ活性を調節する物質を解析する 場合には、 (2 ) に記載した D NA導入体に基質となるタンパク質も同様の方法 で導入する。 この導入体について選択された物質の存在下/または非存在下で基 質となるタンパク質のリン酸化をそれ自体既知の通常用いられる方法により解析 する。 具体的には、 上記 (3 ) に記載の方法等を用いて行うことができる。 基質 となるタンパク質のリン酸化が、 物質の非存在下の場合と比べて増加した場合に は、 該物質はキナーゼ活性化物質として機能する可能性があり、 また低下、 また は阻害された場合には物質はキナーゼ阻害物質として機能する可能性があると同 定できる。  As a specific analysis method, for example, when analyzing a substance that regulates kinase activity, a protein serving as a substrate is introduced into the DNA-introduced gene described in (2) in the same manner. The phosphorylation of the substrate protein in the presence / absence of the selected substance of this transductant is analyzed by a commonly used method known per se. Specifically, it can be performed using the method described in the above (3). If the phosphorylation of the substrate protein is increased as compared to the absence of the substance, the substance may function as a kinase activator and may be reduced or inhibited. Can be identified as having the potential to function as a kinase inhibitor.
ここで、 医薬活性成分の取得を目的として調節物質をスクリーニングするため に用いる本発明の D NA、 あるいは組換えタンパク質を用いる場合は、 ヒトの D NAあるいはタンパク質を用いることが好ましい。 さらに上記方法によってスク リーユングされた物質は、 さらに生体内でのスクリーニングによって医薬候補と しての選択を行ってもよい。 なお、 本発明のタンパク質の機能調節物質の評価は、 上記した方法に限定されるものではない。 Here, when using the DNA of the present invention or a recombinant protein used for screening a regulatory substance for the purpose of obtaining a pharmaceutically active ingredient, it is preferable to use human DNA or a protein. In addition, The leaked substance may be further selected as a drug candidate by screening in vivo. In addition, the evaluation of the function regulating substance of the protein of the present invention is not limited to the above-described method.
本発明のタンパク質が有するキナーゼ活性としては、 例えば、 癌に関連するパ スウェイ上のシグナル伝達機能、 心筋発達に関連するパスウェイ上のシグナル伝 達機能、 精子の運動性を制御するパスウェイ上のシグナル伝達機能、 生殖細胞分 化を制御するパスウェイ上のシグナル伝達機能、 細胞分化を制御するパスウェイ 上のシグナル伝達機能、 精子の分化を制御するパスウェイ上のシグナル伝達機能、 アルツハイマー病発症を制御するパスウェイ上のシグナル伝達機能、 グリセロー ル 3 リン酸を生成する機能、 脳皮質発達、 神経細胞等遊走を制御するパスウェイ 上のシグナル伝達機能、 脂肪酸ゃステロールの合成に関連する機能、 細胞死に関 連するパスウェイ上のシグナル伝達機能、 ィンシュリンシグナル伝達、 免疫 ·炎 症応答に関連する機能等である。 そこで、 本スクリーニング方法により同定でき る化合物は、 制癌剤、 心疾患治療剤、 不妊治療剤、 再生組織誘導剤、 ァルツハイ マー病治療剤、 神経変性疾患治療剤、 糖尿病治療剤、 免疫 ·炎症性疾患治療剤と して用いられ得る。  The kinase activity of the protein of the present invention includes, for example, signaling functions on pathways related to cancer, signaling functions on pathways related to myocardial development, signaling on pathways controlling sperm motility. Functions, signaling on pathways that regulate germ cell differentiation, signaling on pathways that regulate cell differentiation, signaling on pathways that regulate sperm differentiation, pathways that regulate the onset of Alzheimer's disease Signal transduction function, Glycerol 3-phosphate generating function, Signal transduction function on pathways controlling brain cortex development, migration of nerve cells, etc., Function related to fatty acid sterol synthesis, Pathway related to cell death Signal transduction function, insulin signaling, immune and inflammatory disease Is a function, etc. related to the answer. Therefore, compounds that can be identified by this screening method include anticancer drugs, therapeutic agents for heart disease, therapeutic agents for infertility, regenerative tissue inducers, therapeutic agents for Alzheimer's disease, therapeutic agents for neurodegenerative diseases, therapeutic agents for diabetes, and therapeutics for immune and inflammatory diseases. It can be used as an agent.
また、 本発明のタンパク質をコードする D NAは、 副腎、 子宮、 精巣、 脳 (全 脳、 尾状核、 扁桃核、 視床、 小脳) 等の組織または器官由来の R N Aから構築さ れた c D NAライブラリーよりクローユングされており、 取得された本発明のタ ンパク質は、 上記組織または器官等において特有の機能を有している可能性があ るので、 本発明のタンパク質の機能調節物質は該組織または器官に特有の疾患の 治療剤として用いられ得る。  The DNA encoding the protein of the present invention may be a cDNA constructed from RNA derived from tissues or organs such as the adrenal gland, uterus, testis, and brain (whole brain, caudate nucleus, amygdala, thalamus, and cerebellum). Since the obtained protein of the present invention, which is cloned from the NA library, may have a specific function in the above-mentioned tissues or organs, the function-regulating substance of the protein of the present invention is It can be used as a therapeutic agent for diseases specific to the tissue or organ.
かかる調節物質は、 臨床へ応用するに際し、 上記有効成分を単独で用いること も可能であるが、 薬学的に許容され得る担体と配合して医薬品組成物として用い ることもできる。 この時の有効成分の担体に対する割合は、 1〜 9 0重量%の間 で変動され得る。 また、 かかる薬剤は種々の形態で投与することができ、 それら の投与形態としては、 錠剤、 カプセル剤、 顆粒剤、 散剤、 あるいはシロップ剤等 による経口投与、 または注射剤、 点滴剤、 リボソーム剤、 坐薬剤等による非経口 投与を挙げることができる。 また、 その投与量は、 症状、 年齢、 体重等によって 適宜選択することができる。 Such modulators can be used alone as the active ingredient when applied to clinical applications, but can also be used as a pharmaceutical composition by mixing with a pharmaceutically acceptable carrier. At this time, the ratio of the active ingredient to the carrier can be varied between 1 and 90% by weight. The drug can be administered in various forms, such as tablets, capsules, granules, powders, or syrups. Or parenteral administration by injection, infusion, ribosome, suppository and the like. In addition, the dose can be appropriately selected depending on symptoms, age, weight, and the like.
( 8 ) 本発明の D N Aの発現調節物質のスクリーニング  (8) Screening of the DNA expression regulator of the present invention
スクリーニングの方法としては、 被検物質の存在下で本発明のタンパク質、 あ るいはそれをコードする mR NAの発現量を解析する方法等が挙げられる。 具体 的には、 例えば、 (2 ) に記載した本発明のタンパク質を発現する細胞を被検物 質を含む適当な培地で培養し、 該細胞内に発現している本発明のタンパク質量を E L I S A等の常法を用いて解析するか、 あるいは該細胞内の本発明のタンパク 質をコードする mR NA量を、 定量的逆転写 P C R法や、 ノーザンプロット法等 により解析することにより行うことができる。  Examples of the screening method include a method of analyzing the expression level of the protein of the present invention or the mRNA encoding the same in the presence of a test substance. Specifically, for example, cells expressing the protein of the present invention described in (2) are cultured in an appropriate medium containing a test substance, and the amount of the protein of the present invention expressed in the cells is determined by ELISA. Or by analyzing the amount of mRNA encoding the protein of the present invention in the cells by quantitative reverse transcription PCR, Northern blotting, or the like. .
被検物質としては、 (7 ) に記載のものを用いることができる。 この解析によ り、 被検物質の非存在下で培養された当該細胞内で発現されたタンパク質、 ある いは mR NA量と比べてその量が増加すれば、 この被検物質は本発明の D N Aの 発現促進物質として機能する可能性があり、 逆に減少した場合には、 この被検物 質は本発明の D N Aの発現阻害物質として用いられ得ると判断することができる。 かかる発現調節物質は、 臨床へ応用するに際し、 上記有効成分を単独で用いる ことも可能であるが、 薬学的に許容され得る担体と配合して医薬品組成物として 用いることもできる。 この時の有効成分の担体に対する割合は、 1〜9 0重量% の間で変動され得る。 また、 力かる薬剤は種々の形態で投与することができ、 そ れらの投与形態としては、 錠剤、 カプセル剤、 顆粒剤、 散剤、 あるいはシロップ 剤等による経口投与、 または注射剤、 点滴剤、 リボソーム剤、 坐薬剤等による非 経口投与を挙げることができる。 また、 その投与量は、 症状、 年齢、 体重等によ つて適宜選択することができる。  As the test substance, those described in (7) can be used. According to this analysis, if the amount of the protein or mRNA expressed in the cells cultured in the absence of the test substance increases as compared with the amount of the mRNA, the test substance of the present invention It may function as a DNA expression promoting substance, and when it decreases, it can be determined that this test substance can be used as a DNA expression inhibiting substance of the present invention. The above-mentioned active ingredient can be used alone for clinical application, but can also be used as a pharmaceutical composition by blending it with a pharmaceutically acceptable carrier. At this time, the ratio of the active ingredient to the carrier can be varied between 1 and 90% by weight. In addition, powerful drugs can be administered in various forms, such as tablets, capsules, granules, powders, or syrups, orally, injections, drops, Parenteral administration with ribosomes, suppositories and the like can be mentioned. The dose can be appropriately selected depending on the condition, age, weight, and the like.
( 9 ) 本発明の D N A導入動物  (9) The DNA-introduced animal of the present invention
上記 (1 ) に記載の、 本発明の D N Aを含む導入 D NAを構築し、 ヒ ト以外の 哺乳動物の受精卵に導入して、 これを雌個体卵管に移植して発生させることによ り、 本発明の D N Aが導入された非ヒト哺乳動物を作製することができる。 より 具体的には、 例えば、 雌個体をホルモン投与により過剰排卵させた後、 雄と交配 し、 交配後 1日目の卵管から受精卵を摘出し、 該受精卵に導入 D NAをマイクロ インジェクション等の方法により導入する。 この後、 適当な方法で培養した後、 生存している受精卵を、 偽妊娠させた雌個体 (仮親) の卵管に移植して出産させ る。 新生仔に目的の D NAが導入されているか否かは、 該個体の細胞から抽出し た D NAのサザンブロット解析を行うことにより同定することができる。 ヒト以 外の哺乳動物としては、 例えばマウス、 ラット、 モルモット、 ハムスター、 ゥサ ギ、 ャギ、 ブタ、 ィヌ、 ネコ等が挙げられる。 The introduced DNA containing the DNA of the present invention described in the above (1) is constructed, introduced into a fertilized egg of a mammal other than a human, and transplanted into a female individual oviduct to generate it. Thus, a non-human mammal into which the DNA of the present invention has been introduced can be produced. More specifically, for example, a female individual is superovulated by hormone administration, then mated with a male, a fertilized egg is removed from the oviduct on the first day after mating, and DNA is introduced into the fertilized egg by microinjection. And so on. After culturing by an appropriate method, the surviving fertilized eggs are transplanted into the oviduct of a pseudopregnant female individual (foster parent) to give birth. Whether or not the desired DNA has been introduced into the neonate can be identified by performing Southern blot analysis on the DNA extracted from the cells of the individual. Non-human mammals include, for example, mice, rats, guinea pigs, hamsters, rabbits, goats, pigs, dogs, cats, and the like.
かくして得られた本発明の D NA導入動物は、 この個体を交配し、 導入された D N Aが安定的に保持されていることを確認しながら通常の飼育環境で継代飼育 することによりその子孫を得ることができる。 また、 体外受精を繰り返すことに よりその子孫を得て、 系統を維持することもできる。  The thus-obtained DNA-introduced animal of the present invention is used to breed this individual and subculture them in a normal breeding environment while confirming that the introduced DNA is stably maintained, thereby obtaining the offspring. Obtainable. It is also possible to obtain offspring by repeating in vitro fertilization and maintain the strain.
本発明の D NAが導入された非ヒト哺乳動物は、 本発明の D NAの生体内にお ける機能の解析や、 またこれを調節する物質のスクリーニング系等として用いる ことができる。  The non-human mammal into which the DNA of the present invention has been introduced can be used as an analysis of the function of the DNA of the present invention in a living body, or as a screening system for a substance that regulates the function.
( 1 0 ) 本発明のタンパク質及ぴそれをコードする塩基配列を含む D NAの他の 利用  (10) Other uses of the protein of the present invention and a DNA comprising the nucleotide sequence encoding the protein
本発明のタンパク質は、 それを基盤上に結合させた担体として利用することが できる。 また、 本発明のタンパク質をコードする塩基配列、 例えば、 配列番号 1 〜1 2のいずれかに記載の塩基配列を有する D N A及びその部分断片は、 それら を基板上に結合させた担体として用いられ得る。 これらを、 以下、 「プロテイン チップ」 、 「D NAチップ」 または 「D NAアレイ」 (D N Aマイクロアレイ及 ぴ D NAマクロアレイ) と称することがある。 これらのプロテインチップ、 また は D N Aチップもしくはアレイには、 本発明のタンパク質や D NA以外に、 他の タンパク質や D NAが含まれていてもよい。 ここで、 対象タンパク質が公知のパ リアントが存在するスプライシングバリアントである場合、 上記プロティンチッ プには対象タンパク質特異的なァミノ酸配列部分断片を用いることもできるが、 他のバリアントと異なる立体構造を有している可能性もあるためその全長を用い ることもできる。 また、 DNAアレイには、 対象タンパク質をコードする DNA 配列のうち、 他のバリアント DNAと異なる配列を選択することが好ましい。 また、 タンパク質や DNAを結合させる基盤としては、 ナイロン膜、 ポリプロ ピレン膜等の樹脂基板、 ニトロセルロース膜、 ガラスプレート、 シリコンプレー ト等が用いられるが、 ハイブリダィゼーシヨンの検出を非 R I的に、 例えば、 蛍 光物質等を用いて行う場合には、 蛍光物質を含まないガラスプレート、 シリコン プレート等が好適に用いられる。 また該基盤へのタンパク質、 あるいは DNAの 結合は、 それ自体公知の通常用いられる方法により容易に行うことができる。 こ れらのプロテインチップ、 DNAチップ、 あるいは DNAアレイも、 本発明の範 囲に含まれる。 The protein of the present invention can be used as a carrier on which it is bound. In addition, a nucleotide sequence encoding the protein of the present invention, for example, a DNA having the nucleotide sequence of any one of SEQ ID NOs: 1 to 12 and a partial fragment thereof can be used as a carrier obtained by binding them on a substrate. . Hereinafter, these may be referred to as “protein chips”, “DNA chips” or “DNA arrays” (DNA microarrays and DNA macroarrays). These protein chips or DNA chips or arrays may contain other proteins and DNAs in addition to the proteins and DNAs of the present invention. Here, when the target protein is a splicing variant in which a known variant exists, Although the amino acid sequence partial fragment specific to the target protein can be used for the step, the full length of the amino acid sequence fragment may be used because it may have a steric structure different from other variants. Further, it is preferable to select, from the DNA sequence encoding the target protein, a sequence that is different from other variant DNAs for the DNA array. In addition, a resin substrate such as a nylon film or a polypropylene film, a nitrocellulose film, a glass plate, a silicon plate, or the like is used as a substrate for binding proteins and DNA, but the detection of hybridization is non-RI. For example, when using a fluorescent substance or the like, a glass plate or a silicon plate containing no fluorescent substance is preferably used. The binding of the protein or DNA to the substrate can be easily carried out by a commonly used method known per se. These protein chips, DNA chips, or DNA arrays are also included in the scope of the present invention.
また、 本発明のタンパク質のアミノ酸配列及ぴ DNAの塩基配列は、 配列情報 としても用いることができる。 この DNAの塩基配列には、 対応する RNAの塩 基配列も含まれる。 すなわち、 得られたァミノ酸配列や塩基配列をコンピュータ 一が読みとり可能な所定の形式で適当な記録媒体に格納することにより、 ァミノ 酸配列や塩基配列のデータベースが構築できる。 このデータベースには、 他の種 類のタンパク質やそれをコードする DNAの塩基配列が含まれていてもよい。 ま た、 本発明においてデータベースとは、 上記配列を適当な記録媒体に書き込み、 所定のプログラムに従って検索を行うコンピューターシステムをも意味する。 こ こで適当な記録媒体としては、 例えば、 フレキシブルディスク、 ハードディスク、 磁気テープ等の磁気媒体、 CD— ROM、 MO、 CD-R, CD-RW, DVD 一 R、 DVD— RAM等の光ディスク、 半導体メモリ等を挙げることができる。 実施例 以下、 実施例を挙げて本発明を詳細に説明するが、 本発明の範囲はこれらの実 施例により限定されるものではない。 なお、 取得された各 c DNAクローンにつ いて以下の実験を行った結果は、 実施例 7に纏めて記載した。 In addition, the amino acid sequence of the protein of the present invention and the nucleotide sequence of the DNA can also be used as sequence information. The base sequence of this DNA includes the base sequence of the corresponding RNA. That is, by storing the obtained amino acid sequence or base sequence in an appropriate recording medium in a predetermined format readable by a computer, a database of the amino acid sequence or base sequence can be constructed. This database may contain the nucleotide sequences of other types of proteins and the DNA that encodes them. Further, in the present invention, the database also means a computer system that writes the above-mentioned sequence on an appropriate recording medium and performs a search according to a predetermined program. Suitable recording media include, for example, magnetic media such as flexible disks, hard disks, and magnetic tapes; optical disks such as CD-ROM, MO, CD-R, CD-RW, DVD-R, and DVD-RAM; and semiconductors. Examples include a memory. Example Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited by these Examples. The results of the following experiments performed on each of the obtained cDNA clones are summarized in Example 7.
実施例 1 オリゴキャップ法による c DNAライブラリーの作製 Example 1 Preparation of cDNA library by oligo cap method
ヒト各組織より全 RNAとして抽出された市販の各 mRNA (クロンテック社 製:副腎 (# 640 1 6— 1) 、 子宮 (# 640 2 9— 1) 、 精巣 (# 640 2 7- 1) , 小脳 (# 6403 5— 1) 、 全脳 (# 640 20— 1) ) から、 およ ぴヒト各組織よりポリ (A) +RNAとして抽出 '精製された市販の各 mRNA (クロンテック社製:尾状核 (# 6 5 75— 1) 、 扁桃核 (# 6 5 74— 1) 、 視床 (# 6 5 8 2— 1) ) に全脳の全 RN Aからポリ (A) +RNAをオリゴ d Tセルロースで除くことにより調製したポリ (A) — RNAをそれぞれ混ぜた R NAから、 オリゴキャップ法 (Maruyama, K. , et al. , Gene, 138: 171 - 174 (1994)) により c DNAライプラリーをそれぞれ作製した。 Commercially available mRNA extracted from human tissues as total RNA (Clontech: adrenal gland (# 640 16-1), uterus (# 640 29-1), testis (# 640 27-1), cerebellum (# 6403 5-1) and whole brain (# 64020-1)), and extracted from human tissues as poly (A) + RNA 'Purified commercial mRNA (Clontech: Caudate) Poly (A) + RNA oligo d T from whole RNA to whole nucleus (# 6575-1), amygdala (# 6574-1), thalamus (# 65882-1) From the RNA mixed with poly (A) -RNA prepared by removing with cellulose, the cDNA library was obtained by the oligocap method (Maruyama, K., et al., Gene, 138: 171-174 (1994)). Each was produced.
まず、 上記 RNAを BAP (Bacterial Alkaline Phosphatase) および TA P (Tobacco Acid Pyrophosphatase) で処理した後に、 オリゴキャップリンカ 一 (配列番号 2 5) を RNAライゲースを用いて連結した。 この RNA鎖を铸型 としてオリゴ dTプライマー (配列番号 26) 用いた逆転写反応により第 1鎖 c DNAを合成し、 続いて RNA鎖を分解除去した (鈴木ら、 タンパク質 核酸 酵素、 41: 603-607 (1996) ; Suzuki, Y. et al. , Gene, 200: 149-156  First, after treating the above RNA with BAP (Bacterial Alkaline Phosphatase) and TAP (Tobacco Acid Pyrophosphatase), oligocaplinker-1 (SEQ ID NO: 25) was ligated using RNA ligase. Using this RNA strand as type II, the first strand cDNA was synthesized by reverse transcription using oligo dT primer (SEQ ID NO: 26), and the RNA strand was degraded and removed (Suzuki et al., Protein Nucleic Acid Enzyme, 41: 603- 607 (1996); Suzuki, Y. et al., Gene, 200: 149-156.
(1997)) 。 次いで、 5, の PCRプライマー (配列番号 2 7) と 3 ' の PCR プライマー (配歹 'J番号 28) を用い PCR (polymerase chain reaction) によ り 2本鎖 c DNAを増幅し、 増幅された DNA鎖を S f i Iにより切断した。 次いで、 発現用ベクターである pME 1 8 S F L 3 (G e nB a n k AB O 09 8 64) の D r a I I Iサイトに上記で取得した S f i I切断断片をクロー ユングし、 c DNAライブラリーを作成した。 上記で用いた pME 1 8 S F L 3 ベクターは、 クローニング部位の上流に SR αプロモーターと SV40 s ma 1 1 tイントロンが組み込まれており、 またその下流には SV40ポリ (A) 付カ卩シグナル配列が挿入されている。 pME 18 SFL 3のクローン化部位は非 対称性の D r a I I Iサイトとなっており、 c DNA断片の末端にはこれと相補 的な S f i I部位を付加しているので、 クローン化した cDNA断片は SRa プロモーターの下流に一方向性に挿入される。 したがって、 全長 cDNAを含む クローンでは、 得られたプラスミドをそのまま COS細胞に導入することにより、 一過的に遺伝子を発現させることが可能である。 すなわち、 非常に容易に、 遺伝 子産物であるタンパク質として、 あるいはそれらの生物学的活性として実験的に 解析することが可能となっている。 (1997)). Next, double-stranded cDNA was amplified by PCR (polymerase chain reaction) using 5 PCR primers (SEQ ID NO: 27) and 3 'PCR primers (system' J number 28). The DNA strand was cut with SfiI. Next, the SfiI cleavage fragment obtained above was cloned into the DraIII site of pME18SFL3 (GenBank ABO09864), which is an expression vector, to prepare a cDNA library. . The pME18SFL3 vector used above contains the SRα promoter and SV40 sma11t intron upstream of the cloning site, and the SV40 poly (A) downstream. An attached signal sequence is inserted. The cloning site of pME18SFL3 is an asymmetric DraIII site, and a complementary SfiI site is added to the end of the cDNA fragment. Is unidirectionally inserted downstream of the SRa promoter. Therefore, in a clone containing full-length cDNA, the gene can be transiently expressed by directly introducing the obtained plasmid into COS cells. In other words, it is very easy to experimentally analyze proteins as gene products or their biological activities.
これらより得たクローンのプラスミド DNAについて、 cDNAの 5' 端また は 3, 端の塩基配列を DNAシーケンシング試薬 (Dye Terminator Cycle Sequencing FS Ready Reaction Kit, dRhodamine_Terminator Cycle  In the plasmid DNA of the clone obtained from these, the nucleotide sequence of the 5 'end or the 3' end of the cDNA was converted to a DNA sequencing reagent (Dye Terminator Cycle Sequencing FS Ready Reaction Kit, dRhodamine_Terminator Cycle).
Sequencing FS Ready Reaction Kitまたは BigDye Terminator Cycle Sequencing FS Ready Reaction Kit or BigDye Terminator Cycle
Sequencing FS Ready Reaction Kit:PE Biosystems社製) を用い、 マ二ユアノレ に従ってシーケンシング反応後、 DNAシーケンサー (AB I PR I SM 3 700 : PE Biosystems社製) で D N A塩基配列を解析した。 実施例 2 オリゴキャップ法で作製した cDNAライブラリーからのクローンの 5' 末端の全長性の評価 Using a Sequencing FS Ready Reaction Kit (manufactured by PE Biosystems), the sequencing reaction was performed according to the manual, and then the DNA base sequence was analyzed using a DNA sequencer (ABPRISM3700: manufactured by PE Biosystems). Example 2 Evaluation of full length of 5 'end of clone from cDNA library prepared by oligocap method
実施例 1で作製したヒト cDNAライブラリーの 5' 末端の塩基配列は、 これ を公共データベース中のヒ ト既知 mRNAの配列と比較し、 5, 末端配列が一致 する全クローンについて、 公共データベース中の既知 mRNA配列より長く 5, 末端が伸びている場合、 または 5' 末端は短いが翻訳開始コドンは有している場 合を 「全長」 と判断し、 翻訳開始コドンを含んでいない場合を 「非全長」 と判断 した。  The nucleotide sequence at the 5 'end of the human cDNA library prepared in Example 1 was compared with the sequence of the known human mRNA in the public database. If the 5 'end is longer than the known mRNA sequence, or if the 5' end is shorter but has a translation initiation codon, it is judged as "full length". Full length ".
次に、 EST iMa t e F Lによるクローンの評価を行った。 EST i Ma t e F Lは、 公共データベース中の ESTの 5, 末端配列や 3, 末端配列との比較 によって全長 c DN Aの可能性の高いクローンを選択するために、 ヘリックス研 究所の西川 ·太田らにより開発された方法である。 実施例 1で解析した c DNA クローンの 5, 末端や 3 ' 末端配列を E STデータベースに登録されている塩基 配列と比較し、 取得された c DNAクローンの配列よりも、 5, 側または 3, 側 へ伸長している E STが存在する場合には、 そのクローンは 「全長ではない可能 性が高い」 と判断した。 公共データベース中の E ST配列より 5, 末端が伸長し ている場合、 あるいは 5, 末端が短いクローンでも、 その差が 50塩基以内の場 合を便宜的に全長とし、 それ以上短い場合を非全長とした。 実施例 3 c DNAクローンの塩基配列、 アミノ酸配列の解析 Next, the clones were evaluated using EST iMate FL. EST iMate FL was used by Helix Research to select clones with a high probability of full-length cDNA by comparing them with the EST 5, 5 or 3 terminal sequences in public databases. This is a method developed by Nishikawa Ota et al. The sequence of the 5, 5 and 3 'ends of the cDNA clone analyzed in Example 1 was compared with the base sequence registered in the EST database, and the sequence of the obtained cDNA clone was found to be 5, 5 or 3, If ESTs extending to the side were present, the clone was determined to be "possibly not full length". Conveniently, the length is longer if the end of the EST sequence is 5 or shorter than the EST sequence in the public database, or if the difference is within 50 bases, and if the difference is shorter than 50 bases, the non-full length if the difference is shorter than 50 bases. It was. Example 3 Analysis of base sequence and amino acid sequence of cDNA clone
実施例 2で解析した c D N Aクローンの全塩基配列について、 BLAST (Basic local alignment search too丄; Altschul, S. F., et al. , J. Mol. Biol., 215: 403-410 (1990)) による相同性検索 (homology search) や、 H MMER (隠れ Markovモデルによる配列解析手法; Eddy, S. R. ,  All nucleotide sequences of the cDNA clones analyzed in Example 2 were homologous by BLAST (Basic local alignment search too 丄; Altschul, SF, et al., J. Mol. Biol., 215: 403-410 (1990)). Homology search, H MMER (Hidden Markov model sequence analysis method; Eddy, SR,
Bioinformatics, 14: 755-763 (1998)) の機能群のひとつである HMMP FA Mによるタンパク質特徴検索 (profile search :http://pf am. wustl. edu) を行 い、 各 c DNAクローンがコードするタンパク質の機能を推定した。 また、 その 塩基配列の一部が完全に一致する公知のクローンが存在するスプライシングバリ アントと推定されるクローンについては、 そのゲノム配列が解析可能であればど のェクソンが欠失してスプライシングしたものであるかを解析した。 Bioinformatics, 14: 755-763 (1998)), a protein feature search using HMMP FAM (profile search: http: // pf am. Wustl. Edu), and each cDNA clone encodes The function of the protein was estimated. In addition, for clones that are presumed to be splicing variants in which known clones whose nucleotide sequences partially match completely exist, any exons that have been deleted if their genomic sequences can be analyzed have been spliced. Was analyzed.
(1) c - a d r g l 200 1 5 54 (配列番号 1、 1 3)  (1) c-a d r gl 200 1 5 54 (SEQ ID NOS: 1, 13)
c - a d r g l 200 1 5 54 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 1に 示すように、 2 1 6 8塩基から成り、 そのうち塩基番号 3 9番から 2 1 5 9番ま でがオープンリーディングフレーム (終止コドンを含む) である。 オープンリ 一ディングフレームから予測されるアミノ酸配列は、 70 6アミノ酸残基から成 る (配列番号 1 3)。 配列番号 1 3のアミノ酸配列について B LASTを用いて 相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— PROT、 P I R、 TREMBL、 GENPEPT、 PDBから作成された重複 のないアミノ酸配列のデータベース) 中の、 (i) データベース登録記号 AXO 40998および WOO 0/65040号公報に記載されているアミノ酸配列が ヒットしていた。 その内容として、 AX040998および WO 00/6504 0号公報に記載されているアミノ酸配列は 626アミノ酸から成り、 そのアミノ 酸配列中のァミノ酸番号 1 7〜 616番が、 配列番号 13に記載のァミノ酸配列 のアミノ酸番号 25〜66 1番と、 e - value (問い合わせ配列がデータベース中 に偶然存在する期待値) : 3 X 10— 82かつ 655ァミノ酸残基にわたり 32 % の一致度 (identity) をもつことが認められた。 また (ii) データベース登録 gd-^-P 50528、 Serine/ threonine-protein kinase plol (Fission yeast) がヒットしていた。 その内容として、 P 50528は 683アミノ酸から成り、 そのアミノ酸配列中のアミノ酸番号 47〜674番が、 配列番号 13に記載のァ ミノ酸配列のアミノ酸番号 45〜695番と、 e— value : 6 X 10_75力つ 670 アミノ酸残基にわたり 32%の一致度をもつことが認められた。 さらに (iii) データベース登録記号、 Q9R01 1、 Cytokine-inducible c-adrgl 200 155 54 (hereinafter referred to as “the present DNA”, and the protein encoded by the DNA is referred to as “the present protein”), as shown in SEQ ID NO: 1, from 2168 bases. The open reading frame (including the stop codon) is composed of nucleotides 39 to 219. The amino acid sequence predicted from the open reading frame consists of 706 amino acid residues (SEQ ID NO: 13). When a homology search was performed for the amino acid sequence of SEQ ID NO: 13 using BLAST, the NRDB protein database (SWISS- (I) Database registration symbols AXO 40998 and the amino acid sequence described in WOO 0/65040 in PROT, PIR, TREMBL, GENPEPT, and PDB Was. As its contents, the amino acid sequence described in AX040998 and WO 00/65040 consists of 626 amino acids, and the amino acid number 17 to 616 in the amino acid sequence is the amino acid sequence described in SEQ ID NO: 13. with 32% degree of coincidence over 3 X 10- 82 and 655 amino acid residues (identity): value (expected value query sequence is present by chance in a database) - amino acid numbers 25 to 66 1 of SEQ, e It was recognized that. (Ii) Database registration gd-^-P 50528 and Serine / threonine-protein kinase plol (Fission yeast) were hits. As its contents, P50528 is composed of 683 amino acids, wherein amino acid numbers 47 to 674 in the amino acid sequence correspond to amino acid numbers 45 to 695 of the amino acid sequence described in SEQ ID NO: 13, and e-value: 6 X it has been found that with a 32% degree of coincidence over 10 _75 Chikaratsu 670 amino acid residues. (Iii) Database registration code, Q9R011, Cytokine-inducible
Serine/ threonine-protein kinase (フット 力 ッ卜してレヽた。 その内容とし て、 Q9R01 1は 615アミノ酸から成り、 そのアミノ酸配列中のアミノ酸番 号 3 1〜 558番が、 配列番号 13に記載のァミノ酸配列のァミノ酸番号 39〜 645番と、 e— value : 7 X 1 (Τ71力つ 6 13アミノ酸残基にわたり 30%の一 致度をもつことが認められた。 これらの結果より配列番号 1 3に示したアミノ酸 配列からなるタンパク質は新規のセリン スレオニンプロティンキナーゼである ことが推測された。 上記 (ii) のタンパク質は、 データベース中の文献情報Serine / threonine-protein kinase (reproduced by foot force. Its content is that Q9R011 consists of 615 amino acids, and amino acid numbers 31 to 558 in the amino acid sequence are the same as those in SEQ ID NO: 13. and amino acid numbers 39-645 No. amino acid sequence, e- value:. 7 X 1 (Τ 71 Chikaratsu 6 13 to have an致度30% over amino acid residues was observed sequences from these results The protein consisting of the amino acid sequence shown in No. 13 was presumed to be a novel serine / threonine protein kinase.
