WO2004074386A2 - Extrusion method of making a dry paint transfer laminate - Google Patents
Extrusion method of making a dry paint transfer laminate Download PDFInfo
- Publication number
- WO2004074386A2 WO2004074386A2 PCT/US2004/003846 US2004003846W WO2004074386A2 WO 2004074386 A2 WO2004074386 A2 WO 2004074386A2 US 2004003846 W US2004003846 W US 2004003846W WO 2004074386 A2 WO2004074386 A2 WO 2004074386A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- release
- film layer
- matte
- liner
- Prior art date
Links
- 239000003973 paint Substances 0.000 title claims abstract description 296
- 238000012546 transfer Methods 0.000 title claims abstract description 84
- 238000001125 extrusion Methods 0.000 title description 11
- 239000010410 layer Substances 0.000 claims abstract description 518
- 239000011247 coating layer Substances 0.000 claims abstract description 67
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims abstract description 64
- 238000004519 manufacturing process Methods 0.000 claims abstract description 20
- 239000012260 resinous material Substances 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims description 94
- 238000000034 method Methods 0.000 claims description 81
- 239000012790 adhesive layer Substances 0.000 claims description 70
- 229920001577 copolymer Polymers 0.000 claims description 61
- 229920005989 resin Polymers 0.000 claims description 57
- 239000011347 resin Substances 0.000 claims description 57
- 239000000853 adhesive Substances 0.000 claims description 55
- 230000001070 adhesive effect Effects 0.000 claims description 55
- -1 polyethylene Polymers 0.000 claims description 48
- 239000000758 substrate Substances 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 36
- 229920000642 polymer Polymers 0.000 claims description 33
- 238000000576 coating method Methods 0.000 claims description 29
- 239000011248 coating agent Substances 0.000 claims description 27
- 229920002554 vinyl polymer Polymers 0.000 claims description 26
- 230000004888 barrier function Effects 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 229920001971 elastomer Polymers 0.000 claims description 16
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 15
- 239000005977 Ethylene Substances 0.000 claims description 15
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 14
- 239000005060 rubber Substances 0.000 claims description 14
- 239000004698 Polyethylene Substances 0.000 claims description 13
- 229920000573 polyethylene Polymers 0.000 claims description 13
- 229920000098 polyolefin Polymers 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 13
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 12
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 11
- 229920000058 polyacrylate Polymers 0.000 claims description 11
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 11
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 10
- 229920000728 polyester Polymers 0.000 claims description 10
- 229920000877 Melamine resin Polymers 0.000 claims description 8
- 229920000180 alkyd Polymers 0.000 claims description 8
- 239000000945 filler Substances 0.000 claims description 7
- 239000004800 polyvinyl chloride Substances 0.000 claims description 7
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 5
- 239000004640 Melamine resin Substances 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 5
- 239000011118 polyvinyl acetate Substances 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000004831 Hot glue Substances 0.000 claims description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 4
- 229920000554 ionomer Polymers 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920002223 polystyrene Polymers 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 4
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 claims description 3
- 229920002959 polymer blend Polymers 0.000 claims description 3
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 claims description 2
- 239000003522 acrylic cement Substances 0.000 claims description 2
- 229920006267 polyester film Polymers 0.000 claims description 2
- 239000013464 silicone adhesive Substances 0.000 claims description 2
- 239000011236 particulate material Substances 0.000 claims 2
- 239000004447 silicone coating Substances 0.000 claims 1
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 87
- 239000000047 product Substances 0.000 description 77
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 63
- 229920001400 block copolymer Polymers 0.000 description 43
- 238000009472 formulation Methods 0.000 description 34
- 239000000049 pigment Substances 0.000 description 34
- 239000000126 substance Substances 0.000 description 34
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 31
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 25
- 239000011230 binding agent Substances 0.000 description 21
- 239000007788 liquid Substances 0.000 description 21
- 150000001993 dienes Chemical class 0.000 description 18
- 229940044603 styrene Drugs 0.000 description 18
- 230000008569 process Effects 0.000 description 17
- 239000000123 paper Substances 0.000 description 15
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 14
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 14
- 238000005984 hydrogenation reaction Methods 0.000 description 14
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 13
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 13
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 13
- 229920001296 polysiloxane Polymers 0.000 description 13
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical class C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 12
- 229920002633 Kraton (polymer) Polymers 0.000 description 11
- 239000000839 emulsion Substances 0.000 description 11
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 10
- 239000000155 melt Substances 0.000 description 10
- 239000002667 nucleating agent Substances 0.000 description 10
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 10
- 239000003963 antioxidant agent Chemical class 0.000 description 9
- 239000006229 carbon black Substances 0.000 description 9
- 239000008199 coating composition Substances 0.000 description 9
- 239000012141 concentrate Substances 0.000 description 9
- 239000004408 titanium dioxide Substances 0.000 description 9
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 8
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 7
- WSEFOZIMAJPJHW-UHFFFAOYSA-N 4-amino-2-(hydroxymethyl)phenol Chemical compound NC1=CC=C(O)C(CO)=C1 WSEFOZIMAJPJHW-UHFFFAOYSA-N 0.000 description 7
- 229920003270 Cymel® Polymers 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 238000003475 lamination Methods 0.000 description 7
- 239000004611 light stabiliser Substances 0.000 description 7
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 7
- 239000004926 polymethyl methacrylate Substances 0.000 description 7
- 229920001384 propylene homopolymer Polymers 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 6
- OLFNXLXEGXRUOI-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-bis(2-phenylpropan-2-yl)phenol Chemical compound C=1C(N2N=C3C=CC=CC3=N2)=C(O)C(C(C)(C)C=2C=CC=CC=2)=CC=1C(C)(C)C1=CC=CC=C1 OLFNXLXEGXRUOI-UHFFFAOYSA-N 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 229920006370 Kynar Polymers 0.000 description 5
- 229920005479 Lucite® Polymers 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 5
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 229920001519 homopolymer Polymers 0.000 description 5
- 239000012943 hotmelt Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 229920002857 polybutadiene Polymers 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 229920001195 polyisoprene Polymers 0.000 description 5
- 229920006254 polymer film Polymers 0.000 description 5
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000004840 adhesive resin Substances 0.000 description 4
- 229920006223 adhesive resin Polymers 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000012760 heat stabilizer Substances 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 4
- 229920001684 low density polyethylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- 239000000080 wetting agent Substances 0.000 description 4
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 3
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 3
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical group C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229920003620 Grilon® Polymers 0.000 description 3
- 229920006060 Grivory® Polymers 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- 229920001756 Polyvinyl chloride acetate Polymers 0.000 description 3
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 3
- 239000012445 acidic reagent Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 239000002518 antifoaming agent Substances 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 3
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000002655 kraft paper Substances 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 150000007519 polyprotic acids Polymers 0.000 description 3
- 229920002620 polyvinyl fluoride Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 150000003440 styrenes Chemical class 0.000 description 3
- 229940014800 succinic anhydride Drugs 0.000 description 3
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 3
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 239000006057 Non-nutritive feed additive Substances 0.000 description 2
- 229920000572 Nylon 6/12 Polymers 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 2
- 229920007962 Styrene Methyl Methacrylate Polymers 0.000 description 2
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 229920006243 acrylic copolymer Polymers 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 239000012792 core layer Substances 0.000 description 2
- 238000007766 curtain coating Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 229920000359 diblock copolymer Polymers 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- ZMUCVNSKULGPQG-UHFFFAOYSA-N dodecanedioic acid;hexane-1,6-diamine Chemical compound NCCCCCCN.OC(=O)CCCCCCCCCCC(O)=O ZMUCVNSKULGPQG-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 239000000835 fiber Chemical class 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000003517 fume Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 229920001179 medium density polyethylene Polymers 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002923 metal particle Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- ADFPJHOAARPYLP-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;styrene Chemical compound COC(=O)C(C)=C.C=CC1=CC=CC=C1 ADFPJHOAARPYLP-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- ZZSIDSMUTXFKNS-UHFFFAOYSA-N perylene red Chemical compound CC(C)C1=CC=CC(C(C)C)=C1N(C(=O)C=1C2=C3C4=C(OC=5C=CC=CC=5)C=1)C(=O)C2=CC(OC=1C=CC=CC=1)=C3C(C(OC=1C=CC=CC=1)=CC1=C2C(C(N(C=3C(=CC=CC=3C(C)C)C(C)C)C1=O)=O)=C1)=C2C4=C1OC1=CC=CC=C1 ZZSIDSMUTXFKNS-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 2
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 description 2
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000012744 reinforcing agent Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011115 styrene butadiene Substances 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 description 1
- AHAREKHAZNPPMI-AATRIKPKSA-N (3e)-hexa-1,3-diene Chemical compound CC\C=C\C=C AHAREKHAZNPPMI-AATRIKPKSA-N 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- DFPJRUKWEPYFJT-UHFFFAOYSA-N 1,5-diisocyanatopentane Chemical compound O=C=NCCCCCN=C=O DFPJRUKWEPYFJT-UHFFFAOYSA-N 0.000 description 1
- SSZOCHFYWWVSAI-UHFFFAOYSA-N 1-bromo-2-ethenylbenzene Chemical compound BrC1=CC=CC=C1C=C SSZOCHFYWWVSAI-UHFFFAOYSA-N 0.000 description 1
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 1
- HLOUDBQOEJSUPI-UHFFFAOYSA-N 1-ethenyl-2,3-dimethylbenzene Chemical compound CC1=CC=CC(C=C)=C1C HLOUDBQOEJSUPI-UHFFFAOYSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- QQHQTCGEZWTSEJ-UHFFFAOYSA-N 1-ethenyl-4-propan-2-ylbenzene Chemical compound CC(C)C1=CC=C(C=C)C=C1 QQHQTCGEZWTSEJ-UHFFFAOYSA-N 0.000 description 1
- QEDJMOONZLUIMC-UHFFFAOYSA-N 1-tert-butyl-4-ethenylbenzene Chemical compound CC(C)(C)C1=CC=C(C=C)C=C1 QEDJMOONZLUIMC-UHFFFAOYSA-N 0.000 description 1
- CZNRFEXEPBITDS-UHFFFAOYSA-N 2,5-bis(2-methylbutan-2-yl)benzene-1,4-diol Chemical group CCC(C)(C)C1=CC(O)=C(C(C)(C)CC)C=C1O CZNRFEXEPBITDS-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- RNAMYOYQYRYFQY-UHFFFAOYSA-N 2-(4,4-difluoropiperidin-1-yl)-6-methoxy-n-(1-propan-2-ylpiperidin-4-yl)-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-amine Chemical compound N1=C(N2CCC(F)(F)CC2)N=C2C=C(OCCCN3CCCC3)C(OC)=CC2=C1NC1CCN(C(C)C)CC1 RNAMYOYQYRYFQY-UHFFFAOYSA-N 0.000 description 1
- IAFBRPFISOTXSO-UHFFFAOYSA-N 2-[[2-chloro-4-[3-chloro-4-[[1-(2,4-dimethylanilino)-1,3-dioxobutan-2-yl]diazenyl]phenyl]phenyl]diazenyl]-n-(2,4-dimethylphenyl)-3-oxobutanamide Chemical compound C=1C=C(C)C=C(C)C=1NC(=O)C(C(=O)C)N=NC(C(=C1)Cl)=CC=C1C(C=C1Cl)=CC=C1N=NC(C(C)=O)C(=O)NC1=CC=C(C)C=C1C IAFBRPFISOTXSO-UHFFFAOYSA-N 0.000 description 1
- SZSWKGVWJBZNIH-UHFFFAOYSA-N 2-chloro-1-ethenyl-4-methylbenzene Chemical compound CC1=CC=C(C=C)C(Cl)=C1 SZSWKGVWJBZNIH-UHFFFAOYSA-N 0.000 description 1
- ISRGONDNXBCDBM-UHFFFAOYSA-N 2-chlorostyrene Chemical compound ClC1=CC=CC=C1C=C ISRGONDNXBCDBM-UHFFFAOYSA-N 0.000 description 1
- NECRQCBKTGZNMH-UHFFFAOYSA-N 3,5-dimethylhex-1-yn-3-ol Chemical compound CC(C)CC(C)(O)C#C NECRQCBKTGZNMH-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- WZSFTHVIIGGDOI-UHFFFAOYSA-N 4,5,6,7-tetrachloro-3-[2-methyl-3-[(4,5,6,7-tetrachloro-3-oxoisoindol-1-yl)amino]anilino]isoindol-1-one Chemical compound ClC1=C(Cl)C(Cl)=C(Cl)C2=C1C(NC1=CC=CC(NC=3C4=C(C(=C(Cl)C(Cl)=C4Cl)Cl)C(=O)N=3)=C1C)=NC2=O WZSFTHVIIGGDOI-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- LVOJOIBIVGEQBP-UHFFFAOYSA-N 4-[[2-chloro-4-[3-chloro-4-[(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)diazenyl]phenyl]phenyl]diazenyl]-5-methyl-2-phenylpyrazol-3-ol Chemical compound CC1=NN(C(O)=C1N=NC1=CC=C(C=C1Cl)C1=CC(Cl)=C(C=C1)N=NC1=C(O)N(N=C1C)C1=CC=CC=C1)C1=CC=CC=C1 LVOJOIBIVGEQBP-UHFFFAOYSA-N 0.000 description 1
- APMOEFCWQRJOPS-UHFFFAOYSA-N 5-ethenyl-1,5-dimethylcyclohexa-1,3-diene Chemical compound CC1=CC=CC(C)(C=C)C1 APMOEFCWQRJOPS-UHFFFAOYSA-N 0.000 description 1
- CGLVZFOCZLHKOH-UHFFFAOYSA-N 8,18-dichloro-5,15-diethyl-5,15-dihydrodiindolo(3,2-b:3',2'-m)triphenodioxazine Chemical compound CCN1C2=CC=CC=C2C2=C1C=C1OC3=C(Cl)C4=NC(C=C5C6=CC=CC=C6N(C5=C5)CC)=C5OC4=C(Cl)C3=NC1=C2 CGLVZFOCZLHKOH-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229920003313 Bynel® Polymers 0.000 description 1
- QFOROSJYXQFALH-UHFFFAOYSA-N CC(=C)C=C.CC(=C)C1=CC=CC=C1 Chemical compound CC(=C)C=C.CC(=C)C1=CC=CC=C1 QFOROSJYXQFALH-UHFFFAOYSA-N 0.000 description 1
- 239000004429 Calibre Substances 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000009261 D 400 Substances 0.000 description 1
- 229920003944 DuPont™ Surlyn® 1702 Polymers 0.000 description 1
- 229920003946 DuPont™ Surlyn® 1706 Polymers 0.000 description 1
- 229920003345 Elvax® Polymers 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000013032 Hydrocarbon resin Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920004142 LEXAN™ Polymers 0.000 description 1
- 239000004418 Lexan Substances 0.000 description 1
- 239000004425 Makrolon Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004687 Nylon copolymer Substances 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- 241001312297 Selar Species 0.000 description 1
- 229920003365 Selar® Polymers 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- QROGIFZRVHSFLM-QHHAFSJGSA-N [(e)-prop-1-enyl]benzene Chemical compound C\C=C\C1=CC=CC=C1 QROGIFZRVHSFLM-QHHAFSJGSA-N 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical group OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 239000002998 adhesive polymer Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical group 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 229920006271 aliphatic hydrocarbon resin Polymers 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- CSJKPFQJIDMSGF-UHFFFAOYSA-K aluminum;tribenzoate Chemical compound [Al+3].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 CSJKPFQJIDMSGF-UHFFFAOYSA-K 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- MXMZCLLIUQEKSN-UHFFFAOYSA-N benzimidazoline Chemical compound C1=CC=C2NCNC2=C1 MXMZCLLIUQEKSN-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 150000001559 benzoic acids Chemical class 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical class C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 125000000649 benzylidene group Chemical group [H]C(=[*])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- ZHWPIYGILUOREF-UHFFFAOYSA-N but-1-ene;prop-2-enenitrile;styrene Chemical compound CCC=C.C=CC#N.C=CC1=CC=CC=C1 ZHWPIYGILUOREF-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 239000001030 cadmium pigment Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000001031 chromium pigment Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 150000001924 cycloalkanes Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 150000001470 diamides Chemical class 0.000 description 1
- 229940087101 dibenzylidene sorbitol Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- ZUDYLZOBWIAUPC-UHFFFAOYSA-L disodium;pentanedioate Chemical compound [Na+].[Na+].[O-]C(=O)CCCC([O-])=O ZUDYLZOBWIAUPC-UHFFFAOYSA-L 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N ferric oxide Chemical compound O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 238000007647 flexography Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000011086 glassine Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000007757 hot melt coating Methods 0.000 description 1
- 229920006270 hydrocarbon resin Polymers 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000006289 hydroxybenzyl group Chemical group 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229940031993 lithium benzoate Drugs 0.000 description 1
- LDJNSLOKTFFLSL-UHFFFAOYSA-M lithium;benzoate Chemical compound [Li+].[O-]C(=O)C1=CC=CC=C1 LDJNSLOKTFFLSL-UHFFFAOYSA-M 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N o-dicarboxybenzene Natural products OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000001053 orange pigment Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- ZFACJPAPCXRZMQ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O.OC(=O)C1=CC=CC=C1C(O)=O ZFACJPAPCXRZMQ-UHFFFAOYSA-N 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920002589 poly(vinylethylene) polymer Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 150000003097 polyterpenes Chemical class 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 235000010235 potassium benzoate Nutrition 0.000 description 1
- 229940103091 potassium benzoate Drugs 0.000 description 1
- 239000004300 potassium benzoate Substances 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 229920005653 propylene-ethylene copolymer Polymers 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000001054 red pigment Substances 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007767 slide coating Methods 0.000 description 1
- 238000007764 slot die coating Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229940083542 sodium Drugs 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- UDWXLZLRRVQONG-UHFFFAOYSA-M sodium hexanoate Chemical compound [Na+].CCCCCC([O-])=O UDWXLZLRRVQONG-UHFFFAOYSA-M 0.000 description 1
- 229940074404 sodium succinate Drugs 0.000 description 1
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 description 1
- DXIHILNWDOYYCH-UHDJGPCESA-M sodium;(e)-3-phenylprop-2-enoate Chemical compound [Na+].[O-]C(=O)\C=C\C1=CC=CC=C1 DXIHILNWDOYYCH-UHDJGPCESA-M 0.000 description 1
- HLWRUJAIJJEZDL-UHFFFAOYSA-M sodium;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetate Chemical compound [Na+].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC([O-])=O HLWRUJAIJJEZDL-UHFFFAOYSA-M 0.000 description 1
- ZTRIBXMDBFDMQW-UHFFFAOYSA-M sodium;4-methylpentanoate Chemical compound [Na+].CC(C)CCC([O-])=O ZTRIBXMDBFDMQW-UHFFFAOYSA-M 0.000 description 1
- AJXVJQAPXVDFBT-UHFFFAOYSA-M sodium;naphthalen-2-olate Chemical compound [Na+].C1=CC=CC2=CC([O-])=CC=C21 AJXVJQAPXVDFBT-UHFFFAOYSA-M 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910002029 synthetic silica gel Inorganic materials 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 229940124543 ultraviolet light absorber Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229920001959 vinylidene polymer Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
- 239000001052 yellow pigment Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- BOXSVZNGTQTENJ-UHFFFAOYSA-L zinc dibutyldithiocarbamate Chemical compound [Zn+2].CCCCN(C([S-])=S)CCCC.CCCCN(C([S-])=S)CCCC BOXSVZNGTQTENJ-UHFFFAOYSA-L 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/10—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
- B32B3/14—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
- B32B27/365—Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/15—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
- B32B37/153—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/06—Interconnection of layers permitting easy separation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44C—PRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
- B44C1/00—Processes, not specifically provided for elsewhere, for producing decorative surface effects
- B44C1/16—Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
- B44C1/165—Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
- B44C1/17—Dry transfer
- B44C1/1708—Decalcomanias provided with a layer being specially adapted to facilitate their release from a temporary carrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44C—PRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
- B44C1/00—Processes, not specifically provided for elsewhere, for producing decorative surface effects
- B44C1/16—Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
- B44C1/165—Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
- B44C1/17—Dry transfer
- B44C1/1712—Decalcomanias applied under heat and pressure, e.g. provided with a heat activable adhesive
- B44C1/1725—Decalcomanias applied under heat and pressure, e.g. provided with a heat activable adhesive using an intermediate support
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44C—PRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
- B44C1/00—Processes, not specifically provided for elsewhere, for producing decorative surface effects
- B44C1/16—Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
- B44C1/165—Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
- B44C1/17—Dry transfer
- B44C1/1733—Decalcomanias applied under pressure only, e.g. provided with a pressure sensitive adhesive
- B44C1/1741—Decalcomanias provided with a layer being specially adapted to facilitate their release from a temporary carrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44C—PRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
- B44C1/00—Processes, not specifically provided for elsewhere, for producing decorative surface effects
- B44C1/16—Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
- B44C1/165—Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
- B44C1/17—Dry transfer
- B44C1/1733—Decalcomanias applied under pressure only, e.g. provided with a pressure sensitive adhesive
- B44C1/1745—Decalcomanias applied under pressure only, e.g. provided with a pressure sensitive adhesive using an intermediate support
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/201—Adhesives in the form of films or foils characterised by their carriers characterised by the release coating composition on the carrier layer
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/22—Plastics; Metallised plastics
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/38—Pressure-sensitive adhesives [PSA]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/402—Coloured
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/41—Opaque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2327/00—Polyvinylhalogenides
- B32B2327/06—PVC, i.e. polyvinylchloride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2329/00—Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
- B32B2329/04—Polyvinylalcohol
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2369/00—Polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2375/00—Polyureas; Polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2377/00—Polyamides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/30—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
- C09J2301/304—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/40—Additional features of adhesives in the form of films or foils characterized by the presence of essential components
- C09J2301/414—Additional features of adhesives in the form of films or foils characterized by the presence of essential components presence of a copolymer
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2421/00—Presence of unspecified rubber
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2423/00—Presence of polyolefin
- C09J2423/006—Presence of polyolefin in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2425/00—Presence of styrenic polymer
- C09J2425/006—Presence of styrenic polymer in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2429/00—Presence of polyvinyl alcohol
- C09J2429/006—Presence of polyvinyl alcohol in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2431/00—Presence of polyvinyl acetate
- C09J2431/006—Presence of polyvinyl acetate in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2433/00—Presence of (meth)acrylic polymer
- C09J2433/006—Presence of (meth)acrylic polymer in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2459/00—Presence of polyacetal
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2461/00—Presence of condensation polymers of aldehydes or ketones
- C09J2461/005—Presence of condensation polymers of aldehydes or ketones in the release coating
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2467/00—Presence of polyester
- C09J2467/006—Presence of polyester in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2475/00—Presence of polyurethane
- C09J2475/006—Presence of polyurethane in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2477/00—Presence of polyamide
- C09J2477/006—Presence of polyamide in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2483/00—Presence of polysiloxane
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2483/00—Presence of polysiloxane
- C09J2483/005—Presence of polysiloxane in the release coating
Definitions
- This invention relates to an extrusion method of making a dry paint transfer laminate.
- These laminates comprise a dry paint film layer, an adhesive layer overlying one side of the dry paint film layer, and a release liner overlying the other side of the dry paint film layer.
- the present invention provides a solution to these problems. With the present invention it is not necessary to mask off areas that are not to be painted and it is not necessary to use drop cloths. The messy clean up of brushes, rollers, and the like is avoided. Spills and exposure to fumes are avoided. Delays waiting for paint to dry are avoided. Special effects such as faux finishes can be accomplished with a single application.
- This invention relates to a method of making a dry paint transfer laminate, comprising: extruding a paint film layer over a release liner; and extruding a pressure sensitive adhesive layer over the paint film layer, wherein the release liner comprises: a backing liner having an upper surface and a lower surface; a first release coating layer overlying the upper surface of the backing liner; the first release coating layer comprising a resinous material hardened or cured to bond to the backing liner and form a matte release surface spaced from the backing liner, the matte release surface contacting the extruded paint film layer; the matte release surface of the release liner releasably adhered to the paint film layer for transferring a matte finish to the paint film layer when the release liner is removed therefrom.
- a second release coating layer overlies the lower surface of the backing liner for releasably contacting the adhesive layer in a selfwound form of the laminate.
- the paint film layer includes a transparent film layer which is extruded over the release liner prior to applying a color layer over the transparent film layer.
- the invention relates to a method of making a dry paint transfer laminate, comprising: coextruding a paintfilm layer and a pressure sensitive adhesive layer over a release liner, the paint film layer overlying the release liner and the pressure sensitive adhesive layer overlying the paint film layer.
- the invention relates to a method of making a dry paint transfer laminate, comprising: extruding a transparent film layer over a release liner; applying a paint film layer over the transparent film layer; and extruding a pressure sensitive adhesive layer over the paint film layer, wherein the release liner comprises: a backing liner having an upper surface and a lower surface; a first release coating layer overlying the upper surface of the backing liner; the first release coating layer comprising a resinous material hardened or cured to bond to the backing liner and form a matte release surface spaced from the backing liner, the matte release surface contacting the extruded transparent film layer; the matte release surface of the release liner releasably adhered to the transparent film layer for transferring a matte finish to the transparent film layer when the release liner is removed therefrom.
- the invention relates to a method of making a dry paint transfer laminate, comprising: extruding a transparent film layer over a release liner; and coextruding a paint film layer and a pressure sensitive adhesive layer over the transparent film layer, the paintfilm layer overlying the transparent film layer and the pressure sensitive adhesive layer overlying the paint film layer.
- the invention relates to a method of making a dry paint transfer laminate, comprising: forming a decorative dry paint film layer over a release liner; and coextruding a pressure sensitive adhesive layer and a polymeric support layer over the dry paint film layer, the support layer overlying the dry paint film layer and the pressure sensitive adhesive layer overlying the support layer; the release liner releasably adhered to the dry paint film layer.
- the invention relates to a multi-layer laminate comprising an extruded paint film layer having an upper surface and a lower surface; a dry pressure-sensitive adhesive layer overlying the upper surface of the paint layer; and a release liner overlying the lower surface of the paint layer, the release liner comprising a thin, flexible polymeric carrier film and a matte release coat bonded to the carrier film and in overlying contact with the paint layer, the matte release coat having a hardened state at room temperature and made from a resinous material consisting essentially of (1 ) a matte surfacing component that forms a matte release surface, (2) an adhesion component for releasably adhering the matte release surface to the paint layer, and (3) a release component that releases the matte release surface from contact with the dry paint layer at room temperature to transfer a matte surface finish from the matte release surface to an exposed surface of the dry paint layer.
- this invention relates to a multi-layer laminate
- a release liner having a flexible polymeric carrier film and a matte release coat bonded to the carrier film; a flexible extruded dry paint transfer layer releasably adhered to the matte release coat; and a dry pressure sensitive adhesive layer bonded to the extruded dry paint transfer layer on a side thereof opposite the release liner;
- the matte release coat having a level of tack that preferentially adheres the release liner to the extruded dry paint transfer layer sufficient to provide a level of structural support for the paint layer when placing the adhesive side of the paint layer in contact with a substrate;
- the matte release coat comprising a resinous material which has been hardened or cured to form a micro-roughened surface for transferring a matte surface finish to an exposed surface of the dry paint layer when the release coat is released from contact with the dry paint layer;
- the adhesive layer having a suppressed initial level of tack at room temperature that allows the laminate to adhere to a substrate followed by removal of the
- the level of gloss transferred from the matte release coat to the extruded dry paint layer is less than 30% at 85 degrees.
- the dry paint transfer layer includes an extruded clear coat layer overlying a color layer, and in which the clear coat is in contact with the matte release coat for transferring the micro-roughened surface to the clear coat layer.
- the release liner comprises a polyester film which is essentially non-stretchable at room temperature.
- the laminate includes a reinforcing polymeric support layer between the dry paint layer and the adhesive layer, the support layer having a tensile strength greater than the dry paint layer.
- the release liner further includes an adhesive release coat on a side of the liner opposite from the matte release coat.
- the laminate has a self-wound form in which the release force required to separate the matte release coat from the dry paint layer is greater than the release force required to separate the adhesive release coat layer from the pressure-sensitive adhesive layer.
- the laminate has a self-wound form in which the release force required to separate the matte release coat from the dry paint layer is in the range from about 20 to about 180 grams per two inches, wherein a two-inch wide sample of the release liner is separated from the dry paint layer by being pulled at the angle of 90° and at a rate of 300 inches per minute.
- the invention relates to a dry paint transfer laminate for interior use as an interior wall covering
- a dry paint layer releasably attached to a release liner to provide support for the dry paint layer, and a layer of pressure-sensitive adhesive on a side of the dry paint layer opposite the release liner for attaching the paint layer to an interior wall
- the release liner has a release coat which is removable from the dry paint layer to expose the dry paint layer as a painted interior wall covering
- the release liner has an adhesive release coat on a side of the liner opposite the release coat that contacts the dry paint layer
- the dry paint layer comprises an extruded outer clear coat layer
- the release liner comprises a polymeric carrier film and the release coat thereon comprises a matte release coat bonded to the carrier film and in contact with the dry paint layer, the matte release coat made from a material which in a hardened state forms a micro-roughened surface spaced from the carrier film and has a level of adhesion that adheres the release liner to the
- the invention relates to a method for making a multi-layer laminate comprising extruding a paint layer onto one side of a release liner and hardening the paint layer on the release liner to form a dry paint layer, the release liner comprising a thin, flexible polymeric carrier film, the release liner having a release surface in contact with the dry paint layer; and applying a pressure-sensitive adhesive layer to a side of the paint layer opposite from the release liner, characterized by the steps of applying a matte release coat to the release liner, the matte release coat comprising a resinous material having a dispersed particulate filler material and having a hardened state at room temperature which forms a matte surface, and applying the paint layer to the matte surface of the matte release coat and drying or curing the dry paint layer in contact with the matte surface to releasably adhere the dry paint layer to the matte surface, the matte surface adapted to release from the dry paint layer at room temperature to transfer a matte surface finish to an exposed surface of the dry paint layer when the laminate is
- Fig. 1 is a schematic illustration of the side view of a dry paint transfer laminate embodying the present invention in a particular form.