(Genes Dev., 9: 1059 - 1073 (1995)) から Gl、 G 2期の細胞における隔壁の 形成に関わることが、 さらに上記 (iii) のタンパク質は、 データベース中の文 献情報 (EMB0 J., 18: 5528-5539 (1999)) からシナプス形成を調節するシグナ ル伝達に関わることがそれぞれ明らかとなった。 いずれも細胞周期への関与を示 すものであり、 後者では神経機能への関わりもあると考えられる。 また、 配列番号 13のアミノ酸配列について、 HMMPFAMによるタンパク 質特徴検索を行ったところ配列番号 13のアミノ酸番号 39〜297番に示され るアミノ酸配列にプロテインキナーゼドメインの特徴を示す配列 (P f amに p k i n a s eとしてエントリーされるアミノ酸配列) を見出した。 タンパク質の 機能の類似性により ドメイン構造ゃフアミリ一を分類したアミノ酸パターンのデ ータベースであり、 機能的に重要な部位を検索可能な PROS I TE (Nucleic Acids Res. , 30: 235-8 (2002) ) によれば、 このプロテインキナーゼドメイン のうち、 アミノ酸番号 45〜69番は ATP region (ATP結合部位) 、 ァミノ 酸番号 158〜 171番は ST region (基質のセリン スレオニンをリン酸化す る部位) であり、 セリン スレオニンプロティンキナーゼの機能的に重要な部位 を保持しているため、 キナーゼ活性を有すると考えられる。 また HMMPFAM による検索では、 アミノ酸番号 511〜585番に示されるアミノ酸配列に POLO box duplicated regionの特徴を示す配列 (P f a mに POLO— b o x としてエントリーされるアミノ酸配列) も見出された。 POLO b o xは細胞 周期、 特に G2ZM 期遷移や細胞質分裂 (サイトキネシス) に関わるセリン Z スレオニンプロティンキナーゼのサブグノレープであることが知られている。 更に タンパク質の細胞内局在の予測プログラムである P SORT I I (Trends Biochem. Sci. , 24: 34-6 (1999))による解析を行ったところ、 本タンパク質の 細胞内での局在の確率はそれぞれ細胞質は 43. 5 %、 核は 26. 1 %、 ミトコ ンドリアは 17. 4 %、 液胞は 4. 3 %、 原形質膜 4 · 3 %、 ペルォキシゾーム 4. 3%であることがわかった。 よって本タンパク質は細胞質に存在する確率が 最も高いことがわかった。 (Genes Dev., 9: 1059-1073 (1995)), it is implicated in the formation of the septum in cells in the Gl and G2 phases, and the protein of (iii) is described in the literature (EMB0 J. , 18: 5528-5539 (1999)), respectively, have been shown to be involved in signal transmission that regulates synapse formation. Both indicate involvement in the cell cycle, and the latter may be involved in neuronal function. In addition, a protein characteristic search was performed on the amino acid sequence of SEQ ID NO: 13 using HMMPFAM. As a result, the amino acid sequence represented by amino acid numbers 39 to 297 of SEQ ID NO: 13 showed a sequence (Pfam amino acid sequence entered as pkinase). PROS I TE (Nucleic Acids Res., 30: 235-8 (2002)) is a database of amino acid patterns that classify the domain structure ゃ family according to the similarity of protein functions and search for functionally important sites. According to), amino acids 45-69 are the ATP region (ATP binding site), and amino acids 158-171 are the ST region (the site that phosphorylates the serine-threonine substrate). Yes, it possesses a functionally important site for serine threonine protein kinase, and is considered to have kinase activity. HMMPFAM search also found a sequence that shows the characteristics of the POLO box duplicated region in the amino acid sequence represented by amino acid numbers 511 to 585 (the amino acid sequence entered as POLO-box in P fam). POLO box is known to be a sub-gnorape of serine Z-threonine protein kinase involved in cell cycle, especially G2ZM phase transition and cytokinesis (cytokinesis). Further analysis by P SORT II (Trends Biochem. Sci., 24: 34-6 (1999)), a program for predicting the intracellular localization of the protein, revealed that the probability of the intracellular localization of this protein was The cytoplasm was 43.5%, the nucleus was 26.1%, the mitochondria was 17.4%, the vacuole was 4.3%, the plasma membrane was 4.3%, and the peroxisome was 4.3%. . Therefore, this protein was found to be most likely to be present in the cytoplasm.
一方、 ゲノム情報を得るため、 ヒト cDNAをヒトゲノム配列へ写像するソフ トウエア s i m 4 (Genome Res., 8: 967-74 (1998))を用い、 本 DNAのゲノム への写像を試みたが、 ヒト染色体のいずれにも写像されなかった。 これは本 DN Aがヒトゲノムのドラフト配列中には存在せず、 存在の予測もできないことを意 味する。 しかし我々は検討を重ねることにより、 今回初めて本 DNAをクロー二 ングすることに成功した。 以上より本タンパク質は細胞周期や神経機能などに関 わる機能を有する新規セリン スレオニンプロティンキナーゼであることが推測 された。 また本 DNAは、 副腎よりクローユングされており、 本タンパク質は該 組織 ·細胞特有の発生、 分化、 また機能や疾患に関連する可能性が推測された。 On the other hand, in order to obtain genomic information, we attempted to map this DNA into the genome using sim 4 (Genome Res., 8: 967-74 (1998)), a software that maps human cDNA to human genomic sequences. It did not map to any of the chromosomes. This means that this DNA is not present in the draft sequence of the human genome and its presence cannot be predicted. However, we have repeatedly examined this DNA for the first time. Was successful. From the above, it was speculated that this protein is a novel serine / threonine protein kinase having functions related to cell cycle and nerve function. In addition, the present DNA was clawed from the adrenal gland, and it was speculated that the present protein may be related to the development, differentiation, function and disease specific to the tissue / cell.
(2) c- t e s t i 2053667 (配列番号 2、 14)  (2) c-t e s t i 2053667 (SEQ ID NOs: 2, 14)
c- t e s t i 2053667 (以下、 これ-を 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 2に 示すように、 2135塩基から成り、 そのうち塩基番号 36番から 1454番ま でがオープンリーディングフレーム (終止コドンを含む) である。 オープンリ ーデイングフレームから予測されるアミノ酸配列は、 472アミノ酸残基から成 る (配列番号 14)。 配列番号 14のアミノ酸配列について BLASTを用いて 相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— PROT、 P I R、 TREMBL、 GENPEPT、 PDBから作成された重複 のないアミノ酸配列のデータベース) 中の、 (i) データベース登録記号 AYO 61 183、 LD 14901 (fruit fly)がヒットしていた。 その内容とし て、 AYO 6 1 183は 790アミノ酸から成り、 そのアミノ酸配列中のアミノ 酸番号 325〜 788番が、 配列番号 14に記載のァミノ酸配列のァミノ酸番号 7〜 468番と、 e- value : 5X 10 135かつ 471ァミノ酸残基にわたり 52 % の一致度をもつことが認められた。 また (ii) データベース登録記号 P 36 1 02、 PAB dependent poly (A)- specif ic ribonuclease subunit PAN3 c-testi 2053667 (hereinafter referred to as “present DNA” and the protein encoded by the DNA is referred to as “present protein”) comprises 2135 bases, as shown in SEQ ID NO: 2, of which base number Nos. 36 to 1454 are open reading frames (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 472 amino acid residues (SEQ ID NO: 14). A homology search was performed for the amino acid sequence of SEQ ID NO: 14 using BLAST. (I) Database registration symbols AYO 61 183, LD 14901 (fruit fly) were hits. AYO61183 is composed of 790 amino acids, and the amino acid numbers 325 to 788 in the amino acid sequence correspond to the amino acid numbers 7 to 468 of the amino acid sequence described in SEQ ID NO: 14; value: It was found to have 52% identity over 5X10 135 and 471 amino acid residues. (Ii) Database registration code P36102, PAB dependent poly (A) -specific ribonuclease subunit PAN3
(Yeast) がヒットしていた。 その内容として、 P 36 102は 679アミノ酸 から成り、 そのアミノ酸配列中のアミノ酸番号 231〜677番が、 配列番号 1 4に記載のァミノ酸配列のァミノ酸番号 6〜 464番と、 e- value: 1 X 10-47 かつ 482アミノ酸残基にわたり 26%の一致度をもつことが認められた。 さら に (iii) データベース登録記号 AB 062450、 NEK 7 (Human) がヒッ トしていた。 その内容として、 AB 062450は 302アミノ酸から成り、 そ のアミノ酸配列中のアミノ酸番号 35〜182番が、 配列番号 14に記載のアミ ノ酸配列のアミノ酸番号 78〜246番と、 e- value : 4 X 10一7でかつ 1 73 アミノ酸残基にわたり 24%の一致度をもつことが認められた。 これらの結果よ り配列番号 14に示したァミノ酸配列からなるタンパク質はプロティンキナーゼ であることが推測された。 上記 (ii) のタンパク質は、 データベース中の文献 情報 (Mol. Cell. Biol. , 16: 5744-5753 (1996)) から生体内で mRNAのポ リ Aを短ィ匕する機能に関わることが、 さらに上記 (iii) のタンパク質は、 デー タベース中の文献情報 (Genomics, 68: 187-196 (2000)) から有糸分裂の調節 に関わることがそれぞれ明らかとなった。 いずれも細胞周期への関与を示すもの である。 (Yeast) was hit. As its contents, P36102 consists of 679 amino acids, wherein amino acid numbers 231 to 677 in the amino acid sequence are the amino acid numbers 6 to 464 of the amino acid sequence described in SEQ ID NO: 14, and e-value: It was found to have 26% identity over 1 X 10-47 and 482 amino acid residues. (Iii) Database registration symbols AB 062450 and NEK 7 (Human) were hit. AB 062450 consists of 302 amino acids, and amino acid numbers 35 to 182 in the amino acid sequence correspond to the amino acids described in SEQ ID NO: 14. The amino acid sequence of amino acid No. 78 to 246 was confirmed to have an e-value of 4 × 10 17 and a 24% identity over 173 amino acid residues. From these results, it was inferred that the protein consisting of the amino acid sequence shown in SEQ ID NO: 14 was a protein kinase. The protein of the above (ii) is considered to be involved in the function of shortening mRNA polyA in vivo from the literature information in the database (Mol. Cell. Biol., 16: 5744-5753 (1996)). Furthermore, the above-mentioned protein (iii) has been revealed to be involved in the regulation of mitosis, respectively, from literature information in the database (Genomics, 68: 187-196 (2000)). All show involvement in the cell cycle.
また、 配列番号 14のアミノ酸配列について、 HMMP FAMによるタンパク 質特徴検索を行ったところ配列番号 14のアミノ酸番号 87〜334に示される アミノ酸配列にプロテインキナーゼドメインの特徴を示す配列 (P f amに p k i n a s eとしてエントリーされるアミノ酸配列) を見出した。 更にタンパク質 の細胞内局在の予測プログラムである P SORT I I (Trends Biochem. Sci. , 24: 34-6 (1999))による解析を行ったところ、 本タンパク質の細胞内での局在 の確率はそれぞれ細胞質は 43. 5 %、 核は 30. 4 %、 ミ トコンドリアは 17 · 4%、 ゴルジ体は 4. 3%、 小胞体は 4. 3%であることがわかった。 よって本 タンパク質は細胞質に存在する確率が最も高いことがわかった。 これらのこと力 ら本タンパク質は細胞周期に関わる機能を有する新規セリン/スレオニンプロテ インキナーゼであることが推定された。  In addition, a protein characteristic search was performed on the amino acid sequence of SEQ ID NO: 14 using HMMP FAM. As a result, the amino acid sequence represented by amino acid numbers 87 to 334 of SEQ ID NO: 14 showed a protein kinase domain characteristic (Pkinase Amino acid sequence that is entered as). Further analysis by P SORT II (Trends Biochem. Sci., 24: 34-6 (1999)), a program for predicting the intracellular localization of proteins, revealed that the probability of localization of this protein in cells was The cytoplasm was 43.5%, the nucleus 30.4%, the mitochondria 17.4%, the Golgi body 4.3%, and the endoplasmic reticulum 4.3%. Therefore, this protein was found to be most likely to be present in the cytoplasm. These results suggest that this protein is a novel serine / threonine protein kinase with functions related to the cell cycle.
また本 D Ν Αの発現組織を検討するため、 本 DNAをクエリーとして d bES T (Nature Genetics, 4: 332-3 (1993)) に対して B L A S T検索を行い、 e- value : 1 X 1 CT50でヒットしたヒト E S Τが存在する糸且織を抽出したところ、 正常な轧腺 ·免疫系 ·腸、 癌化した子宮 ·精巣であった。 更に本 DNAは精巣由 来の cDNAライブラリーからクローユングされた。 本蛋白質はこれらの組織や 細胞に特有の機能や疾患、 例えば乳癌、 悪性リンパ腫、 白血病、 大腸癌、 子宮癌、 精巣癌などの癌や、 炎症性疾患、 免疫系疾患、 アレルギー疾患、 不妊などに関連 する可能性が推測でき、 これらの疾患の診断薬や治療薬のターゲットとしての有 用性が見込まれる。 In addition, in order to examine the expression organization of this D Ν B, a BLAST search was performed on dbEST (Nature Genetics, 4: 332-3 (1993)) using this DNA as a query, and e-value: 1 X 1 CT Extraction of the fibrous tissue containing the human ES し た hit in 50 revealed normal 轧, immune system, intestine, cancerous uterus and testis. In addition, this DNA was cloned from a testis-derived cDNA library. This protein is used for functions and diseases unique to these tissues and cells, such as breast cancer, malignant lymphoma, leukemia, colon cancer, uterine cancer, testicular cancer, inflammatory diseases, immune system diseases, allergic diseases, infertility, etc. Relation Therefore, it is expected to be useful as a target for diagnostics and therapeutics for these diseases.
(3) c-u t e r u 2008019 (配列番号 3、 15)  (3) c-u t eru 2008019 (SEQ ID NOS: 3, 15)
c-u t e r u 200801 9 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 3に 示すように、 3165塩基からなり、 そのうち塩基番号 401番から 1 960番 までがオープンリーディングフレーム (終止コドンを含む) である。 オープンリ ーデイングフレームから予測されるアミノ酸配列は、 519アミノ酸残基からな る (配列番号 15) 。 配列番号 15のアミノ酸配列について B LASTを用いて 相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— P ROT、 P I R、 TREMBL、 GENPEPT, P D Bから作成された重複の ないアミノ酸配列のデータベース) 中の、 データベース登録記号 B C 01064 0、 serine/ threonine kinase 3 t e 20、 yeast homo log) (Human) e- value: 0. 0、 かつ 483ァミノ酸残基にわたり 100 %の一致度でヒッ ト した。 BC010640は 49 1アミノ酸残基からなり、 そのアミノ酸配列中の ァミノ酸番号 9〜 49 1番が、 配列番号 15に記載のァミノ酸配列のァミノ酸番 号 37〜519番と一致した。 両者の配列の違いは、 本タンパク質の N末端 36 残基と BC010640の N末端 8残基である (図 1 ) 。  cu teru 200801 9 (hereinafter referred to as “present DNA” and the protein encoded by the DNA is referred to as “present protein”) comprises 3165 bases as shown in SEQ ID NO: 3, of which base number 401 Numbers 1 to 1960 are open reading frames (including the stop codon). The amino acid sequence predicted from the open reading frame consists of 519 amino acid residues (SEQ ID NO: 15). A homology search was performed for the amino acid sequence of SEQ ID NO: 15 using BLAST. In the NRDB protein database (SWISS—a database of non-overlapping amino acid sequences created from PROT, PIR, TREMBL, GENPEPT, and PDB) The cells were hit with a database registration code of BC010640, serine / threonine kinase 3te20, yeast homolog) (Human) e-value: 0.0, and 100% identity over 483 amino acid residues. BC010640 was composed of 491 amino acid residues. Amino acid numbers 9 to 491 in the amino acid sequence corresponded to amino acid numbers 37 to 519 in the amino acid sequence described in SEQ ID NO: 15. The difference between the two sequences is the N-terminal 36 residues of this protein and the N-terminal 8 residues of BC010640 (Fig. 1).
図 1に示すように、 配列番号 15のアミノ酸配列について、 HMMPFAMに よるタンパク質特徴検索を行ったところ、 アミノ酸番号 55〜306番に示され るアミノ酸配列にプロテインキナーゼドメインの特徴を示す配列 (P f amに p k i n a s eとしてエントリーされるアミノ酸配列) を見出した。 タンパク質の 機能の類似性により ドメイン構造ゃフアミリーを分類したアミノ酸パターンのデ ータベースであり、 機能的に重要な部位を検索可能な PRO S I TE (Nucleic Acids Res. , 30: 235-8. (2002)) によれば、 このプロテインキナーゼドメイン のうち、 アミノ酸番号 6 1〜85番は ATP region (ATPの結合部位) である。 本 DNAと B C 010640 c D N Aとのェクソン使用状況を比較するために s i m4 (Genome Res. , 8: 967-74 (1998)) を用いてゲノム配列へのァライメ ントを行った (図 2) 。 その結果、 本 DNAはヒト第 8番染色体上の 13個のェ クソンにマッピングされ、 BC010640はその第 4〜1 3ェクソンを共有す るが、 別の第 3, ェクソンをもつ。 本 DNAと BC010640は翻訳開始点を 含むェクソンを異にするために、 両タンパク質の Ν末アミノ酸配列に違いを生じ ていることが判明した。 この違いが酵素活性や、 他のタンパク質との結合 '相互 作用、 発現組織に差異をもたらす可能性が考えられる。 以上から、 本タンパク質 は BC 010640、 serine/threonine kinase 3 (S t e 20、 yeast homolog) (Human) のスプライシングバリアントである。 As shown in FIG. 1, a protein characteristic search was performed on the amino acid sequence of SEQ ID NO: 15 using HMMPFAM. As a result, a sequence (Pf Am amino acid sequence entered as pkinase). PRO SITE (Nucleic Acids Res., 30: 235-8. (2002)) A database of amino acid patterns in which domain structures are classified based on the similarity of protein functions and that can be searched for functionally important sites. According to), amino acids 61-85 of this protein kinase domain are the ATP region (ATP binding site). In order to compare the use of exon between the present DNA and BC010640 cDNA, the genome sequence was aligned using sim4 (Genome Res., 8: 967-74 (1998)) (FIG. 2). As a result, this DNA is mapped to 13 exons on human chromosome 8, and BC010640 shares its 4th to 13th exons, but has another 3rd and 3rd exons. It was found that the exon containing the translation initiation site differs between this DNA and BC010640, resulting in a difference in the terminal amino acid sequences of both proteins. This difference may lead to differences in enzyme activity, binding interaction with other proteins, and expression tissues. Based on the above, this protein is a splicing variant of BC010640, serine / threonine kinase 3 (Ste 20, yeast homolog) (Human).
タンパク質の細胞内局在の予測プログラム P S ORT I I (Trends Biochem. Sci., 24: 34-6 (1999)) による解析を行ったところ、 本タンパク質の細胞内で の局在確率は、 核 69. 6%、 細胞質 1 7. 4%、 ペルォキシソーム 1 3. 0% であることがわかった。 BC 010640は、 出芽酵母 S t e 20のホモログで あるヒト S t e 20様キナーゼ (MST) のメンバーであるが、 MS Tはカスパ 一ゼの基質であり、 アポトーシス感受性を増加させること (J. Biol. Chem. , 276: 19276-19285 (2001)) が知られている。 以上から、 本タンパク質はアポ トーシスに関わる S t e 20様のセリン スレオニンプロテインキナーゼと考え られる。  Analysis of the protein intracellular localization prediction program PS ORT II (Trends Biochem. Sci., 24: 34-6 (1999)) revealed that the localization probability of this protein in the cell was nucleus 69. It turned out to be 6%, cytoplasm 17.4% and peroxisome 13.0%. BC010640 is a member of the human Ste20-like kinase (MST), a homolog of the budding yeast Ste20, which is a substrate for caspase and increases susceptibility to apoptosis (J. Biol. Chem., 276: 19276-19285 (2001)). Based on the above, this protein is considered to be a Ste20-like serine-threonine protein kinase involved in apoptosis.
真核生物ゲノムのァノテーシヨン情報データベース En s emb 1中の Disease Browser (http://www.ensembl.org/Homo_sapiens/aiseaseview) によ ると、 写像された本 DN Aの第 8番染色体上の位置 (q 22. 2) を含む q 22 -q 23にコーェン症候群、 q 22. 2にタリッペル -フェイル症候群 (喉頭部 の奇形を伴う) の原因遺伝子座が存在することがわかり、 本 DN Aがこれらの疾 患の原因遺伝子である可能性や、 スプライシングバリアントを含む本 DN Aの変 異がこれらの疾患の診断薬に応用できる可能性が推測された。 本 DNAの発現組 織を検討するため、 本 DNAをクエリーとして d b E S T (Nature Genetics, 4: 332-3 (1993)) に対して B LA S T検索を行い、 e - value: 1 X 10— 50でヒ ットしたヒト ESTが 5個以上ある組織を抽出したところ、 正常な骨髄 ·腎臓 · 前立腺 ·胎盤 '全脳、 癌化した子宮という結果を得た。 また、 本 DNAは子宫由 来ライブラリーからクローニングされた。 本タンパク質はこれらの組織や細胞に 特有の機能や疾患、 例えば子宮癌 ·前立腺癌 ·脳腫瘍 ·骨髄腫 ' 白血病 ·悪性リ ンパ腫などの癌、 アルツハイマー病 ·パーキンソン病 ·ハンチントン舞踏病など の神経変性疾患、 うつ病 ·精神分裂病などの中枢疾患、 自己免疫性疾患、 炎症性 疾患、 アレルギー疾患、 糸球体腎炎 ·ネフローゼ症候群 ·腎不全などの腎疾患、 ゴーシ 病などの骨髄疾患、 等の疾患の診断薬や治療薬のターゲットとしての利 用が考えられる。 ·According to the Disease Browser (http://www.ensembl.org/Homo_sapiens/aiseaseview) in Ensemb 1 of the eukaryotic genome annotation information database, the location of the mapped DNA on chromosome 8 (Q 22.2), and q 22 -q 23 contain cohen's syndrome, and q 22.2 contains Talippel-Fail syndrome (with laryngeal malformation) causative loci. It was speculated that these genes may be the causative genes of these diseases and that the mutations of this DNA, including splicing variants, can be applied to diagnostics for these diseases. In order to examine the expression organization of this DNA, db EST (Nature Genetics, 4: 332-3 (1993)) performed B LA ST searched for, e - value: 1 where X 10- 50 Dehi Tsu preparative human EST were extracted 5 more than a certain tissue, normal bone marrow, Kidney · prostate · placenta 'whole brain, cancerous uterus was obtained. In addition, this DNA was cloned from a library derived from a child. This protein is a function or disease specific to these tissues and cells, such as uterine cancer, prostate cancer, brain tumor, myeloma, leukemia, malignant lymphoma, and other neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Diseases, depression, central diseases such as schizophrenia, autoimmune diseases, inflammatory diseases, allergic diseases, glomerulonephritis, nephrotic syndrome, kidney diseases such as renal failure, bone marrow diseases such as Gaucher's disease, etc. It can be used as a target for diagnostics and therapeutics. ·
(4) c-b r c a n 2018240 (配列番号 4、 16) (4) c-b r c a n 2018 240 (SEQ ID NOs: 4, 16)
c-b r c a n 2018240 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 4に 示すように、 281 7塩基からなり、 そのうち塩基番号 42番から 1 733番ま でがオープンリーディングフレーム (終止コドンを含む) である。 オープンリー デイングフレームから予測されるアミノ酸配列は、 563アミノ酸残基からなる cb rcan 2018240 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”), as shown in SEQ ID NO: 4, consisting of 2817 bases, of which base number 42 Numbers 1 to 733 are open reading frames (including a stop codon). Amino acid sequence predicted from open reading frame consists of 563 amino acid residues
(配列番号 1 6) 。 配列番号 16のアミノ酸配列について BLASTを用いて相 同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— PR OT、 P I R、 TREMBL、 GENPEPT、 P D Bから作成された重複のな いアミノ酸配列のデータベース) 中のデータベース登録記号 AX 405737(SEQ ID NO: 16). A homology search was performed for the amino acid sequence of SEQ ID NO: 16 using BLAST, and it was found in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB). Database registration symbol AX 405737
(unnamed 0RF) および WOO 2/22660号公報に記載されているアミノ酸 配列が、 e - value: 0. 0、 かつ 514ァミノ酸残基にわたり 95 %の一致度で ヒットした。 B LAST検索のァライメントから本タンパク質は、 AX4057 37のアミノ酸番号 35〜51番の 1 7残基、 489番の 1残基に該当するアミ ノ酸を欠失しており、 AX405737のアミノ酸番号 510番、 51 1番、 5 12番、 51 3番に該当するアミノ酸にそれぞれグリシン Zァラニン、 イソロイ シン/了ラニン、 セリン Zロイシン、 ァラニン Zグリシンの置換が存在すること がわかった (図 3) 。 また本 DNAは、 AX405737の塩基番号 209〜2(unnamed 0RF) and the amino acid sequence described in WOO 2/22660 hit with an e-value of 0.0 and 95% identity over 514 amino acid residues. From the alignment of the BLAST search, this protein lacks the amino acid corresponding to amino acid Nos. 35 to 51 of AX405737 and 1 residue of No. 489, and amino acid No. 510 of AX405737. , 51 Nos. 5, 512, and 51 No substitution of Glycine Zalanine, Isoleucine / Lanine, Serine Zleucine, and Alanine Z glycine at amino acids (Figure 3). In addition, this DNA has the base number of AX405737 of 209 to 2
59番の 51塩基、 塩基番号 1569〜1571番の 3塩基に該当する塩基を欠 失し、 AX405737の塩基番号 1634/1635番に該当する位置に 34 塩基が挿入されている。 この挿入によってフレームがシフトし、 本タンパク質の C末端の 67残基、 AX405737の C末端の 64残基に違いが生じている。 配列番号 16のアミノ酸配列について、 HMMPFAMによるタンパク質特徴 検索を行ったところ、 アミノ酸番号 132〜379番に示されるアミノ酸配列に プロテインキナーゼドメインの特徴を示す配列 (P f amに!) k i II a s eとし てエントリーされるアミノ酸配列) を見出した。 また配列番号 16のアミノ酸番 号 6〜105番に示されるアミノ酸配列に PXドメインの特徴を示す配列 (P f amに PXとしてエントリーされるアミノ酸配列) を見出した。 PXドメインは phosphoinositide結合ドメィンであり、 細胞内シグナル伝達に関与すること力 S 知られている。 本タンパク質は AX 405737と比較して PXドメインの一部 を欠失しているため、 AX405737とは異なる相互作用を有することが考え られる。 It lacks the 51 base at position 59 and the 3 bases at base numbers 1569 to 1571, and has inserted 34 bases at the position corresponding to base number 1634/1635 of AX405737. This insertion shifts the frame, resulting in a difference between the C-terminal 67 residues of this protein and the C-terminal 64 residues of AX405737. HMMPFAM was used to perform a protein feature search on the amino acid sequence of SEQ ID NO: 16, and the amino acid sequence represented by amino acids 132 to 379 showed a protein kinase domain characteristic sequence (Pfam!) As kiIIase. Amino acid sequence to be entered). In addition, a sequence showing the characteristics of the PX domain (an amino acid sequence entered as PX in Pfam) was found in the amino acid sequences shown in amino acid numbers 6 to 105 of SEQ ID NO: 16. The PX domain is a phosphoinositide binding domain and is known to be involved in intracellular signal transduction. Since this protein lacks a part of the PX domain compared to AX405737, it may have a different interaction from AX405737.
c DN A配列をゲノム配列へ写像するソフトウェア s i m4 (Genome Res. , 8: 967-74 (1998)) を用い、 本 D Ν Αと AX 405737の c D Ν Α配列をゲ ノム配列にマッピングしたところ、 データベース登録記号 AC 1 35507、 ヒ ト第 3番染色体のクローン RP 1 1— 802023上に、 本 DNAは 1 8個のェ クソンに、 AX405737は 19個のェクソンにァラインされた (図 4) 。 本 DNAの第2から第16ェクソンに該当するェクソンは AX 405737にも存 在するが、 本 DN Aは第 1ェクソンと第 2ェクソンの間にェクソンを 1つ欠失し ている。 また本 DNAの第 1 7ェクソンは AX 405737では欠失しているが この領域は 34塩基からなるためフレームがシフトし、 両者の C末端のアミノ酸 配列に違いが生じている。  Using the software sim4 (Genome Res., 8: 967-74 (1998)) that maps the cDNA sequence to the genomic sequence, the cDΝ sequence of the D D and AX405737 was mapped to the genomic sequence. However, this DNA was aligned to 18 exons, and AX405737 was aligned to 19 exons on the database registration code AC135507, clone RP11-1-80203 of human chromosome 3 (Fig. 4). . The exons corresponding to the 2nd to 16th exons of this DNA are also present in AX405405737, but this DNA lacks one exon between the 1st and 2nd exons. In addition, the 17th exon of this DNA is deleted in AX405737, but this region is composed of 34 bases, so the frame is shifted, and the C-terminal amino acid sequence of both is different.
以上から、 配列番号 4の本 DNAは AX405737および WO02/226 From the above, the present DNA of SEQ ID NO: 4 is AX405737 and WO02 / 226
60号公報に記載されている塩基配列のスプライシングバリアントであり、 キナ 一ゼをコ一ドしていることがわかった。 両者は N末部 C末部のアミノ酸配列が異 なることから、 他のタンパク質との結合や相互作用、 発現組織などが異なる可能 性がある。 No. 60 is a splicing variant of the nucleotide sequence described in It turned out that I was coding Ize. Both have different amino acid sequences at the N-terminal and C-terminal, and therefore may have different binding, interaction, and expression tissues with other proteins.
タンパク質の細胞内局在の予測プログラムである P SORT I I (Trends Biochem. Sci. , 24: 34 - 6 (1999)) による解析を行ったところ、 本タンパク質 の細胞内での局在の確率は、 核 78. 3%、 細胞質 8. 7%、 ミ トコンドリア 8. 7%であり、 核への局在確率が高いため、 本タンパク質は細胞の増殖や分化、 細 胞周期、 転写因子の制御などに関わる可能性がある。  Analysis by P SORT II (Trends Biochem. Sci., 24: 34-6 (1999)), a program for predicting the intracellular location of proteins, revealed that the probability of localization of this protein in cells was Nuclear 78.3%, cytoplasm 8.7%, mitochondria 8.7% .High probability of localization to the nucleus.This protein is used for cell growth and differentiation, cell cycle, regulation of transcription factors, etc. May be involved.
真核生物ゲノムのァノテーシヨン情報データベース E n s e mb 1中の  The eukaryotic genome annotation information database in Ensemb1
Disease Browser (http://w w. ensembl. org/Homo_sapiens/diseaseview) によ ると、 本 DNAが写像された第 3番染色体上の位置 (p l 4. 3) を含む p 21 - 14に常染色体劣性難聴の原因遺伝子座が存在することがわかり、 本 D N A がこれらの疾患の原因遺伝子である可能性や、 スプライシングバリアントを含む 本 D N Aの変異が該疾患の診断薬に応用できる可能性が予想された。 本 D N Aの 発現組織を検討するため、 本 DNAをクエリーとして d b E ST (Nature Genetics, 4: 332 - 3 (1993)) に対して B LA S T検索を行い、 e-value:≤ 1 0一 5°でヒットしたヒト ESTが 5個以上ある糸且織を抽出したところ、 正常な免 疫系 · リンパ系 ·骨格筋 ·脳、 癌化した免疫系 ·精巣という結果を得た。 また本 DNAは脳の尾状核由来 cDNAライブラリーからクローニングされた。 本タン パク質はこれらの組織や細胞に特有の機能や疾患、 例えばリンパ腫 ·白血病 ·脳 腫瘍 ·精巣癌などの癌や、 筋ジストロフィー ' ミオパチー 'テタニー .重症筋無 力症などの骨格筋疾患、 免疫系疾患、 不妊症、 常染色体劣性難聴などに関連する 可能性が推測でき、 これらの疾患の診断薬や治療薬のターゲットとしての有用性 が見込まれる。 According to the Disease Browser (http://www.ensembl.org/Homo_sapiens/diseaseview), p21-14 always contains the position (pl4.3) on chromosome 3 where this DNA was mapped. It is found that there is a locus that causes chromosomal recessive hearing loss, suggesting that this DNA may be the causative gene of these diseases, and that mutations of this DNA including splicing variants may be applied to diagnostics for these diseases Was done. To investigate the expression tissue of the DNA, db E ST this DNA as a query (Nature Genetics, 4: 332 - 3 (1993)) performed B LA ST searched for, e-value: ≤ 1 0 one 5 Extraction of 5 or more human ESTs hit in ° resulted in normal immune system, lymphatic system, skeletal muscle, brain, cancerous immune system, and testis. This DNA was cloned from a cDNA library derived from the caudate nucleus of the brain. This protein is used for functions and diseases unique to these tissues and cells, for example, cancer such as lymphoma, leukemia, brain tumor, testicular cancer, muscular dystrophy 'myopathy' tetany, skeletal muscle disease such as myasthenia gravis, immunity It can be speculated that it may be related to systemic diseases, infertility, autosomal recessive hearing loss, etc., and is expected to be useful as a target for diagnostics and therapeutics for these diseases.
(5) c-b r a c e 3003920 (配列番号 5、 1 7)  (5) c-b r a c e 3003920 (SEQ ID NOS: 5, 17)
c-b r a c e 3003920 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 5に 示すように、 5342塩基からなり、 そのうち塩基番号 371番から 38 74番 までがオープンリーディングフレーム (終止コドンを含む) である。 オープンリ ーデイングフレームから予測されるアミノ酸配列は、 1 1 67アミノ酸残基から なる (配列番号 17) 。 配列番号 1 7のアミノ酸配列について B LASTを用い て相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— PROT、 P I R、 TREMBL、 GENPEPT、 PDBから作成された重複 のないアミノ酸配列のデータベース) 中のデータベース登録記号 AX 26251 6 (unnamed 0RF) およぴ WO 01/73050号公報に記載されているァミノ 酸配列が、 e- value: 0. 0、 かつ 1 160ァミノ酸残基にわたり 99 %の一致 度でヒットした。 この BLAST検索のァライメントから本タンパク質は、 AX 262516のアミノ酸番号 309番、 456番、 557番に該当するアミノ酸 にそれぞれスレオニン Zイソロイシン、 スレオニン アラニン、 リジン Zァスパ ラギンの置換が存在し、 また本タンパク質の N末端 3残基と AX 262516の N末端 72残基が異なり、 本タンパク質の C末端 4残基と AX 26251 6の C 末端 1 2残基が異なることがわかった (図 5) 。 また本 DNAは、 AX2625 16の塩基番号 386〜533番の 148塩基に該当する塩基を欠失している。 配列番号 1 7のアミノ酸配列について、 HMMP FAMによるタンパク質特徴 検索を行ったところ、 アミノ酸番号 1〜21 2番に示されるアミノ酸配列にプロ ティンキ^ "一ゼドメインの特徴を示す配列 (P f a mに!) k i n a s eとしてェ ントリーされるアミノ酸配列) を見出した。 タンパク質の機能の類似性により ド メイン構造ゃフアミリーを分類したアミノ酸パターンのデータベースであり、 機 能的に重要な部位を検索可能な PRO S I TE (Nucleic Acids Res., 30: 235-8 (2002) ) によれば、 AX 2625 16のプロテインキナーゼドメインの うち、 アミノ酸番号 27〜5 1は ATP region (ATP結合部位) であった。 こ の領域は AX 262516の第 3 ' ェクソンに該当し、 本 DN Aでは欠失してい る。 c DNA配列をゲノム配列へ写像するソフトウエア s i m4 (Genome Res. , 8: 967-74 (1998)) を用い、 本 D Ν Αおよび AX 262516の c D Ν Α配列 をゲノム配列にマッピングしたところ、 本 DNA、 AX 26251 6はともにヒ ト第 1 5番染色体上に 15個のェクソンがァラインされた (図 6) 。 本 DNAは、 第 3と第 4ェクソンの間に AX 262516が有するェクソン部を 1個欠失して おり、 AX 262516は本 DNAの第 1ェクソンに該当するェクソンをもたな い。 本 DNAは第 3ェクソンの 3, 末端寄りから翻訳領域が開始しているが、 A X 26251 6は本 DNAの第 3ェクソンの中央付近から開始しており、 両者の N末部の読み枠が異なる。 AX26251 6は第 3ェクソン相当部の直後に本 D NAには存在しない 148塩基からなる挿入を有するため、 フレームシフトを生 じ、 第 4ェクソン相当部分以降の翻訳フレームは両者で一致する。 また、 AX2cb race 3003920 (hereinafter, referred to as “present DNA” and a protein encoded by the DNA is referred to as “present protein”) is represented by SEQ ID NO: 5. As shown, it consists of 5342 bases, of which bases 371 to 3874 are the open reading frame (including the stop codon). The amino acid sequence predicted from the open reading frame consists of 1167 amino acid residues (SEQ ID NO: 17). A homology search was performed for the amino acid sequence of SEQ ID NO: 17 using BLAST, and it was found in the NRDB protein database (a database of non-redundant amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB). The amino acid sequence described in AX 26251 6 (unnamed 0RF) and WO 01/73050 has an e-value of 0.0, and 99% identity over 1160 amino acid residues. Hit in degrees. From this BLAST search alignment, this protein shows that amino acids corresponding to amino acid numbers 309, 456, and 557 of AX 262516 have substitutions for threonine Z isoleucine, threonine alanine, and lysine Z asparagine, respectively. It was found that the N-terminal 3 residues differ from the N-terminal 72 residues of AX262516, and the C-terminal 4 residues of this protein and the C-terminal 12 residues of AX262516 differ (Fig. 5). In addition, this DNA lacks the base corresponding to 148 bases of base numbers 386 to 533 of AX262516. A protein characteristic search by HMMP FAM was performed on the amino acid sequence of SEQ ID NO: 17, and the amino acid sequence represented by amino acid numbers 1-221 was found to be a sequence exhibiting the characteristics of a protein kinase domain. A database of amino acid patterns that classify domain structures and families according to the similarity of protein functions. PRO SITE ( According to Nucleic Acids Res., 30: 235-8 (2002)), of the protein kinase domain of AX262516, amino acids 27 to 51 were ATP regions (ATP binding sites). It corresponds to the 3 'hexon of AX 262516, and is deleted in this DNA. Using the software sim4 (Genome Res., 8: 967-74 (1998)) that maps a cDNA sequence to a genomic sequence, the c D Ν 本 sequence of this D Ν Α and AX 262516 was mapped to the genomic sequence. In both the present DNA and AX262516, 15 exons were aligned on human chromosome 15 (Fig. 6). This DNA lacks one exon part of AX 262516 between the third and fourth exons, and AX 262516 has no exon corresponding to the first exon of this DNA. In this DNA, the translation region starts near the end 3 of the third exon, but AX 26251 6 starts near the center of the third exon of this DNA, and the reading frame at the N-terminal of both is different . Since AX262516 has an insertion consisting of 148 bases not present in this DNA immediately after the third exon equivalent, a frame shift occurs, and the translation frames after the fourth exon correspond to both. Also, AX2
625 16の翻訳終止コ ドンの直ぐ上流に位置する塩基番号 4006番と 400 7番の間に該当する本 DNAの位置 (塩基番号 3855) に 1塩基 (シトシン) が挿入されたためにフレームシフトが生じた結果、 本タンパク質の C末部 4アミ ノ酸残基と、 AX262516タンパク質の C末部 12アミノ酸残基が異なって いる。 ゲノム配列中には本挿入は見られないが、 E ST配列中には本挿入のある クローンと、 無いクローンの両方が登録されていることから、 この違いは個体差 と思われる。 以上から、 本タンパク質は AX 262516および WO 01/73 050号公報に記載されているアミノ酸配列のバリアントであり、 プロテインキ ナーゼであるか、 またはプロテインキナーゼの内在性の阻害物質であることが推 定された。 625 One base (cytosine) inserted at the position (base No. 3855) of this DNA corresponding to base numbers 4006 and 4007 immediately upstream of the 1616 translation termination codon, resulting in frame shift. As a result, the C-terminal 4 amino acid residues of this protein are different from the C-terminal 12 amino acid residues of AX262516 protein. Although this insertion is not found in the genome sequence, both clones with this insertion and clones without this insertion are registered in the EST sequence, so this difference seems to be an individual difference. From the above, it is estimated that this protein is a variant of the amino acid sequence described in AX 262516 and WO 01/73050 and is a protein kinase or an endogenous inhibitor of protein kinase. Was done.
タンパク質の細胞内局在の予測プログラムである P SORT I I (Trends Biochem. Sci., 24: 34-6 (1999)) による解析を行ったところ、 本タンパク質 の細胞内での局在の確率は、 核 91. 3%、 細胞質 4. 3%、 ペルォキシソーム 4. 3 %であり、 AX262516の細胞内での局在確率は、 核 69. 6 %、 細 胞質 1 7. 4 %、 細胞骨格 4. 3%、 ミ トコンドリア 4. 3 %、 ペルォキシソー ム 4. 3%であった。 本タンパク質は AX 2625 16と比較して核への分布の 確率が増加することから、 本タンパク質は核内で細胞増殖 ·分化、 細胞周期、 転 写因子のリン酸化制御などに関与することが考えられるが、 AX 2625 16と は異なる機能を有することが予測される。 Analysis by P SORT II (Trends Biochem. Sci., 24: 34-6 (1999)), a program for predicting the intracellular location of proteins, revealed that the probability of localization of this protein in cells was Nucleus 91.3%, cytoplasm 4.3%, peroxisome 4.3%, localization probability of AX262516 in cells is 69.6% nucleus, 17.4% cytoplasm, cytoskeleton 4. 3%, mitochondria 4.3%, and peroxisome 4.3%. This protein has a higher distribution to the nucleus than AX 2625 16 Due to the increased probability, this protein is considered to be involved in cell proliferation and differentiation, cell cycle, regulation of transcription factor phosphorylation, etc. in the nucleus, but is predicted to have a function different from AX262516 Is done.
真核生物ゲノムのァノテーシヨン情報データベース En s emb 1中の  In the Ensemb 1 annotation information database of eukaryotic genomes
Disease Browser (http://www.ensembl.org/Homo_sapiens/diseaseview) によ り、 本 DNAが写像された第 15番染色体上の位置 (q 15. 2) を包含する q 15. 1 -q 21. 1に筋萎縮性側索硬化症 (ALS 5) 、 q 15. 1 - q 1 5. 3に先天性赤血球異形成貧血の原因遺伝子座が存在することがわかり、 これらの 疾患の原因遺伝子である可能性や、 スプライシングバリアントを含む本 DNAの 変異がこれらの疾患の診断薬に応用できる可能性が予想された。 本 D N Aの発現 組織を検討するため、 本 DNAをクエリーとして d b E ST (Nature Genetics, 4: 332-3 (1993)) に対して B L A S T検索を行い、 e - value: ≤ 10— 5。でヒッ トしたヒト ESTが 5個以上ある組織を抽出したところ、 正常な免疫系 · リンパ 系組織、 癌化した肺という結果を得た。 また本 DNAは小脳よりクローエングさ れた。 よって本タンパク質はこれらの組織や細胞に特有の機能や疾患、 たとえば リンパ腫 ·白血病 ·骨髄腫 ·肺癌 ·脳腫瘍などの癌や、 脊髄小脳変性症、 炎症性 疾患、 アレルギー疾患、 自己免疫疾患、 筋萎縮性側索硬化症、 先天性赤血球異形 成貧血などに関わる可能性が推測でき、 これらの疾患の診断薬や治療薬のターゲ ットとしての有用性が見込まれる。 According to the Disease Browser (http://www.ensembl.org/Homo_sapiens/diseaseview), the position on the chromosome 15 where the present DNA was mapped (q15.2) is included. It was found that there is a locus of amyotrophic lateral sclerosis (ALS 5) in 1, and a genetic locus of congenital erythroid dysplasia anemia in q15.1-q15.3. It was expected that mutations in this DNA, including splicing variants, could be applied to diagnostics for these diseases. To investigate the expression tissue of the DNA, db E ST this DNA as a query (Nature Genetics, 4: 332-3 ( 1993)) performed BLAST search against, e - value: ≤ 10- 5 . Extraction of tissues with 5 or more human ESTs, which were obtained in Section 2, yielded normal immune / lymphoid tissues and cancerous lungs. This DNA was also cloned from the cerebellum. Therefore, this protein is a function or disease specific to these tissues or cells, for example, cancer such as lymphoma, leukemia, myeloma, lung cancer, brain tumor, spinal cerebellar degeneration, inflammatory disease, allergic disease, autoimmune disease, muscle atrophy It may be related to sex lateral sclerosis, congenital erythrocyte dysplasia anemia, etc., and is expected to be useful as a diagnostic or therapeutic target for these diseases.
(6) c-b r a c e 3038687 (配列番号 6、 18)  (6) c-b r a c e 3038687 (SEQ ID NOs: 6, 18)
c-b r a c e 3038687 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 6に 示すように、 4938塩基から成り、 そのうち塩基番号 8 1番から 2720番ま でがオープンリーディングフレーム (終止コドンを含む) で 879アミノ酸残基 cb race 3038687 (hereinafter, referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”), as shown in SEQ ID NO: 6, consisting of 4938 bases, of which base number 81 Open reading frame (including the stop codon) from position number 2720 to 879 amino acid residues
(配列番号 1 8) のタンパク質をコードすると推測される。 配列番号 18のアミ ノ酸配列について B LASTを用いて相同性検索を行ったところ、 特許データべ ース GENES EQ (アミノ酸配列) 中の、 WO 98/22507号公報に SE Q I D NO. 11として記載されている Human receptor tyrosine kinase LMRlJiがヒットした。 Human LMRlJiは 1383ァミノ酸からなる受容体型チロ シンプロテインキナーゼであり、 そのアミノ酸配列中のアミノ酸番号 10〜90 5番が、 配列番号 18に記載のァミノ酸配列のァミノ酸番号 1〜 860番と、 e-value: 0で 897アミノ酸残基にわたり 94 %の一致度をもつことが認めら れた。 It is presumed to encode the protein of (SEQ ID NO: 18). A homology search was performed on the amino acid sequence of SEQ ID NO: 18 using BLAST. Human receptor tyrosine kinase LMRlJi described as QID NO. 11 was hit. Human LMRlJi is a receptor tyrosine protein kinase consisting of 1383 amino acid, the amino acid number 10 to 905 in the amino acid sequence thereof is the amino acid number 1 to 860 of the amino acid sequence described in SEQ ID NO: 18, e-value: 0 was found to have 94% identity over 897 amino acid residues.
WO 98Z22507号公報に SEQ I D NO. 2として記載されている ヒト LMR 1— hの遺伝子 (GENE SEQデータベース塩基配列登録記号 AA V32449) は 5267塩基からなりその塩基番号 515〜4138番のォ一 プンリーディングフレームが 1207アミノ酸のタンパク質 (LMR1— h) を コードしうる。 しかし該公報に記載されているアミノ酸配列 (GENESEQデ ータベースアミノ酸配列登録記号 A AW 48842) では、 ラットの上流配列 1 76ァミノ酸を連結したタンパク質配列を仮想合成し 1383アミノ酸からなる タンパク質を開示している (これを LMR 1— r +hとよぶ) (図 7) 。 これは ヒト配列とラット配列の比較から、 ヒト配列が N末端に達していないとの推測に 立っており、 完全長のヒ ト LMRタンパク質はまだ報告されていない。 一方、 W O 98/22507号公報に S EQ I D NO. 1として記載されているラッ ト LMR1— r遺伝子 (AAV32448) は 2572塩基からなり最大のォー プンリーディングフレームをとると塩基番号 13〜2571番で終止コドンがな く、 この部分のアミノ酸残基数は 853である。 しかし公報にはこの塩基配列の 塩基番号 13〜2556番に由来する 848アミノ酸からなるタンパク質 (LM R 1一 r ) を記載している (AAW48841) 。 ラットの LMR 1— r (A A W48841) は C末端が短いが、 これは終止コドンが不明のためで不完全長で あることを示している。 以上のように既報の LMRタンパク質は、 ヒト LMR1 —hは N末端が不完全で、 ラット LMR 1— rは C末端が不完全であり、 LMR 1— r +hでその全長を推測しているに過ぎない。 配列番号 18のァミノ酸配列は LMR 1— r+hのァミノ酸配列と比較して以 下の点が異なる。 The gene for human LMR 1-h (GENE SEQ database nucleotide sequence registration code AA V32449) described as SEQ ID NO. 2 in WO 98Z22507 consists of 5267 bases and is open reading at base numbers 515 to 4138 The frame may encode a protein of 1207 amino acids (LMR1-h). However, the amino acid sequence described in the publication (GENESEQ database amino acid sequence registration code AAW48842) discloses a protein consisting of 1383 amino acids by virtually synthesizing a protein sequence linked to the rat upstream sequence 176 amino acid. (This is called LMR 1— r + h) (Figure 7). This is based on a comparison of the human and rat sequences, presuming that the human sequence has not reached the N-terminus, and a full-length human LMR protein has not yet been reported. On the other hand, the rat LMR1-r gene (AAV32448) described as S EQ ID NO. 1 in WO 98/22507 consists of 2572 bases and takes the largest open reading frame, base numbers 13 to 2571. There is no stop codon, and the number of amino acid residues in this part is 853. However, the publication describes a protein (LMR11r) consisting of 848 amino acids derived from base numbers 13 to 2556 of this base sequence (AAW48841). Rat LMR 1-r (AA W48841) has a short C-terminus, indicating an incomplete length due to an unknown stop codon. As described above, human LMR1-h has an incomplete N-terminus, and rat LMR1-r has an incomplete C-terminus. It's just The amino acid sequence of SEQ ID NO: 18 differs from the amino acid sequence of LMR1-r + h in the following points.
(a) 本タンパク質には LMR 1—r +hの N末端 9アミノ酸を欠くが、 この領 域の配列の差異はヒトとラットの種差を反映したと考えられる。 なお、 後述のゲ ノムマッピングから、 本 c DN Aの翻訳開始近傍の配列はヒトゲノム配列と一致 している。  (a) This protein lacks the N-terminal 9 amino acids of LMR1-r + h, but the sequence difference in this region is considered to reflect the species difference between human and rat. From the genomic mapping described below, the sequence near the translation initiation site of the cDNA corresponds to the human genome sequence.
(b) 本タンパク質のアミノ酸番号 467番、 468番の間に ^[1 1 r +h のアミノ酸番号 477〜51 2番に相当する 36アミノ酸の欠失がある。 これは ェクソン内スプライシングの結果である。  (b) There is a deletion of 36 amino acids corresponding to amino acids 477 to 512 of ^ [11 r + h between amino acids 467 and 468 of this protein. This is the result of intra-exon splicing.
(c) 本タンパク質のアミノ酸番号 861番以降 (LMR 1— r +hのアミノ酸 番号 906番以降) の配列が異なる。  (c) The sequence of amino acid No. 861 or later (amino acid No. 906 or later of LMR1—r + h) of this protein is different.
LMR 1は細胞外ドメインをほとんど持たない膜受容体型チロシンキナーゼで ある。 本タンパク質を膜貫通領域予測ソフトウエア TMp r e d (Biol. Chem. Hoppe-Seyler, 374: 166 (1993)) で解析すると、 アミノ酸番号 32〜 53番に LAVVAVS F S G LFAV I VLMLA C Lからなる膜貫通領域がヒッ トした。 また、 HMMP F AM検索を行うと、 本タンパク質のアミノ酸番号 12 5〜395番に e- value: 3. 3 X 10— 47でプロテインキナーゼドメインがヒッ トした。 本タンパク質と LMR 1— hは、 細胞内プロテインキナーゼドメインよ りも C末端側に違いが存在することから、 本タンパク質は LMR 1— hと異なる シグナル伝達に関与する可能性が有る。 LMR1 is a membrane receptor tyrosine kinase with little extracellular domain. Analysis of this protein with the transmembrane domain prediction software TMp red (Biol. Chem. Hoppe-Seyler, 374: 166 (1993)) reveals that the transmembrane domain consisting of LAVVAVS FSG LFAV I VLMLA CL at amino acids 32 to 53 It was hit. In addition, when the HMMP F AM search, to amino acid number 12 No. 5-395 of the protein e- value: protein kinase domain was hit by 3. 3 X 10- 47. Since this protein and LMR1-h have a difference on the C-terminal side from the intracellular protein kinase domain, this protein may be involved in signal transduction different from LMR1-h.
本 DNA配列のゲノム上の位置を NRNEE塩基配列データベース (EMB L Ge nB a nk、 および DDB Jから作成された E S Tを除く重複のない塩基配 列データベース) で検索すると、 ヒト第 17番染色体に由来する RPCI- 13 Human Female BAC (データベース登録記号 AC 1 2991 9) などにマップされた。 そこでゲノム配列である AC 1 299 1 9の配列上で、 s i m4 (Genome Res. 8: 967-74 (1998)) を用いて、 本 DNAと、 LMR 1— hをコードする D N A (WO 98/22507号公報) とを比較した (図 8 ) 。 その結果、 本 DNAは ェクソン 16個からなり、 LMR 1— hは本 DNAの第 1 1、 第 12、 第 13ェ クソンを含む長いェクソンをもっていた。 すなわち、 本 DNAは第 11と第 12 ェクソンの間のスプライシング (塩基番号 1481Z1482番) により 108 塩基 36アミノ酸の欠失を、 第 1 2と第 1 3ェクソンの間の 263塩基のスプラ イシング (塩基番号 2660 2661番) により 88アミノ酸の欠失とフレー ムシフトを生じ、 スプライシング後の第 1 3ェクソン (塩基番号 266 1〜34 44番) で 19アミノ酸を付加して翻訳を終了する。 一方、 LMR1— hは翻訳 が継続し C末端の長いタンパク質を生じる。 また、 LMR 1— hの 5, 端は本 D NAよりも 100塩基分短いため、 本 DNAの ATG翻訳開始コドンを有さず、 LMR 1—h自身でオープンリーディングフレームを予測すると、 下流の第 5ェ クソンから翻訳開始することになる (図 8) 。 以上から、 ヒ ト LMR 1— hは N 末端の不完全クローンであるが、 本タンパク質はこのバリアントであり完全長で あると考えられる。 When the position of this DNA sequence on the genome is searched using the NRNEE nucleotide sequence database (a non-overlapping nucleotide sequence database excluding ESTs created from EMB L GenBank and DDB J), it is derived from human chromosome 17 Mapped to RPCI-13 Human Female BAC (database registration code AC 1 299 9). Therefore, on the sequence of AC1299919, which is the genome sequence, the DNA encoding this DNA and the DNA encoding LMR1-h (WO 98/98) were obtained using sim4 (Genome Res. 8: 967-74 (1998)). No. 22507) (Fig. 8). As a result, this DNA Consisting of 16 exons, LMR 1-h had a long exon, including exons 11, 12, and 13 of this DNA. In other words, this DNA has a deletion of 108 bases and 36 amino acids by splicing between bases 11 and 12 (base No. 1481Z1482) and a splice of 263 bases between bases 12 and 13 (base No. 1481Z1482). 2660 2661) causes a deletion of 88 amino acids and a frame shift, and ends the translation by adding 19 amino acids at the 13th exon (base Nos. 266 1-3344) after splicing. On the other hand, LMR1-h continues translation and produces a long C-terminal protein. In addition, since the 5th end of LMR 1-h is 100 bases shorter than this DNA, it does not have the ATG translation initiation codon of this DNA, and if LMR 1-h predicts the open reading frame itself, The translation will start at 5 exons (Figure 8). From the above, human LMR1-h is an incomplete N-terminal clone, but this protein is considered to be a variant and full-length.
本 DNAの特徴である第 1 1、 第 1 2、 第 13ェクソンをプローブにして d b EST (Nature Genetics, 4: 332-3 (1993)) に対して検索すると、 成人のメ ラノーマ由来 AL 120847が本 DN A配列の塩基番号 1084〜 1482番 (第 10、 第 1 1、 第 12ェクソンに相当) にヒットした。 また、 視床下部由来 AB I 60071 1が本 DNAの 1 130〜 1805番 (第 10、 第 1 1、 第 1 2ェクソンに相当) にヒットした。 このことは第 1.1、 第 12ェクソンの間をス プライスアウトする分子がメラノーマや視床下部に存在することを示している。 WO 98/22507号公報によると LMR 1は神経細胞に発現が限局されてい る。 本 DN Aは小脳由来 c DNAライブラリーから単離され細胞内ドメインに異 なる配列をもつ完全長 LMR 1である。 このことから本タンパク質は脳腫瘍 ·神 経芽腫 ·黒色腫などの癌、 ァルツハイマー病 .パーキンソン病 ·脊髄小脳変性症 などの神経変性疾患、 うつ病 ·不安症 ·精神分裂病などの中枢疾患、 糖尿病など の内分泌疾患、 炎症などに関与する可能性があり、 これらの疾患の診断薬や治療 薬のターゲットとしての利用が考えられる。 (7) c~b r a c e 3050764 (配列番号 7、 19) Searching for db EST (Nature Genetics, 4: 332-3 (1993)) using the 11th, 12th, and 13th exons, which are features of this DNA, as a probe, AL 120847 from adult melanoma was found. A hit was found at nucleotide numbers 1084-1482 (corresponding to the tenth, eleventh, and twelfth exons) of the present DNA sequence. In addition, the hypothalamus-derived ABI 600711 hit number 1130 to 1805 (corresponding to the 10th, 11th and 12th exons) of this DNA. This indicates that molecules splicing out between exons 1.1 and 12 are present in melanoma and hypothalamus. According to WO 98/22507, the expression of LMR1 is restricted to nerve cells. This DNA is a full-length LMR1 isolated from a cerebellar cDNA library and having a different sequence in its intracellular domain. From this fact, this protein is used for cancers such as brain tumors, neuroblastomas and melanomas, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, spinocerebellar degeneration, central diseases such as depression, anxiety, and schizophrenia. It may be involved in endocrine diseases such as diabetes, inflammation, etc., and can be used as targets for diagnostics and therapeutics for these diseases. (7) c ~ brace 3050764 (SEQ ID NOs: 7, 19)
c-b r a c e 3050764 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 7に 示すように、 3346塩基からなり、 そのうち塩基番号 1 744番から 2685 番までがオープンリーディングフレーム (終止コドンを含む) である。 オープン リーディングフレームから予測されるアミノ酸配列は、 313アミノ酸残基から なる (配列番号 19) 。 配列番号 1 9のアミノ酸配列について BLASTを用い て相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— PROT、 P I R、 TREMBL、 GENPEPT、 PDBから作成された重複 のないアミノ酸配列のデータベース) 中の、 データベース登録記号 Q 1 5131 に登録されている cell division kinaselO/PISSLRE (c d k 10、 Human) 力 S e- value : 5 X 10 179で 306ァミノ酸にわたり 99 %の一致度でヒットしたcb race 3050764 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) comprises 3346 bases as shown in SEQ ID NO: 7, of which base number 1744 The open reading frame (including the stop codon) is from No. 2685 to No. 2685. The amino acid sequence predicted from the open reading frame consists of 313 amino acid residues (SEQ ID NO: 19). A homology search was performed for the amino acid sequence of SEQ ID NO: 19 using BLAST. Cell division kinaselO / PISSLRE (cdk 10, Human) registered under database registration code Q15131, with a S e-value: 5 X 10 179 with a 99% match over 306 amino acids
(図 9) 。 c d k 10タンパク質は 360アミノ酸残基からなりアミノ酸番号 3 9〜323番にプロテインキナーゼドメインをもつ cyclin dependent kinase である。そのアミノ酸番号 80〜86番に増殖抑制因子が結合する P I S SLR E配列がある。 c d k 10のアミノ酸配列番号 55〜360番が本タンパク質の アミノ酸番号 8〜313番に一致するため、 本タンパク質は c d k 10と N末端 が異なるバリアントと考えられた。 (Figure 9). The cdk10 protein is a cyclin dependent kinase consisting of 360 amino acid residues and having a protein kinase domain at amino acids 39-323. At amino acids 80 to 86 there is a PIS SLR E sequence to which a growth inhibitory factor binds. Since amino acid sequence numbers 55 to 360 of cdk10 correspond to amino acid numbers 8 to 313 of this protein, this protein was considered to be a variant that differs from cdk10 at the N-terminus.
配列番号 1 9のアミノ酸配列に対して HMMPF AM検索を行うとアミノ酸番 号 8〜276番にプロテインキナーゼドメインが見出された。 これは c d k 10 のプロテインキナーゼドメイン (アミノ酸番号 39〜323番) と比較すると N 末端側が短い。  An HMMPF AM search was performed on the amino acid sequence of SEQ ID NO: 19, and a protein kinase domain was found at amino acids 8 to 276. It is shorter on the N-terminal side than the protein kinase domain of cdk10 (amino acids 39-323).
c d k 10をコードするゲノム配列が既知 (AJ 010341) であるので、 その CD S部分と本 DNAをヒト第 16番染色体由来の配列 AC 103888の 上で s i m4 (Genome Res. , 8: 967-74 (1998)) を用いて比較しェクソンの違 いを調べた (図 10) 。 その結果、 本 DNAはェクソン 12個からなり、 c d k 10の CDSはその第 2〜12ェクソンを共有し、 第 1と第 2ェクソンの間に別 のェクソン 2個 (第 1'と第 1',ェクソン) をもっていた。 本 DNAの翻訳開始 は第 1ェクソンにあり、 c d k 10は第 1,ェクソンから翻訳開始する。 このよ うに両タンパク質の N末アミノ酸配列の違いはそれをコードするエタソンが異な ることによる。 本 DNAは c d k 10のスプライシングバリアントである。 本タ ンパク質と c d k 10はプロテインキナーゼドメインの N末端部に違いがあるこ とから基質特異性や活性が異なる可能性がある。 Since the genomic sequence encoding cdk 10 is known (AJ010341), the CDS portion and the present DNA were sim4 (Genome Res., 8: 967-74) on the human chromosome 16-derived sequence AC103888. (1998)) and examined the differences in exons (Fig. 10). As a result, this DNA consists of 12 exons, and the CDS of cdk 10 shares its 2nd to 12th exons, with a distinction between the 1st and 2nd exons. Had two exons (1 'and 1', exon). The translation start of this DNA is in the first exon, and cdk 10 starts translation from the first exon. The difference between the N-terminal amino acid sequences of the two proteins is due to the difference in the ethasons that encode them. This DNA is a splicing variant of cdk10. This protein and cdk10 may differ in substrate specificity and activity due to differences in the N-terminal part of the protein kinase domain.
c d k 10タンパク質は細胞周期の G2から Mへの進展 (progression) に関 与し、 過剰発現により生育が抑制されることが報告されている (Cancer Res., 55: 3992-3995 (1995)) 。 そのタンパク質は成人糸且織でュビキタスに発現して いるが、 特に最終分化を遂げた細胞で高いため、 癌抑制因子ではないかと予想さ れたが、 乳癌での変異は認められておらず (Genomics, 56: 90-97 (1999)) 、 その機能の詳細は不明である。 しかし、 本タンパク質は c d k 10と異なる N末 端配列 (第一ェクソンに由来する) をもっており、 異なる発現制御を受けている 可能性があることから、 細胞増殖、 分化、 発癌、 癌抑制機能への関与、 免疫 -炎 症、 神経変性疾患などの診断薬や治療薬のターゲットとしての利用が考えられる。  It has been reported that the cdk10 protein is involved in the progression of the cell cycle from G2 to M, and that overexpression suppresses growth (Cancer Res., 55: 3992-3995 (1995)). Although its protein is expressed ubiquitously in adult fibroblasts, it is expected to be a tumor suppressor because it is particularly high in cells that have undergone terminal differentiation, but no mutation has been observed in breast cancer ( Genomics, 56: 90-97 (1999)), but details of its function are unknown. However, this protein has an N-terminal sequence (derived from the first exon) that is different from cdk10, and may be under different expression control. Therefore, this protein has an important role in cell proliferation, differentiation, carcinogenesis, and tumor suppressor function. It can be used as a target for diagnostics and therapeutics for involvement, immuno-inflammation, and neurodegenerative diseases.
(8) c-b r amy 3018357 (配列番号 8、 20)  (8) c-b r amy 3018357 (SEQ ID NOs: 8, 20)
c一 b r a my 3018357 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 8に 示すように、 3576塩基からなり、 そのうち塩基番号 254番から 2554番 までがオープンリーディングフレーム (終止コドンを含む) である。 オープンリ 一ディングフレームから予測されるアミノ酸配列は、 766アミノ酸残基からな る (配列番号 20) 。 配列番号 20のアミノ酸配列について B LASTを用いて 相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— P ROT、 P I R、 TREMBL、 GENPEPT、 P D Bから作成された重複の ないアミノ酸配列のデータベース) 中のデータベース登録記号 AX 327993 および WO 01Z81588号公報に SEQ I D NO. 2として記載されて いる unnamed 0RFが e- value: 0で 660ァミノ酸にわたって 94 %の一致度で ヒットした。 この配列は 674アミノ酸からなり、 そのアミノ酸番号 31〜64 6が本タンパク質のアミノ酸番号 77〜692番と一致した。 本タンパク質は A X327993と N末端、 C末端を異にするバリアントと思われた (図 1 1 ) 。 配列番号 20のアミノ酸配列を HMMPF AMによって検索を行うと、 ァミノ 酸番号 77〜316番にプロテインキナーゼドメインが検出され、 PROS I T E (Nucleic Acids Res. , 30: 235 - 8 (2002) ) 検索によりアミノ酸番号 183 〜196番にセリン/スレオニンプロテインキナーゼに特有の配列が見出された。 他方、 ΑΧ327993を HMMPF AMによってプロテインキナーゼドメイン を検索すると、 アミノ酸番号 19〜270番に存在することが予想された。 すな わちプロテインキナーゼドメインは両者の N末端配列の異なる領域にかかってお り、 基質特異性や活性が異なることが推測される。 c-bra my 3018357 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) comprises 3576 bases as shown in SEQ ID NO: 8, of which base number Nos. 254 to 2554 are open reading frames (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 766 amino acid residues (SEQ ID NO: 20). A homology search was performed for the amino acid sequence of SEQ ID NO: 20 using BLAST. In the NRDB protein database (SWISS—a database of non-overlapping amino acid sequences created from PROT, PIR, TREMBL, GENPEPT, and PDB) AX 327993 and the unnamed 0RF listed as SEQ ID NO. 2 in WO 01Z81588 with an e-value of 0 and a 94% agreement over 660 amino acids It was hit. This sequence consists of 674 amino acids, and the amino acid numbers 31 to 646 corresponded to the amino acid numbers 77 to 692 of the present protein. This protein appeared to be a variant that differs from AX327993 in the N- and C-termini (Fig. 11). When the amino acid sequence of SEQ ID NO: 20 was searched by HMMPF AM, a protein kinase domain was detected at amino acid numbers 77 to 316, and the amino acid sequence was searched by PROS ITE (Nucleic Acids Res., 30: 235-8 (2002)). Sequences unique to serine / threonine protein kinases were found at Nos. 183-196. On the other hand, when the protein kinase domain was searched for ΑΧ327993 by HMMPF AM, it was predicted that the protein was present at amino acids 19 to 270. In other words, the protein kinase domain covers different regions of the N-terminal sequences of both, and it is presumed that the substrate specificity and the activity are different.
上記 NRDB検索によると、 登録記号 Q 8 I WQ 3として記載されている Serine/threonine protein kinase 29 (human; もまた、 e- value : 0、 749 アミノ酸にわたって 93%の一致度で、 より上位にヒットしている。 この配列は、 736アミノ酸からなり、 そのアミノ酸番号 3〜736が、 本タンパク質のアミ ノ酸番号 34〜766と対応している。 したがって、 本タンパク質は Q 8 1 WQ 3と N末端、 C末端を異にするバリアントと思われる。  According to the above NRDB search, Serine / threonine protein kinase 29 (human; listed as registration code Q 8 I WQ 3 also hits higher with 93% identity over e-value: 0 and 749 amino acids. This sequence is composed of 736 amino acids, whose amino acid numbers 3 to 736 correspond to the amino acid numbers 34 to 766 of this protein. It seems that the C-terminal variant is different.
本 DNAを NRNEE塩基配列データベース (EMBL、 Ge nB a nk、 お ょぴ DDB Jから作成された ESTを除く重複のない塩基配列データベース) に 対して検索すると AC 116022に登録されるヒト第 1 1番染色体ゲノム配列 に由来するクローン CTD— 2583 L 21がヒットした。 そこで第 11番染色 体上で s i m4 (Genome Res., 8: 967-74 (1998)) を用い本 D N Aと blast上 位 hitである AX 327993をァライメントしェクソン構造を比較した (図 12) 。 本 DNAはェクソン 21個からなっていたが、 AX327993は (a) 本 DNAの第 2〜20ェクソンを共有し、 (b) 本 DNAの第 1ェクソン より 5'側に別の第 1,ェクソンをもち (c) 本 DNAの第 18と第 19ェクソ ンの間に別の第 18,ェクソンを有し、 (d) 本 DNAの第 21ェクソンに相当 する領域を欠く。 When this DNA is searched against the NRNEE nucleotide sequence database (a non-overlapping nucleotide sequence database excluding ESTs created from EMBL, GenBank, and Oppo DDBJ), human No. 11 registered in AC 116022 The clone CTD-2583 L21 derived from the chromosomal genome sequence was hit. Then, using sim4 (Genome Res., 8: 967-74 (1998)) on chromosome 11, this DNA was aligned with AX327993, which is the blast upper hit, to compare the exon structures (FIG. 12). Although this DNA consisted of 21 exons, AX327993 (a) shares the 2nd to 20th exons of this DNA, and (b) another 1st, 1st exon on the 5 'side of the 1st exon of this DNA Mochi (c) Exon 18 and 19 of this DNA (D) lack a region corresponding to the 21st exon of the present DNA.
本 DNAに由来する ORFは第 1〜20ェクソンに存在し、 AX327993 の ORFは第 1,、 第 2〜18、 第 18'ェクソンに存在する。 すなわち、 両者 の N末端の違いは異なるェクソンから翻訳開始することに起因し、 C末端の違い は本 DNAが第 18,ェクソンをスキップして第 19ェクソン以降下流まで翻訳 が続くのに対し、 AX 327993では第 18 'ェクソンで翻訳が終了すること による。 以上から、 本 DNAと AX327993は同一遺伝子からのスプライシ ングバリアントであることが判明した。  The ORF derived from this DNA is present in the 1st to 20th exons, and the ORF of AX327993 is present in the 1st, 2nd to 18th and 18th exons. In other words, the difference in N-terminus is due to the initiation of translation from a different exon, and the difference in C-terminus is that this DNA skips the 18th and 18th exons and continues translation downstream from the 19th exon. In 327993, the translation ends at the 18th ェ xon. From the above, it was found that this DNA and AX327993 are splicing variants from the same gene.