- Fig. 2 is a schematic illustration of the dry paint transfer laminate illustrated in Fig. 1 , the laminate being partially wound into a roll.
- Fig. 3 is a schematic illustration of the side view of another embodiment of the dry paint transfer laminate of the present invention.
- Fig. 4 is a schematic illustration of the side view of still another embodiment of the dry paint transfer laminate of the present invention.
- Fig. 5 is a schematic illustration of the side view of still another embodiment of the dry paint transfer laminate of the present invention.
- Fig. 6 is a schematic illustration of the side view of still another embodiment of the dry paint transfer laminate of the present invention.
- Fig. 7 is a schematic illustration of the side view of still another embodiment of the dry paint transfer laminate of the present invention.
- Fig. 8 is a schematic illustration of the side view of still another embodiment of the dry paint transfer laminate of the present invention.
- Fig. 9 is a schematic illustration of the side view of still another embodiment of the dry paint transfer laminate of the present invention.
- Fig. 10 is a schematic illustration of the side view of still another embodiment of the dry paint transfer laminate of the present invention.
- Fig. 11 is a schematic illustration of a process for coextruding the support layer and the adhesive layer used in one embodiment of the inventive laminate.
- Fig. 12 is a schematic illustration of another embodiment of a process for coextruding the support layer and the adhesive layer used in one embodiment of the inventive laminate.
- over and overlies and cognate terms such as “overlying” and the like, when referring to the relationship of one or a first layer relative to another or a second layer, refers to the fact that the first layer partially or completely lies over the second layer.
- the first layer overlying the second layer may or may not be in contact with the second layer.
- one or more additional layers may be positioned between the first layer and the second layer.
- underlies and cognate terms such as “underlying” and the like have similar meanings except that the first layer partially or completely lies under, rather than over, the second layer.
- dry paint refers to a paint composition which has been applied to a substrate and has dried or cured sufficiently so that it does not smear or smudge when touched or handled by the user.
- the dry paint composition may be derived from a liquid (i.e., solvent based or water based) coating or film forming composition or a hot melt coating or film forming composition.
- the dry paint composition may be derived from a composition containing one or more volatile components (e.g., organic solvent, water, etc.) wherein the paint composition is applied to a substrate and allowed to dry to the extent that the volatile components are removed completely or sufficiently to permit the paint to adhere to the substrate and not smear or smudge when touched by the user.
- the term “volatile” is used herein to refer to materials that are volatile at the drying temperature and atmospheric pressure.
- transparent when referring to the transparent film layer overlying one or more of the dry paint film layers of the inventive dry paint transfer laminate means that the one or more dry paint film layers can be seen through the transparent film layer.
- the transparent film layer may be translucent.
- the inventive dry paint transfer laminate in one of its illustrated embodiments, is generally indicated by the reference numeral 100, and comprises: a dry paint film layer 110 which has an upper surface 112 and a lower surface 114; an adhesive layer 120 overlying and adhered to upper surface 112; and a release liner 130 overlying and adhered to the lower surface 114.
- the release liner 130 comprises: a backing liner 132 which has an upper surface 133 and a lower surface 134; a first release coating layer 135 overlying and adhered to the upper surface 133; and a second release coating layer 136 overlying and adhered to the lower surface 134.
- the first release layer 135 is positioned between the upper surface 133 of backing liner 132 and the lower surface 114 of dry paint film layer 110, and preferentially adheres to the upper surface 133 of backing liner 132. Thus, when the release liner 130 is peeled away from the dry paint film layer
- the release coating layer 135 separates from the dry paint film layer 110 and remains adhered to the backing liner 132.
- the lower surface 137 of release layer 136 is adapted for contacting the upper surface 122 of adhesive layer 120 when the laminate 100 is wound into roll form as illustrated in Fig. 2.
- the dry paint transfer laminate 100 is wound into roll form with the lower surface 137 of release coating layer 136 in contact with the upper surface 122 of adhesive layer 120.
- the release coating layer 136 preferentially adheres to backing liner 132.
- the release coating layer 136 separates from adhesive layer 120 and remains adhered to backing liner 132.
- the dry paint transfer laminate 100A illustrated in Fig. 3 is identical to the dry paint transfer laminate 100 illustrated in Fig. 1 except that transparent film layer 140 is positioned between dry paint film layer 110 and release coating layer 135.
- the release coating layer 135 is adhered to transparent film layer 140 on one side and to backing liner 132 on the other side, and is preferentially adhered to backing liner 132.
- the release coating layer 135 separates from the transparent film layer
- the dry paint transfer laminate 100B illustrated in Fig.4 is identical to the dry paint transfer laminate 100A illustrated in Fig. 3 except that printed decorative layer 150 is positioned between dry paint film layer 110 and transparent film layer 140.
- the dry paint transfer laminate 100C illustrated in Fig. 5 is identical to the dry paint transfer laminate 100B illustrated in Fig. 4 except that second printed decorative layer 160 is positioned between printed decorative layer 150 and transparent film layer 140.
- the inventive laminates may contain up to about 5 or more, and in one embodiment about 3 or about 4, printed decorative layers overlying one another.
- the printed decorative layers may provide a desired print or design and may be applied using conventional printing methods such as gravure, flexography, silk screen ink jet, etc.
- the dry paint transfer laminate 100D illustrated in Fig. 6 is identical to the laminate 100 illustrated in Fig. 1 except that release coating layer 136 is not present, and additional release liner 170 has been added to overlie adhesive layer 120.
- Release liner 170 comprises: a backing liner 172 which has an upper surface 173 and a lower surface 174; and a release coating layer 176 overlying and adhered to the lower surface 174.
- the release layer 176 is positioned between the lower surface 174 of backing liner 172 and the upper surface 122 of adhesive layer 120, and preferentially adheres to the lower surface 174 of backing liner 172. Thus, when the release liner 170 is peeled away from the adhesive layer 120, the release coating layer 176 separates from the adhesive layer 120 and remains adhered to the backing liner 172.
- the dry paint transfer laminate 100E illustrated in Fig. 7 is identical to the laminate 100 illustrated in Fig. 1 except that the laminate 100E includes support layer 180 positioned between dry paint film layer 110 and adhesive layer 120.
- the dry paint transfer laminate 100F illustrated in Fig. 8 is identical to the laminate 100 illustrated in Fig. 1 except that the laminate 100F includes barrier layer 190 positioned between the dry paint film layer 110 and the adhesive layer 120.
- the dry paint transfer laminate 100G illustrated in Fig. 9 is identical to the laminate 100 illustrated in Fig. 1 except that the laminate 100G includes support layer 180 positioned between the dry paint film layer 110 and the adhesive layer 120. Also, the laminate 100G includes printed decorative layers 150, 160 and 165 positioned between the dry paint film layer 110 and the first release coating layer 135.
- the dry paint transfer laminate 100H illustrated in Fig. 10 is identical to the dry paint transfer laminate 100C illustrated in Fig. 5 except that the release liner 130 in laminate 100C is not present, and release liner 170 overlies adhesive layer 120 and release layer 176 is positioned between release liner 170 and adhesive layer 120.
- the dry paint film layer 110 may have a thickness of about 0.5 to about 1.5 mils, and in one embodiment about 0.5 to about 1.2 mils, and in one embodiment about 0.5 to about 0.9 mil, and in one embodiment about 0.7 mil.
- the thickness of the adhesive layer 120 may range from about 0.4 to about 1 mil, and in one embodiment about 0.4 to about 0.8 mil, and in one embodiment about 0.4 to about
- the thickness of the backing liner 132 may range from about 0.5 to about 2 mils, and in one embodiment about 0.5 to about 1.5 mils, and in one embodiment about 0.85 to about 1.05 mils.
- the thickness of the first release coating layer 135 may range from about 0.05 to about 0.3 mil, and in one embodiment about 0.1 to about 0.2 mil.
- the thickness of the second release coating layer 136 may range from about 0.04 to about 0.2 mil, and in one embodiment about 0.04 to about 0.15 mil, and in one embodiment about 0.04 to about 0.08 mil.
- the thickness of the transparent film layer 140 may range from about 0.05 to about 0.4 mil, and in one embodiment about 0.05 to about 0.3 mil, and in one embodiment about 0.2 mil.
- the thickness of the printed decorative layer 150 may range from about 0.02 to about 0.15 mil, and in one embodiment about 0.02 to about 0.08 mils.
- the thickness of the second printed decorative layer 160 may range from about 0.02 to about 0.15 mil, and in one embodiment about 0.02 to about 0.1 mil.
- the thickness of the backing liner 172 may range from about 0.5 to about 2 mils, and in one embodiment about 0.5 to about 1.5 mils, and in one embodiment about 0.85 to about 1.05 mils.
- the thickness of the release coating layer 176 may range from about 0.04 to about 0.2 mil, and in one embodiment about 0.04 to about 0.15 mil, and in one embodiment about 0.04 to about 0.08 mil.
- the support layer 180 may have a thickness of about 0.3 to about 1.4 mils, and in one embodiment about 0.3 to about 1.1 mils, and in one embodiment about 0.3 to about 0.8 mil, and in one embodiment about 0.3 to about 0.5 mil.
- the overall thickness of the combination of the dry paint film layer 110 and support layer 180 may be in the range of about 0.5 to about 1.5 mils, and in one embodiment about 0.5 to about 1.2 mils, and in one embodiment about 0.5 to about 0.9 mil, and in one embodiment about 0.7 mil.
- the barrier layer 190 may have a thickness in the range of about 0.01 to about 0.1 mil, and in one embodiment about 0.05 to about 0.1 mil, and in one embodiment about 0.01 to about 0.02 mil.
- the laminates 100 through 100H may have any width and length that is suitable for facilitated use by the user.
- the width may range from about 1 to about 200 cm, and in one embodiment 10 to 100 cm, and in one embodiment about 30 to about 40 cm.
- the length may range from about 10 to about 6500 meters, and in one embodiment about 15 to about 1000 meters. In one embodiment, the length may range from about 19 to about 6500 meters. In one embodiment, the length may range from about 17 to about 20 meters.
- the laminate may have a width of about 10 to about 20 cm, and a length of about 10 to about 30 cm.
- the laminates may be provided in the form of flat sheets or in roll form as illustrated in Fig. 2.
- the layers 110, 150, 160 and 165 may comprise independently one or more binders or resins, and one or more pigments.
- the support layer 180 may comprise one or more binders or resins, and optionally one or more pigments.
- the transparent film layer 140 may comprise one or more binders or resins. These layers may be made from liquid coating or paint compositions comprising the one or more binders or resins, the one or more pigments (if used), water or one or more organic solvents, and optionally one or more additional additives for controlling properties such as rheological properties and the like.
- the layers 110, 140 and 180 may each comprise independently one or more extruded film layers.
- the binder or resin may comprise any binder or resin conventionally used in coating or paint formulations.
- the binder may comprise a thermoplastic or a thermosetting resin.
- the binder or resin may be a synthetic resin or a natural resin.
- the binder or resin may comprise a film forming material, which in one embodiment may be an extrudable film forming material.
- useful binders or resins include acrylic resins, vinyl resins, polyester resins, alkyd resins, butadiene resins, styrene resins, phthalicacid or anhydride resins, urethane resins, epoxy resins, and the like.
- the binder or resin may comprise vinyl and vinylidene polymers or copolymers containing units such as vinyl acetate, vinyl chloride, vinylidene chloride, and the like; hydrocarbon polymers and copolymers containing ethylene or proplene units and oxygenated or halogenated derivatives of ether, butadiene, oxygenated butadiene, isoprene, oxygenated isoprene, butadiene-styrene, butadiene vinyl toluene, isoprene-styrene and the like; polymers or copolymers containing units of acrylic acid, methacrylic acid, their esters, or acrylonitrile; vinylic hydrocarbon monomers reacted with unsaturated materials such as the reaction product of maleic acid or anhydride with styrene; and, broadly, various other resinous rubber-like elastomeric latex polymers and copolymers of ethylenically unsaturated monomers and polymers obtainable in stable aqueous
- the binder or resin may comprise a copolymer of vinyl chloride and vinyl acetate.
- the binder or resin may comprise diphenylmethane diisocyanate, methylene diethyl diisocyanate, isocyanurate, urea-formaldehyde, phenolformaldehyde, phenolic glue, animal hide glues, and the like.
- Other examples of binders or resins which may be used include fluorine resins, silicone resins, and fibrin resins.
- the binder or resin may include one or more polystyrenes, polyolefins, polyamides, polyesters, polycarbonates, polyvinyl alcohol, polyethylene vinyl alcohol, polyurethanes, polyacrylates, polyvinyl acetates, ionomers and mixtures thereof.
- the polyolefins may be characterized as having a melt index or melt flow rate of less than about 30, and in one embodiment less than about 20, and in one embodiment less than about 10 as determined by ASTM Test Method 1238.
- the polyolefins include polymers and copolymers of ethylene, propylene, 1 - butene, etc., or blends of mixtures of such polymers and copolymers.
- the polyolefins may comprise polymers and copolymers of ethylene and propylene.
- the polyolefins may comprise propylene homopolymers, and copolymers such as propylene-ethylene and propylene-1 -butene copolymers. Blends of polypropylene and polyethylene with each other, or blends of either or both of them with a polypropylene-polyethylene copolymer may be used.
- the polyolefin film forming materials may have a high propylenic content, either polypropylene homopolymer or propylene-ethylene copolymers or blends of polypropylene and polyethylene with low ethylene content, or propylene-1 -butene copolymers or blend of polypropylene and poly-1 -butene with low butene content.
- Various polyethylenes may be used including low, medium, and high density polyethylenes.
- the low density range for the polyethylenes may be from about 0.910 to about 0.925 g/cm 3
- the medium density range may be from about 0.925 to about 0.940 g/cm 3
- the high density range may be from about 0.940 to about 0.965 g/cm 3 .
- An example of a useful low density polyethylene (LDPE) is Rexene
- the propylene homopolymers which may be used either alone or in combination with a propylene copolymer include a variety of propylene homopolymers such as those having melt flow rates (MFR) from about 0.5 to about 20 as determined by ASTM Test D 1238, condition L. In one embodiment, propylene homopolymers having MFR's of less than about 10, and in one embodiment from about 4 to about 10 may be used.
- the propylene homopolymers may be characterized as having densities in the range of from about 0.88 to about 0.92 g/cm 3 .
- a number of useful propylene homopolymers are available commercially from a variety of sources, and some useful polymers include: 5A97, available from Union Carbide and having a melt flow of 12.0 g/10 min and a density of 0.90 g/cm 3 ; DX5E66, also available from Union Carbide and having an MFI of 8.8 g/10 min and a density of 0.90 g/cm 3 ; and WRD5-1057 from Union Carbide having an MFI of 3.9 g/10 min and a density of 0.90 g/cm 3 .
- Useful commercial propylene homopolymers are also available from Fina and Montel.
- the polyamide resins include resins available from EMS American Grilon Inc., Sumter, SC. under the general tradename Grivory such as CF6S, CR-9,
- Grivory G-21 is an amorphous nylon copolymer having a glass transition temperature of 125°C, a melt flow index (DIN 53735) of 90 ml/10 min and an elongation at break (ASTM D638) of 15.
- Grivory CF65 is a nylon 6/12 film grade resin having a melting point of 135°C, a melt flow index of 50 ml/10 min, and an elongation at break in excess of 350%.
- Grilon CR9 is another nylon 6/12 film grade resin having a melting point of 200°C, a melt flow index of 200 ml/ 10 min, and an elongation at break at 250%.
- Grilon XE 3303 is a nylon 6.6/6.10 film grade resin having a melting point of 200°C, a melt flow index of 60 ml/ 10 min, and an elongation at break of 100%.
- the polyamide resins include those available from, for example, Union Camp of Wayne, New Jersey under the Uni-Rez product line, and dimer-based polyamide resins available from Bostik, Emery, Fuller, Henkel (under the Versamid product line).
- the polyamides include those produced by condensing dimerized vegetable acids with hexamethylene diamine. Examples of polyamides available from Union Camp include Uni-Rez 2665; Uni-Rez 2620; Uni- Rez 2623; and Uni-Rez 2695.
- the polystyrenes include homopolymers as well as copolymers of styrene and substituted styrene such as alpha-methyl styrene.
- styrene copolymers and terpolymers include: acrylonitrile-butene-styrene (ABS); styrene- acrylonitrile copolymers (SAN); styrene butadiene (SB); styrene-maleic anhydride (SMA); and styrene-methyl methacrylate (SMMA); etc.
- the polyurethanes include aliphatic as well as aromatic polyurethanes.
- the polyesters may be prepared from various glycols or polyols and one or more aliphatic or aromatic carboxylic acids.
- PET Polyethylene terephthalate
- PETG PET modified with cyclohexanedimethanol
- Kodar 6763 is a PETG available from Eastman Chemical.
- Selar PT-8307 is polyethylene terephthalate.
- Acrylate polymers and copolymers and alkylene vinyl acetate resins may be used.
- EVA polymers examples include Escorene UL-7520 (Exxon), a copolymer of ethylene with 19.3% vinyl acetate; Nucrell 699 (DuPont), an ethylene copolymer containing 11 % of methacrylic acid, etc. lonomers (polyolefins containing ionic bonding of molecular chains) may be used.
- ionomers include ionomeric ethylene copolymers such as Surlyn 1706 (DuPont) which is believed to contain interchain ionic bonds based on a zinc salt of ethylene methacrylic acid copolymer.
- Surlyn 1702 from DuPont is an ionomer that may be used.
- Polycarbonates also are useful, and these are available from the Dow Chemical Co. (Calibre) G.E. Plastics (Lexan) and Bayer (Makrolon). These polycarbonates may be obtained by the reaction of bisphenol A and carbonyl chloride in an interfacial process. Molecular weights may vary from about 22,000 to about 35,000, and the melt flow rates may be in the range of from about 4 to about 22 g/10 min.
- the pigment may be any pigment used in making decorative coatings. These include opacifying pigments, such as titanium dioxide and zinc oxide, as well as tinting pigments such as carbon black, yellow oxides, brown oxides, tan oxides, raw and burnt sienna or umber, chromium oxide green, phthalocyanine green, phthalocyanine blue, ultramarine blue, cadmium pigments, chromium pigments, and the like.
- the pigments include organic reds such as azo reds, quinacridone red and perylene red as well as organic yellows such as diarylide yellow. Mixed metal oxide pigments may be used.
- Filler pigments such as clay, silica, talc, mica, woloastonite wood flour, barium sulfate, calcium carbonate, aluminum silicate, and the like can be added as well in conventional amounts traditionally used in coating and paint formulations.
- the solvent may be an organic-based solvent, such as a ketone, ester, aliphatic compound, aromatic compound, alcohol, glycol, glycol ether, etc.
- methylethyl ketone methylisobutyl ketone, ethyl acetate, white spirits, alkanes, cycloalkanes, benzene, hydrocarbon substituted aromatic compounds (e.g., toluene, the xylenes, etc.), isoparaffinic solvents, and combinations of two or more thereof.
- water or a water-based solution may be used to form an emulsion with the binder or resin.
- Water-based solutions include water-alcohol mixtures, and the like. The solvent or water is sufficiently volatile so that when applied to a substrate, the solvent evaporates leaving behind the binder or resin, pigment (if used) and any other additional non-volatile ingredients.
- Additional ingredients that may be used include wetting agents; plasticizers; suspension aids; thixotropic agents such as silica; water repellant additives such as polysiloxane compounds; fire retardant additives; biocides; defoamers; flow agents; and the like.
- the pigment concentration for the liquid paint or coating composition used to provide the layers 110, 150,160 and 165 may range from about 10 to about 30% by weight, and in one embodiment about 13 to about 27% by weight.
- the binder or resin concentration may range from about 20 to about 40% by weight, and in one embodiment about 22 to about 37% by weight.
- the water or organic solvent concentration may range from about 30 to about 70% by weight, and in one embodiment about 40 to about 60% by weight.
- the additional ingredients such as wetting agents, suspension agents, etc., may be provided at concentrations known in the art, for example, up to about 5 % by weight, and in one embodiment from about 0.1 to about 5% by weight.
- the coating or paint compositions used in making the layers 110, 150, 160 and 165 may have a pigment volume concentration (PVC) in the range of about 5 to about 35%, and in one embodiment 10 to about 30%.
- PVC pigment volume concentration
- the liquid paint or coating compositions used for making the film layers 110, 150, 160, 165 and 180 may be mixed using known techniques.
- the dry paint film layer 110 may comprise a single coat or multiple coats of paint and is in the form of a continuous layer, while the printed decorative layers
- each coat may have the same or a different formulation.
- the layers 150, 160 and/or 165 may have the same color or a different color than the layer 110.
- the layers 150, 160 and/or 165 may have the same color, or they may have colors that are different from each other.
- the layer 110 may be used to provide background color while the layers 150, 160 and/or 165 may be used to provide a pattern or design.
- the layers 150, 160 and/or 165 may be used to provide a pattern or design.
- the layers 150, 160 and/or 165 may be used to provide a pattern or design.
- the layers 150, 160 and/or 165 may be used to provide a pattern or design.
- the transparent film layer 140 may comprise a single coating layer or multiple coats, and may comprise any of the resin materials described above. When multiple coats are used, each coat may have the same or a different formulation.
- the transparent film layer 140 may be extruded. Specific examples of the resins that may be used include polyvinyl chloride, and copolymers of vinyl chloride and acrylic or methacrylic acid.
- the transparent film layer 140 is primarily distinguishable from the dry paint film layer 110 by the fact that it is transparent or translucent.
- the transparent film layer 140 provides enhanced scuff resistance, stain resistance and/or recoatability to the dry paint film layer or layers underlying it.
- Enhanced recoatability refers to the fact that the presence of the transparent film layer 140 facilitates the subsequent application of another dry paint film layer or printed decorative layer over it, or the application of conventional paint or wall coverings (e.g., wall paper) over it.
- the support layer 180 may be formed from any of the binder or resin materials described above.
- the support layer may be formed from a solution or an emulsion and applied using any of the coating techniques described below.
- the support layer 180 may be extruded.
- the support layer 180 may contain one or more of the above-indicated pigments.
- the support layer 180 contains sufficient pigment to provide it with a neutral color such as gray, light blue, light red, etc.
- the concentration of pigment in the support layer 180, when used, may range up to about 10% by weight, and in one embodiment about 6 to about
- the layers 110, 140 and 180 independently may contain inorganic fillers or other organic or inorganic additives to provide desired properties such as appearance properties (clear, opaque or colored films), durability and processing characteristics.
- inorganic fillers include calcium carbonate, titanium dioxide, metal particles, fibers, flame retardants, antioxidant compounds, heat stabilizers, light stabilizers, ultraviolet light stabilizers, antiblocking agents, processing aids, acid acceptors, etc.
- Nucleating agents may be added to one or more of the layers 110, 140 or 180 to increase crystallinity and thereby increase stiffness.
- the nucleating agents which may be used include mineral nucleating agents and organic nucleating agents.
- mineral nucleating agents include carbon black, silica, kaolin and talc.
- organic nucleating agents include salts of aliphatic monobasic or di-basic acids oraryalkyl acids such as sodium succinate, sodium glutarate, sodium caproate, sodium 4-methylvalerate, aluminum phenyl acetate, and sodium cinnamate.
- Alkali metal and aluminum salts of aromatic and alicyclic carboxylic acids such as aluminum benzoate, sodium or potassium benzoate, sodium betanaphtholate, lithium benzoate and aluminum tertiary-butyl benzoate also are useful organic nucleating agents.
- Substituted sorbitol derivatives such as bis (benzylidene) and bis (alkylbenzilidine) sorbitols wherein the alkyl groups contain from about 2 to about 18 carbon atoms are useful nucleating agents.
- Sorbitol derivatives such as 1 ,3,2,4-dibenzylidene sorbitol, 1 ,3,2,4-di-para-methyl benzylidene sorbitol, and 1 ,3,2,4-di-para-methylbenzylidene sorbitol may be used.
- the amounts of nucleating agent incorporated into the film forming formulations may range from about 100 to about 6000 ppm of the film. In one embodiment, the amount of nucleating agent may range from about 1000 to about 5000 ppm.
- One or more of the layers 110, 140 or 180 may contain a minor amount of an adhesive resin to enhance the adhesion of the layer 110 to the layer 140 and/or 180.
- tie layers of an adhesive resin can be positioned between the layers 110 and 140 or the layers 110 and 180.
- the adhesive resin can be an ethylene/vinyl acetate copolymer such as those available from DuPont under the tradename Elvax.
- the adhesive resins available from DuPont under the tradename Bynel may be used.
- the layers 110, 140 and/or 180 are non-stretchable and non-elastic at room temperature.
- the adhesive layer 120 may comprise a pressure sensitive adhesive (PSA) layer, a moisture activatable adhesive layer or a heat activatable adhesive layer.
- PSA pressure sensitive adhesive
- the adhesive may comprise any pressure sensitive, moisture activatable or heat activatable adhesive known in the art for use with film substrates.
- the adhesive layer 120 may be in the form of a continuous or discontinuous layer, and may comprise one or a mixture of two or more adhesives.
- the adhesive layer may be in the form of a patterned adhesive layer with a relatively strong adhesive in some areas and a relatively weak adhesive in other areas. In one embodiment, the adhesive layer provides initial tack and allows slight movement of the laminate to allow positioning adjustments prior to forming a permanent bond.
- the adhesive permits facilitated stripping of the dry paintfilm layer from a substrate when use of the paint film layer is no longer desired.
- the adhesive layer is characterized by producing only a limited amount of ooze beyond the borders of the laminate when the laminate is applied to a substrate. In one embodiment, no ooze is produced.
- the adhesive may comprise a rubber based adhesive, acrylic adhesive, vinyl ether adhesive, silicone adhesive, or mixture of two or more thereof. The adhesive may be applied as a hot melt, solvent-based or water based adhesive.
- the adhesive materials that are useful may contain as a major constituent an adhesive polymer such as an acrylic-type polymer; block copolymer; natural, reclaimed, or styrene-butadiene rubber; tackified natural or synthetic rubber; a copolymer of ethylene and vinyl acetate; an ethylene-vinyl- acrylic terpolymer; polyisobutylene; poly (vinyl ether); etc.
- Other materials may be included in the adhesive such as tackifying resins, plasticizers, antioxidants, fillers, waxes, etc.
- the adhesives may be classified into the following categories: random copolymer adhesives such as those based upon acrylate and/or methacrylate copolymers, ⁇ -olefin copolymers, silicone copolymers, chloroprene/acrylonitrile copolymers, and the like; block copolymer adhesives including those based upon linear block copolymers (i.e., A-B and A-B-A type), branched block copolymers, star block copolymers, grafted or radial block copolymers, and the like; and natural and synthetic rubber adhesives.
- a description of useful pressure-sensitive adhesives may be found in Encyclopedia of Polymer Science and Engineering, Vol. 13. Wiley- Interscience Publishers (New York, 1988). Additional description of useful pressure- sensitive adhesives may be found in Encyclopedia of Polymer Science and
- Pressure-sensitive adhesives that may be used include the hot melt pressure-sensitive adhesives available from H.B. Fuller Company, St. Paul, Minn, as HM- 1597, HL-2207-X, HL-2115-X, HL-2193-X.
- Other useful pressure-sensitive adhesives include those available from Century Adhesives Corporation, Columbus,
- PSAs including silicone-based PSAs, rubber-based PSAs, and acrylic-based PSAs are useful.
- Another commercial example of a hot melt adhesive is H2187-01 , sold by Ato Findley, Inc., of Wauwatusa, Wisconsin.
- rubber based block copolymer PSAs described in U.S. Patent 3,239,478 (Harlan) also can be used, and this patent is hereby incorporated by a reference for its disclosure of such hot melt adhesives.
- the pressure sensitive adhesives comprise rubber based elastomer materials such as linear, branched, graft or radial block copolymers represented by the diblock structures A-B, the triblock A-B-A, the radial or coupled structures (A-B) n , and combinations of these where A represents a hard thermoplastic phase or block which is non-rubbery or glassy or crystalline at room temperature but fluid at higher temperatures, and B represents a soft block which is rubbery or elastomeric at service or room temperature.
- thermoplastic elastomers may comprise from about 75% to about 95% by weight of rubbery segments and from about 5% to about 25% by weight of non-rubbery segments.
- the non-rubbery segments or hard blocks comprise polymers of mono- and polycyclic aromatic hydrocarbons, and more particularly vinyl-substituted aromatic hydrocarbons which may be monocyclic or bicyclic in nature.
- the rubbery blocks or segments are typically polymer blocks of homopolymers or copolymers of aliphatic conjugated dienes. Rubbery materials such as polyisoprene, polybutadiene, and styrene butadiene rubbers may be used to form the rubbery block or segment.