上記 AX327993は、 2219塩基からなり、 その塩基番号 141〜1 9 92、 2084〜2219力、 本 DNAの 480〜2331、 2328〜246 3に、 それぞれ、 99%、 100%—致している。  AX327993 is composed of 2219 bases, and their base numbers are 141 to 1992, 2084 to 2219, and 99% and 100%, which correspond to the 480 to 2331 and 2328 to 2463 of the present DNA, respectively.
上記 NRNEE検索によると、 AX 327993より上位に、 登録番号 A X 7 66346 (特許 WOO 2Z18557に SEQ I D NO. 42として記 載の DNA) がヒットしている。 AX 766 346は、 2647塩基からなり その塩基番号 77〜 1975、 1975〜 2647が、 本 DNAの 480〜23 78、 2800〜 3470に、 それぞれ、 100%、 99%—致している。 また、 上記 NRNEE検索によると、 AX 327993より上位に、 登録番号 AX 66 1 191 (特許 WO 02/059287に S EQ I D NO. 1と して記載の DNA) がヒットしている。 AX 66 1 191は、 2007塩基か らなり、 その塩基番号 89〜 1 987が 480〜 2378に 100%—致してい る。  According to the above NRNEE search, the registration number A X 7 66346 (DNA described as SEQ ID NO. 42 in Patent WOO 2Z18557) is higher than AX 327993. AX 766 346 consists of 2647 bases, whose base numbers 77 to 1975 and 1975 to 2647 correspond to 100% and 99% of 480 to 2378 and 2800 to 3470 of the present DNA, respectively. According to the above NRNEE search, the registration number AX661191 (DNA described as SEQU ID NO.1 in Patent WO 02/059287) is higher than AX327993. AX661191 is composed of 2007 bases, and base numbers 89 to 1987 correspond 100% to 480 to 2378.
したがって、 本 DNAと AX 766346あるいは AX 661 191もまた、 同一遺伝子からのスプライシングバリアントの関係にあると予想される。  Therefore, it is expected that the present DNA and AX 766346 or AX 661 191 also have a splicing variant relationship from the same gene.
本 DNAは脳の扁桃から単離されたがその発現分布を調べるためヒト d b ES T (Nature Genetics, 4: 332 - 3 (1993)) に対して相同性検索を行うと、 正常 組織では E = 10 1M以下に眼由来の 3クローンと胎児脳由来の 1クローンがヒ ットした。 以上の事から本 DNAおよぴ本タンパク質は脳の発生分化における機 能、 不安症、 うつ病、 精神分裂病、 神経変性疾患、 癌、 炎症、 糖尿病などの診断 薬や治療薬、 あるいは眼科領域 (緑内障、 白内障、 網膜症など) の診断薬や治療 薬のターゲットとしての利用が考えられる。 This DNA was isolated from tonsils of the brain, but a homology search was performed on human dbEST (Nature Genetics, 4: 332-3 (1993)) to examine its expression distribution. 10 1M 1 clone a ratio of 3 clones and derived from fetal brain from the eye to the following I did it. Based on the above, this DNA and this protein function in the development and differentiation of the brain, diagnostic and therapeutic drugs for anxiety, depression, schizophrenia, neurodegenerative diseases, cancer, inflammation, diabetes, and ophthalmology. (Glaucoma, cataract, retinopathy, etc.) can be used as a diagnostic or therapeutic target.
(9) c-b r awh 3022866 (配列番号 9、 21)  (9) c-b r awh 3022866 (SEQ ID NOS: 9, 21)
c-b r awh 3022866 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 9に 示すように、 4547塩基からなり、 そのうち塩基番号 32番から 3898番ま でがオープンリーディングフレーム (終止コドンを含む) である。 オープンリー デイングフレームから予測されるアミノ酸配列は、 1288アミノ酸残基からな る (配列番号 21) 。 配列番号 21のァミノ酸配列について B L A S Tを用いて 相同性検索を行ったところ、 ヒト配列の中では NRDBタンパク質データベース (SWI S S-PROT, P I R、 TREMBL、 GENPEPT、 PDBから 作成された重複のないアミノ酸配列のデータベース) 中おょぴ特許データベース GENESEQ (アミノ酸配列) 中に、 WOO 1 38503号公報に SEQ I D NO. 54として記載されているヒトプロテインキナーゼ (SGK040、 909アミノ酸) が e - value: 0、 945ァミノ酸にわたって 88 %の一致度で ヒッ トした。 配列番号 21のァミノ酸配列と SGK040のァミノ酸配列を比較 すると、 本タンパク質のアミノ酸番号 310〜 407番、 408〜 521番、 5 71〜683番、 684〜: L 1 92番が、 S GK 040のアミノ酸番号 20〜 1 17番、 1 30〜 243番、 244〜 356番、 401〜 909番とそれぞれ一 致する (図 13) 。 すなわち本タンパク質は (a) SGK040のアミノ酸番号 1 1 8〜129番に相当する 1 2アミノ酸を欠失し、 (b) SGK040のアミ ノ酸番号 243番と 244番の間に 49アミノ酸の挿入をもち (c) SGK04 0のアミノ酸番号 357〜400番の 44アミノ酸を欠失し、 (d) N末端のァ ミノ酸配列 309アミノ酸は異なっており、 (e) C末端に関しては本タンパク 質が 96アミノ酸長い。 配列番号 21のァミノ酸配列を HMMP F AM検索した結果、 ァミノ酸番号 6 84〜926番にプロテインキナーゼドメインが、 アミノ酸番号 684〜705 番に ATP binding regionが予想された。 SGK040にはプロテインキナーゼ ドメインの上流に隣接して 44アミノ酸の挿入がある。 このことから本タンパク 質は SGK040と基質特異性あるいは活性に違いがある可能性がある。 また、 本タンパク質のアミノ酸番号 360〜389番にはロイシンが 7アミノ酸ごとに 繰り返されるロイシンジッパー構造があり、 タンパク質相互作用あるいは本タン パク質が 2量体を形成する可能性が有る。 cb r awh 3022866 (hereinafter, referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) consists of 4547 bases as shown in SEQ ID NO: 9; Nos. 3898 to 3898 are open reading frames (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 1288 amino acid residues (SEQ ID NO: 21). A homology search was performed on the amino acid sequence of SEQ ID NO: 21 using BLAST. Sequence database) In the Chuo patent database GENESEQ (amino acid sequence), a human protein kinase (SGK040, 909 amino acids) described as SEQ ID NO. 54 in WO 0138503 e-value: 0, Hits were 88% consistent over 945 amino acids. Comparing the amino acid sequence of SEQ ID NO: 21 with the amino acid sequence of SGK040, the amino acid numbers 310 to 407, 408 to 521, 571 to 683, and 684 of the present protein: Amino acids 20 to 117, 130 to 243, 244 to 356, and 401 to 909, respectively (Fig. 13). In other words, this protein lacks (a) 12 amino acids corresponding to amino acids 118-129 of SGK040, and (b) inserts 49 amino acids between amino acids 243 and 244 of SGK040. (C) 44 amino acids of amino acids 357 to 400 of SGK040 are deleted, (d) amino acid sequence at the N-terminus is different from 309 amino acids, and (e) at the C-terminus, this protein has 96 amino acids. Long amino acids. As a result of HMMP FAM search of the amino acid sequence of SEQ ID NO: 21, a protein kinase domain was predicted at amino acids 684-926, and an ATP binding region was predicted at amino acids 684-705. SGK040 has a 44 amino acid insertion immediately upstream of the protein kinase domain. This indicates that this protein may differ from SGK040 in substrate specificity or activity. In addition, amino acids 360 to 389 of this protein have a leucine zipper structure in which leucine is repeated every 7 amino acids, and there is a possibility that protein interaction or this protein may form a dimer.
両 DNAのェクソン構造を明らかにするために s i m4 (Genome Res., 8: 967-74 (1998)) による写像をおこなった (図 14) 。 その結果 本 DNAの塩 基番号 16〜 4547がヒト第 12番染色体上にァラインされ 23個のエタソン からなることがわかった。 一方 SGK040は塩基番号 52〜2730番がァラ インされ、 ェクソン 18個からなっていた。 SGK040は (a) 本 DNAの第 7と第 8ェクソンの間に別の第 7,ェクソンをもち、 (b) 本 DNAの第 10ェ クソンを欠失し (c) 本 DNAの第 12と第 13ェクソンの間に別の第 1 2'ェ クソンをもち (d) 本 DNAの第 22ェクソンに続いてゲノム上にストップコド- ン T A Aが出現し翻訳域が終了する。 一方、 本 DNAでは第 23ェクソンで翻訳 が終了する。 (e) 両者の 5,配列はこのゲノム配列の中では位置が確定できな いが、 本 DNAの塩基番号 1〜951番、 SGK040の塩基番号 1〜58番に 共通配列がないことから両者は別のエタソンに由来すると推定される。  In order to elucidate the exon structure of both DNAs, mapping was performed with sim4 (Genome Res., 8: 967-74 (1998)) (Fig. 14). As a result, it was found that base numbers 16 to 4547 of this DNA were aligned on human chromosome 12 and consisted of 23 etasons. On the other hand, SGK040 had base numbers 52 to 2730 aligned and consisted of 18 exons. SGK040 has (a) another 7th and 8th exon between the 7th and 8th exons of the present DNA, (b) deletion of 10th exon of the present DNA, and (c) 12th and 7th exons of the present DNA. It has another 12 'exon between 13 exons. (D) Following the 22nd exon of this DNA, a stop codon TAA appears on the genome and the translation region ends. On the other hand, in this DNA, translation ends at 23rd exon. (E) Although the positions of the 5, sequences of both cannot be determined in this genomic sequence, there is no common sequence between base numbers 1 to 951 of the present DNA and base numbers 1 to 58 of SGK040, so that both Presumed to be from another ethason.
このゲノム構造からタンパク質の構造の違いを説明すると、 以下のようになる。 The difference in protein structure from this genome structure is as follows.
(a) 本 DNAは第 7'ェクソンをスキップすることでアミノ酸 1 2個の欠失を、(a) This DNA has a deletion of 12 amino acids by skipping the 7 '
(b) 第 10ェクソンを有することでアミノ酸 49個の挿入を、 (c) 第 12' ェクソンをスキップすることでアミノ酸 44個の欠失を、 (d) 第 23ェクソン を持つことで C末端に 96アミノ酸長い配列をもつ。 (e) また、 相異なる 5' ェクソンを持つことで N末端アミノ酸配列が異なる。 以上から、 本 DNAと SGKO 40は同一遺伝子からのスプライシングバリア ントであることが判明した。 (b) insertion of 49 amino acids by having the 10th exon, (c) deletion of 44 amino acids by skipping the 12th exon, and (d) C-terminal by having the 23rd exon. It has a 96 amino acid long sequence. (E) The N-terminal amino acid sequence differs due to having different 5 'exons. From the above, it was found that the present DNA and SGKO40 are splicing variants from the same gene.
本 DNAは脳に由来するが、 d bEST (Nature Genetics, 4: 332-3 (1993)) に対する BLAST検索では免疫系、 皮膚、 腎臓、 脳、 副腎などで全 域にわたってヒットクローンが散見される。 P SORT I I (Trends Biochem. Sci., 24: 34-6 (1999)) による細胞内局在予測によると、 本タンパク質には核 移行シグナル候補配列が 5箇所あり、 RCC (regulator of chromosome condensation signature) である I GTGGGH I L L Lがアミノ酸番号 12 25〜1235番に見出されることから、 本タンパク質は核に存在し染色体の凝 集への関与が予想される。 したがって細胞分裂にかかわる疾患たとえば癌などの 診断治療、 また、 その発現組織情報から免疫炎症 (たとえば自己免疫疾患、 腎炎 など) 、 高血圧、 神経変性疾患などの診断薬や治療薬のターゲットとしての利用 が考えられる。  Although this DNA is derived from the brain, BLAST searches for dbEST (Nature Genetics, 4: 332-3 (1993)) show hit clones throughout the immune system, skin, kidney, brain, adrenal gland, and other areas. According to the prediction of intracellular localization by P SORT II (Trends Biochem. Sci., 24: 34-6 (1999)), this protein has five nuclear localization signal candidate sequences, and RCC (regulator of chromosome condensation signature) Since I GTGGGH ILLL is found at amino acids 1225-1235, this protein is present in the nucleus and is expected to be involved in chromosome aggregation. Therefore, diagnosis and treatment of diseases related to cell division, such as cancer, and use as target of diagnostics and therapeutics for immunoinflammation (eg, autoimmune diseases, nephritis, etc.), hypertension, neurodegenerative diseases, etc., based on the tissue information of the expression Conceivable.
(10) c-b r awh 3043827 (配列番号 10、 22)  (10) c-b r awh 3043827 (SEQ ID NOS: 10, 22)
c-b r awh 3043827 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 10 に示すように、 4222塩基からなり、 そのうち塩基番号 146番から 3406 番までがオープンリーディングフレーム (終止コドンを含む) である。 オープン リーディングフレームから予測されるアミノ酸配列は、 1086アミノ酸残基か らなる (配列番号 22) 。 配列番号 22のアミノ酸配列について BLASTを用 いて相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S -PROTs P I R、 TREMBL、 GENPEPT、 PDBから作成された重 複のないアミノ酸配列のデータベース) 中の、 データベース登録記号 L 1373 8に登録されている 1036アミノ酸の Homo sapiens activated p21cdc42Hs kinase (ACK1) が e - value : 0、 1053アミノ酸にわたり 95 %の一致度 でヒットした。 本タンパク質は、 (a) アミノ酸番号 64〜577番が ACK 1 のアミノ酸番号 1〜51 3番と一致、 (b) アミノ酸番号 578〜592番に 1 55アアミミノノ酸酸のの挿挿入入をを持持ちち、、 ((cc)) アアミミノノ酸酸番番号号 559933〜〜 11004422番番がが AACCKK 11のの アアミミノノ酸酸番番号号 551144〜〜996622番番にに相相当当しし、、 ((dd)) アアミミノノ酸酸番番号号 11004422ZZ110044 33番番のの間間にに 3300アアミミノノ酸酸のの欠欠失失ををももちち、、 ((ee)) アアミミノノ酸酸番番号号 11004433〜〜11008866 番番がが AACCKK 11ののアアミミノノ酸酸番番号号 999933〜〜 11003366番番とと一一致致すするる ((図図 1155)) 。。 cb r awh 3043827 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) consists of 4222 bases, as shown in SEQ ID NO: 10, of which base number 146 Numbers 3406 are open reading frames (including the stop codon). The amino acid sequence predicted from the open reading frame consists of 1086 amino acid residues (SEQ ID NO: 22). A homology search was performed for the amino acid sequence of SEQ ID NO: 22 using BLAST, and the results were obtained from the NRDB protein database (a database of non-overlapping amino acid sequences created from SWISS-PROTs PIR, TREMBL, GENPEPT, and PDB). Homo sapiens activated p21cdc42Hs kinase (ACK1) of 1036 amino acids registered in the database registration code L1378 was hit with e-value: 0 and 953 concordance over 1053 amino acids. In this protein, (a) amino acid numbers 64 to 577 correspond to amino acid numbers 1 to 513 of ACK1, and (b) amino acid numbers 578 to 592 It has the insertion and insertion of 55 amino-amino acids, and ((cc)) amino-amino acid number 559933 ~~ 11004422 is the amino-amino acid number of AACCKK 11 551144 ~~ 996622 And ((dd)) aaminominonic acid number no. 11004422ZZ110044 having no deletion of 3300 aaminominonic acid between number 33, ((ee )) The number of aminoaminoic acid number 11004433 ~~ 11008866 is identical to the number of aminoaminoic acid number 999933 ~~ 11003366 of AACCKK11 ((Fig. 1155)). .
すすななわわちち本本タタンンパパクク質質はは、、 ((aa)) AACCKK11よよりり NN末末端端がが 6633アアミミノノ酸酸長長くく、、 ((bb)) AACCKK 11ののアアミミノノ酸酸番番号号 551133とと 551144のの間間にに 1155アアミミノノ酸酸のの挿挿入入 ((本本タタ ンンパパクク質質ののアアミミノノ酸酸番番号号 557788〜〜559922番番)) ををももちち、、 ((cc)) アアミミノノ酸酸番番号号 110044 22番番とと 11004433番番のの間間にに 3300アアミミノノ酸酸のの欠欠失失 ((AACC KK 11ののアアミミノノ酸酸番番号号 996633〜〜
Figure imgf000066_0001
In other words, ((aa)) the terminal end of the NN is longer than that of AACCKK11, and the terminal end of the NN is 6633 aminamino acid acid, and ((bb)) the amino acid number of AACCKK11. Between the numbers 551133 and 551144, the insertion and insertion of 1155 amymininoic acid ((this amino acid number 557788 to 559922 of this protein protein)), ((Cc)) Aminoamino acid number no. 110044 Between No. 22 and No. 11004433 no deletion of 3300 aminamino acid acid ((AACC amino acid number no. 996633 of KK11 ~~
Figure imgf000066_0001
スプライシングバリアントであることを塩基配列からあきらかにするために、 本 DNAと ACK 1をコードする c DNA (L 13738) のゲノム上での位置 について s i m4 (Genome Res. , 8: 967-74 (1998)) で解析を行った (図 1 6) 。 その結果、 本 DN Αの塩基番号 31 1〜4222番はヒト第 3番染色体に 由来するゲノム配列 AC 1 12775上にァラインされ、 この領域に関しては 1 4個のエタソンにより規定されていた。  In order to clarify the splicing variant from the nucleotide sequence, the position of the present DNA and the cDNA encoding ACK1 (L13738) on the genome was identified as sim4 (Genome Res., 8: 967-74 (1998) )) (Fig. 16). As a result, base numbers 311 to 4222 of the present DNA were aligned on the genomic sequence AC 1 12775 derived from human chromosome 3, and this region was defined by 14 ethasons.
(a) 本 DNAは ACK1にない第 1 1ェクソンをもつことで 15アミノ酸の揷 入をもつ。  (a) This DNA has a 15 amino acid insertion by having the first exon not present in ACK1.
(b) ACK 1は本 DNAの第 12と第 1 3ェクソンの間に別の第 1 2' エタ ソンの挿入をもつ。 これは本タンパク質にとって 30アミノ酸の欠失である。 (b) ACK 1 has another insertion of the first 2 'ethathon between twelfth and thirteenth exons of the present DNA. This is a 30 amino acid deletion for this protein.
(c) 両者とも 5'末端がゲノムにァラインされないため N末端に相当する配列 をコードするェクソンの使用状況が不明であるが、 本 DNAの塩基番号 1〜31 2番、 ACK1の塩基番号 1〜596番に共通部分がないことから両者は別のェ クソンに規定されていると考えられる。 本 DNAのオープンリーディングフレー ムはァラインされていない上流のェクソンから開始しており ACK 1より N末端 が 63アミノ酸長い。 また、 ACK1の cDNA (L 13738) をマッピング すると第 12ェクソンに 3塩基欠失による 1アミノ酸欠失、 および近傍の 2個所 4002133 合計 3塩基の欠失によるアミノ酸置換と 1アミノ酸の欠失が存在するが、 本 DN Aはゲノムを反映する配列となっていた (図 16) 。 (c) In both cases, the use status of exon encoding the sequence corresponding to the N-terminus is unknown because the 5 'end is not aligned with the genome, but the nucleotide numbers 1 to 3 of this DNA and the nucleotide numbers 1 to 3 of ACK1 are unknown. Since there is no common part in No. 596, it is considered that both are specified in different exons. The open reading frame of this DNA starts from an unaligned upstream exon and is 63 amino acids longer at the N-terminus than ACK1. In addition, mapping of the ACK1 cDNA (L13738) revealed that the 12th exon had one amino acid deletion due to a three base deletion, and two nearby positions. 4002133 Although there are amino acid substitutions and deletions of one amino acid due to deletion of a total of three bases, this DNA had a sequence reflecting the genome (FIG. 16).
ACK1には N末端からチロシンプロテインキナーゼドメイン、 SH3ドメイ ン、 cdc42Hs binding domain^ clathrin binding domain力 める。 ——方、 酉 G歹1 J 番号 22のアミノ酸配列を HMMP F AM検索した結果、 プロテインキナーゼド メインがアミノ酸番号 180〜450番に、 SH3ドメインがアミノ酸番号 45 4〜509番に、 また論文情報 (Nature, 363: 364-367 (1993)) との比較から cdc42Hs binding regionがアミノ酸番号 509〜552番に、 clathrin binding regionがアミノ酸番号 639〜723番に見出された。 ACK1 contains the tyrosine protein kinase domain, SH3 domain, and cdc42Hs binding domain ^ clathrin binding domain from the N-terminus. - How, Rooster G歹1 J numbers 22 result of amino acid sequence was searched hMMP F AM of the protein kinase domain is amino acid number 180 to 450 No., 45 No. 4 to 509 SH3 domain amino acid number, also paper information (Nature, 363: 364-367 (1993)), the cdc42Hs binding region was found at amino acids 509-552, and the clathrin binding region was found at amino acids 639-723.
ACK1は activated p21cdc42Hs kinaseで、 活性化型低分子 Gタンパク質 をリン酸化しその不活性化型への変換を阻害し Gタンパク質を活性化型に保つ。 低分子量 Gタンパク質 (GTP binding protein p2l) の Rho familyには R AC I、 Rh o, C d c 42H sが知られている。 これらの分子には活性型 (GTP 結合型) と不活性型 (GDP結合型) が存在し、 自身の GTP a s e活性により 不活性型を生じる際 GAP (GTPase activationg protein) が関与し、 不活性 型力 ら活' f生型への変換に ίま GEF (guanine nucleotide exchange factor) 力 S 関与する。 ACK1はこれらのうち活性型 C d c 42Hsと結合しその GTP a s e活性を阻害するチロシンキナーゼであり、 細胞骨格、 細胞分化、 細胞増殖な どに関わる。 また、 ACK1は GEFである Db 1をリン酸化し活性型低分子 G タンパク質 (c d c 42HS) を蓄積し細胞骨格であるァクチン繊維を誘導する。 ACK 1には C末端の短いバリアント ACK2が知られており EGF ACK1 is an activated p21cdc42Hs kinase that phosphorylates the activated small G protein and inhibits its conversion to the inactivated form, keeping the G protein in the activated form. In the Rho family of low molecular weight G proteins (GTP binding protein p2l), RACI, Rho, Cdc42Hs are known. These molecules have an active form (GTP-bound type) and an inactive form (GDP-bound type). GEF (guanine nucleotide exchange factor) is involved in the conversion of force to active form. ACK1 is a tyrosine kinase that binds to activated Cdc42Hs and inhibits its GTPase activity, and is involved in cytoskeleton, cell differentiation, cell proliferation and the like. Further, ACK1 will accumulate the Db 1 phosphorylates active small G protein is a GEF (cdc 42H S) induces Akuchin fibers cytoskeletal. ACK1 is known to have a short C-terminal variant, ACK2.
(epidermal growth factor) やブラジキニンによってリン酸ィヒされることが報 告されており、 細胞外からのシグナルを受けて細胞骨格形成を調節する。  It has been reported that phosphoric acid is phosphorylated by epidermal growth factor and bradykinin, and regulates cytoskeletal formation in response to extracellular signals.
さらに ACK 1はクラスリン (clathrin) とも結合し clathrin- coated vehicleによる receptor mediated endocytosisに fc)与すること力幸艮告 れ飞 いる。 クラスリンは受容体がクラスターを形成する coated vehicle, coated pitとよばれるオルガネラの裏打ちタンパク質で、 受容体など高分子のエンドサ イト一シスに関与する。 受容体の細胞内へのエンドサイト一シスは、 H I V受容 体としても機能するケモカイン受容体、 アドレナリン受容体、 インスリン受容体、 LDL受容体など多くの受容体で知られている。 リガンドの結合した受容体のと りこみにより細胞外からのシグナル伝達の調節あるいは受容体のリサイクルが行 われる。 本タンパク質は cdc42 binding regionと clathrin binding regionの 間に 15アミノ酸の挿入を持つタンパク質であり、 c d c 42やクラスリンなど との結合や相互作用が ACK1と異なる可能性がある。 以上より、 本タンパク質 は、 癌、 動脈硬化、 糖尿病、 H I V、 炎症、 受容体の細胞内取りこみにかかわる 疾患、 神経伝達異常に関わる疾患、 アルツハイマー病などの痴呆症、 高血圧、 緑 内障などの診断薬 ·治療薬のターゲットとしての利用が考えられる。 Furthermore, it has been reported that ACK 1 also binds to clathrin and fc) exerts it on receptor mediated endocytosis by clathrin-coated vehicles. Clathrin is an organelle-backed protein called coated vehicle or coated pit in which receptors form clusters. Involved in Itsis. Endocytosis of receptors into cells is known for many receptors that also function as HIV receptors, including chemokine receptors, adrenergic receptors, insulin receptors, and LDL receptors. Incorporation of the ligand-bound receptor regulates extracellular signaling or recycles the receptor. This protein has a 15 amino acid insertion between the cdc42 binding region and clathrin binding region, and its binding and interaction with cdc42 and clathrin may be different from ACK1. Based on the above, this protein can be used to diagnose cancer, arteriosclerosis, diabetes, HIV, inflammation, diseases related to receptor uptake, diseases related to neurotransmission disorders, dementia such as Alzheimer's disease, hypertension, glaucoma, etc. Drugs · They can be used as targets for therapeutic drugs.
(1 1) c-b r t a 2034874 (配列番号 1 1、 23)  (1 1) c-b r t a 2034874 (SEQ ID NOS: 11, 23)
c— b r t h a 2034874 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 1 1 に示すように、 3857塩基からなり、 そのうち塩基番号 55番から 1287番 までがオープンリーディングフレーム (終止コドンを含む) である。 オープンリ ーデイングフレームから予測されるアミノ酸配列は、 410アミノ酸残基からな る (配列番号 23) 。 配列番号 23のアミノ酸配列について B LASTを用いて 相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— P ROT、 P I R、 TREMBL、 GENPEPT、 P D Bから作成された重複の ないアミノ酸配列のデータベース) 中の、 データベース登録記号 P 45985に 登球され—レヽる Dual specincity mitogen— activated protein kinase kinase 4、 MAP kinase kinase 4 (MA P KK 4 ) 、 JNK activating kinase 1、 c-Jun N- terminal kinase kinase 1 ( J NKK) 、 SAPK/ERK kinase 1 (S EK 1) ) が e- value : 0、 410アミノ酸にわたり 97 %の一致度でヒットした。 MAP KK4は全長 399アミノ酸からなる。 本タンパク質は MAP KK 4のアミノ酸 番号 39番と 40番の間に 1 1アミノ酸の挿入 (本タンパク質のアミノ酸番号 4 0〜50) をもつバリアントである (図 1 7) 。 配列番号 23のァミノ酸配列を HMMP F AM検索するとァミノ酸番号 113 〜378番にプロテインキナーゼドメインが、 PROS I TE (Nucleic Acids Res., 30: 235 - 8 (2002))検索するとアミノ酸番号 236〜 249番に ST region (セリン /スレオニンプロテインキナーゼの特徴配列) 力 アミノ酸番 号 119〜143番に ATP region (プロテインキナーゼの ATP binding site) が検出された。 c—brtha 2034874 (hereinafter referred to as “present DNA” and the protein encoded by the DNA is referred to as “present protein”) is composed of 3857 bases as shown in SEQ ID NO: 11; Nos. 55 to 1287 are open reading frames (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 410 amino acid residues (SEQ ID NO: 23). A homology search was performed using the BLAST for the amino acid sequence of SEQ ID NO: 23. Dual specincity mitogen-activated protein kinase kinase 4, MAP kinase kinase 4 (MAP KK 4), JNK activating kinase 1, c-Jun N-terminal kinase kinase 1 ( J NKK) and SAPK / ERK kinase 1 (SEK1)) hit 97% of e-value: 0 and 410 amino acids with 97% agreement. MAP KK4 is 399 amino acids in length. This protein is a variant with an insertion of 11 amino acids between amino acids 39 and 40 of MAP KK4 (amino acids 40-50 of this protein) (Fig. 17). HMMP FAM search of the amino acid sequence of SEQ ID NO: 23 reveals a protein kinase domain at amino acid number 113 to 378, and amino acid number 236 to ST region (characteristic sequence of serine / threonine protein kinase) at No. 249 ATP region (ATP binding site of protein kinase) was detected at amino acids 119-143.
本タンパク質の 11ァミノ酸の挿入がスプライシングによるかを塩基配列上で 比較した (図 18) 。 本 DNAと MAPKK4をコードする L 36870 c DN Aとを s i m4 (Genome Res. , 8: 967-74 (1998)) を用いてゲノムにマツピン グしたところ、 本 DNAはヒト第 17番染色体上にェクソン 12個をもつが、 Μ A ΡΚΚ 4はその第 2ェクソン (本 DNAの塩基番号 170〜 203番、 11ァ ミノ酸に相当) を欠失していた。 このことは本 DNAがェクソンを付加すること により本タンパク質が MAP KK 4にない 11アミノ酸を新規に有することを示 している。 この特異的なエタソン部分とホモロジ一を持つ c DNA (ESTを含 む) の塩基配列を検索したが見出されなかった。 このことはこのェクソンを有す る分子種が稀であり、 本 DN Aが新規分子であることを示している。  The nucleotide sequence was compared to determine whether the insertion of 11-amino acid in this protein was due to splicing (Fig. 18). When this DNA and L36870cDNA encoding MAPKK4 were mapped to the genome using sim4 (Genome Res., 8: 967-74 (1998)), this DNA was found to be on human chromosome 17 Although it has 12 exons, ΜAΡΚΚ4 lacks its second exon (base Nos. 170-203 of this DNA, corresponding to 11 amino acids). This indicates that the present DNA has 11 amino acids that are not present in MAP KK4 by adding an exon. The nucleotide sequence of cDNA (including EST) having homology with this specific etason portion was searched, but was not found. This suggests that this exon is a rare molecule, and that this DNA is a novel molecule.
MAPKK4はセリン /スレオニンプロテインキナーゼに属する dual specificity protein kinaseである。 増殖因子あるいはストレスなどの外界シ グナルに反応して MAP 3K/MEKKなどにょってMAPK:K4のセリン Zス レオニンがリン酸化されて活性化し、 MAPKに相当する J NK1 (MAPK 8) 、 J NK2 (MAPK 9) 、 】]^ 3を1) 38 (MAPK 14) と同様に活 性化する。 さらにその下流の転写因子が活性化され、 アポトーシスにかかわる遺 伝子などが発現する。 MAPKK4ノックァゥトマウスの解析から T細胞の分化 や、 生存シグナルや肝臓の器官形成に関与することが示されている。 MAPKK 4は骨格筋で発現が多いがその他の,袓織でも発現が認められている。 また MAP KK4は、 受容体の internalization (G P C Rの脱感作にかかわる) に関与す るタンパク質である β -arrestin2と会合しそれに結合する J NK3をリン酸化 133 する。 これにより GPCRのシグナル伝達と MA PKシグナル伝達カスケ一ドは クロストークする。 本タンパク質は、 免疫、 肝臓、 脳などのストレスに対するァ ポトーシス、 細胞増殖、 癌、 GPCRによるシグナル伝達異常、 神経細胞の突起 伸長、 痴呆、 肝再生、 糖尿病、 血圧調節、 筋萎縮性側索硬化症、 あるいは自己免 疫疾患、 アレルギーをはじめとする免疫炎症疾患などへの関与が推測され、 これ らの疾患の診断薬や治療薬のターゲットとしての利用が考えられる。 MAPKK4 is a dual specificity protein kinase belonging to serine / threonine protein kinase. In response to external signals such as growth factors or stress, MAPK: Serine Z threonine of K4 is phosphorylated and activated by MAP3K / MEKK, and J NK1 (MAPK 8), J NK2 corresponding to MAPK (MAPK 9),]] ^ 3 is activated in the same way as 1) 38 (MAPK 14). Furthermore, transcription factors downstream thereof are activated, and genes involved in apoptosis are expressed. Analysis of MAPKK4 knockout mice has been shown to be involved in T cell differentiation, survival signals and liver organogenesis. MAPKK 4 is highly expressed in skeletal muscle, but is also found in other tissues. MAP KK4 also phosphorylates JNK3, which associates with and binds to β-arrestin2, a protein involved in receptor internalization (related to GPCR desensitization). 133 This results in crosstalk between GPCR signaling and the MAPK signaling cascade. This protein is used for apoptosis against immune, liver, brain and other stress, cell proliferation, cancer, abnormal signal transduction by GPCR, elongation of nerve cells, dementia, liver regeneration, diabetes, blood pressure regulation, amyotrophic lateral sclerosis Or, it is presumed to be involved in self-immune diseases, immuno-inflammatory diseases such as allergies, etc., and it can be used as a diagnostic or therapeutic drug target for these diseases.
(1 2) c- t e s t i 405 2 1 9 7 (配列番号 1 2、 24)  (1 2) c-t e st i 405 2 1 9 7 (SEQ ID NOS: 12, 24)
c - t e s t 1 40 5 2 1 9 7 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 1 2 に示すように、 3 1 0 5塩基からなり、 そのうち塩基番号 407番から 1 6 90 番までがオープンリーディングフレーム (終止コドンを含む) である。 オープン リーディングフレームから予測されるアミノ酸配列は、 427アミノ酸残基から なる (配列番号 24) 。 本タンパク質について B LASTを用いて相同性検索を 行ったところ、 NRDBタンパク質データベース (SWI S S— PROT、 P I R、 TREMB L、 GENPEPT, P D Bから作成された重複のないアミノ酸 配列のデータベース) 中の、 データベース登録記号 XO 7 76 7に登録されてい ¾ Human cAMP- dependent protein kinase catalytic subunit type alpha (P KAC a) が e- value : 0、 336ァミノ酸にわたり 9 9 %の一致度でヒットし た。 この配列は 3 5 1アミノ酸からなり、 そのァミノ酸番号 1 6〜 35 1番が本 タンパク質のアミノ酸番号 92〜42 7番に相当することから本タンパク質は P KAC αの N末端バリアントであると考えられる (図 1 9) 。 他に PKAC o;の アミノ酸番号 309番アルギニン (AGG) が本タンパク質では 3 8 5番グリシ ン (GGG) となっている。  c-test 1 40 5 2 1 9 7 (hereinafter referred to as “the present DNA”, and the protein encoded by the DNA is referred to as “the present protein”), as shown in SEQ ID NO: 12 It consists of 05 bases, of which base numbers 407 to 1690 are the open reading frame (including the stop codon). The amino acid sequence predicted from the open reading frame consists of 427 amino acid residues (SEQ ID NO: 24). A homology search was performed for this protein using BLAST, and the database was registered in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMB L, GENPEPT, and PDB). C Human cAMP-dependent protein kinase catalytic subunit type alpha (P KACa) registered with the symbol XO 77767 hit with a 99% agreement over e-value: 0 and 336 amino acids. This sequence consists of 351 amino acids and its amino acid number 16-351 corresponds to amino acid numbers 92-427 of this protein, so this protein is considered to be an N-terminal variant of PKACα. (Fig. 19). In addition, amino acid number 309 arginine (AGG) of PKAC o; is 385 glycine (GGG) in this protein.
配列番号 24のァミノ酸配列を HMMP F AM検索した結果、 ァミノ酸番号 1 20〜3 74番にプロテインキナーゼドメインが見出された。 この領域は PKA C aと共通部分である。 W 本 DNAと PKAC αの c DNAのェクソン使用状況を比較するため s i m4 (Genome Res. , 8: 967-74 (1998)) を用いてゲノムへのァライメントを行った (図 2 0) 。 その結果、 本 DNAは、 ヒト 1 9番染色体上のェクソン 1 0個から なり、 PKAC αはその第 2〜1 0エタソンを共有するが、 別の第 1,ェクソン があった。 両者は翻訳開始部位を含む最初のェクソンを異にすることにより、 両 タンパク質の Ν末端アミノ酸配列の違いを生じている。 本タンパク質は PKAC αのスプライシングバリアントである。 As a result of searching the amino acid sequence of SEQ ID NO: 24 by HMMP FAM, a protein kinase domain was found at amino acid numbers 120 to 374. This region is common with PKA Ca. S i m 4 for comparing the Ekuson usage c DNA of W present DNA and PKAC α (Genome Res, 8: . 967-74 (1998)) was Araimento into the genome using (2 0) . As a result, the present DNA consisted of 10 exons on human chromosome 19, and PKACα shared its 2nd to 10th ethadons, but another 1st exon. Both differ in the first exon containing the translation initiation site, resulting in a difference in the 配 列 -terminal amino acid sequences of both proteins. This protein is a splicing variant of PKACα.
ΡΚ Αは regulatory subunit (R) 2個、 catalytic subunit (C) 2個力 らなるセリン Zスレオニンプロイテンキナーゼで、 テトラマー (R 2 C 2) は不 活性型として細胞質に存在するが、 Gs- coupled Recepterからのシグナルが入る と adenylyl cyclaseが活性化し AT Pから c AMPを生じ、 これが PKAの Regulatory subunit (R) に結合して catalytic subunit (C) を遊離し活性 化する。 Rと Cの相互作用にかかわる Cのアミノ酸はプロテインキナーゼドメイ ン内にある 1 9 0番リジン、 1 9 5番アルギユン、 1 9 7番トリブトファン、 2 1 4番リジンである (PR S 2ドメイン) 。 Rは細胞質にとどまるタンパク質で Cを細胞質にアンカーリングする。 Cは Rから離れると、 別の領域 (PR S 1 ド メイン; 1 3 4番アルギニン、 204番グルタミン酸、 2 3 6番チロシン) を介 して PK I (protein kinase inhibitor) と相互作用し細胞質にアンカーされ る。 Rサブュニットについては細胞増殖に関与する R Iタイプ (R I a、 R I β) 、 分化に関与する R I Iタイプ (R I I α、 R I I が知られており、 C サブユニットについては C 、 C β、 が知られている。 文献情報によると、 Cが Rによって細胞質にアンカーされるのを R I αのアンチセンスオリゴヌタレ ォチドによって阻害すると C αが核に移行することが報告されている  Α Α is a serine Z-threonine pruiten kinase consisting of two regulatory subunits (R) and two catalytic subunits (C) .The tetramer (R 2 C 2) exists in the cytoplasm as an inactive form, but Gs-coupled. Upon receipt of a signal from the receptor, adenylyl cyclase is activated and cAMP is generated from ATP, which binds to the PKA Regulatory subunit (R) to release the catalytic subunit (C) and activates it. The C amino acids involved in the interaction of R and C are lysine 190, arginine 195, tributofan 197, and lysine 214 in the protein kinase domain (PRS2 domain). . R is a protein that stays in the cytoplasm and anchors C to the cytoplasm. When C moves away from R, it interacts with PKI (protein kinase inhibitor) through another region (PRS1 domain; arginine at position 134, glutamic acid at position 204, and tyrosine at position 236) to enter the cytoplasm. Anchored. For the R subunit, the RI type (RIa, RIβ) involved in cell proliferation and the RII type (RIIα, RII) involved in differentiation are known, and for the C subunit, C and Cβ are known. Literature sources report that C α translocation to the nucleus when inhibition of C anchored in the cytoplasm by R by antisense oligonucleotides of RI α.
(Oncogene, 20: 8019-24 (2001)) 。 また、 インスリン分泌培養細胞 T C 6を グルコースあるいは GL P— 1 (glucagon- like polypeptide- 1) で刺激すると C o;が核へ、 C /3が細胞膜と核へ移行し、 は細胞内局在が変わらないことが 報告されている (Biochem. J. , 368: 397-404 (2002) ) 。 このように PKAの 活性本体である catalytic subunitの細胞内局在あるいは活性はさまざまな分 子によって調節されている。 (Oncogene, 20: 8019-24 (2001)). When TC6 insulin-stimulated cells were stimulated with glucose or GLP-1 (glucagon-like polypeptide-1), Co; translocated to the nucleus, C / 3 translocated to the cell membrane and nucleus, and was localized in the cell. It has been reported that it does not change (Biochem. J., 368: 397-404 (2002)). In this way, PKA The subcellular localization or activity of the active subunit, the catalytic subunit, is regulated by various molecules.
P KAの基質としては G P K (Glycogen phosphorylase kinase) 、 C R E B (cAMP responisible element binding protein) など力挙げられる。 グリコー ゲンは Glycogen phosphorylaseにより加水分解されるが、 この酵素は P KAに よってリン酸化されて活性化され、 グリコーゲンの分解が進む。 また、 C R E B は 2分子で cAMP responsible elementに結合し P K Aなどのプロテインキナー ゼにより 1 3 3番セリンがリン酸化されてソマトスタチン、 S F— l (steroid genie factor- 1) などの遺伝子を転写活性化する。 PKA catalytic subunit a のノックアウトマウスの解析によると、 新生仔は大部分致死であるが、 生き残つ たものは肝臓での I G F 1の発現や、 腎臓由来の尿中タンパク質が低下し生育が 著しく阻害され、 ォスでは精子の成熟ができないことが認められた。  Substrates for PKA include Glycogen phosphorylase kinase (GPK) and cAMP responisible element binding protein (CREB). Glycogen is hydrolyzed by Glycogen phosphorylase, which is activated by phosphorylation by PKA, and glycogen degradation proceeds. In addition, CREB binds two molecules to the cAMP responsible element, phosphorylates serine No. 133 by proteinase such as PKA, and activates genes such as somatostatin and SF-I (steroid genie factor-1). . According to the analysis of PKA catalytic subunit a knockout mice, neonates are mostly lethal, but those that survive are severely inhibited from growing due to decreased expression of IGF-1 in the liver and urinary proteins derived from the kidney. However, it was found that sperm could not be matured in os.
本タンパク質はそのアミノ酸番号 1〜9 1番が新規配列である。 この領域に特 有に結合するタンパク質によって、 あるいは特有の発現調節をうけることにより、 本来の PKA catalytic subunit αと異なる機能を有する可能性がある。 また本 D NAは精巣から単離され、 また、 PKA catalytic subunit のノックアウト マウスの実験から本タンパク質は精子成熟、 肝臓、 腎臓タンパク質の発現調節に かかわると推定されること、 グリコーゲン合成の調節、 I G Fの分泌不全などの かかわりから、 たとえば肝癌 ·腎臓癌 ·精巣癌などの癌、 肝炎、 肝硬変、 腎炎、 糖尿病、 炎症性疾患、 不妊、 G P C Rのシグナル伝達にかかわる疾患などの診断 治療などのターゲットとしての利用が考えられる。 実施例 4 キナーゼ活性の測定  In this protein, amino acid numbers 1 to 91 are a novel sequence. It may have a function different from that of the original PKA catalytic subunit α by a protein that specifically binds to this region or by subjecting it to specific expression regulation. In addition, this DNA was isolated from testis, and it was estimated from experiments on knockout mice of PKA catalytic subunit that this protein is involved in sperm maturation, regulation of liver and kidney protein expression, regulation of glycogen synthesis, and IGF Use as a target for diagnosis and treatment of cancers such as liver cancer, kidney cancer, testicular cancer, hepatitis, cirrhosis, nephritis, diabetes, inflammatory diseases, infertility, diseases related to GPCR signaling, etc. Can be considered. Example 4 Measurement of kinase activity
( 1 ) タンパク質の調製  (1) Preparation of protein
実施例 3でキナーゼ活性を有すると推定された c D NAクローンについて、 こ れがコ一ドするタンパク質を無細胞タンパク質合成系を用いて合成し、 該タンパ ク質がキナーゼ活性を有するか否かを以下の生化学的実験により解析した。 実施例 3でキナーゼ活性を有すると推定された cDNAクローンのオープンリ ーデイングフレーム (ORF) 断片を、 5, 側のプライマーとして各クローンに 特異的な下記プライマー、 3' 側のプライマーとして下記の共通プライマーを使 用した P C R法によって取得した。 For the cDNA clone presumed to have kinase activity in Example 3, the protein that it encodes was synthesized using a cell-free protein synthesis system, and it was determined whether the protein had kinase activity. Was analyzed by the following biochemical experiments. The open reading frame (ORF) fragment of the cDNA clone presumed to have kinase activity in Example 3 was used as a primer on the 5 side and the following primers specific to each clone. Obtained by PCR using primers.
5, 側のプライマー 5, Side primer
(a) c一 a d r 1 2 0 0 1 5 5 4 : ATGGAGGACAGGAAGGAGC (配列番号 29 ) (a) c-adr 1 2 0 0 1 5 5 4: ATGGAGGACAGGAAGGAGC (SEQ ID NO: 29)
(b) c一 t e s t i 2 0 5 3 6 6 7 : ATGGTGTTTCCAAACTATCATATTTATCCTC (配 列番号 30 ) (b) c-te st i i 0 2 5 3 6 6 7: ATGGTGTTTCCAAACTATCATATTTATCCTC (SEQ ID NO: 30)
(C) c一 b r c a n 2 0 1 8 2 4 0 : ATGGCCTTCATGGAGAAGCC (配列番号 3 (C) c-b r c a n 2 0 1 8 2 4 0: ATGGCCTTCATGGAGAAGCC (SEQ ID NO: 3
1) 1)
(d) c一 b r a c e 3 0 3 8 6 8 7 : ATGTCGTCGTCCTTCTTCAAC (配列番号 3 (d) c-b r a c e 3 0 3 8 6 8 7: ATGTCGTCGTCCTTCTTCAAC (SEQ ID NO: 3
2) 2)
(e) c一 b r a c e 3 0 5 0 7 6 4 : ATGGAGCCCATGTATCAAGATCG (配列番号 3 (e) c-b r a c e 3 0 5 0 7 6 4: ATGGAGCCCATGTATCAAGATCG (SEQ ID NO: 3
3) 3)
(f ) c一 b r a m y 3 0 1 8 3 5 7 : ATGAGCCCTGAGGGCC (配列番号 34 ) (f) c-b r amy 3 0 1 8 3 5 7: ATGAGCCCTGAGGGCC (SEQ ID NO: 34)
(g) c一 b r a h 3 0 2 2 8 6 6 : ATGAGCAGCAATGATATTCAGTACC (配列番号(g) c-one b r a h 3 0 2 2 8 6 6: ATGAGCAGCAATGATATTCAGTACC (SEQ ID NO:
35) 35)
(h) c一 b r a w h 3 0 4 3 8 2 7 : ATGCTCGAGGCCCGG (配列番号 36 ) (h) c-b r a w h 3 0 4 3 8 2 7: ATGCTCGAGGCCCGG (SEQ ID NO: 36)
(i) c一 b r t h a 2 0 3 4 8 7 4 : ATGGCGGCTCCGAGC (配列番号 37 )(i) c brtha2 0 3 4 8 7 4: ATGGCGGCTCCGAGC (SEQ ID NO: 37)
(j ) c一 t e s t i 4 0 5 2 1 9 7 : ATGTTCACCTTGGGATACCATGG (配列番号 3(j) c-te s t i 4 0 5 2 1 9 7: ATGTTCACCTTGGGATACCATGG (SEQ ID NO: 3
8) 8)
3' 側の共通プライマー  3 'common primer
GGCCCTTATGGCCGGAGAAAGGCGGACAGGTAT (配列番号 39 )  GGCCCTTATGGCCGGAGAAAGGCGGACAGGTAT (SEQ ID NO: 39)
これを、 SP 6プロモーターを含む翻訳制御領域ーグルタチオン一 S—トラン スフエラーゼ遺伝子一 PreScission Protease (アマシャムフアルマシァバイオ テク社製) 切断サイト一 DNAクローユングサイト (Sma.I , S f _i I ) 一 ポリ (A) シグナル配列を有するベクター (p EU— S S 4) のクローニンダサ ィトに挿入した。 This is used to cleave the translation control region containing the SP6 promoter, glutathione, S-transferase gene, PreScission Protease (Amersham Pharmacia Biotech), cleavage site, DNA closing site (Sma.I, Sf_iI) It was inserted into the clonindustite of a vector (pEU-SS4) having a poly (A) signal sequence.
上記で調製されたプラスミ ド DNAを铸型として、 S P 6 RNAポリメラー ゼ (Promega社製) を用いて転写を行い、 得られた R N Aをフエノール クロ口 ホノレム抽出、 エタノーノレ沈殿の後、 Nick Column (Amersham Pharmacia Biotech 社製) によって精製した。  Using the plasmid DNA prepared as described above as type III, transcription was performed using SP6 RNA polymerase (manufactured by Promega), and the resulting RNA was extracted with phenolic clonal honolem, precipitated with ethanol and precipitated with Nick Column (Amersham Pharmacia Biotech).
透析法によるコムギ胚芽抽出液を用いた無細胞タンパク質合成の方法は既報 (Endo, Y. et al. , J. Biotech. , 25: 221-230 (1992)) の方法に従った。 反 応溶液は、 容量の 24%のコムギ胚芽抽出液を含み、 上記 Ericksonらの方法に 準じた以下の成分組成である。 2 OmM HEPE S—KOH、 pH7. 6、 8 OmM酢酸カリウム、 1. 6 mM酢酸マグネシウム、 0. 4 mMスペルミジン、 2 mMジチオスレィトール、 20種類の L-アミノ酸(各 0. 24 mM)、 1. 2mM ATP、 0. 26mM GTP、 1 6 mMクレアチンリン酸、 0. 4 m g Zm 1クレアテンキナーセ、 1 000 u n i t s/m l ribonuc丄 ease inhibitor (RN a s i n™) に、 上述した mRNA ( 1 m g Zm 1反応容量) を添加して用いた。 上記反応溶液をフロータ · ライザ一 (Spectra/Float- A- Lyzer (Biotech RC) 、 分画分子量: 1 0 k D a、 容量: 1m l ) に入れ、 反 応液の 40倍容量の透析外液 (3 OmM HEPE S_KOH、 pH7. 6、 1 0 OmM酢酸カリウム、 2. 7mM酢酸マグネシウム、 0. 4mMスペルミジン、 2. 5 mMジチオスレィ トール、 20 種類の L一アミノ酸 (各 0. 3 mM) 、 1. 2mM ATP、 0. 2 5mM GTP、 1 6 mMクレアチンリン酸) に対 しての透析系で、 反応は 26 °Cで、 48時間行った。  The method of cell-free protein synthesis using a wheat germ extract by a dialysis method followed the method described previously (Endo, Y. et al., J. Biotech., 25: 221-230 (1992)). The reaction solution contains 24% of the wheat germ extract by volume, and has the following composition according to the method of Erickson et al. 2 OmM HEPE S-KOH, pH 7.6, 8 OmM potassium acetate, 1.6 mM magnesium acetate, 0.4 mM spermidine, 2 mM dithiothreitol, 20 kinds of L-amino acids (0.24 mM each), 1.2 mM ATP, 0.26 mM GTP, 16 mM creatine phosphate, 0.4 mg Zm, 1 creatine kinase, 1,000 units / ml ribonuc 丄 ease inhibitor (RN asin ™), and the above-mentioned mRNA (1 mg Zm (1 reaction volume). The above reaction solution was placed in a floater riser (Spectra / Float-A-Lyzer (Biotech RC), molecular weight cut off: 10 kDa, volume: 1 ml), and the dialysis solution was 40 times as large as the reaction solution. (3 OmM HEPE S_KOH, pH 7.6, 10 OmM potassium acetate, 2.7 mM magnesium acetate, 0.4 mM spermidine, 2.5 mM dithiothreitol, 20 kinds of L-amino acids (0.3 mM each), 1. The reaction was performed in a dialysis system against 2 mM ATP, 0.25 mM GTP, and 16 mM creatine phosphate at 26 ° C for 48 hours.
反応終了後、 透析内液を 1 6, 000 r pmで 5分間遠心分離し、 上清を分離 した。 この上清を、 1 5 OmM塩化ナトリウム、 1 OmMジチオスレィ トールを 含む 5 0 mMトリス ·塩酸緩衝液 (pH8. 5) で 5倍希釈し、 同緩衝液で平衡 化したァフィ二ティ樹脂であるダルタチオンセファロース ' 4B (アマシャムパ ィォサイエンス社製) を充填したァフィ二ティカ.ラムに室温で添加し、 目的タン パク質を吸着した。 ここで、 上記カラムには、 取得した遠心上清の 1/2量のァ フイエティ樹脂を用いた。 After the reaction was completed, the dialysate was centrifuged at 16,000 rpm for 5 minutes, and the supernatant was separated. This supernatant is diluted 5-fold with 50 mM Tris-HCl buffer (pH 8.5) containing 15 OmM sodium chloride and 1 OmM dithiothreitol, and Darfin, an affinity resin equilibrated with the same buffer, is used. Add at room temperature to the affinity ram filled with Tathione Sepharose 4B (Amersham Biosciences) at room temperature. Parkin was adsorbed. Here, for the column, half the amount of the obtained centrifugal supernatant was used as the affinity resin.
さらに、 上記で用いたァフィ二ティ樹脂の 1 0倍容量の同緩衝液にてカラムを 洗浄した後、 2 u n i t sZ 1濃度の PreScission protease (アマシャムバ ィォサイエンス社製) の同緩衝液による 2 5倍希釈液を、 ァフィ二ティ樹脂と等 容量添加し、 4 °Cで 40時間切断反応を行つた後、 上記緩徤 ί液にて目的タンパク 質を溶出した。  After washing the column with 10 times the volume of the affinity resin used in the above buffer, the column was washed with 2 units of sZ1 concentration of PreScission protease (manufactured by Amersham Biosciences) in the same buffer. An equal volume of the double-diluted solution was added to the affinity resin, and a cleavage reaction was performed at 4 ° C. for 40 hours. Then, the target protein was eluted with the buffer solution.
(2) 目的タンパク質の A Τ Ρ消費量を指標とするキナーゼ活性の測定  (2) Measurement of kinase activity using A A Τ consumption of target protein as an index
上記 (1) で単離した目的タンパク質は、 ゥシ血清アルブミンを標準として定 量した。 0. 1 gの目的タンパク質を、 .0. SrngZm 1ゥシ血清アルブミン、 8mM塩化マグネシウムを含む 5 OmMトリス .塩酸緩衝液 (pH7. 4) 中で、 終濃度 1〜1 OmMとなるようにジチオスレィトールを添加後、 1 ]^の 丁? と室温で 24時間インキュベートした後、 ルシフェラーゼ ·ルシフェリンキット The target protein isolated in (1) above was quantified using serum albumin as a standard. 0.1 g of the target protein was diluted with 0.1 mM SrngZm 1 ゥ serum albumin and 8 mM magnesium chloride in 5 OmM Tris.HCl buffer (pH 7.4) to a final concentration of 1 to 1 OmM. After adding threitol, 1] ^ After incubation at room temperature for 24 hours, luciferase / luciferin kit
(和光純薬工業社製) 1 00 μ 1を加え、 室温で 24時間反応した後、 5 60 η mの蛍光強度を測定した。 目的タンパク質を添加していない反応系をコントロー ルとして、 同様に 5 60 nmの蛍光強度を測定した。 このコントロールの値と目 的タンパク質を添加した系の値の差を目的タンパク質が消費した AT P量として、 目的タンパク質 1 mo 1あたりが 24時間に消費する ATP量 (m o 1 ) を目的 タンパク質のキナーゼ活性として同定した (表 1) 。 なお、 ネガティブコント口 ールとして、 上記 (1) の系でセリンプロテアーゼをコードするマウス全長 c D NAである B 430 206 E 1 8 (配列番号 5 7、 Nature, 420: 563 - 573(2002)) から合成 ·単離したタンパク質 0. 1 μ gを用いた。 実験を行わな かつたものは rrtと表記した。 表 1 After adding 100 μl (manufactured by Wako Pure Chemical Industries, Ltd.) and reacting at room temperature for 24 hours, the fluorescence intensity at 560 ηm was measured. Using the reaction system to which the target protein was not added as a control, the fluorescence intensity at 560 nm was measured in the same manner. The difference between the value of this control and the value of the system to which the target protein was added is defined as the amount of ATP consumed by the target protein, and the amount of ATP (mo1) consumed per 1 mo1 of the target protein in 24 hours is the kinase of the target protein. Activity (Table 1). In addition, as a negative control, B430206E18 (SEQ ID NO: 57, Nature, 420: 563-573 (2002)), which is a mouse full-length cDNA encoding the serine protease in the system of (1) above, was used as a negative control. ) 0.1 µg of isolated protein was used. Those that did not perform the experiment are denoted as rrt. table 1
Figure imgf000076_0001
Figure imgf000076_0001
(3) 目的タンパク質によるポリペプチドのリン酸ィ匕を指標としたキナーゼ活性 の測定 (3) Kinase activity measurement using phosphorylation of polypeptide by target protein
上記 (1) で単離した目的タンパク質は、 ゥシ血清アルブミンを標準として定 量した。 0. 1 Z gの目的タンパク質を、 基質としての標準ポリペプチド (C d c 2、 Ar g 2— OH、 PKA、 PKC、 DNA— PK、 PTK 1、 PTK2 : Promega社、 MLCKS、 C a MK I I : Sigma社、 Syntide2: BACHEM  The target protein isolated in (1) above was quantified using serum albumin as a standard. 0.1 Zg of target protein is converted to a standard polypeptide (Cdc2, Arg2-OH, PKA, PKC, DNA-PK, PTK1, PTK2) as a substrate: Promega, MLCKS, Ca MK II: Sigma, Syntide2: BACHEM
FEINCHEMIKALIEN AG) 0. 2 μ §とともに、 0. 2mg /m 1ゥシ血清アルブ ミン、 1〜 1 OmMジチオスレィトール、 8 mM塩化マグネシウムを含む 5 Om Mトリス '塩酸緩衝液 (pH7. 4) 、 1 μΜ ATPと室温で 2時間インキュ ペートした。 反応終了後、 反応液を、 20%ァセトニトリルを含む 0. 1 %トリ フルォロ酢酸で平衡化した Bakerbond C18 (J. T. Baker社製: 0. 46 X 25 cm) カラムに添加し、 0. 1 %トリフルォロ酢酸の存在下で、 20〜80。/0の ァセトニトリルの 6 0分間の直線濃度勾配により流速 1 m 1 /分でぺプチドを分 離した。 ペプチドの溶出は、 2 1 5 nmの吸光度により測定した。 コントロール として目的タンパク質を添カ卩しない反応液についても同様に分離し 2 1 5 ηπιの 吸光度を測定した (図 2 1) 。 ここで、 目的タンパク質を添加することによって ピークの減少およぴ溶出位置の変動が検出されるポリべプチドについては、 目的 タンパク質の有するキナーゼ活性の基質となると判断することができる。 なお、 ネガティブコントロールとして、 上記 (2) と同様に、 セリンプロテア一ゼをコ 一ドするマウス全長 c DNAである B 430206 E 18から合成 ·単離したタ ンパク質 0. l ^ gを用いた。 結果を表 1に示す。 表 1には、 溶出位置が変動し たポリペプチド (ピークがシフトした基質) を表記し、 実験を行わなかったもの は ntと表記した。 実施例 5 定量 PCR法を用いたヒト細胞株およぴ組織での発現解析 With FEINCHEMIKALIEN AG) 0. 2 μ §, 0. 2mg / m 1 © shea serum albumin,. 1 to 1 Omm dithiothreitol I torr, 5 Om M Tris' HCl buffer containing 8 mM magnesium chloride (pH 7. 4) Incubate with 1 μΜ ATP at room temperature for 2 hours. After completion of the reaction, the reaction solution was added to a Bakerbond C18 (0.46 x 25 cm) column equilibrated with 0.1% trifluoroacetic acid containing 20% acetonitrile, and 0.1% trifluoroacetic acid was added. In the presence of 20-80. The peptides were separated at a flow rate of 1 m 1 / min by a linear concentration gradient of / 0 acetonitrile over 60 min. Peptide elution was measured by absorbance at 215 nm. As a control, the reaction solution without addition of the target protein was similarly separated, and the absorbance at 215 ηπι was measured (FIG. 21). Here, by adding the target protein, Polypeptides in which a decrease in peak and a change in elution position are detected can be determined to be substrates for kinase activity of the target protein. As a negative control, 0.1 l ^ g of a protein synthesized and isolated from B430206E18, a mouse full-length cDNA encoding serine protease, was used in the same manner as in (2) above. . Table 1 shows the results. In Table 1, polypeptides whose elution positions fluctuated (substrates with shifted peaks) are indicated, and those for which no experiment was performed are indicated as nt. Example 5 Expression analysis in human cell lines and tissues using quantitative PCR
本発明のヒトタンパク質をコードする! nRNA (c-a d r g l 200155 4および c一 t e s t i 2053667) のヒト細胞株、 並びに正常ヒトおよび 疾患患者での組織発現変動を検討するために、 常法 (Higuchi R, et al., Biotechnology, 11: 1026-30 (1993)) に従い、 定量 P C R法を用いた発現解析 を行った。  Encoding the human protein of the present invention! To examine the changes in tissue expression of nRNA (ca drgl 200155 4 and c-testi 2053667) in human cell lines and normal humans and diseased patients, a conventional method (Higuchi R, et al. al., Biotechnology, 11: 1026-30 (1993)), expression analysis using quantitative PCR was performed.
(1) 細胞おょぴ cDNAの入手  (1) Cell cDNA
ヒト由来細胞株である、 ヒト子宮頸部癌由来細胞株 He L a (ATCC CC L— 2) 、 ヒト胎児腎臓由来細胞株 HEK293 (ATCC CRL 1573) 、 神経芽腫由来細胞株 SH—S Y5 Y (ATCC CRL- 2266) 、 前骨髄性 白血病由来細胞株 HL 60 (ATCC CCL- 240) 、 肝臓癌由来細胞株 H e p G 2 (ATCC HB— 8065) 、 星状細胞腫由来細胞株 K I NGS- 1 Human cervical cancer cell line HeLa (ATCC CCL-2), human fetal kidney cell line HEK293 (ATCC CRL 1573), neuroblastoma cell line SH-S Y5 Y (ATCC CRL-2266), promyelocytic leukemia-derived cell line HL 60 (ATCC CCL-240), liver cancer-derived cell line Hep G 2 (ATCC HB-8065), astrocytoma-derived cell line KI NGS-1
(J CRB I FO50435) 、 神経芽腫由来細胞株 S Κ— N— S H (ATC C ΗΤΒ— 1 1) 、 脾臓癌由来細胞株 PANC— 1 (ATCC CRL— 14 69) 、 結腸直腸腺癌由来細胞株 SW620 (ATCC CCL- 227) 、 乳 癌由来細胞株 BT— 474 (ATCC HT B— 20 ) および転移性勝臓腺癌由 来細胞株 As PC_ l (ATCC CRL— 1682) から全 RNAを抽出し、 ランダムプライマーを用いて铸型 cDNAを合成した。 以下のヒ ト組織由来 cDNAはクロンテック社から購入した (正常乳房、 乳癌、 正常結腸、 結腸癌、 正常腎臓、 腎臓癌、 正常肝臓、 肺癌、 正常直腸、 直腸癌、 正 常小腸、 小腸癌、 正常胃、 胃癌および胎盤) 。 以下のヒト組織由来 cDNAはバ ィォチェイン社から購入した (胎児脳、 正常脳、 正常前頭葉、 アルツハイマー病 前頭葉、 正常海馬、 アルツハイマー病海馬、 正常視床、 正常腎臓、 ループス病腎 臓、 正常肝臓、 肝硬変肝臓、 正常脖臓、 正常骨格筋、 正常脂肪、 正常脾臓、 心臓 および白血球) 。 (J CRB I FO50435), neuroblastoma-derived cell line S S—N—SH (ATC CΗΤΒ—11), spleen cancer-derived cell line PANC—1 (ATCC CRL—14 69), colorectal adenocarcinoma-derived cell Total RNA was extracted from strain SW620 (ATCC CCL-227), breast cancer-derived cell line BT-474 (ATCC HT B-20) and metastatic ovarian adenocarcinoma-derived cell line AsPC_l (ATCC CRL-1682). Type II cDNA was synthesized using random primers. The following cDNAs derived from human tissues were purchased from Clontech (normal breast, breast cancer, normal colon, colon cancer, normal kidney, kidney cancer, normal liver, lung cancer, normal rectum, rectum cancer, normal small intestine, small intestine cancer, normal Stomach, gastric cancer and placenta). The following human tissue-derived cDNA was purchased from Biochain (fetal brain, normal brain, normal frontal lobe, Alzheimer's disease frontal lobe, normal hippocampus, Alzheimer's disease hippocampus, normal thalamus, normal kidney, lupus disease kidney, normal liver, cirrhosis liver , Normal spleen, normal skeletal muscle, normal fat, normal spleen, heart and leukocytes).
(2) PCR法による定量  (2) Quantification by PCR method
本発明のヒトタンパク質をコードしている mRNA (c - a d r g 1 2001 554および c一 t e s t i 2053667) の定量は、 ABI PRISM7000  The quantification of mRNA encoding the human protein of the invention (c-adrg 1 2001 554 and c-te st i 2053667) was determined by ABI PRISM7000
Sequence Detection System (アプライドバイオシステムズ社製) を用い、 反応 溶液には上記 c DN Aを铸型とし、 qPCR Mastermix Plus (EUR0GENTEC社 RT- QP2X-03-075+) 、 300 nM 5, 側プライマー、 300 nM 3, 側プライマ 一, および 100 nM 2重標識プローブ (FAM— TAMRA) を使用し、 機 器のマニュアルに従い実施した。 Using Sequence Detection System (manufactured by Applied Biosystems, Inc.), use the above cDNA as the type II in the reaction solution, qPCR Mastermix Plus (EUR0GENTEC, RT-QP2X-03-075 +), 300 nM 5, side primer, 300 The procedure was performed using nM3, side primer 1, and 100 nM double-labeled probe (FAM-TAMRA) according to the instrument manual.
定量 PC Rに用いたプライマーおょぴプローブの合成 DN A配列を以下に示す。 The synthetic DNA sequence of the primer and probe used for quantitative PCR is shown below.
(a) c-a d r g l 2001554 (a) c-a d r g l 2001 554
5 ' 側プライマー: GGTGACTCGCACAGCGMCT (配列番号 40)  5 'side primer: GGTGACTCGCACAGCGMCT (SEQ ID NO: 40)
3 ' 側プライマー: CGGMATTGGTGCGGAAGTAC (配列番号 41)  3 'primer: CGGMATTGGTGCGGAAGTAC (SEQ ID NO: 41)
2重標識プローブ: AACATCGGCATCCTGTTCMCGAC (配列番号 42)  Double labeled probe: AACATCGGCATCCTGTTCMCGAC (SEQ ID NO: 42)
(b) c- t e s t i 2053667  (b) c- t e s t i 2053667
5 ' 側プライマー: GACCMMCAGGATGCGMGTG (配列番号 43)  5 'primer: GACCMMCAGGATGCGMGTG (SEQ ID NO: 43)
3, 側プライマー: GGCACACCAGCATCTAGCTTGT (配列番号 44)  3. Side primer: GGCACACCAGCATCTAGCTTGT (SEQ ID NO: 44)
2重標識プローブ: TGCTCCCTGGATTGACCTCAGTC (配列番号 45)  Double-labeled probe: TGCTCCCTGGATTGACCTCAGTC (SEQ ID NO: 45)
(c) GAPDH  (c) GAPDH
5, 側プライマー: ACACCCACTCCTCCACCTTTGA (配列番号 46)  5, side primer: ACACCCACTCCTCCACCTTTGA (SEQ ID NO: 46)
3, 側プライマー: CCTGTTGCTGTAGCCA TTCG (配列番号 47) 2重標識プローブ: TTGCCCTCMCGACCACTTTGTC GC (配列番号 48) 定量結果は、 Glyceraldehyde 3 - phosphate dehydrogenase (GAPDH、 酉己 列番号 56) を内部標準として、 補正した。 即ち、 各組織での対象遺伝子の発現 量を GAP DHの発現量で除し、 常数 (1 X 105) を乗して表示した。 ヒト細 胞株での発現解析結果を表 2に、 また正常ヒトおよび疾患患者での組織発現解析 を表 3に示す。 表 23, primer: CCTGTTGCTGTAGCCA TTCG (SEQ ID NO: 47) Double-labeled probe: TTGCCCTCMCGACCACTTTGTC GC (SEQ ID NO: 48) The quantification results were corrected using Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, Torii, column number 56) as an internal standard. That is, the expression level of the target gene in each tissue was divided by the expression level of GAPDH and multiplied by a constant (1 × 10 5 ). Table 2 shows the results of expression analysis in human cell lines, and Table 3 shows tissue expression analysis in normal humans and diseased patients. Table 2
Figure imgf000079_0001
Figure imgf000079_0001
表 3 Table 3
Figure imgf000080_0002
Figure imgf000080_0002
Figure imgf000080_0001
表 2および表 3から明らかな通り、 c-a d r g l 2001554の mRNA は、 全体的に発現量が非常に低いが、 胃癌、 正常小腸、 正常直腸、 結腸癌など消 化器系組織おょぴ肺、 腎臓、 および神経芽腫由来細胞株 SH— S Y5 Yなどに弱 い発現が認められた。
Figure imgf000080_0001
As is evident from Tables 2 and 3, the mRNA level of ca drgl 2001554 is very low overall, but it is a gastrointestinal tissue such as gastric cancer, normal small intestine, normal rectum, and colon cancer. , And weak expression was observed in the neuroblastoma-derived cell line SH-SY5Y and the like.
c- t e s t i 2053667の mRN Aは調べた限り全ての細胞や組織で発 現しており、 白血球、 脾臓、 および前骨髄性白血病由来細胞株 HL 60など免 疫 *炎症に関わる組織や細胞での発現が高く、 瞎臓、 結腸直腸腺癌由来細胞株 S W620、 転移性膝臓腺癌由来細胞株 As PC— 1、 神経芽腫由来細胞株 SH— S Y 5 Yなどでも発現が高かった。 この結果より、 上記 c DNAおよび該 c DNAによってコードされるタンパク 質は、 癌や免疫,炎症性疾患、 神経変性疾患、 呼吸器疾患、 糖尿病などの治療や 診断に応用できる。 また該 c DNAによってコードされるタンパク質は、 上記の ような mRN A発現量の多い組織に関わる疾患に関与している可能性がある。 実施例 6 s ί RNAを細胞内に導入することによる発現抑制、 および細胞死, 細胞増殖に及ぼす効果 The mRNA of c-testi 2053667 is expressed in all cells and tissues as far as it is examined. High expression was also observed in the cell line SW 620 derived from cervix and colorectal adenocarcinoma, the cell line derived from metastatic knee adenocarcinoma As PC-1 and the cell line derived from neuroblastoma SH-SY5Y. From these results, the above cDNA and the protein encoded by the cDNA can be applied to the treatment and diagnosis of cancer, immunity, inflammatory diseases, neurodegenerative diseases, respiratory diseases, diabetes and the like. In addition, the protein encoded by the cDNA may be involved in the above-mentioned diseases involving tissues with high mRNA expression levels. Example 6 Inhibition of Expression by Introducing s ί RNA into Cells and Effects on Cell Death and Cell Proliferation
(1) siRNAの作製  (1) Preparation of siRNA
c- t e s t i 2053667を標的として設計した siRNAを HEK293細胞 および HeLa細胞に導入し、 この s i RNAの導入による c一 t e s t i 205 3667 mRNAの発現抑制効果を確認した後、 HEK293細胞おょぴ HeLa細胞 の増殖に及ぼす効果、 並びに細胞死の惹起効果を検討した。 なお、 ネガティブコ ントロ^ "ノレ siRNA ホ夕ノレ (Photinus pyralis) の lucif erase ¾f云チ (P. pyralis luc遺伝子:配列番号 55) の配列に対応して設計したものを用いた。 これらの R Aはプロリゴ社またはキアゲン社に合成を委託した。  After introducing siRNA designed to target c-testi 2053667 into HEK293 cells and HeLa cells, and confirming the effect of introducing the siRNA into c-testi 205 3667 mRNA, the proliferation of HEK293 cells and HeLa cells And the effect of inducing cell death were examined. In addition, those designed corresponding to the sequence of lucif erase ¾f 云 (P. pyralis luc gene: SEQ ID NO: 55) of the negative control siRNA (Photinus pyralis) were used. The synthesis was outsourced to Proligo or Qiagen.