- the rubbery segments include polydienes and saturated olefin rubbers of ethylene/butylene or ethylene/propylene copolymers. The latter rubbers may be obtained from the corresponding unsaturated polyalkylene moieties such as polybutadiene and polyisoprene by hydrogenation thereof.
- the block copolymers of vinyl aromatic hydrocarbons and conjugated dienes which may be utilized include any of those which exhibit elastomeric properties.
- the block copolymers may be diblock, triblock, multiblock, starblock, polyblock or graftblock copolymers. Throughout this specification and claims, the terms diblock, triblock, multiblock, polyblock, and graft or grafted-block with respectto the structural features of block copolymers are to be given their normal meaning as defined in the literature such as in the Encyclopedia of Polymer Science and Engineering, Vol. 2, (1985) John Wiley & Sons, Inc., New York, pp. 325-326, and by J.E. McGrath in Block Copolymers, Science Technology, Dale J. Meier, Ed., Harwood Academic Publishers, 1979, at pages 1-5.
- Such block copolymers may contain various ratios of conjugated dienes to vinyl aromatic hydrocarbons including those containing up to about 40% by weight of vinyl aromatic hydrocarbon. Accordingly, multi-block copolymers may be utilized which are linear or radial symmetric or asymmetric and which have structures represented by the formulae A-B, A-B-A, A-B-A-B, B-A-B, (AB) 0 1 2 ...BA, etc., wherein
- A is a polymer block of a vinyl aromatic hydrocarbon or a conjugated diene/vinyl aromatic hydrocarbon tapered copolymer block
- B is a rubbery polymer block of a conjugated diene.
- the block copolymers may be prepared by any of the well-known block polymerization or copolymerization procedures including sequential addition of monomer, incremental addition of monomer, or coupling techniques as illustrated in, for example, U.S. Patents 3,251 ,905; 3,390,207; 3,598,887; and 4,219,627.
- tapered copolymer blocks can be incorporated in the multi-block copolymers by copolymerizing a mixture of conjugated diene and vinyl aromatic hydrocarbon monomers utilizing the difference in their copolymerization reactivity rates.
- Various patents describe the preparation of multi-block copolymers containing tapered copolymer blocks including U.S. Patents 3,251 ,905; 3,639,521 ; and 4,208,356, the disclosures of which are hereby incorporated by reference.
- Conjugated dienes which may be utilized to prepare the polymers and copolymers are those containing from 4 to about 10 carbon atoms and more generally, from 4 to 6 carbon atoms. Examples include from 1 ,3-butadiene,
- conjugated dienes 2-methyl-1 ,3-butadiene (isoprene), 2, 3-dimethyl-1 ,3-butadiene, chloroprene, 1 ,3-pentadiene, 1 ,3-hexadiene, etc. Mixtures of these conjugated dienes also may be used.
- the preferred conjugated dienes are isoprene and 1 ,3-butadiene.
- vinyl aromatic hydrocarbons which may be utilized to prepare the copolymers include styrene and the various substituted styrenes such as o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 1 ,3-dimethylstyrene, alpha-methylstyrene, beta-methylstyrene, p-isopropylstyrene, 2,3-dimethylstyrene, o-chlorostyrene, p-chlorostyrene, o-bromostyrene, 2-chloro-4-methylstyrene, etc.
- the preferred vinyl aromatic hydrocarbon is styrene.
- the number average molecular weight of the block copolymers, prior to hydrogenation, is from about 20,000 to about 500,000, preferably from about 40,000 to about 300,000.
- the average molecular weights of the individual blocks within the copolymers may vary within certain limits.
- the vinyl aromatic block will have a number average molecular weight in the order of about 2000 to about 125,000, and preferably between about 4000 and 60,000.
- the conjugated diene blocks either before or after hydrogenation will have number average molecular weights in the order of about 10,000 to about 450,000 and more preferably from about 35,000 to 150,000.
- the vinyl content of the conjugated diene portion generally is from about 10% to about 80%, and the vinyl content is preferably from about 25% to about 65%, particularly 35% to 55% when it is desired that the modified block copolymer exhibit rubbery elasticity.
- the vinyl content of the block copolymer can be measured by means of nuclear magnetic resonance.
- diblock copolymers include styrene-butadiene (SB), styrene-isoprene (SI), and the hydrogenated derivatives thereof.
- triblock polymers examples include styrene-butadiene-styrene (SBS), styrene-isoprene-sty- rene (SIS), alpha-methylstyrene-butadiene-alpha-methylstyrene, and alpha- methylstyrene-isoprene alpha-methylstyrene.
- SBS styrene-butadiene-styrene
- SIS styrene-isoprene-sty- rene
- alpha-methylstyrene-butadiene-alpha-methylstyrene alpha- methylstyrene-isoprene alpha-methylstyrene
- block copolymers useful as the adhesives in the present invention include those available from Shell Chemical Company and listed in the following Table II.
- D1320X Multi-arm (Sl) n 10/90 NA Vector 4111 is an SIS block copolymer available from Dexco of Houston Texas.
- a styrene-ethylene-butylene styrene (SEBS) block copolymer Upon hydrogenation of the SBS copolymers comprising a rubbery segment of a mixture of 1 ,4 and 1 ,2 isomers, a styrene-ethylene-butylene styrene (SEBS) block copolymer is obtained. Similarly, hydrogenation of an SIS polymer yields a styrene-ethylene propylene-styrene (SEPS) block copolymer.
- SEPS styrene-ethylene propylene-styrene
- the selective hydrogenation of the block copolymers may be carried out by a variety of well known processes including hydrogenation in the presence of such catalysts as Raney nickel, noble metals such as platinum, palladium, etc., and soluble transition metal catalysts.
- Suitable hydrogenation processes which can be used are those wherein the diene-containing polymer or copolymer is dissolved in an inert hydrocarbon diluent such as cyclohexane and hydrogenated by reaction with hydrogen in the presence of a soluble hydrogenation catalyst.
- an inert hydrocarbon diluent such as cyclohexane
- Such procedures are described in U.S. Patents 3,113,986 and 4,226,952, the disclosures of which are incorporated herein by reference.
- Such hydrogenation of the block copolymers which are carried out in a manner and to extent as to produce selectively hydrogenated copolymers having a residual unsaturation content in the polydiene block of from about 0.5% to about 20% of their original unsaturation content prior to hydrogenation.
- the conjugated diene portion of the block copolymer is at least 90% saturated and more often at least 95% saturated while the vinyl aroma- tic portion is not significantly hydrogenated.
- Useful hydrogenated block copolymers include hydrogenated products of the block copolymers of styrene-isoprene-styrene such as a styrene-(ethylene/propylene)-styrene block polymer.
- a poly- styrene-polybutadiene-polystyrene block copolymer is hydrogenated, it is desirable that the 1 ,2-polybutadiene to 1 ,4-polybutadiene ratio in the polymer is from about 30:70 to about 70:30.
- the resulting product When such a block copolymer is hydrogenated, the resulting product resembles a regular copolymer block of ethylene and 1 -butene (EB). When the conjugated diene employed as isoprene, the resulting hydrogenated product resembles a regular copolymer block of ethylene and propylene (EP).
- EB ethylene and 1 -butene
- EP propylene
- Kraton G is a hydrogenated SBS triblock comprising about 30% by weight of styrene end blocks and a midblock which is a copolymer of ethylene and 1 -butene (EB).
- EB ethylene and 1 -butene
- a lower molecular weight version of G1652 is available from Shell under the designation Kraton G1650.
- Kraton G1651 is another SEBS block copolymer which contains about 33% by weight of styrene.
- Kraton G1657 is an SEBS diblock copolymer which contains about 13%w styrene. This styrene content is lower than the styrene content in Kraton G1650 and Kraton G1652.
- the selectively hydrogenated block copolymer is of the formula
- the unsaturation of block B is reduced upon hydrogenation to less than 5% of its original value, and the average unsaturation of the hydrogenated block copolymer is reduced to less than 20% of its original value.
- the block copolymers may also include functionalized polymers such as may be obtained by reacting an alpha, beta-olefinically unsaturated monocarboxylic or dicarboxylic acid reagent onto selectively hydrogenated block copolymers of vinyl aromatic hydrocarbons and conjugated dienes as described above.
- the reaction between the carboxylic acid reagent in the graft block copolymer can be effected in solutions or by a melt process in the presence of a free radical initiator.
- U.S. Patent 4,795,782 describes and gives examples of the preparation of the grafted block copolymers by the solution process and the melt process.
- U.S. Patent 4,578,429 contains an example of grafting of Kraton G 1652 (SEBS) polymer with maleic anhydride with 2,5-dimethyl-2,5-di(t-butylperoxy) hexane by a melt reaction in a twin screw extruder.
- SEBS Kraton G 1652
- Examples of commercially available maleated selectively hydrogenated copolymers of styrene and butadiene include Kraton FG1901X, FG1921X, and
- FG1924X from Shell, often referred to as maleated selectively hydrogenated SEBS copolymers.
- FG1901X contains about 1.7%w bound functionality as succinic anhydride and about 28%w of styrene.
- FG1921X contains about 1 %w of bound functionality as succinic anhydride and 29%w of styrene.
- FG1924X contains about 13% styrene and about 1 % bound functionality as succinic anhydride.
- Useful block copolymers also are available from Nippon Zeon Co., 2-1 , Marunochi, Chiyoda-ku, Tokyo, Japan.
- the adhesive compositions may contain at least one solid tackifier resin component.
- a solid tackifier is defined herein as one having a softening point above 80°C.
- the adhesive compositions may comprise from about 40 to about 80% by weight of a thermoplastic elastomer component and from about 20% to about 60% by weight, and in one embodiment from about 55 to about 65% by weight of a solid tackifier resin component.
- the solid tackifier reduces the modulus of the mixture sufficiently to build tack or adhesion.
- solid tackifiers may be less sensitive to migration into the polymer film layer, and this is desirable, since migration of tackifier into the film layer
- the solid tackifier resins include hydrocarbon resins, rosin, hydrogenated rosin, rosin esters, polyterpene resins, and other resins which exhibit the proper balance of properties.
- a variety of useful solid tackifier resins are available commercially such as terpene resins which are sold under the trademark Zonatac by Arizona Chemical Company, and petroleum hydrocarbons resins such as the resins sold under the trademark Escorez by Exxon Chemical Company.
- Escorez 2596 is a C 5 -C 9 (aromatic modified aliphatic) synthetic tackifier having an Mw of 2100 and a dispersity (Mw/Mn) of 2.69.
- Escorez 1310LC Another useful solid tackifier is Escorez 1310LC, identified as an aliphatic hydrocarbon resin having an Mw of 1350 and a dispersity of 1.8.
- Wingtack 95 is a synthetic tackifier resin available from Goodyear, Akron, Ohio consisting predominantly of polymerized structure derived from piperylene and isoprene.
- the modulus of the adhesive mixtures to be coextruded also may be lowered by the incorporation of liquid rubbers, i.e., liquid at room temperature.
- the liquid rubbers generally will have an Mw of at least 5,000 and more often at least 20,000.
- Liquid block copolymers such as liquid styrene-isoprene block copolymers may be used.
- examples include Kraton LVSI-101 , available from the Shell Chemical Company.
- Another example is a liquid polyisoprene obtained by depolymerization of high molecular weight polyisoprene.
- An example of a commercially available depolymerized high molecular weight polyisoprene is Isolene D-400 from Elementis
- the adhesive layer 120 may contain one or more pigments to enhance the opacity of the paint film layers overlying it and permit the use of thinner paint film layers to achieve desired levels of opacity. Any of the pigments identified above may be used. Specific examples include titanium dioxide and carbon black. The pigment volume concentration may range up to about 10%, and in one embodiment from about 5 to about 10%, and in one embodiment about 2 to about 8%.
- the adhesive compositions also may include other materials such as antioxidants, heat and light stabilizers, ultraviolet light absorbers, fillers, colorants, antiblocking agents, reinforcing agents, processing aids, etc.
- Hindered phenolic and amine antioxidant compounds may be included in the adhesive compositions, and a wide variety of such antioxidant compounds are known in the art.
- a variety of antioxidants are available from Ciba-Geigy under the general trade designations "Irganox" and "Irgafos”.
- the hindered phenolic antioxidant n-octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenol)- proprionate is available under the general trade designation "Irganox 1076".
- Irganox 1010 is identified as Tetrakis (methylene 3- (3',5'-di-tert-butyl-4'-hydroxyphenol) proprionate) methane.
- Irgafos 168 is another useful antioxidant from Ciba-Geigy. Hydroquinone-based antioxidants also may be utilized, and one example of such an antioxidant is 2,5-di-tertiary-amyl- hydroquinone.
- Light stabilizers, heat stabilizers, and UV absorbers also may be included in the adhesive compositions. Ultraviolet absorbers include benzo- triazol derivatives, hydroxy benzyl phenones, esters of benzoic acids, oxalic acid, diamides, etc.
- Light stabilizers include hindered amine light stabilizers, and the heat stabilizers include dithiocarbamate compositions such as zinc dibutyl dithiocarbamate.
- the adhesive compositions may contain inorganic fillers and other organic and inorganic additives to provide desired properties.
- useful fillers include calcium carbonate, titanium dioxide, metal particles, fibers, etc.
- An example of a useful end-block reinforcing agent is Cumar LX509 from Neville Resins.
- the barrier layer 190 may comprise any of the acrylate polymers or copolymers described above, polyvinyl alcohol, copolymers derived from ethylene and vinyl acetate, and copolymers derived from ethylene, vinyl acetate and polyvinyl alcohol.
- the barrier layer may comprise a polymer blend derived from polyvinyl alcohol, urethane, Cymel 385 (a product of Cytec identified as a melamine formaldehyde resin) and a polyaziridine (e.g, NeoCryl CX100 which is identified as trimethol-tris N (methyl aziridinyl) proprionate and is available from Avecia Resins), the weight ratio of polyvinyl alcohol to urethane in one embodiment being about 20:80.
- the barrier layer may be provided to inhibit or reduce the migration of dyes or pigments and other materials from the substrate to which the inventive laminate is applied into the dry paint film layer 110.
- the following examples illustrate specific coating compositions which may be used in forming the barrier layer 190
- Elvacite 2042 product of Ineos 20 identified as an ethyl methacrylate copolymer
- Adcote 61WG178 product of Rohm and Haas identified as a solution of 0.10 acrylic polymer
- Syloid 234 product of Grace Davidson identified as synthetic amorphous silica N-propanol 44.35
- Air Vol 523 product of Air Products 5.0 identified as polyvinyl alcohol
- the backing liners 132 and 172 may independently comprise paper, polymer film, or a combination thereof. These backing liners, in one embodiment, are thermally stable, non-elastomeric and non-stretchable at room temperature. Paper liners are useful because of the wide variety of applications in which they can be employed. Paper is also relatively inexpensive and has desirable properties such as antiblocking, antistatic, dimensional stability, and can potentially be recycled. Any type of paper having sufficient tensile strength to be handled in conventional paper coating and treating apparatus can be employed as the backing liner. Thus, any type of paper can be used depending upon the end use and particular personal preferences.
- paper which can be used are clay coated paper, glassine, polymer coated paper, hemp, and similar cellulose materials prepared by such processes as the soda, sulfite or sulfate (Kraft) processes, the neutral sulfide cooking process, alkali-chlorine processes, nitric acid processes, semi-chemical processes, etc.
- Kraft soda, sulfite or sulfate
- alkali-chlorine processes alkali-chlorine processes
- nitric acid processes nitric acid processes
- semi-chemical processes etc.
- paper of any weight may be employed as a backing liner
- paper having weights in the range of from about 30 to about 120 pounds per ream are useful, and papers having weights in the range of from about
- ream 60 to about 100 pounds per ream may be used.
- ream 60 to about 100 pounds per ream may be used.
- ream 60 to about 100 pounds per ream may be used.
- ream 60 to about 100 pounds per ream may be used.
- ream 60 to about 100 pounds per ream may be used.
- ream 60 to about 100 pounds per ream may be used.
- ream 60 to about 100 pounds per ream may be used.
- ream as used herein equals 3000 square feet.
- the backing liners 132 and 172 may independently comprise a polymer film, and examples of polymer films include polyolefin, polyester, and combinations thereof.
- the polyolefin films may comprise polymer and copolymers of monoolefins having from 2 to about 12 carbon atoms, and in one embodiment from 2 to about 8 carbon atoms, and in one embodiment 2 to about 4 carbon atoms per molecule. Examples of such homopolymers include polyethylene, polypropylene, poly-1 -butene, etc. Films prepared from blends of copolymers or blends of copolymers with homopolymers may be used. The films may be extruded in mono or multilayers.
- a poiycoated kraft liner which is basically comprised of a kraft liner that is coated on either one or both sides with a polymer coating.
- the polymer coating which can be comprised of high, medium, or low density polyethylene, propylene, polyester, or other similar polymer films, is coated onto the substrate surface to add strength and/or dimensional stability to the liner.
- the weight of these types of liners ranges from about 30 to about 100 pounds per ream, with about 94 to about 100 pounds per ream being useful.
- the final backing liner 132 may comprise from about 10% to about 40% polymer and from about 60% to about 90% paper. For two sided coatings, the quantity of polymer may be approximately evenly divided between the top and bottom surface of the paper.
- the backing liners 132 and 172 provide structural integrity to the laminate until they are removed upon application of the laminate to a substrate. As a result of the use of either or both of these liners, it is not necessary to employ a semi-rigid or reinforcing backing sheet with the inventive laminates.
- the release coating layer 135 may comprise a single coat of release coating material or multiple coats. When multiple coats are used, each coat may have the same formulation, or different formulations may be used.
- the release coating layer 135 may comprise any of the above indicated binders or resins which provide sufficient tack or adherence between the release coating layer 135 and either the dry paint film layer 110 (Figs. 1 or 6-8), transparent film layer 140 (Figs. 3-5) or printed decorative layer 165 (Fig. 9) to prevent separation of the release coating layer 135 from film layer 110, 140 or 165 during the making of the dry paint transfer laminate and normal handling of such laminate, and yet have sufficient release properties to provide for facilitated separation between the release coating layer 135 and the layers 110, 140 or 165 when using the laminate.
- the release coating layer 135 may comprise an alkyd resin and/or a vinyl resin cross linked with a melamine resin.
- the alkyd resins include resins formed by the condensation of one or more polyhydric alcohols with one or more polybasic acids or anhydrides.
- the polyhydric alcohols include glycerol and the polybasic acids or anhydrides include phthalic anhydride.
- Modified alkyds wherein the polybasic acid is substituted in part by a monobasic acid such as acrylic acid or a vegetable oil fatty acid may be used.
- the vinyl resins that may be used include polyvinyl chloride, polyvinyl acetate, copolymers of vinyl chloride and vinyl acetate, acrylic resins, methacrylic resins, polystyrene resins, and the like.
- the melamine resins include amino resins made by the condensation of melamine with formaldehyde or a compound capable of providing methylene bridges.
- the cross linking of the alkyd and/or vinyl resin with the melamine resin typically occurs when the release coating 135 is applied to the backing liner and dried or cured.
- the release coating comprises on a solids basis from zero to about 80% by weight, and in one embodiment about 10 to about 30% by weight alkyd resin; from zero to about 80% by weight, and in one embodiment about 10 to about 30% by weight vinyl resin; and from about 10 to about 30% by weight, and in one embodiment about 20 to about 25% by weight melamine resin.
- Release coating layer 135 may contain one or more solid particulates that project into the surface 114 of dry paint film layer 110, the surface 141 of transparent film layer 140 or the printed decorative layer 165 to provide the layers 110, 140 or 165 with a matte or flat finish.
- the release coating layer 135 may be referred to as a matte release coat or matte release coating layer.
- the particulates that may be used may be any of the filler pigments described above for use in the paint film layers. Specific examples include talc and aluminum silicate. Particulates with irregular shapes (e.g., platelet shapes) may be used. By controlling the use of these particulates the surface finish of the dry paint film layer, transparent film layer or printed decorative layer may be controlled.
- the dry paint film layer, transparent film layer or printed decorative layer may be provided with a flat or semi- gloss finish.
- the paint film layer, transparent film layer or printed decorative layer may be provided with a glossy finish by not using or minimizing the use of these particulates.
- the weight ratio of particulates to resin or binder may range up to about 1.1 :1 , and in one embodiment about 0.7:1 to about 1.1 :1 , and in one embodiment from about 0.7:1 to about 0.9:1 , and in one embodiment about 0.9:1 to about 1.1 :1.
- the release coating layers 136 and 176 may independently comprise any release coating composition known in the art. Silicone release coating compositions may be used.
- the silicone release coating compositions typically comprise polyorganosiloxanes such as polydimethylsiloxanes.
- the silicone release coating composition used in this invention may be room temperature cured, thermally cured, or radiation cured. Generally, the room temperature and thermally curable compositions comprise at least one polyorganosiloxane and at least one catalyst (or curing agent) for such polyorganosiloxane(s). These compositions may also contain at least one cure accelerator and/or adhesivity promoter.
- the release force required to separate release coating layer 135 from dry paint film layer 110, transparent film layer 140, or printed decorative layer 165 is advantageously greater than the release force required to separate release coating layer 136 from adhesive layer 120.
- the release force required to separate release coating layer 135 from dry paint film layer 110 is advantageously greater than the release force required to separate release coating layer 176 from adhesive layer 20.
- 165 may be in the range of about 20 to about 180 grams per two inches (g/2 in), and in one embodiment 30 to about 150 g/2 in, and in one embodiment 40 to about 120 g/2 in, and in one embodiment 50 to about 100 g/2 in, and in one embodiment 50 to about 90 g/2 in, and in one embodiment about 70 to about 90 g/2 in, and in one embodiment about 50 to about 65 g/2 in.
- the release force required to separate release coating layer 136 or 176 from adhesive layer 120 is in the range of 10 to about 150 g/2 in, and in one embodiment about 20 to about 150 g/2 in, and in one embodiment about 20 to about 90 g/2 in, and in one embodiment about 30 to about 150 g/2 in, and in one embodiment about 30 to about 100 g/2 in, and in one embodiment about 30 to about 70 g/2 in.
- the test method for determining these release forces involves measuring the force required to separate a two-inch wide release coated liner from the layer 110, 140 or 165, or from an adhesive coated substrate, with the release coated liner extending at an angle of 90° relative to the layer or substrate and being pulled at a rate of 300 inches per minute. The test may be conducted at room temperature.
- Each of the layers 135, 136, 140, 176, 180 and 190 may be independently applied and dried and/or cured using known techniques.
- the application techniques include gravure, reverse gravure, offset gravure, roll coating, brushing, knife-over roll, metering rod, reverse roll coating, doctor knife, dipping, die coating, slot die coating, spraying, curtain coating, slide coating, slide curtain coating, extrusion, co- extrusion, flexographic, letter press, rotary screen, flat screen, and the like.
- the decorative layers 150, 160 and 165 may be applied using known printing techniques including gravure, flexographic, silk screen, inkjet, etc.
- the applied layers may be dried and/or cured by exposure to heat or to known forms of ionizing or actinic non- ionizing radiation.
- Drying or curing temperatures may range from about 115°C to about 160°C, and in one embodiment about 140°C to about 150°C.
- Useful types of radiation include ultraviolet light and electron beam.
- the equipment for generating these forms of thermal or radiation drying and/or curing are well known to those skilled in the art.
- the layers 110 and 120, as well as one either of the layers 140 and 180 may be extruded.
- the layers 110 and/or 180 may be coextruded with the adhesive layer 120.
- the support layer 180 may be coextruded with the adhesive layer 120.
- each of the layers 110, 140 or 180 may independently comprise a single layer film or a multilayer film of two or more adjacent coextruded layers.
- the layer 110, 140 or 180 may comprise one layer of a polyolefin and one layer of a blend of a polyolefin and a copolymer of ethylene and vinyl acetate (EVA).
- the film layers 110, 140 or 180 may comprise three layers, a base or core layer of, for example, a polyolefin, and skin layers in both sides of the base or core layer which may comprise the same or different polymer blends.
- the dry paint film layer 110 or the support layer 180 may be coextruded with the adhesive layer 120 using separate extruders as illustrated in Fig.
- release liner 200 is uncoiled from roll 240 and advanced past extrusion die 210 where it is coated with adhesive layer 120, and then past extrusion die 220 where the support layer 180 is coated onto the adhesive layer 120.
- the resulting coextrudate is collected in roll form as indicated by collection roll 250.
- release liner 200 is advanced past dual extrusion die 230 which simultaneously coats release liner 200 with adhesive layer 120 and support layer 180.
- the resulting coextrudate is collected in roll form as indicated by collection roll 250.
- the collection roll 250 is removed from the process and is stored for subsequent processing (e.g., coating, printing, etc.) during a separate operation at either the same or at a different geographic location, thereby providing enhanced manufacturing flexibility.
- the coextrudate may be routed for coating, printing, etc., during the same manufacturing operation.
- the dry paint film layer 110 may be coextruded with the adhesive layer 120 following the above procedure. Multi-die application methods useful for applying both a pressure sensitive adhesive and a film forming layer to a substrate are further described in Published PCT International Application Nos.
- PCT/US95/11807; PCT/US95/11733; PCT/US95/11734; and PCT/US95/11717 which are herein incorporated by reference.
- the polymeric film materials and adhesive compositions that are coextruded may be neat, or they may be emulsions or solvent-based.
- Emulsion and solvent-based acrylic based PSAs are known and described in, for example, U.S. Patent No. 5,639,811 and 5,164,444, respectively, and these patents are hereby incorporated by reference for such disclosures.
- the water may be removed in an extruder by using the process described and claimed in U.S.
- the film materials and adhesives which are coextruded are compositions substantially free (e.g., less than about 1 % by weight) of water and/or solvents.
- the presence of water or solvents during the coextrusion process may result in pinholes and bubbles in the coextruded film.
- the presence of voids in the film due to steam may be referred to as "moisture slits.”
- the hot melt viscosity of the polymeric film material and the adhesive may be within a window or range of viscosities which may produce a coextrudate of continuous and uniform layers of the polymeric film material and the adhesive in order to avoid film defects and intermingling of the polymeric film material and the adhesive during the coextrusion process.
- the polymeric film material may have a hot melt viscosity that is within a factor of from about 0.07 to about 15 times the hot melt viscosity of the adhesive at the shear rates incurred during the coextrusion process.
- the shear rates may range from about 100 sec- 1 to about 10,000 sec- 1 .
- the factor may be from about 1 to about 15, and in one embodiment about 1 to about 10.
- the polymeric film material and the adhesive may have relatively similar melt viscosities at the extrusion temperatures.
- the extrusion temperatures of the adhesive may be in the range of from about 150°C to about 200°C, and in one embodiment in the range of from about 175°C to about 200°C.
- the polymeric film material selected for use with the adhesive may have an extrusion temperature below about 200°C, and in one embodiment in the range of from about 150°C to about 180°C.
- the dry paint transfer laminate 100 illustrated in Fig. 1 may be made by applying release coating 136 to lower surface 134 of backing liner 132 using one of the foregoing application techniques and then curing the release coating.
- the coat weight for the release coating layer 136 may be in the range of about 0.1 to about 1 gram per square meter (gsm), and in one embodiment about 0.25 to about 0.35 gsm.
- Release coating layer 135 is then applied to upper surface 133 of backing liner 132 using one of the above indicated application techniques (e.g, gravure) and then dried or cured.
- the coat weight for the release coating 135 may range from about 2.5 to about 6.5 gsm, and in one embodiment about 4.5 to about 5.5 gsm.
- the liquid paint or coating composition for forming dry paint film layer 110 is then applied to the surface of release coating layer 135 using one of the above indicated application techniques (e.g., reverse roll or slot die) and then dried or cured.
- the coat weight for the dry paint film layer 110 may range from about 20 to about 60 gsm, and in one embodiment about 30 to about 40 gsm.
- One or more coats may be applied.
- Pressure sensitive adhesive layer 120 is then applied to upper surface 112 of dry paint film layer 110 using one of the above indicated application techniques (e.g., slot die) and then dried or cured.
- the pressure sensitive adhesive may be applied using transfer lamination.
- the coat weight for the pressure sensitive adhesive layer 120 may range from about 10 to about 30 gsm, and in one embodiment about 11 to about 17 gsm.
- the dry paint transfer laminate 100 may then be wound into roll form as illustrated in Fig. 2 using known techniques.
- the dry paint transfer laminate 100A illustrated in Fig. 3 may be made using the same procedure used for making the laminate 100 except that transparent film layer 140 is applied to the surface of release coating layer 135 and then dried or cured prior to the application of the dry paint film layer 110.
- the dry paint film layer 110 is then applied to the surface of the transparent film layer 140.
- the transparent film layer 140 may be applied using one of the foregoing application techniques (e.g., gravure).
- the coat weight for the transparent film layer 140 may range from about 1 to about 5 gsm, and in one embodiment about 2.5 to about 3.5 gsm. One or more coats may be applied.
- the dry paint transfer laminate 100A may then be wound into a roll as illustrated in Fig. 2 using known techniques.
- the dry paint transfer laminate 100B illustrated in Fig. 4 may be made using the same procedure used for making the laminate 100A except that the liquid paint composition for forming the printed decorative layer 150 is applied to the surface of the transparent film layer 140 and then cured prior to the application of the dry paint film layer 110.
- the dry paint film layer 110 is then applied to the surface of the printed decorative layer 150.