配列番号 49および配列番号 51に示す配列は、 標的遺伝子である c一 t e s t i 2053667 (翻訳領域は配列番号 2の塩基番号 36からの全長 1419 塩基対) の翻訳開始部位から数えてセンス鎖の 966〜986および 1 1 92〜 1212番目の塩基にそれぞれ相当する。 また配列番号 50および配列番号 52 に示す配列は、 c一 t e s t i 2053667の翻訳開始部位から数えてアンチ センス鎖の 984〜 964および 1210〜1 190番目の塩基にそれぞれ相当 する。 また配列番号 53および配列番号 54に示す配列は、 P. pyralis luc遺 伝子 (翻訳領域は配列番号 55の塩基番号 1〜 1653の全長 1653塩基対) の翻訳開始部位から数えてセンス鎖の 38〜58番目の塩基おょぴアンチセンス 鎖の 56〜36番目の塩基にそれぞれ相当する。  The sequences shown in SEQ ID NO: 49 and SEQ ID NO: 51 correspond to the target gene c-testi 2053667 (translation region is 1419 base pairs in full length from base number 36 in SEQ ID NO: 2), counted from the translation start site of the sense strand 966 to 966. These correspond to bases 986 and 1192-1212, respectively. The sequences shown in SEQ ID NO: 50 and SEQ ID NO: 52 correspond to the bases at positions 984 to 964 and 1210 to 1190 of the antisense strand, respectively, counted from the translation initiation site of c-testi 2053667. The sequences shown in SEQ ID NO: 53 and SEQ ID NO: 54 correspond to the P. pyralis luc gene (the translation region is 1653 base pairs in full length from nucleotide number 1 to 1653 of SEQ ID NO: 55) counted from the translation initiation site of the sense strand. The 58th to 58th bases correspond to the 56th to 36th bases of the antisense strand, respectively.
c- t e s t i 2053667遺伝子の発現を阻害するために用いた 2本鎖 siRNAの作製法を以下に示す。 配列番号 49のセンス鎖と配列番号 50のアンチ センス鎖とを会合させることで t e s t i 2 0 5 3 6 6 7— 9 6 4の siRNAを 作製した。 同様に、 配列番号 5 1のセンス鎖と配列番号 5 2のアンチセンス鎖と を会合させることで c一 t e s t i 2 0 5 3 6 6 7 - 1 1 9 0の siRNAを、 配 列番号 5 3のセンス鎖と配列番号 5 4のアンチセンス鎖とを会合させることでネ ガティブコントロール siRNAを作製した。 siRNAの作製に際しては、 プロリゴ社 委託分についてはセンス 1本鎖 RNAおよびアンチセンス 1本鎖 RNAそれぞれを 単品で受領し、 自ら会合した。 キアゲン社委託分については同社に会合を委託し た。 自ら会合する場合には, センス鎖 RNAおよびアンチセンス鎖 RNAの混合物 を 10 βΜ Tris-HCl (pH7.5) 、 20 μΜ NaCl 反応液中で 9 0°Cにて 2分間加熱し、 更に漸次 3 7 °Cまで降温した後に、 3 7°Cにて 1時間インキュベートし、 その後、 室温になるまで放置することで行った。 センス鎖とアンチセンス鎖が会合し 2本 鎖 RNAが形成されたことは、 TBE緩衝液中での 2 %ァガロースゲル電気泳動で検 定した。 The method for preparing the double-stranded siRNA used to inhibit the expression of the c-testi 2053667 gene is described below. SEQ ID NO: 49 sense strand and SEQ ID NO: 50 antisense By associating with the sense strand, siRNA of testi 205366 7-964 was prepared. Similarly, by associating the sense strand of SEQ ID NO: 51 with the antisense strand of SEQ ID NO: 52, the siRNA of c-testi 20 53 66 7-190 can be obtained by combining the siRNA of SEQ ID NO: 53 A negative control siRNA was prepared by associating the sense strand with the antisense strand of SEQ ID NO: 54. For the production of siRNA, for the contract of Proligo, sense single-stranded RNA and antisense single-stranded RNA were each received as a single item, and they met themselves. For Qiagen, the company commissioned a meeting. When his meeting, a mixture of the sense strand RNA and antisense strand RNA 10 β Μ Tris-HCl ( pH7.5), was heated 2 min at 20 μΜ NaCl reaction liquid at 9 0 ° C, further gradually After lowering the temperature to 37 ° C, the mixture was incubated at 37 ° C for 1 hour, and then left to reach room temperature. The formation of double-stranded RNA by association of the sense strand and the antisense strand was detected by 2% agarose gel electrophoresis in a TBE buffer.
以下に用いた 2本鎖 s i RNAの配列を記載する。  The sequence of the double-stranded si RNA used is described below.
(a ) t e s t i 2 0 5 3 6 6 7— 9 64の s i RNA  (a) t e s t i 2 0 5 3 6 6 7— 9 64 s i RNA
センス鎖; CAGGAUGCGAAGUGUMAUGA (配列番号 4 9)  Sense strand; CAGGAUGCGAAGUGUMAUGA (SEQ ID NO: 49)
アンチセンス鎖; AUUUACACUUCGCAUCCUGUU (配列番号 5 0)  Antisense strand; AUUUACACUUCGCAUCCUGUU (SEQ ID NO: 50)
(b) t e s t i 2 0 5 3 6 6 7— 1 1 9 0の s i RNA  (b) t e s t i 2 0 5 3 6 6 7—1 190 s i RNA
センス鎖; CUCUUUAGGGAUCAUCUUUUU (配列番号 5 1 )  Sense strand; CUCUUUAGGGAUCAUCUUUUU (SEQ ID NO: 51)
アンチセンス鎖; MAGAUGAUCCCUAAAGAGUU (配列番号 5 2)  Antisense strand; MAGAUGAUCCCUAAAGAGUU (SEQ ID NO: 52)
( c ) ネガティブコントローノレの s i RNA  (c) Negative control siRNA
センス鎖; CAUUCUAUCCGCUGGMGAUG (配列番号 5 3)  Sense strand; CAUUCUAUCCGCUGGMGAUG (SEQ ID NO: 53)
アンチセンス鎖; UCUUCCAGCGGAUAGAAUGGC (配列番号 54)  Antisense strand; UCUUCCAGCGGAUAGAAUGGC (SEQ ID NO: 54)
(2) siRNAの培養細胞への導入  (2) Introduction of siRNA into cultured cells
培養細胞としては HEK293細胞および HeLa細胞を用い、 培地は Dulbecco' s modified Eagle' s medium (シグマ社製) に非慟化 1 0 %牛胎児血清 (J RH 社製) を添加したものを用い、 3 7 °C、 5 % C02存在下で培養した。 HEK293細胞は 1. 4 X 105 cells/mlの密度で 24穴プレート (コラーゲ ンタイプ 1コート済、 岩城硝子社製) に 1ゥエル当たり lmlの量で播種し、 1 曰後に GeneSilencer siRNA Transfection Reagent (Gene Therapy Systems社 製) を用いて、 合計 50 nMの各 siRNAを導入した。 siRNA の濃度は、 2本鎖 RNAの状態を 1分子と見なし、 最終的に 1ゥエル当たり 1 mlの培地が存在し ている状態でのモル濃度で表示した。 HeLa細胞は 0. 7 X 105cells/mlの密 度で 24穴プレート (24穴プレート (Greiner社製) に 1ゥエル当たり lm l の量で播種し、 HEK293細胞の場合と同様に siRNAを導入した。 HEK293 cells and HeLa cells were used as the culture cells, and Dulbecco's modified Eagle's medium (manufactured by Sigma) supplemented with non-deprived 10% fetal bovine serum (manufactured by JRH) was used. 3 7 ° C, 5% C0 2 and cultured in the presence. HEK293 cells were seeded at a density of 1.4 × 10 5 cells / ml on a 24-well plate (collagen type 1 coated, Iwaki Glass Co., Ltd.) at a volume of 1 ml per 1 μl, and after 1 day GeneSilencer siRNA Transfection Reagent (Gene Therapy Systems) was used to introduce a total of 50 nM of each siRNA. The concentration of siRNA was expressed as a molar concentration in the presence of 1 ml of medium per 1 μl, considering the state of double-stranded RNA as one molecule. HeLa cells are seeded at a density of 0.7 × 10 5 cells / ml on a 24-well plate (24-well plate (manufactured by Greiner)) at a volume of lml / well, and siRNA is introduced in the same manner as for HEK293 cells. did.
(3) 培養細胞内の遺伝子発現量の測定  (3) Measurement of gene expression level in cultured cells
上記実施例 (2) で調製した細胞は、 siRNA導入 48時間後に Lysis  The cells prepared in Example (2) above were
Solution (アプライドバイオシステムズ社製) を用いて可溶化することにより 回収し、 核酸抽出装置 ABI PRISM 6100 Nucleic Acid PrepStation (アプライ ドバイオシステムズ社製) を用いてトータル RNAを抽出精製した。 更に The DNA was recovered by solubilization using a Solution (manufactured by Applied Biosystems), and total RNA was extracted and purified using a nucleic acid extractor ABI PRISM 6100 Nucleic Acid PrepStation (manufactured by Applied Biosystems). Further
ReverseTranscriptaseXL (AMV) for RT - PCR、 Ribonuclease inhibitor Random Primer、 25mM MgCl2溶液、 lOxPCR Buffer (以上 TaKaRa社製) 、 dNTP ReverseTranscriptaseXL (AMV) for RT-PCR, Ribonuclease inhibitor Random Primer, 25 mM MgCl 2 solution, lOxPCR Buffer (TaKaRa), dNTP
Mixture (lOmM) (T0Y0B0社製) を用いて逆転写反応を行い、 cDNA標品を得た。 このようにして得られた cDNA標品を铸型として、 定量 PCR装置 ABI PRISM 7000Reverse transcription reaction was performed using Mixture (lOmM) (manufactured by T0Y0B0) to obtain a cDNA preparation. Using the cDNA sample obtained in this way as type II, a quantitative PCR device ABI PRISM 7000
(アプライドバイオシステムズ社製) を用いて目的遺伝子 mR A の定量を行った。 定量手法は実施例 5 (2) に記載した方法に従った。 (Applied Biosystems) was used to quantify the target gene mRA. The quantification method followed the method described in Example 5 (2).
HEK293細胞おょぴ HeLa細胞における c— t e s t i 2053667遺伝子の 発現は、 t e s t i 2053667— 964または t e s t i 2053667— 1 190の siRNAのいずれによっても阻害され、 またこの siRNAの混合物によ つても阻害された (図 31) 。 値はいずれも、 c一 t e s t i 2053667遺 伝子の発現量 (GAPDH量にて標準化) を siRNAのトランスフエクション操作を行 つていない細胞群 (非導入群) の数値を 100%として相対的に表した。 またこ れらは 3ゥエルの実験の平均値を示しており、 図中の縦線は標準偏差を示す。 HEK293細胞では、 siRNAを導入していない非導入群に比べ、 c— t e s t i 2 053667に対する siRNAを 50 nM添加した群においては、 t e s t i 20 53667-964単独、 t e s t i 2053667— 1 1 90単独、 この 2種 類の等量の混合物について、 それぞれ 74%、 51%、 85%の。ー 1 e s t i 2053667遺伝子発現の阻害が観察された。 また HeLa細胞では、 t e s t Ϊ 2053667-964単独、 t e s t i 2053667_1 190単独、 こ の 2種類の等量の混合物についてそれぞれ 91 %、 80 %、 90 %の c一 t e s t i 2053667遺伝子発現の阻害が観察された。 ネガティブコントロール siRNAを導入した群では c— t e s t i 2053667遺伝子の発現阻害は認め られなかった。 Expression of the c-testi 2053667 gene in HEK293 and HeLa cells was inhibited by either testi 2053667-964 or testi 2053667-1190 siRNA, or by a mixture of these siRNAs (Fig. 31). All values are relative to the expression level of the c-testi 2053667 gene (normalized by GAPDH amount), with the value of the cell group not transfected with siRNA (non-transfected group) as 100%. expressed. In addition, these data show the average value of the 3 ゥ -well experiment, and the vertical line in the figure shows the standard deviation. In HEK293 cells, c— testi 2 In the group to which siRNA for 053667 was added at 50 nM, testi 20 53667-964 alone, testi 2053667-1190 alone, and 74%, 51%, and 85%, respectively, of a mixture of equal amounts of the two types were used. Inhibition of 1 esti 2053667 gene expression was observed. In HeLa cells, 91%, 80%, and 90% inhibition of c-testi 2053667 gene expression was observed for test # 2053667-964 alone, testi 2053667_1 190 alone, and a mixture of these two equal amounts, respectively. In the group into which the negative control siRNA was introduced, no inhibition of c-testi 2053667 gene expression was observed.
(4) HEK293細胞おょぴ HeLa細胞の増殖に及ぼす効果  (4) Effect on proliferation of HEK293 cells and HeLa cells
培地は Dulbecco' s modified Eagle's medium (シグマ社製) に非慟化 10% 牛胎児血清 (J RH社製) 添加したものを用い、 37°C、 5%C02存在下で培養 した。 Medium used after adding Dulbecco 's modified Eagle's medium non慟化(manufactured by J RH Co.) with 10% fetal calf serum (Sigma), they were cultured in C0 2 the presence 37 ° C, 5%.
HEK293細胞は 0. I X 105、 0. 15 105または0. 2 X 105cells Zmlの密度で 96穴プレート (コラーゲンタイプ 1コート済、 岩城硝子社製) . に 1ゥエル当たり 0. 25m lで播種し、 1日後に GeneSilencer siRNA Transfection Reagent (Gene Therapy Systems社製) を用レヽて、 合計 50 nM の siRNAを導入した。 siRNAとしてはネガティブコントロール siRNA単独、 t e s t i 2053667-964単独、 t e s t i 2053667— 964と t e s t i 2053667- 1 190の等量の混合物をそれぞれ使用した。 HeLa細 胞については 0. 1 X 105、 0. 15 105または0. 2 X 105cellsZml の密度で 96穴プレート (Greiner社製) に 1ゥエル当たり 0 · 25m lで播種 し、 HEK293細胞と同様の操作にて siRNAを導入した。 HEK293 cells 0. IX 10 5, 0. 15 10 5 or 0. 2 X 10 5 cells Zml density in 96-well plates (collagen type 1 coated already, manufactured by Iwaki Glass Co., Ltd.) in. To 1 Ueru per 0. 25 m l One day later, a total of 50 nM siRNA was introduced using GeneSilencer siRNA Transfection Reagent (Gene Therapy Systems). As the siRNA, a negative control siRNA alone, testi 2053667-964 alone, and an equal mixture of testi 2053667-964 and testi 2053667-1190 were used, respectively. For HeLa cells the 0. 1 X 10 5, were plated at 0.15 10 5 or 0. 2 X 10 5 cellsZml density in 96-well plates (Greiner Co.) in 1 Ueru per 0 · 25m l, HEK293 cells The siRNA was introduced in the same manner as described above.
細胞増殖の定量化は、 siRNA導入から 4日後に CellTiter- Glo Luminescent Cell Vialbility Assay (プロメガ社製) を用いて生存細胞由来の AT P (アデ ノシン三リン酸) を測定することにより行った。 細胞内 AT P含量が生細胞数に 比例することは知られている。 細胞播種密度 0. 2 X 105 cells/mlの場合の結果を図 32に示す。 なお, 他の細胞播種密度の場合でも同様の結果を示した。 値は各ゥ ル中の生細胞に由 来する AT Pが 100 ^1の液体培地に溶出した場合の AT P濃度で示されてい る。 またこれらは 8ゥエルの実験の平均値を示しており、 図中の縦線は標準偏差 を示す。 ネガティブコントロール siRNA 50 nMを導入した群では、 トランス フエクシヨン処置をしていない非導入群に比べて、 HEK293細胞および HeLa細胞 にてそれぞれ 36、 34%の AT P含量低下が見られるが、 これはトランスフエ クシヨン処置に由来する細胞増殖への影響と推測される。 t e s t i 20536 67-964単独、 t e s t i 2053667— 964と t e s t i 20536 67- 1 190の等量の混合物を 50 nM導入した細胞群では、 ネガティブコン トロール siRNA 50 nMを導入した群と同程度の ATP含量を示した。 c一 t e s t i 2053667に対する siRNAを HEK293細胞または HeLa細胞に導入 することによって c— t e s t i 2053667遺伝子の発現が低下したにも関 わらず、 細胞の増殖抑制が起きなかったことから、 c— t e s t i 205366 7は HEK293細胞およぴ HeLa細胞の増殖におレ、て重要な役割を担つていないこ とが示唆された。 Quantification of cell proliferation was performed by measuring ATP (adenosin triphosphate) derived from living cells using the CellTiter-Glo Luminescent Cell Viability Assay (Promega) 4 days after introduction of the siRNA. It is known that the intracellular ATP content is proportional to the number of living cells. FIG. 32 shows the results when the cell seeding density was 0.2 × 10 5 cells / ml. Similar results were obtained with other cell seeding densities. The values are shown as the ATP concentration when ATP derived from living cells in each cell eluted in a 100 ^ 1 liquid medium. In addition, these show the average value of the 8 ゥ -well experiment, and the vertical line in the figure shows the standard deviation. In the group to which 50 nM of the negative control siRNA was introduced, the ATP content was reduced by 36 and 34% in HEK293 cells and HeLa cells, respectively, compared to the non-introduced group without transfusion treatment. This is presumed to be the effect on cell proliferation resulting from treatment. Testi 20536 67-964 alone, a cell group transfected with 50 nM of an equal mixture of testi 2053667-964 and testi 20536 67-1190 showed similar ATP content to the group transfected with 50 nM negative control siRNA. Was. c- The introduction of siRNA against testi 2053667 into HEK293 cells or HeLa cells did not suppress cell growth despite the decrease in c-testi 2053667 gene expression. It was suggested that they did not play an important role in the proliferation of HEK293 cells and HeLa cells.
( 5 ) HEK293細胞およぴ HeLa細胞の細胞死に対する作用  (5) Effects on cell death of HEK293 cells and HeLa cells
前項 (3) によって c_ t e s t i 2053667の発現抑制効果が確認され た siRNA (単独または混合物) を用いて、 HEK293 細胞および HeLa細胞の細胞死 に対する作用を検討した。  The effect on cell death of HEK293 cells and HeLa cells was examined using siRNA (single or mixture) whose c_testi 2053667 expression-suppressing effect was confirmed by (3) above.
HEK293細胞は 1.2X105 cellsZmlの密度で 96穴プレート (コラーゲンタイ プ 1コート済、 岩城硝子社製) に 1ゥエル当たり 250 で播種し、 1日後に GeneSilencer siRNA Transfection Reagentを用いて、 50 nMの siRNAを導入し た。 導入時のコンフルエンシーは 50〜60 %程度であった。 siRNAについても細 胞増殖評価系で使用したものと同一のものを使用した。 HeLa 細胞については 0. 5 X 105cells/mlの密度で 96穴プレート (Greiner社製) に 1ゥエル当た P T/JP2004/002133 り 0. 25mlで播種し、 HEK293細胞と同様の操作にて siRNAを導入した。 導 入時のコンフルエンシーは 60〜70 %程度であった。 HEK293 cells are seeded at a density of 1.2 × 10 5 cellsZml on a 96-well plate (one coated with collagen type, manufactured by Iwaki Glass Co., Ltd.) at a rate of 250 cells per 1 μl. Was introduced. Confluency at the time of introduction was around 50-60%. The same siRNA as that used in the cell proliferation evaluation system was used. HeLa cells were applied to a 96-well plate (Greiner) at a density of 0.5 x 10 5 cells / ml in 1 ゥ el. PT / JP2004 / 002133 was seeded at 0.25 ml, and siRNA was introduced in the same manner as in HEK293 cells. The confluency at the time of introduction was around 60-70%.
細胞死の定量化は、 siRNA導入から 3日後に CytoTox96 Non-Radioactive Cytotoxicity Assay (プロメガ社製) を用いて死細胞から培養上清中に放出さ れた LDH (lactate dehydrogenase) 活性を測定することにより行った。 なお、 全 LDH活性は、 各実験ごとに設定された無処置群の細胞を凍結融解して完全に 破碎して得られた標品中の LDH活性の測定値である。 測定時のスタンダードは 上記製品に含まれている LDH Positive Control を 1% bovine albumin (シグ マ社製) を含む PBSまたは細胞の培養に用いている血清入り培地にて希釈して 使用した。  Cell death is quantified by measuring the LDH (lactate dehydrogenase) activity released into the culture supernatant from dead cells using the CytoTox96 Non-Radioactive Cytotoxicity Assay (Promega) three days after introduction of the siRNA. went. The total LDH activity is a measured value of the LDH activity in a sample obtained by freeze-thawing the cells in the untreated group set for each experiment and completely disrupting the cells. As a standard for measurement, the LDH Positive Control contained in the above product was diluted with PBS containing 1% bovine albumin (Sigma) or a serum-containing medium used for cell culture.
細胞死評価の結果を図 33に示す。 当該結果は siRNA導入 3日後の測定値で ある。 値は各ゥエル中の死細胞から遊離した LDH活性を、 全 LDH活性の平均値 を 100 %として換算した結果を示す。 またこれらは 8ゥヱルの実験の平均値で あり、 図中の縦線は標準偏差を示す。 いずれの siRNA導入群も、 HEK293細胞お よび HeLa細胞において最大値のそれぞれ 7%、 14 %未満の L D H活性を示す に留まった。 したがって c一 t e s t i 2053667に対する siRNA の導入 によって、 HEK293細胞およぴ HeLa細胞の細胞死の惹起は認められなかつた。 c - t e s t i 2053667に対する siRNAを HEK29細胞 3または HeLa細胞に 導入することによって c_ t e s t i 2053667遺伝子の発現が低下したに も関わらず、 細胞死の惹起が起きなかったことから、 c— t e s t i 20536 67は HEK293細胞およぴ HeLa細胞の生存において ¾要な役割を担っていない ことが示唆された。 実施例 7 各完全長 c DNAがコードするタンパク質の総合解析  The results of the cell death evaluation are shown in FIG. The results are measured 3 days after siRNA introduction. The values indicate the results obtained by converting the LDH activity released from dead cells in each well to the average of all LDH activities as 100%. In addition, these are the average values of the experiment of 8 mm, and the vertical line in the figure indicates the standard deviation. In each of the siRNA-transferred groups, only 7% and less than 14% of the maximum value of LDH activity in HEK293 cells and HeLa cells were shown, respectively. Therefore, induction of cell death of HEK293 cells and HeLa cells was not observed by the introduction of siRNA into c-t e sti 2053667. The introduction of siRNA against c-testi 2053667 into HEK29 cells 3 or HeLa cells did not induce cell death despite the decrease in c_testi 2053667 gene expression. It was suggested that they did not play an important role in the survival of cells and HeLa cells. Example 7 Comprehensive analysis of proteins encoded by each full-length cDNA
(1) c-a d r g l 2001554 (配列番号 1、 13)  (1) c-a d r g l 2001554 (SEQ ID NOS: 1, 13)
c-a d r g l 2001554 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 1に 示すように、 2168塩基から成り、 そのうち塩基番号 39番から 21 59番ま でがオープンリーディングフレーム (終止コドンを含む) である。 オープンリ 一ディングフレームから予測されるアミノ酸配列は、 706アミノ酸残基から成 る(配列番号 13)。 配列番号 13のアミノ酸配列について BLASTを用いて 相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— PROT、 P I R、 TREMBL、 GENPEPT、 PDBから作成された重複 のないアミノ酸配列のデータベース) 中の、 (i) データベース登録記号 AXO 40998および WO 00/65040号公報に記載されているアミノ酸配列が ヒットしていた。 その内容として、 AX040998および WO 00Z6504 0号公報に記載されているアミノ酸配列は 626アミノ酸力、ら成り、 そのアミノ 酸配列中のァミノ酸番号 1 7〜 616番が、 配列番号 13に記載のァミノ酸配列 のアミノ酸番号 25〜661香と、 e- value (問い合わせ配列がデータベース中 に偶然存在する期待値) : 3 X 10— 82かつ 655ァミノ酸残基にわたり 32 % の一致度 (identity) をもつことが認められた。 また (ii) データベース登録 §己"^ J350528、 Serine/threonine— protein kinase plol (Fission yeastj がヒットしていた。 その内容として、 P 50528は 683アミノ酸から成り、 そのアミノ酸配列中のアミノ酸番号 47〜674番が、 配列番号 13に記载のァ ミノ酸配列のアミノ酸番号 45〜695番と、 e - value : 6 10—75力、つ 670 アミノ酸残基にわたり 32%の一致度をもつことが認められた。 さらに (iii) データベース登録記号、 Q9R01 1、 Cytokine-inducible ca drgl 2001554 (hereinafter referred to as “present DNA” and the protein encoded by the DNA is referred to as “present protein”) is represented by SEQ ID NO: 1. As shown, it consists of 2168 bases, of which the base number from 39 to 2159 is an open reading frame (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 706 amino acid residues (SEQ ID NO: 13). A homology search was performed for the amino acid sequence of SEQ ID NO: 13 using BLAST, and the results were obtained from the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB). (I) The amino acid sequences described in the database registration symbols AXO 40998 and WO 00/65040 were hits. As its contents, the amino acid sequences described in AX040998 and WO 00Z65040 consist of 626 amino acids, and the amino acid numbers 17 to 616 in the amino acid sequence are the amino acid sequences described in SEQ ID NO: 13. and amino acid number 25-661 incense sequence, e- value (Us expected value sequence is present by chance in a database) to have 32% of the degree of coincidence over 3 X 10- 82 and 655 amino acid residues (identity) Was observed. The (ii) database registration § himself "^ J 3 50528, Serine / threonine- protein kinase plol (Fission yeastj had been hit. As its contents, P 50528 consists of 683 amino acids, amino acid number of the amino acid sequence of 47 No. ~674 is, the amino acid number 45-695 No. § amino acid sequence of Ki载in SEQ ID NO: 13, e - value: 6 10- 75 force, one can 670 having a 32% degree of coincidence over amino acid residues (Iii) Database registration code, Q9R011, Cytokine-inducible
Serine/threonine— protein kinase 、ラット 力 Sヒットしてレヽた。 その内谷とし て、 Q9R01 1は 615アミノ酸から成り、 そのアミノ酸配列中のアミノ酸番 号 3 1〜 558番が、 配列番号 1 3に記載のァミノ酸配列のァミノ酸番号 39〜 645番と、 e- value : 7 X 10—71かつ 61 3アミノ酸残基にわたり 30%の一 致度をもつことが認められた。 これらの結果より配列番号 1 3に示したアミノ酸 配列からなるタンパク質は新規のセリン_ スレオニンプロティンキナーゼである ことが推測された。 上記 (ii) のタンパク質は、 データベース中の文献情報 (Genes Dev., 9: 1059-1073 (1995)) から Gl、 G 2期の細胞における隔壁の 形成に関わることが、 さらに上記 (iii) のタンパク質は、 データベース中の文 献情報 (EMBO J., 18: 5528-5539 (1999)) からシナプス形成を調節するシグナ ル伝達に関わることがそれぞれ明らかとなった。 いずれも細胞周期への関与を示 すものであり、 後者では神経機能への関わりもあると考えられる。 Serine / threonine—protein kinase, rat strength As an inner valley, Q9R011 is composed of 615 amino acids, and amino acid numbers 31 to 558 in the amino acid sequence correspond to amino acid numbers 39 to 645 of the amino acid sequence described in SEQ ID NO: 13; - value: over 7 X 10- 71 and 61 3 amino acid residues have a 30% one致度was observed. From these results, it was inferred that the protein having the amino acid sequence shown in SEQ ID NO: 13 was a novel serine-threonine protein kinase. The protein of (ii) above is obtained from literature information in the database. (Genes Dev., 9: 1059-1073 (1995)) suggests that it is involved in the formation of septum in cells in Gl and G2 phases. , 18: 5528-5539 (1999)), respectively, revealed that they are involved in signal transmission that regulates synapse formation. Both indicate involvement in the cell cycle, and the latter may be involved in neuronal function.
また、 配列番号 13のアミノ酸配列について、 HMMPFAMによるタンパク 質特徴検索を行ったところ配列番号 13のアミノ酸番号 39〜297番に示され るアミノ酸配列にプロテインキナーゼドメインの特徴を示す配列 (P f amに p k i n a s eとしてエントリーされるアミノ酸配列) を見出した。 また HMMP F AMによる検索では、 アミノ酸番号 511〜585番に示されるアミノ酸配列 に POLO box duplicated regionの特徴を示す配列 (P f a mに POLO— b o xとしてエントリーされるアミノ酸配列) も見出された。 POLO b o xは細 胞周期、 特に G2ZM 期遷移や細胞質分裂 (サイトキネシス) に関わるセリン Zスレオニンプロテインキナーゼのサブグループであることが知られている。 実施例 4 (1) 記載の無細胞タンパク質合成系で発現させ調製した本タンパク 質を用いて、 実施例 4 (2) の系で ATP消費活性を指標としたキナーゼ活性を 測定したところ、 1600 un i tZd a yであった。 次ぎに、 実施例 4 In addition, a protein characteristic search was performed on the amino acid sequence of SEQ ID NO: 13 using HMMPFAM. As a result, the amino acid sequence represented by amino acid numbers 39 to 297 of SEQ ID NO: 13 showed a sequence (Pfam amino acid sequence entered as pkinase). In the search by HMMP FAM, a sequence showing the characteristics of the POLO box duplicated region (amino acid sequence entered as POLO-box in Pfam) was also found in the amino acid sequences shown in amino acid numbers 511 to 585. POLO box is known to be a subgroup of serine Z-threonine protein kinases involved in the cell cycle, particularly the G2ZM phase transition and cytokinesis (cytokinesis). Using this protein expressed and prepared in the cell-free protein synthesis system described in Example 4 (1), the kinase activity was measured using the ATP consuming activity as an index in the system of Example 4 (2). i tZd ay. Next, Example 4
(3) の系でぺプチドを基質としたリン酸化を指標としたキナーゼ活性を検討し たところ、 調べた限りのぺプチド基質に対してリン酸基転移による HPLCのピー クシフトは認められなかったたことから (図 29) 、 本タンパク質は特殊な基質 をターゲットとした新規キナーゼであることが示唆された。 When the kinase activity was evaluated using the phosphorylation using peptide as an index in the system of (3), no peak shift in HPLC due to transphosphorylation was observed for the peptide substrate as far as it was examined. This suggests that this protein is a novel kinase targeting a special substrate (Fig. 29).
実施例 5 (2) の本 DNAの発現解析から、 本 DNAの mRNAの発現量は全体 的に非常に低いが、 胃癌、 正常小腸、 正常直腸、 結腸癌など消化器系組織および 肺、 腎臓、 および神経芽腫由来細胞株 SH—SY5Yなどに弱い発現が認められ た。  From the expression analysis of the present DNA in Example 5 (2), the expression level of the mRNA of the present DNA is very low overall, but the digestive system tissues such as stomach cancer, normal small intestine, normal rectum, and colon cancer and lung, kidney, And weak expression was observed in neuroblastoma-derived cell line SH-SY5Y.
以上から本タンパク質は細胞周期や神経機能などに関わる機能を有する新規セ リン Zスレオニンプロテインキナーゼであることが推測された。 本タンパク質 は、 消化器系 ·呼吸器系 ·神経系などの癌、 細胞増殖 ·細胞分化または細胞 周期の異常に起因する疾患として動脈硬化 ·糖尿病性網膜症 ·子宮内膜増殖症 · 糸球体腎炎 ·心肥大 ·脳形成異常、 うつ病,統合失調症などの精神疾患、 パ 一キンソン病 *アルツハイマー病等の神経変性疾患、 喘息などの免疫 ·炎 症性疾患、 クローン病などの消化器系疾患などに関与する可能性がある。 From the above, it was speculated that this protein is a novel serine Z-threonine protein kinase having functions related to cell cycle and nerve function. This protein The digestive system · Respiratory system · Cancer of the nervous system, cell proliferation · Atherosclerosis as a disease caused by abnormal cell differentiation or cell cycle · Diabetic retinopathy · Endometriosis · Glomerulonephritis · Heart Hypertrophy · Mental illness such as brain dysplasia, depression, schizophrenia, Parkinson's disease * Neurodegenerative disease such as Alzheimer's disease, immunity such as asthma · Gastrointestinal disease such as Crohn's disease May be involved.
(2) c- t e s t i 2053667 (配列番号 2、 14)  (2) c-t e s t i 2053667 (SEQ ID NOs: 2, 14)
c- t e s t i 2053667 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 2に 示すように、 2135塩基から成り、 そのうち塩基番号 36番から 1454番ま でがオープンリーディングフレーム (終止コドンを含む) である。 オープンリ ーデイングフレームから予測されるアミノ酸配列は、 472アミノ酸残基から成 る (配列番号 14)。 配列番号 14のアミノ酸配列について BLASTを用いて 相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— PROT、 P I R、 TREMBL、 GENPEPT、 PDBから作成された重複 のないアミノ酸配列のデータベース) 中の、 (i) データベース登録記号 AY 0 61 183、 LD 14901 (fruit fly)がヒットしていた。 その内容とし て、 AY06 1 183は 790アミノ酸から成り、 そのアミノ酸配列中のアミノ 酸番号 325〜 788番が、 配列番号 14に記載のァミノ酸配列のァミノ酸番号 7〜468番と、 e- value : 5 X 10— 135かつ 471アミノ酸残基にわたり 52% の一致度をもつことが認められた。 また (ii) データベース登録記号 P 36 1 02、 PAB - dependent poly (A) -specific ribonuclease subunit PAN3 c-testi 2053667 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) comprises 2135 bases as shown in SEQ ID NO: 2, of which base number 36 Numbers 1 to 1454 are open reading frames (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 472 amino acid residues (SEQ ID NO: 14). A homology search was performed for the amino acid sequence of SEQ ID NO: 14 using BLAST. (I) Database registration symbols AY 0 61 183, LD 14901 (fruit fly) were hits. AY061183 consists of 790 amino acids, and amino acid numbers 325 to 788 in the amino acid sequence correspond to amino acid numbers 7 to 468 in the amino acid sequence described in SEQ ID NO: 14, and e-value. : to have 52% of the degree of coincidence over 5 X 10- 135 and 471 amino acid residues was observed. (Ii) Database registration code P36102, PAB-dependent poly (A) -specific ribonuclease subunit PAN3
.(Yeast) がヒットしていた。 その内容として、 P 36102は 679アミノ酸 から成り、 そのアミノ酸配列中のアミノ酸番号 231〜677番が、 配列番号 1 4に記載のァミノ酸配列のァミノ酸番号 6〜 464番と、 e - value: 1 X 10-47 かつ 482アミノ酸残基にわたり 26%の一致度をもつことが認められた。 さら に (iii) データベース登録記号 AB 062450、 NEK 7 (Human) がヒッ トしていた。 その内容として、 AB 062450は 302アミノ酸から成り、 そ のアミノ酸配列中のアミノ酸番号 35〜182番が、 配列番号 14に記載のアミ ノ酸配列のァミノ酸番号 78〜 246番と、 e- value: 4 X 1 O"7でかつ 1 73 アミノ酸残基にわたり 24%の一致度をもつことが認められた。 これらの結果よ り配列番号 14に示したァミノ酸配列からなるタンパク質はプロティンキナーゼ であることが推測された。 上記 (ii) のタンパク質は、 データベース中の文献 情報 (Mol. Cell. Biol. , 16: 5744-5753 (1996)) から生体内で mRNAのポ リ Aを短化する機能に関わることが、 さらに上記 (iii) のタンパク質は、 デー タベース中の文献情報 (Genomics, 68: 187-196 (2000)) から有糸分裂の調節 に関わることがそれぞれ明らかとなつた。 、ずれも細胞周期への関与を示すもの である。 . (Yeast) was hit. As its contents, P36102 consists of 679 amino acids, wherein amino acid numbers 231 to 677 in the amino acid sequence are the amino acid numbers 6 to 464 of the amino acid sequence described in SEQ ID NO: 14, and e-value: 1 It was found to have 26% identity over X 10 -47 and 482 amino acid residues. (Iii) Database registration symbols AB 062450 and NEK 7 (Human) were hit. AB 062450 consists of 302 amino acids. The amino acid numbers 35 to 182 in the amino acid sequence of the amino acid sequence are the amino acid numbers 78 to 246 of the amino acid sequence described in SEQ ID NO: 14, and the e-value is 4 X 1 O " 7 and 173 amino acid residues. From these results, it was inferred that the protein consisting of the amino acid sequence shown in SEQ ID NO: 14 was a protein kinase. From the literature information in the database (Mol. Cell. Biol., 16: 5744-5753 (1996)), it is implicated in the function of shortening mRNA polyA in vivo. Literature information in the database (Genomics, 68: 187-196 (2000)) has revealed that they are involved in the regulation of mitosis, and deviations indicate their involvement in the cell cycle.
本タンパク質を実施例 4 (1) の無細胞タンパク質合成系で発現させたところ、 実施例 4 (2) に記載の方法で A T P消費活性 (24 un i t/d a y) が認め られたが、 実施例 4 (3) でペプチドを基質としたリン酸基転移による HP LC のピークシフトは認められなかったことから (図 30) 、 本タンパク質は特殊な 基質をターゲットとした新規キナーゼであることが示唆された。  When this protein was expressed in the cell-free protein synthesis system of Example 4 (1), ATP consumption activity (24 units / day) was observed by the method described in Example 4 (2). 4 In (3), no peak shift of HP LC was observed due to the transphosphorylation using a peptide as a substrate (Figure 30), suggesting that this protein is a novel kinase targeting a special substrate. Was.
実施例 5 (2) の本 DNAの発現解析から、 調べた限り全ての細胞や組織で発 現しており、 白血球、 脾臓、 および前骨髄性白血病由来細胞株 HL 60など免 疫,炎症に関わる組織や細胞での発現が高く、 勝臓、 結腸直腸腺癌由来細胞株 S W620、 転移性膝臓腺癌由来細胞株 A s PC- 1, 神経芽腫由来細胞株 S H— SY5 Yなどでも発現が高かった。  According to the expression analysis of the present DNA in Example 5 (2), it was expressed in all cells and tissues as far as it was examined, and tissues involved in immunity and inflammation such as leukocyte, spleen, and promyelocytic leukemia-derived cell line HL60 And high expression in cells, as well as in the cell line SWW620, a cell line derived from the colon and colorectal adenocarcinoma, the cell line A s PC-1, a cell line derived from the metastatic knee adenocarcinoma, and the SH-SY5Y cell line derived from the neuroblastoma. it was high.
実施例 6の本 DNAに対する RNAi実験の結果からは、 通常の培養条件下での HEK293細胞 (ヒト胎児腎臓由来細胞株) および HeLa細胞 (ヒト子宫頸部癌由来 細胞株) の細胞死や細胞増殖には影響しない事がわかったが、 低酸素状態,低栄 養状態などで細胞死や細胞増殖に影響する可能性も有る。 また、 他の癌細胞で細 胞周期 ·細胞死や細胞増殖などに影響する可能性もある。  From the results of the RNAi experiments on the present DNA in Example 6, the cell death and cell proliferation of HEK293 cells (cell line derived from human fetal kidney) and HeLa cells (cell line derived from human cervical cancer) under normal culture conditions It has been found that it does not affect cell death, but it may also affect cell death and cell growth in hypoxic and hypotrophic conditions. It may also affect cell cycle, cell death and cell proliferation in other cancer cells.
以上から本タンパク質は細胞周期などに関わる機能を有する新規セリン Zスレ ォニンプロテインキナーゼであることが推測された。 本タンパク質は、 白血 病 ·消化器系癌 ·神経芽腫などの各種癌、 細胞増殖 ·細胞分化または細胞周 期の異常に起因する疾患として動脈硬化 ·糖尿病性網膜症 ·子宮内膜増殖症 ·糸 球体腎炎 ·心肥大 ·脳形成異常、 うつ病 ·統合失調症などの精神疾患、 パー キンソン病 'アルツハイマー病等の神経変性疾患、 喘息などの免疫 ·炎症 性疾患、 クローン病などの消化器系疾患などに関与する可能性がある。 From the above, it was speculated that this protein is a novel serine Z-sleonine protein kinase having functions related to the cell cycle and the like. This protein is DiseasesGastrointestinal cancer Various types of cancers such as neuroblastoma, cell proliferationArteriosclerosis as a disease caused by abnormal cell differentiation or cell cyclePeripheral diabetic retinopathyEndometriotic hyperplasiaGlomerulonephritis Hypertrophy, brain dysplasia, depression, mental disorders such as schizophrenia, Parkinson's disease Neurodegenerative diseases such as Alzheimer's disease, immunity such as asthma, inflammatory diseases, digestive system diseases such as Crohn's disease there is a possibility.
(3) c -u t e r u 200801 9 (配列番号 3、 15)  (3) c -u t e r u 200801 9 (SEQ ID NOS: 3, 15)
c-u t e r 200801 9 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 3に 示すように、 3165塩基からなり、 そのうち塩基番号 401番から 1 960番 までがオープンリーディングフレーム (終止コドンを含む) である。 オープンリ ーデイングフレームから予測されるアミノ酸配列は、 519アミノ酸残基からな る (配列番号 15) 。 配列番号 1 5のアミノ酸配列について BLASTを用いて 相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— P ROT、 P I R、 TREMBL、 GENPEPT、 P D Bから作成された重複の ないアミノ酸配列のデータベース) 中の、 データベース登録記号 B C 01064 0、 serine/ threonine kinase 3 、S t e 20、 yeast homolog) (Humanノ 力 e - value : 0. 0、 かつ 483ァミノ酸残基にわたり 100 %の一致度でヒット した。 BC010640は 491ァミノ酸残基からなり、 そのァミノ酸配列中の ァミノ酸番号 9〜 491番が、 配列番号 1 5に記載のァミノ酸配列のァミノ酸番 号 37〜519番と一致した。 両者の配列の違いは、 本タンパク質の N末端 36 残基と BC010640の N末端 8残基である (図 1 ) 。 この違いが酵素活性や、 他のタンパク質との結合 ·相互作用、 発現組織に差異をもたらす可能性が考えら れる。 以上から、 本タンパク質は B C010640、 serine/threonine kinase 3 (S t e 20、 yeast homolog) (Human) のスプライシングバリアントであ る。  cuter 200801 9 (hereinafter referred to as “present DNA” and the protein encoded by the DNA is referred to as “present protein”) comprises 3165 bases as shown in SEQ ID NO: 3, of which base number 401 Numbers 1 to 1960 are open reading frames (including the stop codon). The amino acid sequence predicted from the open reading frame consists of 519 amino acid residues (SEQ ID NO: 15). A homology search was performed on the amino acid sequence of SEQ ID NO: 15 using BLAST, and the results were found in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB). The database entry code BC010640, serine / threonine kinase 3, Ste20, yeast homolog) (Human power e-value: 0.0) and a 100% match over 483 amino acid residues. BC010640 was composed of 491 amino acid residues, and amino acid numbers 9 to 491 in the amino acid sequence corresponded to amino acid numbers 37 to 519 in the amino acid sequence described in SEQ ID NO: 15. The differences in the sequence are the N-terminal 36 residues of this protein and the N-terminal 8 residues of BC010640 (Fig. 1) .This difference causes differences in enzyme activity, binding / interaction with other proteins, and expression tissues. I think it could bring That the. Above, the protein B C010640, serine / threonine kinase 3 (S t e 20, yeast homolog) Ru splicing variant der of (Human).
BC010640は、 出芽酵母 S t e 20のホモログであるヒト S t e 20様 キナーゼ (MST) のメンバーであるが、 MS Tはカスパーゼの基質であり、 了 ポトーシス感受性を増加させること (J. Biol. Chem. , 276: 19276-19285 (2001)) が知られている。 以上から、 本タンパク質はアポトーシスに関わる S t e 20様のセリン Zスレオニンプロテインキナーゼと考えられる。 BC010640 is a member of the human Ste20-like kinase (MST), a homolog of the budding yeast Ste20, which is a caspase substrate. It is known to increase the sensitivity of potosis (J. Biol. Chem., 276: 19276-19285 (2001)). From the above, this protein is considered to be a Ste 20-like serine Z threonine protein kinase involved in apoptosis.
本 DN Aの発現組織を検討するため、 本 DNAをクエリーとして d b E ST In order to examine the expression organization of this DNA, this DNA was used as a query and dbEST
(Nature Genetics, 4: 332-3 (1993)) に対して B L A S T検索を行い、 e - value : 1 X 1 (Γ5°でヒットしたヒト E S Τが 5個以上ある糸且織を抽出したとこ ろ、 正常な骨髄 ·腎臓 ·前立腺 ·胎盤 ·全脳、 癌化した子宮という結果を得た。 また、 本 DNAは子宮由来ライブラリーからクローニングされた。 本タンパク質 はこれらの組織や細胞に特有の機能や疾患、 例えば子宫癌 ·前立腺癌 ·脳腫瘍 · 骨髄腫 ·白血病 ·悪性リンパ腫などの癌、 アルツハイマー病 ·パーキンソン病 · ハンチントン舞踏病などの神経変性疾患、 うつ病 ·精神分裂病などの中枢疾患、 自己免疫性疾患、 炎症性疾患、 アレルギー疾患、 糸球体腎炎 ·ネフローゼ症候 群 ·腎不全などの腎疾患、 ゴーシェ病などの骨髄疾患、 等の疾患の診断薬や治療 薬のターゲットとしての利用が考えられる。 A BLAST search was performed on (Nature Genetics, 4: 332-3 (1993)), and the e-value: 1 X 1 (it was found that there were 5 or more human ES ヒ ッ ト hits at 5 °). In addition, normal bone marrow, kidney, prostate, placenta, whole brain, and cancerous uterus were obtained, and this DNA was cloned from a uterus-derived library. Functions and diseases such as childhood cancer · prostate cancer · brain tumor · myeloma · leukemia · cancer such as malignant lymphoma, Alzheimer's disease · Parkinson's disease · neurodegenerative diseases such as Huntington's chorea, depression · central illness such as schizophrenia, Autoimmune diseases, inflammatory diseases, allergic diseases, glomerulonephritis, nephrotic syndrome, kidney diseases such as renal failure, bone marrow diseases such as Gaucher disease, etc. La That.
(4) c-b r c a n 2018240 (配列番号 4、 16)  (4) c-b r c a n 2018 240 (SEQ ID NOs: 4, 16)
c-b r c a n 2018240 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 4に 示すように、 2817塩基からなり、 そのうち塩基番号 42番から 1 733番ま でがオープンリーディングフレーム (終止コドンを含む) である。 オープンリー デイングフレームから予測されるアミノ酸配列は、 563アミノ酸残基からなる cb rcan 2018240 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”), as shown in SEQ ID NO: 4, consisting of 2817 bases, of which base number 42 From 1 to 733 are open reading frames (including the stop codon). Amino acid sequence predicted from open reading frame consists of 563 amino acid residues
(配列番号 16) 。 配列番号 16のアミノ酸配列について BLASTを用いて相 同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— PR OT、 P I R、 TREMBL、 GENPEPT、 P D Bから作成された重複のな いアミノ酸配列のデータベース) 中のデータベース登録記号 AX 405737(SEQ ID NO: 16). A homology search was performed for the amino acid sequence of SEQ ID NO: 16 using BLAST, and it was found in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB). Database registration symbol AX 405737
(unnamed 0RF) および WOO 2/22660号公報に記載されているアミノ酸 配列が、 e- value : 0. 0、 かつ 5 14ァミノ酸残基にわたり 95 %の一致度で ヒットした。 B LAST検索のァライメントから本タンパク質は、 AX4057 37のアミノ酸番号 35〜51番の 1 7残基、 489番の 1残基に該当するアミ ノ酸を欠失しており、 AX405737のアミノ酸番号 510番、 51 1番、 5 12番、 513番に該当するアミノ酸にそれぞれグリシン Zァラニン、 イソロイ シン Zァラニン、 セリン Zロイシン、 ァラニン Zグリシンの置換が存在すること がわかった (図 3) 。 また本 DNAは、 AX405737の塩基番号 209~2 59番の 51塩基、 塩基番号 1569〜1 571番の 3塩基に該当する塩基を欠 失し、 AX405737の塩基番号 1634/1635番に該当する位置に 34 塩基が挿入されている。 この挿入によってフレームがシフトし、 本タンパク質の C末端の 67残基、 AX405737の C末端の 64残基に違いが生じている。 実施例 4 (1) に記載の無細胞タンパク質合成系で発現させた本タンパク質を 機能評価したところ、 実施例 4 (2) に示した方法で本タンパク質の ATP消費 活性 (73 un i tXd a y) が検出できた。 さらに、 実施例 4 (3) に記すよ うに合成べプチドを基質としたリン酸基転移活性を逆相 H P L Cで分析した結果(unnamed 0RF) and the amino acid sequence described in WOO 2/22660 hit with an e-value of 0.0 and 95% identity over 514 amino acid residues. From the alignment of BLAST search, this protein is AX4057 Amino acid corresponding to 17 amino acid residues 35 to 51 and 1 residue of 489 is deleted, and amino acid numbers 510, 511, 512, 513 of AX405737 are deleted. It was found that glycine Z-alanine, isoleucine Z-alanine, serine Z-leucine, and alanine Z-glycine were substituted for the amino acids corresponding to (Fig. 3). In addition, this DNA lacks the bases corresponding to bases 209 to 259 of AX405737 and three bases of bases 1569-1571, and is located at the position corresponding to bases 1634/1635 of AX405737. 34 bases have been inserted. This insertion shifts the frame, resulting in a difference between the C-terminal 67 residues of this protein and the C-terminal 64 residues of AX405737. When the function of the present protein expressed in the cell-free protein synthesis system described in Example 4 (1) was evaluated, the ATP consumption activity of the present protein (73 unit Xday) was determined by the method described in Example 4 (2). Was detected. Furthermore, as described in Example 4 (3), the results of the analysis of the transphosphorylation activity using a synthetic peptide as a substrate by reverse-phase HPLC were performed.
(図 22。 矢印は変化した溶出位置を示す。 ) 、 Syntide2のリン酸化活性を確 認し、 本タンパク質はキナーゼであることが明確となった。 (Figure 22. The arrow indicates the changed elution position.) The phosphorylation activity of Syntide2 was confirmed, and it was clarified that this protein was a kinase.
本 DNAの発現組織を検討するため、 本 DNAをクエリーとして d b E ST To examine the expression tissue of this DNA, use this DNA as a query.
(Nature Genetics, 4: 332-3 (1993)) に対して B L A S T検索を行い、 e- value: 10— 5°でヒットしたヒト E S Tが 5個以上ある糸且織を抽出したところ、 正常な免疫系 · リンパ系 ·骨格筋 ·脳、 癌化した免疫系 ·精巣という結果を得た。 また本 D N Aは脳の尾状核由来 cDNAライブラリーからクローユングされた。 本タンパク質はこれらの組織や細胞に特有の機能や疾患、 例えばリンパ腫♦ 白血 病 ·脳腫瘍 ·精巣癌などの癌や、 筋ジストロフィー ' ミォパチ一 'テタニー '重 症筋無力症などの骨格筋疾患、 免疫系疾患、 不妊症、 常染色体劣性難聴などに関 連する可能性が推測でき、 これらの疾患の診断薬や治療薬のターゲットとしての 有用性が見込まれる。 (Nature Genetics, 4: 332-3 ( 1993)) performs a BLAST search against, e- value: 10- 5 ° where the person EST which was hit was extracted five or more a thread且織in, normal immune System · lymphatic system · skeletal muscle · brain, cancerous immune system · testes were obtained. This DNA was also cloned from a cDNA library derived from the caudate nucleus of the brain. This protein is a unique function or disease of these tissues or cells, for example, lymphoma It can be speculated that it may be related to diseases, infertility, autosomal recessive hearing loss, etc., and is expected to be useful as a target for diagnostics and therapeutics for these diseases.
(5) c -b r a c e 3003920 (配列番号 5、 17) c-b r a c e 3003920 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 5に 示すように、 5342塩基からなり、 そのうち塩基番号 371番から 3874番 までがオープンリーディングフレーム (終止コドンを含む) である。 オープンリ ーデイングフレームから予測されるアミノ酸配列は、 1 167アミノ酸残基から なる (配列番号 17) 。 配列番号 17のアミノ酸配列について BLASTを用い て相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— PROT、 P I R、 TREMBL、 GENPEPT、 PDBから作成された重複 のないアミノ酸配列のデータベース) 中のデータベース登録記号 AX 26251 6 (unnamed 0RF) およぴ WO 01/73050号公報に記載されているァミノ 酸配列が、 e - value: 0. 0、 かつ 1 160ァミノ酸残基にわたり 99 %の一致 度でヒットした。 この B LAST検索のァライメントから本タンパク質は、 AX 26251 6のアミノ酸番号 309番、 456番、 557番に該当するアミノ酸 にそれぞれスレオニンノイソロイシン、 スレオニン Zァラニン、 リジン アスパ ラギンの置換が存在し、 また本タンパク質の N末端 3残基と AX 262516の N末端 72残基が異なり、 本タンパク質の C末端 4残基と AX 262516の C 末端 12残基が異なることがわかった (図 5) 。 また本 DNAは、 AX 2625 16の塩基番号 386〜 533番の 148塩基に該当する塩基を欠失している。 配列番号 1 7のアミノ酸配列について、 HMMP F AMによるタンパク質特徴 検索を行ったところ、 アミノ酸番号 1〜 212番に示されるアミノ酸配列にプロ ティンキナーゼドメインの特徴を示す配列 (P f amに; p k i n a s eとしてェ ントリーされるアミノ酸配列) を見出した。 タンパク質の機能の類似性により ド メイン構造ゃフアミリーを分類したアミノ酸パターンのデータベースであり、 機 能的に重要な部位を検索可能な PRO S I TE (Nucleic Acids Res., 30: 235-8 (2002)) によれば、 AX 26251 6のプロテインキナーゼドメインの うち、 アミノ酸番号 27〜51は ATP region (ATP結合部位) であった。 こ 2004/002133 の領域は AX262516の第 3, ェクソンに該当し、 本 DN Aでは欠失してい る。 (5) c-brace 3003920 (SEQ ID NOS: 5, 17) cb race 3003920 (hereinafter, referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) comprises 5342 bases, as shown in SEQ ID NO: 5, among which base number 371 To 3874 are open reading frames (including the stop codon). The amino acid sequence predicted from the open reading frame consists of 1167 amino acid residues (SEQ ID NO: 17). A homology search was performed for the amino acid sequence of SEQ ID NO: 17 using BLAST. The database in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB) The amino acid sequence described in the registration symbol AX 26251 6 (unnamed 0RF) and WO 01/73050 has an e-value of 0.0, and 99% identity over 1160 amino acid residues. It was hit. From this BLAST search alignment, this protein shows that amino acids corresponding to amino acids 309, 456, and 557 of AX262516 have substitutions for threonine noisoleucine, threonine Zalanine, and lysine asparagine, respectively. It was found that the N-terminal 3 residues of the protein were different from the N-terminal 72 residues of AX262516, and the C-terminal 4 residues of this protein were different from the C-terminal 12 residues of AX262516 (Fig. 5). In addition, this DNA lacks the base corresponding to 148 bases of base numbers 386 to 533 of AX262516. When a protein characteristic search was performed on the amino acid sequence of SEQ ID NO: 17 by HMMP FAM, the amino acid sequence represented by amino acid Nos. 1 to 212 showed a sequence exhibiting the characteristics of the protein kinase domain (Pfam; as pkinase Entrant amino acid sequence). PRO SITE (Nucleic Acids Res., 30: 235-8 (2002)), which is a database of amino acid patterns that classify domain structures and families according to the similarity of protein functions. According to), in the protein kinase domain of AX262516, amino acids 27 to 51 were ATP regions (ATP binding sites). This The region of 2004/002133 corresponds to the third exon of AX262516 and is deleted in this DNA.
以上から、 本タンパク質は AX 26251 6および WO 01/73050号公 報に記載されているアミノ酸配列のバリアントであり、 プロティンキナーゼであ るか、 またはプロティンキナーゼの内在性の阻害物質であることが推定された。 本 DN Aの発現組織を検討するため、 本 DNAをクエリーとして d b EST (Nature Genetics, 4: 332-3 (1993)) に対して B L A S T検索を行い、 e - value:≤ 1 CT5°でヒットしたヒト E S Tが 5個以上ある組織を抽出したところ、 正常な免疫系 ' リンパ系組織、 癌化した肺という結果を得た。 また本 DNAは小 脳よりクローニングされた。 From the above, this protein is a variant of the amino acid sequence described in AX 262516 and WO 01/73050, and is estimated to be a protein kinase or an endogenous inhibitor of protein kinase. Was done. In order to examine the expression organization of this DNA, a BLAST search was performed for db EST (Nature Genetics, 4: 332-3 (1993)) using this DNA as a query, and hit with e-value: ≤ 1 CT 5 ° Extraction of tissues with five or more human ESTs resulted in normal immune system, lymphoid tissue, and cancerous lung. This DNA was cloned from the cerebellum.
よって本タンパク質はこれらの組織や細胞に特有の機能や疾患、 たとえばリン パ腫 ·白血病 ·骨髄腫 ·肺癌 ·脳腫瘍などの癌や、 脊髄小脳変性症、 炎症性疾患、 アレルギー疾患、 自己免疫疾患、 筋萎縮性側索硬化症、 先天性赤血球異形成貧血 などに関わる可能性が推測でき、 これらの疾患の診断薬や治療薬のターゲットと しての有用性が見込まれる。  Therefore, this protein is used for functions and diseases unique to these tissues and cells, such as lymphoma, leukemia, myeloma, lung cancer, brain tumors, spinal cerebellar degeneration, inflammatory diseases, allergic diseases, autoimmune diseases, It is possible to speculate that it may be involved in amyotrophic lateral sclerosis, congenital erythroid dysplasia anemia, etc., and is expected to be useful as a diagnostic or therapeutic target for these diseases.
(6) c -b r a c e 3038687 (配列番号 6、 1 8)  (6) c -b r a c e 3038687 (SEQ ID NOs: 6, 18)
c-b r a c e 3038687 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 6に 示すように、 4938塩基から成り、 そのうち塩基番号 81番から 2720番ま でがオープンリーディングフレーム (終止コドンを含む) で 879アミノ酸残基 cb race 3038687 (hereinafter, referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”), as shown in SEQ ID NO: 6, consisting of 4938 bases, of which base number 81 The open reading frame (including the stop codon) from position to position 2720 is 879 amino acid residues
(配列番号 18) のタンパク質をコードすると推測される。 配列番号 18のアミ ノ酸配列について B LASTを用いて相同性検索を行ったところ、 特許データべ ース GENES EQ (アミノ酸配列) 中の、 WO 98/22507号公報に SE Q I D NO. 1 1として Bii載 れてレヽる Human receptor tyrosine kinase LMR1— hがヒットした。 Human LMRl_hは 1 383ァミノ酸からなる受容体型チロ シンプロティンキナーゼであり、 そのアミノ酸配列中のアミノ酸番号 10〜90 5番が、 配列番号 18に記載のアミノ酸配列のアミノ酸番号 1〜860番と、 e-value: 0で 897アミノ酸残基にわたり 94 %の一致度をもつことが認めら れた。 Presumed to encode the protein of (SEQ ID NO: 18). A homology search was performed on the amino acid sequence of SEQ ID NO: 18 using BLAST, and as a result of the patent database GENES EQ (amino acid sequence), as WO 98/22507, SE QID NO. Human receptor tyrosine kinase LMR1-h on Bii was hit. Human LMRl_h is a receptor tyrosine protein kinase consisting of 1383 amino acid, and the amino acid numbers 10 to 905 in the amino acid sequence thereof are the amino acid numbers 1 to 860 of the amino acid sequence described in SEQ ID NO: 18, e-value: 0 was found to have 94% identity over 897 amino acid residues.
LMR 1は細胞外ドメインをほとんど持たない膜受容体型チロシンキナーゼで ある。 本タンパク質を膜貫通領域予測ソフトウエア TMp r e d (Biol. Chem. Hoppe-Seyler, 374: 166 (1993)) で解析すると、 アミノ酸番号 32〜 53番に LAVVAVS F S G LF AV I VLMLA C Lからなる膜貫通領域がヒッ トした。 また、 HMMPFAM検索を行うと、 本タンパク質のアミノ酸番号 12 5〜395番に e- value: 3. 3 X 10— 47でプロテインキナーゼドメインがヒッ トした。 本タンパク質と LMR 1— hは、 細胞内プロテインキナーゼドメインよ りも C末端側に違いが存在することから、 本タンパク質は LMR l_hと異なる シグナル伝達に関与する可能性が有る。 LMR1 is a membrane receptor tyrosine kinase with little extracellular domain. Analysis of this protein with the transmembrane domain prediction software TMp red (Biol. Chem. Hoppe-Seyler, 374: 166 (1993)) shows that the transmembrane domain consists of LAVVAVS FSG LF AV I VLMLA CL at amino acids 32 to 53. Hit. In addition, when the HMMPFAM search, to amino acid number 12 No. 5-395 of the protein e- value: protein kinase domain was hit by 3. 3 X 10- 47. Since this protein and LMR1-h differ at the C-terminal side from the intracellular protein kinase domain, this protein may be involved in signal transduction different from LMR1_h.
また、 ヒト LMR l__hは N末端の不完全クローンであるが、 本タンパク質は このバリアントであり完全長であると考えられる。  Human LMR l__h is an incomplete N-terminal clone, but this protein is considered to be a variant and full-length.
本タンパク質を実施例 4 (1) の小麦胚芽無細胞タンパク質合成系を用いて発 現させたところ、 実施例 4 (2) によって ATP消費活性が認められたが (>1 00 u n i t/d a y) , 実施例 4 (3) では合成ペプチドを基質としたリン酸 基転移による HP LCのピークシフトが認められなかった (図 23) こと力 ら、 本タンパク質は特殊な基質をターゲットとしたタンパク質キナーゼである可能性 が示唆された。  When this protein was expressed using the wheat germ cell-free protein synthesis system of Example 4 (1), ATP consuming activity was observed by Example 4 (2) (> 100 units / day). In Example 4 (3), no peak shift of HP LC due to transphosphorylation using a synthetic peptide as a substrate was observed (Fig. 23). Therefore, this protein is a protein kinase targeting a special substrate. The possibility was suggested.
WO 98/22507号公報によると LMR 1は神経細胞に発現が限局されて いる。 本 DNAは小脳由来 cDNAライブラリーから単離され細胞內ドメインに 異なる配列をもつ完全長 LMR 1である。  According to WO 98/22507, the expression of LMR1 is restricted to nerve cells. This DNA is a full-length LMR1 isolated from a cerebellar cDNA library and having a different sequence in the cell 內 domain.
以上のことから本タンパク質は脳腫瘍 ·神経芽腫 ·黒色腫などの癌、 アルッハ イマ一病 ·パーキンソン病 ·脊髄小脳変性症などの神経変性疾患、 うつ病 ·不安 症 ·精神分裂病などの中枢疾患、 糖尿病などの内分泌疾患、 炎症などに関与する 可能性があり、 これらの疾患の診断薬や治療薬のターゲットとしての利用が考え られる。 (7) c-b r a c e 3050764 (配列番号 7、 1 9) Based on the above, this protein is used in brain tumors, neuroblastoma, melanoma and other cancers, Alhaima's disease, Parkinson's disease, neurodegenerative diseases such as spinocerebellar degeneration, depression, anxiety, and schizophrenia. It may be involved in endocrine diseases such as diabetes, inflammation, etc., and may be used as targets for diagnostics and therapeutics for these diseases. (7) cb race 3050764 (SEQ ID NOs: 7, 19)
c-b r a c e 3050764 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 7に 示すように、 3346塩基からなり、 そのうち塩基番号 1 744番から 2685 番までがオープンリーディングフレーム (終止コドンを含む) である。 オープン リーディングフレームから予測されるアミノ酸配列は、 313アミノ酸残基から なる (配列番号 1 9) 。 配列番号 19のアミノ酸配列について BLASTを用い て相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— PROT、 P I R、 TREMBL、 GENPEPT、 PDBから作成された重複 のないアミノ酸配列のデータベース) 中の、 データベース登録記号 Q 15131 に登録されている cell division kinaselO/PISSLRE (c d k 10、 Human) が e- value : 5 X 10 179で 306ァミノ酸にわたり 99 %の一致度でヒットしたcb race 3050764 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) comprises 3346 bases as shown in SEQ ID NO: 7, of which base number 1744 The open reading frame (including the stop codon) is from No. 2685 to No. 2685. The amino acid sequence predicted from the open reading frame consists of 313 amino acid residues (SEQ ID NO: 19). A homology search was performed for the amino acid sequence of SEQ ID NO: 19 using BLAST, and the results were obtained from the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB). Cell division kinaselO / PISSLRE (cdk 10, Human) registered with database registration number Q 15131 hits with 99% concordance over 306 amino acids with e-value: 5 X 10 179
(図 9) 。 c d k 10タンパク質は 360アミノ酸残基からなりアミノ酸番号 3 9〜323番にプロテインキナーゼドメインをもつ cyclin dependent kinase である。そのアミノ酸番号 80〜86番に増殖抑制因子が結合する P I S S LR E配列がある。 c d k 10のアミノ酸配列番号 55〜360番が本タンパク質の アミノ酸番号 8〜 313番に一致するため、 本タンパク質は c d k 10と N末端 が異なるバリアントと考えられた。 (Figure 9). The cdk10 protein is a cyclin dependent kinase consisting of 360 amino acid residues and having a protein kinase domain at amino acids 39-323. At amino acids 80 to 86 there is a PISSLE sequence to which a growth inhibitory factor binds. Since the amino acid sequence numbers 55 to 360 of cdk10 correspond to the amino acid numbers 8 to 313 of the present protein, this protein was considered to be a variant having a different N-terminal from cdk10.