- the printed decorative layer 150 may be applied using any of the foregoing printing techniques (e.g., gravure, flexographic, silk screen, ink jet, etc.).
- the coat weight for the printed decorative layer 150 may range from about
- the dry paint transfer laminate 100B may then be wound into a roll as illustrated in Fig. 2 using known techniques.
- the dry paint transfer laminate 100C illustrated in Fig. 5 may be made using the same procedure used for making the laminate 100B except that the liquid paint composition for forming the second printed decorative layer 160 is applied to the surface of the transparent film layer 140 and then dried or cured prior to the application of the printed decorative layer 150.
- the printed decorative layer 150 is then applied over the surface of the second printed decorative layer 160.
- the second printed decorative layer 160 may be applied using any of the foregoing printing techniques (e.g., gravure, flexographic, silk screen, inkjet, etc.).
- the coat weight for the second printed decorative layer 160 may range from about 0.3 to about 2 gsm, and in one embodiment about 0.3 to about 0.7 gsm.
- the dry paint transfer laminate 100C may then be wound into a roll as illustrated in Fig. 2 using known techniques.
- the dry paint transfer laminate 100D illustrated in Fig. 6 may be made using the same procedure used for making the laminate 100 illustrated in Fig. 1 except that release liner 170 is adhered to adhesive layer 120 with release coating layer 176 in contact with adhesive layer 120.
- the dry paint transfer laminate 100E illustrated in Fig. 7 may be made using the same procedure used for making the laminate 100 illustrated in Fig. 1 except that the support layer 180 is adhered to the dry paint film layer 110.
- the support layer 180 may be coextruded with the adhesive layer 120 and then the dry paint film layer 110 may be coated (e.g., gravure) onto the support layer 180.
- the dry paint transfer laminate 100E may then be wound into a roll as illustrated in Fig. 2 using known techniques.
- the dry paint transfer laminate 100F illustrated in Fig. 8 may be made using the same procedure used for making the laminate 100 illustrated in Fig. 1 except tha the barrier layer 190 is coated on the dry paint transfer film layer 110.
- the dry paint transfer laminate 100F may then be wound into a roll as illustrated in Fig.
- the dry paint transfer laminate 100G illustrated in Fig. 9 may be made using the same procedure used for making the laminate 100 illustrated in Fig. 1 except that support layer 180 is adhered to dry paint transfer layer 110.
- the support layer 180 may be coextruded with the adhesive layer 120.
- the printed decorative layers 150, 160 and 165 may be coated sequentially over the dry paint film layer 110.
- the dry paint transfer laminate 100G may then be wound into a roll as illustrated in Fig.
- the dry paint transfer laminate 100H illustrated in Fig. 10 may be made using the same procedure used for making the laminate 100C illustrated in Fig. 5 except that the release liner used in the laminate 100C is removed, and the release liner 170 and accompanying release layer are included.
- the dry paint film layer 110 and adhesive layer 120 may be coextruded onto the release layer 176 of the release liner 170.
- the inventive dry paint transfer laminate may be made in a single production line or in multiple production lines or multiple production facilities. With multiple production lines or facilities, part of the laminate may be produced as a roll laminate, dried or cured, rolled up, transferred to the next production line or facility, unrolled, and further treated with the application of additional layers.
- the dry paint film layer 110 and the adhesive layer 120 may be deposited in multiple lines, or they may be deposited in sequence in a single line, or they may be deposited simultaneously such as by coextrusion or multi-die coating methods.
- Production in a single production line may be more efficient by avoiding extra handling, storage, and transporting steps for what may comprise, at least in one embodiment, relatively thin and delicate film materials.
- the dry paint transfer laminate 100 may be used by unrolling the laminate from the roll illustrated in Fig. 2, and simultaneously applying the laminate to the substrate (e.g., wall) to be covered.
- the substrate may comprise any flat surface.
- the flat surface may comprise wall board, plastic sheet, metal sheet, composites, and the like.
- the substrate may comprise an interior (i.e., indoor) surface or an exterior (i.e., outdoor) surface.
- the laminate is placed over the substrate with the adhesive layer 120 in contact with the substrate.
- the release liner 130 is then peeled off leaving the dry paint film layer 110 adhered to the substrate by the adhesive layer 120.
- An advantage of using this laminate is that it is possible to overlap part of the applied dry paint film layer with the next adjacent applied dry paint film layer due to the fact that the seams substantially disappear and therefore are not noticeable.
- This advantage is provided at least in part due to the fact that the dry paint film layer 110 is relatively thin. Also, the gloss and opacity of the dry paint film layer 110 contrubute to this ability to hide seems.
- the dry paint transfer laminate 100A may be applied to a substrate in the same manner as the laminate 100.
- the release liner 130 is peeled off, the dry paint film layer 110, transparent film layer 140, and adhesive layer 120 remain adhered to the substrate with the adhesive layer 120 in contact with the substrate.
- the dry paint transfer laminate 100B may be applied to a substrate in the same manner as the laminate 100.
- the release liner 130 is peeled off, the dry paint film layer 110, printed decorative layer 150, transparent film layer 140, and adhesive layer 120 remain adhered to the substrate with the adhesive layer 120 in contact with the substrate.
- the dry paint transfer laminate 100C may be applied to a substrate in the same manner as the laminate 100.
- the release liner 130 is peeled off, the layers 110, 150 and 160, transparent film layer 140, and adhesive layer 120 remain adhered to the substrate with the adhesive layer 120 in contact with the substrate.
- the dry paint transfer laminate 100D may be applied to a substrate in the same manner as the laminate 100 except that the laminate is advantageously provided in the form of a flat sheet rather than a roll and the release liner 170 is peeled off before the adhesive layer 120 is adhered to the substrate.
- the dry paint transfer laminate 100E may be applied to a substrate by adhering the adhesive layer 120 to the substrate, and then removing the release liner 130.
- the dry paint transfer laminate 100F may be applied to a substrate by adhering the adhesive layer 120 to the substrate, and removing the release liner 130.
- the laminate 100G may be applied to a substrate by adhering the adhesive layer 120 to the substrate, and removing the release liner 130.
- the laminate 100H may be applied to a substrate by peeling the peeling the release liner 170 and accompanying release coating 176 from the laminate, and then applying the adhesive layer 120 to the substrate.
- the laminate may be applied using a specialized applicator which winds or coils the release liner 170 and accompanying release layer 176 as the remainder of the laminate is applied to the substrate.
- a polyethylene terephthalate film backing liner corresponding to backing liner 132 is coated on one side with a silicone release coating corresponding to second release coating layer 136.
- the thickness of the release coated liner is 0.92 mil.
- a matte release coat corresponding to first release coating layer 135 is applied to the other side of the backing liner using gravure at a coat weight of 6.5- 7.75 gsm.
- the formulation for the matte release coat is as follows: 26% by weight methylisobutyl ketone, 6% by weight isopropanol, 34.8% by weight Lankyd 13-1425 (a product supplied by Akzo Resins identified as an acrylic modified alkyd), 2.6% by weight Elvacite 2042 (a product supplied by Lucite International identified as a polyethyl methacrylate polymer), 30% by weight Microtalc MP 15-38 (a product supplied by Barrett's Minerals identified as a talc extender pigment), 2.5% by weight
- Cycat 4040 (a product supplied by Cytec identified as paratoluene sulfonic acid) and 8.7% by weight Cymel 303 (a product suppled by Cytec identified as a melamine resin).
- the matte release coat is dried using forced hot air at a temperature of 149°C.
- a transparent film layer corresponding to transparent film layer 140 is applied to the matte release coat using gravure at a coat weight of 2.7-2.9 gsm and dried using forced hot air at a temperature of 120°C.
- the formulation for the transparent film layer is as follows: 46.7% by weight methyl ethyl ketone, 31.3% by weight toluene, 11 % by weight VYNS (a product of Union Carbide identified as a vinyl chloride/vinyl acetate copolymer containing 5-20% by weight vinyl acetate), and 11 % by weight Vitel 2200B (a product of Bostic identified as a polyester copolymer).
- VYNS a product of Union Carbide identified as a vinyl chloride/vinyl acetate copolymer containing 5-20% by weight vinyl acetate
- Vitel 2200B a product of Bostic identified as a polyester copolymer
- Example 1 has a deep brown tone
- Example 2 has an orange pastel tone.
- all numerical values are in parts by weight.
- VYHH product of Union Carbide identified as a vinyl chloride/vinyl 50.05 30.55 acetate copolymer
- Edinol 9790 (a product of Cognis identified as a polyester plasticizer) 24.65 15.05
- the pigment volume ratio for Example 1 is 10%, and for Example 2 it is 27%.
- the above paint formulations are applied to the transparent film layer using a reversed roller coater and dried at a temperature of 135°C to drive off the solvents.
- the dry film thickness of each of the dry paint film layers is 0.7 mil.
- a pigmented pressure sensitive adhesive is then applied to the dry paint film layer at a coat weight of 14-20 gsm using transfer lamination to provide an adhesive layer corresponding to pressure sensitive adhesive layer 120.
- the formulation for the pressure sensitive adhesive is as follows: 70-90% by weight 2-ethylhexal acrylate, 1-10% by weight acrylic acid, 10-20% by weight methyl acrylate, 3.7% UCD 1106E (a product of Rohm and Haas identified as a titanium dioxide dispersion concentrate), and 0.3% by weight of UCD 1507E (a product of Rohm and Haas identified as a carbon black dispersion concentrate).
- Example 3 The procedure used for Examples 1 and 2 is repeated except that the following liquid paint composition is used to form the dry paint film layer corresponding to dry paint film layer 110.
- all numerical values are in parts by weight.
- the foregoing paint composition has a light blue color.
- the dry film thickness of the dry paint film layer is 0.6-0.8 mil.
- Example 4 A polyethylene terphthalate film backing liner corresponding to backing liner 132 is coated on one side with a silicone release coating corresponding to second release coating layer 136. The thickness of the release coated liner is 0.92 mil.
- a matte release coat corresponding to first release coating layer 135 is applied to the other side of the backing liner using gravure at a coat weight of 4.4- 4.6 gsm.
- the formulation for the matte release coat is as follows: 50.54% by weight methylisobutyl ketone, 7.84% by weight isopropanol, 8.93% by weight Lankyd 13-
- the formulation for this first transparent film layer coat is as follows: 41.5% by weight methyl ethyl ketone, 41.5% by weight methyl isobutyl ketone, and 17% by weight Elvacite 2042 (a product of Lucite International identified as a polymethyl methacrylate).
- a second coat of a transparent film layer corresponding to transparent film layer 140 is applied over the first coat of transparent film layer using gravure at a coat weight of 1.0-1.5 gsm and dried using forced hot air at a temperature of 120°C.
- the dry film thickness is 0.03-0.7 mil.
- the formulation for this second transparent film layer coat is as follows: 41.5% by weight methyl ethyl ketone, 41.5% by weight methyl isobutyl ketone, and 17% by weight VYHH (a product of Union Carbide identified as a vinyl chloride/vinyl acetate copolymer containing 5-20% by weight vinyl acetate).
- a decorative layer corresponding to second printed decorative layer 160 is printed over the second coat of the transparent coating layer at a coat weight of 3.0-
- the paint composition used for this decorative layer has the following formulation (all numerical values are in parts by weight):
- a decorative layer corresponding to printed decorative layer 150 is printed over the above indicated decorative layer corresponding to second printed decorative layer 160 at a coat weight of 0.8 gsm and dried in hot air at a temperature of 120°C.
- the paint composition used for this decorative layer has the following formulation (all numerical values are in parts by weight):
- a pigmented pressure sensitive adhesive is then applied over the dry paint film layer corresponding to dry paint film layer 110 at a coat weight of 17 gsm using transfer lamination to provide an adhesive layer corresponding to pressure sensitive adhesive layer 120.
- the formulation for the pressure sensitive adhesive is as follows: 96% by weight of a non-tackified acrylic emulsion containing a crosslinked copolymer of butyl acrylate and ethyl hexyl acrylate, 3.7% by weight UCD 1106E, and 0.3% by weight UCD 1507E.
- Example 5 A polyethylene terphthalate film backing liner corresponding to backing liner 132 is coated on one side with a silicone release coating corresponding to second release coating layer 136. The thickness of the release coated liner is 0.92 mil.
- a matte release coat corresponding to first release coating layer 135 is applied to the other side of the backing liner using gravure at a coat weight of 4.4- 4.6 gsm.
- the matte release coat is dried using forced hot air at a temperature of 149°C.
- the formulation for the matte release coat is as follows (all numerical values are in parts by weight): Methyl isobutyl ketone 52.54
- Elvacite 4402 product of Lucite 20.98 International identified as hydroxy ethyl methacrylate modified acrylic resin
- a transparent film layer corresponding to transparent film layer 140 is applied to the matte release coat using a reverse roll coater at a coat weight of 13 gsm and dried using forced hot air at a temperature of 120°C.
- the dry film thickness is 0.4 mil.
- the formulation for the transparent film layer coat is as follows (all numerical values are in parts by weight): Rucothane CO-A-5002L (product 62.5 of Ruco Chemical identified as polyester urethane) Toluene 18.75
- a decorative layer corresponding to printed decorative layer 150 is printed over the above indicated transparent film layer at a coat weight of 1 gsm and dried in hot air at a temperature of 120°C.
- the paint composition used for this decorative layer has the following formulation (all numerical values are in parts by weight):
- a pressure sensitive adhesive is then applied over the dry paint film layer corresponding to dry paint film layer 110 at a coat weight of 15-20 gsm using transfer lamination to provide an adhesive layer corresponding to pressure sensitive adhesive layer 120.
- the pressure sensitive adhesive is a non-tackified acrylic emulsion.
- the formulation for the pressure sensitive adhesive is as follows: 70-90% by weight 2-ethylhexal acrylate, 1-10% by weight acrylic acid, and 10-20% by weight methyl acrylate.
- Example 6 A polyethylene terphthalate film backing liner corresponding to backing liner 132 is coated on one side with a silicone release coating corresponding to second release coating layer 136. The thickness of the release coated liner is 0.92 mil.
- a matte release coat corresponding to release coating layer 135 is applied to the other side of the backing liner using gravure. The release coat is dried using forced hot air at a temperature of 148.9°C. The matte release coat is applied at a coat weight of 4.0-5.0 gsm.
- the formulation for the matte release coat is as follows (all numerical values are in parts by weight):
- a transparent film layer corresponding to transparent film layer 140 is applied over Matte Release Coat No. 2 using a 2 mil byrd bar at a coat weight of 30 gsm and dried using hot air at a temperature of 126.7°C.
- the formulation for the transparent film layer is as follows (all numerical values are in party by weight): Water 7.98
- Vycar 351 product of Noveon identified 79.81 as a polyvinyl chloride copolymer emulsion
- Antifoam PD-218 product of Magrabar 0.32
- Rheolate 350 product of Rheox, Inc. 1.92 identified as a thickener
- Vycar 460X45 product of Noveon identified 34.72 as a vinyl chloride/acrylic copolymer
- Vycar 460X46 product of Noveon identified 11.57 as a vinyl chloride/acrylic copolymer
- a pressure sensitive adhesive is then applied over the dry paint film layer corresponding to dry paint film layer 110 at a coat weight of 17 gsm using transfer lamination to provide an adhesive layer corresponding to pressure sensitive adhesive layer 120.
- the formulation for the pressure sensitive adhesive is as follows: 96% by weight of a non-tackified emulsion containing a crosslinked copolymer of butyl acrylate and ethyl hexyl acrylate, 3.7% by weight UCD 1106E, and 0.3% by weight UCD 1507E.
- Example 7 A polyethylene terphthalate film backing liner corresponding to backing liner
- release coated liner 132 is coated on one side with a silicone release coating corresponding to second release coating layer 136.
- the thickness of the release coated liner is 0.92 mil.
- a matte release coat corresponding to first release coating layer 135 is applied to the other side of the backing liner using gravure at a coat weight of 4.4- 4.6 gsm.
- the formulation for the matte release coat is as follows: 50.54% by weight methylisobutyl ketone, 7.84% by weight isopropanol, 8.93% by weight Lankyd 13- 1425, 10.68% by weight VAGH (product of Union Carbide identified as hydroxy modified polyvinyl chloride/polyvinyl acetate copolymer), 22% by weight Microtalc MP 15-38, 2% by weight Cycat 4040, and 6.8% by weight Cymel 303.
- the matte release coat is dried using forced hot air at a temperature of 149°C.
- a transparent film layer corresponding to transparent film layer 140 is applied to the matte release coat using gravure at a coat weight of 12-16 gsm and dried using forced hot air at a temperature of 165°C.
- the dry film thickness is 0.35-0.5 mil.
- the formulation for this transparent film layer is as follows (all numerical values are in parts by weight)
- Kynar 301 F product of Atofina 27.0 identified as a polyvinyl fluoride homopolymer
- a decorative layer corresponding to second printed decorative layer 160 is printed over the transparent coating layer at a coat weight of 0.3-1.2 gsm and dried in hot air at a temperature of 105°C.
- the paint composition used for this decorative layer has the following formulation (all numerical values are in parts by weight): Methylethyl ketone 36.0
- Kynar 7201 (SL) product of Atofina 10.2 identified as a polyvinyl fluoride copolymer
- a decorative layer corresponding to printed decorative layer 150 is printed over the above indicated decorative layer corresponding to second printed decorative layer 160 at a coat weight of 0.3-1.2 gsm and dried in hot air at a temperature of 105°C.
- the paint composition used for this decorative layer has the following formulation (all numerical values are in parts by weight): Methylethyl ketone 34.0 Methyl propyl ketone 33.0
- a pigmented pressure sensitive adhesive is then applied over the dry paint film layer corresponding to dry paint film layer 110 at a coat weight of 17 gsm using transfer lamination to provide an adhesive layer corresponding to pressure sensitive adhesive layer 120.
- the formulation for the pressure sensitive adhesive is as follows: 96% by weight of a non-tackified acrylic emulsion containing a crosslinked copolymer of butyl acrylate and ethyl hexyl acrylate, 3.7% by weight UCD 1106E, and 0.3% by weight UCD 1507E. 5
- a polyethylene terphthalate film backing liner corresponding to backing liner 132 is coated on one side with a silicone release coating corresponding to second release coating layer 136.
- the thickness of the release coated liner is 0.92 mil.
- a matte release coat corresponding to first release coating layer 135 is o applied to the other side of the backing liner using gravure at a coat weight of 4.4-
- the formulation for the matte release coat is as follows: 50.54% by weight methylisobutyl ketone, 7.84% by weight isopropanol, 8.93% by weight Lankyd 13- 1425, 10.68% by weight VAGH (product of Union Carbide identified as hydroxy modified polyvinyl chloride/polyvinyl acetate copolymer), 22% by weight Microtalc 5 MP 15-38, 2% by weight Cycat 4040, and 6.8% by weight Cymel 303.
- the matte release coat is dried using forced hot air at a temperature of 149°C.
- a decorative layer corresponding to second printed decorative layer 160 is printed over the matte release coat at a coat weight of 0.3-1.2 gsm and dried in hot air at a temperature of 105°C.
- the paint composition used for this decorative layer 0 has the following formulation (all numerical values are in parts by weight):
- a decorative layer corresponding to printed decorative layer 150 is printed over the above indicated decorative layer corresponding to second printed decorative layer 160 at a coat weight of 0.3-1.2 gsm and dried in hot air at a temperature of 105°C.
- the paint composition used for this decorative layer has the following formulation (all numerical values are in parts by weight): Methylethyl ketone 34.0
- the following paint composition is coated using rotogravure over the above indicated decorative layer corresponding to printed decorative layer 150 at a coat weight of 5-16 gsm and dried in hot air at a temperature of 105°C to provide a dry paint film layer corresponding to dry paint film layer 110.
- all numerical values are in parts by weight..
- the following coating composition is coated over the above-indicated dry paint film layer using roll coating at a coat weight of 20-30 gsm and dried in hot air at a temperature of 105°C to provide a support layer corresponding to support layer 180.
- all numerical values are in parts by weight.
- a pigmented pressure sensitive adhesive is then applied over the coated layer corresponding to support layer 180 at a coat weight of 17 gsm using transfer lamination to provide an adhesive layer corresponding to pressure sensitive adhesive layer 120.
- the formulation for the pressure sensitive adhesive is as follows: 96% by weight of a non-tackified acrylic emulsion containing a crosslinked copolymer of butyl acrylate and ethyl hexyl acrylate, 3.7% by weight UCD 1106E, and 0.3% by weight UCD 1507E.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Decoration By Transfer Pictures (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Paints Or Removers (AREA)
- Adhesives Or Adhesive Processes (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0407509-9A BRPI0407509A (pt) | 2003-02-14 | 2004-02-11 | método para produzir um laminado de tranferência de tinta seca e método para produzir um laminado de várias camadas |
MXPA05008565A MXPA05008565A (es) | 2003-02-14 | 2004-02-11 | Metodo de extrusion para producir un laminado de transferencia de pintura seca. |
JP2006503449A JP2006520260A (ja) | 2003-02-14 | 2004-02-11 | ドライペイント移動ラミネートを作製する押出し成形方法 |
EP04710175A EP1594626A4 (en) | 2003-02-14 | 2004-02-11 | EXTRUSION PROCESS FOR MANUFACTURING DRY PAINT TRANSFER LAMINATE |
AU2004213765A AU2004213765B2 (en) | 2003-02-14 | 2004-02-11 | Extrusion method of making a dry paint transfer laminate |
CA002516026A CA2516026A1 (en) | 2003-02-14 | 2004-02-11 | Extrusion method of making a dry paint transfer laminate |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/367,611 US20040161564A1 (en) | 2003-02-14 | 2003-02-14 | Dry paint transfer laminate |
US10/367,611 | 2003-02-14 | ||
US10/457,806 | 2003-06-09 | ||
US10/457,806 US20040159969A1 (en) | 2003-02-14 | 2003-06-09 | Extrusion method of making a dry paint transfer laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004074386A2 true WO2004074386A2 (en) | 2004-09-02 |
WO2004074386A3 WO2004074386A3 (en) | 2004-12-09 |
Family
ID=32911918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/003846 WO2004074386A2 (en) | 2003-02-14 | 2004-02-11 | Extrusion method of making a dry paint transfer laminate |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1594626A4 (pt) |
JP (1) | JP2006520260A (pt) |
KR (1) | KR20050098939A (pt) |
AU (1) | AU2004213765B2 (pt) |
BR (1) | BRPI0407509A (pt) |
CA (1) | CA2516026A1 (pt) |
MX (1) | MXPA05008565A (pt) |
WO (1) | WO2004074386A2 (pt) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007081915A1 (en) * | 2006-01-06 | 2007-07-19 | Avery Dennison Corporation | High gloss laminates for decorative automotive parts |
EP1820834A1 (en) * | 2006-02-16 | 2007-08-22 | Nitto Denko Corporation | Pressure-sensitive adhesive tape |
WO2008043660A1 (de) * | 2006-10-06 | 2008-04-17 | Tesa Ag | Hitzeaktivierbares klebeband insbesondere für die verklebung von elektronischen bauteilen und leiterbahnen |
WO2011101274A1 (de) * | 2010-02-22 | 2011-08-25 | Ika Innovative Kunststoffaufbereitung Gmbh & Co. Kg | Stabilisatorsystem für verschäumbare halogenhaltige polymere |
WO2012064622A1 (en) * | 2010-11-12 | 2012-05-18 | Newpage Corporation | Better curing coated release liner substrate |
US8551279B2 (en) | 2008-03-25 | 2013-10-08 | 3M Innovative Properties Company | Multilayer articles and methods of making and using the same |
US8932424B2 (en) | 2008-03-25 | 2015-01-13 | 3M Innovative Properties Company | Paint film composites and methods of making and using the same |
US20210246332A1 (en) * | 2018-06-11 | 2021-08-12 | Dow Global Technologies Llc | Processes for making coated films and solventless polyurethane precursors that may be used to make coated films |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040161564A1 (en) | 2003-02-14 | 2004-08-19 | Truog Keith L. | Dry paint transfer laminate |
US20210246275A1 (en) * | 2018-06-11 | 2021-08-12 | Dow Global Technologies Llc | Coated films |
US20230312996A1 (en) * | 2020-09-17 | 2023-10-05 | Upm-Kymmene Corporation | Filmic release base material with improved silicone anchorage properties |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2104617T3 (es) * | 1989-10-19 | 1997-10-16 | Avery Dennison Corp | Procedimiento para fabricar paneles de plastico con superficies abollonadas resistentes a la intemperie para exteriores y paneles de plastico resistentes a la intemperie para exteriores. |
DE69327611T2 (de) * | 1992-05-14 | 2000-07-13 | Decora Inc., Fort Edward | Selbstklebendes, dekoratives Oberflächenbelagmaterial |
JP3419886B2 (ja) * | 1994-05-02 | 2003-06-23 | 大日本印刷株式会社 | 転写シート |
ZA964731B (en) * | 1995-06-07 | 1997-01-07 | Avery Dennison Corp A Legal Bo | Extrusion coating process for making protective and decorative films |
US5750234A (en) * | 1996-06-07 | 1998-05-12 | Avery Dennison Corporation | Interior automotive laminate with thermoplastic low gloss coating |
JP2000246859A (ja) * | 1999-02-26 | 2000-09-12 | Dainippon Printing Co Ltd | 化粧材 |
-
2004
- 2004-02-11 BR BRPI0407509-9A patent/BRPI0407509A/pt not_active IP Right Cessation
- 2004-02-11 EP EP04710175A patent/EP1594626A4/en not_active Withdrawn
- 2004-02-11 AU AU2004213765A patent/AU2004213765B2/en not_active Ceased
- 2004-02-11 MX MXPA05008565A patent/MXPA05008565A/es unknown
- 2004-02-11 KR KR1020057015042A patent/KR20050098939A/ko not_active Application Discontinuation
- 2004-02-11 JP JP2006503449A patent/JP2006520260A/ja active Pending
- 2004-02-11 CA CA002516026A patent/CA2516026A1/en not_active Abandoned
- 2004-02-11 WO PCT/US2004/003846 patent/WO2004074386A2/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of EP1594626A4 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007081915A1 (en) * | 2006-01-06 | 2007-07-19 | Avery Dennison Corporation | High gloss laminates for decorative automotive parts |
EP1820834A1 (en) * | 2006-02-16 | 2007-08-22 | Nitto Denko Corporation | Pressure-sensitive adhesive tape |
WO2008043660A1 (de) * | 2006-10-06 | 2008-04-17 | Tesa Ag | Hitzeaktivierbares klebeband insbesondere für die verklebung von elektronischen bauteilen und leiterbahnen |
US9273231B2 (en) | 2006-10-06 | 2016-03-01 | Tesa Se | Heat-activable adhesive tape particularly for bonding electronic components and conductor tracks |
US8551279B2 (en) | 2008-03-25 | 2013-10-08 | 3M Innovative Properties Company | Multilayer articles and methods of making and using the same |
US8932424B2 (en) | 2008-03-25 | 2015-01-13 | 3M Innovative Properties Company | Paint film composites and methods of making and using the same |
US8992718B2 (en) | 2008-03-25 | 2015-03-31 | 3M Innovative Properties Company | Multilayer articles and methods of making and using the same |
US9656442B2 (en) | 2008-03-25 | 2017-05-23 | 3M Innovative Properties Company | Paint film composites and methods of making and using the same |
WO2011101274A1 (de) * | 2010-02-22 | 2011-08-25 | Ika Innovative Kunststoffaufbereitung Gmbh & Co. Kg | Stabilisatorsystem für verschäumbare halogenhaltige polymere |
WO2012064622A1 (en) * | 2010-11-12 | 2012-05-18 | Newpage Corporation | Better curing coated release liner substrate |
US9212299B2 (en) | 2010-11-12 | 2015-12-15 | Newpage Corporation | Coated release liner substrate |
US20210246332A1 (en) * | 2018-06-11 | 2021-08-12 | Dow Global Technologies Llc | Processes for making coated films and solventless polyurethane precursors that may be used to make coated films |
Also Published As
Publication number | Publication date |
---|---|
CA2516026A1 (en) | 2004-09-02 |
EP1594626A4 (en) | 2008-02-20 |
EP1594626A2 (en) | 2005-11-16 |
JP2006520260A (ja) | 2006-09-07 |
AU2004213765B2 (en) | 2008-01-31 |
MXPA05008565A (es) | 2005-11-04 |
BRPI0407509A (pt) | 2006-02-14 |
WO2004074386A3 (en) | 2004-12-09 |
AU2004213765A1 (en) | 2004-09-02 |
KR20050098939A (ko) | 2005-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7807246B2 (en) | Dry paint transfer laminate | |
US7842363B2 (en) | Differential release system for a self-wound multilayer dry paint decorative laminate having a pressure sensitive adhesive | |
US20060003114A1 (en) | Multilayer film | |
AU2004213765B2 (en) | Extrusion method of making a dry paint transfer laminate | |
AU2004213382B2 (en) | Dry paint transfer laminate | |
AU2007216952A1 (en) | Differential release system for a self-wound multilayer dry paint decorative laminate having a pressure sensitive adhesive | |
AU2007216951A1 (en) | Differential release system for a self-wound multilayer dry paint decorative laminate having a pressure sensitive adhesive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004213765 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004710175 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006503449 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2005/008565 Country of ref document: MX Ref document number: 2516026 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020057015042 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20048049421 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2004213765 Country of ref document: AU Date of ref document: 20040211 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004213765 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057015042 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004710175 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0407509 Country of ref document: BR |