配列番号 1 9のァミノ酸配列に対して HMMP F AM検索を行うとアミノ酸番 号 8〜276番にプロテインキナーゼドメインが見出された。 これは c d k 10 のプロテインキナーゼドメイン (アミノ酸番号 39〜323番) と比較すると N 末端側が短い。 本タンパク質と c d k 10はプロテインキナーゼドメインの N末 端部に違いがあることから基質特異性や活性が異なる可能性がある。  When an HMMP FAM search was performed on the amino acid sequence of SEQ ID NO: 19, a protein kinase domain was found at amino acids 8 to 276. It is shorter on the N-terminal side than the protein kinase domain of cdk10 (amino acids 39-323). This protein and cdk10 may differ in substrate specificity and activity due to differences in the N-terminal of the protein kinase domain.
c d k 10タンパク質は細胞周期の G2から Mへの進展 (progression) に関 与し、 過剰発現により生育が抑制されることが報告されている (Cancer Res., 55: 3992-3995 (1995)) 。 そのタンパク質は成人組織でュビキタスに発現して いるが、 特に最終分化を遂げた細胞で高いため、 癌抑制因子ではないかと予想さ れたが、 乳癌での変異は認められておらず (Genomics, 56: 90-97 (1999)) 、 その機能の詳細は不明である。 It has been reported that the cdk10 protein is involved in the progression of the cell cycle from G2 to M, and that overexpression suppresses growth (Cancer Res., 55: 3992-3995 (1995)). Although its protein is ubiquitously expressed in adult tissues, it is expected to be a tumor suppressor because it is particularly high in terminally differentiated cells. However, no mutation was found in breast cancer (Genomics, 56: 90-97 (1999)), and the details of its function are unknown.
本タンパク質を実施例 4 (1) の小麦胚芽無細胞タンパク質合成系で発現させ たところ、 実施例 4 (2) の方法で AT P消費活性があること (39 un i t / d a y) 、 実施例 4 (3) の方法で syntide2を基質としてリン酸基転移による HP LCのピークシフトが認められた (図 24) ことから本タンパク質はキナー ゼであることが示された。  When this protein was expressed in the wheat germ cell-free protein synthesis system of Example 4 (1), it was confirmed that it had ATP consuming activity by the method of Example 4 (2) (39 units / day). According to the method of (3), peak shift of HP LC due to transphosphorylation was recognized using syntide2 as a substrate (FIG. 24), indicating that the present protein is a kinase.
本タンパク質は c d k 10と異なる N末端配列をもっており、 異なる発現制御 を受けている可能性があり、 細胞増殖、 分化、 発癌、 癌抑制機能への関与、 免 疫 ·炎症、 神経変性疾患などの診断薬や治療薬のターゲットとしての利用が考え られる。  This protein has a different N-terminal sequence from cdk10, and may be under different expression control.Involvement in cell proliferation, differentiation, carcinogenesis, tumor suppressor function, immunity, inflammation, diagnosis of neurodegenerative diseases, etc. It can be used as a target for drugs and therapeutics.
(8) c-b r amy 3018357 (配列番号 8、 20)  (8) c-b r amy 3018357 (SEQ ID NOs: 8, 20)
c-b r amy 3018357 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 8に 示すように、 3576塩基からなり、 そのうち塩基番号 254番から 2554番 までがオープンリーディングフレーム (終止コドンを含む) である。 オープンリ ーデイングフレームから予測されるアミノ酸配列は、 766アミノ酸残基からな る (配列番号 20) 。 配列番号 20のアミノ酸配列について B LASTを用いて 相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— P ROT、 P I R、 TREMBL、 GENPEPT、 P D Bから作成された重複の ないアミノ酸配列のデータベース) 中のデータベース登録記号 AX 327993 および WO 01Z81 588号公報に S EQ I D NO. 2として記載されて いる unnamed ORFが e- value: 0で 660アミノ酸にわたって 94 %の一致度で ヒットした。 この配列は 674ァミノ酸からなり、 そのアミノ酸番号 31〜 64 6が本タンパク質のアミノ酸番号 77~692番と一致した。 本タンパク質は A X327993と N末端、 C末端を異にするバリアントと思われた (図 1 1 ) 。 配列番号 20のアミノ酸配列を HMMPF AMによって検索を行うと、 ァミノ 酸番号 77〜316番にプロテインキナーゼドメインが検出され、 PROS I T E (Nucleic Acids Res. , 30: 235-8 (2002)) 検索によりアミノ酸番号 183 〜196番にセリン Ζスレオニンプロテインキナーゼに特有の配列が見出された。 他方、 ΑΧ327993を HMMPF AMによってプロテインキナーゼドメイン を検索すると、 アミノ酸番号 19〜 270番に存在することが予想された。 すな わちプロテインキナーゼドメインは両者の N末端配列の異なる領域にかかってお り、 基質特異性や活性が異なることが推測される。 cb r amy 3018357 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) comprises 3576 bases as shown in SEQ ID NO: 8, of which base number 254 Numbers 2554 are open reading frames (including the stop codon). The amino acid sequence predicted from the open reading frame consists of 766 amino acid residues (SEQ ID NO: 20). A homology search was performed for the amino acid sequence of SEQ ID NO: 20 using BLAST, and it was found in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB). The unnamed ORF described as SEQU ID NO. 2 in AX 327993 and WO 01Z81 588 was hit with an e-value of 0 and a 94% identity over 660 amino acids. This sequence consisted of 674 amino acids, whose amino acid numbers 31 to 646 corresponded to amino acid numbers 77 to 692 of the present protein. This protein appeared to be a variant that differs from AX327993 in the N- and C-termini (Fig. 11). When the amino acid sequence of SEQ ID NO: 20 was searched by HMMPF AM, a protein kinase domain was detected at amino acid numbers 77 to 316, and the amino acid sequence was searched by PROS ITE (Nucleic Acids Res., 30: 235-8 (2002)). Nos. 183 to 196 found a sequence specific to serine / threonine protein kinase. On the other hand, when the protein kinase domain was searched for 799327993 by HMMPFAM, it was predicted that 存在 327993 was present at amino acids 19 to 270. In other words, the protein kinase domain covers different regions of the N-terminal sequences of both, and it is presumed that the substrate specificity and the activity are different.
本タンパク質を実施例 4 (1) の無細胞タンパク質合成系で発現させたところ、 実施例 4 (2) に記載の方法で AT P消費活性 (69 un i t/d a y) が認め られ、 実施例 4 (3) に記載の方法で syntide2を基質としてリン酸基の転移に よるピークシフトが認められた (図 25) ことから本タンパク質がキナーゼであ ることが示された。  When this protein was expressed in the cell-free protein synthesis system of Example 4 (1), ATP consuming activity (69 units / day) was observed by the method described in Example 4 (2). According to the method described in (3), peak shift due to phosphate group transfer was observed using syntide2 as a substrate (FIG. 25), indicating that the present protein is a kinase.
本 DNAは脳の扁桃から単離されたがその発現分布を調べるためヒ ト d b E S T (Nature Genetics, 4: 332-3 (1993)) に対して相同性検索を行うと、 正常 組織では e- value:≤ 10— 1Q()に眼由来の 3クローンと胎児脳由来の 1クローン がヒットした。 This DNA was isolated from brain tonsils, and a homology search was performed on human db EST (Nature Genetics, 4: 332-3 (1993)) to examine its expression distribution. value: ≤10—1Q () hit 3 clones from the eye and 1 clone from the fetal brain.
以上の事から本 DN Aおよび本タンパク質は脳の発生分化における機能、 不安 症、 うつ病、 精神分裂病、 神経変性疾患、 癌、 炎症、 糖尿病などの診断薬や治療 薬、 あるいは眼科領域 (緑内障、 白内障、 網膜症など) の診断薬や治療薬のター ゲットとしての利用が考えられる。  Based on the above, this DNA and this protein are functions in the development and differentiation of the brain, anxiety disorders, depression, schizophrenia, neurodegenerative diseases, cancer, inflammation, diabetes and other diagnostic and therapeutic agents, or ophthalmology (glaucoma). Cataracts, retinopathy, etc.) as targets for diagnostics and therapeutics.
(9) c-b r awh 3022866 (配列番号 9、 21)  (9) c-b r awh 3022866 (SEQ ID NOS: 9, 21)
c-b r awh 3022866 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 9に 示すように、 4547塩基からなり、 そのうち塩基番号 32番から 3898番ま でがオープンリーディングフレーム (終止コドンを含む) である。 オープンリー デイングフレームから予測されるアミノ酸配列は、 1288アミノ酸残基からな る (配列番号 21) 。 配列番号 21のアミノ酸配列について BLASTを用いて 相同性検索を行ったところ、 ヒト配列の中では NRDBタンパク質データベース (SWI S S-PROTs P I R、 TREMBL、 GENPEPT、 PDBから 作成された重複のないアミノ酸配列のデータベース) 中おょぴ特許データベース GENESEQ (アミノ酸配列) 中に、 WO 01Z38503号公報に S EQ I D NO. 54として記載されているヒ トプロテインキナーゼ (SGK040、 909アミノ酸) が e - value: 0、 945ァミノ酸にわたって 88 %の一致度で ヒッ トした。 cb r awh 3022866 (hereinafter, referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) consists of 4547 bases as shown in SEQ ID NO: 9; Nos. 3898 to 3898 are open reading frames (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 1288 amino acid residues. (SEQ ID NO: 21). When the amino acid sequence of SEQ ID NO: 21 Homology searches were performed using BLAST, NRDB protein database in the human sequence (SWI S S-PROT s PIR , TREMBL, GENPEPT, non-redundant amino acid sequence created from PDB In the Chuopo patent database GENESEQ (amino acid sequence), a human protein kinase (SGK040, 909 amino acids) described as S EQ ID NO. 54 in WO 01Z38503 is e-value: 0, Hits were 88% consistent over 945 amino acids.
詳細に検討したところ本 DNAと SGK040は同一遺伝子からのスプライシ ングバリアントであることが判明した。 さらに、 SGK040にはプロテインキ ナーゼドメインの上流に隣接して 44アミノ酸の挿入があることが分かった。 こ のことから本タンパク質は SGK040と基質特異性あるいは活性に違いがある 可能性がある。  Detailed examination revealed that the present DNA and SGK040 are splicing variants from the same gene. In addition, SGK040 was found to have a 44 amino acid insertion adjacent to and upstream of the protein kinase domain. This suggests that this protein may differ from SGK040 in substrate specificity or activity.
本タンパク質を、 実施例 4 (1) の無細胞タンパク質合成系で発現させたとこ ろ、 実施例 4 (2) により ATP消費活性 (21 7un i t/ά a y) が認めら れ、 実施例 4 (3) により syntide2を基質としてリン酸基転移による HPLC でのピークシフトが認められた (図 26) ことからキナーゼであることが確認さ 本 DNAは脳に由来するが、 d b EST (Nature Genetics, 4: 332-3  When this protein was expressed in the cell-free protein synthesis system of Example 4 (1), ATP consumption activity (217 unit / άay) was observed in Example 4 (2). According to 3), a peak shift in HPLC by phosphoryl transfer using syntide2 as a substrate was confirmed (Fig. 26), confirming that it is a kinase. This DNA is derived from the brain, but db EST (Nature Genetics, 4) : 332-3
(1993)) に対する BLAST検索では免疫系、 皮膚、 腎臓、 脳、 副腎などで全 域にわたってヒットクローンが散見される。 また、 本タンパク質は核に存在し染 色体の凝集への関与が予想される。  (1993)), BLAST searches against the immune system, skin, kidney, brain, adrenal gland, and other hit clones were found throughout. In addition, this protein is present in the nucleus and is expected to be involved in the aggregation of chromosomes.
以上のことから、 本 DNAおよび本タンパク質には、 癌、 免疫炎症 (たとえば 自己免疫疾患、 腎炎など) 、 高血圧、 神経変性疾患などの診断薬や治療薬のター ゲットとしての利用が考えられる。  From the above, it is considered that the present DNA and the present protein can be used as targets for diagnostics and therapeutics for cancer, immune inflammation (eg, autoimmune diseases, nephritis, etc.), hypertension, and neurodegenerative diseases.
(10) c-b r awh 3043827 (配列番号 10、 22) c一 b r a wh 3043827 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 10 に示すように、 4222塩基からなり、 そのうち塩基番号 146番から 3406 番までがオープンリーディングフレーム (終止コドンを含む) である。 オープン リーディングフレームから予測されるアミノ酸配列は、 1086アミノ酸残基か らなる (配列番号 22) 。 配列番号 22のァミノ酸配列について B L A S Tを用 いて相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S — PROT、 P I R、 TREMBL、 GENPEPT、 PDBから作成された重 複のないアミノ酸配列のデータベース) 中の、 データベース登録記号 L 1373 8に登録されている 1036アミノ酸の Homo sapiens activated p21cdc42Hs kinase (ACK 1) が e- value : 0、 1053アミノ酸にわたり 95 %の一致度 でヒッ卜した。 本タンパク質は cdc42 binding regionと clathrin binding regionの間に 1 5アミノ酸の揷入を持つタンパク質であり、 c d c 42やクラ スリンなどとの結合や相互作用が ACK 1と異なる可能性がある。 (10) cb r awh 3043827 (SEQ ID NOS: 10, 22) c-bra wh 3043827 (hereinafter, referred to as “the present DNA” and the protein encoded by the DNA is referred to as “the present protein”), as shown in SEQ ID NO: 10, consisting of 4222 bases, Nos. 146 to 3406 are open reading frames (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 1086 amino acid residues (SEQ ID NO: 22). A homology search using BLAST was performed on the amino acid sequence of SEQ ID NO: 22, which was found in the NRDB protein database (SWISS—a database of non-overlapping amino acid sequences created from PROT, PIR, TREMBL, GENPEPT, and PDB). Homo sapiens activated p21cdc42Hs kinase (ACK 1) of 1036 amino acids registered in the database registration code L13738 was hit with 95% identity over e-value: 0 and 1053 amino acids. This protein is a protein with 15 amino acids between the cdc42 binding region and clathrin binding region. Its binding and interaction with cdc42 and clathrin may be different from ACK1.
本タンパク質を、 実施例 4 (1) の無細胞タンパク質合成系で発現させたとこ ろ、 実施例 4 (2) により AT P消費活性が認められなかった。 本タンパク質の 十分な活性化にはリン酸ィヒあるいはプロテアーゼ切断などの修飾が必要か、 ある いは特殊な基質をターゲットとしたタンパク質キナーゼであることが示唆された。 以上より、 本タンパク質は、 癌、 動脈硬化、 糖尿病、 H I V、 炎症、 受容体の 細胞内取りこみにかかわる疾患、 神経伝達異常に関わる疾患、 アルツハイマー病 などの痴呆症、 高血圧、 緑内障などの診断薬 ·治療薬のターゲットとしての利用 が考えられる。  When this protein was expressed in the cell-free protein synthesis system of Example 4 (1), no ATP consuming activity was observed in Example 4 (2). It was suggested that sufficient activation of this protein requires modifications such as phosphoric acid or protease cleavage, or that it is a protein kinase targeting a special substrate. Based on the above, this protein is a diagnostic agent for cancer, arteriosclerosis, diabetes, HIV, inflammation, diseases related to receptor uptake, diseases related to neurotransmission disorders, dementia such as Alzheimer's disease, hypertension, glaucoma, etc. It can be used as a target for therapeutic drugs.
(1 1) c-b r t h a 20348 74 (配列番号 1 1、 23)  (1 1) c-b r t h a 20348 74 (SEQ ID NOS: 11, 23)
c一 b r t h a 2034874 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 1 1 に示すように、 3857塩基からなり、 そのうち塩基番号 55番から 1 287番 までがオープンリーディングフレーム (終止コドンを含む) である。 オープンリ 04002133 ーデイングフレームから予測されるアミノ酸配列は、 410アミノ酸残基からな る (配列番号 23) 。 配列番号 23のアミノ酸配列について BLASTを用いて 相同性検索を行ったところ、 NRDBタンパク質データベース (SWI S S— P ROT、 P I R、 TREMBL、 GENPEPT、 P D Bから作成された重複の ないアミノ酸配列のデータベース) 中の、 データベース登録記号: P 45985に 登録されてレヽる Dual specificity mitogen— activated protein kinase kinase 4、 MAP kinase kinase 4 (MA P KK 4 ) 、 J K activating kinase 1、 c-Jun N-terminal kinase kinase 1 (JNKK) 、 SAPK/ERK kinase 1 (SEK 1) ) が e-value : 0、 410ァミノ酸にわたり 97 %の一致度でヒットした。 MA P KK 4は全長 399アミノ酸からなる。 本タンパク質は MAP KK 4のアミノ酸 番号 39番と 40番の間に 11アミノ酸の挿入 (本タンパク質のアミノ酸番号 4 0-50) をもつバリアントである (図 17) 。 c-brtha 2034874 (hereinafter referred to as “present DNA” and the protein encoded by the DNA is referred to as “present protein”) consists of 3857 bases, as shown in SEQ ID NO: 11, of which base number Nos. 55 to 1287 are open reading frames (including a stop codon). Open 04002133 The amino acid sequence predicted from the coding frame consists of 410 amino acid residues (SEQ ID NO: 23). A homology search was performed for the amino acid sequence of SEQ ID NO: 23 using BLAST. , Database registration code: Registered in P45985, Dual specificity mitogen—activated protein kinase kinase 4, MAP kinase kinase 4 (MAP KK 4), JK activating kinase 1, c-Jun N-terminal kinase kinase 1 (JNKK ), SAPK / ERK kinase 1 (SEK 1)) hit 97% of e-value: 0, 410 amino acids. MA P KK 4 has a total length of 399 amino acids. This protein is a variant that has an insertion of 11 amino acids between amino acids 39 and 40 of MAP KK4 (amino acids 40-50 of this protein) (Figure 17).
本タンパク質を実施例 4 (1) の無細胞タンパク質合成系で発現させたところ、 実施例 4 (2) の方法で ATP消費活性 (33 un i t/d a y) が検出され、 実施例 4 (3) で syntide2を基質としてリン酸基転移による HPLCのピーク シフトが認められた (図 28) ことから、 本タンパク質はキナーゼ活性を有する ことが示された。  When this protein was expressed in the cell-free protein synthesis system of Example 4 (1), ATP consuming activity (33 units / day) was detected by the method of Example 4 (2). As a result, a peak shift in HPLC due to transphosphorylation using syntide2 as a substrate was observed (FIG. 28), indicating that this protein has kinase activity.
本タンパク質は、 免疫、 肝臓、 脳などのストレスに対するアポトーシス、 細胞 増殖、 癌、 GPCRによるシグナル伝達異常、 神経細胞の突起伸長、 痴呆、 肝再 生、 糖尿病、 血圧調節、 筋萎縮性側索硬化症、 あるいは自己免疫疾患、 アレルギ 一をはじめとする免疫炎症疾患などへの関与が推測され、 これらの疾患の診断薬 や治療薬のターゲットとしての利用が考えられる。  This protein is used for apoptosis against immune, liver, brain and other stress, cell proliferation, cancer, abnormal signal transduction by GPCR, elongation of nerve cells, dementia, liver regeneration, diabetes, blood pressure regulation, amyotrophic lateral sclerosis In addition, it is presumed to be involved in autoimmune diseases, immune inflammatory diseases such as allergic diseases, etc., and it can be used as a target for diagnostics and therapeutics for these diseases.
(12) c- t e s t i 4052197 (配列番号 12、 24)  (12) c-te s t i 4052197 (SEQ ID NOS: 12, 24)
c- t e s t i 4052197 (以下、 これを 「本 DNA」 と称し、 該 DNA によりコードされるタンパク質を 「本タンパク質」 と称する) は、 配列番号 12 に示すように、 3105塩基からなり、 そのうち塩基番号 407番から 1690 番までがオープンリーディングフレーム (終止コドンを含む) である。 オープン リーディングフレームから予測されるアミノ酸配列は、 427アミノ酸残基から なる (配列番号 24) 。 本タンパク質について B LASTを用いて相同性検索を 行ったところ、 NRDBタンパク質データベース (SWI S S— PROT、 P I R、 TREMBL、 GENPEPT, P D Bから作成された重複のないアミノ酸 配列のデータベース) 中の、 データベース登録記号 XO 7767に登録されてい O Human cAMP— dependent protein kinase catalytic subunit type alpha (P KAC a) が e- value : 0、 336アミノ酸にわたり 99 %の一致度でヒットし た。 この配列は 351ァミノ酸からなり、 そのァミノ酸番号 16〜 351番が本 タンパク質のアミノ酸番号 92〜427番に相当することから本タンパク質は P KACaの N末端バリアントであると考えられる (図 19) 。 c-testi 4052197 (hereinafter referred to as “present DNA”, and the protein encoded by the DNA is referred to as “present protein”) comprises 3105 bases as shown in SEQ ID NO: 12, of which base number 407 Numbers 1690 to 1690 are open reading frames (including stop codons). open The amino acid sequence predicted from the reading frame consists of 427 amino acid residues (SEQ ID NO: 24). A homology search was performed on this protein using BLAST, and the database registration symbol in the NRDB protein database (a database of non-overlapping amino acid sequences created from SWI SS—PROT, PIR, TREMBL, GENPEPT, and PDB) was obtained. O Human cAMP-dependent protein kinase catalytic subunit type alpha (P KACa) registered in XO7767 hit with 99% identity over 0 and 336 amino acids. This sequence is composed of 351 amino acids, and amino acid numbers 16 to 351 correspond to amino acid numbers 92 to 427 of this protein, indicating that this protein is an N-terminal variant of PKACa (Fig. 19). .
本タンパク質を実施例 4 (1) の無細胞タンパク質合成系により発現させたと ころ、 実施例 4 (2) で ATP消費活性は認められなかった。 本タンパク質の機 能には、 リン酸化などの刺激あるいはプロテアーゼ切断などの活性化が必要であ ると考えられる。  When this protein was expressed by the cell-free protein synthesis system of Example 4 (1), no ATP consuming activity was observed in Example 4 (2). It is thought that the function of this protein requires stimulation such as phosphorylation or activation such as protease cleavage.
本タンパク質はそのアミノ酸番号 1~91番が新規配列である。 この領域に特 有に結合するタンパク質によって、 あるいは特有の発現調節をうけることにより、 本来の PKA catalytic subunit αと異なる機能を有する可能性がある。 本 DN Αは精巣から単離されたが、 PKA catalytic subunit ひのノックアウトマウス の実験から本タンパク質は精子成熟、 肝臓、 腎臓タンパク質の発現調節などにか かわると推定される。  This protein has a novel sequence at amino acids 1 to 91. It may have a function different from that of the original PKA catalytic subunit α by a protein that specifically binds to this region or by subjecting it to specific expression regulation. Although this DNII was isolated from the testis, experiments on PKA catalytic subunit chick knockout mice suggest that this protein is involved in sperm maturation, regulation of liver, and kidney protein expression.
以上から、 本タンパク質には肝癌 ·腎臓癌 ·精巣癌などの癌、 肝炎、 肝硬変、 腎炎、 糖尿病、 免疫 ·炎症性疾患、 不妊、 GPCRのシグナル伝達にかかわる疾 患などの診断や治療などのターゲットとしての利用が考えられる。 産業上の利用の可能性  Based on the above, this protein is targeted for diagnosis and treatment of cancers such as liver cancer, kidney cancer, testis cancer, hepatitis, cirrhosis, nephritis, diabetes, immunity, inflammatory diseases, infertility, and diseases related to GPCR signaling. It can be used as Industrial potential
本発明のタンパク質およびそれをコードする D N Aはキナーゼ活性等を有する こと力ゝら、 該タンパク質あるいはそれをコードする DNAを用いて該活性を調節 する物質をスクリ一二ングすることができ、 該タンパク質が関連する疾患等に作 用し得る医薬の開発に有用である。 Since the protein of the present invention and the DNA encoding the same have kinase activity and the like, the activity is regulated by using the protein or the DNA encoding the protein. It is useful for the development of a medicament that can screen for a substance that can act on diseases associated with the protein.
本出願は、 2 0 0 3年 2月 2 4日付けの日本特許出願 (特願 2 0 0 3— 4 6 6 0 6 ) に基づくものであり、 その内容はここに参照として取り込まれる。 また、 本明細書にて引用した文献の内容もここに参照として取り込まれる。  This application is based on a Japanese patent application filed on Feb. 24, 2003 (Japanese Patent Application No. 2003-46666), the contents of which are incorporated herein by reference. The contents of the documents cited in the present specification are also incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
1. 以下の (a) または (b) のタンパク質; 1. The following protein (a) or (b):
(a) 配列番号 13〜 24のいずれかに記載のアミノ酸配列からなるタンパク質 (a) a protein consisting of the amino acid sequence of any one of SEQ ID NOs: 13 to 24,
(b) 配列番号 13〜 24のいずれかに記載のアミノ酸配列において 1もしくは 数個のァミノ酸が欠失、 置換および または付加されたァミノ酸配列からなり、 かつキナーゼ活性を有するタンパク質。 (b) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted, or added in the amino acid sequence of any of SEQ ID NOs: 13 to 24, and which has a kinase activity;
2. 請求項 1に記載のタンパク質をコードする DNA。  2. A DNA encoding the protein of claim 1.
3. 請求項 1に記載のタンパク質をコードする完全長 c D N A。  3. A full-length cDNA encoding the protein of claim 1.
4. 以下の (a) または (b) のいずれかの DNA ;  4. DNA of either (a) or (b) below;
(a) 配列番号 1〜12のいずれかに記載の塩基配列を有する DNA、  (A) DNA having the nucleotide sequence of any one of SEQ ID NOs: 1 to 12,
( b ) 配列番号 1〜 12のいずれかに記載の塩基配列において、 1もしくは数個 の塩基が欠失、 置換および/または付加された塩基配列を有し、 かつキナーゼ活 性を有するタンパク質をコードする DNA、  (b) Encoding a protein having a kinase activity having a base sequence in which one or several bases are deleted, substituted and / or added in the base sequence set forth in any one of SEQ ID NOS: 1 to 12 DNA,
(c) 配列番号 1〜12のいずれかに記載の塩基配列あるいはその相補配列を有 する D N Aをストリンジヱントな条件下でハイブリダィズすることができる塩基 配列を有し、 かつキナーゼ活性を有するタンパク質をコードする DNA。  (c) a protein having a nucleotide sequence capable of hybridizing a DNA having the nucleotide sequence of any one of SEQ ID NOs: 1 to 12 or a sequence complementary thereto under stringent conditions, and encoding a protein having kinase activity DNA.
5 · 請求項 2〜 4のレ、ずれかに記載の D N Aを含む組換えべクタ一。  5 · A recombinant vector containing the DNA according to any one of claims 2 to 4 or any of the preceding claims.
6. 請求項 2〜4のいずれかに記載の DN Aまたは請求項 5に記載の組換え べクターを導入した遺伝子導入細胞または該細胞からなる個体。  6. A transgenic cell into which the DNA according to any one of claims 2 to 4 or the recombinant vector according to claim 5 has been introduced, or an individual comprising the cell.
7. 請求項 6に記載の細胞により産生される、 請求項 1に記載のタンパク質,  7. The protein of claim 1, produced by the cell of claim 6,
8 - 請求項 2〜4のいずれかに記載の DN Aの塩基配列中の連続した 5〜 1 00塩基と同じ配列を有するセンスオリゴヌクレオチド、 当該センスオリゴヌク レオチドと相捕的な配列を有するアンチセンスオリゴヌクレオチド、 および、 当 該センスまたはアンチセンスオリゴヌクレオチドのオリゴヌクレオチド誘導体か ら成る群から選ばれるオリゴヌクレオチド。 8-A sense oligonucleotide having the same sequence as 5 to 100 consecutive nucleotides in the nucleotide sequence of DNA according to any one of claims 2 to 4, and an antisense having a sequence complementary to the sense oligonucleotide. An oligonucleotide selected from the group consisting of a sense oligonucleotide and an oligonucleotide derivative of the sense or antisense oligonucleotide.
9 . 請求項 1または Ίに記載のタンパク質に特異的に結合する抗体あるいは その部分フラグメント。 9. An antibody or a partial fragment thereof that specifically binds to the protein of claim 1 or Ί.
1 0 . 抗体がモノクローナル抗体である請求項 9に記載の抗体。  10. The antibody according to claim 9, wherein the antibody is a monoclonal antibody.
1 1 . モノクローナル抗体が請求項 1または 7に記載のタンパク質のキナー ゼ活性を中和する作用を有することを特徴とする請求項 1 0に記載の抗体。  11. The antibody according to claim 10, wherein the monoclonal antibody has an action of neutralizing the kinase activity of the protein according to claim 1 or 7.
1 2 . 請求項 1または 7に記載のタンパク質と被検物質を接触させ、 該被検 物質による該タンパク質が有する活性の変化を測定することを特徴とする、 該タ ンパク質の活性調節物質のスクリ一ユング方法。  12. The method according to claim 1, wherein the test substance is brought into contact with the protein according to claim 1 or 7, and a change in the activity of the protein caused by the test substance is measured. Screen Jung method.
1 3 . 請求項 1に記載のタンパク質を発現する細胞または請求項 6に記載の 遺伝子導入細胞と被検物質を接触させ、 該細胞に導入されている D NAの発現レ ベルの変化を検出することを特徴とする、 該 D NAの発現調節物質のスクリー二 ング方法。  13. Contacting a test substance with a cell that expresses the protein according to claim 1 or the gene-transfected cell according to claim 6, and detecting a change in the expression level of DNA introduced into the cell. A method for screening for a substance that regulates expression of DNA, characterized in that:
1 4 . 請求項 1に記載のタンパク質のアミノ酸配列から選択される少なくと も 1以上のァミノ酸配列情報および Zまたは請求項 2 4のいずれかに記載の D NAの塩基配列から選択される少なくとも 1以上の塩基配列情報を保存したコン ピュータ読み取り可能記録媒体。  14. At least one or more amino acid sequence information selected from the amino acid sequence of the protein according to claim 1, and at least one selected from Z or the base sequence of the DNA according to any one of claims 24 to 24. A computer-readable recording medium that stores one or more base sequence information.
1 5 . 請求項 1に記載のタンパク質および Zまたは請求項 2〜4のいずれか に記載の D N Aを結合させた担体。  15. A carrier to which the protein according to claim 1 and Z or the DNA according to any one of claims 2 to 4 are bound.
PCT/JP2004/002133 2003-02-24 2004-02-24 Novel proteins and dnas encoding the same WO2004074485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-046606 2003-02-24
JP2003046606A JP2006174701A (en) 2003-02-24 2003-02-24 New protein and dna encoding the same

Publications (1)

Publication Number Publication Date
WO2004074485A1 true WO2004074485A1 (en) 2004-09-02

Family

ID=32905588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002133 WO2004074485A1 (en) 2003-02-24 2004-02-24 Novel proteins and dnas encoding the same

Country Status (2)

Country Link
JP (1) JP2006174701A (en)
WO (1) WO2004074485A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066498A1 (en) * 2006-12-01 2008-06-05 Agency For Science, Technology And Research Cancer-related protein kinases
WO2008122789A3 (en) * 2007-04-05 2008-12-04 Medical Res Council Methods for modulating lrrk2
US8206942B2 (en) 2007-04-05 2012-06-26 Medical Research Council Methods of identifying LRRK2 inhibitors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017794A1 (en) * 1997-10-03 1999-04-15 Smithkline Beecham Corporation UDP-N-ACETYLMURAMOYL-L-AIANINE:D-GLUTAMATE LIGASE (murD) OF STAPHYLOCOCCUS AUREUS
WO2000065040A2 (en) * 1999-04-22 2000-11-02 Pioneer Hi-Bred International, Inc. Cell cycle genes from plants and methods of use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017794A1 (en) * 1997-10-03 1999-04-15 Smithkline Beecham Corporation UDP-N-ACETYLMURAMOYL-L-AIANINE:D-GLUTAMATE LIGASE (murD) OF STAPHYLOCOCCUS AUREUS
WO2000065040A2 (en) * 1999-04-22 2000-11-02 Pioneer Hi-Bred International, Inc. Cell cycle genes from plants and methods of use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI B. ET AL: "Prk, A cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas", J. BIOL. CHEM., vol. 271, no. 32, 1996, pages 19402 - 19408, XP002979795 *
MAMMALIAN GENE COLLECTION (MGC) PROGRAM TEAM: "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences", PNAS USA, vol. 99, no. 26, 24 December 2002 (2002-12-24), pages 16899 - 16903, XP002964739 *
UEYAMA T. ET AL: "cDNA cloning of an alternative splicing variant of protein kinase C delta (PKC deltaIII), a new truncated form of PKCdelta, in rats", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 269, 2000, pages 557 - 563, XP002979796 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066498A1 (en) * 2006-12-01 2008-06-05 Agency For Science, Technology And Research Cancer-related protein kinases
WO2008122789A3 (en) * 2007-04-05 2008-12-04 Medical Res Council Methods for modulating lrrk2
US7947468B2 (en) 2007-04-05 2011-05-24 Medical Research Council Methods
US8206942B2 (en) 2007-04-05 2012-06-26 Medical Research Council Methods of identifying LRRK2 inhibitors

Also Published As

Publication number Publication date
JP2006174701A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
CA2665489C (en) Prrg4-associated compositions and methods of use thereof in methods of tumor diagnosis
WO2004009622A2 (en) Protein complexes of cellular networks underlying the development of cancer and other diseases
US20030215803A1 (en) Human genes and gene expression products isolated from human prostate
US20020098511A1 (en) Protein-protein interactions
WO2004074485A1 (en) Novel proteins and dnas encoding the same
Simmons et al. Identification of NOM1, a nucleolar, eIF4A binding protein encoded within the chromosome 7q36 breakpoint region targeted in cases of pediatric acute myeloid leukemia
JP2004526429A (en) Human genes and gene expression products isolated from human prostate
JP2005245274A (en) Cell proliferation promoter
WO2004099408A1 (en) Novel protein and dna coding for the same
US20020164647A1 (en) Protein-protein interactions
JPWO2004024913A1 (en) Novel protein and DNA encoding the same
US20020098514A1 (en) Protein-protein interactions
WO2004031242A2 (en) Protein complexes involved in neurological diseases
WO2003084992A1 (en) Novel proteins and dnas encoding the same
JP2004229639A (en) New protein and dna encoding the same
JP2004229643A (en) Protein and dna encoding the same
WO2007128553A9 (en) Mig12
JP2004041180A (en) New protein and dna encoding the same
JP2004357702A (en) New protein and dna encoding the same
Bera et al. Identification of novel cancer target antigens utilizing EST and genome sequence databases
JP2004229640A (en) New protein and dna encoding the same
JP2004229649A (en) New protein and dna encoding the same
WO2003089466A1 (en) Novel proteins and dnas encoding the same
WO2003091435A1 (en) Novel proteins and dnas encoding the same
WO2003091428A1 (en) Novel proteins and dnas encoding the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP